
- 
VERSLAGEN EN VERHANDELINGEN I 

REPORTS AND TRANSACTIONS I 

NATIONAAL LUCHTVAARTLABORATORIIJM 
NATIONAL AERONAUTICAL RESEARCH INSTITUTE 

AMSTERDAM 

xv - 1949 





Report 

Report 

ERRATA VOL. S V ,  19-19. 

V. 1.543: page number 1; 60 should read 
’,, V 61 ., 
,, TT 62 ,, 

V. 1547 : pagc V 6 : I n  eq 

V 2  
V 3  
v4 

(3.9) 11, should read K , .  

I 





Preface 

This volume of “Verslagen en Verhandclingen” contains, as usual, a . 
collection of .reports on the research work carried out a t  the National 

Aeronantieal Research Imtitute during the l;ttt,er years. 

For a brief review of the research organization and the publication 

policy referenee map hc.madc to the preface of Vol. XI11 (1947‘). For 

varioiis reasons, the contents of this volumc consist .mainly of reports of the 

I4iitter and St,riietiircs Sections, the main reason being the intensive engage- 

ment of other sections with ad-hoe research and with the development ofi 

modern experimental equipment. Thus, no true rcprcscntat,ion is give11 of 

the total work of the institute, an imprcssio~l of which may I IC gaincd from 

t,he i innual  Reports (in l lntch),  which are available upon request. 

All of the reports contained..in this volume were distrihoted opon eom- 
pletion to research institutes and workers actively engaged in the relevant 

field of aeronautical science. Reprints arc arailalile upon retinest as long 

as the stock lasts. 

Poblieations of the members of t,lle scientific staff of the instit,nte 

which were issued in typescript form or puhlish~xl in scientific jonmals 

dnring t,lie period from November 1947 to the end of 7949 are listed on 

the follo~ving pages. 

Amsterdam, Jannary 1950 

C..XONING 
Scientific 1)irector 
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REPORT F. 26: 

Gust Load Coefficients for Wing and Tail 
Surfaces of an Aeroplane 

Dr. J. E. GREIDANUS. and Ir. A. I. VAN DE VO0RE.N. 

.Summary. 

Accurate calculations are made for the gu.ujt load cosfficients, taking intQ amount rotations of the mroplane about the lateral 
axis and the  instationary &blishment of aerod.mamie.foroca. lllx influonre of tho mast important parameters on the Gust 
loads is iavcaigated. The results, iiihich arc shoim in di.?gmms at the end of the rap&, w e  explitined. Derivations of 
fomulna and computational dotails m e  omitted, but tho basic assvlrupt,ions O n  which the method of calculation i s  founded, 
are mentioned. 

Contents. 
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2.4 Aerodynamic forces on the #horizontal tail 
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2.6 :Two important parameters. 
2.1. ' Representation' of results. 
2.5 Range of parameters invktigated 

3 Discussion of results. 
4 List of symbols. 
5 References. 

2 tables. 
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1 Introduction. 

I n  view of the increasing importance -to ohtain 
detailed information about the'effcct of gusts upon 
t,he structural D a r t s  of an aeroolane: i n  oarticnlar 

planes. Though no major change was .brought in 
the methods applied, the introduction of a suitable 
method for numerical integration of t,hc equations 
of motion (carried out .previously by opcrator 
methods) made i t  posible to retain mope details 
in t,hcse equations and to raise, thereby, the level 
of accuracy. In  this way, a rather great nnmher 
of cases, covering a wide variation of the mast 
important parameters, has been investigated. 

Results are, as far as necessary, in good agree- 
ment with the older work, but tho attained ad- 
vantages, particularly with respect to the tail 
loads, are manifest. . . 

I n  this report a complete survey of all bmic 
assumptions is given. Further, ample .consider- 
ation is given to the results. All computational 
details and derivations of formulae are, however, 
omitted. They will he collectd in a separate report 

It may ,he mentioned that all results eommnnic, 
atod in this report apply to a perfectly rigid 
aeroplane. It is known that the corresponding 
loads may he toi-low in consequence of oscillations, 
gencrated by the gust, of elastic. par t s ,  (e. g. the 

(ref. 2), available on request. . . .  . . .  

flexible wing) of the aeroplane.. . .  . 

1 .~ ~ 

upon' the wing' and t h e  horizontal' t a i i  surfaces, 2 ~~~i~ assumption$, 
extensive calculations of gust loads have boen per- . .  

. ,  
formed a.t t.he National Aeronautical Research 2.1 .GILqt veb&lJ, 
Institute (Nationanl LuGhtvaartlahoratorium), hy 
order of the Netherlands Civil Air Scnicc (Rijlw 
lucht,vaartdienst). This work was started during 
the war 'by one of the authom Results (after a 
long delay 'pu,blished recently; ref.1) pointed to  w r  = 

a marked influence of the static stability - W r  = 

of the aeroplane, especially on the tail loads. It u l ~ c w 0  .. ~ if sg I S; 
wan, consi'dered desirable to  investigate this depcn- . 
dence more completely, and to adapt ,the under- 
lying calculations to modern poet-war civil aero- 

The distribution. of the gust, velocity' along -the 
night  path of the aeroplane is assumed to  he 

if s 5 0, 
ac,,, 8 

am S!J 
W 0  (1 - C O S T  -) if 0 J 5 so 3 (2.1) 

.$ giving the distance along the flight path in 
t e r m  of the mean aerodynamic semichord . .  1, of 



the wing'). The gGadient distance, so, is likewise 
cxpressed'in this unit of length and  thus depends 
numerically on the dimensions of the aeroplane. 
B y  its introduction as unit of length, 1, is elimi- 
nated from the argument of the lag functions in 
the aerodynamic forces (compare section 2.3). I€ 
sg = 0 the gust is called a sharpedged gust. The 
gust intensity wo is positive if i t  is directed upward. 

The gust velocity is constant in planes perpendi- 
cular to the flight path, which leads to symmetrical 
loads. The right angle between the original path 
of flight and the direction of the .  gust leads to 
loads of almost optimal severity (ref. 1) (other 
conditions being given). 

2.2 Equ.ations of motion. 

The equations of motion are formed with regard 
to a system of rectangular axes, fixed to the aero- 
plane and with its origin in the centre of gravity. 
Before the.entranee of the aeroplane into the gust, 
the X-axis points in the horizontal direction of 
motion and the Z-axis is directed vertically up- 
wards. 

The disturbance of the aeroplane due to the gust 
is a.ssnmcd to remain small, i. e. to introduce velo- 
cities, small compared with the original speed and 
rotations over small angle  only. The equations 
of motion will he developed to the usual first order 
of' approximation (sin 9 ~ ( p ,  cos (p = 1). . 

The forward speed T' (in X-direction) is assumed 
to  be unaffected hy the gust, which is a usual 
approximation, having no' important influence on 
the results (ref. 1). This is due to the short time 
in which the optimal loads are built up. 

The remaining motion is described by two.simu1- 
taneous equations, one representing the equilibrium 
of inertia and aerodynamic forces in the 2-direction 
and the other expressing the 'equilibrium of the 
corresponding moments ahout the lateral ( Y - )  axis. 
Both equations are intcgro-differential equations, 
the integral operators arising from the aerodynamic 
lag funitidns: 

. 

The initial stead>, state can. of course. be elimin- 
ated immediately. In  the following, the term 
"aerodynamic forces" will always refer to the 
according changes, directly or indirectly caused 
by the gust. 

I n  the equations of motion, .the time t will eon- 
sistently be replaced by the variable s by mcam 
of the ohvious relation 

Hence, the motion of the aeroplane will ultima- 
tely #he ,determined by the functions w(s) and  si 

" .  

1) M i n d  6~ iho  f&nula 

J J 
. ,' (2 .2)  - b  - 2 ~ - - b  . - 

b Q -  

. .  /21ay s, ., 
- b  , r ,  

See scetion 4 far notations. 

denoting respectively the speed in the Zdirection 
and the angular speed ahout the Y-axis. 

It is necessary to add a convention &s to the 
point of the aeroplane to which the coordinate s 
refers. This will not he identified with the centre 
of gravity, hut with the fuselage nose. Hence, at 
the moment s-sl, the nose of the fuselage reaches 
the point s, of the flight path. The disturbance 
of the aeroplane's motion by the gust thus starts 
a t  the moment s=0. 

2.3 Aerodynamic forces on the wing 

' 

The total aerodynamic force on the wing consists 

(i) the change iii circulation due to the dis- 
turbed motion of the wing 

(ii) the change in circulation due to the partial 
motion of the air  

(iii) the ,dynamic pmfile curvature 
(iv), . the inertia effects of the surrounding air. 

At  first the respective .forces are considered Por 
a wing stri8p of width A?/ assuming twordimcnsional 
flotT and neglecting all eompressihility effects. 

(i) If at the mament a an instantaneous change 
occups in the angle of incidence a t  the three-quarter 
chord point, then the force at  the moment s is 
given by 

of t,he superposition of forces resulting. from: 

. .  . .  

AL(S) = n p T'*. k,(S - u). Am(.). ZAV. (2.4) 

For the lag function k ,  Jones" approximation 
(ref. 3) 

has been adopted in this report. 
The disturbed motion of 'the aeroplane c a m  a 

continuous change in the angle of incidence. Thus 
the total change in this part of tlie aerodynamic 
force has been ohtained hy integration of (2.4) 
with respect to O. 

If, a t  the moment u, the midpoint of.the 
st.rip reaches a- gust, field of intensity Azo,, the 
resulting force will be; a t  the moment s:  

(ii). 

For k, the rigorous two-dimensional result has 
been used (refs 4, 5). k,(s) is equal to zero if 
s I - 1. 

For a gust field with gradient distance, the 
total increment in lift follows by integration of 
( 2 . 6 )  to u. 

(iii) The variation of the annle of incidence -~ 
along'the profile, when it is rotating about the 
Y-axis, gives rise to an  instantaneous force 

A L  == T p V d 2 A y .  (2.7) 
. ,  

(iv) Due to the accelerated motion of the strip, 
there exists an instantaneous force (ref, 6) 

A L  = - n p a ZzAy, (2:s) 
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,\.here a denotes the acceleration a t  the midpoint 
of the strip, and an instantaneous moment- 

(2.9) 
do 
d l  

AH = - 1 1 ~  7 p - PA?/. 

T,he eirculatioilal forces (i) and (ii) act a t  thc 
quarter chord point, the force (iii) at the three- 
quarter chord point and the force (iv) a t  the mid, 
point of the strip. 

The forces on the total wing are deduced hy 
integration to y i6ith the following modifications : 

The effect of finite span has been approximated 
by replacing the factor 2 7 by the actual lift slope 
for steady flow: 

(2.10) 

of the wing I). 
The tapered wing has been replaced by a reet- 

angular wing of the same mean aerodynamic chord 
and the same area. The major consequence of the 
neglected taper will presumably be that the assum- 
ed lift force huilds up somervhat too slowly near 
the tips and soniewhat too quickly near the wing 
root. Another consequence is that all wing chords 
enter a t  the same moment into the gust fiel'd. 

It must be noted that the force (ii) hcgins to 
build up at the moment that the wing nose (and 
not the nme of the fuselage, which is e, semichords 
ahead) touches the boundary of the gust field. 
Tmhis can be represented by an appropriate change 
of the variable in the k,-fanction. 

2.1 Aerodyiwniic forces on t h e  h o i i z o n t d  tn i l  

T.he aerodynamic force on the, .tail plane can he 
divided into a force resulting from .conditions of 
free flow and a force due to the downvash of 
the wing. 

The first part can clearly be obtained in a. similar 
way as for  the wingz). With 

pZa?te. 

(2.11) acL (+)\ =Pa 

denoting the lift coefficient for the tail placed 
in a-free steady flow (and again referred to the 
wing area &), the finite span effect for the tail- 
plane has heen taken into account by replacing 

2 71 by (s); z. Further, the argument s - u 

of the lag functions must he replaced by -~-, 
.f ' 

if the mean aerodynamic semichord of the tail is 
equal to tZo. Finally, the aerodynamic force 
directly due to the gust will not act 'hefore the 
moment e, + ,/3 .f + (1 - t ) ,  this being the distance 
of the leading edge of the -tailplane behind the 
fuselage nose, expressed in wing s,emichor&. 

The force due to  the downwash has been ealeul-, 

S,  

s - (T 

') All aerodynamic coefficients refer to  the wing area 

2, No elemtm motion is -mad to  m u i .  
s,: Thus L = o , , ? & p P . s w .  

ated as follows. The wing is replaced by a lifting 
line (bound vortex) through the quarter chord 
point of the mean aerodynamic chord of the wing. 
The length of this vortex has becn put  equal to 
2 b' = 2 A' 1, (b' somewhat smaller than b, A' pro- 
portionally smaller than the wing aspect ratio A ) ,  
while its strength r is independent of y, which 
implies that trailing vortices are concentrated in 
the points ?J= -t- b'. ChangPs in the circulation 
about the wing, i.e. changes in the strength of 
the lifting line vortex, will he accompanied hy the 
formation of equally strong but oppositely dire& 
ed vortices of the same length Zb', carried off 
by the flow and forming the wake. The strength 
of the trailing vortices varies accordingly. Hence, 
the complete vortex system can, a t  any moment, 
he decomposed in a system of rectangular vortices 
of constant strength. I n  calculating the change of 
the downmash, the initial horseshoe vortex must 
'he left out of consideration, For points of the 
tailplane the change in downwash has been put 
equal to the velocity induced hy the system of 
vortices described above, in that point of the inter- 
section of the plane of symmetry and the vortex 
plane, which has  the same z-coordinate as  the 
quarter chord point of the mean aerodynamic tail- 

downwash, cau.scd hy the fact that the theoretical 
induced veloeity along a line parallel to  the lateral 
axis is minimal in this point, has been compensated 
by a small numerical reduction of the value of A' 
resulting from ot,her Considerations (e. g. induced 
drag). 

In  calculating the forces due to the changed 
downwash, no aerodynamic 1a.g has hcen included 
in the part generated by the slow variation 
in wing circulation, which results from the dk- 
turhanee of the .aeroplane's motion. To the part 
generated by the swiftly vai7ing wing circulation 
resulting from the direct influence of the gust on 
the wing, the k,-function has been applied, though 
this implies an insignificant approximation, be- 
cause the downwash is not constant when shifting 
over the tailplane. 

I t  is, of eonme, also possible to obtain thc 
derivative of the lift coefficient of the steady state 
downwash force from the vortex model considered 
above (reducing .to a single horseshoe vortex). 

I 
I 

I 
ahord. The slight underestimation of the effective . I 

If the result is written in the form 

(2.12) (2) ac =in-, ac,. . 
am a, 

i t  can he shown that p" tak& the value 

The slope of lift curve for the tail, placed in 
a steady flow and in the wake of the wing, will 
be denoted by 
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act,, 
ac, 
- =@,- ( P - E ) ~ ,  + ( e  i- 'Iz + ~ ) p , =  

- - & - P P t +  ( e f l / , ) p t . ' )  (2.19) 

ac, 
a, The parameter C ,  of mhich the factor p- S, 

is proportional to the aerodynamic forccs, while 
m .  

- I S  proportional to t.he incrtia forces (with s 
10 

instead of t as variable), governs the trend of the 
aeroplane to adapt its vertical motion to thc gust 2 ) .  

I t  must be remarkod that cfl;denotes the moment 
coefficient, taken shout the centre of gravity 
(11 = C"& . 

The dcrirat.ives - and -- ciiii easily be 

oht.ained .from mec2surements applying to the corn- 
plcte acroplane. They. botli refer to steady flow 
conditions. 

p vz . s, . I " ) .  
ac, ac, 
ac, a, 

It will, fnrthcr, be seen that 

P w  + D t  + P I = ] .  (2.20) 

2.7 Representa t ion  of resztlts. 

If w and o are solved from the equation7 con- 
trolling the aeroplane's reaction to the gust, the 
resulting motion is completely known and all loads 
on wing and tail can easily be ,dctcrmined. They 
conqist of a positive aerodynamical load and a 
negative inertia load. Both parts do not, for a 
part of the aeroplane, balance each other (in 
general), though the resnltank for the complete 
ncroplanc do (first equation of motion). Both 
eoinponcnts of the load have been dctermincd for 
tlic wing and the tailplane and will be stated 
separately. 

(1) Aero$jnnmic wing lond, 

to the gnst can be written in the form 
The aerodynamic forco on the whole wing due 

# 

(2.21) ac, . v2 p -a, v X" tu, Pw . 

AI,," denotes the function of s representing the 
course of t.hc aerodynamic Eorcc if the aeroplane 
procecds into the gust. It has thc significance of  
a load coefficient, whose maximum value is aha?.S 
smaller than I ,  this valnc representing the imagin- 
ary case of an  aeroplane prevcnted t o  adopt any 
distnrbod motion (i, e. forced to proceed with 
w = = O ) ,  or, wha.t turm out to he t.he same, of 
an aeroplane which is at  once completely submit,tcd 
to the comtant gust intensity VI, nnd for which 
aerodynamic lag does not exist. With regard to 
this case the maximum load coefficient has the 
character of a rednetion factor. 

( 2 )  I m r t i a  wing loud. 

It is assumed tha.t thc' centre of gravity of thc 
.wing coincides with the projection of t.hc qnnrter 

2.5 Ao.odyim~zic f o r c i s  on' fiLse1ag.r (md nucclles. 

From investigations in a rindtunnel for a single 
wing and for the cpmbinat.ion of the same wing 
with a fuselage and nacelles, i t  appears that an 
appreciable lift and moment are introduced by 
the fuselage and the nacelles. Introducing a fusel- 
age lift coefficimt ( c L ) / ,  it is found that in the 
cqimtion 

(2.16) 

PI may att.ain a value of a,bout 0.07. This relatively 
large value suggests that the circulat,ory flow ahout 
the fwelagc is not completely due to interferciice 
with tlie wing, but that fuselage or nacelles itself 
ako  produce circulation. From the mcasurements 
of the moment it follows that the resulting force 
acts a t  a distance ela ahead of the quarter chord 
point of the mean aerodynamic wing chord, where 
e is only slightly smaller than e , .  

It will be assumed that, also under circumstances 
of unsteady flow, thc lifting force on fuselage and 
nacelles is not subject to a,erodymmic lag. This 
supposition is supported by the following argument. 

If the circulation about tlie fusclagc is supposed 
to.be generated by some suitable system of bound 
lateral vortices, the adjoined free lateral vortices 
Sorming tlie wake are, in view of the small width of 
the fusclagc, so short that they iiiduec velocities at 
the place of the hound vortices, wllich are small 
compared with the case of a wing in twodimen- 
sional flow. This, however, implies that the steady 
final d u e s  will he attained much qnieker and tlic 
reni;iining lag might well be negligible. 

Thus, for  the fuselage, the k,-function i s  sup- 
posed to die equal to 2 if s > 0. Hovevcr, the 
k,-fqnction does not sud,denly take the value 2, 
since the fusclagc pcnetrates gradually into the 
gust, As long as the fuselage has not entered over 
its Eull length into the gust, i t  is reasonable to  
expect a reduced lift e. g. a lift proportional t.o 
the part within the gust. In fact the following 
assumption has been made f o r  the k,-function: 

k , = O  if s s 0, 

k ,, 0 s s s  e ,  + e , ,  (2.17) 

k2 = 2 ,, . e, .+ e ,  I s. 

2 s 
'- e ,  + E,,. 

I t  is snppaqed that the lift-on the fusclagc acts, 
tinder all circumstances, at  the point indicated hy 
the steady state measurcments. Further, the angle 
of incidence at the point which has the same 
2-coordina.te as the quartcr chord point of the 
mean aerodynamic chord tias hecn assumed to be 
the effective angle oE incidence for the fnsclayc lift. 

Inertia and dynamic curvatnrc contrihutians to 
this lifting force have heen omitted. 

2.6 Two important parameters  

renicnt to int.roduce two new parameters, viz. 
For representation of result.$ it will appear con- 

. .  
1) Making use of (2.20). 
>) Thus C determines in first approximation the quantitp 



chord point of the mean aerodynamic wing chord 
on the plane of symmetry. The inertia force 011 

the whole ving then becomes equal to 

The maximum value of . the  load cocffieient 
Am,w can also be considered as a reduction factor, 
the case A , , , ~  =1 applying to an aeroplane, sub- 
mitted at  once to the full gust, affected by it 
without aerodynamic lag and prevented to pitch. 

If the aeroplane may perform a pitching motion, 
Am,w can be ohtained as follows. 

From the increase in the moment. 

an  angular acceleration 

results. 

of gravity becomes equal to 
Hence, thc total aceclcratioii at the wing centre 

Thus, for an aeroplane submittod a t  once to 
the full gust and affected by it without acrodyna- 
mi, lag 

ac,, 
E- 

( 3 )  A e r o d p a n i i c  tail loud. 

zontal tail plane is equal to 
Thc incream in aerodynamic force on the hori- 

T,he load coefficient A i , c  has the maximum value 
_, 1 if the motion of the tail would be undisturbed 

iintil the tail itself enters the gust and acrodyna- 
mie 1a.g is neglected (implying that the downwash 
mnmes immediately its steady state value). 

(4) Inertia tnil load. 

It is assumed t,hat the centre of gravit,y of thc 
tail coincides with the projection of the quarter 
chord point of the mcan aerodynamic tail chord. 
The inertia force on the whoie tail then becomes 

reaches the value I under the same cireum- 

is given by 
stances as Am,,,,. 

If a pitching motion is allowed, 

ac, 

j2 , . 
. , . .  I (P--.)=, . . , 

:\*,,,t = I - , , .  

Reniark. 

The aerodynamic iiicrtia forms Iiave hccn in- 
corporated in  J \ L , ,  and It is possihlc to shift 
them to the inertia loa& by applying the corres- 
ponding corrections to m W  and 7% (wit,liont change 
of A,,B,w resp. A m , t ) .  In  this ease , I ~ , ~  mint he 
increased with a small amount ranging from 0.006 
for small values of C ( C  zz 0.01) to 0.012 for high 
values ( C  zz 0.05) while corrcctions o f  the s a n e  
order of magnitude must .he applied to  A i , t .  

The resulting force on the wing is given by 

and t,hc resulting force on the tail by 

V S ,  w,, . (2.26) Ill* ac, ( Pt AId - - A?%t ) l/z P a, 
ni 

The resulting tail forcc is mainly determined 
hy the aerodynamic load, since 2 l\ni,t is a t  most 
about 30 % of p ,  n l , t ,  For the wing, the two 
terms m-ay compensate each other for  the greater 
part. 

The forces on any part of wing or tail can easily 
hc calculated if functions Cor the distribution of 
lift and mass along the span are known. 

2.8 Range  of pnrantetors invtxtigated 

F o r  the values assigned to parameters in each 
ease investigated, the reader is referred to tablc 1. 
Thcse values are chosen in such a way that 

( i )  they agree roughly with the mcan values 
of some largc, modcrn civil aeroplanes 

(ii) the applied variation gives a fairly complete 
insight into how the gust loads arc influenced by 
numerical changes of paramcters. Attention has 
espceially been paid to changes in the neighhour- 
hood of values leading to high load coefficients. 

3 Discussion of results. 

m 
711 

The load coeffieienL3 ~ \ t , ~ ,  
are fonctions of the parameters 

A 1 . t  and 

ac,, 
a, The quantities p, -, S,, l o ,  112, mu,, nit V 

and wo are only of importance - fo r  the load 
coefficients - as far  as they influence one of the 
values (3.1). 

In fig. 1 the load coefficients are plotted as 
fnnction.~ of ,s fo r  case 2. It appears from this 
figure that aerodynamic and inert,ia loads reach 
their maximum values nearly a t  the same time; 
thcse values arc reached a little sooner for  the 
wing than for the tail. Thus, the maximum value 
of the resulting force can be deduced from the 
maximum values of aerodynamic and inertia loads. 
This conclusion holds for all caam. 

Tlic parameters C, s, and E are varied in the 
c a ~ c ~  1 to 12. The parameter E will often be re- 

- 



ac,, 
acL 

placed by -which differs by a comtant'amount 

from E ,  according to equation (2.19). The maxi- 

Fig. 1. Wing and tail load ooefficients 8 s  functions of s 
for case 2. 

mum values of the load coefficients are shown in 

figs. 2 / 5  as functions of -. Any combination of 

C and .s! yield3 its own curve. 
Investigation of the cases 13 to 23 shows that, 

within rather good approximation (errors less than 
11/* %), the maximum values of the Xing load 
coefficients are only dependent on 

ac, 
ac, 

ac, 
ac, 

C, su and - . 

Indeed, it appears from figs. 2 and 3, that the 

. . . .. ... 
0.9 

0.8 

0.7 

06 

O5 -060 -050  . -040 - 0 3 0  -0.20% 
3 C l  

Fig. 2. Maximal acrodynamie wing lmd eocffieients. 

maximum coefficients for the cases 13 to 23, which 
all have nearly the same value of C as the eaes  
1 to 3, are in the immediate vicinity of the curve 
connecting the coefficients of these last cases. 

A similar r ewning  does nit  hold for the tail 
load coefficients with the exception of case 13 

0 . 5 - ~ 6 0  -0.50 -0.40 -0.m 4 2 0 %  
3 C I  

Fig. 3. Maximal inertia wing load coefficients, 

(fig. 4 and 5), signifying that these coefficients 
depend on the parameters 

It is shown in figs. 2/5 that an increase in C 
diminishcs all loads, which is in accordance with 
its definition (section'2.6), denoting that an aero- 

+i.unrx 
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Fig. 4. Ths influence of C and acn, - on m a x k d  z.erodynsmie 
acL 

tail snd load aocffieicnts. 
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plane yi th  high C-value can easily adopt a vertical 
motion. 

It, is shown as well in figs. 2 / 5  that an increase 

cAm.0 
1.2 

'I .1 

1.0 

08 

0.7 

0.6 

0.5 

acm 
acL 

Pig. 5 .  The influence of C nird - on maximal ipertia 

tail load wefficicnts. 

in s, diminishes all load?. This too is evident, since 
the aerodynamic forces are built up slower if so 
is greater. 

The position of the centre 'o f  gravity has a 
relatively slight influence on the wing loads (though 
a backward displacement of the centrc of gravity 
definitely increases them), but is more important 
for  the tail. If the centre of gravity lies forward 
(uegative e ) ,  the tail acquires already an evading 
motion by the aerodynamic force of the wing, thus 
diminishing the aerodynamic tail load, but incrcas- 
'ing the inertia tail load. 

Since neither tail nor wing loads are affected 
appreciably by the aerodynamic forces of the 
fuselage it is permitted to neglect them in com- 

putstiom, providod C and 2 retain their ori- 

ginal values. All calculations in this report, how- 
ever, are performcd with fuselage forces (except 
case 13). 

It follo~vs from fig.' 6 that an increase in radius 
of gyration leads to smaller values of 

takes small ncgatiTre values (i. e .  E - 0.2), if - 

hot to greater values maxif - IS strongly 

negative (E  - - 0.2). Hence, the curves connecting 

ac 
ac, 

ae, 
acL 

. ac,, . 
ac, 

+,,>MAX 

13 

12 

I 1  

1 0  
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points of equal C in these diagrams are turned 
hy a change in j. The curves of fig. 6 for large 
values of C haw partly been estimated. 

Finally i t  follows from figs 7, 8 and 9 that the 
maximum valucs of aerodynamic tail load eoeffi- 
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Fig. 8. Influencc of 6 on mss imd  tail load eoofficients. 
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Fig. 11. Motion of the aeroplane (eases 7-12) 
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eients a,re raised by an increase of horizontal tail 
area, ,by an increase of the tail area or hy assum- 
ing smaller values for the downwash, a1wa.s eom- 

paring cases with equal C and -. The influence 

of the tail wm, however, is rather unimportant. 
For readcis who want to obtain a more thorough 

insight in the disturbed motion of the aeroplane, 
enahling them to analysc and underst.and hctter 
the changes in maximum load coefficients due to 
variation of parameters, figs 10-13 contain curves 
of w and loa ;IS fiinetiom of s. The acceleration? 
can easily I= determined from these graphs 
[e. g. the acceleration of the centre of gravity is 
v dw 
- ( + Z,>O ) .  The rnlnes of s for wliieli t,he 
1,) 

maximum ving and tall loads arise are indicated. 
The maximum wing lw~d? aln'ays preecdc the 
maximum tail loads. 

ac,,, 
ac,. 

4 List of symbols. 

X ,  I', Z 
I' l io r~~ard  speed (in X-direction) 
w 

0 

coordinate axes, fixed to the :ieroplane 

velocity of the aeroplane in Z-direet,ion, 
posi tivc iipiw rd 
angular velocity of the aeroplane about 
Y-axis, positive hackwrd  

a0 , gust velocity 

1" 
t 1 0  

i> constant gust relocity behind gra,dient 
distance 
mean aerodJ-namic semi-chord of wing 

,, horizon- 
tal tail plane 

1 ning semi-chord at an arliitrury section 
.Sob, gust gradient distance 
s coordinate along the flight p a t h  
t time 
11 = A  I , ,  semispan of wing 
x " aspeet ratio 
h'=h' 1, !/-coordinate of tip Jortes 
s I<: wing area 
S, area of horizontal tailplane 
P 7" x-component of distance l)ct\vcen quartcr- 

chord point of mean aerodynamic wing 
chord and qnarter-chord of  mean ilcro- 
dynamic tail chord 
radius of gyration ahoot Y-axis , 

x-component of distance hetimen centre 
of gravity of the wliol~? acroplane and 
quarter-chord point of mean ae.rodynamic 
!Tina eiiorrl, posit,ire if centre of grayit,? 
lies af t  

el.!,, x-component, of distance hetvccn fore- 
most point of fuselage and leading edge 
of mean aerodynamic wing chord 

e 4  s-component of dista,iice het,ween the 
point at which the fuselage aerodynamic 
forces act and t.he leading edge of mean 
aerodynamic xing chord, positive if 
leading edge is aft  
x-component of distance hetmm after- 
mast point of fuselage and lending edge 
of mean aerodynamic wing chord 

j 1 ,  
E z,, 

e J ,  

P air  density 



stationary lift coefficient of the whole 
aeroplane, referred to wing area 
stationairy lift coefficient of the wing, 
referred to wing area 
stationary lift coefficient of the tail in 
a free flow, referred t o  wing area 
negative stationary lift coefficient of the 
tail due to downwash referred to wing 
area 
= ( c ~ ) ~  + ( c L ) " ,  stationary lift coeffi- 
cient of tail, including downwash (refer- 
rod to wing area) 
stationary lift coefficient of fuselage and 
nacelles referred to wing area 
stationary moment Coefficient of the 
whole aeroplane (pasitive if tailheavy), 
referred to wing area S, , t o  mean aero- 
dynamic semi-chord of the wing 1, and 
taken about  the centre  of gravity 
angle of incidence 

lag function of instationary aerodynamic 
forces when the aerofoil is subject to a 
change in angle of incidence 

lag function of instationary aerodynamic 
forces, due to partial motion of the air 

m 
maSS of the whole aeroplane 
wing mam 
mass of horizontal tail plane 
aerodynamic wing load coefficient, see 
eq. (2.21) 
inertia wing load coefficient, sce eq. 
(2.22) 
aerodynamic tail load coefficient. see ea. 
(2.23) 
inertia wing load coefficient, see eq. 
(2.24) 
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Research Institute, Vol. XIV, 1948 (Amsterdam), 

1. VAN DE \TOOREN, d. I.: &marks On formulae and 
numerical methods used in report F . 2 8  (gust lmd 
coefficients). Raport F. 29 (1948). 

3 . .  JONES, R. T.: The unsteady lif t  of a finite wing. 
N.h.C.A.-Tochuieal Notc 652 (19%). 

4. X~SSNER, H. G . :  Das zweidimensionale Problem dcr 
beliebig bewqten Tragfliiche. LuftEalirtf. Rd. 1 7  (1940), 
p. , 3 5 6 3 6 1 .  

5. hUcHaR0 JOXES, W.: herdynamic farecs on wings 
in non-uniform motion. R and N 2117 (1945). 

6.  GUTJWT, 11.: Thc accelerate6 motion of a cylindrical 
body thmugh a fluid. R and M 1215 (1929). 
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Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1,5 
16 
17 
18 
19 
20 
21 
22 
23 

SO 

70' 

25 

10 

E 

- 0.2 
0 

+ 0.2 
0 

- 0.2 
0 

- 0.2 
0 

+ 0.2 
0 
0 

+ 0.2 
. o  

0 
- 0.2 
+ 0.2 
- 0.2 

0 
+ 0.2 

0 
- 0.2 

0 
- 0.2 

P X  

0.01 

0.02" 
0.04 

0.01 

,1 

0.025 
0.04 

0.01 

0.04 
0.01 

1. 

C 

0.01182 

" 

0.02955 
0.04728 

0,01182 
>, 

0,02955 i 
0.04728 * 

0.01712 
0.01182 

. ,, ,; 

0.04728 
0.01219 

0.01180 
>, ' i 

0.01165 j 
,, 

TABLE ' I .  

Values of parameters ___ 
. .  

P w  

0.8460 

',, 
,, 

>, 

>, 
0.8992 
0.8460 

0.8200 

0.8477 

-0.8586 

- Ps 
P w  

0.15 

1 ,  

0.20 

0.1 5 
,, 

11 

- P* 
P w  

2 0.0379 

n 

- 0.0505 

- 0.0404 

- 0.0553 

- PI 
P w  

0.07 

0 
0.07 

j P i 
2.5 

,, 

3 
2 

2.5 

6.5 

,, 

5.5 

6.5 
1 ,  

l 

~ 

- 0.5796 
- 0.3796 
- 0.1796 
- 0.3796 
- 0.5796 
- 0.3796 
- 0.5796 
- 0.3796 
- 0.1796 
- 0.3796 
- 0.3796 
- 0.1796 
- 0.6552 
- 0.3796 
- 0.5796 
--'0.1796 
- 0.5796 
- 0.5672 
- 0.3672' 
- 0.2736 
- 0 4736 
- 0.2881 
- 0.4881 

P% -has been ea.lculated in acqrdanoe with (2.13), assuming h'=7.5 for the  cas- 1 till 21 and h'=6 for  the eases 22 and 23, 
Pu 

while __ - = 141.37 f o r  all cases. , . .. 
pusw ac, 

1,s a, 
Other parameters, which have for all cases the same value, are 

f = z / 3 ,  e , = 5 ,  e =  31/2 and e,= 9. 
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Casc 

1 '  
2 ......... 
3 
4 
5 
6 .  ..... 
7 
8 
9 

10 
11 
12 
1 3  
14 
15 ........ 

16 
17 : 
18 , 
19 
20 
21 
22 
,23 

TABLE 2. 

Naximum values of load coefficients. 
.. __ .. ................ ..... ......... ................. 
I 
! 

! 

....... (Al,G],,,ax.. . A mBr ...... ( j \~ . .)malt. ........ ( 1 . t )  m.t  

__ 
0.797 0.798 0.687 1.167 
0,812 0.810. . . . . . . .  0.746 - . ~  . .  1.060 . ~.~~ 

0.832 0.830 0.816. . 0.951 
0.737 0.721 0.605 0.884 
0.666 0.634 0.390 0.817 

0.175 0.766 0.635 1.104 
0.796 0.789 0.710 1.023 
0.819 0.816 ,0.798 0.940 

0.551 0.822 0.693 

0.663 0.657 0.605 0.715 
0.794 0.780 0.660 1.227 
0.8.10 0.808 0.749 0.983 
o.793.~ ........ ~o.802. .. ..... o,658 . . .  ~- .......... 

0.846 0.843 0.834 1.045 
0.668 0.644 0.386 0.924 
0.806 0.798 0.712 1.167 

. .  0.822 ............. ~0,812 . . . . . . . . .  -0.766. ... - -  -1.059 . .  

0.811 0.811 0.762 0.964 
0.795 0.802 0.707 1.070 

'0.813 . 0.810 0.734 0.986 

.~ 0.686 . . . .  0.663.~ .~ .  ~ .. 0.517.. . . . . . . . .  0.790 ...... ~ 

. . . . . . . . . . . . . .  
0.679 

. . . .  
- ' 0.656. 0.607 0.442 0.702 

.. I 

c 

........ 0.797 .... ~0.799~- . . . .  0.660 _ _  1.097 ......... 

~ 

! 

i 
i 
i 

. .  

I i '. 
! .. 

! 
! 
I 
1 

....... .. - ....... 

! 

....... . . -  ........ __ ............. ~~ .. ......... I 
, _  

! 
! . .  . .  

. .  . i  , . _  ~ ' 

! - .......... ~:-.- . . . . . .  . . ~ . ..... 

i 
I 

....... . . -  ........ -_ . - . .  -. ......... I 
, _  

! 

i 
! . .  . .  

. .  , . _  ~ ' 1 
! - .......... . . . . . .  . . ~ . ..... 

4 
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Loads on Wing and Tail Surfaces of an Aeroplane due 
to a Sinusoidal Gust Wave 

by 

I 

I 

Ir. A. I. VAN DE VOOREN. 

, Summary. 

Gust load coefficients are ralcu1ati.d far the e m  of 8. single 8inusoirld gust wave. Phhe rotation of tho aeroplane &out its 
latmal axis and tho d+o features of unsteady fl& (nrradynamio lag) @vc ‘both bcon taken into account. Bosides the 
length of the p e t  wave, tw-0 other paramotem with predominant influenrw-on the mmlting loads ham d s o  been varied. 
Tho results e.m compmed raith those pertainimg t o  prsist ing grists (where, beyond a small gradient zone, tho gust Tcloeity 
mtaim B eonstant value), vhioh have beon oammvnicated in 

’ . 

former repart (xf. 1). 

Contents. 

1 Introduction. 
2 Oust velocity 
3 Results. 
4 References. 
5 Appendix. 

1 Introduction. 

I n  report F.28 (ref. l), results have heen com- 
municated of extensive calcnliltions of gust loads 
on wing and horizontal ta,il surfaces of a perfectly 
rigid aeroplane. These calculations pertain to per- 
sisting gusts, where, beyond a small gradient zone 
of sinusoidal velocity distribution, the velocity 
remaim constant (fig. l a ) .  

The present report contains gust load ealcnl-’ 
ations for a single sinusoydal gust wave, whose 

Fig. l a .  Persisting gust. 

velocity dist,ribution is shown by fig. l b  (see also 
formula ( 2 . 1 )  ). 

The case of the gust wave may seem less in- 
tercsting, since loads should, a.t first sight, be 
smaller than for a persisting gust of equal maxi- 
mum velocity wo. This conclusion, however, is 

premature, as can be explained in the follow- 
ing way. 

Paying attention to the aeroplane’s vertical 
motion only, the gust of fig. l a  gives rise to a 

Fig. I b .  Gust wave 

vertical acceleration of the centre of gravity of 
t,he aeroplane, increasing from zero to a peak value 
and subsequently decreasing monotonically in an 
approximatively exponential way. The ultimate 
rertical ,velocity attained is obviously equal to wo . 
In the case of a gust wave, however, tllc vertical 
reloeity must ultimately vanish again, which im- 
plies that the period of acceleration is followed 
hy a period of deoeleration. So, the loads first 
reach a pmitive extreme and later on a negative 
extreme. Xow, it can easily ,he shown that, if 
rotations of the aeroplane about the lateral axis 
would really be absent, the second extreme vouM 
he le% severe than the first. (The argument is 
that t,he upward velocity of the aeroplane at the 
nionient of maximum gust velocity ,has not yet 
attained the value wb , which means that it enters 
Che “subsequent downmad gust” of the resulting 
gust w a x  with an nnloading downward initial 
velocity). Actually, the occurring rotations do not 



affect thc'loading'on-the wing to such an extent 
(in the eases considered), that this provisional 
conclusion is invalidated, but the influenee on the 
tail loads is appreciable, making it hipossible in 
certain eases to attain a definite conclusion with 
rcspcct to the ratio of the accelerative and dc- 
celerative extremcs of the tailload without detailed 
analysis. 

For this reason the case of the gust wave attains 
some independent significance. 

Moreover, the gust wave can well be considered 
as a t,ypical element of irregular gusts. So, rcsults 
applying to this case may facilitate the tracing 
of those fwtures of actual gusts which decisively 
affect the optimum lo&. 

Finally, the extension of these calculations to 
the case of the gust wave may also facilitate the 
comparison with other calculations pertaining to 
non-,persisting (for instance triangular) .gusts. 

All calculations have been performed in exactly 
the same way as explained in report F. 28 (ref. l), 
changing only the velocity distribution in $he gust. 
Referring to this report, and to. report F. 29 
(ref. 2 ) ,  containing details of the mathematics 
involved, the most important principles may be 
sunimarizod, f o r  sake of convenience, as follows: 

(i) two degrees of freedom are admitted for 
the disturbed motion of the aeroplane, viz: vertical 
translation and rotation about the lateral axis, 

(ii) aerodynamic lag is properly included in 
the formulae representing the unsteady aerodyna- 
mic forces, 

direct numerical methods arc used for the 
integration of the equations of motion. 

2 Gust velocity. 

flight path of the aeroplane is assumed to be 

(iii) 

The distribution of the gust velocity along th'c 

F 14 

w,=1/,w0(1-cosn -1 S if 0 ~ s ~ 2 s , ,  
8, 

s giving the distance along the flight path in terms 
I of the mean aerodynamic semichord 1, of the wing. 
The length of the gust wave, 2 so, is likewise ex. 
pressed in this unit and thus depends numerically 
on the dimensions .of the aeroplane. The 'maximal 
gust. intensity wo. is positive for an upward gust. 
The gust velocity'is constant in planes perpendi- 
cular to the flight path, which leads to symme- 

r trical loads. 

3 ' Results: 

3.1 The load coefficients > \ z , ~ ,  and 
determining the total loads by aid of for- 

mulac (2.21), (2.22), (2.23) and (2.24) of ref. 1, 
have been calculated as functions of s for the 
same cases 1 to  ,12'  which also were investigated 
in ref. 1 and for one additional case, number 24. 
Figure 2 gives a representative result (case 11). 
iiccording to this figure, aerodynamic and inertia 
loads reach their optimum values nearly at the 
same time. Thus, the maximum value of the rc- 
sulting force can be deduced from the maximum 
values of aerodynamic snd inertia loads. This 
conclusion holds for all cases. 

The extreme values of the positive as well as 
of the negative load (compare the introduction) 
are given in table 1 and are plotted in figs. 3/6 
(being reduced to absolute values in the latter 
figures) as functions of the parameters - ac, 

ac, 
and C .  I n  principle, the load coefficients depend 
on tlie'same parameters as in ref. 1, but from 

Fig, 2. Wing and tail load coefficients &9 functions of 8 for easa 11. 
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Fig. 3. Extremes of mmdynamie wing load coefficients. 
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Fig. 5. Extremoa of aerodynamic tail load coefficients. 
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Fig. 4. Extrcmos of imrtia wing load coefficients. Fig. 6. Extremes of inertia tail load caefficicnts. 
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ac,, t h q e  parameters only -, C and sg, being of 

decisive importance, are varied in this investig- 
ation. 

3.2 Wiving loads. It appears from figs. 3 and 4 
that for the wing struct.ure the first, extreme 
is critical, as expeetcd. Comparing rcsults with 
those of ref. 1, it is secn that the replacement 
of the persisting gust by a gwt mave does not 
affect the load coefficients very much, parti- 
cularly if C is great, unless ss i s  remarkably 
small. Indeed, the maxima for s,=25 scarcely 
have changed at  all. This can be explained hy 
considering the moment a t  which thcse maximum 
loa& arc reached (this moment has hecn marked 
in figs. I and 8). The later this moment oecurs 
for a given value of sg , the greater the difference 
between the loa& for the persisting gust and the 
gust wave will be. If C is small - which means 
that the aeroplane adopts only slowly a vertical 
motion - the moment of maximum load will he 
later than for large values of C .  For long gust 
waves, the maximum wing loads are reached a t  
a moment, that the gust velocity has not yet 
decreased very much. 

3.3 Tail loads. For the t d s t r u e t u r e ,  the second 
extreme appears to be morc important than t.he 
first (figs. 5 and 6) if C and s, are ,great and 

a",, has a great negative d u e  (corresponding 

to a fonvard parition of the centre of gravity). 
All these factors promote a relatively &eat pitch- 
ing rotation of the aeroplane, causing a .great iq- 
ward velocity of the tailplane which must evidently 
amplify thc second extreme. In  thesc circumstances 
t,hc gust wave lea& to greater tail loads than the 
persisting gust. 

ac, 

ac, 

It will be clear that, for tail loads too, the 
results for the pemisting gust and the gust wave 

w 
K 
0 3  

0.2 

0.1 

0 

U!L 
\vo 

4 8 12 16 2 0  24 28 32% 36 

fig, 7. Xotion of the a e r a p l a  (s!, = 10). 

will differ morc if the moment of maximum loads 
occuls later. Since a backward centre of gravity 

(small negative value of -) o p p m s  the up- ac,, 
ac, 

Fig. 8. Motion of the aemplmc (sg= 25). 
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ward tail velocity, i t  delays t,he moment of maxi- 
mom load. Hence, for the tail loads, differences the figtires. 

he more pronounced if C and sp, are small and 

maximum wing and tail loads are indieated in 

in results for persisting gust and gust vave will .., 

4 References. 
ac,, . 

IS negative and small. 1 GEEIW.SLX, J.  1.1. m d  V A S  DE V O O y s 6 ,  A. I.: Gust 
lozd eaeffieientr for xing a d  tail surfaew of a11 

- 
ac, 

Figs. 7/9 refer to the mot,ion of the aeroplane. aerop1:*ne. acport Y. 2s. 
2 x~m D~ voOms, A. I.: The relocity w is the velocity of the centre of o,l formulae 

gravity in the direetion of the normal axis of the 
aeroplane. Acceleration velocity and angle of in- 

numerienl mcthods used in the gust load caleulstions 
of report 6.28. Report F.2,9. 

cidence, both for  wing and tail surfaees, can be 
dedueed from these graphs. The moments of Completed: Oetoher 1946. 

Fig. 0. Motion of the aeraplmc (sg = 2 5 ) .  
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TABLE 1 

Case 

1 '  
2 
3 

.. ~ .*- - - - - 
5 

6 
7 

8 
, - 9- 

., 10 

11 

12 

24 

. .. 

I 

- . . . ._ . 

&faximum values of load coofficieuts. If two numbcrs are given, the first rcfers to the first 
extreme (maximum) and the second to the sccond extreme (minimum) 

( A i , w ) m x  

0.733 
0.737 
0.742 

. . 0.699. 
0.654 

- 0.27s 
0.666 
0.767 

- 0.487 

0.810 
0.69.1 

- 0.46G 
0.621 

- 0.483 
0.661 

--0.396 
0.584 

. -0.546 

. .  

0 . m  

~ 

0.689 
0.696 
0.703 
0.654 I 
0.606 

- 0.282 
0.619 

,0.762 ' 
- 0.497 

0.777 
. -0.800 

0,671 
-0.472 

: 0.599 
- 0.484 

' 0.648 
-00.395 ... . . 

0.560 
- 0.5;13 

~ 

.. 

. . .  . . .  

- 

( A L , ~ )  mar 

0.624 
0.665 
0.700 
0.556 
0.397 

- 0.274 
0.486 
0.642 

- 0.531 
0.714 
0.794 
0.526 

- 0.495 
0.419 

- 0.446 
0.575 

- 0.410 
0.285 

- 0.433 

L 

-__ 

( A m )  m a l  

0.9!52 
0.836 
0.727 
0. i50 
0.741 

- 0.$28 
0.G81 
1.101 

- 0.615 
1.003 
0.910 
0.813 

- 0.G57 
0.6S2 

- 0 . W  
0.693 

- 0.469 
0.701 

- 0.770 
. .  

ac,,, 
ac, 
__ 

. .  
-0,5796 . ' 
- 0.3796 
- 0.1796 
- 0.3796 
- 0.5796 

- 0.3i96 
-0.5796 ~ 

- 0.3796 
- 0.1796 
- 0.3796 

- 0.3796 

- 0.1796 

- 0.5796 

. .  
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REPORT F.45. 

Proposal for an Airworthiness Requirement Referring 
to Symmetrical Gust Loads 

by 

Dr. J,' H. GREIDANLTS and Ir .  A. I. VAN DE VOOREN. 

Summary. 

Four  eoiiditians of aerarlynamir. loading of a .conrcntional aeraplanc are indicated, each dotormined by n stendy angle of 
u 

attack, au,gmented with respxt to thc eonmditiou of undhturbod steady Iioolizontd flight by an amount 81% tm Fj li 
(U: gust xloctty; 1': s p e d  of flight; F : ,  j=l, 2, 3 or  4 :  "d1m"iating factors"), apt t o  reprcvcnt by suitable inter- 
combination and completion \vi* appropriate inertin forwe spmetrieal gust loads on wing, fuscl.qe and tiLil,plane. 

,Simplo formulae h a m  been cstablislsed for  bllo dlerinting fmtals,  leadilx to close agreement of rcsulting loads with 
the maxima of s~nimtr ieal  ,gust loads 'as enlculnted n l th  greiLt care in earlier w w k .  A mrm!spondin,g modification of exist- 
ing IGAQ stitlldards is  pmposed. 

Transient overstresses are not eonsidered and should bc determined by separate calculation. 

, ! . .  

Contents. 

1. Introdnetion. 
2' Proposal for  a new airwortliiness requirement. 
3 Equivalen't gnst loads. 

3.1 Wing. 
3.2 Horizontal tailplane. 
3.3 Fuselage. 
The formulae for  Pw and P,  4 

5 Reference-. 

1 Introduction.. 

At t,he National Aeronautical Research Institute 
much attention has hecn paid during the last seven 
years to the ealeiilation of gust loads. Extensive 
results, published in ref. 1, ,have given rise to still 
more careful calculations published recently in 
ref. 2 and ref. 3. This work has been done on 
request of the Netherla.nds Civil. Air Service 
(Riiksluchtvaartdienst),; one of the aims was to  
obtain relialilc'data for the establishment of ratio- 
nal gust -load requirements in the Airworthiness 
Standards. 

An analysis of the results has, indeed, led to a 
proposal, intended to improve the present recom- 
mendation in the PICA0 1)oe. 3031, Proposed 1947 
Edition of Airworthiness (AIR) S.tandards and 
Recommended Practices. 

I n  this report it is presented, discussed and 
compared with the existing recommendation. 

2 Proposal for a,new, . . . . . . . .  airworthiness Feqkrement. ~ .. 

'.It is suggested ihat the articles 3.j.1.4; 3.3.1.4.1; 
3.3.1.4.2.and 3.3.1.4.3 in,~Doe. 3031 of the,.PICAO 

. . . . . .  . . . . .  

. . . .  

(Proposed 1947 Edition of Airmrthincss (AIR) 
Standards an? Recommended Practices) hc main- 
tained in their. present form and that the articles 
3.3.1.4.4 and 3.3.1.4.5 be changed as follows. 
3.3.1.4.4 Equivalent gust loads. 
Recommendat,ion. Apart from transient overstres- 
s a ,  an acceptable apprpximation f,or gust loads is 
to' derive them from 4 conditions of aerodynamic 
loading, each determined ,hy a .steady angle Of 
attack of the whole aeroplane, angmented with 
rwpect to  the condition of undisturhcd steady 
horizontal' flight by a n '  amount arc tan F -, 
taking 

u 
V 

P = E', in the first case, 
P =  *//, Pt in thc sccond case, 
P=Bt in the third case, 
P = I l 2  F ,  in the fourth case, 

. .  

&le : 

U is the maximum prcseribed gust velocity; 
V is the flight speed (EAS). 

\ 

The alleviating factor flW is given by the fol- 
lowing fopmnla (see also Fig. 3.3) 

P, = 1 - a.JP.4 
1 .  

d 2 .  . ac, 
C acL 

where nl0= 0.5 + 0.0005 (-) - 0.6 - 

The alleviating factor Ft shall be taken equal 
to t,he greater of the two values 



( f l t ) ) , = l - - u t  vq 
c 

( f l * ) 2  = 0.66 - 0.6 F: - 1.5 - , 
d 

ac,,, 
ac, 

d 2  
with a, = 0.40 + 0.001 (,) - 3.2 - . 

Moreover 
ac, 
a, -slope of lift curve of the whole aei:oplane 

~~ 

(steady aerodynamic lift being equal t o  
I, = cL . p Tiz. S; where p denotes tlie air 
density) 

c,,' eoefficicnt, of moments i n  ste;rdy floiv (acro- 
dynamic moment of tlie whole acroplanc being 
equal to dl2 = c,,~ , p 7;' , S . e ) ,  rclerring to 
the centR of gravity and positive if tailheavy 

assumed gradient distance of the gust 

of volume) 

c mean aerdynwmio wing chord 
d 
y specific weight of the sir (weight per unit 

1B appropria.tc aeroplane design weight 
S design wing area. 

Theri 
. .  

( i j  The appro&natd gust load on t,he wing is 
obtained by eoniihining the aerodynamic loads 
on wing and fuselage from ease 1 with the 
aerodynamic load on the horizontal tailplane 
of case 2 and wuming inertia forces resiilt- 
ing from t h a e  combined cxter!ia.l loads. 

(ii)' The approximated gust load on the horizontal 
tailplane .is equal to the resulting load on 
this plane when the whole aeroplane is sub- 
ject to the aerodynamic-loah of ease 3 and 
appropriate balancing. inertia forces are as- 
sumed. 

(iii) The approximated gust load- on the fuselage 
is obtained by combining the aerorlynamic 
load of th'e wing from ease 1 with the aero- 
dynamic loads on fitselage and horimiitd tail- 

' .  plene from case 4, assuming inertia forces, 
rcsult.ing from these c,ombined external loads. 
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3 Equivalent g u s t  loads. 
3.1 1~7i12g 

It has been shown in ref. 2, ey. (2.21), that 
the aerodynamic force on the whole wing can be 
written as 

PW A J . w ( ~ )  . r/2 p V S U ,  (3.1) 
/ where . .  

I (3.2) 

while s is a eoorbinatc along thc flight path of 
the aeroplane, in the gust, measuring the distance 
between the nose of the aemplane and tlie boundary 
of the gradient zone of the gust in terms of mean 
aerodynamic wing chords. 

Clearly this aerodynamic loading is identical 
with the loading due to a steady angle of attack 
increased by an amount arc tan A , , ~ ( s ) ~  .with 
respect to the steady horizontal flight condition. 

u .  

Tlie function A ~ , ~ , ( . T )  dcpends on the parametcrs 
of the aeroplane and on the characteristics of the 
gust field. 

Tlie alleviat.ing factor 24, llas been determincd 
in such a way that it, approximates t.he maximum 
of the function A I , w ( s ) ,  obtained in ref. 2 for a 
Binusoi'dal velocity increase in thc giadieiit wnc 
of the gust. For . a  gust field witli linear velocity 
distribution in the gradient zone the maxima are 
pmetiedly the same. 

An increase of the angle of attack of the mholc 
aeroplane leads to a linear acceleration i n  the 
centre of gravit,y equal to 

However, the inertia load on the wing is aetnally 
given by (compare eq. ( 2 . 2 2 )  of ref. 2) : 

A ] , ~ ( S )  and . , , w ( s )  are not ident.ica1 for the two 
following reasons : 

(i) The aerodynamic loads on the tailplane 
shov a lag with respect to those of the wing, due 
l o  thc smaller penetration of the tail into the gust. 

(ii) Tho centre of gravity of the wing does not 
coincide with the centre of gravity of the whole 
aeroplane. 

The first reason being more important, A m +  is 
always smaller than AL,,o until its maximum is 
reached (see fig. 1 of ref. 2) .  T,hk ha two con- 
sequences : 

. .  

Pig. 1. Diagram for determining 
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(3.6) 

2 0.846 0.8 0.060 0.069 1 0.7 I 0.140 I 0.135 
0.5 0.297 0.284 

3 -  . 0.8 0.059 0.OG4 
0.7 0.140 0.13i 
0.5 0.299 0.289 

ntsr (3.5) P'c 711 
Case 

( i )  The unloading inertia forces are over- 
U estimated if the change in angle of attack A ~ , ~ ~  

is also accepted for the tailplane. 
The resulting load, being eqnal to the slim 

of (3.1) and (3 .3) ,  has a maximum which is shift- 
ed towards thc valncs of s, where the greatcst 
difference between A * , ~  and A,,,, OCCUIS, especially 

if p, A L , ~  and - A , , , ~  are almost equal. This 

makes the overestimation still more serious. 
T,hese difficiiltics are solved by assuming an 

aerodynamic loading at  the tailplane corresponding 
to a.n increase of the angle of attack of the whole 
aeroplane of are tan 2/s  P t  $. Thc allcTkting 
factor F t  has hecn determined as an approxima- 
tion to the maximum of t.he function ~ l . ~ ( s ) .  

With symhoL3 explained under table 6, the in- 
ert.ia load at the wing turns out to be 

(ii) 

, .  mu 
m 

Nas. loall 
reached at  

s =  

7 
8 

11 
7 
9 

11 

The giist load for  a part of the wing can he 
obtained by replacing in (3.1), hut not in (3.4),  

pa hy the ratio of LL for the part considered to 

- for the whole aeroplane. Similarly, in (3.3). 

intv shonld he replaced hy the mass of the part 
considere,d. 

Sincc it. is drown in table 1 that the' approxi- 
m&n for the gut  load tends to shecome more 
ecascrvatirc. for decreasing ratio of inertia to aero- 
dynamic load and t,liis ratio decreases towards the 
wing tip, it mill hc clear t.hat the approximation 
for the bending moment will be more eonseivative 
than ,that for the total force (the latter being given 
in tahle I ) .  

3.2 Hoiizoirtal tnil,pl4ino. 

ac 
am 

acL 
a, 

From ref. 2 it follows that the aerodynamic 
force on the tailplane is equal to 

0.8 0.055 
0.120 

0.5 0.250 

! I  

.. 
I, -~ 

O.Oi3 8 
0.134 
0.259 
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0.02 
0.01 
0.02 
0.01 

to the steady flight condition. The inertia load 
at  tlie tailplane then becomes equal to 

. .  

m 
(B - ( e  + '/?  + E) 

' t P i I 1 -  j2 

0.061 
0.070 
0.037 
0.045 

which #by making use of cq. (2.19) and (2.20) of 
ref., 2 map he simplified to 

0.058 
0.067 
0.030 
0.038 

(3.10) 

14 
14 
1 2  
1 2  

Again omitting a constant factor, the approxima- 
ted resulting load at  the tailplane becomm 

Ft,  (3.11) 

which is eomparc,a in taible 2 with tile maximum 
of the exact load 

mt 

(3.12) mt 
. .  m P t  At,t - - A m , t .  

It is seen in table 2 that the approximation is 
satisfactory and generally conservative. 

and A.,,t being proportional to the acoeler- 
ations at wing and tail reypectively. 

Hence, t.he hending moment of the part of the 
fuselage 'hehind tkc ming, ,due to these inertia 
forces and takcn with respect to the quarter-chord 
point of the xx.ing, is equal to 

R 

if m, denotes the mass of the fuselage per unit 
length. This. moment will he written as 

where inR denotes the mass, sg c t.he distance aft  
of the wing quarter-chord point of the center of 
gravity and j ~ c  the radius .of orat ion,  all' refer- 
ring to the part of the fuselage hehind the wing 
and including the tail. Further, t'here is an un- 
loading cont.rihution to this moment, arising from 
the aerodynamic force of the ' tailplane, amount- 
ing to 

- p  ptAr, t  . ' I2 p a". T's u C. 

.. 

a, 
H,ence, the total moment is proportional 'to 

TABLE 2. 

3 

6 

0.095 

._ 

See table 6 for case numbers 

I n  the same way as for the wing the gust load Wihh the approximative calculation of the pro- 
for a part of the  tailplane is obtained hy re- . ~- -posed giist~ loa'd recommendation; the folloming sub- 

placing in (3.11) p t  hg the ratio of -j- for the a s  stitution must he made 
"a 

ac A i , t = ' / 2 P t ,  

a, 2 
a 2  

part consi'derad :to 2 for tlie whole aeroplane . ~i ' '  

and mt by the mass of tlie pa.rt considered. A m , w = P ,  (1 + 7) P, t 

E ( e  + ' / z  + E )  I 
+[P, 1s + j 2  ! +  

13 v2 Ft 2 

3.3 Fuselago. ' 
The loading of the fuselage is almost entirely 

due to the inertia forces. The accelera.tion at  
point of the fuselage a t  a distance x c  behind the 
quarter-chord point of the mean aerodynamic 
wing chord is proportional to 

6 ( 0 - c )  
j. 

I . ' ~  " 

+ P , )  1- j 

A m , t  - A ~m.10 = - < [ e  Pup, + 
. .. - .  . .  +' ( ( e  + ;I2 f E ) P /  - ( P  - E ) P t  1 '/2 Ft]. (3.14) . .~ ._, 

( P - x )  A m +  f X A m . t  

.. P 
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(3.13) 
exact 

Comparisons are made in table 3 hetiveen the 
maximum values of (3.13) calenlated hy aid of 
the ressults of ref. 2 and those "aleuJaJed .with. tlAe. 
substitutions of formulae (3.11). ' 
Along the same lines, the hcnding moment in any 
otllier fuselage sect,ion may lie obtained. For sec- 
tions more aft than that considered .ahovc, .the 
ratio betmxn the contrihiitions of aerodynamic 
and inertia loads increases. This tends to make, 
as is shomi in tahle 3, the approximation less eon- 
scrra.tivc. It, is, thought., h o w r e r ,  that in the cri- 
tical fuselage sect,ion the approsimation will remain 
satisfactory. 

4 The formulae for Fw and F t .  
It wits shown in ref. 2 and ref. 3. that the 

(3.13) 
with 
(3.11) 

~vhile calculations piihlished in ref. 1 lead to maxi- 
mum valncs of A , , ~  amounting to 0.57 and 0.47 

(1 The quadratic relation betxeen P, and - holds 

up to a certain value of - only. This value lies 

nsnally well above 50 showing that this restriction 
is unimportant for gust ealeulatiom. 

The maximum aerodynamic load a t  the hori- 

zontal tailplane also depends chiefly on -, - 
and E ,  but ,other parameters have more influencc 
t.hm in the case of the wing. The formnla for 
(Ft), is kept more eonsermtire in order to account 
for unfarourable cliaiiges in those addit.ioiia1 para- 

rgllectjrely. ~ ~ 

C 
a 

. .. . .  ~ C 
~ . ..~ 

ac,, a 
ac, 

1 .o 

0.6 
0.3 

1.0 
0.6 
0.3 

1 .0 
0.6 
0.3 

maximum aerodynamic wing load depends chiefly meters. 

0.2 
0.5 
0.2 

0.1 
0.2 

0.1 
0.2 
,, 
I ,  

0.1 
- I _ _ ~  

TABLE 3. 

2 

3 

6 

Case 1 ppt  

0.308 0.631 
0.705 
0.323 
0.126 
0.133 
0.608 
0.298 
0.106 
0.128 
0.545 
0.298 
0.118 
0.127 

0.662 
0.708 
0.362 
0.137 

I 0121 
0.641 
0.333 
0.102 
0.102 
0.953 
0.30i 
0.123 
0.111 

See table 6 for ease numbers 

- 

on -the static sta.hility of the aeroplane - 

on the gradient distmce of the gust and on a para- 
meter E (=4 C, C being the parameter used in 
ref. 2 and ref. 3 ) .  Other parameters hme only a 
minor influence. An approximation formula was 
cstablished, containing only t.hesc three quantities. - 
It will he clear from table 6 that in the considered 
ranges of t,he parametcrs it gives an approximation 
to (nl, la)msr, which is accurate mithin 4 %, being 
geiierally conservative. 

For very great valuS7 of E (i. e. E = 0.36), the 
proposed formula gives the following results 

( a;;: i ' 

~ 5 1 -0.19 1 0.584 1 , 

\lax. load 
eaehed at, 

S =  

11 
12 
9 
7 
7 

11 
8 
7 
7 
9 
8 
7 
7 

I n  table 4, bhe'allcvi@ing .factor, of the prwoit. 
ICAO recommendation has lbeen compared with 
the alleviating factors I", and F c  proposed in this 
report. It is seen that for flight conditions with hack- 
ward position of the center of gravity, the new 
ralues for the i ~ n g  i r e  higher: 'The values for 
the tail are fa r  these conditions also higher if the 
wing loading' is large. 

It is not, quite elear in the prcsent ICAO-rccom- 
mendation if aerodynamic loads a t  the tailplane 
must he assumed, when considering wing gnst 
loads. Conscqwntly, an uncertainty in the balanc- 
ing inertia forces exists. If no acrodynamie load 
a t  the tailplane is assumed, the proposal of this 
report means, in spite' .of its higher alleviating 
factor, a generally less severe requirement than 
the ~ ICAO recommendation since the unloading 
inertia forces are larger in the proposal. If a t  
the tailplane tlic same change in angle of attack. 



.. . 

2 

3 

4 

100 

200 

.. . 

300 

,> ; 

-~ 

-0.10 

- 0.30. 

- 0.10 

- 0.30 
-0  10 
- 0.30 

- 0.10 

4 

2 

4 
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TABLE '4. 

- 0.10 
- 0.30 
- 0.10 
- 0.30 

- 0.10 
- 0.30 

F 
(ICAO) 

0.630 

,, 

0.700 

I ,  

0.725 

Avro Tudor ........................ 
Bristol Freighter .................. 
de Havill. Dove .................. 
Viekers Viking . . . , ... , _... , . .. . , 
AQrocentre Martinet (Siebel) 
S. E. Languedoe ..........._._..,_ 
S. A. A. B. Scandia ..._..._...._._ 
Consolidated Convair , .... .. . . .. , 

Fu 

0.684 
0.627 

0.664 

0.597 
0 637 

0.563 
0.759 

0.716 

0.724 

0.668 

0.796 

0.iG0 

0.766 

0.719 

~ _ _  

27.5 
I'? 7 

124 
188 
122 
205 
159 
21 0 

p* 
___ 

0.G31 

0.49% 

0.589 

0.397 
0.574 
0.303 

0.739 

0.564 

0 699 

0.451 
0.7Si 

0.644 

0.754 

0.552 

I)  Assuming y=1.25 kg/m3, % = 6  and d-30.5 m (100 ft,) aa 

L' 1) 

n.15 

0.225 

0.30 

0.075 

0.15 

0.05 

0.:10 

1) h s u m i n g  y = 1.25 kg/m3, - ac, = 6. 
acr 

3.2 

3.6 

4.1 

1.8 

3 0  

2.1 
3.7 

3.1 

3.0 

3.8 

4.1 

E ') 
_ _ ~  ____ 

0.131 

0.098 

0.242 

0.109 

0.120 
0.130 
0.136 
0.146 

0.107 
0.102 

0.130 
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is ;tssnmed as a t  the wing, the proposal is more 5 References. .. 
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TABLE 

Comparison of Pw and Pt with the maxima 

I 
d - 
c Case 

1 5 

3 
4 
5 
6 
i 12.5 

9 
10 
24 
11 
12 
13 5 
14 
15 
16 
17 

2 I ,  

5 n 

18 ' ,, 

- - . . 

PI 
P w  P ,  j 
1)- - & 

ac, E 

I 

0.04i28 -0,290 - 0.1 0.8460 
- 0.190 0 >> 

- 0.090 0.1 
0.11820 - 0.190 0 
0.18912 -0,290 -0.1 

-0.190 0 >, 

0.04i28 -0,290 - 0.1 
- 0.190 0 
- 0.090 0.1 

0.11820 - 0,190 0 
0.189c2 -0.290 -0.1 

-0,190 0 
- 0.090 0.1 

0.04448 -0,328 0 0.8992 0 
0.04728 - 0.190 0 . 08460 0.07 1.5 

-0.290 - 0.1 1 
- 0.090 0.1 >, 

0.18912 -0.290 - 0.1 
I 0.048i6 -0.284 0 0.8200 0.20 -0.0505 1.25 

P ,  = P a  fP* 
Ec sbackmard position of thc centre of grarit.y with respect to the wing quarter-chord point 
pc =distance between quarter-chord points of wing and tail 
j c  =radius of gyration of the aeroplane ahout its lateral axis 
ec =forewad position of the point, a t  which the fuselage aerodynamic forces act, with rcspcct to 

wing leading edge of mean aerodyna.mic chord 
In all calculations F was taken equal to 1.75 and the t.ail chord was tnken equal to c .  

19 - 0.184' 
20 
21 -023i  
22 0.04660 -0.144 
23 ! :: 1 ,, -0.244 

_- 

0.1 
0 

- 0.1 
0 0.8586 

-0.1 
- 0.0553 9 ,  1 

I 
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AI ,,,, and A L , ~ ,  as obtained in refs. 1 and 2 

B 

3.25 

2.75 

3.25 

( A )  1 ui "lax 

0.797 
0.812 
0.832 
0.73i 
0.666 
0.686 
0.775 
0.79G 
0.819 
0.693 
0.590 
0.626 
0.663 
0.794 
0.810 
0.793 
0.846 
0.668 
0.806 
0.822 
0.811 
0.795 
0.813 
0.797 

F, 

0.i98 
0.815 
o.s:3:: 
0.734 
0.648 
0.679 
O.i i8 
0.796 
0.814 
0.705 
0.614 
0.645 
0.676 
0.796 
0.815 
0.798 
0.833 
0.648 
0.796 
0.814 
0.825 
0.807 
0.8'25 
0.807 

A in 
- 7 0  

0.1 
0.4 
0.1 

- 0.4 
- 2.7 
-s.0 

0.4 
0 

- 0.6 
1.i 
4.1 
3.0 
2.0 
0.3 
0.6 
0.6 

- 1.5 
- 3.0 
- 1.2 
-1.0 

1 .i 
1.5 
1.5 
1.3 

AL,t)mrr. l  

0.687 
0.746 
0.816 
0.60.5 
0.390 
0.517 
0.635 
0.i10 
0.798 
0.35.1 
0.301 
0.442 
0.605 
0.660 
0.749 
0.658 
0.834 
0.386 
0.712 
0.766 
O.iG2 
0.70i 
0.734 
0.660 

(5'l)l 

0.706 
0.775 
0.815 
0.645 
0.41 2 
.0.550 
O.Gi7 
0.i47. 
0.81'7 
0.600 
0.355 
0.494 
0.633 
0.G91. 
0.775 
O.iO6 
0.845 
0.412 
0.705 
0.776 
0.813 
0.743 
0.809 
0.i40 

2.8 
3.9 
3.6 
6.6 
5.6 
6.4 
6.6 
*5:2 
2.4 
8.9 

1 7.9 
11.8 
4.6 
4.7 
3.5 
7.3 
1.3 
6 . i  

- 1.0 
1.3 
6.7 
5.1 

10.0 
1'2.1 

0 2 i 4  

0.531 

0.495 
0.433 
0.446 
0.410 

(Pd, 

0.267 

0.532 

0.489 
0.447 
0.447 
0.447 

Car 
~ 
~ 

1 

i 

! 
I 

I 
! 
11 
2; 
1: 
1: 
1: 

' 1' 
l! 
11 
1 
S., 
I! 
21 
2 
21 
2 
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A One Parameter' Method for the Calculation of 
Laminar Boundary Layers 

bY 

Dr. R. TIMMAN. I 
I 

summary. I 
Baaed on Von K a m a ' s  momentum equation fo r  huundarp layer flow a new ssswnption for the mlolocity profile is made, 
t & i i  w,onnt of BS many boundary conditions at the wall as is possible and o f  the arymptotie bohaviour sit the autor 
d g o  of tho buundsry layer. 
Tho d t s  am &ecked with known ex& calculaticmr and show a definite improvement over those obtained from the 
wel1.knon-n PoWbawen method, particularly in the region of rstardod flow. 

Contents. 

1 Description of the method. 
1.1 Introduction. 
1.2 Classical approximation methods, hascd on 

thc momcntnm eqnat,ion. 
1.3 The <asymptotic hchaviour of the solutions 

of the boundary laycr equations. 
1.4 The new calculation method. 

2 Applications, checks and compa.risons. 
2.1 Flow with constant velocity. 
2.2 Flow with a constant velocity gradient. 
2.3 Boundary laver flow about an elliptic . .  

cylinder. 
2.4 Bonndary layer flow about a circiilar 

cylinder. 
3 Recapitulation 
4 References. 

1 Description of the method. 

1.1 Introduction. 

For calculations of the flow in 'a laminar boun- 
dary layer it is useful to have the disposition of 
a method by which a solution of the boundary 
layer 'equations, warranting a reasonable accuraiy, 
can quickly he obtained. 

The classical Pohlhawn method (ref. 7) yields 
the desired resolts in a very convenient way; how- 
ever, thcy are not sufficiently accurate for many 

d important purposes, especially in regions of retard- 
ed flow, For the calculation of the stability of 
laminar boundary layer flow, in which the second 
derivative of the velocity profile in the boundary 
layer is needed, the Pohlhauscn method cannot 
he used. 

For this purpose S c h l i c h t i n g  and U11- 
r i c h derived another method, which, however, 

fails completely in the neighbourhood of a stag- 
nation point. 

I n  this paper, using the same principle as 
P o h l h a u s e n  and S c h l i c h t i n g ,  i.e. the 
cqnation of momentum transport, first given by 
V o n  K a r m a n  (ref. 5) ,  a new method will he 
developed. 

The accuracy will be tested by comparing the 
results with known cases of carefnlly computed 
boundary layers. 

1.2 Clo.ssical approximation methods, based on the 
nionzentum equation. 

The cqnations for boundary layer motion are: 

( U%'+ vy,=.UU'+ "%, (2.1) 
( u. + ouy= 0. (2.2) 

Here, u and w are the velocity components of the 
flow in the boundary layer, U is the velocity of 
the free flow and 17' is the derivativc-of this 
velocity, 5 and are coordinates along and nor- 
mal to  the surface, Y is the kinematical viscosity 
and the suffixes denote partial diffemntiation. 

A solution of this equation, describing a physi- 
cal flow, has to satisfy the folloving boundary , 
conditions 

dU 
ax 

y = o :  u=o,  v = o ,  (2.3) 

v Ilv = T J P ,  (2.4) 

where To is the skin friction per unit length. 
Now, from eq. (2.1) and (2.2) v o n  K a r m a n  

has derivcd the momentum equation (ref. 5 )  in 
the form:  

(2.5) as ,  (6, + 2 F,) + - 
p u z  u ax ' 

u' ~- -- 7" 



Here, 8, is the displaccment thickness, defined by 

and S, is the momentum thickness 

The fundamental idea of the approximation 
methods bas.ed on this equation is to assume, that 
the dependence on ?/ of the solution u (2, y) of 
the original eqnations, can be expressed by some 
known elipression of y, in which appear coeffi- 
cients to be considered as provisionally unknown 
functions of x. 

For large values of ~j the velocity u approaches 
indefinitely the value U of the free stream velocity 
outside the boundary layer, while ,its derivatives 
tend to vanish. 

So, put,ting for a certain value of x 

(2.8) 
U - u =f(!/), 

thc conditions 

I/": f ( y ) - + L  (2.9) 
fW(y) +. 0 for all n, (2.10) 

hold. 
Boundary conditions for  y = 0  are given hg 

(2.3) and (2.4), but it should he remarked that 
ro is not an a priori given function of x, but a 
function resulting from the calculations. Addition- 
al boundary condit,ions can be obtained from cq. 
(2.1) and its succmsive derivatives to ?/ by putting 
y = 0. 

UU'=- Y %, (2.11) 

o-%uu, (2.12) 

f u, u" v ti&. (2.13) 

Generally, as many houndary conditions for ~ J - F  m 
and ?J = 0 are taken into account m is necessary 
to express all unknown coefficients in the expres- 
sion f (y )  for thc velocity profile in one parameter 
A, which is to he considered as a function of x. 
All quantities occurring ill eq. (2 .5)  can thcn be 
expressed 'in A, reducing this equation to an or- 
dinary differential equation in x, from which A ( x )  
can be determined. TV a 1 t z .has given this equation 
a very simple form ,by reducing the distance to 
the wall ?/ to a non-dimensional quantity with the 
help of the momentum thickness 

. 

. 

?/ = 7 1 2 .  s,. 
T,hen : 

S, =A& , 

The non-dimcnsional parameter is given by: 
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The non-dimensoinal quantit>- representing the 
skin friction is 

(2.15) 

Bftcr multiplication with !% the momentum 

equation' can be transformed into 

2 [Tz-& ( 2  + 
= H ( U ,  (2.16) 

I = 

or 

The adrantagc of this form of the momentum 
equation with respect to other forms (P o h  1- 
h a u s e n  - ref. 7, H o w a r t h  - ref. 3)  is 
implied in the fact that i t  is ndt necessary to 
make use of the valuea of U", which, generally, 
hare to be calculated by numerical differentiation 
and which are, ,hence, unreliahle. P o h  1 h a u s e n 
(ref. 7) identifies the function f ( y )  wibh a poly- 
nomial of the 4th degree, satisfying the boundary 
conditions (2.3), (2.4),  (2.11), and for a value 
?I = 6, the "houndary lafer thickness", the ad- 
ditional conditions 

f(8) =I ,  (2.18) 
P(S) = O ,  
p'(S) =o. 

hold. 
This leads, if 

-- ? J -  (2.19) s q,  
t o  'the expression 

= 2 q - 2 , 3 + $ f y , ~ ( 1 - , ) 3 1 ,  (2.20) 
from which it is found that 

(36--), A , = - = -  8, 1 
S 120 
S .1 I 5 
6 315 3 144 

A - ~ = - ( 3 7 - - X X - X h ' ) ,  2 -  

A, = X A2', 

T,= (2  + - A )  6 A,, 
1 

' I  1 
! H ( h ) = 2 A ,  1 6  2 + - A - A ( ( 2 A , f A , )  = 

A2 1 1 5 
=f  

1 190 700 144 
[15120-2784X + 7 9 h 2  f '//,A']. 

I n  a stagnation point U =  0. From (2.16) it is 
been that, in such a point, H ( A )  must vanish also. 

So, if tho boundary layer calculation starts at  
the forward stagnation point, X should here be 
equal to one of the roo& of the equation H ( h )  = O .  
I? o h 1 h a u s c n takes the  root h = 7.052, which 
is the only one having physical significance: 
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This method gives acceptable results in con- 
ditions of accelerated' flow outside the boundary 
layer. 

In cases with an adverse p r w u r e  gradient 
(retarded flow) the method fails to indicate the 
point of separation, i. e. the point where the skin 
friction becomes zero. 

Moreover, t.he method does not yield sufficiently 
accurate information about the shape of the velo- 
city profile, required to calculate the location of 
the transition point, which frequently will be 
situatod in the region of retarded flow. For this 
reason S c , h l i c h t i n g  and U l l r i c h  (ref. 9) 
attempted to obtain improved results hy using a 
polynomial of the 6th degree, satisfying one more 
condition for y = S  and the condition (2.12). 

In  this case, however, no suitable representation 
of conditions a t  the stagnation point could he 
obtained, the roots of the equation H,=O being 
complex. 

For a one parameter method, using polynomial 
approximations, no improvement can be expected 
by using higher polynomials, as higher boun'dary 
conditions at  y = 0 involve the 'derivatives with 
respect to x. 

Thcrefore, attention is payed to the conditions 
a t  the outer edge of the bounda;y 1a.yer. 

The polynomial methodq are all based upon a 
transition to tlie free stream velocity with smooth 
derivatives up to a certain order. 

From a n  investigation of the asymptotic 
c1ia.raeter of .t,lie solutions of the bonndtrry layer 
equations it is possible to introduce assumptions 
for the velocity profile having the right asymp- 
totic character, the free constants are then only 
used to satisfy the boundary conditions at the wall. 

1.3 The (f.sysiptotic behauiour of the solutions of 
tk.e boundaru lauer eqiiations. 

V o n  K a r m a n  and M i l l i k a n  (ref. 6) in- 
dicated a transformation of the 'boundary layer 
equations, which admits a determination of the 
asymptotic behaviour of the solutions for large 
values of y. In consequence of (2.2) the compo- 
nents of the velocity in the boun,dary layer can 
be derived from a strcam function + (z,y) 

Introducing further a new parameter 

p=  / U ( s ) d s ,  
I, 

i. e. the line integral of the free stream velocity 
outside tlie boundary layer, the functions + and p 
arc considered as new independent variables. 

Transformation of (2.1) then leads to the 
equation 

Denoting the expression 

UZ - uz 
' 2  

the energy defect, by z, (3.3) yields 

ax  . u a*z 
aQ u a v  ' - - - Y  - - - (3.4) 

Now, considering the outer edge of the boundary 
layer, where u+ U ,  this equation is seen to reduce 
to the typical equation of heat conduction. 

Its solution, pertaining to the boundary con- 
ditions 

z = o  : $=m 

is known to be 

From this equation the asymptotic behaviour of 
the solntions of the boundary layer equations for 
large values of y can at  once be inferred. 

Introducing a new variable of integration 

p'=- v 
9--;. 

(3.6) hecomes: 

z=- 1 j . - E ' u . ( 9 - +  (3.7) 

v: 

Since for large values of y u+ U ,  the quotient 

will tend to the value - which is only a 

function of z. 
V,' 

The expression for z= ( ~ li l u )  ( u - ~ u )  tend- 

ing to 

the asymptotic expression for. u will be: 
x=u (U-u), (3.9) 

* 
(3.10) 

The assumption t o  be introduced for the velocity 
profile is : 

- 
V T  
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With a suitahle choice of the functions c h ( x )  this 
function will he seen to have the dcsired asymp- 
totic character. 

Iforeover, an approximate' expression for a 
will be 

For a calculation, yielding satisfactory results for 
the whole <boundary layer, the functions cb(z) 
ham to he determined by the houndary conditions 
for y = 0. 

1.4 l 'he new calculation method. 
, .  

Formula (3.11) 'leads t.o a new approach to the 
velocity profilcs, apt to replace the polynomials 
used hy P o 11 1 h a u s e n and others. 

A suitable choice for the velocity profile, having 
the desired asymptotic behaviour, is, as is shown 
in  (1.3) 

U - = f ( v )  =I- 

- 1 e-Y2 (a ,  + 6,7 + C,+ + d , ~ ~  ... )&, ( C 2 )  

where a, a, b ,  6, d ... are functions of x, to be 
determined by the houndary conditions for y = 0. 

v 

Now 

e-*27?l;+ld7&+ e-vZ72kd$= 
u P 

e - va p - la7 (4.3) 

Y i 
,/= 

21c -Y'+k - 7  e 

are, obviously, elementary integrals: yielding fnnc- 
tions of the type B -vZ+,. k 20. 

Therefore the assumption 

U - = f ( 7 ) = 1 -  

- fi - *' (a.,kc$.. . )&-e - +(b+&$+ ... ) (4.4) 

is a more simple alternative for (4.2). 
n 

I n  order to satisfy' the bonndary conditions for 
= 0 an  expansion into powers of is useful: 

~ ( ~ ) = e - " , ( a i t  c 7 z , , , )  + 27e-w' 

( h  + d7j* + . . . ) - - e - *  (2dq + ... ) = 
= a + 2 ( 6 - d ) 7 +  ( c - a ) ~ * +  

2 ( 2 d - b ) +  ( 4 a - ~ ) ~ 4 + . . .  (4.5) 

2 '  

T,he boundary values of"the function itself and of 
its successive derivatives are seen to be 

f ( 0 )  =1- / e - . '  ( a  + c$ + ... )d7-6,  (4.6) 
m 

0 

P(0) = a ,  (4.7) 
y(o) = z ( b  - a ) ,  (4.8) 
f" '(0) = 2 ( c - a ) ,  (4.9) 
f ""(0) =12(2d-b).  (4.10) 

Now 

1 . 3 . 5  ... (2%-1) 
n > 0, ( v;;. 2" + 1 

(4.11) 
n=0. 

So (4.6) becomes 
f ( 0 )  = 1 - b -4 b%{ a + 4 c + ... }. (4.12) 

The boundary conditions to be satisfied are 

u=Uf (O)=O,  (4.13) 

lLy=Uaf'(0) =L, (4.14) 

(4.15) UU' 
?&=Ua2f"(0) =- -, 

u ~ , = U ~ ~ f " ' ( o )  =0, (4.16) 

" P  

" 

.1&,="Ua4p(O) = + ~ u Z v = u f ' ( 0 ) .  

. { ( f ' ( 0 )  ),(aJ' + aU') + f ' z ( ~ ) a U ) .  (4.17) 

Hence, , 
1- b =+ vq{ a + + c + ...._. } , (4.18) 

a = A  (4.19) 
vpua ' 

(4.20) 

2 ( e ' - - )  =o,  (4.21) 

U' 
V a z  

2 ( b  - d )  =- -, 

v d 1 2 ( 2 d - b ) =  
= + a {,a (a,U + aU') + a d l } .  (4.22) 

Now, usually only the first four boundary eon- 
ditions are used, since the occurpence of the.dcri- 
vat.ivcs t.o z in the higher on= leads to difficulties 
in a one parameter system. The same restriction 
will initially he adopted below. 

The parameter A,  introduced in (2.20), is 

A=-f"(o) =-2  ( b - d ) .  (4.23) 

From (4.18) it is found that 

1-b 
( & = : I : =  ~ 

4 V ,  
The expression for the, velocity profile is: 

m 

v 

4- - i = ( 1 - b )  + VY 
+ b(l--e-"') -d$e-*'.  I 
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For this velocity profile the displaeemcnt thickness 
and thc momentum thickness must be evaluated. 
After tedious calculations they arc found to be 
equal to 8 .  

+&bI/,++dJ/y 
4, = 0.752 253 + 0.133 974 b + 0.443 114 d. 

1, 

32 2 '  

h2 = 0.289 430 - 0.014 670 b - 0.015 190 bZ + 
+ d(0.188 063 - 0.058 279 b)  - 0.117 498 dZ. 

If now only four boundary conditions are taken 
into consideration, all terms in (4.4) must hc 
dropped with the exception of three, viz. the terms 
with coefficients a, b and c. Putting, accordingly, 
d-0, it is found that in this ease: 

A=-2b,  
A , - A .  A;12 =- 2 b . a2', 

1-lJ T -4a,.f'(o)=- a ' ' '-, 

The raliie of b in the stagnation point is given 
by the equation II c 0, 

- 0.060 760 A3 f 0.209 268 A' 4- 1.909 973 A + 
+ 0.752 253 = 0. 

The relerant root of this equation is: 
b =-* A = 0.415 02 

giving 

4, = + 0.292 90 A, ='0.071 24. 

This approximation givcs reasonable results in the 
region of accelerated flow, as well as for the 
Blasins case of zero pressure gradient (comp. 
par.. 2). 

In  thc case of retarded flow, however, the ap- 
proximation fails, as is demonstrated by calculating 

the separation point for a flow with a linear outer 
velocity (par. 5). This is due to the fact that 
already the fifth boundary condition is strongly 
violated in the separation point. 

In  fact, the separation point is ch'aracterized by 
! 

T,=O, i. e. b =l. 

' I n  this case the fifth boundary condition requires 
I 

5. 
vaZ12 ( 2 d - b )  = O  3 

for b = l ,  which obviously is not the case. 
Now, in order to satisfy this boundary condition 

in the range of adverse pressure gradient, take 
for d Chc value 

d = & b .  

Thcn, for the separation point, t,he fifth condition 
is exactly fulfilled. 
Thus, 

A =- 2 (b - d )  = - b 

and, the functions 4, and 4, are: 

4, = 0.752 253 + 0.355 531 b ,  
4, = 0.289 430 + 0.079 361 5 b - 0.073 704 bZ 

Tho equation for the stagnation point value of b 
is, now, 

- 0.147 406 b3 + 0.514 253 bZ + 0.578 86 b + 
+ 0.752 253 = 0. 

Unfortuna.tely this equation has no real root i n  
the required region. This proves that. the modific- 
ation is not appropriate for the region of aceeler- 
atcd flow. 

For retarded flow, howerer, the .result of a 
ealculation of the separation point for n flow \yith 
a constant pressure gradient gave a very good 
coincidence with the exact d u e .  

Therefore, i t  mas decided to use the first as- 
sumption (d=O) for aecelerat,ed flow ( A  < 0) 
and the second one (d=B b )  in the region. of 
retarded flow ( A  > 0), for A = O  the two velocity 
profiles tieing identical. The curves for H and T, 
to be used in the solution of the equa.t.ion (2.17) 
show a slight 'discontinuity in tho tangent in the  
point A = O ;  this, however, does not effect the 
results to any appreciable dcgree. The valucs of 
the functions A , ,  a , ,  a2, T , ,  N arc given in 
ta'ble 1 (fig. l), together with an approximation 
formula. The relocity profiles, t,ogcther with 
their first and second derivatives, are given in 
tahle 2 (fi,g. 2 ) .  

By numerical integration of equation (2.17) 
A? can he obtained as a. function of x. 

With tlic help of table I and the corresponding 
graph7 A, A , ,  A2 and T, are, snbsquently, evaln- 
ated. 

The value of a can, further, he derived from 
eqs. (4.15), (4.23), 
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Fig. 2. Veloeity profile functions f,, f 2 ,  f. and thcir derivatiws. 

Thereupon the values of SI, S, and rg can be . , 2  Applications, checks and comparisons. 
calculated in accordance with the relations 

2.1 ‘Plow with cokstmt velocity. 

As a check on the accuracy of the method 
several special cases have h e n  investigated in 
which an accurate solution of the boundary layer 
equations is known. The simplest of these cases 
is the Blasius flow (ref. 3) with a comtant velo- 
city at the outer edge of the boundary layer. 

Here, U’= 0 along the boundary layer and, con- 

A 
1- -2 I a 

S,=-, A* 
a 

. . 
T 1 ’ 2  

A2 s* 
ro = vp  U a f ’ ( 0 )  = v p  U e--? = v p  U - . 



' seqocntly, the form (2.5) of the momentum equa- 
tion is advantageous. 

The houndary conditions yield 
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h=0, 

A, = 0.752 253, 
A, == 0.289 430 

so 

and, from (4.14), 

1 7" gap=-.  2v7 v p  

Substitution in the momentum equation 

gives: 

-=2.279,952 1 (2)"'. , 

a U 
and 

"11 
T~ - 0.330 pU (-)"'. 

X 

The exact values of these quantities have heen 
calculated by B l a s i n s  (ref. 2, p. 136, 157). 
They are 

S ,  = 1.721 (+)'''. 
6, = 0.664 (ST. 

"U If.. 

T~ = 0.332 pU (,) -, 

The crrops in S, , 6, and T~ are - 0.35 %, - 0 6 % 
and - 0.6 %. 

2.2 Plow with a c o n s t m t  velocity grndie?it. 

The second example is the flow with a constant 
mlocity gradient. The exact solution for this 
type of boundary layer has been calculated hy 
F I o w a r t h  (ref. 2 ) .  

hsuming  

the cqimtion (2.16) becomes 

Pnt,ting 

this eqnation talres the form 

(1 -0  ---H &* - (A2). . (2.4) a 
In the starting point = 0 the boundary layer has 
zero displacement and momentum thickness, cori-es- 
ponding to The initial value of A, is, by 
(4.15), in viow of U'#O 

A = A , = O  

For  positive values of L equation (2.4) h a ,  with 
this initial value, heen integrated by a modified 
Ad a m  process (ref. 4) ; A, being a known func- 
tion of x ,  a is ohtaind from 

Subsequently, S I ,  S, nnd T~ can he calculated 

The values of these quantities as fnnct,ions of f 
ape given in tahle 3, and compared wkh the values 
cslculated hy I1 o w a  r t 11 with the aid of power 
series (fig. 3 ) .  For a few ralncs of z the velocity 
profiles have been det.ermined and compared lvith 
the exact. values (ref. 2) (fig. 4) (tahle 4).  

2.3 Boundary luuo. flow along 1i.n elliptic cylinder. 

A third examplc is gircn by the calculation 
of the laminar hoimdary layer for the elliptic 
cylinder ( h / n  = 2.96), for \v,hich the rcsults of 
S e h u 11 a 11 e r (ref. 8) are available. 

For t,he pressine distribution in the free stream 
the valnes of S e h 11 h a 11 e r are t.akcn. 
Near the stagnat,ion point t21ic cqnat.ion 

d U  
dx (P 
- (- A,) = A ,  i- H(h , ) '  

i s  integrated hy a development o f  tdd and A, in 
a power series of z. 

For u/u' the series: 

d 7 k '  = x f 40.5 c' - S6.2 x5 

fits the measured values up to ~ ~ 0 . 3 .  
Substituting for A, a series of even powers of Z 

A, = 0.071 2 + UZ* + 11x4 + CX' t dx' 

and fo r  H(h,)  the approximation formula 

H(A,) c- (6.116-4,51A9) (h,-0.0712) 

t,hc following scrim for A, i s  found: 

A, = 0.071 2 - 1.109 8 x z  + 26.638 5' - 
- 720 x8 + 21 271 x8. 

The step length is indica.ted by 
From x=0.08 on, A4dam' s  method is used. 

IL < 0.03 I uIu' I , 

0.08 < x < 0.160 h = 0.005 
0.160 < x < 0.24 

yielding 

h = 0.01 
0.24 < x < 0.30 71, = 0.02 
0.30 < x < 0.50 h = 0.04 
0.50 < x < 2.0 7L = 0.1 



Fig. 3. Displncemont and momentum thickness and shear stress for flow with 
linear volocity gradient U = U, (1 -dL).’ , ’ 
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Fig. 4. Velocity profile f o r  flow with linear veloeity gradient U = U. (1 ~ 5 l L ) .  

The results of the calculation are given in table 5 ,  
exprwed in dimensionless quantities with the 
Reynolds number 

U &  R =  ~, 

”. 
U ,  being the velocity at great distances from the 
cylinder and L the minor axis of the ellips. 

In  order to compare the calculated velocity 

profiles with the measured values thwe have been 
calculatcd too. Results are plotted, together with 
S c h u h a u e r’s profiles i n  figs. 5 and 6. 

The attaincd approximation is seen to be better 
than that of P o h l h a u s e n  in the range of 
retarded flow,. 

P o  h l h a u s e n ’ s  method did not give separ- 
ation at all, while S e h  u b a u e r observed separ- 
ation at x=1.99. The present method also fails 
to give separation; it yields, however, a very small 
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Fig. 5. Vdo& profiles: fpr  Sehubauer's cl~liptic eyliniler. 

xxx experimental values from NACA report 521. 
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- this enlrulntiaii 
3. ,, . . . ~  Polrlhai,ti!,, ealeulations ,, 

value of a t  the ohserved point of separation, 
much smaller than I.' o h  1 h a 11 s e 11's methd. 

Unfortnnately, an exact calculation of the 
boundary layer with the given velocity, that 
would ,have h e n  a more rcliahle eheelr of the 
calculation performed here, was. not available. 

2 . i  Bot'nddu;y k q e r  flow d o n g  a circular c!/linder. 

Finally, t,hc c:ileulation of the boundary laycr 
flow along a circular cylinder has been performed, 
taking the d u e s  measured hy H i e m e n z  fo r  
the velocit,- outsidc the hound;iry layer, pertain- 
ing to a circiilar cylinder, radius 4.87 cm, in a 
flnid with kinematical viscosity v = 0.01 and a 
relocity at.' infinity of 19.2 emlsce. 

zi = 7.151 - 6.014 97 5 3  - o.ono 330 n zs, 

where z is tlic distance in em to the forward 
stagnation point (ref. 2) .  

The integration of the equation 

is again performcd by A d n m's method (using 
an inteq,olation procediire instead of cxtrapol- 
ation). The step length is drawn from a d l -  
known rule of the theorj- of numerical integration 
(see c. g. ref. I). 

If the equation , I  

is to be integrated, the step length h is deter- 
m i n d  by 

. . ~ ... I is I < 0.15, 

in %he bresent case 
U 
U' 2 '  

I J -  h. 

so 

Now it is easily seen that 
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Fig. 0. Velocity prof i la  for SchubFur's elliptic cglindrr. 

xxx experimental %v,lues. 

.... Pohlhausen edculatiou. 
this calculation. 

000 

__ 

I n  the neighourhood of the stagnation point 
UIU' = 0, so here the integration method fails. 
It is advisable to use in this range a power series 
approximation valid for small 2. 

Now 

- - U 
U' 

7.151 5 - 0.044 97 x3 - 0.000 330 0 26 
7.151 - 0.134 91 z2- 0.001 650 0 2' 

-= 

= 5 (1 + 0.012 57 5 2 '  + 0.000'423 7 $1 + 
+ 0.000 010 51 ze + 0.000 000 295 2' + .__._.) 

and the equation for A, is: 

~ [5  (1 + 0.012 57 5 2  + 0.000 421 7 5 4  + 
dz 
+ 0.000 010 51 z6 + 0,000 000 295 2') A,] = 

= A2 (6.116 - 4.51 A,) (A, - 0.071 2). 

Putting 

A, = 0.071 2 + ax2 + bx4 + , c x G  + dxs 

and eqnating coefficients, a rather leilgthy calcul- 
ation gives 

A, = 0.071 2 - 0.000 344 5 zz - 0.000 013 069 2' 
- 0.000 000 2,56 93 zG - 0.000 000 005 522 4 z8, 

This approximation is used up to 5 = 3.6. From 
an expansion which is ralid for small z. 

3.6 upward the step by step method is used with 
B step length 0.2. 

The calculation gives a good agreement with the 
calculation by power series methods. 

3 Recapitulation. 

I n  o d e r  to be able to  determine the properties 
of the laminar boundary layer, with an accuracy 
definitely surpassing the accuracy attained by the 
methods using polynomial assumptions for the velo- 
city profile S c h 1 i c h t i n g- 
U 11 r i c h), without, hovever, extending the in- 
volved scheme of computation, a new method has 
heen devised which maBes use of velocity profiles 
liaving the.  required a-ymptotic behaviour. They 
a.re made to satisfy the maximum number of 
honndary conditions at. the wall that can hc corn 
sidered in one parameter methods. 

The fun~damcntal equation is v o n K a r m a n k  
momentum equation 

( P o  h 1 h a 11 s en ,  

Ti = free stream relocity, 
S, = displacement thickness, 
6, = momentum thickness, 
T~ = skin friction per unit length 
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The introduced rcloeity profile in the houndary 
layer is represented hy a suitable function 

satisfying the conditions 

u = O  : 1L = 0, 

t&=O 

I t  further contains one shape parameter A, de- 
pending 011 5. Introdueing the parameter 

the momentum erluation'enn be reduced to 

Instead of P o h 1 h a u s  e n 's  fourth degree poly- 
nomial, expressions for thc velocity profile are 
use3 which have the asymptotic cliaractcr for large 
values of y, t ha t  can he derived from the boundary 
layer equations wit.ti tlic aid of the von Karmun 
and Millikan tra.iisformation. 

For A, < 0 (retarded flow) and A, > 0 (aeeeler- 
ated f low),  different representations' of the vclo- 
city profile arc used, the one applying to the 
region of retarded flow satisfying one more 
boundary condition in the point of separation 
and in this point only. This important property 
markedly raises the accuracy in the region of re- 
tarded flow, but, t,hreatens t,o spoil i t  in the region 
of accelerated flow. It is possible to drop it there 
xitholit introducing noticeable discontinuities at 
the conmion point A, = 0. 

In  order to  check the method, a number of 
applications to  wellknown cases has heen made, 
viz. t o  

1) 
2 )  

3) 

4) the flow ar,ound a circular cylinder 

the Blasius flow along a flat plate 
the flow with constant velocity gradient out- 
side thc houndary layer 
t,he flow around a n  elliptic cylinder, as in- 
vestigated experimentally hy S c 11 11 b a 11 e r 

( H  i e m e n 2 ) .  

In each case a good agreement with known 
more or lcss exact solutions is obtained. In the 
e a ~ e  of the cllipt,ic cylinder, the method, strictly, 
fails to reproduc,e the Gbserved separation, but the 
calcnlatod skin friction falls stceply to a very 
small minimum in the vicinity of the pertaining 
point, indicating that separat.ion almast occups. 
T,he error may, therefore, he only small. Un- 
fortunately, no exact ealeulations applying to  this 
case are available, which are apt to sharpen the 
cheek. 

The c;~lculated x.eloeity distrihntions arc in each 
case compare,d with the exact velocity profiles, 
\vhercver available. 

The a,grecment is always good. 
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TABLE 1. . . . .  

.The functions A,, A , ,  A?, T,, H .  

h 

- 1.0 
- 0.9 
- 0.8 
- 0.7 
- 0.6 

- 0.5 
- 0.4 
- 0.3 
- 0.2 
- 0.1 

0 
0.1 
0.2 
0 3  
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

A, 

0.618 279 
0.631 676 

0.645 074 
0.658 471 
0.671 869 
0.685 266 

0.698 663 
0.712 061 
0.725 458 
0.738 856 
0.752 253 
0.787 806 
0.823 359 
0.868 912 
0.894 465 
0.930 018 
0.965 572 
1.001 125 
1.036 678 
1.072 231 
1.107 784 

. .  

. .  

A, 

0.288 190 
0.290 329 
0.291 444 
0.292 256 

0.292 764 
0.292 967 

0.292 868 
0.292 464 
0.291 756 
0.290 745 
0.289 430 
0.296 629 
0.302 354 
0.306 605 
0.309 382 
0.310 685 
0.3.10 514 
0.308 869 
0.305 749 
0.301 156 
0.295 088 

Approximation formulae 

0.166 938 
0.151 i24 
0.135 903 
0.119 579 
0.102 853 
0.085 830 

0.068 G l i  

0.051 321 

0.034 049 
0.016 907 
0 

-- 0.008 799 
- 0.018 284 
- 0.028 202 
--0.038 287 
- 0.048 263 
- 0.057 851 
- 0.066 780 
-'0.074 786 
- 0.081 625 
- 0.087 077 

T* 

0.434 667 
0.414 9Gi 
0.394 631 
0.373 746 
0.352 372 
0.330 578 
0.308 43.5 
0.286 009 
0.263 369 
0.240 585 
0.217 725 
0.200 826 
0.181957 
0.161 451 
0.139 640 

0.116 857 
0.093 434 
0.069.704 
0.046 000 
0.022 654 
0 

- 

H 

- 0.$12 926 
- 0.437 189 
- 0.355 960 
- 0.269 662 
- 0.178 i45 
- 0.083 683 
+ 0.015 015 

0.116 831 
0.221 219 
0.327 617 
0.435 449 
0.483 585 
0.536 621 

0.593 719 
0.653 813 
0.715 707 

0.778 062 
0.839 382 
0.898 286 
0.953 047 
1.002 095 

. .  
A, 5 0 H (A,) = 0.435 4 - 5.653 7 A, - 6'.884 2 As2 - 191.65 A," 

, .  



i I 1 

O.G91 8.  
0.735 i 

0.6937 ' 

0.583 4 ' 

0.440 4 

0.298~7L ~ .. 

0.183 5 
0.101 6 , 

0.OX I 
0.023 3 
0.008 8 
0.003 0 

'1 

0 
~ -~-o;o..-. 

- ;  

0.4. ! 
. ,  

0.6, j 
0.8 : 

1.0 - 

1.2 

1.4 i 
1.6 , 

* ,  

1.8 j 
, 2.0 ' 

2.2 ' 
2.4 , . 

2.6 

2.8 ~ 

. ,  

' ' 3.0 

. ...* 0.432 8 
0 

' -Uq.3572 

-O;608 7 
- 01691. 6 

,0.623 8 
- 0.475 8 
- 0.314 5 
- 0.186 2 

- 0.098 4 

- 0.044 9 
-0.015u 

f , ( n )  

0 
0.150 4 

0.300 2 

0.445 5 
0.583 4 

0.704 3 
0.803 4 

0.878 1 

0.929 8 
0.962 f i  
0.981 5 
0.99.1 ti 

0.996 4 

0.998 6 

0.999 6 
0.99s 9 

~. 

f , ' ( T )  
, .  
- 

0.752 3 ' 

o . n i  F 
0.743 ti 
0;71$7. 
o.ti.50 5 
0.553,s 
0.434 8 

0.313 6 

0.207 0 

. 0324 9 

0.069 0 
0.034 7 
0.01G 2 

0.006 7 
0.002 4 

0.000,7 

1 
1 

1 ' _  
.. - 

il (7 1 

o i  
- 0.01 1 6 
- 0,082 0 

- 0.226 7 
- 0.406 2 
- 0.553 5 

- 0.615 9 
- 0.581 4 

- 0.476 2 
- 0.343 7 
- 0.i2o a 
- 0.1 26 4 

- 0.066 4 

- 0.030 5 
- 0.011 7 
- o.u0:3 ti 

, .  

1 TABLE 2. 

TI+ velocity profiles. 

0 

0.039 2 
0.147 9 
0.302 4 
0.4T2 7 
0.63'2 1 
0.i63 I 
0.859 2 
0.922 7 

0.960 8 
0.981 i 

0.992 1. 

0.996 8 
0.998 8 
0.999 6 
0.999 9 

0 
0.384 3 
0.681 7 
0.837 2 
0.843 7 
0.735 7 

. 0.5686 
0.394 2 

0.247 4 

0.!40 9 

O.Oi3 4 
0.034 8 
0.015 4 

0.006 0 

o.o(r2 0 
0.000 ti 

f,"(n) 

2.000 0 
1.767 8 

~ 1.158 8 
0.390 6 

- 0.295 3 
- 0.735 i 

- 0.890 7 
- 0.822 4 
- 0.636 8 

- 0.429 3 

~- 0.256 8 

-0.1370 

- 0.067 2 
- 0.028 9 

- 0.010 5 
- 0.003 0 

fs('1) 

0 

0.020 0 

0,079 7 

0.176 8 

0.304 0 

0.448 7 
0.5Y2 5 

0.721 2 
' ' 0.823 8 

0.89i 3 

0.945 1 

0.9i4 4 

0.98i 6 

0.994 7 
0.998 0 
0.999 4 

. ,  . . .  
! 
I 
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TABLE 3. 

Flow with a constant velocity gradient. 

U = U ,  ( i - d L ) .  

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 

0 0 m 
.0.174 0.067 3.09 
0.256 0.096 2.09 
0.324 0.120 1.53 
0.382 0.141 1.21 
0.448 0.160 0.98 
0.508 0.179 0.80 
0.567 * -0.197 0.65 
0.638 0.215 0.513 
0.682 0.233 0.418 
0.793 0.251 0.283 
0.898 0.269 0.172 
1.078 0.28i 0.049 

I . .  

Bonndary layer velocity profilw for flov vith constant' outer yelocity gradient. 

U = U ,  (l-dl?,). 
. .  

x /L  = 0.05 X=0.273 - 

This calculation 

0.418 0.638 0.837 

0.240 , 0.507 0.746 0 901 

1.055 1.256 1.465 

0.972 0.994 0 999 

Yvg 
U 
U - 

O.li9 0.358 0.537 0.713 0.893 1.073 1.253 

0.205 0.430 0.645 0.815 0.923 0.975 0.994 

Y /z 
u 
U - 

0.324 0.647 0.971 1.296 1.618 1.943 2.267. 

0.156 0.400 0.665 0.860 0.958 0.991 I 0.999 

+q 0.253 

0.120 . u  
U - 

I 
0.507 0.758 1.013 1.266 ' 1.518 1.781 

0.294 0.498 0.692 0.844 0.936 0.978 



I I 0.545 

0.725 

1.041 

1.457. 

1.832 

1.946 

2.029 

TABLE 5. 

Results for. Schubauers elliptic cylinder'. 

1.230 

1.266 

1.29:3 

1.292 

1.261 

1.24i 

1.240 

0.292 

0.140 

0.024 5 

- 0.033 2 

-0.121. 

-,0.111 

- 0.095 

0,025 3 

0.018 3 

0.00.5 6 

-0.011 5 

- 0.065 6 

- 0.071 2 

- 0.067 4 

0.732 

OJ37 

0.748 

0.798 

0.995 

1.0i6 

1.003 

O:Xl2 ! 0.292 

0.291 

0.291 

0.290 

0.298 

0.309 

0.307 

0.309 

0.285 

0.266 

0.2Q 

0.243 

0.225 

0.195 

0.074 

0.056 

0.064 

I I I I I , 

0392 

0.402 

0.304 

0.212 

0.066 

- 0.136 

- 0.684 

- 0.779 

- 0.707 

2.02 

1.310 

0 978 

0.813 

0.610 

0.493 

0.422 

0.3i i  

0.367 

0.355 

0.553 

0.752 

0.907 

1.227 

1.62 

2.37 

2.69 

2.13 

0.145 

0.223 

0 295 

0.357 

0.47i 

0.604 

0.732 

0.813 

0.841 

1.97 

1.19 

0.85 

I 0.68 

0.47 

0.32 

0.10 

0.069 

0.076 

I 

I I I I 

Ip 
W 
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\'ciucir)- profiles fo r  various sections of the' lioundary lager about Schubauer's elliptic cylinder. 
1 

. .  R = 24,400 . .  
.. , 

x - 01180 
- 

. I O  I 0.4 I p . 8 ~  I 1.2 I .  1.6- I 2 .0 .~  1' 2.4 . ' I  2.8 j 3.0 1 
?/ vF= q/a 1 0" 1 0.197 1 0.394 . 1 0.593 1 0.788 1 0.986 1 1.183 I 1.382 I 1.475 1 

U 0.315 0.563 0.745 0,851 0.897 0.910 , 0.914 , 0.914 

q I 0 I 0.4 

I x=0.357 R=23.500 - 1  

0.8 1 1.2 I 3.6 2.0 2.4 1 2.8 1 3.0 1 

q . 1 0 . 1  0.4 1 0.8 1 1.2 1 1.6, 1 2.0 1 2.4 1 2.8 1 .  3.0 1 
U 0.378 0.692 0.927 1.063 '1.120 1.137 1.142 1.142 

yvF= q/a 1 : 0.305 1 0.608 ~ 0.913 : 1.220 1 1.523 1 1.828 , 1 2.130 I 2.294 1 

x = 0.725 R = 23,600 - 
? ( 0 1  0 .4 '  1 '0.8 1 1.2 1 1.6 1 2.0 1 2.4 13 3.0 1 

3.447 1 3.693 I y vF= 1 ; 1 0.492' 1 0.985 I 1.477 1 1.970 ~ 2.462 . 1 2.954 
U 0.400 0.753 1.023 1,179 1.242 1.261 ! 1.265 1.266 

x c 1.097 .. 1 R = 22,700 

7 1 0 1 0:4 ' I 0.8 1 1:Z ~-~ 1 :''. 2.0 1 . .  2.4 - ~ 2 : 8  ! 3.0 ' . 1 
yvfr'= q/aI : 1 0.66. 1 1.31 I 1.97 1 2.63 1 3.28 1 '3.94 ~ 4.60 1 4.93 

II ~ 0.393 0.758 1.04. 1.20 1.27 1.29 1.293 1.293 1 
~~ ~~ 

- . ~. z c 1.457 ~ R - 22,700 

1 0 1 '  0.4 1 0.8 / : :1 ,2  1 1.6 1 2.0 I 2.4 1 '  2.8 1 ~ 3 . 0  1 
6.Oi 1 I %' 1 1.292 

yVE= 7/a( ; 1 0.081 I 1.62 ~ 2.43 3.23 I 4.05 ! 4.86 
1,. 0.349 I 0.704 1.001 1.182 1.262 1.286 

I x= 1.832 R=24,300 I 
I -  - I 

17 1 0 1  0.4 1 0 . 8  1 1 . 2  1 1 . 6  1 . 2 . 0  1 2 . 4  1 2 . 8  1 3 . 0  I / 
6.65 1 1 1 ?/VI< = q / a  1.90 2.85 3.80 I 3.75 5.70 1 0.494 I 0.831 I i.081 t 1.207 I 1.248 I 1.260 

R = 23,900 
- 

x == 1.946 

? 1 0 1 ,  0.4 1 0.8 I 1.2 I 1.6 ' 1  2.0 I -;2:4. 1 2.8 I 3.0 I 
7.42 
1.244 

y vz= s / a l  : I 1.06 1 2.1: 1 3.18 4.24 
U 0.160 0.4r6 0.797 . 1.056 

R = 23,600 

I I  
. .. - . . - 

1 0 1 0.4 1 0.8 I 1 2  1 1.6 I 2.0 1 2.4 1 2.8 I 3.0 
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Repections on Yielding and Aging of Mild Steel . 
I '  

I . .  

Summary. 
"- I 

. .. 

I .  

r 

. The phenomena .of discontinuous 
yielding ~ and strain-aging, as they 
find expression in  the conventional 
stress-strain . curve, are broadly 
discussed. It is shown that these 
phenomena cannot be attributed to 

'precipitates'in or.around the fer- 
rite crystals, but must both be due 

~' to C and N which.is.in solution in 
the lattice. New hypotheses are 
given. It is suggested that discon- 
tinuous yielding is related with a 
diffusion mechanism of C and N in 
the lattice during elastic straining, 
causing unlocking of the glide 
planes, i.e. a decrease of the initial 
critical shear stress. After plastic 
deformation the glide planes re- 
main unlocked, due to internal 
stresses. Consequently the glide' 

..planes are locked again'when the 
internal stresses diminish or van- 
ish during aging. Strain aging, 
as far as the continuous part of the 
stress-strain curve is concerned;is. 
suggested to be caused by migrat- 
ion of C and N to the zones with 
imperfect ' lattice (slipzones) in 
which solubility is increased. Over- 
aging will then be due to'restorat- 
ion of the'perfect lattice, i.e; to re- 
crystallization. . .  . '. ' 

. .  

I. The yield phenomenon. 

The &use of the phenomenon of discontinuous 
yielding. 

Many investigators have studied the charac- 
teristic yield phenomenon. The cause of the 
phenomenon itself and especially the way in 
which it is affected by the several factors, has 

' 

b'rr I. H. Psim I 
I !  . .  -. 

" been thk~ subject of a great number of 
publications '). 

Since it is possible t o  establish riiicrosco-. 
pically that the brittle'cementite in mild steel, 
is often present as a kind of network around 
the ferrite cestals, Nadai 1) 2) and Ludwik 
3) 4) suggested this to be the cause of.the phe-' ' .  

nomenon. They assumed that the resistance 
to plastic deformation' is inuch higher. when 
the network-is present than when it is missing, ' -. 
the nature and the structnre.of the ferrite being 
the same. When a tensile testpiece is strained,,, 

certain load. The load is..then transferred to 
the basic ferritk" structure, which can deform 
plastically under. a much lower stress. Conse- 
quently, the load stops increasing or at first-' 
decreases, dependent on the conditions among 
which the test.is performed. Only after the net- 

can the stress increase again continuously, due, 
to strain hardening. Most of the subsequent, 
investigators accepted this idea or. have sug- 
gested simi1ar:ideas based on the stiffening of 
the ferrite grain boundaries or some planes 
in the ferrite crystals by precipitates. Even in-  
the'-more recent publications of Kuroda 5 ) ,  
Edwards, ' ;lanes and Walters 6), Edwards; 
Phillips and Jones 7), Dies 8) Zener and Hol- 
lomon 9). we meet these assumptions with 
slight and hardly, essential variations. In an-, 
other paper Edwards, Phillips and Liu10) 
suggest that yielding might commence on those 
slip planes in which the precipitation has 

,caused a rather high resistance to shear and 
,subsequently ' might continue on other slip 
planes with a lower resistance to shear. It is, 

', however, hard to ,understand for  what reason 
yielding just might prefer to' start on planes 
with higher resistance to shear. A few other 
suggestions have also been made, but the argu-'. 

the network starts to break down locally at .a ' .  

work has failed in all parts of the test, piece . 

' 

'. 

- 

*) Extentive lists of publications on discontinuous 
yielding, aging and related subjects are given in the 
references 45, 64 and 11, mentioned at the end of this 
paper. 

4 . .  
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ments, brought forward to support them, are 
still more weak or vague. A summary is given 
by Low and Gensamerll)  *). Superficially 
considered the yield phenomenon can be ex, 
.plained\ with the network- .theo'ry. A closer 
consideration, of the available data must lead 
to the conclusion that this idea is untenable. 

' . E\ikn' if we leave out of consideration 
whether,a network.of a brittle substance, sur- 

.,rounding a,-plastic basic structure,-may ever 
create 'discontinuous yielding, several object: 
ions can be raised against this theory.. Similar 
networks are present in many multi-phase 
alloys, however, .the yield phenomenon can, 
appear only'in some alloys, whereas in mild 

, steel it shows some characteristic features, dif. 
fering from those in other alloys. Even if the 
steel is ,deformed very strongly at room tempe- 
rature and after .that is stored during some 
time at .this or slightly elevated temperatures, 
pronounced yielding re-appears. It ' i s  uni- 
maginable that the highly destroyed network, 
should be restored. during the rest period. At 
room temperature, as wil1,be shown' below, a 
noticeable diffusion'of carbon does take place, 
but, this cannot lead to the restorition of -the 
network! In contrast the distortion of the net- 
work can, when diffusion takes place, only. 
stimulate the creation of the thermodyna- 
mically'more favourable 'shape, to \vit the glo- 
bular cementite. When a steel with a few hun-. 
dredths per cent carbon is annealed. at a tem- 
perature of 700" C ;  quenched and after that 
heated a long time at 150' C ,  minute fiarticles 
of cementite are precipitated uniformly ip the 
ferrite. Already long before the precipitation, 

, is microscopically visible; the yield phenome- 
non has returned:Likewise; the network theo- 
ry does not explain. the fact that the upper 
yield .point and the fundamentally relited 
lower yield point,are much more sensitive to 
the strain velocity than the continuous.p.art of 
the '' stress-strain carve- itself: Fettweiss 12), 
Winlock and Leiter 13), and Manjoine 14) ob- 
served that the percentage increase of the 
yield 'points at' increasing 'strain velocity is 
about three times as high as that of the tensile' 
strength. On- the 'other hand, the fracture 

, strength of brittle constituents 'like cenientite.1 
~ depends very little on the strain velocity, so 

that a network of cementite or,other brittle 

'. *) After this report had'been finished, a paper 
by A. H. Cottrell **) was published in which the pne- 
nomena of discontinuous yielding and strain ageing 
are both attributed to locking-of dislocations in' the 
lattice by C and N atoms. This hypothesis is also.suit- 
able to. explain these phenomena in several respects. 
However, it cannot explain for;instarice the great 
sensitivity of the yield 'points to the strain velocity 
and the striking difference in the ageing velocity of. 
the yield points o n  the.one hand and the continuous 
part of .the stress-strain curve on the other hand. 
Moreover a similar kind of locking might then be, 
expected - in ,  austenitic manganese steel, austenitic 
nickel steel and many other alloys. 

' ~ 

, , 

. 

. 

: 

, . .  

' 

**) Phys. SOC. London (1948) 30. 

_ I  - .  

~ 'r iuei~. HOURS / 

(WEE1 THlCl(NEf?)-.lil-) ' .' . .  . .  , . I  . 
L_ -. 

' .' Fig. 1. 
Effect of time of wet hydrogen treatment on carbon 
and nitrogen- contenti tensile properties .and strain- , I 

aging in heavy-gauge, sheet steel' (0,111-inch thick 
. .  rimmedsteel): .[Low and Gensamer 11)l. 

. . . .  
j .  

I .  

precipitates cannot be the origin of this sen-. 

It is still more difficult to attribute the yield 
phenomenon to fine non;cohereut particles, 
precipitated at tli'e. grain boundaries or in the 
ferrite crystals themselves. Such a precipita- 
tion' will cause a higher resistance 'to shear in 
all stages of p1astic'defo;rmation and not in the 

Several phenomena now indicate that the 
carbon and .  nitrogen, dissolved in the ferrite: 
must be.'the cause: of the ,yield phenomenon, 
and .that t h e  quantity and shape of the sepa- 
'rated cementite play, at.most, a secondary part. 

Snoek 15,16) observedthat steel wire, which , 

is decarhurized and denitrided 'as completely . 
as possible with the aid, of hydrogen,, does not 
show .discontinuous kinking,, a direct conse- 
qGence of _the yield .phenomenon; whin it is 
bent. Addition of the slightest traces, of. carbon 
or'nitrogen, however, causes a return of this 
effect. 

Low and..Gensamer.ll) . found'  that after 
annealing soft steel in moist hydrogen at 7%", , 
C, the yield phenomenon at room temperature 
was only slightly affected, as long as. the c<r- 

, sitivity. . .. 

i . .  . 
primary stage only: , % I 1 '  . 

'. 

, 

: . I  
- 
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boltp&rentage.did not decrease below approx: 
0,004 (fig:l.). After.prolonged annealing.dis- 
continuous yielding 'became less pronounced 
an,d finally disappeared :completely.. A further 
fall of the' carbon percentage could not be'ob; 
seryed by the'niethod of analysis employed, 
but the investigators rightly. assumed i t  to ocz 
cur. The size of the ferrite crystals did not 
change during annealing. From this we.imme- 
diately can conclude that the cementite net- 
work, or  rather the thin layers of cementite, 
situated at  randoin'between the ferrite crystals, 
as well as: other precipitates of cementite, the 
dimensions of, which must start to decrease 
immediately in consequence of annealing in 
hydrogen, hardly, influence the yield ' pheno- ~- 
menon. 

The following interpretation of Lo? and 
Gensamer's observations readilv .Dresents it- 

\ 

self. As long as there is more carbon in  the 
steel than corresponds to the saturation' con- 
centration at,room temperature, the .yield phe- 
nomenon. mainly remains unchanged. Not be- 
fore the concentration decreases below satu- 
ration at  room temperature, discontinuous 
yielding strongly diminishes and finally dis- 
appears at  complete .decarburization. There- 
fore, one of the causes of the yield phenome- 
non must be the carbon, dissolved in the fer: 
rite. 

.As has already been mentioned, besides the 
'carbon also the nitrogen is removed by the an- 
nealing treatment with hydrogen..Like Snoek, 
Low and Gensanier observed that the addition 
of minute quantities ofmitrogen causes the yield 
phenomenon to return. Dissolved nitrogen must 
therefore also be considered:as a cause of the 
yield phenomenon. These conclusions are con- 
firmed quite well by the observations of Ed- 
wards, Phillips and Jones 7),- Comstock 17, 
18), and Dies8), who established that the 
magnitude of the yield phenomenon decreases. 
and finally disappcars by adding elements like 
Ti, Va, Nb, .Mo, Cr  in. increasing quantities. 
These elements~strongly combine with carbon 
and nitrogen in steel, .forming carbide and ni- 
vide and thus considerably reduce the satura- 
tion concentration of carbon and'nitrogen in 
ferrite. The fact that the addition, of larger 
quantities of aluminium also decreases the 
effect of the yield phenomenon, confirms that 
nitrogen too. is responsible, for discontinuous 
yielding. A complete elimination can however 
not be attained, because aluminium does not 
'combine with carbon. Low .and Gensamer's 
observation that the percentage of nitrogen. in 
steel, deoxidised with alupinium, ,could hard- 
ly be diminished by annealing in moist hydro- 
gen,' confirm's that indeed aluminium com- 
bines yery strongly: with nitrogen in steel.. 

The s.ame authors also observed that;, by-an- 
nealing in 'moist hydroken, the total percen- 
tage of oxygen did not decrease, although the 
yield phenomenon disappeared at last. This 
indicates that oxygen probably does'. not play 

any significant part in'the yield phenomenon. 
Statistically considered, the yield'phenomenon 
is as pronounced. in rimmed steel as. in silicon 
-killed steel. The'restricted influence of alu- 
minium; notwithstanding its strong affinity, to 
oxygen, also indicates that this effect is due to - 
the interaction with nitrogen only. According 
to Low and Gensamer sulphur and: phosphorus 
are not removed by the treatment with moist 

fore conclude-that only the carbon and nitro- 

the yield phenomenon.: ' ' 

The mechanism thhhroduces the yield pheno- 
menon.. . . -. 

Assuming that the, dissolved carbon and ni- 
trogen.atoms:are the cause of the yield pheno- 
menon, apparently minute quantities of these 
atoms. are a1ready:'able to block the glide 
planes,of the' ferrite lattice completely, as long 
as a definite stress (the upper yield point) is. 
not attained. Then, however, a sudden unlock- 
ing or at least a considerable reduction of the 
locking effect occurs. As is we12known, the 
carbon and'nitrogen atoms do not occupy po- 

dissolved foreign inefal atoms; but they are 
assimilated .by interposition between the iron 
atoms. The slight solubility of carbon and 
nitrogen in the ferrite indicates that these 
atoms' might deform. the lattice to a rather 
great extent. It .is not unlikely now that the 
yield phenomenon must b'. attributed to 'a dis- 
placement of the carbon. and nitrogen atoms, - 
ready takes place during the' elastic deforma- 
lion. In this connection the theory of Snoek 15) 
of the elastic.after effect in mild steel, offers 

menon of discontinuous, yielding 15) 16). In 

I 

, '  I 
hydrogen. From the foregoing'we may .there- 

gen, dissolved in the ferrite; are the causes of 

, I  
I 

/ .  -. , 

sitions of the iron atoms by substitution, as do _ .  

I . .  - 
relative. to. their oiiginal position, which al- 

some ground for an explanation of the pheno- 

.. 

, 

2' I 

1 

c 

Fig. 2. 
Equilibrium positions of. the carbon and nftrogen 

. atoms in the ferrite lattice. [Snoek 15) 16)_].' " 
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shost,:~thk, the?ry.-can: be sgm'marized ,ai fol- 
lows:.The carbon end  nitrogen-atoms. are. dis- 

. I  . trihuted..statistically equivalent along-the. three 
p.rincipal directions in the .ferrite'.lattice, as 
long as, the lattice is not deformed by external 
stresses..For reasons of symmetry Snoek con- 
siders the x-positions - (%.O.O.) and (0.x.x). 
the y-positions (O.X.0.) and (!,$.O.%.) -. and 
the z-positions (0.O.x) : and (x:%.O), . yhich 
are mutually equivalent, as the positions where 
these.atoms are in equilibrium.(fig. 2)~* ) .  For 

' reasons of simplicity only the x-poiitions are 
, , indicated in fig. 2:M'hep ,the lattice is.itrained 

elastically in the x-direction, the y- and zrposi-- 
' . . tions remain mutually equivalent, hut become 

'different froni the x-positions. 'The equilibrium 
in the lattice. is now disturbed and consequent- 
ly-astronger diffusion of the atoms from the 
y- and x-positions to,the x-positions than in the 
opposite direction, takes. place,. until a ,new. 
state of equilibrium is reached. Although .the 
distance, over which, the atoms have to beadis-, 
placed, is .smaller than. the lattice\parameter, 
this displacemelit is .a pure diffusion process.. 
The velocity.' of displacement -therefore strong- 
ly depends on .the temperature and the degree 
-of ..deformation.l If the carbon and nitrogen 
atomsare distributed.uniform1y over the X-, y- 
and ~z-positions,, they '&use, on the ,average an 
equal deformaiion of. the lattice in all dire& 
tions.\.Vhen the atoms are more~concentrated, 

' . on x-positions, the deformation -increases in 
the. x-direction and decreases ip the y-. and z- 
directions. When the lattice is now loaded -in 

' the x-direction;.at first a spontaneous strain in 

\ 

. 

_ -  

I\ 

* 

, 

. 
. .  

* 

. .  

diffusion proces Snoek concludes ,that -eves at ' 
room temperatiire-.the.cachon.can diffuse with 
perceptible velocity. .This may 'also -be con; 
cludeded from the queneh-aging 'behaviour of 
mild. steel, discussed in. more detail later'on. 

Naturally, .every arbitrary state .of .stress 
which causes an unequal deformation of the 
lattice, causes the original-states of equililjrium- 
to,hecome unequal.and the dissolved atoms to 
concentrate'at preferred .positions. A conglo- 
merate of ferrite crystals, ,;orientated ..at 

the same way. For a qualitative'explanation 
of the phenomenon. the use .of the simple 

' '. . h i s  obvious that-the properties of.the glide 
planes will also he changed dueng the'diffu- 
sion process. Snoek's..theory may- therefore he - . ' 
-extended as follows *). When the-lattice. is , 
stressed. :in ' the x-direction slip along the 
[l.l.Oj , planes. in the /1.1.0] .' direction, as 
well as the preferred -[1.1.1;] direction, is: i t  
first.impeded by the C- and N-atoms (0.x.O.) 
and. (%.O.%), whilst.slip 'on the.  [l.O.l.] ptlanes 
is .at.first- impeded by the C- a$d'N-atoms 
(0.O.x.) and (S.x.0.). It seems therefore very 
acceptable that slip will not occur before thek I 
atoms are migrated fully o r .  to a certain 
degree to the .remaining equilibrium positions 
(%.O.O.) and (0.x.x.). Consequently yielding 
will start at .a higher shear stress 'and .'there- 
after at first continue on a lower stress. Since 
after a certain.plastic deformation, even.wheri 
 the^ external. load% tacen off; high  internal^, 
' stresses 'in the crystal fragments initially re. 

main, i t ,  is also. plausible that-.these..stresses ' 
' initially prevent the return of the yield pheno- 

menon. As will be elucidated .in more detail in 
following sections. the..essential aspects of the , , 

yield phenomenon .can 'he ~ explaided. on the 
hasis. of thiS hypothesis of unlocking of '  glide 
planes.' Especially, the great sensitivity of.'tIie 

', yield points to the strain.rate fully agrees with 
the supposition that the' yield phenomenon is 
related with a diffusion process which already . . 
occurs durine -the elastic deformation of the 

I 
. I  

. .  

; 

- random, .will therefore behave essentially in / 

. . .  
-. 

picture is thus permitted. . . . .  I 

. 

I 

\ 1 

. .  , .  

' The fundamental character .of .the' yield pheno- 
, .  menon. 

' .  The 'way in which the' yield phenomenon . . 
finds expression in .the stress-strain curve in 
tension not only depends on the steel'itself, hut 
also on the strain velocjty,. the .type and con- 
struction of the testing machine and the shape 
and-dimensions of the test bar.; When' a test 

.. 

.. . -  / . .  bar'is loaded, potential energy is accumulated . - 
' Fig. 3. . in.the combination of testing machine and test. , 

Eiastic after-effect in steel'at loading and,unloading. bar, dependent od the magnitude of .the load. 
' When $ielding occurs under.. maintained or .. [Snoek-15, 161.. , .  . - 

decrea&g loaa; this. energy is.partially releas- 
ed in the form of.kinetic energy of the parts:of 
. . 

*.I,, See also .,,De Ingenieur" (1948) No. 2'7, Mkil .  

. .  
*) Whether other equilibrium positions are .more 

plausible will be left out. of < consideration here. .In 
this connection it does not make.any essential diffe-- . 

. I 

, . I  
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the..ma,chine and of the test bar. The .part ,of 
 the^ potential energy,' accumulated by the test- 

'ing machine, is determined on one side by the, 
elastic deformation o f .  the machine,, on the 
other side by thelype of ,testing machine; it is 
a measure. of the regidity of the testin; 
machine. Perfect ,rigidity, which means that 
the energy is zero, ,'is of course unattainable. 
The potential energy of the ,test bar is o.nly 
,determined by the elastic,deformation of -the 
bar and as such related with the shape and 
dimensions of the test bar. In addition; these ~ 

dimensions affect the stress distribution of the 
test bar. For a judgement of the fundamental 
properties of the steel with regard to the yield 
pbenomenon,it . is  therefore necessary to elimi- 
nate the factors, which do not refer to the pro-' 
perties of the steel itself and exercise an un- 
controlable by-influence. We  therefore con- 
sider a straight cylindrical tension bar, to, 
which the load is applied statisticallyxniform- 
'ly, and which,is tested in a perfect rigid testing 
machine: A completely uniform. streas distri- 
bution on the, end planes of the bar is impos, 
sihle and even undesirable. In consequence of .. 
the anisotropy of the crystals, which are 

',orientated a t ,  random, a complicated' stress 
distribution occurs in',the bar. These stresses 
are, hoivever, statistically unifofmly distri- 
buted, on condition that the crystals. are small 
with:respect to the thickness of the bar. Fig. 4, 
shows qualitatively the distribution .of the lon- 
gitudinal tensile stresses 0ver)h.e cross section. I 

Now we imagine that,the stress is carried over 
to, the end planes in such a way that here the 
same state of stress exists as in. the bar itself. 
We further leave the dimensions of the, bar out 
of consideration, in so far that it is only assum- 
ed that the length of the bar is great in com- ' 
parison with the width of the flowlines, which 
will be developed during discontinuous yield- 
ing, Now, the bar is strained with such a small 
velocity that the homogeneous equilibrium of 
the carbon arid nitrogen in the lattice is fully 

Fig. '4 ... 
Simplified representation of the longitudinal stresses 

in elastically, deformed test bar. 

established during the purely elastic deforma- 
tion of the lattice. At C (fig. 5), somewhere,in 
the bhr the critica1"stress ,(in reality a com- 
plicated 'state of stress), is reached, by which 
unlocliing on the glide planes in question ok- 
ciirs, followed by yielding under decreasing 
load. It is evident that the correspondink no- 
,minal stress, at wbi$h yielding starts, is deter- 
mined only by the properties of the steel itself. 

, .  

Fig. 5. 
Fundamenta1,shape of tiie stress-strain curve of mild 

steel in tension. 

This stress has therefore to be considered as a 
cliaracleristic , material constant, which we 
might call the"idea1 upper yield point m. On 
reaching our the unlocked centre cannot stand 
the 'local high stress any longer, so. that the 
stress decreases simultaneously with the oecur- 
rence of the plastic deformation. Consequently, 
a high stress concentration arises at the boun- 
dary of the primary yield centre and 'the still 
purely, elastically deformed surroundings, so 
that the critical stress is reached here too. Un- 
locking continues quickly. from the primary 
yield centre across the whole bar cross section, , 
under development of one'or more flow lines 
and simultaneous decrease of the nominal 
stress. This process continues under further 
deformation in the flow lines and, possibly, 
development of new ones at the boundary of 
the primary flow lines, till the nominal stress 

,has  decreased to such an amount that at  D the 
critical stress remains exact14 maintained in  
the boundary of the flow'lines. A further de- 
crease ,is therefore not possible without .the 
yield process coming to a stop. On continued 
straining a front. of flow lines passes through 
the bar, at constant nominal stress ti11 at  E, at  
a strain e?, unlocking ,has' taken place through- 
o,ut the whole bar. The corresponding nominal 
stress, which we might call the ideal'lower. 
yield point c) , ,  is also a .eharacteristic'material 
constant. On 'the primary moment of unlock- 
ing, strain hardening 'starts , simultaneously. 



between C a n d  D, increases. It now depends 
on the velocity of unlocking in the.houndaries 
of the primary flow lines, the lo'cal strain velo- 
city in tliese flow lines and other factors, 
whether or not the deformation already locally 
stops at a higher stress than uII. In the first 
case the local strain. will be somewllat greater 
tKan corresponds to 6, and in consequence the 
unlocking of the entire bar is not ended before 
E', beyond E, is reached. At continued strain- 
ing the bar does'not become fully uniform 
before the stress is raised again to the highest 
stress u1', at which yielding in the primary 
flow lines has  come to a standstill. This pro- 
blem, however; is extremely difficult to dis- 
.cuss and is certahly of no- importance for 
bars of usual length. 

It is also hard to conclude whether or not 
the nominal stress might temporarily decrease 
till below u,,. when the length of the bar is SO 
small that, this'stress .being reached, only a 
very slight .plastic deformation has taken 
place in the primary flow line. A drop to D' 
is fundamentally impossible. The width .of the 
flow line must always be smaller than the, 
length of the bar, because the total length of 
the ,bar is practically unchanged. The local 
strain is therefore always greater than the total 
strain E .  and consequently the n,ormal stress 
must always remain greater thans u n  . Moreo- 
ver, in the flow line. a ' complicated state .of 
stress exists, due to the necking effect, whtch 
has 'tlie same effect as strain ,hardening and 
which helps to keep the stress a t  a still higher 
level. Anyhow, a'  drop in the stress below D 
could not be'realized with certainty under con- 
ditions which were approximately the same BS 
those. mentioned above. 

A macroscopically uniform stress distribu- 
tion, the ideal condition'from which we'start- 
ed, naturally cannot be attainea id reality. As 
is wellknown a niacroscopical stress concen- 
tration always exists in the transition of the 

with, the pljstic deformation. .The strain har: 
dening'increases, independent of the. discon- 
tinuous shape of the stress-strain curve, con- 
tinuously with the local plastic deformation, 
in the same way as in other plastic metals. 

:TPis. is 'already evident from the well-known 
, I  fact that a uniform plastic deformation, which 

> is'smaller than -the yield point elongation e).,, 
. is, sufficient to make the stress-strain curve 

colnpletely 'continuous. Such a deformation, 
. ' which can be attained fof instance by rolling, 

just eliminates the locking effect completely, 
while the strain hardening is still vdry small *). 

Moser 19) and later Winlock and Leiter 13) 
. have shown: that the hardness increases con- 

tinuously with the local strain in the flow lines, 
in spite ,of the discontinuous d o p e .  of the 
,stress-strain curve. From this fact '  they con- 
cluded quite rightly that the,stress-strain curve 
of steel should be continuous according to 
OAEF, if the cause of the yield .phenomenon 
would 'be just eliminated without. a further 
change of .the properties. We might call the 
stress at A the elastic limit of the unlocked 

.. 

;I 

, ' 

steel, u t i .  
During discontinuous yielding the local 

strain, attained in the flow lines is equal to E,. 

anart from slieht deviations caused bv triaxial 
' ' skesses. The Grain hardening in the bow lines. 

', is tEerefore given.by the increase of stress 
from (re',' to o,i . In E, after discontinious 
yielding has extended across the whole bar, 
the strain is uniform' again. On further strain- 
ing the unlocked state remains maintained and 
the bar now.behaves in completely the same 
way as the bar which would be' unlocked al- 
ready at the.outset. This means that the bar 
strains uniformly and the nominal stress'there- 
fore increases 'continuously. 

Between C and.D the bar is in a labile. state 
and in this range the development of the flow I 

. ' lines and the decrease of the nominal stress 
thus 'occurs with a comparatively great velo- 
city. At a very small rate of strain of the bar as 
a who1e;the fal l  from C to D is therefore 

. practically vertical. The strain in the flow lines 
' ' i s  compensated by the elastic contraction of 

thecntire bar. The strain in the section, which is 
only deformed elastically,' decreases to e I. ' 

Dependent on the.ratio of the length to  the 
thickness of'the bar, (the thickness determines 
the width of the flow lines), .slight deviations 

, 
' 

' ,  " 

can occur in the stress-strain curve. When the 
length of the bar is greater, the width of the 
zone, over which the deformation must extend 

, 
.' 

-. . 
*). On the other hand roll& levelling 'of narrow 

strips has only a small influence on the magnitude 
of the lower yield point. The fact, that the steel after 
this'working does however show rather strong strain 
aging, 'proves that plastic deformation has taken 
place. The gliding in thekrystals during this treat- . , ment is however alternating, and' that wil l  be. the 

' - cause that the elastic deformation of the. crystal . fragments is too smaU to eliminate. discontinous 
yielding. 

" 

, ,  . .  

Fig: 6. 
Ihfluence of str& concentration on the stress-strain 

curve of mild-steel in' tension.. 
, .  



'straight part of a fesf.bar to the fillets. There- 
fore, the .critical unlocking stress is .already 
reached in C'.at a nominal stress uu smaller 
than (I", (fig. 6). As has been shown forinstan- 
ce, by Korber 20) Kuntze and Sachs 21) and 
Mac.Gregor 22) the nominal stress at which the > 
yield phenomenon starts is less as the stress 
concentration is greater. 

Stress concentrations may also he caused by 
eccentric loading and by internal, facto? as 
residual stresses, slag inclusions etc. 

When the stress concentration is greater 
than in the flow lines, local plastic deforma- 
tion already 'starts in C", at a nominal stress 
which is even lower than el, (fig. 6). Then an 
upper yield point is.no longer possible. As has' 
been emphasized by Korber the upper yield 
point observed on- a real test bar does not 
therefore ,have the significance of a material 
constant. , .. 

.For 'the lower yield point the case is quite 
different. Once a front of flow lines has deve- 
loped in the cylindrical section of the bar, the 
state of stress in the boundaries of the flow 
lines is again defined by the characteristic 
properties of the steel itself. In '  good agree- 
ment, Korber also observed that the shape of., 
the Cross section of the bar hardly had any 
influence on the 'loiver yield point. If, therc- 
fore, the tensile test is performed on a real 
lest bar, with the required small strain velo- 
city, the observed lower yield point is equal'to 
the ideal lower yield point, provided the test: 
ing machine is sufficiently rigid with regard to 
the yield point elongation:, The ideal lower 
yield point is therefore n material constant,' 
which might be actually determined. 

Effect'of &e strain velocity at room tempera- 
ture. . 

. .  

AS'has already mentioned, unlocking of the, 
glide planes takes place over the whole range 
CDE,. and this phenomenon ,thus plays a role 
as well at the upper yield,point as at the lower 
yield point. Since unlocking must he pre- 
ceded by diffusion and this diffusion requires 
time, it is clear that both yield points must in- 
crease with the strain velocity to a greater 
extent than. the slope of the continuous part 
of the stress-strain 'cnrve..-Tliis is in accor- 
dance with numerous 'observations. So Fett- 
weis 12), Winlock and Leiter 13), and Manjoine 

,14) observed that the percentage increase of 
the lower yield point with increasing strain 
rate is about three tibes as large as that of the 
tensile strength. Edwards, Philips and Liu 10) 
observed that in vanadium-treated steel, and 
steels decarburized by hydrogen, which show- 
ed no discontinuous yielding at.a,normal rate 
of strain, the yield phenomenon 'was clearly 
present at a high strain rate. 

How far the upper yield paint nud thT.lower 
yield point are differently influenced If? & 
strain rate can. hardly or not at all be judged . .  . .  

beforehand. Though, st.the lower yield poinf 
the sam'e internal stress is necessary to con- 
tinue yielding as at the npper'yield point to- 
start yielding, as has 'also been pointed out by' 
Davis 23). the further circumstarlces are dif- 
ferent in many 'respects. Exactly u p  to the'np- 
per yield point the-bar strains equally every- 
where and only elastically. At the lower yield 
point'the bar strains elastically .as well as plas- 

' tically in the proceeding flow lines. The strain 
rate at the moment that the upper yield,point . . 
is reached is therefore much smaller than the 
local strain rate at the lower yield point, the 

' strain rate of the bar as a whole being the 
same. The ratio of the local strain rate to the 
strain rate of the bar as a whole is constant for 
a definite length of the bar, however, it in- ' ~ 

creases proportionally with the length of the 
bar. Therefore, the. lower yield point is not 
only dependent on the strain rate of the bar as 
a whole, but also on the length of the bar. The 
state of stress in the b'ar at the lower ana upper 
yield point is also not affected in the same way 
by the strain rate. Independent of the strain 
rate, the shape of. the bar in the region where 
the unlocking starts, remains practically un- 
changed. This, however, is not the case in the 
flow lines; where at increasing strain rate the 
nominal stress, and therefore also the,local, 
plastic deformation, rather strongly increases. 
From the results of the investieations bv 

. 

, 

. 

Kuhnel24). Korber and -Pomp 25jrElam 26;. 
Morrison 27),.Quinney 28), Docherty and Thor. 
ne 29), Miklowitz 35) a definite conclusion can 
hardly he drawn, because the conditions under 
which the effect of the strain rate was investig- 
Fted are not comparable in every respect. Their , 

data give, however, the impression that the 
difference between the upper yield point and 
the lower yield point at first increases with 
the strain rate. At very.high strain rates, the 
difference between *e upper yield point and 
the lower yield point ,in most cases seems to be 

. 

. 
' 

, . ,  
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Fig. 7. 

. .  . present. 

Influence of-strain-rate on the stress-strain curve of 
mild. steel in tension, no upper yield 'point being 
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30) 'and "Quinney %) obsek-ed ,'that' in 
ptional :cases. the upper yield: point can, 
ed. the'tensile strength at a' normal strain 
Manjoine 141, wlio made his experiments 
annealed steel, observed no'.overstepping . .. 

I i , . . .  

, . . . .  

. .  . .  . . .  
1 '  1, '. . I ,  ,' , ., . 

l ' ) I "  ' ? E ' ' '  1, * which is in,'equilibrium~ with the,.corres-, ' 
, ponding ,stress. If 0 H M repiesents the stress- 

' ' strain curve of the,steel. unlocked'beforehand 
at  'the strain rate concerned,, then heierbde- 

.neous yielding will.not he finished in H, but  
,between H and L,, e.g. in K, whilst the bar has 

' not been strained uniformly. 'Consequently the , 

continuous part of the stress-strain curve in K 
,. G. . ,  niust he comparative1y.steep. This is in accor-, 

The' behaviour hecomes'more complicated, 
~ ; 

.if an upper yield point is also present. At the 
same 'strain rate, a greater loca1,strain results 

' ' , ' ' . during the drop of the stress, than in the case 
,' that. the upper yield, point is hbsent. This 

'causes heterogeneous yielding to he continued ' 

,even,heyond K, up to P (fig. S):,Dependent on 1 ' 

the niagnitude of o,, and the local strain rate 
during the drop of the ,stress from Q to R, zP 
may he smaller as well as greater than e ,  (fig. 

At a higher strain'rate it is also possible that 
no stationa?y.state, which is shown by a hori: ': 

zontal part of, the stress-strain curve, is"attain- 
ed at  all, especially when the steel has a com- 
paratively high upper yield point and a com- 
paratively small, local strain r a t e  'during the '.; 

.,.fall of .the stress. Tbiscase is represented sche;r 
matically in fig. 9. ' 
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.-. . .  overstepping of the tensile  strength^ by the'up- 
per, yield point is easily possible a t  very low 
'temperature, or .when the steel is ,strongly 

As has already been,mentioned in the pre- 
ceding, pages,'potential energy is accumulated 
in every tensile testing machine .at loading. 
This energy is 'partly, released again during 

plastically deformed and aged. . .  

I 
,. ,, . , ~  . . . . ,  . , . .  , . .  . 
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, , InftuenCe of. the..*igidity of;the testing &,chine on 
the'stress-strain curve of p l d  steel. b~ tension; 



heferogenkous'.yieldhg- at decreasing loaii or 
even at constant load, when the machine is of 
the direct laoding type.:Hence, the strain rate 
isaccelerated beyond control. Tlie effect of the 
rigidity of the 'testing machine' lias ' been 
'studied particularly by Siebel and Schmaigerer 
31), Krisch 32);' Esser 33),' .Welter 34) and 
quite kecently by Miklowitz 35). The way in 
whicb the' shape of the stress-strain curve is 
influenced by the '-rigidity of the testing 
machine, other honditions being the same and 
the strain rate during loading'being very small,) 
is represented schematically .in fig. 10.. If the 
rigidity is relatively 'large, the-shape, of the 

.curve is; according .to OC'STF and the ideal. 
lower yield ,point is still reached. In 'the case 
that the rigidity is relatively small the shape 
is according to OC'UF, and kll is reached no .  ' 

'more. If the machine i s  of the 'direct loading 
,' type a drop of the nominal stress is not pos- 

sible a t .  all. The. 'shape of the curve is then ' 
according to OC'VF,, in which the'horizontal 
stretch CV' is passed with great velocity. , . . ' 

The influence of. the"temperature omthe yield 
ohenomenon. 

' 

. 

... .. 
! .  

.Is is obvious from ,the .investigations of Bach 
" ,30),'Korber and:Pomp 36) Kenyon and Burns 

37) 'and Manjoine 14) that the yield points, the 
. .  drop'of the upper yield point 'to the lower 
; yield~point, and the yield point elongation all 

diminish ,at increasing temperature (fig. 11). t ,  

At .normal strain rate- the yield 'phenomenon 
" ' . ' has disappeared'completely 'at approx; 300' 

C'and at, a'greater strain rate only a rather 
sharp ,knee appears. ' The effect' of .nn-,, 

" locking apparently decreases faster than 
. . . . the effect of strain hardening, .-which, even 

at ,nominal .strain rate increases ' again 
beyond, approx.. 80° C., in . consequence of 
simultaneous ,aging during plastic deform- 
ation. Possibly, this might be' connected with 

.' 

li ., 

.', 

I 

1 .  
l~ , .  

f 

&alteration of the 'aiffusion equilibrium' at 
each stress. with .the temperature. Due to the 
higher diffusion I velocity, the percentage of 
carbon' and nitrogen atoms, which are really 
situated :at .every instant in the equilibrium 

.positions, decreases with increasing tempera. 
ture. A satisfactory explanation, however, can 

investigation of Manjoine that the increase of 
the yield eoints witli increasing strain rate is 

.ismaller .as the temperature is higher, wbich is 
in accordance with I .the increasing diffusion . . 
velocity (fig. 12a and'b). 

' 

, 

stil1:not be given..It is also evident, from the I 
' 

. . ,  . 
Exact data concerning the behaviour.of the 

'.yield- phenomenon. below .room temperature 
are rather scarce.. From the investigations of 
Maurer and Rlailander 38), Greaves and Jones 
39), Bennek 40) and Mac Adam 41) i t  may be 
concluded that the .yield points increase to a 
greater extent at  decreasing temperature than 
does. the tensile strength; especially below -70' 
C. In' table h o m e  data,from Maurer and Mai- 
lander, are summarizea. 

. -  . .  . 

.a 
.- 

- 70 35-32, 
+ 20 '32-30 12 31 73 95 
1-100 30-26 39 33 95 

At - 1 8 0 O  C, and possibly even at  somewhat 
higher temperatures, the upper yield ,point 
thus exceeds the tensile strength when the 
steel is in a condition of normal heat treatment. 

As long as the lower yield point does not 
exceed the tensile strength, the stress-strain 
curve, apart from the presence of an .uppr 
yield point, will have the shape according to 
OD'E'F' (fig. .13), which is not essentially dif- 
ferent from the curve at  room temperature. 
If, however, the lower yield point exceeds the 
tensile strength, before'the fracture, strength, 
correspondins to the pure: elastic ' state, is 

.reached, the bar will continue to neck in the 
region of primary. yielding, under continuous 
decrease of the nominal stress. till fracture 
occurs. The other sections of the bar willin thls 
case show no plastic deformation at  all. The 
stress-strain .curve will then' be according to OD"W. I .  

At a still .lower temperature 'the fracture 
strength might be reached before yielding oc- 
curs; particularly if the upper yield point is, 
comparatively high. In  that case the bar.'will 
fracture. practically brittle. ' ' ' 

No data are available with regard to the ef- 
fect of the strain.rate on the yield phenomenon 
below room temperature. It is, however, not 

* 
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Fig. 12a. Fig. 12b. ' . , I . , 

Stress-strain curves of mild steel, at 'room tempera- 
ture for various rates of strain. [Manjoine 14)]. 

StSess-strain curbes of mild steel at 200' C for.various 
rates of strain. [Manjoi~ie,. 14)1., . 

F '  ? 
of the curve in h e  transition zone and the cor- 
responding temperature are:influenced by this 

. mechanism. .This prohlem will be deakwith in 
more detail in a subsequent paper.' ,* . '  : ' 2 : 

' I .  

. ,  . ., , :. . # . I  
,. , . .  

\ . .  , 
. .  b . .  - E  

. .  ., 'Fig. 13. . .  
Influence of temperature'below room temperature on 
' the stress-str+n'curve of mild steel in tension. 

doubfful that the yield points will react more 
strongly as the temperature is lower. Since' 
the tensile strength and probably the frac.ture 
strength in particular, are much less sensitive 
to the strain rate, the temperature helow which 
brittle fracture or continued necking in the 
primary yield .region occur .will strongly in-. 
crease with increasing strain rate. Though the 
transition 'zone in the deformation energy- 
temperature curve, . observed when testing 
notched bars of ferritic steels, probably does 
not find its origin in tLe ,mechanism of dis- 
continuous yielding itself, certainly,,'tfie shape 

' 

_ .  - 

' ' 

. , '  

, .  11. The strain:aging of steel. ' ~ 

Comparison of sirain-aging and quench-aging 
and their causes. 

,When plastically deformed steel is..stored 
some time at room temperature or a higher 
temperature, the yield phenomenon returns at 
a higher> level. The tensile strength 'and the 

:fracture strength increase: as weu, however, 
.'to a' smaller extent, while the,-elongation and 
 reduction of area decrease (fig. 14). The ex- 
planation of this behaviour, as given for in- 
stance by Pfeil42),. I<oster43), Kriiger 44), 
Davenport and Bain45) and now generally 
accepted with slight .non-essential '.modifica- 
tions, is based on the assumption that steel i n ,  

. practically all conditions of heat treatment, 
even after very slow cooling, is to some extent 
supersaturated ' with carbon, * nitrogen .and 
oxygen. It is'now supposed that these elements 
or- at least one of them, in combination with 
iron atoms, might rather.easily be precipitated 
in submicroscopic dispersion, even, at room' , 
temperature, if the steel is plastically deform- 
ed, and thus cause an increased resistance to 
plastic deformation. This explanation is based 
upon the analogous explanation of the quench- 
age phenomenon of steel and other multi-phase 

. .  
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quench-aging or not. Since steei always con- 
tains several oxide inclusions, it. is .extremely 
difficult to ascertain the percentage of atomic 
oxygen dissolved in the ferrite, just as the in- 

, crease of the so1ubility;with the temperature, 
which is in .all probability extremely small. 

Fig. 14. 
Effect of strain aging on the stress-strain c u k e  in 

, ,  ' ' tension. [Kaster 5WJ. 

alloys. Masing 46) and Koster 43) were the first 
who showed that the tensile strength 'and the 
hardness of commercial steel with low carbon 
content, after quenching. from .a temperature 
slightly below 720' and storage at roomtempe- 
rature or slightly higher. temperature, at first 
increases -while the .ductiliIy decreases. The 
quenched steel is,' in consequence of the higher 
solubility of carbon and nitrogen at high tem- 
perature, supersaturated at lower tempera- 
tures, so that thermodynamically 'precipitation 
of iron carbide and.iron nitride is pursued. It 
is now obvious. from the phenomenon of 
quench-aging and .also from the yield pheno- 
menon, that the diffusion rate of carbon and 
nitrogen in ferrite is rather high. A perceptible 
increase in the resistance to plastic deforma- 
tion is attained. at  room temperature in a few 
days or even a few hours. From the investig- 
ations of Koster 43), Davenport and Bain 45). 
Andrew and Trent 47) .it' may be concluded 
with certainty that precipitation of iron car- 
bide and iron nitride at low' temperature 
causes aging. According to Jensen 48). White- 
ley 49) and Koster 43) the degree of saturation 
of carbon in ferrite at room temperature is 
approx. 0,006 5% C. As to the solubility of nitro-, 
gen in ferrite at  room temperature, the results 

. obtained by several investigators ', show a 
rather appreciable difference. According to 
Fry50) and Ehn.51) the solubility is about 
0,015 %. Koster 52) however determined the 
solubility to be approx. 0,001 %. Though this 
value might be somewhat too low, the agree- 
ment between the results obtained by, careful 
measurements of the alteration of the magnetic 
as well as the electrical properties,'indicates that 
the order of magnituae, a few thousandths of a 
percent, is'probably correct. Carbon, and to a 
lesser, extent nitrogen too, are therefore res- 
ponsible for the quench-aging effect of soft 
commercial steel. 

It is not clear whether oxygen'plays a role in 

, 

Anyhow, , i t  is not. very probable ihat. the 
oxygen contributes to quench-aging, in steels, 
fully killed, with silicon or aluminium. Dani- 
loff, Mehl and Herty 53) concluded that 'the 
sensitivity. to' quench-aging decreased with in- 
creasing. deoxidation. A distinct difference in 
the behatiour-of the groups of steel examined; 
exceeding the, experimental scatter, is present 
only.between the rimmed and killed steels. The 
mean carbon percentage of these groups, howe; 
ver, differs likewise strongly. The results will 
also be affected by the fixation of nitrogen by 
aluminium in the aluminium-killed steels and 
the difference in crystal size. Davenport and 
Bain 45) observed ,that'electrolytic iron, which 
is rich in oxygen, showed only a slight tenden- 
cy to quench-aging, even after extra addition 
of iron.oxide. Eilender and Wasmnth 54) ob- 
scrsed the same.in iron-oxygen a l l o y  contain- 
ing less than 0.05 76 oxygen. It  is thercfore not 
w r y  prohahlc that the oxygen in normal mild 
steel plays. a role of any importaiice with 
regard to quench-aging. It is obsious that de- 
oxidation with aluminium does decrease the 
qucnch-aging ,effect to some extent, in  conse- 
quence of,its affinity to nitrogen. Addition of 
a proper amount of Ti, Zr,  V and similar ele- 
ments, .which conlhinc strongly with nitrogen 
and carbon, highly diminishes or completely 
eliminates the sensitivity to quench-aging, as I 

Eilender, F n  and Gottwald 55) have shown. 
Low and Gensamerll) ohservcd that the 

, ability of mild steel to strain-aging,'as far as 
the return and the increase of the yield point 
is concerned. did not disappear during treat- 
ment in moist hydrogen at 700° C, as  long as  
the carbon content.did not decrease hclow ap- 
prox. 0,004 %. A decrease of the aging effect. 
howeser, became alrcady noticeable at a some- 
what higlier pcrcentnge (fig. 1). When the 
decarburized and simultaneously denitrided 
steel, was nitrided, the ability to strain-aging 
returned. They tliercfore concluded that both 
carbon and nitrogen arc causes of strain-aging. 
This conclusion is supported by the ohservat- 
ions of Edwards Phillips and Jones7) and 
Comstock 17, 18). that steel treated with the 
proper amounts of elcnients like Ti, V, Ta etc. 
which strongly combine with carbon and nitro- 
gen, show practically no aging. 

It is still not possible.to conclude with cer- 
tainty, whether oxygen is a cause of strain-aging 
or not. Since, according to Low and Gensamcr, 
the oxygen content did not diminish during the 
treatment with moist hydrogen, tliough the 
ability to strain-aging disappeared, their con- 
clusion that oxygen is n.0 cause seems fairly 
well justified. According l b  Doniloff, Me111 and 
Herty 53) silicon killed steels show less strain- 
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Fig. 15. 
Quench aging. of 0,06'per cent carbon steel, No.' 1.. 
Hardness after quenching from 1325 degrees Fahr. 
(720 degrees cent.) and aging at the various indicated 

temperatures;.plotted on linear time scale. 
[Davenport and Bain 45)]. 
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' ' . tionally saturated with oxygen and w1iic.h con- 
tained hardly any carbon and nitrogen, was 
rather liable' to strain-aging. This, however, is 

( 1  

at different-. temperatures ,after . quenching 
from 720" C, as has been observed by Dairen- 
port and Bain 45), in agreement witb.'Koster. 
The tensile strength principally behaves simi- 
larly, whilst the elongation and rednetion of 
ares show the opposite. It'is .obvious from the 
results of these investigators that the max- 
imum hardness. decreases with increasing tem- 
perature. Already at.20O0 C'no maximum is 
attained at all, but the hardness decreases at 
once. At'40' C superaging already occurs after 
about one day. The decrease in the maximum 
might be.explained as follows. The true size of 
the .precipitated particles will show' a greater 
scatter from the mean size as the temperature 
and in consequence the diffusion rate is higher. 
A s  the scatter at  the same, niean- size of .,the. 
'particles is greater the hindrance in the glide 
planes and consequently the resistance. . .I to de- 
formation is lower. . . .  

. >.. 
, : 

I 
The relation. between the hardness at room 

temperature and the time of '  aging at several 

cally deformed, has. been investigated by Xos- 
ter 58), Kockritz 59), Davenport ana Bain 4 9 1  

fundamentally in'accordance with, th.ose of the 
first-mentioned investigators, are represented 

, in fig. 16. According to .lioster the\bebaviour. 

. 

' ,temperatures, with steel that .lias ,been plasti- . . 

Tbe data of Davenport and Bain, which are. 

of. the. tensile strength is similar; whilst the 

I 

, I  . .  . 

. .  
I ' nwrs 1, 10 . ' 
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. 'Fig. 16. ' 

Strain aging of steel, hardness after cold-rolling ' I !. , , 
followed by aging.at the various indicated tempera- a 

tures; all pre-aged before cold rolling. , 
,[Davenpqrt and Bain 45)l. , 

' < F  I .  

' . .  . I  

. 
, 

i 

, .  
(Eilender, Cornelius ' and,  Menten 56). like- 

wise conclude from their investigations' that 
blue brittleness, which is nothing else but a 
manifestation of aging during straining, as has 
already been pointed .out by. Fettwciss 57), is: 
caused by nitrogen and not'by oxygen. Carbon ' 

and nitrogen may therefore be regarded i s  the ., 

only causes of quench-.aging strain-aging *) . 
Koster.43) in' particular has' accurately~ in. 

vestigated the effect. of 'quench-aging on the 
mechanical properties. of mild steel. .Fig. 15: 
represents the .relation, between the hardness. 
at room temperature and the time of heating - . . .  . . ,  I 

. ,  

eloFgation again shows 'tile opposite effect. 
From fig. 16 it is evident now that the max- 

*). Conclusions, based on. the available data ob- 
tained with the impact test are of .less value, because 
either the influence of the plastic .deformation itself 
is fully neglected, or the impact values are'estimated 
at room temperature only. To attain a 'clear picture 
of the liability to aging from the d p a c t  test, it is at 
least necessary to determine the relation ,between. 
impact value and temperature in the range .from. 
brittle .to ductile fracture in the.origina1 state of the 
steel, and also after deformation and' after .aging: 
separately. This question Will be considered more 
detailed in a subsequent paper. , , 

. . .  

. .  
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imum:'in. the-hardness does not diminish with 
- .. increasing .temperature, hut remains practical- 

ly the same, or.even'slightly increases; at least 
~ 'up to ,350' C: -At 2000 ..C; where on 'quench- 

aging no maximum at all occurs; hardly any ' 
over-aging is perceptible, even 'after prolonged 
heating: At 350°, C .over-aging still 'probeeds 
rather slowly. This behaviour fully corres- 
ponds to'the behaviour on straining in the blue 
brittle range, a$ will be. elucidated in' more 
detail.in the nextsection. . ' . ,  

The above-mentioned data indicate .witbout 
any doubt that the 'inechanism of aging after 

, . , ' quenching is fundamentally different from the 
mechanism ofaging after straining, so that the 
phenomenon of strain-aging cannot 'be  inter; 
preted"at all 'on the basis of ' a  precipitation 
theory, like the phenomenon .of quench-aging. 

. ' The investigations of.  Koster, Davenport and 
' Bairi. and Andrew  and^ Trent-47) clearly show 

that the precipitation of iron carbide and iron 
nitride from supersaturated undeformed fer- 
rite, .thus the diffusion of carbon and nitro- ' 

gen in ferrite, occurs at a relatively high velo- 
city even at room-temperature: The yield plie. 
nomenon itself'and the return of the yield - 
phenomenon during strain-aging 1,ead to the 
same conclusions. It is therefore very unlikely 
that steel which has.been cooled in air, o r  
moreslowly, after rolling or annealing at high 
temperature, still .contains ,some ,carbon and 
nitrogen in supersaturated solution. JVhen soft 
steej, cooled in air is heated slightly above 
room temperature, the hardness,and the ten- 
sile ,strength do not increase. On the contrary, 
these .quantities directly decrease or at most 
remain unchanged. This means that during 
cooling tlie precipitated particles have already 
obtained the state o f .  overcgtical. dispersion,' 
as far as, the mechanical properties are cou- 
cerned.~On heating magnetic aging indeed oc- 
'curs, since the maximum magnetic dging effect 
is just attained at a inuch greater size of the 
particles, as has beell shown L;y Koster 52); 

It.is generally accepted that plastic deforma- 
tion will stimulate 'precipitation reactions. 
Since, apart from exceptional cases,. the pre- 
cipitation has already occurred and reached 
an overcritical state previously, only a further 
growtli. of. these particles will he stimulated. 
Koster's 52) investigations on the precipitat-. 
ionsin 'mild steel with-the aid-of Fry's'etching 
method indeed support this view: After some 
hours heating at 1000 C"fine particles.of iron 
nitride could be observed in the flow lines of 
plastically deformed Thomas steel with 
0,021 % N. At the same time the precipitation 
in the undeformed regions was stillvery'slight.. 

When: the'steel, 'however, was heated during a 
. long period at lOO"'C, finally, in ab0nt.a week, 

the precipitation in the undeformed regions 
became as str0n.g as in the flow lines and  the 
test piece was equally darkened by the etching 
reagent. Incorrectly andlin contradiction to the ' 

- 
j 

.. 

' 

. ~ 

- I  
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. .  
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observations already meniioned. Koster himself 
concluded that the nitride particles were pre- 
cipitated from .supersaturated-solution, in- \ - 
stead of growing fromwibmicroscopical super- 
critical particles already present'before plastic 
deformation and- heat treatment. From 'the 
fact, however, that the stabilized steel.was as 
liable to.strain aging as the steel in the original 
5tate;Koster rightly concluded that this precip. 
itation was not related to the. rea1.mechani.m 
of strain aging. Davenport and Bain obtained 
the data, shown in fig. 16, with a steel which , 

was slabilized by heating at 100' C during 17 
hours and which'in consequence contained no 
supersaturated carbon and nitrogen able to 
cause aging 'by precipitation. Still more conv- 
incing in this respect ar,e the results of the fol- 
lowing investigation. A sheet of normalized, 
rimmed S. RI .  steel; with approx. 0,l ?'G C, was 
divided in a great$ number of strips, in which 
the .profile of a tensile test piece was made be- 
forehand. Previous to the aging test, one series 
of strips was heated during 60 days at 100' C 
to make precipitation as complete as possible: 
The other series remained u6tre.ated. Strips of 
both.series were put an increasing number of 

. 

- 

. * ,  Fig. 11. 
Effect of -roller levelling (I) and alternate roller 
levelling and aging (11) (6 h. at 100" C )  on the 
mechanical properties of non-stabilized (- ) and 

stabilized steel (---) (BO days at 100' C). 
I 

\ 
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times' thrdugfi a roller levelhg machine and 
within 10 minutes after. that subjected to the 
tension test.. The otber.strips of. both;'serics 
were alternatively .leveled and heated 'six 
hours at 100°.C.in the same sequence and then 
tested. Prolonged heating had hardly any in; 
fluence. Fig. 17 shows the effect of these treat- 
ments on the .mechanical > properties o f  the 
steel. The strain-hardening effect of roller 
leveling was practically zero" (as far as the 
mechanical properties before aging are con- 
cerned). The difference. in properties,of the 
strips after deformation and after deformation 
and aging is therefore ,exclusively- due to. the 
aging. effect. ,It 'is now .obvious from fig.. 17 
that the liability to strain aging is about. the 
same for steel in the original state-and in the 
stabilized state. With' the .exceplion of the 
lower yield point, which behaves to some ex- 
tent divergently, the corresponding ' curves 
merely.show a.difference in4evel due to stab- 
ilizing. ,These .results clearly indicate that the 
strain-aging'phenoinenon cannot be explained 
on. the basis .of the precipitation theory. The 
supposition that even 'after a n  alternating 
treatment of roller 1eveling.and six hours beat- 
ing at  100' C up to 40 limes, preceded by GO 
days heating at 100' C, still some carbon or 
nitrogen might be in supersaturated solution 
to causeaging, is untenable: Th'e effect of stab- 
ilizing ;therefore. only exists in a further 
'growth of the precipitated partikles. 

\The precipitation theory& still more unten- 
able if we consider the aging effect during 
stfaining a t  high temperatures (blue brittle- 
ness). There is not the slightest argument to 
suppose that any precipitation can take place' 
in this range. On tbe'contrary, elements which 
are precipitated, at room temperature will just 
go into solution. ' , 

' 
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.-The mechanism of strain ,aging. 

. 
, . .  

Since strain aging cannot be caused by pre- 
cipitation of carbon and nitrogen, this pheno- 
menon.must be attributed, in the author's opin- 
ion, to alteration in the'state of equilibrium of 
these atoms ih' the lattice. As i.s geneAly 

'.'assumed, 'the crvstals'of a'metal are divided 

., 

. 

I 

return: Since the imperfect zones are tbermd - 
dynamically less stable, than. th'e fragments, it ' . 
is very probable that the. solubility, of carbon 
and nitrogen in ,the imperfect zones. i s  also 
greater. The consequence will be that the car- 
bon and nitrogen contents of .tlie .imperfect 
zones,. which comecinto existence during plastic 
deformation, will try.to'increase: As, has .been , 
shown in the preceding pages the ,diffusion 
rate of carbon and nitrogen is relatively high; 
even /at room temperature. It is therefore pro. 
bable that the inc reaso f  the resistance to de- 
formation during aging is due to stiffening of 
the imperfect zones by the increasing con-. 
tents of carbon and nitrogen. Though the re- 
turn of the yield phenonlenon and the alterat- 
ion ' of the other properties are thus closely 
related,. the aging mechanism is to some extent 
different. This might. be the reason. that tlie 

.yield phenomenon-is more sensitive to- aging 
.and also behaves somwhat differently inother 

Since' the diffusion rate-increases with the 
temperature, the velocity of aging increases 
with the temperature. As' is obvious from fig. 
10 the maximum aging,effect'at room tempera- 
ture.is not fullyreached in 100 days. At ZOO0 C 
-however, a few minutes heating i s  entirely suf- 
ficient. Prolonged heating at 250° :C causes 
over-aging, hut even at.350' C the over-aging 
effect is rather small. I t  is very probable now 
that over-aging is related with the primary 
Blages of recrystallisation.'-Tliough a micro- 
scopically visible stage of recrystallisation .of 
mild steel can hardly 'be obtained, at approx.' 
5OO0.C, it is very well possible that the formati- 
on of nuclei with a perfect lattice will already 
start in the'strougest distorted regions at approx. 
250' C: Consequently, the concentration of car- 
bon' and nitrogen in  these regions diniinishes 
and overaging occurs. A t  increasing tempera- 
ture 'the recrystallisation' occurs at a higher, .' , 
rate and becomes more complete. This~is also. 
in full accordance with the increase of over- 
aging with time and temperature. As long as 
no recrystallization 'starts, ,the-imperfect zones 
will not be very strongly affected by the tem-, 

': 
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during plastic aeforniation in smaller frng- 
ments, which are only elastically deformed. In 
the- small zonk between those fragments, the 
atoms.cannot,occupy the normal lattice posit-, , 
ions and consequently the lattice is locally in 1 
.a more or  less imperfect state. To explain, the 
i6itial absence of the.-yield phenomenon of .- 
Dlasticallv deformed steel.' the assumution-was gg. !- 1, ' ' -  1 

c 

I 

h a d e  th&."the. fragments are elastkzdly de- ."$ qF 
-formed to. such an extent that.the state of un- ' % 

I locking just remains maintained. It is plausible 
now that the deformation of the fragments de- 
'creases on storage at' room temperature and 

will cause a restoration of the state of locking 
and in consequence the yield phenomenon will 

. .  . 1G"MWC.T- . . .  

still more easily at  higher temperatures. This ' Fig. 18. 
influence of te,mnen;lrrp nn ten.ilr. nl 

, 

. . , ,  
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perature. Hence, the maximum aging -effect 
will also be fairly Independent of the tempe- 
rature. According to fig. 16 this is indeed ob- 
served. . .  

Blue'brittleness. 
If the plastic d,eformation is, performed 'at 

elevated temperature, the resistance to.deform- 
ation initially .decreases in the same way as 
shown by the plastic metals (fig. 18). The ten- 
dency, to aging however also increases with 
increasing temperature. From a certain tem- 
perature onwards,. dependent on the strain 
rate, perceptible aging.therefore occurs du.ring 
.plastic defoSmation. In static tension the aging 
effect becomes already predominant at. approx. 
80" C. The tensile strength increases'and rc- 
aches a maximum at 250' C to 300" C. At 
higher temperature, apart from the normal in- 
fluen.ce of, the temperature itself, overaging 

- 
.. 

- .  . 

. 

. .  

. .  
m-.c *nu,..-..,.." ' , 

. .  

i 

. 
. Fig. 19. , , , 

Tension te$ts of mild steel at various temperatures 
and rates ,of strain. [Nadal, and Manjoine 63)l.' 

is..extremely low. The minimum in the curve, 
which represents the relation between tensile 
strength and temperature. (fig. ,18.  and fig. 
19) is then shifted below room temperature. 
This moreover..proves .the suggestion of Fett- 
weiss 57) that strain aging and blue brittleness 
are indeed the same phenomena. 
The minimum and the maximum in the ten- 
sile strength .correspond to ,a maximum and a 
minimum in the elongation already occur at 
somewhat lower temperatures. This is appa- 
rently due to a,deviation in the behaviour of. 
the uniform elongation:. . - 

As is .known,. a tensile test. bar does not' 
strain absolutely uniformly and in all regions 
at the same time even in.tlie range hefore maxi- 
mum load. Consequently final necking has 
already started to some extent at a lower load 
and the uniform elongation remains somewhat 

.lower ,thans corresponds to the true uniform 
' elongation, of the bar. This behaviour probably 
will become more pronounced as the tempera- 
ture increases, in particular when aging occurs 
during the test. It might therefore be the.ca.use 
of the deviation in'the temperatures of the cor-' 
responding maximum and minimum. 

The discontinuous stra,ining of the bar is 
likewise the canse of thedroug fluctuations in 
the stress. during. 'testing at temperatures 
between approx. looo C and'300' C (fig. 11). In 
the zones of ,the bar .where. the deformation 
temporarily stops, the state of locking of the 
lattice is restofed..This result: i n  repeated dis- 
continuoils yielding up to the mom'ent that 
final necking starts. As the yield phenomenon 
at the transition fropi the elastic state to the 
plastic state disappears at approx: 300' C, .dis- 
continuous yielding during further straining al- 
so, disappears. 

Kenyon and Burns'37,64) 'observed that-non- 
aging steels, which indeed showed no cllange 

. .  . \  
Temperature. X .  

more and more predominates. At approx; 600' -m io3 m' 
C over-aging is apparently complete. As the 

'ation, apart from the aging effect, increases 
too. The same stages of aging and overaging 

res. This behaviour, already observed by le Chatelier 61) and especially investigated by - _  
Korber and ,Simonsen 62); Manjoine 14) 
NadaT%3), is represented in,fig. 19. In tensile 
and hardness tests a higher temperature than 

strain rates. This, however, is not astonishing, 

W 

strain rate increases, the resistance to deform- 
.- !. 9 u a 

likewise are attained at increasing temperatu- . <  'g.y 

$ 4 #  

cannot be attained, even at  extremely high I S k W  

0 

and . z- 4) 

c . 
'Q , .  - .- approx. 600' C for the maximum in the curve 

I- 

56 
since at  this temperature microscopically vis- 

'ible recrystallisation is already possible within 
a few hours. From fig. 19 it may also be con. 
cluded that at  very higli strain rates a-slight 

ferrite and austenite still occurs. 

. 

aging effect even up to the transition range of Temperature,' OF. 

occurs-atroom Gmperature, 'if the strain rate . , [Kenyon and Burns 37)l. ' . ' 

\ .  

,/ 

i 
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in the mechanical properties at room tempera- 
ture, after an aging treatment at lOOq C; still 
showed some tendency to aging, when tested 
in the blue brittle range fig. 20). ThiS may be'. 
explained as follows. If the steel is treated with I '  

the proper-amount of elements, which strongly 
combine with carbon and nitrogen, the solub- 
ility of carbon and nitrogen at room tempera- 
ture is not sufficient to cause noticeable aging 
in this range. At  increasing temperatures, 
however, the solubility also increases,. so 
that the ahility to aging might still'be main- 
tained to some extent in the blue-brittle range. 
In normal mild steel, the higher solubility of . 
these elements. at elevated temperatures cer- 
tainly plays a role as well. Onlyxfter complete 
decarburizing and de-nitriding, will the steel be 
free of any tendency to blue-brittleness. . ~ 
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Samenvatting. 
De meest gangljare hypothese ter verklaring 

van het vloeiverschijnsel in. zacht. staal, is ge- ' 
baseerd op het bestaan van een netwerk;.van. 
cementiet-of andere afscheidingen: op de -kris-. 
talgrenzen, dat bezwijkt bij een bepaalde criti- 
sche spanning. Een nadere beschouwing van de 
hekende gegevens leidt echter' tot de conelusie 
dat niet het cementiet of enig ander bestand- 
deel dat als afzonderlijke case aanwezig is, de 
oorzaak is, maar dat dit verschijnsel moet \Cor- 
den toegeschreven aan koolstof en stikstof die" 
in het-ferriet zelf zijn opgelost. Een nieuwe 
hypothese- is naar voren gebracht, waarbij is 
aangenomen dat de glijvlakken,van het ferriet 
geblokkeerd worden door de opgeloste kool- 
stof- en stikstofatomen, zolang een critische 
elastische 'deformatie van het rooster niet is 
bereikt. Deze hypothese . is ontwikkeld uit 
Snoek's theorie van de elastische nawerking, 
volgens welke de koolstof- en stikstofatomen 
zich in  een ongelijke verbouding--zullen ver- ' 
delen over de hoofdrichtingen van het kristal- 
rooster, als dit is onderworpen aan een defor- 
matie, die niet in alle richtingen gelijk is. De 
verandering in de verdeling van de- k,oolstof- 
en stikstofatomen,.die tot stand komt door'een 
zuiver diffusieproces, zal eveneeni' een 'ver- 
laging van ae weerstand tegcn deformatie op 
de glijvlaklien veroorzaken. Dientengevolge 
begint-het ' vloeien hij een hogere, critische 
schuifspannihg en. gaat daarna .vdoreersl bii 

. .  

, - 

een lagere spanning verder. Aan de h.and van. 
de conventionele trekkromme. is toegelicht dat: 
met behulp van .deze hypothese .het vloeiver- 
schijnsel in vele opzichten bevredigend kan wor- 
den verklaard. Vooral de grote gevoeligheid 
van de vloeigrenzen voor de reksnelheid is in 
.overeenstemming met .de veronderstelling dat . 
een diffusieproces bij dit verschijnsel een rol 
speelt. De aanvankelijke afwezigheid van het 
vloeiverschijnsel - in  plastisch. gedeformeerd 
staal is toegeschreven .aan de . blijvend elas- 
tisclle deforinatie 'van de kristalfragmenten. 
veroorzaakt door de interne spanningen. Het , 
wederoptreden van het vloeiverschijnsel na . 
langer verblijf bij atmosferische of hogere tem: I 

peraturen is daarom toegeschreven aan een 
verlaging .of opheffing .van deze interne span- 
ningen, waardoor de geblokkeerde . toestand 
van het rooster wordt hersteld. . ~ 

Verder is verduidelijkt; d a t  de. mechanische 
, veroudering en het identieke verschijnsel der 

blauwbrosheid, niet, zoals de afschrikveroude-:', 
dering, wordt veroorzaakt- door submicrosco- 
pische afscheiding van ijzercarbide,'-nitride of. 
-oxyde in het ferrietrooster. Dit blijkt uit het 
essentiele verschil in gedrag van staal bij af- 
schrik- en mechanische' veroudering. Overver- 
zadiging en dientengevolge afscheiding i s  in 
het bijzonder we1 uitgesloten in het'tempera: 

. tuurgebied ;der blauwbrosheid. Mechanische. 
veroudering is daakom eveneens toegeschreven 
aan koolstof en stikstof die in het,-ferriet zijn 
opgelost. De oplosbaarheid van deze elementen 
is groter in de verstoorde zones tussen de kris- 
talfragmenten dan in de slechts elastisch ver-, 
vormde kristalfragmenten zelf, zodat de con- 
centratie in deze zones toeneemt .gedurende 
het verouderingsproces. ~Verondersteld wordt 

, dat dit de oorzaak is van de verhoogde weer. 
stand tegen plastische deformatie. In dit ver- 
band is de over-veroudering toegeschreven aan 
de vervorming van kernen met perfect rooster 
in de verstoorde zones, gedurende het primaire 

"stadium der rekristallisatie. I '  
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1 Introduction. 

Plates loaded beyond their buckling stress are 
common structural elements in aeroplani struc- 
tures. The buckling of thin sheet metal'plates 
may be prevented by a system of closely spaced 
stiffeners. Except for very large aircraft such dense 
stiffening would result in uneconomic structures; 
therefore, stiffeners are usually spaced such that 
plates will buckle at stresses which are too low 
to be acceptable as ultimate stresses in aeroplane 
structures. The  application of these lightly stiffened 
plates is based upon the fact, that the structure 
will take a considerable load in excess of the 
buckling load of the plate. 
. A theory of the post-buckling behaviour of thin 
plates was presented by H. WAGNER in 1929 

Experimental Investigation of the P - &Buckling 
Behaviour of Flat Plates Loaded in 

Shear and Compression+') 

by 

I Prof. Dr  Ir  A. VAN DER N E U T  and IR W. K. G. FLOOR 

(ref .  1). He assumed, that the plate can take no 
compressive stresses, each element being loaded 
in tension, In this way a plate stiffened in two 
directions can carry shear load; buckles are formed 
in a direction intermediate between the 'directions 
of the stiffeners. This state of stress corresponds 
to the actual stress distribution when the ratio 
between the shear load and the buckling load is 
infinite and the phenomenon is known as the 
complete tension f ie ld .  Under actual conditions the 
ratio between the load and the buckling load is 
finite and the stresses in the plate, though mainly 
tensile, will also have compressive components. 
This state of stress is called the incomplete tension 
f ie ld .  When the load is a compressive load parallel 
to one system of stiffeners the tensile stresses are 
not dominant; the problem connected with this 
type of load is known as the effective-width problem 
and has been extensively investigated. The  load 
system of shear, parallel to the stiffeners, eventu- 
ally combined with compression in the direction 
of the stiffeners, has been investigated less 
extensively. The tests which are reported here are 
meant to contribute to the knowledge about the 
incomplete tension field. 

The complexity of this problem, due to the 
multitude of parameters involved, necessitates 
aircraft designers to apply the general knowledge 
just for an initial determination of the dimensions. 
Then definite conclusions on the strength and 
stiffness are determined from ad-hoc tests on a 
section of the structure or on a complete structure. 
This paper will not obviate this procedure, since 
many of the factors involved have been left out 

I )  Full version of a paper presented a t  the 71h 
International Congress of Applied Mechanics, Septem- 
ber 1948. An abbreviated version will be published in 
the Proceedings of the Congress. 
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;of: consideration; it is, however, hoped that it 
will help to reduce the gap between the general 
knowledge about the post-buckling behaviour of 
stiffened plates and the prediction of strength 
and stiffncss of actual structures. 

The test programme was developed by the 
National Aeronautical Research Institute in 1940 
and the tests were completed about 1946. At that 
time, the only fundamental experimental investig- 
ation was that of R. LAHDE and H. WAGNER 
(ref .  2) on long plates having clamped edges. 
Since in actual structures the restraint given by 
the stiffeners is far from complete, particularly 
with stiffeners of open cross section having small 
torsional stiffness, tests on plates having supported 
edges will give a better approximation of actual 
conditions. Therefore, our test programme was 
arranged for plates having supported edges. 

The available theoretical knowledge of the 
incomplete tension field was confined to the theory 
of A. KROMM and K. MARCUERRE (ref .  3), this 
theory dealing with the infinitely long plate 
having supported edges. The approximative char- 
acter of this solution, originating from the assumed 
wave form, is apparent from the fact that it does 
not result in WAGNER’S solution for the complete 

tension field for the limiting condition - = 

This result is not surprising, since the assumed 
wave form agrees with the wave form at the 
critical load, whereas the amplitude of the waves 
in the complete tension field is constant along 
the crest of the tension buckle. Therefore, the 
theory of ref .  3 seemed to be reliable only for 
loads not far beyond the critical load. The object 
of the tests was among others to determine the 
limits of the reliability of this theory. 

Considerable theoretical progress is due to 
W. T. KOITER (ref.  4) who, simultaneously, 
attempted a theoretical investigation at the National 
Aeronautical Research Institute in 1944. 

This theory deals with the infinitely long plate 
which & supported or clamped at the edges; 
numerical evaluation of his theory was mainly 
confined to the case of the supported edges. 
KROMM and MARCUERRE introduced in their 
approximative solution 3’  parameters: the wave 
amplitude, the wave length and the direction of 
the waves. KOITER accepted. the same scheme, but 
in addition he made allowance for the change 
of the wave form in the direction of the wave 

Y crest with increasing -. Following Cox’s pro- 
Yc r 

posal ( ref .  5), KOITER assumed that the wave 

Y 
Ycr 

form in the direction of the wave has a constant 
amplitude over a certain width in the middle of 
the plate; in the edge strips the amplitude falls 
off to zero in an appropriate manner consistent 
with the edge conditions. The width of constant 
amplitude is the fourth parameter. For yc nearly 
equal to unity, KOITER’S solution corresponds 
essentially to the solution given by KROMM and 

MARGUERRE. For- = m KOITER’S theory yields 

WAGNER‘S solution for the complete tension field. 
W. K. G. FLOOR has compared the results of the 
tests (refs. 6, 7) with the results of KOITER’S 
theory. 

The behaviour of a.plate after buckiing may 
be expressed by the relations between the external 
loads at the edges, the relative displacements of 
the edges and the stresses in the plate. In actual 
structures the plate is only part of the structure 
and the load is taken partly by the plate and 
partly by the stiffeners. Knowing how the plate 
behaves under load, it is relatively simple to 
determine the behaviour of the stiffened plate. 
The stiffeners participate in the distortion of the 
edges; therefore the load carried by a stiffened 
structure under specified edge displacements is 
equal to the sum of the load carried by the plate 
and the load carried by the stiffeners under the 
specified distortions. Consequently, a test pro- 
gramme for the investigation of the behaviour of 
stiffened plates does not require a variety of 
relative stiffener cross sections, provided the 
strain of the edges can be varied. In principle 
this can be achieved by applying compressive 
load to the stiffeners. In our tests we .applied 
compressive load parallel to the short sides of 
the rectangular plates. The application of a normal 
load in the direction of the long sides would 
have complicated the test rig too much. It was 
decided to realize a variety of longiiudinal edge 
strains in an indirect way by means of the 
compression developed in the stiffeners by the 
tension field. By varying the stiffness of the 
stiffeners a variety of edge strains can be 
attained. -There is another reason for this pro- 
cedure. Usually the load of stiffened plates 
consists of shear and normal load in the Y-direction 
of one system of stiffeners; the other system of, 
stiffeners being stressed by the loads induced by 
the tension field in the X-direction. Therefore, a 
combination of large E~ and small shear stresses 
will not occur and the task of producing appropriate 
strains may be delegated to the tension field, 
On the other hand the strain E% is produced by 

.Y 
Ycr 



circumstances independent of the shear stress; 
therefore c2 should be applied directly. 

Choosing the external normal load parallel to 
the narrow side of the plate, we aimed at represent- 
ing the conditions in shear webs of aeroplane 
wings and in skin panels of wings having no 
longitudinal stiffeners between the spars. There- 
fore this investigation does not cover the conditions 
prevailing in stiffened skins of wings and. fuselages, 
where the normal load is parallel to the long sides 
of the rectangle. Anticipating the conclusions of 
this paper, it may be stated that the agreement 
between theory and tests presumably will hold 
as well for plates loaded in compression along 
the long side, so the behaviour of these plates 
might be determined by means of the theory of 
ref. 4. 

The state of stress depends upon the dis- 
placements at the edges, i. e. upon the strains 
and E~ of the edges and the shear angle y of the 
rectangle, and upon the geometry of the plate 
and the mechanical properties of the material. 

The geometry is given by the slenderness ratio 
nib of the rectangle and the slenderness of its 
cross section b/t ; the mechanical properties in the 
elastic region are given by E and v. 

Our tests were confined to the elastic region. 
Due to the formation of waves, permanent 
deformation will occur at the faces of the plate 
where large bending stresses add to the membrane 
stresses, provided that permanent deformation at 
the rivet or bolt connections is prevented by giving 
these connections appropriate strength. It is of 
particular interest to know under what circum- 
stances the first permanent deformation will occur 
in the plate. The behaviour in excess of that 
limit is important mainly in connection with the 
ultimate load. Since the material yields in bending, 
it is to be expected that the relation between the 
membrane stresses and the average strains over 
the plate thickness will not be affected very much 
by plastic deformation. The increment of stresses 
after exceeding the yield load might be estimated 
in applying WAGNER'S theory to the load increment. 

It appears from the theory for the infinitely 

2 The pa rame te r s  of the phenomenon. 

s 3  

long plate (i = m ) ,  that in the elastic range 

the parameters can be reduced to four in number: 
viz. the ratios of sl, E~ and y to the critical shear 
strain yc r  and POISSON'S ratio v. Since v is very 
nearly a constant number for the materials 
employed, this practically means that the para- 

meters; governing the problem are: 
. E 1  E2 Y E 1  €2 Yc r -, - and - or -, - and -. 
Ycr Ycr Ycr ' Y Y Y 

It is obvious that a rectangular plate and an 
infinitely long. plate having the same yc will 
not have identical stresses for equal cl, and y. 
So, in fact, the stress distribution in the rectangular 

a plate will depend upon a fourth parameter -. 
b 

Now, the 'effect of - upon yc is only of second- 

ary importance for - > 3. Though cases of 

- 1 occur ,in aircraft structures, we have 

left these conditions out of consideration and 

decided to have a constant ratio- = 3.16 during 

the whole of the test programme. Thus the results 

will hold for structures having - > 3 and in 

this range the parameters can be assumed to be 
E1 E Yc r -, ?and--. 
Y Y Y 

U 

b 

b 
U 

U 

b 

a 
b 

a 
b 

In view of these parameters the best test 
procedure would be to run a series of tests for 

constant 2 and f over an.appropriate range of 

E. The test rig, however, was such that it gave 

the distortions as a result of the loads applied. 
In particular this applies to the way in which 
s1 is obtained. 

During each series of tests we aimed at a 

constant 'nominal' 2, the actual 2 depending to 

some extent -upon the post-buckling behaviour 
of the plate, so we had to accept a gradual change of 

'1 and 2 during each test series. This incon- 
Y Y 
venience is however not very 'important, since 
the test results show so much scatter that a 
more refined test procedure would not have been 
worthwhile. 

E E 

Y Y 

Y .  

E E 

Y Y 

E 

E E 
The gradual change of L a n d ?  gives an- 

other effect, that must be taken into account. 
The critical strain ycr  is not independent of il 

y .  Y 

and E ~ ;  each set of values-, E 1  2. E will result in 
Y Y  

a particular ycr. Therefore, during each series 
of tests ycr will change gradually. This means 
that the evaluation of the test results cannot be 
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(Ycr/?) l b  
min I max 

based upon the value of y c r  observed in the 
lower load range. Moreover, it is practically 
impossible to determine y c r  from the test due 
to the initial waviness of the plate. Therefore 

y c r  -, - was evaluated from theoretical 

considerations. 
(:I 9 

,While evaluating the test results it appeared 
that under certain circumstances ycr should be 
replaced by some other quantity. This occurs when 
€2 , - is large and then the deformation is primarily 
Y 

compression and only secondarily shear. Even the 
,infinitely long plate will buckle under these 
conditions in one single half wave in the same 
way as with pure compression without shear. 

When deformations increase, 2 and? remaining 

constant, this type of deformation becomes un- 
stable and'will suddenly change over from the 
compression wave into a wave form of the 'diagonal' 
type. From KOITER'S theory FLOOR calculated for 
the infinitely long plate the shear yo at which 
the 'diagonal' wave contains less elastic energy 
than the 'compression' wave. For finite lengths 
this shear yo will not necessarily be the shear at 
which the compression wave disappears, for it 
may be that the compression wave will be stable 
with respect to small disturbances. Nevertheless, 
the shear yo will be the unit for measuring y as 
soon as diagonal waves are dewloping and ycr  
loses its. physical significance. 

This is the reason why Ycr was dropped as a 

parameter and replaced by L. For the smaller 
Y 

values of 2 this change is not essential, since 

in that case yo = ycr. Evaluating quantities 
depending primarily on the wave form in the 

Y-directi.on - Ycr was retained as a parameter; 

this method simplified the representation of the 
test results. In determining yo it was assumed that 

A would be equal for the infinitely long plate 
Yc r 

and the rectangular plate. The ratio L, as cal- 

culated in ref. 7 from KOITER'S theorv, is given 
in'fig. 5.8. 

to ' be investig- 

ated can be covered using only one plate having 

E E 

Y Y 

Y 

E 

Y 

.Y 

Y c r  

. .. 

In principle the range of 
Y 

Num- 
ber of 
tests 

t 
b 

sufficiently small -. In this way the stresses at  

the lower end of the & range can be kept below 

the yield stress of the material. This method will 
have the practical disadvantage that the investig- 

ation of the range of 2 just below unity involves 

small strains, which cannot be measured reliably. 
Besides, the initial waviness of thin plates will 
greatly influence the deformation in this range. 

In order to improve conditions the tests were 
carried out with 3 ratios of -, b . b  VIZ. - = 357 

@late no. 2), - = 167 (plate no. 1)  and- = 118 

(plate no. 3). 

given in table 2.1. 

Y 

Y 

t t 
b b 
t t 

The range of load parameters investigated is 

TABLE 2.1. 

0.340 
3.330 
0.320 
0.310 
0.305 
0.295 
0.295 
0.290 
0.285 
0.275 
0.275 
0.265 
0.270 
0.260 
0.260 
0.270 
0.290 
0.290 
0.290 
0.200 
0.255 
0.215 
0.235 
0.200 
0.205 
0.205 
0.190 

- 
6 
t 
- 

- 
118 
118 
118 
118 
118 
118 
118 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
167 
357 
357 
357 
357 
357 
357 
357 
357 
- 

0.495 3 
0.460 3 
0.585 4 
0.405 5 
0.395 3 
0.390 3 
0.400 3 
0.385 5 
0.370 3 
0.370 3 
0.390 3 
0.360 5 
0.380 3 
0.360 3 
0.360 3 
0.340 5 
0.340 2 
0.335 2 
0.335 2 
0.680 13 
0.685 6 
0.566 12 
0.570 8 
0.475 8 
0.450 7 
0.465 6 
0.425 7 

- 
E l  

min 

0.01 
0.02 
0.04 
0.06 
0.03 
0.04 
0.06 
0.04 
0.08 
0.12 
0.06 
0.05 
0.07 
0.09 
0.09 
0.06 
0.06 
0.09 
0.08 
0.05 
0.02 
0.07 
0.03 
0.04 
0 
0.01 
0.09 
0 

-0.03 
0.02 

- 0.02 
0.02 

- 0.06 
- 0.03 - 0.08 

Rang - 
- 
max 

0.06 
0.07 
0.09 
0.09 
0.09 
0.08 
0.10 
0.12 
0.13 
0.17 
0.20 
0.11 
0.13 
0.17 
0.20 
0.12 
0.13 
0.17 
0.20 
0.11 
0.13 
0.17 
0.20 

0.04 
0.07 
0.09 
0.11 
0.16 
0.10 
0.14 
0.10 
0.13 
0.07 
0.11 

- 

0.10 

- 

min 

0 
0.17 
0.30 
0.45 
0.63 
1.13 
1.54 
0.02 
0.02 
0.03 
0.01 
0.14 
0.15 
0.14 
0.14 
0.19 
0.20 
0.17 
0.17 
0.26 
0.25 
0.24 
0.24 
0.46 
0.67 
0.60 
0.67 

- 0.01 
-0.02 

0.12 
0.10 
0.23 
0.24 
0.34 
0.38 - 

vestij - 
- 
maX - 
0 
0.19 
0.31 
0.56 
0.75 
1.83 
1.94 
0.04 
0.05 
0.04 
0.04 
0.25 
0.21 
0.21 
0.20 
0.26 
0.29 
0.26 
0.25 
0.41 
0.41 
0.36 
0.41 
i.55 
0.74 
0.72 
0.92 
0.03 
0 
0.17 
0.12 
0.31 
0.26 
0.36 
0.42 - 

3.380 0595 10 
3.390 I0:655 I 9 
3.415 10.670 I 8 
0.420 0655 6 
D.310 10:575 I 8 



3 The quantit ies to be measured. 

For given edge strains E, and E ,  and shear 
strain y, the shear load and the normal loads 
on both edges of the plate are to be determined. 
The shear load of the panel follows from the 
externally applied load. 

The ratio between y and the average shear 
stress 7 yields the effective modulus of rigidity 

G‘=-. 
- 
T 

.I 
I 

The normal forces Nl and N2 are important 
for the determination of the loads in the stiffeners 
of stiffened plates. These forces or the average 
normal stresses Zl and r2 can be computed from 
the membrane stresses in the plate by: 

h 

z 
a 

- o , = - = !  N ,  / a ,dx  
at a 

(3.la) 

(3.lb) 

-i 
For the determination of the rivef loads it is 

necessary to know the maximum normal stresses 
01 max . and 02 max. 

The determination of the stresses in the plate 
requires a knowledge of the maximum membrane 
stresses ol, a, and T and of the maximum bending 
and torsional stresses obl, ab2 and q. 

Neglecting third-order terms, the membrane 
stresses are given by 

+ -(”*], 2 aY 

. c 2 =  - 
i-v* E ‘ I  ax av 

+ +($)“1, 

(3.2a) 

(3.2b) 

The bending and torsional stresses are given 
. t  

2 
for z = =t - by 

(3.3a) 
2(l-v2) Et I” ax2 

Ubi = 

(3.3c) 

The determination of the stresses requires a 
knowledge of u (x, y ) ,  v (x, y )  and w (x, y ) .  
It appears that the most direct way to determine 
the stresses is by measuring the strain at an 
appropriate number of points. At the commence- 
ment of our tests the . electrical strain gauge 
technique was not yet developed, so we had to 
seek’alternative methods. It was decided to make 
elaborate recordings of the waveform by measuring 

the slopes - and 7 and in addition the deflect- 

ion W. This method is basically insufficient since 
the membrane stresses depend upon the plane 
displacements u and v as well. It will be shown 
how in spite of this lack of information useful 
conclusions could be drawn by determining 
average values. I 

In view of the results obtained, this method 
seems to be more appropriate than direct strain 
measurements. Due to initial waviness, the strains 
in a particular point will be affected very much 
by the occasional local eccentricity. In order to 
arrive at fundamental data on the behaviour of 
plates, strain gauge measurements would have to 
be made at a great number of points and the 
recordings would have to be averaged. This 
method would be lengthy and would give no more 
information than a method which by origin can 
produce only average values. 

It will appear from 5 4, that the longitudinal 
edges of the plate have been supported in such 
a way that they could transmit practically no 
longitudinal load to the ‘supporting stiffeners. 
Thus it could be assumed that N ,  or Gl is indepen- 
dent of x, and hence 

2w 2w 
ax OY 

n 

z 
Further it was assumed that the edges x. = i 

a 
- remain straight, which was practically true due to 
2 
the large bending stiffness of the lateral stiffeners. 

Though the lateral stiffeners were rigidly 
connected to the plate, it was assumed that N2 
is independent of y as well. As to N ,  it was 

b 
further assumed- that the edges Y = + - 

- 2  
would remain straight, which was not guaranteed 
by the test rig. So the force N ,  has been determined 
with less certainty than the force N,, which is 
acceptable since N ,  is of minor importance. 



Under the assumptions made, the average 
stress Oz is given by a formula analogous to (3.4a). 
The average shear stress T can be expressed in 
terms of z in the same manner. The result of 
the integrations in (3.4a) etc. is: 

where 

a b  
z aw aw 

dxdy 

(3.54 

(3.6a) 

(3.6b) 

(3 .6~)  

are quantities that can be determined from the 
wave pattern, and the strains are defined by the 
relative displacements of the edges, z1 and E~ 

respectively by the compressive strain of the 
longitudinal and the lateral stiffeners and y by 
the shear strain,of the panel. 

For the determination of al, o2 and T it is again 
assumed that ol is independent of x ,  and that 
az is independent of y ;  then T is constant over the 
whole plate. 
Hence 

a1 (Y) = - /" ' o1 dx, 

a 

(3.7a) 

(3.7b) 

2 
- 

z = 7 .  (3.7c) 

The integrals of ol and o2 taken over x and y 
respectively will contain the terms 

and 

b 

- 2  
which cannot be determined from the measure- 
ments as far as u and u are concerned. These 
rather small terms have been approximated by 
their mean yalues taken over y and x respectively, 
yielding 

E1 - VEZ + 

b 

4- 'J' 2b -. (g)' dy +.velp I . (3.8b) 

2 

The bending and torsional stresses (3.3) may 
be determined from w only. This method proved 
to be rather complicated and tedious. .A more 
straightforward method was adopted, giving results 
that agreed well with the exact method. The  
approximative character of this method seems to 
be justified also by the approximation introduced 
in determining the membrane stresses. ,The 
approximation consisted in the assumption that 
the wave form could be approximated by 

XY x w = f cos - cos - ( x - m y ) .  
b L 

The maximum stresses occur at x =  y = 0. 
Then (3.3) yields: 

(3.94 

where 

(3.10) 

Therefore the detirmination of these stresses 
requires the measurement of the amplitude f, 
the half-wave length L in  the direction of x and 
the cotangent m of the angle between the waves 
and the direction of x .  



Recapitulating, the quantities to be measured 
are: 
1. the relative displacements of the edges, to. be 

expressed in terms of the longitudinal strain el, 
the lateral strain c2 and the shear strain y; 

aw aw 
2. the slopes - and - of the plate; 

ax aY 
3.the amplitude f, the half-wave length L and 

the direction m of the waves. 

4 T h e  test . specimen and.  the measuring 

The realization of hinged edges, in contrast to 
clamped edges, presents some serious difficulties, 
which have been solved in the following way. 
The test section forms the middle bay of a beam 
with a shear web, consisting of 5 bays (fig. 4.1). 

apparatus. 

ATERLL ITIFF WFRS 

FIGURE 4.1. 
Test specimen. 

The shear load is applied to the outer bays. Near 
its ends the web is clamped between two rigid 
steel stiffeners, A and F. The  intermediate steel 
supports B, C, D and E provide a knife edge 
support. Therefore the edge ' conditions of the 
outer bays are different from the edge conditions 
of the three inner bays. In order to compensate 
for the restraint at A and F the width A B  (and 
EF) is large: than the width of the inner bays. 

The ratio - has been taken such, that the 

critical stress of bay AB, assuming full restraint 
a t  A and a hinged support at B, is equal to the 
critical 'stress of the bay CD with hinged supports 
at C and D. This means that near the buckling 
stress there will be a small interaction between 
the first and the second bay. There may be more 
interaction a t  higher loads but this positive or 
negative restraint at B will be damped out to a 
negligible amount at C. Therefore bay C D  may 
be considered to be practically simply supported. 

The  short edges of the plate are clamped between 
two heavy flanges, which means that these ends 

are rigidly clamped. Since the 'ratio - has been 

AB 
CD 

a 

b .  

s 7. 

chosen such that the length a i s  of little importance 
in determining the hehaviour of the plate, the 
edge conditions here are likewise unimportant. 

The supporting members A to F inclusive do 
not fix the distance between the spar. flanges. ' 

The task of the longitudinal stiffeners in connecting 
the flanges together and maintaining their distance 
is delegated to separate steel members, which are 
connected to the plate as shown in fig. 4.1. 
Changing these members gives a variety of 

stiffeners, and hence of 2, E 

I' 
The spar was loaded by a special rig in shear 

and compression, such that the bending moment 
in the plane of the spar would be zero in the 
centre between C and D. 

The measurements were restricted mainly to 
the centre panel. The strain el was obtained 
from dial gauges which measured the change of 
distance between the spar flanges; the strain c2 
was measured by Huggenberger tensometers at- 
tached to the spar flanges. The shear strain y 
was measured by a dial gauge in the manner 

! 
I 

PLATE 

SHEAR QIRL WUGi 

a ,  
L O N G l l U O l N l L  
COMPRESSION 
DIAL €ducts 

LONGllUOlNAL STIFFENER CENTRE 

LATERAL 

L I N E S  

FIGURE 4.2. 
Instruments for the measurement of el, e%, y at the test panel. 

aw 
ax 

indicated in fig. 4.2. The slopes - were record- 

ed at the longitudinal cross sections y = =t 10 n 

mm, n = 0 to 5 inclusive and the slopes - 

were recorded at the lateral cross sections x =  
(22 + 30 n) mm, n =  0 '  to 5 inclusive. The  

slope recorder (fig. 4.3, ref. 8) measured the 
relative movement of two feelers, 10 mm apart, 
each of which followed the surface of the plate. 
This instrument was also employed for recording 
w by fixing the pin carrying the glass scratch 
plate. In this way the amplitude f was determined. 

aw 



usually it was ten times. A record and photograph 
with a distortion ratio of ten are represented 
in fig. 4.5. 

------------ -- --...-.----~..___-I_ 

FIGURE 4.3. 
Slope recorder. 

The recordings gave the half-wave length L 
as the distance between successive intersections 

of the curve - and the reference line. From the 

shift of these points of intersection in successive 
cross sections y the direction of the waves could 
be obtained. 
The amplitudes of the recorded slope curves 
were, as a matter of fact, very small, thus hampering 
the direct evaluation of the recordings. In order 
to facilitate evaluation the recordings were 
elliptically enlarged by means of a specially 
designed enlarger, the principle of operation of I 

which has been indicated in fig. 4.4 (ref. 8). 

aw 
ax 

FIGURE 4.4. 
Operation scheme of elliptic enlarger. 

The  maximum magnification in the 2-direction 
was forty times,but a magnification of twenty 
times was found convenient and sufficient. In the 
X- and Y-directions the magnification could be 
one or two times, the larger magnification being 
the one used in the evaluation of the results. 
So the distortion could be up  to forty times; 

FIGURE 4.5. 
Slope recording of a buckled plate and its elliptically enlarged 

photograph (disforfion ratio 20 : 2) .  

The integrals \ ( g ) ' d x  and \ ( g ) ' d y  were 

computed by an Amsler integrator no. 1 directly 
from the photographs. 

5 The results of the tests. 

Since wave formation is the typical feature 
of the post-buckling behaviour of plates, the tests 
have been evaluated such that they give information 
on the functions of w involved in the expressions 
(3.5), (3.8) and (3.9). The integrals of the slopes 
included in (3.5) and (3.8) have been expressed 
in terms of the corresponding quantities for the 
complete tension field for the same cl, cZ and y 
by means of the coefficients PI,, p,,, PZz These 
coefficients will be zero at the critical load and 
they will. be equal to unity for the complete 
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€ 2  e1 v- f P11- + 
y 1-v2 Y Y 

(5.4a) 

tension field. Thus the coefficients P express the 
rate of development of the tension field. 

s1 - 

The definition of P is: + vP , , s ) ,  
Y 

pl, = 'lp , (5.la) - 

PI, = - YP , (5.lb) 

EZ + VP1,5 + el _.-__ 0 2  - -v- l - -_  E 

y 1-9 " (  Y , Y  Y 

i? . (5.4b) 

p,, = 'zp , (5.1~) 

where the quantities e,, e2 and g relating to the 
complete tension field are 

ea 

E2 + -  E1 - 
+ -  Y _ _ _  

Y Y 4  

Y Y 

(5.4d) 

Y 

Y 

Y 1-vz 

(5.4e) 
Y 

In order to account for initial waviness w, 
of the plate, E , ~  etc. in (3.6a) etc. was replaced 

(5.2a) 

n h  
by 

x i  (l+v) ($-?) + (I-v) [ ' 1  + 

(5.2b) 

E2 + -  
Y . (5.2~) 

E 1  - 
g -1-v l + v  y 

----I-- - 

The integrals included in (3.8) are expressed 
as multiples A, and ha of the averages zlP andcap by 

b [A J ; g j z  d Y ]  = A z E z p  t 

. _  max 
(5.3b) 

2 
where hl and h, apply to the maxima of the integrals. 
In this way the stresses are expressed by 

- (z)'] dxdy etc. (5.5) 

In calculating E l b  etc. it was not possible to 
account for initial waviness, due to its irregularity 
and the approximative method of computing Elb 

etc. Since these deformations are important only 
at  the higher loads, the contribution of initial 
waves to the bending stresses is of secondary 
importance. 

pn, pizt pzz, hi, E ~ b r  cab and Yb as following 
from the evaluation of the test results are represented 
in figs. 5.1 to 5.7 inclusive. As discussed in 0 2, 

P,, and Ezb have been given as functions of - , 
whereas the other coefficients have been given 

as functions of -. 

Yc r 
Y 

YO 

Y 
The computation of the integral y p  could not 

be done by the Amsler integrator and would 
have been very lengthy. Therefore yp was computed 
from the given shear stress ? by ( 3 5 ) :  

To check the reliability of this method, y p  
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FIGURE 5.1. Y 
Comparison between theoretical and experimental results 

for  PtI. 

FIGURE 5.3. 
Comparison between theoretical and experimental results 

for P,. 

FIGURE 5.2. 
Comparison between theoretical and experimental results 

for  PI*. 
. .  
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FIGURE 5.4. 
Comparison between theoretical and experimental results 

for A,. 
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FIGURE 5.6 
Comparison between theoretical and experimental results 
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FIGURE 5.7. 
Comparison between theoretical and experimental results 
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was also computed from (3.6~) using the slope 
recordings for two representative tests on each 
of the three plates. 

In  calculating G from the external loads corrections 
were made for the influence of friction in the 
hinged joints of the loading frame. In addition, 
tests were carried out after removal of the test 
plate which yielded additional corrections due 
to the rigidity of the test frame. 

I n  view of the doubtful reliability of these 
corrections PI, was also calculated using the values 
of y p  given by equation (5.6) neglecting either 
the corrections for friction only or else all the 
corrections in the determination of 7. 

FIGURE 5.9. 
Comparison between experimental results obtained after 

dijjerent methods o j  evaluation. 

In fig. 5.9 the results of PI, are compared 
using the values of up as evaluated in the various 
ways from equations (5.6) and ( 3 . 6 ~ ) .  

A~ was not computed from the tests, but was 
assumed to be unity, which is only strictly true for 
a 
b 

SI= 51 max +I 51b I , (5.7a) 

sz= 5% max Gab I > (5.7b) 

the equivalent tensile stress 5e of HUBER-VON 
MISES-HENCKY was calculated, viz.: 

- = w .  

From the resultant maximum stresses 

T = = T r F ( T b  1 , (5.74 

c 

(5.7d) 

Some results concerning the higher loads have 
been given in table 5.1. 

6 Discussion of results and comparison 

Figs. 5.1 to 5.7 inclusive show much scatter of the 
experimental results, which can be attributed to the 

E1 & 
variety of values of- and 2 . An attempt to 

Y Y 
find relations between the characteristic ratios P etc. 

and ?L a n d 3  failed, for even with fairly constant 

values of 2 a n d 2  scatter proved to be large. It 

was, however, possible to make qualitative con- 

clusiom on the effect of 2, which proved to 

be in agreement with the conclusions following 
from theory. 

In figs. 5.1 to 5.7 inclusive curves have been 
drawn, which have been calculated on the basis 
of KOITER’S theory (ref. 7). In  general, the 
experimental results for P,,, clb,  cZb, Y b  and A, 
agree fairly well with the theoretical results. 

The  experimental results for P,,, as originally 
determined from (5.6) (c.f. 5 5), are for the 
greater part somewhat larger than the theoretical 

results, particularly in the range of smaller 5 
Y 

values where PI, is almost unity and even in 
a number of tests where PI, is larger than unity. 
This latter fact gives rise to doubt as to the 
reliability of the experimental results. PI, > 1 
would mean that the incomplete tension field 
would have less stiffness than the complete tension 
field, which is physically impossible. It might be 
that the shear stress is underestimated by an 
overestimation of certain corrections which have 
been applied due to friction and rigidity in the 
test rig. 

In this connection it is significant that P,,, as 
determined by (3.6 c) from the slope recordings, 
agrees reasonably well with theory (fig. 5.9). 

The same can be said of the results obtained 
from (5.6) by neglecting all corrections in F, whereas 
neglecting only the corrections for friction yields 
values of PIS which are in excess of the theoretical . 
results. 

Although the values of P,, from (3.6~) and 
the values obtained from (5.6) by neglecting all 
or part of the corrections originally applied in 

with theory. 

Y Y 

Y Y 

& 

Y 



- 
E2 

Y 

0.00 
0.00 
0.00 
0.12 
0.12 
0.12 
0.12 
0.12 
0.26 
0.25 
0.25 
0.35 
0.36 

- 0.01 
0.00 
0.10 
0.11 
0.11 
0.24 
0.24 
0.40 
0.00 
0.00 
0.11 
0.11 
0.00 
0.00 
0.01 
0.00 

- 

- 

Permanent d 

494 
623 
740 
410 
458 
525 
579 
653 
388 
470 
542 
289 
360 
475 
604 
412 
464 
529 
376 
451 
268 
838 
950 
750 
829 

1180 
1064 
1404 
1402 

- 
,mation 

me 
+m2 

1410 
2120 
2500 
1320 
1440 
1430 
1910 
2070 
1710 
1520 
1940 
2110 
2465 
1355 
1500 
1345 
1585 
1680 
1550 
1660 
1920 
2225 
2425 
2230 
2390 
3340 ') 
3090 ') 
3810') 
3870 ') 

served. 
Heavy permanent deformation. 
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TABLE 5.1. 
Equivalent maximum stresses o e .  

E, 

Y 

0.06 
0.08 
0.08 
0.11 
0.08 
0.09 
0.13 
0.12 
0.13 
0.17 
0.10 
0.17 
0.20 
0.07 
0.08 
0.11 
0.10 
0.13 
0.13 
0.17 
0.15 
0.20 
0.07 
0.08 
0.12 
0.09 
0.13 
0.13 
0.17 
0.15 
0.20 
0.07 
0.08 
0.11 
0.1c 
0.13 
0.12 
0.17 
0.15 
0.2C 
0.06 
0.1( 

- 
- 

S 

- 
E, 

Y 

1.02 
1.03 

3.04 
1.02 
1.03 
1.05 
1.03 
3.04 
3.04 
0.03 
0.03 
3.04 
0.16 
0.15 
0.14 
0.16 
0.15 
0.15 
0.14 
0.15 
0.14 
0.21 
0.20 
0.19 
0.21 
0.20 
0.19 
0.17 
0.20 
0.17 
0.27 
0.27 
0.26 
0.29 
0.25 
0.28 
0.24 
0.28 
0.24 
0.55 
0.46 
11 

- 

- 

1.03 

~~ 

small 

- 
7 

d m 2  - 
537 
668 
764 

1084 
540 
768 

1083 
542 
770 

1050 
549 
774 

1050 
508 
641 
882 
644 
886 
649 
850 
651 
,846 
438 
560 
797 
565 
760 
569 
816 
573 
810 
383 
442 
710 
446 
685 
449 
697 
452 
650 
205 
291 

1213 
1361 

- 
o e  

kg/m2 - 
1730 
2060 
2560 
3400 ') 
1690 
2355 
3315 ') 
1800 
2425 
3390 ') 
1725 
2470 
3510 *I 
2000 
2405 
2985 
2395 
3460 
2480 

2510 
3315 
1880 
2255 
3290 
2285 
3285 'I 
2355 
3245 
2325 
3470 
1875 
2105 
3245 
2150 
3560 
2160 
3070 
2160 
3385 
1705 
2485 ' 

3280 

2) 

2) 

- 
€1 

Y 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.18 
0.17 
0.17 
0.17 
0.30 
0.31 
0.30 
0.30 
0.30 
0.30 
0.54 
0.45 
0.49 
0.51 

- 

- 

- 
T 

kg/cm2 

399 
451 
499 
547 
598 . 
652 
703 
361 
434 
505 
572 
291 
340 
393 
441 
489 
545 
219 
272 
354 
403 

- 
o e  

kg/cm2 

1310 

1580 
1795 
1840 
1930 
2090 
1550 
1780 
2020 
2250 
1440 
1645 
1705 
1920 
2180 
2330 
1560 
1960 
2120 
2480 

i485 

computing 7, have only been determined for a 
limited number of cases, it is highly probable 
that all PI,-values should be reduced a certain 
amount. In that case the theoretical results do 
not seem to be in contrast to the experimental a 

results. b 
The experimental results for PZ2 in the range 

tical values, in particular for the thinnest plate 
(second plate). This means that the average tensile 
stresses in the direction of y would be smaller 
than according to theory. This effect is to be 

expected, since the theory holding for - = m 

cannot account for the reduction of w near the ends 
Ycr a of smaller ---values are well below the theore- x = *- with plates of finite length. Theory will 
Y 2 



be in better agreement with conditions at some 
distance from the ends, therefore with bz max. 
The knowledge about iZ is of relatively little 
practical importance, since the direction' of y 
is. the direction of the heavy spar booms which 
are taking the bulk of the external compressive 
loads. 

With 2 near unity, therefore in the region 

not far beyond the critical stress, P12, Pea, Elb and 
yb are well above the theoretical curves, the latter 

falling off to zero at ~- = 1 or = 1. Obvi- 

ously this deviation between theory and experiment 
is to be attributed to the initial waviness of the 
plates, by which the, waves are in fact more 
developed than with initially flat plates. Therefore 
these deviations do not give rise to doubt on the 
reliability of the theory. 

Permanent deformation occurred at equivalent 
stresses (as computed from the deformation 
measurements) of about 3300 kg/cm2, whereas 
the 0.2 % yield stress is about 3500 kg/cmz. 
Neglecting the corrections mentioned in 5 5 these 
equivalent stresses. will amount to approximately 
3400 kg/cm2. Therefore the method in which 
the maximum stresses have been determined 
proves to give stresses quite near to actual stresses. 
The fact that the deformation factors Elb, Ezb 
and yb as given by theory are in reasonable agree- 
ment with the experimentally determined quanti- 
ties means that the theory presents the possibility 
of predicting the load at which permanent deform- 
ation will occur. 

Y 

Y O  

Y Y 

7 Conclusions. 

Summarizing, we may conclude that in view 
of the scatter observed it does not seem worth- 
while to strive for an exact theory for the post- 
buckling behaviour of plates. Due to initial 
waviness, actual plates will behave in a different 
way than ideal flat plates. Nevertheless a theory 
giving an adequate picture of the post-buckling 

behaviour over the whole range of A is the best 

source for general information. Experimental 
evidence is such 'that KOITER'S theory can be 
regarded as giving adequate information. Since 
scatter of experimental results makes it clear 
that the theoretical results should not be considered 
reliable up to the last figure, they may be approxim- 
ated by simple formulae. As such, the following 
formulae are proposed: 

Y 
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1 1 
Y 3 YO P 11 - -1- ( - ;) +09- . [ ($)'- 0.75-- 

Y 
\ 3 

-0.25($ 1,  (7.la) 

I 

2 

" +0.40(:) , (7.lb) 

I - 
A,= I +  1 ( ~ ) 3  or A, 2, 

E l  E2 0.5 + 0.2 -- 0.3 - 
Y Y 

whichever is the smallest, (7.2a) 

A,= 1, (7.2b) 

1 
Ezb = 0.9 ( 1 + 3.6:) 1 Ycr 3 -  

1 5 

Substituting these characteristic wave form 
ratios into (3.9), (5.4) and (5.7) the stresses and 
the effective rigidity are obtained. 

8 Notations. 

a 
b width of the plate 
e,, e2 values of clp, for the complete 

free length of the plate > b 
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tension field (eqs. 5.2) 
amplitude of the waves 
value of up for the complete tension 
field (eqs. 5.2) 
cotangent of the angle between the 
X-axis and the direction of the waves 
thickness of the plate 
displacements of an arbitrary point 
in the middle plane (z=O) of the 
plate in the X-, Y-, and 2-directions 
coordinates in the longitudinal and 
lateral directions and normal to the 
plane of the plate (fig.4.1) 
modulus of elasticity 
modulus of rigidity 
effective modulus of rigidity of the 
buckled plate 
half-wave length measured in the 
X-direction 
normal tensile forces in the plate 
in the X- and Y-directions 

P,,, P,,, P,, ,characteristic ratios for the wave form 
(eqs. 5.1) 
maximum normal and shear stresses 
(eqs. 5.7) 
shear angle of the rectangular’ plate, 
following from the displacement of 
the edges. 
critical shear strain at which buckling 

shear strain in the faces of the plate 
occurs 

( z  = 5 i) caused by bending 

shear strain at which the diagonal 
wave formation starts 
contributionof the waves toy (eqs.3.6) 
compressive strains in thelongitudinal 
and lateral edges of the plate 
tensile strains in the faces of the 

plate (z=  & ) caused by bending 

contribution of the waves to the 
tensile strains in the plate (eqs. 3.6) 
strain ratio defined by eqs. (5.3) 
POISSON’S ratio 
tensile membrane stresses in the 
plate in ’ the  X- and Y-directions 
average membrane stresses (eqs. 3.1 
and 3.5) 
bending stresses 
equivalent tensile stress of HUBER- 

shear stress in the plate 
average shear stress (eqs. 3.5) 
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The Elastic Overall Instability of Sandwich Plates 
with Simply-Supported Edges 

by 

Ir F. J. PLANTEMA and Dr A. C. DE KOCK 

S u m m a r y .  

Tk iergy method for calculating buckling loads of sandwich plates, developed the first thor, 
appli to a simply-supported infinitely long plate subjected to shear. The resu are compared wi 
those obtained in previous papers and are presented in a number of simple graphs. 

finally, all of the results obtained by means of the energy method are recapitulated. 
Non-dimensional interaction curves for combined compression or tension and shear are given and, 
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1 Introduct ion.  

In a previous report of the N.L.L. (ref .  l), 
VAN WIJNGAARDEN calculated the buckling loads 
of flat, infinitely long sandwich plates having 
simply-supported edges and subjected to a combin- 
ation of compression or tension and shear. It was 

shown in which way exact solutions can be 
obtained but the numerical calculations appeared 
hardly practicable. Therefore, these calculations 
were carried out for a simplified wave form which 
does not satisfy the dynamic boundary conditions. 
Consequently, the results were not considered 
sufficiently reliable - the buckling load of a simple 
plate under shear loading, obtained by this method, 
being overestimated by 27. %. 

In order to obtain more reliable results for 
sandwich plates subjected to shear, an energy 
method was developed which was verified by 
applying it to plates under uniaxial or biaxial 
compression (refs.  2, 3, 4). It is assumed that the 
faces are isotropic (Ej, vj) and that the core is 
isotropic in the XY plane ( E c ,  v c )  but may have . 
a modulus of rigidity Gcn for shear in planes 
perpendicular to the XY plane which differs from 
that for shear in the XY plane ( G c ) .  In  this 
report the application of the energy method to 
infinitely long plates under shear loading is 
discussed. A comparison is made with the results 
obtained in ref.  1. 

The same problem has also been dealt with 
by BIJLAARD (ref .  5), whose method of solution 
is based, however, on some rather intuitive 
assumptions (c.f. ref.  2 )  and who only gives a 
formal solution. The present results are compared 
with those of ref.  5, making an acceptable 
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assumption for the wave lengths in the latter case. 
It is to be noted that in all of these investigations 

the results apply to antisymmetrical (or in-phase) 
buckling, the distance between the faces being 
assumed to remain constant during buckling I). It 
has been shown in ref. 1 that this assumption is 
justified for the overall-buckling case, but in 
certain circumstances wrinkling failure may be 
critical rather than overall buckling (c.f. ref. 6). 

No recomputation of the buckling loads of plates 
under a combination of compression or tension and 
shear is given. It may' be assumed that the non- 
dimensional interaction curves for such combin- 
ations which can be derived from ref. 1, will be 
reliable for all practical purposes. Such interaction 
curves are given in this report. For convenience, 
all the results obtained for plates having simply- 
supported edges have been recapitulated in a final 
section of this report. 

2 Pure shear. The method of solution and 
. 

the results. 

The general formulae- for the calculation of the 
I buckling loads are derived in refs. 2, 3 and 4. 

They are: 

a b  

4- % S  f 1 1 (%)'+ ( $ ) ' I d x d y ,  (2.1) 
- 0  0 

a 
(2.2) - _  - B - ( A w b ) .  

9 
The solution is obtained by making areasonable 

assumption for W b ,  computing aws/ax and aws/+  
from (2.2) and substituting these expressions into 

For pure shear we adopt the wave form assumpt- 
(2.1). 

ion (ref. 7) 

containing two parameters I (the half wave length) 
and m. This wave form has sinusoidal nodal lines, 
intersecting the edges y = 0 and y = b of the plate 
perpendicularly and having a maximum slope 

a t y = + b  (fig.2.1). For a simple plate, 
dY 1 
d x  m 
- _ _  - 

it is known from ref. 7 that the buckling load is 
.overestimated by only 1 %, this close agreement 
being due to the fact that all boundary conditions 
are satisfied. 

" 

J 
FIGURE 2.1. 

Sandwich plate with arsumed pattern for wb. Nodal lines: 
m b  x y  

x = % mb + n2 - - cos - (n  = 0, & 1 , .  . , .) 
TF b 

The derivation of the formula for the critical 
value of P,, from (2.1) to (2.3) incl. is given in 
appendix A. It finally leads to 

(2.4) 

where h = I2/b2, p = mz and F ( I ! ,  p) is a fraction 
whose numerator is of the fourth degree in both 
A and p and whose denominator is quadratic in 
both h and I*. 

The solutions for a number of values of s and 
T were determined by a numerical procedure 
(appendix A). The results are presented in the 
form of dimensionless quantities kb and k , ,  
defined bv 

(2.5) 

I 1 
The values of -- , m, k b  and k s  = - kb are given b S 

in table 2.1 and figs. 2.2 to 2.4 incl. for the ranges 
0 I _ _  s 5 3 and 360 5 _ -  < 5 7500. 

In figs. 2.5 and 2.6 the values of I/b, kb  and k s  
are given for s > 2, these values have been comput- 
ed as explained in section 3 and appendix B. 

I )  This is also true for the numerical results given 
in ref. 1; c.f. section 5 of ref. 4 .  



- 
(1) - 

S - 
0 

0.0: 

0.2 

0.5 

0.8 

1.2 

3.0 
g, - 

0.101 1.256 
0.388 0.700 
0.600 0.508 
0.758 0.412 
0.910 0.325 
0.604 0.517 
0.813 0.375 
0.924 0.303 
1.015 0.241 
0.704 0.455 
0.905 0.329 
0.970 0.269 
1.085 0.210 
0.715 0.462 
0.884 0.345 
1 .ooo 0.278 
1.052 0.226 
0.639 0.549 
0.730 0.470 
0.766 0.441 
0.795 0.419 
0.490 0.933 
0.752 

PXY 
' .  

0.318 
0.623 
0.774 
0.869 
0.954 
0.776 
0.901 
0.961 
1.007 
0.838 
0.951 
1.015 
1.041 
0.845 
0.939 
1.000 
1.024 
0.798 
0.854 
0.874 
0.890 
0.700 

T 

- 
360 

1300 
3000 
7500 
360 

1300 
3000 
7500 
360 

1300 
3000 
7500 
360 

1300 
3000 
7500 
360 

1300 
3000 
7500 
360 - 

(3) - 
t - 
0 

18 
65 

150 
3 75 
72 

260 
600 

1500 
180 
650 

1500 
3750 
288 

1040 
2400 
6000 
432 

1560 
3600 
9000 
1080 
m 

- 
(4 1 - 
kb - 

5.37715 
0.0837 
0.0657 
0.0600 
0.0563 
0.256 
0.228 
0.219 
0.213 
0.570 
0.538 
0.527 
0.519 
0.868 
0.838 
0.829 
0.821 
1.237 
1.218 
1.214 
1.210 
2.386 
5.414 - 
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TABLE 2.1. 
Numerical results for Dure shear loadink'. - 

( 5 )  

A 

1.579 
0.490 
0.2580 
0.1696 
0.1054 
0.2668 
0.1406 
0.0921 
0.0579 
0.2070 
0.1083 
0.0725 
0.0441 
0.2147 
0.1191 
0.0771 
0.0510 
0.3010 
0.2210 
0.1940 
0.1760 
0.8720 
1.575 

- 
- 

- 

3 Discussion of the results for pure shear. 

Comparing figs. 2.2 and 2.3 with figs. 5.1 and 
5.2, which apply to longitudinal compression Px 
(ref. 4) ,  it appears that the character of the curves 
in the corresponding graphs is the same. The 
curves for Px, /S  of fig. 2.2 are lying slightly 
higher than the curves for Px/S  of fig. 5.2, whereas 
the curves for f / b  of fig. 2.3 are lying considerably 
higher than the corresponding curves in fig. 5.1, 
the asymptote being located at f / b  = 1.255 instead 
of at 1/b= 1. 

For longitudinal compression it was proved in 
ref. 4 that the influence of T vanishes when s>2. 
It is clear that the same phenomenon occurs for 
shear loading at  approximately the same value of 
s (c.f. figs. 2.2 to 2.4). The calculation for s > 3 
was not carried out. Instead, as explained in 
appendix B, BIJLAAFD'S method (ref. 5 )  was used 
in this range. The results are given in figs. 2.5 
and 2.6 and may he represented by the following 
empirical formulae 

. 5.35 f 5 4s-3 
(3.1 ) k r = -  . ___I_ 

s s 3 . 8  ' b - 4  4 s + l  
valid for s > 2 and any T. 

The values of I/b are somewhat smaller than 
those computed by means of the energy method 

D 

m 
1.674 
1.314 
1.200 
1.126 
1.280 
1.140 
1.095 
1.065 
1.140 
1.076 
1.054 
1.038 
1.085 
1.048 
1.036 
1.026 
1.031 
1.015 
1.012 
1.008 
0.795 

0 - 

- 
(10) - 

kb 
ref. 1 
6.781~ 
0.0940 
0.0682 
0.0600 
0.0529 
0.262 
0.228 
0.217 
0.210 
0.566 
0.520 
0.517 
0.537 
0.851 
0.824 
0.826 
0.898 
1.164 
1.149 
1.148 
1.234 
2.080 
6.78 

- 

- 

(11) 

kb 
ref. 5 

0.0792 
0.0632 
0.0582 
0.0549 
0.246 
0.222 
0.215 
0.209 
0.553 
0.534 
0.524 

0.843 
0.819 
0.812 

1.207 
1.190 
1.188 
1.184 
2.386 
5.35 

5.351T 

- 

- 

(c.f. fig. 2.3), but the values of k s  and k b  from 
both methods a re  for practical purposes identical. 

In columns 10 and 11 of table 2.1 the values 
of k b  according to refs. 1 and 5 are given. The 
values given in col. 10 have been read from the 
appropriate graphs of ref. 1. In ref. 5, however, 
only a formal solution is given. The values given 
in col. 11 have therefore been computed from eqs. 
(6) and (15) of ref. 5 and fig. 2 of ref. 9, ') 
assuming that Z/b has the value given in col. 7 
of table 2.1. The validity of the latter assumption 
has been checked for some representative cases 
(compare appendix B). The minimum of k, 
proved to correspond to somewhat smaller values 
of I/b than those given in col. 7 of table 2.1, which 
is in agreement with the results mentioned in the.  
preceding paragraph. The numerical differences 
are, however, quite negligible. 

Comparing the results given in cob. 4 and 10 
it appears that positive as well as negative differ- 
ences occur which are, in general, small except for 
very small values of s. 

The results of ref. 1 in the range s 2 0.5 show 
the curious behaviour that kb does not decrease 
monotonically for increasing T, hut has a minimum 

Fig. 2 of ref. 9 gives the same information as fig. 2 
of ref. 5 to a more appropriate scale. 

I )  
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at a certain intermediate value of z and then rises 
again. It is certain that ref. 1 yields results which 
are larger than the exact values where they exceed 
those given in col. 4. I t  is probable that the results 
of ref. 1 underestimate the exact values when they 
are more than a few per cent less than those of 
col. 4. 

A comparison of col. 4 with col. 11 shows 
that the results of ref. 5 are systematically slightly 
smaller than. those obtained in this report. The 
method of ref. 5 yields an approximation which will 
most probably be also quite satisfactory in other 
cases. Therefore, in calculating the buckling loads 
for plates having clamped edges this method can 
safely be adopted. According to ref. 5, the results 
obtained in this way should be somewhat too 
small, which would infer that both. the results 
given in col. 4 and those given in col. 11 would 
be very close to the exact results. 

With regard to  the values of m, given in fig. 2.4, 
it is to be noted that in the practically important 
range the angles arc cot m (fig. 2.1) range from 
45" to 55". For a simple plate (s = m) m = 0.867 
and arc cot m = 493 which values are approached 
asymptotically by the curves of fig. 2.4. (For the 

case s =  0, which also represents a simple plate, 
reference is made to appendix C.) 

It must finally be observed that these graphs 
do not cover the condition of wrinkling instability 
and are only valid for the elastic range. With 
regard to the former observation, it is possible 
that the region of small wave lengths in figs. 2.2 
to 2.4 incl. (e.g. 2/b < 0.3) will have no practical 
significance owing to wrinkling instability being 
more critical than overall instability. Particular 
attention should be given to this possibility when 
Ecn 5 Ec,  whereas for cores of honeycomb or 
similar materials (Ecn >> E,) the danger of 
wrinkling failure is more remote l). 

With regard to buckling at stresses approaching 
or exceeding the yield stresses, the development 
of a programme of tests to verify the theoretical 
results has lead to the impression that with the 
existing face and core materials this possibility is 
far from remote (cf. appendix C). 

An attempt to extend the theory to the plastic 
buckling range appears to be worthwhile. 

l) Formulae for wrinkling instability are summarized 
in ref. 6. 

1.7 

kd 

1.5 

13 

1 .l 

M 

0.7 
0 0.4 0 B 1.2 1.6 21) 2.4' 2 .a d 3.2 

FIGURE 2.2. 
Buckling loads for infinitely long plates under pure shear. 

Pxy = ksS. (For s>2 see f ig .  2.5). 
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FIGURE 2.3. 
Half-wave length for infinitely long plater under pure shear. 

(For s>2 see .ji& 2.6). 

4 Combined  loading. 

It was not considered worthwhile to recompute 
the buckling loads for plates loaded bya combination 
of compression or tension and shear by the energy 
method. In  order to improve the results given in 
ref. 1, the following method will be adequate for 
all practical purposes. 

From the graphs given in ref .  1 the values of 
Px, Py,  p x y ,  P‘x, P’y and P X y  can be read, where 
the latter three symbols denote the buckling load 
of the plate when it is subjected to Iongitudinal 
compression only, lateral compression only or 
shear only. From these values the non-dimensional 
interaction surface of the values of P x / P x ,  P y / P y  
and Pxy/P’xy can be constructed. It is now 
assumed ‘) that this surface would also be obtained 
if PXY. and PXy were computed from the energy 
method instead of from the method used in ref.  1. 

Interaction curves derived from ref. 1 are given 
in figs. 4.1 and 4.2. The  calculations have been 
performed for various combinations of the para- 
meters s and T, which are related to the uarameters 
A2 1 n%2 
- and S* from re f .  1 by means of -=- and 2E s 2 E  

4- 
2.8 4 3.2 

The results have shown that the influence of 
large variations of T i s  negligible and, moreover, 
in the case of combined longitudinal compression 
(or tension) and shear, that the effect of varying 
s is sufficiently small to permit the drawing of 
one curve representing all combinations of s and T 
which occur in practice. 

Thus the curve of fig. 4.1 is valid for all 
combinations of s and 7 and the curves of fig. 4.2 
correspond to s =  10, 1 and 0.1 with arbitrary 
values of T. 

Incidentally, it may be remarked that the curve 
of fig. 4.1 can very nearly be approximated by 

px 
P ‘ X  

2 

the formula (z) = 1 - -. 
The curves of fig. 4.2, though resembling high- 

degree parabolas, cannot be represented by simple 
formulae. For determining the buckling loads with 
combined loading, e.g. longitudinal compression 
and shear, P X  and PXy are read from figs. 2.2 
and 5.1, P,/P’, and Pxy/P’xy  from fig. 4.1 and 
Px and Py can be computed. 

I) A substantiation .of this assumption and further 
information on the interaction curves are given in 
appendix D. 
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5 Recapitulation of the  results given i n  ref. 4 
and  in this  report .  

5.1 The results given in ref. 4 and in this report 
all apply to the elastic overall instability of sandwich 
plates, having isotropic faces and a core which 
is isotropic in planes parallel to the middle plane 
of the sandwich, and which may have a modulus . 
of rigidity for shear in planes perpendicular to 
the latter plane which differs from that for shear 
in this plane. The sandwich plate has simply- 
supported edges. 

In ref. 4 the formula for instability of a rectangular 
plate under biaxial compression is given, -which 
may be written in the form 

(P,% + pY n z y )  = s (e ~ az + nZy)‘ 

where a and b are the length and width, nx and 
ny are the number of longitudinal and lateral 
half waves and P x  and Py are the longitudinal and 
lateral compression per unit run. For given s, t 
and P y / P x ,  the values of nx  and ny must be 

1.2 
m 

1.0 

0.8 

0.6 

0.4 

0.2: 

chosen so as to minimize P, and Py ,  both n, and 
ny being of course an integer. 

Numerical results and simple formulae have been 
derived for infinitely long plates (a= m). These 
are as follows: 

Longitudinal compression. 

For 0 < s < 1.8 and 360 < T < 7500 the values 
of P x / S  and Z/b ( I  being the half wave length) 
are given in figs. 5.1 and 5.2. For s > 1.5 they 
may be computed from the simple formulae 

(5.2) 

Lateral compression. 

The buckling load is given by the formula . 
1 1 

s 1 + s  t 
+ - 9  

PY - _ - _ _  (5.3) 
~~ 

where the term I/t may be neglected for nearly 
all practical purposes. 

Shear. 

The values of kb and k,, defined by eq. (2.5), 
and of I/b are given in figs. 2.2 to 2.6 incl. and in 

0 0.4 0.e 1.2 1.6 2 .o 2.4 2.8 3 3.2 
FIGURE 2.4. 

Infinitely long plate under pure shear. 
Relation between m, s and 7. 
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0 0.2 0.6 

' FIGURE 2.5. ' 

Buckling loads for infinitely long plates under pure shear 
when s > 2. 

5.35s 
k b = S  k s  __ 

ss3.8 

table 2.1. 
Approximate formulae for s > 2 are -. 

(3.1) 
P x y  - 5.35 . I - 5 4s-3 _-__ _ - - _ _ .  

' S s f3 .8 '  b 4 4 s + l  
The latter formula yields somewhat smaller 

values than those computed from the energy 
method (c.f. section 3). 

Combined loading. 

The combinations of loads leading to instability 
of the sandwich plate are given by the interaction 
curves of figs. 4.1 and 4.2. 

In these graphs, the buckling loads attained when 
only one of the components of the external loading 
is present, are denoted by a dash; these buckling 
loads follow from the graphs and formulae mentioned 
in the preceding part of this section. 

5.2 The results obtained by BIJLAARD'S method 
of computing the buckling loads (ref. 5) are in 
close agreement with those obtained in this report. 
The  former method is particularly attractive when 
the buckling load of a simple plate (S  = m )  under 
otherwise identical circumstances is known as a 
function of the wave length. 

5.3 In the region of small wave lengths, i.e. for 

J 

s < 1.0 (approx.) and 7 large, wrinkling instability 
may be more critical than overall instability, 
especially when the transverse compressive stiffness 
of the core is not large compared with that in the 
plane of the plate. 
5.4 I t  would seem that with existing face and core 
materials buckling may quite well occur in  the 
plastic range. An extension of the theory to plastic 
buckling therefore appears to be worthwhile. 

6 Notations, 

b 
C 

f 

kb> ks 
1 

width of plate (fig. 2.1) 
thickness of core; suffix c relates to 
the core. 
thickness of face; suffix f relates to 
the face. 
buckling load parameters, c.f. eq.(2.5) 
half-wave leneth with infinitelv lone 

m 

S =  

t =  
W =  

W b  

ws :: 
0.8 

0.6 __ 

0.4 

0.2 
0 

I 

I 

~" - ~~~ ~ ~ 

plate (fig. 2.1) 

nodal lines (fig. 2.1) 
b2S/+B. 
bzS/2xZ B f  . 
W b  + w s ,  Le. the actual deflection. 
component of deflection due to 
bending of sandwich plate. 
component of deflection due to shear 
deformation of 'the core. 

parameter defining the slope of the 

FIGURE 2.6. 
Half-wave lengths for infinitely long plates under pure shear 
when s>2. 

I 5 4 s - 3  
b - 4 4 s + l  
_ - _  __ 
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- -1.2 - 0.0 

FIGURE 4.1. 
Non-dimensional interaction curve for combined longitudinal 
compression (tension) and shear (Valid for any s and 7) .  

xt Y coordinates in middle plane of sand- 
wich. 

Le. the, bending B =  Eff (c + fY + 

2(1--Vf2) ~ 12(1-vc2) 
stiffness of sandwich Der unit run. 

Bj = , i.e. the bending stiffness of one 
12(1 -vf2) 

face per unit run. 
E YOUNG’S modulus in XY-plane. 
Gcn shear modulus of core in planes 

perpendicular to XY-plane. 
Px,  Py, PxY external longitudinal compression, 

lateral compression and shear per 
unit run at the stability limit. 

P‘,,P’pPxY symbols used for combined loading, 
denoting the buckling load of the 
plate subjected to longitudinal com- 
pression only, lateral compression 
only or shear only. 

plate per unit run. 
arbitrary constant in eq. (2.3). 

S= __ (C+f)2 Gcn, i.e. the shear stiffness of sandwich 

W 
A =  l2/b2. 
I*= m2. 

t 
s 2 B f  

- _  
I- 

Le. the effective POISSON’S ratio of 
the sandwich plate. 

A, A c.f. appendix A. 
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Appendix A. Derivation of the  formula for 
the buckling load. 

For the infinitely long plate the first integrations 
-in eq. (2.1) may be carried out between the limits 

.' 

0 and 21 instead of 0 and (I, which infers that the 
change of potential energy of the external loads 
and the total elastic energy are equalized per wave 
length. The integration between 0 and b may be 
replaced by an integration between 0 and %b 
for wave form (2.3). Substituting Px = Py = 0, 
w = wb + w s  and (2.2) and introducing s and f, 
eq. (2.1) becomes 

4; 0.1, ANY 5. 
----d= l.0.ANY 5. 

d =  1 0 .  ANY 5. 

- 
- -- 

0.4 

0 

- 2.0 -1.6 -1.2 - 0.8 -0.4 

FIGURE 4.2. 
Non-dimensional interaction curves for combined lateral compression (tension) and shear. 
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0 0.4 0.8 t .2 1.6 ' 4 2.0 
FIGURE 5.1. 

Half-wave lengths for  infinitely long plates under longitudinal compression; 
for s > I S  see eq. (5.2). 

0.0 

1.2 1.6 d 2 0  . 0 0 4 0.8 
FIGURE 5.2. 

Buckling loads for  infinitely long plates under longitudinal compression; 
.'for s > I S  see eq. (5.2). 
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The right hand side may be simplified to 

The operators A, A, r, ‘F and @ are defined by: 
2 

A ( . . . ) =  [ A  (...)I - 2  ( ~ - ~ ) r  (...I, 
1 1 

A (  ...)=-+ 
SZ( ...) a % (  ...) 

8x2 aY2 ’ 

ax% aY 
r (  ...)=- 2 y  ...). P(..<.) ---(.,,), 22( ... ) 
Y (...)=(*Y a (  1 + (*) a (  ) , 

b2 
%2S 

Q, (...)= - A  (...)- (...). 

From the fact that the theorem proved by 

KOITER in the appmdix to ref .  8 (J’J‘ r (w)dxdy  
is zero in the case of a closed domain bounded 
by straight lines on which the argument w is a 
;onstant) is a particular case of a more general 
theorem, the conditions of which are satisfied 
by the chosen expression for w, it follows that 
the integrals 

P (Awb)  d x d y  iO”1: .!a”.i,’” * 

I? (Wb)dxdy  and 

vanish (c.f. appendix E). 

The solution of equation (A. 1) can be written 
in the form (2.5). The  derivation of the expression 
for kb requires an elaborate system of elementary 
differentiations and integrations, which will be 
omitted. The final result is 

105 x )?al + A3a2 + A2a3 + Aa, i- ab kb=sk,= ~ 

20487’ Ab‘F (A2a,+Aa,+a8) ’ 
12 where A =-, p = m2. 
b2 (A. 3) 

a,= 128 { s2 + ( s f l )  t + 11, 
a2 = 32 1 s ( s + t )  (1511 + 8) + 3t(21p + 4) + 

+ (255p + 16) 1,. 
a 3 =  16 l s ( s + t ) ( 5 p 2 +  12w+8)+2t (35p2+ 

+ 4 5 p + 1 2 ) +  (735p2+504p+48)\ ,  
a4 = 2 { t(35p3 + 120p2 + 144p + 64) + 

+ 2(525p3 + 1120p2 + 7201~ + 128) [, 

aj = 63p4 + 280p3 + 480p2 + 384p + 128, 
a6 = 35(s + 1) (s + 4), 
a7 = 7 { 2s(4p + 5) + 5 ( 7 p  + 5) 1, 
a8 = 24p2 + 5 6 p  + 35. 

The determination of the minimum value of 
kg or k ,  as a function of A and p was carried out 
by writing down the simplest of the two extremum 
conditions ak/aA = 0 and 2k/ap=O, which proved 
to be the former, being an algebraic equation of the 
sixth degree in A and p. This equation was solved 
for A by substituting a number of well-chosen 
values of p. The pairs of corresponding values 
of A and p were then substituted into eq. (A.3) 
.and the minimum of k was determined by plotting 
k against p. This procedure infers that the 
accuracy of the values of A and p corresponding 
to the minimum’ of k is less than the accuracy 
with which this minimum is..determined; never- 
theless, the error never exceeded 1 %. 

Appendix B, Approximation for s > 2. 

In the range s > 2 the influence of T on the 
buckling load vanishes -and in determining the 
solution we may take T infinitely large. Eq. (A. 3) 
is then simplified, but it remains a rather complex 
expression and, therefore, no attempt was made 
to use that expression in obtaining the required 
information. It has been shown in section 3 that 
the results of ref. 5 are for practical purposes 
identical to those of this report, which permits 
the use of the data given in ref. 5. 

When T = m the buckling load according to 
ref. 5 follows from 

1 1 - 1 + -, 
pxy PE PS 

(B: 1) 

where PE is the buckling load according to the 
normal plate theory (S= m) and Ps is the 
buckling load of a hypothetical plate having 
infinite bending stiffness and shear stiffness S, 
assuming in both cases that the wave pattern is 
the same as occurs when the actual sandwich plate 
becomes unstable. These buckling loads PE and 
Ps are given in ref. 5 as 

-_ 
(B. 2) B 

P E = k l F  a n d P S = S v l + A ,  

where kl is a function of A given in fig. 2 of ref. 5 I). 

Eq. (B. 1) can now be written in the form 

Actually, the more accurate fig. 2 of ref. 9 has been 
used. I t  is of interest to note that in the case of longitudinal 
compression we have according to ref. 2 : PS = S (1 +A). 
For a sandwich strut or strip, as well as for an infinitely 
long plate under lateral compression, Ps = S. 
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and it remains to determine the maximum of the 
right hand side as a function of 1. The minima of 
ks and kb and the corresponding values of l /b 
are plotted in figs. 2.5 and 2.6 as a function of 
l/s. Approximate formulae for 02 are given as 
eqs. (3.1) in the body of this report. 

For s>100 the buckling load is rep;esented 
with an error of less than 5 % by ' 

+B s = 5.35 -, Pxy = - 5.35 
S b2 

which is the exact expression for a simple plate 
(S= m). 

It has been shown in section 3 that th.e energy 
method of this report yields slightly higher buckling 
loads. For the case T = s = m eq. (A. 3) reduces to 

kb = 37F 1 8h2 + 2 (IS& + 8) h + 5p2 + 
128hvi 

t 12p + 81. (B.5) 

The extremum conditions akb /aA=akb /ap=O yield 

It  must further be observed that at large values 
of s the tacit assumption made throughout this 
report that the core carries only a small part of 
the loads may no longer be valid, which would 
infer that the expression for S and the approximation 
~ = 3 ( l + c / f ) ~  must be replaced by more accurate 
expressions.'It can be shown that a more accurate 
expression for S is 

b1 .575;  ~ ~ 0 . 7 5 2 ;  kb 5.414. (Be 6) 

The correction factor 

may be disregarded for practical purposes as long 
as it remains small, e.g. less than 0.05. Assuming 
b/c >20, c/f>IO, Gcn Z G c ,  we find that no 
correction will be necessary as long as s does not 
exceed 50. Since for s>50 the influence of the 
finite value of S is already rather small, the simple 
expression S =  ( ~ + f ) ~  Gc,/c appears to be satis- 
factory for any value of s. 

With regard to T, the more accurate expression 
T = ' B / ~ B ~  can be used when necessary. 

Appendix C. Supplementary  discussion of 
t he  results. 

1 Compar ison  of the  cases s=O a n d  s=m'. 
The cases s=O and s=m both represent buckling 

of a simple plate. In the former case the core 

stiffness vanishes and the buckling load is equal 
to twice the buckling load of one face by itself. 

For the latter load table 2.1 yields 

At first sight, it is surprising that the constant 
5.377 in this formula differs from the constant 
5.414 found in the case s = m. This .difference 
can only be caused by a different wave-form 
assumption. ' 

The wave depth w is a superposition of Wb 

and w s .  In  the case s =  w the latter component 
vanishes so that w = wb, c.f. eq. (2.3). In the 
case s = 0 the middle plane of the face is not 
strained by the buckling deformations, which infers 
that wb = 0 and w = ws. From eq. (2.2) it appears' 
that w s  is proportional to hwb and it is therefore 
confirmed that the wave form in the case s =  0 
is indeed different from that in the case s =  m. 

It is interesting to note that the wave form w s  
yields a better approximation to the exact result 
than the wave form wb. 

The wave forms can also be found from eq. 

(Pxy)face == 5.37779 Bf/b2. 

(A. 1). 
Substitutine t '= s = m we obtain 

= y i ( B + 2 B j )  ( A w b ) ' d x d y .  

Substituting s'= 0 we obtain 

= B j  . dx dy.' ss 
Since in the former case the wave form is wb, 
the latter case must correspond to a wave form AWb. 

With the sandwich subjected to biaxial com- 
pression the wave forms W b  and w s  are similar 
(ref. 4). Consequently, the above-mentioned 
paradox does not occur in this case. 

2 S o m e  practical  data. 

Some figures relating to a proposed programme 
of compression and shear tests will now be given. 

The test panels are assumed to have duralumin 
or high-tensile steel faces,f = 0.5 mm a n d f =  1 mm, 
and Dufaylite honeycomb or onazote .cores, 
c =10 mm and c = 25 mm. 
The width of all panels is 30 cm. 
The material properties are assumed to be 
steel: E j  = 2 . lo6 kg/cm2, v j  = 0.3, 
duralumin: E j  = 0.73 .. lo5 kg/cm2, v f . =  0.3, 
Dufaylite: Gcn = 280 kg/cm2, 
onazote: Gcn = 100 kg/cm'. 



The duralumin faces are glued to both honeycomb 
and onazote cores; the steel faces only to honeycomb 
cores: 

The computed values of's range from 0.18 to 
1.27 and those of T from 360 to 7800, 

The compression panels will have skicient 
length to be considered as infinitely long and 
their longitudinal edges will be simply-supported, 
so that the theory of ref. 4 is applicable. The 
computed elastic buckling stresses are above the 
yield stress of the face material for 3 out of the 
9 panels (2 duralumin-honeycomb and 1 steel- 
honeycomb). The computed values of I/b range 
from 0.16 to 0.37. The ratio of the buckling 
load to the buckling load of a simple plate having 
the same bending stiffness as the sandwich ranges 
from 133 to 1/20; this ratio may be considered to 
represent most adequately the influence of the 
finite transverse shear stiffness of the sandwiih. 

I t  should be noted that the 'figures given above 
probably correspond to the lower end of the range 
of s that will occur in practical applications. The 
widths of the test panels were restricted to 30 Cm 
in view of the dimensions available in the testing 
machine at the N.L.L. Since s is proportional 
to b2, much larger values than 1.3 may occur in 
practice, as well as correspondingly larger values 
of Z/b and of the buckling load ratio 'mentioned 
in the preceding paragraph. 
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3 Preliminary proposals for panel design. 

Pending the results of further research, in 
particular regarding the efficiency of sandwich 
panels, the following procedure is proposed. 

We assume that a panel of 70 cm width, which 
may approximately be considered as infinitely 
long, has to be designed for buckling under a 
combination of Px = 450 kg/cm and P x y  = 150 kg/ 
cm. The faces consist of duralumin, E f  = O.73.1OG 
kg/cm*, vf = 0.3. A honeycomb or lightweight 
foam core is to be used, so that we may neglect 
the part of the.loads carried by the core. 

According to HUBER'S yield criterion the ideal 
load is (Px2  + 3Pxy2)9 = 520 kg/cm.Choosing the 
ideal stress as 2600 kg/cm2 we find f =  0.1 cm. 

From figs. 2.2 and 5.2 we observe that P,' 
and PXy will be approximately equal, so that 
px /px '  =' 2 Pxy/P'xy .  From fig. 4.1 we thus 
find P,/P'x = 0.9 and therefore P,' = 500 kg/cm. 

We now assume that either c or Gcn (i.e. the 
core material) is chosen. As an example of the 
first case we take c =  2 cm. 

7 = 3 ( 1 + ~ / j ) ' = 3  . 212= 1323. 
Then we compute successively 

- - E j f  (C + f ) 2  - 0.73 . 10' . 0.1~: 4.41 - 
2 . 0.91 B= 2(1 -vYf2) 

= 1.77 . lo5 kg/cm, 

P X '  Px'b2 - 500 . 702 
X 2 ~  X z  . 1.77 . 105 S 

= 1.4 = s -. _ -  
From fig. 5.2 we now easily find s = 1.45 and 

- X 2 B  2 . 520 
b2 4.41 

S = s - = 520 kg/cm; Gcn = __ - 

= 236 kg/cm2. 
For the second case we assume Gcn= 250 kg/cm2. 

We then compute 
0.73 : 106 . 0.13 'B = 2rBf = 27 = 1 3 4 ~ ~  

12 . 0.91 

= 1850, p x .  ' - x  P 'b2 - 500 . 4900 t -=. - -  
S X Z B  x2 . 134 I 

T = 3(1 + 1 0 ~ ) ~ ;  - c + 0.1 = 0.1 c = 

= 0.1 ' 743  - 0.1, 

30.9 
v7/3 - 1 ' 

4900 s - S =  
n2 . 1347 

We can now choose s, compute T, read Px'/S 
from fig. 5.2 and compute t P,'/S. After some trials 
we find that t Px'/S=1850 corresponds to s=1.62 

30.9 and c = - 0.1 = 1.91 cm. 
1.62 

A rather rougher but quicker procedure may 
be used when it appears that s will not exceed 
approx. 1.5. In that case we observe from fig. 5.2 
that P',/S roughly equals unity. We therefore 
find that S=500 and in the first case Gcn follows 

2 
4.41 

as Gcn = - 500 = 227 kg/cm2, whereas in the 

- _ -  - 2; c = 1.8. This ( ~ f 0 . 1 ) ~  - 500 
C 250 

second case 

method is somewhat unconservative when actually 
P,' is somewhat smaller than S; for s<1.2 it is 
conservative. 

Appendix D. The interaction curves for 
combined loading. 

The interaction cukes' for the combinations 
of longitudinal or lateral compression (tension) and 
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shear (figs. 4.1 and 4.2) have been determined 
from the graphs given in ref. 1. A minor difficulty 
is that PY is not given explicitly in ref. 1. Its 
value was computed from eq. (5.3), which can 
also be easily derived from eq. (6.14) of ref. 1 
when it is observed that for pure lateral compression 
I =  a. 

The curves for combinations of lateral com- 
pression and shear show that up to a certain 
value Pxy crit. of the shear, the compression 
Py is equal ta that at P ,  = 0. This phenomenon 
was already known for the simple plate (ref. 10) 
and it is clear that, as for the simple plate, 
buckling of the sandwich at P x Y 5  P, crit. 
will occur with a cylindrical wave form ( I =  m). 

The values of Pxy crit are not given in ref. 1 
and for reasons to be stated hereafter they were 
computed from the energy method. 

All points of the interaction curve satisfy the 

buckling condition eq. (2.1), where P, = 0. The 
wave form (2.3) can be retained; far pure lateral 
compression ( I  = m) it yields the same result as 
given by the rigorous treatment. Also for PxY< ~ 

PxY crit. we have 1 == m, which infers that the 
external shear loading does not contribute to the 
change of potential energy (awjax = 0). 

Fro; eq. (2.1), where PX = 0, can be derived 
an expression 

where, when prescribing PY, m and I must be 
computed so as to minimize P x y .  

P X ~ = P X ~  (m, 1, p Y )  (D. 1) 

Combining the extremum conditions 5 = 
am 

- @XY 
- 0 with eq. (D. 1) it is found that, when ai 

PY-tP;  (Le. l - tm),  then 

. 
- 3 x v 6  I / ( s  + 1)  ) 2 ( s  + 1)' + t ( s  + 1) + t s  1 2(s + 1) (s + 4)a + s(s + 1) + 2st(s + 4 ) I -.__ 

16 (s -1- 1) (s + 4) (s + t + 1) (D. 3) 
The cases s = m, t = m, and s = 0, t = 0, both 
corresponding to the simple plate, give respectively; 

_ _ _ -  - 2.885 (exact 1 Pxy  crit. - 3 x V 6  
3 P'Y 8 

m =  -V6;  

value 2.87, ref. lo), 
p x y  crit. - - 3 n v 6  - 2.885 (loc.cit.), 1 m = - V 6 ;  

12 p'v 8 
the wave forms being different and corresponding 
to the cases referred to in appendix C 1. 

A graph has been drawn (fig. D. 1) showing 

the variation of pxY crit' with s (i.e. with the 

influence of the finite shear stiffness of the core), 
for various values of T. 

It is evident that the influence of T vanishes 
when s>l. For values of s between 0 and 1, 
minimum values are attained which decrease as 
T increases. For very small values of s, the in- 
fluence of the faces asserts itself and is shown 

by the values p x y  increasing sharply to 2.885. 

The values of Pxy  crit. computed from the 
energy method prove to be in good agreement 
with the values which may be estimated from the 
curves of fig. 4.2. This is a rather convincing 
proof of the validity of the basic assumption made 

P'Y 

P'Y 

in section 4 that the interaction curves will not 
be significantly influenced by the method of 
computation. 

No interaction curves for combinations of P, 
and PY have been given, because they proved to 
be unsuitable far accurate interpolation. If this 
case has to be calculated, the solution of eq. (5.1) 
can be performed simply and rapidly. For an 
infinitely long plate, eq. (5.1) can be simplified 
by substituting a/nx = I and nY = 1, which yields 

+ - . (D.4.) 'I  
I = J'J (wxxwyy--xy2)  dXdY. 9 

I =  JJ-, (wxxwYy-wxy') ax ay= 0 

1 
px + PYA = S(1 + Ala 1 + (1 + s)A th 

Appendix E. Some remarks on the integral 

In ref. 8 it is shown that 

in the case of a rectangular domain A, on the 
boundary of which the function w is a con- 
stant. This is a particular case of a more 
general property which will now be investigated. 

The integrand D 5 wxxwyY-wxy2 can be con- 

I )  For convenience, differentiation of w with respect 
to x will hereafter br denoted by adding a suffix x Io w, 
etc. 
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point of the first part a point of the second part 
can be'joined, having equal values of and q. 
Then the two parts of the contour are mapped 
on the same curve of the 4 q plane. This is seen 
to be the case if the function w(x, y )  satisfies 
certain conditions of symmetry as is shown by the 
following examples. 

Examples. 
1. A simple example is furnished by the function 

w (x, y )  = sin-sin-. Tix . xy 
a b 

The rectangle is defin- 

ed by (0,O); (2a, 0); @a, %b); (0, %b). 
z xx . xy Then 4 = wx = - cos - sin -, 
a a b 
x . xx xy sin a cos .-. 

b 9 = w, = 

The correspondence between the XY plane and 
the 5 q plane is given by the following table. 

0 1.0 2.0 a,! 4.0 d 5.0 

FIGURE D. 1. 

with s for  various values of 7 . Variation of __ P*Y wit. 

P'Y 

sidered as the JACOBIAN of the functions 5 = wx,  
q = wy. So, by a transformation from the XY 
plane to a plane with coordinates 5 and the 

integral will be transformed into I = ss 5 dq, 

the integration being taken over the region A' 
into which the rectangle is transformed. The 
condition I = 0 requires that .the total area of this 
region should be zero. This requirement is ob- 
viously satisfied if D = 0 eveFywhere in the 
rectangle, in which case the rectangle is trans- 
formed into one point. Then the surface w = 
= w ( x ,  y )  is developable i.e. it consists merely of 
points where the curvature is parabolic. 

Now, a surface w = w(x,  y )  will be considered 
which is not developable, the function w(x,  y )  
being for simplicity supposed analytic in the 
interior of a rectangle in the XY-plane. In order 
that the total area of the image in the 5 q plane 
is zero, the contour of the rectangle must be 
mapped on a single line in the 4 q plane. This 
will be the case if the contour in the XY plane 
can be divided into two parts, such that to any 

- 
- 
CB 

BE 

EF 

FN 

NL 

LG 

GD 

DH 

HA 

AC 

- 

- 
wx= 4 
- 
wy= q 

0 + X I  

- 

rib+ 0 

O+-xl 

- d b  + 0 

o - f o  

o + o  

o + o  

o + o  
o + o  

o + o  - 
The table is graphically illustrated by fig. E. 1. 

I t  is seen that the image of the contour of the 
rectangle in the XY plane consists of line segments 
on the axes of coordinates in the 9 plane enclosing 
a total area of zero. It is also clearly seen that 
the integral is zero when extended over a smaller 
area, for instance CEDA or EFGD. 

The line segments AB, BD, DF, FL are the 
projections on the XY plane of the locus of the 
points on the surface w = w (x, y) where ,the 
curvature is parabolic, i.e. the locus of the points 
for which the GAUSSIAN modulus of curvature 

K = __ , is zero. This locus consists of the arcs 

BM*A, BS*D, FT*D and FU*L. 

1 
RiRz 



S 32 
- 

2. A somewhat more intricate example is x . x y  x 

X y  . X I b l  
b l  

Then 5 = wx = - sin - cos - A; 

q = wy = - cos - sin -A --sin -cos - A. 
furnished by the fuction w (x, y )  = sin-sin- A, 

where A = x + - cos - - 4 mb, in the region 

x 7 y . x  x m .  %xy x 

b . b  1 1 b 2  - mb xy 
x b The correspondence between the XY plane and 

O,x,21; < <  OZyZ&b.  

- 

- 
OD 

DE 

EF 

FA 

AB 

BG 

GH 

HK 

KC 

co - 
x b  rr-2 b where.a =-m-; p = -m-. 
2 1  2 1 

the 5 q plane is given by the following table. 

q 

_ _  sin p+ + - cos p 
b b 

+ -  c o s p + t " s i n p  
b b 
X .  x 
- smp+--  cosp 
b b 
x x .  -- cos p +-- sin p 
b b 
x .  xm -- smp+--  cosa 
b 1 

xm xm . -_ msa++- sma 
1 I 

xm . xm 
t - sine++- cosa 

1 1 
xm rrm . + - cos ~ r t -  sin a 

I 1 
nm . xm __ s m u t - c o s  a 

1 I 
xm x .  _- cosn.+--sin p 

1 b 

R .  x 

- x 

1 
- 5  x 

~ 

oi- 0 

oi- 0 

o+ 0 

o+ 0 

o-f+ 0.9 

t 0.97M.26 

- 0 . 2 6 t  0.9 

-0.97++ 0.2 

b 0.26+ i- 0.9: 

c 0.97i- 0 

-0.59++ 1.91 

h 1.91++ 0.59 

k 0.59t 1.91 

- 1.91t0.59 

- OS9+ 0.32 

- 0.32+ t 0.08 

7 0.08++ 0.32 

- 0 . 3 2 t 0 . 0 8  

- 0 . 0 8 s  0.32 

- 0 . 3 2 t  0.59 

b 
1 

The values given in the last two columns are for - = 4; m = +, from which fig. E. 2 is readily derived. 

T h l a r e a  enclosed by the image of the contour 
of the rectangle OABC in the 4 '1 plane is zero, 
as this image consists of line segments which 
are described twice in opposite directions when 
the contour of OABC is followed entirely. 

Although the latter does not apply to the halves 
OEHC and EABH separately, the integral' I 
nevertheless vanishes for each half, which is evident 
from an inspection of the images in the 5 q plane, 
taking into account that the boundaries of the 
areas EHN and NBO in the 5 '1 plane are followed 
in opposite directions (clockwise, respectively 
counterclockwise), so that these areas cancel out. 
The same result follows from the fact that the 
contours of these rectangles consist of pairs of 
points such that the values of 5. and '1 in these 
points are equal. 

b 1  1 
1 2  3 

For - = -, m = - the locus of parabolic points is 

computed. 
From D = wxx w y y  - wxv2 = 0 it follows .. 

XY tg a-arc tg 1 sec a cotg- b 
x 

which is the equation of the projection of this 
locus on the XY plane. 

The results are shown in fig. E. 2 (dotted 
lines). From this graph it is also evident that 
I must be zero and that the same is true for parts 
OEHC and EABH separately. 

When w is constant on the boundary of the 
rectangle (0,O); (a,O); (a,  6 ) ;  (0, b )  it is clearly a 
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4 

FIGURE E.l. 

Perspective view of the surfac?.w (x, y )  = sin - sin - with its parabolic curves 

(left hand side) 

nx . xy 
a b 

and mapping of the contour on the 5 r j  plane (right hand side). 

particular case of the foregoing more general one, 
as in this case the points on the contour satisfy 
the condition mentioned above. In this case, the 
proof that I vanishes can immediately be derived 
from the application of the integral formula of 
GAUSS-BONNET to the rectangle, according to 
which 

Q ds + D ax dy = 2x. 
J Pg J J  

When w = const. the sides of the rectangle are 
geodetics, hence the geodetic curvature pg is 
infinite and the contour integral of the geodetic 
curvature vanishes apart from the contributions 
at every corner, which are equal to the external 
angle. Thus 

4. + jJ D dx dy = 2x,  from which it follows 
2 

that 1s D d x  dy = 0. 

Finally, a few further remarks may be made: 
1. The extremes of the w surface are mapped on 

the origin of the 5 r j  plane, wx = E and wy = q 
being zero; e.g. G* and H* of fig. E. 1 and 
K, M, N, P of fig. E. 2. 

2 . I =  sJ D d x  dy is independent of the orien- 

A 

tation of the axes of coordinates, provided they 
are rectangular, D being an invariant for all 
systems of such axes. 

3.Z= 11 D d x  dy taken over a closed domain 

is defined as the whole curvature of the domain, 
i.e. the area described on a sphere of unit 
radius by radii drawn parallel to the normals 
of the surface along the boundary. Thus the 
whole curvature equals a solid angle the extent 
of which depends solely on the boundary conditi- 
ons, provided that the surface contains no singular 
points inside the boundary. Integrating for in- 
stance over a- semisphere one finds I = 2 x ;  
integrating over a cone the result is zero as the 
contribution to the whole curvature by the radii 
of the sphere drawn parellel to the boundary 
normals along the base of the cone is cancelled by 
the contribution of the normals through the top 
of the cone. 

A 

4. In all cases hitherto encountered 

jia/ob l(Aw),,  (Awlyy - (Aw)zXy dxdy vanis- I 
hes w h e i a [  (wxx wyy - wxy2) dx dy vanis- 

0 
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hes, both integrals taken over th 
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same rectan- 
gle. A general proof of this statement, however, 
has so far not been given. 

where sj D dx dy is zero, other than for the 

case mentioned in ref. 8. 
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FIGURE E.2. 
Projection on the X Y  plane of the parabolic curves on the surface 

n mb ny w (x, Y) = sin sin ( x  + - cos - - % m b )  (left hand side) and mapping of the contour on the [?  plane (right hand side). 
rr . h  
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Load Distribution and Relative Stiffness Parameters 
for a Reinforced Flat Plate containing a Rectangular 

Cut-out under Plane Loading 
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summary. 
A method h giyen far  the determinstion of the load distrihution a h  relative st i f fnm parameters f i r  a three hay' flat 
monooaque plate oon ta in iq  e. rectangular cut-out in the' centre bay and under plane loading. Conventional shell theory is 
used and no new principles or assumptions am introduced. The Paper smm as an intduction t o  a general theory f o r  the dis- 
tribution of lo& tlvougbout open and closed shells containing cut-outs. 
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1 Introduction. 
One of the most pertinent problem in the 

theory of aircraft structures is the determination 
of the stress distribution in the neighbourhood of 
a large rectangular cut-out in a reinforced mono- 
coque structure. Examples of such cut-outs are 
the openings required in fuselages for doors, ete. 
and the openings in wings required for retraction 
of the undercarriage mechanism. Also, especially 
for  flutter caleulatiotions, it is necessary to have a 
reliable estimation of the stiffness of such struc- 
tures. 

There does not appear to  be much available 
literature on this type of problem. P. K u h n  
and other authors (refs. 2 and 3) have devised 
an approximate solution for the flat plate with a 
rectangular cut-out under a pure tension load only. 
This consists essentially of the substitute stringer 
method of shear-lag analysis and solutions are 
given for two and three substitute stringers. An 
article by D. W i 11 i a m  s (ref. 4) considers the 
effect of cover discontinuities on the strength and 
stiffness of stressed skin wings, hut the method 
does no t .  permit"of generality. It i s .  therefore 

intended to present a method ,which permits of 
some eonsiderablc generality, which is based on 
conventional shell theory and does not require the 
introduction of extraneous assumptions. 

It is not proposed to deal with the general 
problem in this paper, whi& is intended merely 
to  serve as an introduction to the genera1 theory. 
With this in view, a very simple problem has been 
chosen which consists of a flat three hay rein- 
forced monoeoque plate containing a rectangular 
cut-out in the centre bay. I n  total there are 
2 n + 1 stringers and 2 nt - 1 discontinuous string- 
ers for the plate with an odd number of stringers 
which is considered here; an even number of 
stringers requiring simple and obvious modificat- 
ions in the fomnulation. T,he plate has a high 
degree of symmetry which permits an. extremely 
rapid computation of the load distribution through- 
out the plate. 

The problem of discrete stringers has .been 
chnren because uniformly distributing the stringers 
does not appear to cause worthwhile advantages 
and is of doubtful practical significance for plates 
having a moderate number of stringers. Further- 
more, discrete stringers allow the investigation of 
the effect of reinforcing the stringers bordering 
the cut. However, because of the introductory 
nature of the paper, i t  has been decided not to 
investigate this effect and other current problems 
such ns the decay of the stress perturbations in a 
many bayed plate, the effect of the bending of 
stringem and rihs in the plane of the sheet, etc. 

Conventional shell theory has been used and i t  
has not been found necessary to  introduce any 
new gumpt ions  and principles. Conventional 
shell ,theory infers that the shear stress in a panel 
is constant. and this will be very nearly true p r y  
vided that the length of the panel is not too great. 
For long panels, one must consider the exponential 



decay of the forces which entails some additional 
labour, aIth&gh. the solution is yielded by a similar 
procedure as presented here. T. R a n  d (ref. 5 )  
has made an extensive investigation of the usu- 
ally accepted approximations used in shell theory. 

F o r  the plate considered the .solution is. mat.he- 
matically exact within the confines of conventional 
shell theory. A s  usual, the ribs and stringers are 
asruined to have vanishing rigidity in bending in 
the plane of the shcet. This immediately infers 
t.hat the axial load in the discontinuous stringers 
a t  the. cut-out must he zero. This is quite justi- 
fiable fo r  it can be shown that the ribs must 
possess an extremely ,high ri,gi'dity ' in hending in 
the plane of the sheet in order to inflnencc the 
stringer loads in this manner. 

The flat plate considered is shown in fig. 1 a.nd 
i t  is assumed to  h a ~ e  complete symmetry ahout 
the X and Y axes, so that for  symnictrical loading 
such as  uniform tension, pure bending and pure 
shear, as shown in fig. 2, thc degree of redundancy 
is reduced fourfold. The number of redundancics 
can easily he assessed, for when all the axial loads 
in t.he stringers are known the internal load dis- 
tribution is completely specified; Since the constant 
shear in the panek infers a linear variation of 
axial load along each hay, it is nccessary only to 
define the axial loa& in the stringers at the inter- 
section of stringers and ribs. 

Attention can now be confined to  one quadrant 
of the plate and for convenience this is chosen 
as the second quadrant hecause the resulting for- 
mulation is rendered somewhat simpler. The r e  
dundancies are chosen as the axial loa,ds in the 
stringers at rib 1, this choice being discussed in 
morc det,ail later on in' the analysis. The values 
of the redundancies a.re found by making the 
strain energy stored in the ,plate a minimum. 

One numerical example is considered in detail 
for a 13-stringer plate having 5 discontinuous 
stringers. It is shown that the problem of pure 
shear (case (e) ), yields the simplest and most 
rapid solution. , Numerical computation has been 
reduced, to a minimum by the artifice of operating 
on only one bay. 

2 The reinforced flat plate 

The structure considered for this .analysis is a 
flat plate of monwoque construction having three 
equal bays with a rectangular cut-out in the centre 
bap. For simplicity, the analysis d l  be restricted 
to plates having complete symmetry about a pair 
of rectangular axes with their origin at the cen- 
troid of the plate, as shown in fig. 1. 

The plate is made of thin sheet metal and is 
reinforced with four transverse ribs and a system 
of longitudinal stringers. To simplify further the 
a.nalysis, it is assumed that the ribs and stringers 
have. constant and equal cross-sectional areas A,  
and .AB respectively and that the sheet has constant 
thickness t. In conformity with usual shell analysis, 
the part of the.sheet which is considered effective 
in. carrying ax id .  stresses is added to the ' cross 
sectional area of the ribs and stringers to  form 

' 
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the total effective cross-sectional area resisting 
axial stresses. Furthermore. it is assumed that 

Pempeetive view. 
Fig. 1 , 

ThO flat monocoque plate. . 

the neutral axes of the ribs and stringers' lie 
on the skin line and that they have vanishing 
rigidity in bending in' the plane of the sheet. It 
is convenient to choose rectangular systems of axes 
z-z for  each 'panel aa shown in fig. 1. 

finally, H o o k e's law is assumed,' to be valid 
and buckling is ex.cluded. 

3 The redundancies. 

I n  ganeral, the plate shown in fig. 1 possess63 
4 (w-m) redundancies or statical indetermin- 
acies and when these are known the stress dis- 
tribution in the whole plate is completely specified. 
However, for the separate loading conditions of 
Tension, Bending and Shear (as in fig. 2 for  
cmes (a) ,  (b)  and (e) respectively) there is an 
immediate reduction in the number of redundan- 
cies which is due to the symmetry of the g e e  
metry and stress distributions about the rect- 
mgular axes X and Y. It is proposed to deal 
only with these three regular distributiom of 
loading since they are of the greatmt interest, 
but the method given in this paper can cope with 
any distribution of the external forces. 

. .  
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Now, it follows that the strw distributions for 
the various loading conditions wiII satisfy the 
underlying symmetrical properties e i th  respect .to 
thc X and l' axes, viz.: 

case (b) 

. .  , .  I < , ~  
where 11 is 811, axial s t rav in :a striiiger, s k a 
shear stress i n . ~ a  panel and y is an axial stress 
in a rib; eg. for case (b), the axial stresses in 
the ' stringers are antisymmetrically distributed 
about the X axis and symmctrieally distributcd 
about the IT axis. 

It is therefore evident that attention.may now 
he confined to ,  one quadrant of the plate, tberehy 
reducing tlie redundancies to n-m in number. 
,4t 'least, there are 11. - m .redundancies for cases 
(a) and (b) but it will be shown later that there 
are only n - T I L - 1  redundancies for case (e).. 

There is complete freedom in the choice of the 
statically indeterminate quantities provided that 
they are linearly indepcndcnt of one another; 
they may he taken as axial load$ in the stringers, 
shears in the panels, axial loads in the ribs nr 
they can eyen be a combination of these Imsibili- 
ties. A careful choice of the redundant quantities 
will, however, entail a eonsiderahle rednction in 
the algeliraic formulation and arithmetic com- 
putation. With this in view, the redundancies 
have becn chosen as axial load distributions i n  
the stringers at rib 1. Here, 2 m - 1 of the loads 
are zero, which is a direot consequence of the in- 
ability of the ribs to resist hending in the plane 
'of'tlie sheet, so that 11.- m,+ 1 linearly indepen- 
dent .axial load distribnti~im can always be found. 

Following . the procedure of . E b n e r and 
K ii 1 1  e r (ref. l), t.heso distributions Xi(g) 
will be chosen so 'bhat they arc statically zero 
and eontribute nothing l o  any boundam condit- 
ions that may esist, while ,the particular solntion 
X o ( ? j )  , yty be. taken as. any statically correct 
'distribution which 3150 satisfies the ,boundary con- 
ditions. The Xi(y) then constitute the red'@an- 
cies of the prohlom and i,t i s  neeGary to find 
the particiilsr linear combinatinn of them which 
satisfies the condition .for minimum, strain, ,energy 
in the plate. If the distrihiitions XI(?/) were not 
chosen as being statically zero, the ensuing strain 
energy analysis ivoulsd. be, rendered more eomplie- 
atcd hcca.iise when. the tondition of minimiim 
strain energy is impasd it would be neccwry 
to impme a restriction on the variations of the 
redundancies, and this infers the.'existence of two . .. 
extra "redundancies". 

The axial loa,d P.(.fr) in tlie ~ t h  strinwr at ~ . I .  
rib 1 consists 'of a linear comhination of Ihc ;Xi (y)  
and is 
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I for cases ( a )  

~ 

P,(Y) =X,(vY + tcriXi(Y), (3.1.) It is, however, rather more convenient when 
choosing the distributions to make the X,(y) ortho- 
gonal with the X~(Y), Le.  they satisfy conditions 

i 

where i=l ,  2, 3, ...... n--11 for cas- (a) and 

The equations of equilibrium that P,(y) mwt  
satisfy are: 

(b) and i=l ,  2, 3, ...... n--?ia--l for case (e). of the type 

X, (n -  1) x, (n  - 1) . . . .  

X,(m$l)  . X , ( m + l )  . . . .  
xo (7n) x, (m) . . . .  

. . . . . . . . . . . . . . .  

n 
for case (a) 2 2 P,(y) =2' < Xo(y) =T, the total applied tension, 

for case (b) . 2  X yP,(y) = 2  X kX,(y) = M ,  the total applied moment, 

a d  case (e) .2 yP,(y) = 2 yX,(y) = O ,  

y = m  y=m ' 

" n 

y = m  . y = m  

n n 

y =" y = m  

. . .  xn -m-, (n) X n - m  (n) 

. . .  L-"-",(n-l) X , - , ( n -  1) 
. . . . . . . . . . . . . . . . . .  
. . .  x n - m - * ( m + l )  x , - , ( m + l )  
. . .  xn-9n - 1 (m) Xn-, (m) 

I 

# O  

(3.2) I 

and for 
caae(c) 

n n 

u = m  *Ern 
2 2 pl(y) - 2  2 X, (y )  =US, where S is the applied shear/unit run. 

. . . . . . .  1 n  XI (n) X,,-,-a(n) Xn-m - i (9%) 

1 n - 1  X , ( n - 1 )  . . . . . . .  x, , -m-2(n-l)  2 L m - , ( n - 1 )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  # O  
1 m + l  X * ( m + l )  . . . . . . .  x"- ,_z (m+l )  Xn+?-,(m+1) 
1 n  x, (m) Xn-m-z(m) Xn-m-$ (m) 

I 
(fy'+ 9 ) ;  y--m, -m-1, -n+ 1, --n 

as. 

where: e=n-m+l  

=- ...... 
2 (sa - f ' )  

n 

f -  4 u =v2 { n(n + 1) -m(m-l)  ] . .  
S = ; m  

(3.5) 

n i g =  X y*=Ve{n(Ti+l) (2n+ l ) - -m(m- l )  (29%-1)) 
v = m  
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and then the'only remainhg condition is that the 
X;(y) arc statically zero to achieve the desired 
orthogonality relations. 

The foregoing will be clarified by considering a 
particular example, such as n=6 and m = 3  for 
bhe plate shown in ,fig.. 1. .There are then three 
redundancies for eases (a) and (h) ,  and only two 
for case ( c ) .  Suitable X;(y) distributions are 
shown in fig.' 3 and the X,(y) have been deter- 
mined according  to^ equations (3.5). It can be 
verified that the distributions are linearly inde- 
pendent by making the appropriate snbstitntions 
into the determinants (3.3). 

4 The loads in the plate. 
\.. 

The problem has .now resolved into the deter- 
mination of the expression Pl(y), or in other 
words it remains only to find the values of the 
coeffieieink mi so as to obtain a complete specific- 
ation of the load or stress distribution in the plate. 
It is now propased to express this load distrihution 
throughout the plate in terms of the mi in pre- 
paration for the strain energy analysis. 

The load distribution in the stringers at rib 0 
mnst match the bonndary conditions existing there, 
thus they are given by 

for case (a) ,  
T 

Zn+l  PdY) = - I 
P,(y)=O for ease (e), I 

these expressions remaining valid for - 12 I I ) t .  

I n  the following general e x p r k o n s  for  the load 
distribution throughout the structure, the appro. 
priate values of P o ( $ / ) ,  PI ( : / )  etc. must be sub- 
stituted depending on the particular case under 
consideration. Now, 'simplified shell theory' infers 
a linear variation of axial load along each bay, 
hence the axial load along the stringers may be 
expressed by , 

X 
P,(Y,S) ='Pdk/) + , ( ~ l ( Y ) - ~ " ( Y )  I ,  

P,(Y,X) =P,(1J! + y { P 2 ( ! / ) - P r ( ? / )  } ,  

W Y , % ) = P ~ ( U )  + 7 { ~ z ( ~ ) - p 2 ( ~ j  }, 

X 

2. 

the expressions remaining valid only for the first, 
second and third bays respectively. 

This linear variation of end load in the stringers 
infers that the shear is constant in each .panel; 
so that from elementary considerations of equili- 
brium the shear in the top panel of the first bay 
must be 

1 
a 

where' S is the applied shear per unit run. I n  
the second panel down, the shear is 

&9%) = g  + -(PI(%) --P,(n) }, 

S,(n-l)CS*(n) + T { P & - l ) - P o ( i - l )  1 ), 

6 

3 

2 

1 

0 

-I 

-1 

-3 -08.5 . .  
-4 35 as -1 

-5  01.3' 2 

-6 0 5 s  .s 1 
XOCI> X, ' I I  . - (4 

-2 

2 

x 2 w  

Fig. 3 

Linearly independent distributions of axial load in tha 
stringers at Rib I, for n = 6  and m =  3. 
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do that in the yth panel of the first., second and 
third bays respectively 

Finally, the constant shear in the panels infers 
a linear variation of the rib axial loa& ,between 
successive stringers. Hence, the axial. load along 
a rib between the 21 th and - 1 th stringers is I 1 "  

n j = y  
SI(!!) =s + - 2 { f>l(j) -P&) 1 ,  

noting.~that . .  

Q , ( . I ~ ) =  Q 1 ( l b ) =  Q , ( . ) =  Q,(,n)= 0. 
I 

(4.4) 
The symmetrical properties of the plate and 

stress 'distributions permit a great simplification 
of these general formulae and they . .  are . .  summarized 
for '  the separate loading cases. 

I 

Case (a) Case (b)  



5 The strain energy analysis. . .  

' The coefficients . . . ,  Ai. can.. he determined from a 
strain cnergy analysis by eqnatmg to zero the 
derivatives with respect to  the total strain energy 
stored in the structure. The strain energy equat- 
ions will be formulated in general terms and then 
the individual cases may be examined later. 

The total strain energy stored in the stringers 
is denoted hy UsTn and is 
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+ P l ( Y P * ( Y )  1, (5.1) 
because P ~ ( U )  =P,'(y), and P,(y) and 

n 
C P,(y)P,(y) arc independent of m i ,  remcm- 

hering that P,(y) consists of the pa,rticular solut- 
ion XoJy), equation (3 .5) ,  plus the statically zero 
distributions Xi(?/). 

The total strain energy stored in the sheet in 
shear is denoted by Us and is 

y = - - "  

and differentiating with respect to a ; ,  

Finally, the total strain enengy stored in the 
ribs in tension is denoted by U ,  and is 

+ Q,'(Y)+ Q,'(!/-1)+ Q,(Y)Qx(Y--l) ) 

a d  differentiating with respect to ai 

+ Ql2(!1)+  Q,'(u-l)+ Q,(V)Q,(?/--7)). (5.3) 

Whence the coefficients a, are found from the 
condition that the strain energy is a minimum, viz. 

-0, (5.4) au aueTs au, au, 
ami a,, am,  ami . _- _- +-  +-- 

\diich yiel&u a set of sim~iltaneoi~s linear equ a t' ions 
for the determination of the coefficients. There 
will be n-vi such equations for cases (a) and 
(b ) ,  and n - m - 1  equations for caae ( e ) .  

Now, referring to  the table which gives a sum- 
mary of the loa& throughout the structure, it will 
be seen that the expressions (5.1); (5.2) and (5.3) 
can be considerably simplified for the individiinl 
cases. It can be readily verified that equation 
(5.4) resolves into the following eqnations for  
cases (a), (b) and (e) respectively. 

For case (+), 

For case (b) ,  

for i=1, 2, 3 __.__. n-ni. 
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6 The relative stiffness parameters. 

The relative stiffness parameter 7 is defined &s 

the ratio of the stiffnesses of the plate with and 
without enbout. It is given 'by the ratio of the 
strain energies, vie. 

where U ,  is the strain energy of the plate with- 
out cut-out. For the computation of U,, it is 
assumed that the sheet and stringers are eontinu- 
ous aerrm the cut-out. 

It is convenient to rsexpress (6.1) in terms 
of the ' non-dimensional strain energy' components, 
viz. 

where for ease (a) 

32'9 
u'o= 2(2n + 1) ' 

I n  deriving the expression for U ' g ~ R r  it must be 
remembered that Pl(y) is composed of the parti- 
cular solution (3.5) and statically zero distribu- 
tions of forces. For the derivation of U'#, i t  is 
known that 

," 
1 

&(Y) = 3 x .  (2y-l), for y = 1,2, _.. m. 

The relative stiffness parameter for  case (b) is 
of no major significance, but for completeness the 
expressions will be quoted here. 

For e a e  '(b) 

91112 
U''=,2n(n+l) (2n+1)b2 ' 

=~ 

+&,'(Y--~)+Q,(~)Q,(Y--~) I. I 
Finally, for the important case of shear loading 

the expressions become, 

fo r  ease (e) 

In deriving the expressions for  ease .(e), we have 
used the condition that &(y) is composed of the 
particular solution plus statically zero distrihutions. 
of shear. Also, .the axial load in rib 0 is known 

' 

to be ' . .  
&,(y)=-((-) 1 6  .I/.&& y=0,.1,2,: ... ::.'m, ,. 

2 a  
since 

S,(y)=1.5S for . y=1,  2 ,.... .; . . .m. ' 1 , :.- 

7 Numerical Examples. 

The load distribution in a particular plate will 
now be calculated for the three loading eases, 
where n=6 and m e 3  and wheEe the values of 
the non-dimensional parameters are 

.. 
b I A E E  As 1 . -=_. - -=1.0; -=- 
u 3 '  at  P A B  4 '  

The redundancies X ( g )  are chosen to have the 
distributions as shown in fig. 3,. 
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alp = 145.625 + 32 ax + 27 a* f 21 as, Cnse (nJ: Tt". 

. I  

aeR = 141.25 + 27 a, + 26 a2 + 21 aa ,  

nag = 129.375 + 21 + 21 az + 20 a, ,. For convenience, the total applied tension will 
be taken as T-13 units; and for the particular' 
distributions of the X(y) i t  is readily deduced 
that the axial loah in the stringers at 0 and 
1 are respectively 

whence the three simultaneous equations fo r  the 
determination of a,, a, and a3 are 

12.593 a, - 4.5 as + 0.38889 a, = - 3.9468, I P , ( 6 )  = 1.625 4- a,, 
P,(5) =1.625-aa, + a 2 ,  - 4.5 a;+ 12.481 a2 - 4.6111 a3 =- 5.1157, 

0.38889 a1 - 4.6111 az f 12.370 ea c - 6.1458; 
P 0 ( 6 )  = 1, 

P0(4)  =1, P,(4) ~ 1 . 6 2 5  -a* + ea, 
P,(3) c 1 ,  P,(3) c=1.625 - a a  I 

~ ~ ( 1 )  =I, r,(i) = o , 
P ~ ( O ) = I ,  r l (o)  = o . 

P , ( 5 )  -1, I 
I 

these equations yielding the following values of the 

a, =- 0.6~400, 

I 
P o ( 2 ) = l ,  P 2 ( 2 )  -- 0 , coefficients 

(1. = - 0.94071. 
a, = - 0.82791. From equation (4.3), the shear Sl(y) in the 

, 
The loads thronghout the structure arc now 

completely specified and are summarized below for 
one quadrant of thc plate. 

yth panel of the first bay is give11 by 
Li 

aS,(y) = 2 { P , ( j )  -POW } 
! = ! I  

and hence 

.' a s , ( @ =  ,625 f a , ,  
aSl(5) = 1.25 + a s ,  
nS, (4) = 1.875 +a,, 
nS,(3)=2.5 , 
aS,(2) =1.5 , 
aS,(l) ~ 0 . 5  . 

the yth stringer is given by 
From equation (4.4), the axial load in rib 0 at 

6 

j = y t l  
-z aS,(j) ,  a 7 Qh) =- 

so that 

a 
- Q 0 ( 6 ) = 0 ,  b 
a 
b 
a - Q,(4)--11.875-q-aa,, b 
a - Q,(3)=-3.75 - q - a a , - a a , ,  
b 
a - &,(2)=-6.25 ' - - q - a a - a 8 ,  
6 
n - & , ( I )  =-7.75 - q - a a , - a a , ,  b 
a Q,(O)=-8.25 -aL1-a2-aag .  

For the chosen values of the non-dimensional 

- ~ , ( 5 ) = - n , 6 2 5 - ~ ~ ,  

parameters, equations (5.4a) resolve into 

5 f d i s T n +  2 a.is+ 0.01852 n i n  = 0, 

where 

alSTR= 2ar-  a 2 ,  

ass7n - 
aIs  = 0.625 + a, , 
a,$ = 1.25 fa,, 

nJg = 1,875 + a1 

--q + 2 a , -  a > ,  

- a , + 2 a , ,  
%Til - - 

P,(6)  = 0.07692 T ,  P , ( 6 )  = 0.07700 T ,  
P.(5> =0.07692 T .  r. (5) = 0.10064 T.  
~ , ( 4 j  -0.0769~ T :  

P,(2) ,= 0.07692 T, Pr(2)  = 0, 
P6(l) =0.07692 T, ~ ~ ( 1 )  = 0, 
P" (0 )  = 0.07692 T, PI(0) == 0, 

~ ; ( 4 j  =os3368 T;  
P0(3) = 0.07692 T .  P,(3) -0.18869 T ,  

where P,(y) 'and P , ( ? l )  are the axial loads in the 
yth stringer a t  the intersection of ribs 0 and 1 
respcctively. 

S,(6)  ~ 0 . 0 0 0 0 8  l ' /n ,  S,(6)  =0, 
S,(5) =0.02379 T / a ,  S,(5) =0, 
S,(4) ~ 0 . 0 8 0 5 5  T/a ,  S,(4) =0, 
S,(3) = 0.19231 T / q ,  
5, (2)  -0,11538 T/n, 
S,, ( I )  = 0.03846 T / a ,  

where S,(y) is the shear in the panel in the first 
bay hounded by the y th and y - 1 th stringers 
and similarly S,(y) is the shear in the correspond- 
ing panel in the middle bay. 

Q,(5) --0.00003 T ,  
&,(4) =- 0.02387 T, 
&,(3) =-0,03480 T, 

&,(I) --0,13737 T> 
&,(a) --0,15019 T, 

& o m =  0, Q1(6) -0, 
Q,(5) =0.00003 T, 
&,(4) =0.02387 T, 
&,(3) -0,03480 T, 

Q,(l) ~ 0 . 1 3 7 3 7  T, 
Q , ( O )  -0.15019 T, 

Q,(z) =-o.ogagi T, ~ ~ ( 2 )  -o.o989i T ,  

where Q,(y) and &(y) are the axial loads in ribs 
0 and 1 respectively at the intersection of the ?/ th 
stringer. 

Substituting the above values into equations 
(6 .2 )  and (6.3a) it can be readily verified that 
the numerical value of the relative stiffness para- 
meter is 7 = 0.516. 

Case ( 6 ) :  Bending. 

For convenience, the total applied moment will 
he taken as .V/b = 182 units and for the particular 
distributions of X ( ? j )  shown in fig. 3 it can 
verified that 



P e ( 6 )  -6, 
P0 (5 )=5 ,  .P , (5)=5.2907-6aa ,+4a , ,  

P,(6) =6.3488 + 5a ,  

P,(4) =4, P , ( 4 )  -4.2326 --a* + 3 & ,  
P,(3) =-3, ' P , (3 )  =3.1744 - 4 % ,  
P, ( z )=z ,  ~ ~ ( 2 )  = n, 
P , ( l )  =1, P,(1) = 0, 
P,(O) =0. Pl(0) = 0. 

The shear S,(v) is given by eqnation (4.3) 

d, (6) = 0.34884 + 5 a, , 
4 ( 5 )  == 0.63952 - a, + 4 a,, 
aS1(4) = 0.87208 - a, - a2 t 3 a3 , 
0S,(3) == 1.0465 - a,- a2- ea,  
~&',(2)=-0.95349- a>- as- e l ,  
aS,(l) =- 1.9535 - a, - az - a 3 ,  

and the axia.1 load Q,(y) in rib 0 is give]; by 
eqnation (4.4), so that 

a -Q0(4) =-Oo.98836-4aa,-4ca,, h 

7 Q,(3) =- 1.8604 - 3 a, - 3 a,-3 a a ,  
U 

a 

' a  -Qo(l)=--1.9535 - a,- a2- aa ,  h 

7 Qd2) =-2.9069 -2 e, ~ -2  ap - 2  a*, 

a 7; Qo(6) = 0, 

- &, (5) = - 0.34884 - 5 b 
lt 

, 
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. . For the ehtasen values of the non-dimensional 
parameters, equations (5.4) resolve into 

5bisrR + Zbi, + 0.01852hiR=0, 

where 

l J I S T R  = 
bgSTR == - 24 a, 5 41 c2 - 15 a3 , 
bSSTR =z -15a, + 2 5 a , ,  

61 a, -24 az, 

ZI,, = 2.0930 + 30 a,, 

bas = 4.4767 
7 1 , ~ s  3.5465 + 20a,, 

t1,~=112.19 

+ 12 LyB, 

+ 300q  + 180a, + 84a, ,  

. b,R= 75.616 f 84a, f 84n, +.72u,,  
= I 00.38 -+ ian  + 160 + 84 a,, 

whence the three simultaneous equations for the 
determination of a,, a, and a, are 

370.56 a, - 116.67 as + 1.5556 aa c - 6.2636, 
- 116.67 a, + 277.96 a, - 73.444 a3 = - 8.9500, 

1.5556 a, - 73.4+44 as + 150.33 a3 = - 10.354, 

these equations yielding the following values of 
the coefficient7 

Ul = - 0.044991, 
a, = - o.ng0716, 
=- 0.11270. 

These values of the coefficients give the follow- 
ing distributions of load throughout one quadrant 
of the plate 

~vherc P o ( y )  and P , ( u )  are the axial loads in the 
ijth Rtringer at the intersection of ribs 0 and 1 
respectively. 

S,(6) = 0.000681 illlab, S,(6) EO, 
S,(5) = 0.001767 AI/d ) ,  R,(5) = 0, 
9,(4) = 0.003680 illlab, s,(q = n, 
s , (3)  = 0.007115 illlab, 
S,(2) - - 0.003874 I f l a b ,  
S,(1) =-0.009368 M / u h ,  

where &(v) is the shear in the panel in the first 
bay hounded by the yth and y-l'th stringer, and 
simihrly S,(y) is the shear in the corresponding 
panel in t,he middle bay. 

&*,(6) = 0, I'  
Q 0 ( 6 )  = 0,' 
~ " ( 5 )  -- 0.000227 mj, ~ ~ ( 5 )  = o.onn227 ~ i b ,  

~ " ( 3 )  =-o.n02042 n u b ,  ~ ~ ( 3 )  co .oo~a4~  w b ,  

Clc,m == 0, &,(0).= 0, 'i 

&,)(4) --Oq.000S16 N / b ,  Q,(4) =0.000516 M/b,  

Q , ( 2 )  =-00.004414M/b, Q,(Z) ==0.004414~1/11, 
Q,(1) =- 0.003123 M / 6 ,  Ql(l) = 0.003123 M / b ,  

where Q,(y) and QI(v) are the axial loads in 

t,he yth stringer. 

has no major practical significance (7 ~ 1 . 0 ) .  

ribs 0 and I respeet.ively, at the interseetion of i 

The relative s t i f fnm parameter f o r  this ease 

Cim ( c ) :  #hear 

The applied shear i d 1  he taken as US = 1 nnit; 
and for the distributions of X(y) shown in fig. 3 
it can be verified that 

P"(5) =0, P,(5)=-0.1 --aa, + az, 
PO(4) =0, 
~ ~ ( 3 )  =n, P,(3) = + 0.5 + m21 

P,(K) =n, P, (6) = - 0.55 + ax 

P,(4) = + 0.35 + n1 - 2 a*, 

From equation (4.3), the shear #,(!I) in the 
yth panel of the first hay is 

and hence 

a#, (6) = 0.45 + a1 
aS, (5) = 0.35 - a, + a2 , 
aS,(4) = 0.70 - a2, 
uS,(3) =1.5, 
eS,(2) = 1.5, 
uS,(l)  = 1.5. 



From equation (4.4), the axial load in rib 0 
at  the. y th  stringer is given 'by 

0 

j=t ,+l  

a b &"(!/I = ' 1: { 0s - afJ,(j) } > 
, ,  

. .  

so that 

U 
- Q , ( 6 )  = 0, b 
-Qy,(5)=0.55-an,, b 
-Q"(4) =1.2 
b 

a 

a2 3 
- U 

U T Q " ( 3 )  z 1 . 5  

a -,&"(2) = 1.0 b 
u ~ , ( i )  =o.5 
b 

b 
n 

. ' -QQ,(0) =o. , 

For the chosen values of the non-dimensional 
paramctcrs, equations (5.4) resolve into : 

3 ciSrR + 6 cjX + 0.09260 ~ i i  = 0, 
. . .  

where 

6 a , - 4 e n , ;  c , ~ =  0.10+2a,-  a,, 

a, + 2 az , 
'ISTR = 

- 4 a ,  + 6 az , cpS = -- 0.35 - 
CWTR = 

S' 46 

e,,=-3.4 +'40, + az, 
c 2 K = - 6 . 8 5 + 4 n 2 + a , ,  

irhcrice the two simultancous eqnations for the 
determination of a, and az are 

30.370q - 17.907 a, = - 0.28519, 
2,7343 ; - 17.907 a, + 30.37Ocr2= 

these cquations yielding the following values of 
the coefficients 

al = 0.06702, 
az c 0.12955. 

These values of the coefficients give the follox- 
ing distribntions of load throughout one qnadrant 
of the plate 

Po(6) ~ 0 ,  P x ( 6 )  =-0.48298 US, 
PO(5) -0, P ,  ( 5 )  = - 0.10449 aS, 
Pd4) - 0, P , ( 4 )  = 0.15792 as,  

POP) = 0, P , ( Z )  = 0, 
POU) =o, P,(1) = 0, 
P O ( O )  = 0, PI(O) = 0, 

PO(3) = 0, ~ ' ' ~ ( 3 )  = 0.92955 d', 

where P , > ( v )  and P I ( ! / )  are the a i a l  loads in 
the !/t,h stringer a t  the intersection of rihs 0 and 1 
rrspeetively. 

;. 

S,(6)  = 0.51702 S, 
S,(5) = 0.41253 S, 
S,(4) - 0.57045 S, 
S,(3)=1.5S, 
S,(2) c 1.5 S, 
&',(I) =1.55, 

S,(6) =1.96595S, 
S,(5) =2.17494 S, 
S,(4) =1.8591OS, 

where Sl(!/) 15 the shear in the panel in the first 
bay ,bounded by the yth and y-lth stringers, and 
S,(y) is the shear in the corresponding panel of 
the middle bay. 

Q 0 ( 6 )  = 0, Q , ( 6 )  = 0, 
&,(5) =0.16100 :IS', ~ ~ ( 5 )  =- 0.48298 n ~ ,  

.&;(4) =- 1.07045 d3, 
Q,(3) = 0.50000 nS, Q,(3) =-1,5aS, 
Q,(2) =0:33333 US, &,(2) = - l . O n S ,  
Q,, ( l )  ~ 0 . 1 6 6 6 7  (LS, Q>(l) =-o.5 as, 

&,(4) =0.35682 nS, 

~ , ( o )  = 0, QJO) = 0, 
where a n d '  @ , ( ; I / )  are the axial loa& in 
rihs 0 and 1 rcspect,iGely, a t  the intcrscetion of 
the ~/tl i  stringer. 

It is to he noted that f o r  ease (c) 
. ,  

' S,(g) = 3 S - 2 S s , ( ~ / ) -  

Siihstitut,ing the ahore values into eqnat,ions 
(6.2) and (6 .3~)  i t  can he readily verified that 
the numerical value 07 the relative stiffness. para- 
meter is ?= 0.546. 

Several important conclusions folloiy from these 
results and arc snmmarizcd hclom For  the^ three 
separate eases. 

Case (a) .  Tension. 

(I) The maximum tension occurs in strin- 
ger 3 hordering the cut-oot, and is 
2.5 times the external tension applied 
to. one stringer. 
The maximum shear in the panels e1.n 
be dctcrmined hy inspection. and a re- 
dundancy calci~lation is not reqnired. 
This maximu'm valiic oC t,he shear oc- 

' curs in the end hays bet~reen stringers 
m and ai - 1 and its r d i i c  is given by 

(IT) 

2 711 - 1 T 
. S(nr)= 2 n  ' 2 n f l .  

, The maximum axial load in the ribs 
oceiirs at stringer 0 and is twice the 
external load applied to one stringer. 
The relat,ive stiffness parkmeter is 

Bending. 
The perturbations due to the presence 
o f  the cat-out are very smadl. 

Shear. 
The maximum value of the shear oc- 
enrs in the middle hay Retween strin- 
gers 5 and 4 and is 2.2 tinips the ap- 
plied shear. The distribution of shear 
in these panels does not appear to  vary 
mneh from the general rule 

'7 = 0.516. 

Again, the maximum axial load mcnrs 
in the stringer 3 bordering the cut-out 
and is 0.93aS. 



(111) The maximum aria1 load occurs in 
the centre ribs at stringer m and is 

.m. as. This value holds fo r  2 a  
any given number of stringers and 
does not require a redundancy cal- 
culation. 

(IV) The relative stiffness parameter is 

3 /J - 

7 = 0.546. 

8 Nomenclature. 

f i t s T R ,  ai,, aiR 
a 

A, 

CiSTR' cis, CiR 

distance between ribs. 
Coefficients appertaining to 
case (a) and defined in the 
t,ext. 
cross-scct,ional area of a 
stringer plus effective arm 
of sheet. 
cross-sectional a.rea of a rib 
plus effective area of sheet. 
distance between stringers. 
coefficients appertaining to 
case (h)  and defined in the 
test. 
coefficients appertaining to 
cme (e) and defined in the 
text. 
Y o u n g's modulus. 
there are 2 n + 1 stringers 
and 2 vi - I discontinnouu 
stringers. 
total applied moment. 
axial stress in a stringer. 
axial loads in  the 71th strin- 
ger at rib 0, rib l" etc. 

P,(Y,S), p2(I/ ,Z),  P,(Y 2) axial load distributions 
along the yth stringer in the 
first, second and third hays 
respectively. 
axial stress in a rib. 

Q,(Y), &(Y) 'etc. axial loads in rib 0, rib 1 
ctc. a t  the yth stringer. 

&,(I!#), .Q,.(!/,z) etc. axial load distrifbutions in 
. . rib 0, rib 1 etc. between the 

Q 

iith and ~ / - l t h  stringers. 

applied shear per unit run. 
shears in the panel between 
the yth and f j - l th  strin- 
gers of the first, second and 
third hays respectively. 

S ' shear stress in a panel. 
s 

S,(.Y), S,(Y), &(!/) 

Y 
ai 

total applied tension. 
thickness of sheet. 
total strain energy stored in 
the plate. 
total strain energy stored in 
the stringers. 
total strain energy stored in 
the sheet. 
total strain energy stored in 
the ribs. 
rectangular systems of axes 
f o r  each panel as shown in 
fig. 1. 
rectangular axes with origin 
at the centroid of the plate. 
a statically correct ditribu- . 
tion of axial load in the 
stringers a t  rib 1 and satis- 
fying the boundary condi- 
tions. 
a statically zero distribution 
of axial loa,d in the stringers 
a t  rib 1 and contributing 
nothing to the boundary 
conditions. 
current stringer number. 
coefficient which is deter- 
mined by a strain energy 
analysis. 
relative stiffness parameter. 
shear modulus. 

- 
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be relied upon without carefnl investigation. 

I n  Appendix B of this paper there is a short 
note concerning the stress perturbations in a thrce- 
hay cireu1a.r cylinder undcrgoing tonion and with 
an infinitely thin slit in the centre bay, it being 
assumed that the stringers are uniformly distri- 
buted over the periphery of the cylinder, It is 
shown, that no singularity exists in the stress 
dist.ribution at  the .edges of the cut-out. 

2 .The reinforced circular cylinder, 

, 

The fuselage considered in thc analysis is a, 
' monwoque cylinder of circular crcas.s-section as 

shown in fig. .I, where free warping of the end 
sections is permitted. The method developed in 
tjhis paper permits, however, the detcrmination 
of the stresses in cylinders having different end 
conditions. 

The cylinder is made of thin sheet metal and 
is reinforced by four transverse rings, each one 
having a constant cross-section - the two outer 
rings having theissame cross-section and the two 
inner rings being identical. ' The distance bctween 
the rink? is, for simplicity, assumed to be the same, 
but this is not a necessary assumption. The cylin- 
der is rcinforccd longitudinally by a system of 
2 %  stringers which are equally spaced and have 
the same and constant cross-sectional area. The 
cut-out is mumed to extend from bhe mth to the 
2 n--m,th &ringer, there being no local edge, re- 
inforcing. The cylinder is assumed to possess 
geometrical and elastic symmetry about the X-1' 
and Y-Z planes. 

I n  the nomenclature i t  will he observed for in- 
stance that I is the "effective" moment of inertia 
of the outer rings, and this is meant to include 
that portion"of the sheet covering which may be 
considered as working in conjunction with the ring. 

I n  addition to the foregoing assumptions, the 
stringers are considered as  offering negligibly 
small resistance to  bending, and the rings are 
assnmcd t o  have finite rigidity in bending in 
their plane, ,but vanishing rigidity in bending out 
OP their plane as well as in torsion. .Finally, 
H o o k e's law is assumed to remain valid during 
all the deformations that are experienced by thc 
shicture. 
... 8 I: 

3 The redundancies. ' ' .  , 

The cylinder 'shown in '  fig:, 1 has in general 
4 ( m  - 1) rednndancies or statical indeterminacies 
and when these are known the stress distribution 
in the '.whole 'struct.ure is' completely 'specified. 
When the external 'loa.& 'are' symmetrically or 
isymmetrically disposed, .(ref. fig. 2 ) ,  tliere is an 
immediate fourfold' reduction i n '  the number of 
redundancies because .of the geometrical and elastic 
symmetry about the X-Y and Y-Z plane. I t  is 
proposed to deal only with the six regular dis- 
t r iht ions of externsl loading shown in fig. 2 
since these have the greateit interest. By regular 
distributions, it is meant that the loads are ap- 
plied according to  the elementary theories, i. e. 
equal axial load in all the. stringers, t'he engineers 

, ,  

. , ,  , . , . !  ' 

t,hc rings, which p iy  a major contribution in the 
distribution of the perturbation stresses arising 
from the cut-ont. C i c a l a  investigated the in- 
finite cylinder under the action of asymmetrical 
loading conditions whioh .are typified by cases 
(3a), ( lb)  and (3b) of the present papcr. This 
analysis does not take int.0 account the ,exact 
effect of changing the sectional properties of the 
rings bordering the cut-out. I n  fact, it is easily 
demonstrated that. for equal stresses the rings 
bordering the cut-out should be three times as 
heavy as the outer rings for the asymmetrical 
loading .of a threc-hay cylinder (c.f. table 4.1). 

T8hc analysis presentcd here is fundamentally 
the same as used by the first author in the 
solution of the flat monocoque plate containing a 
rectangular cut-out (ref. 6). It, essentially con- 
sists of a strain-energy analysis where the defor- 
mations of all the component parts are considered, 
using the prineipks and assumptions of the con- 
ventional (or simplified) shell theory of ref. 1. 
It has not been found necessary' to introduce any 
new principles or assumptions. Conventional shell 
theory assumes that the shear is constant in a 
panel which infers that the stringer axial load 
varies linearly along each bay, and in addition it 
is assumed that tlic rings haw vanishing rigidity 
for.bending out of their planes. R a n d  (ref. 7)  
has made an extensive investigation 'into the 
validity of these assumptions. 

Tile problem. resolves into the determination of 
the coefficients for the discrete Fourier series 
which gives the most. general distribution of axial 
load in the stringers a t  the intersection of ring. 1.' 
These. coefficientr are found from I a rectangular 
system of, lincar'simultaneous equations which 'are 
mer917 statements .of certain .boundary conditions 
(the; rectangular systcm containing more un- 
knowns than :equations), this system. being trans- 
formed into a sqnarc system of simultaneous linear 
equations from which the Fourier coefficients are 

.eventually dctcrmined. There arc an infinity of 
sucli, transformations, but there is .only one that 
will make thc.,total strain- energy stored in the 
structure a minimum. Thc square system of 
simultaneous equations is equal in number to half 
the number: of panels, that have .been removed ,to 
form the.'cut-out, so that ,when ,only two panels 
hayc ,been 'removed the. Fourier .coeffiieients are 
explicitly . defined. , When' these Fourier. coeffi- 
cicng have been- determined, the. stress pertur- 
bations and,  the relat.ive stiffnea parqmcters are 
easily,. cvduatcd., by', using ' the. appropriate ex- 
prcssions. : ' . .  . ,., ' ' . 

Sometimes' i t , .  might 'be convenient to replace 
the ; actualbcylinder .haring 'a . reasonably large 
number 'of discrete $iffenem. by a! cylindcr' with 
cmtinuously distributed ,stiffeners when ' calcdat- 

: However, when in the .case 'of continuously 
dismibuted stiffeners any singularity in the stress 
distrib1it.ioni should occur' a t  the edges. of the cnt- 
qut, ..such:a :simplific+tion .would yield unreliable 
results. , . , ,. , : . 

In .  that. ease, .even replacing a, great niimber of 
discrete. stiffeners by, a smaller number could not 

. .  
I ;  

ing , the stress distribution; 
~ ,. 
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Fig. 1. Tho inonacaqilc circular cylinder. 

theory of bending and the Bredt-Bath theory of 
torsion. The methods developcd f m  .tlljs paper tire, 
however, no t  restricted to these distrihutioiis of 
the external loa&. 

It follows that the stress distribiitions €or the 
various cases posress the symmetrical properties 
about the X-l' and Y-2 planes as shown in 

table 3.1. So for ease (3s) for  example, the 
axial stresses i n  the stringers and the bending and 
circumfcrentia.1 stresses in t.hc rings are  symme- 
trical about the X-Y plane and asymmetrical about 
the Ir-Z plane; while the sheering StreSSa in the 
Ixincls and rings are asymmetrioally disposed about 
bhe X-Y plane - the former being symmetrical 
and til? latter asymmetrical with respect to the 
I-Z p'lane. 

Therefore, it,is avidciit that attention may ILOW 
be eoni'incd to tlie quarter portion of the cylindcr 
formed by the intersection of the X--Y and Y-2 
planm, thereby reducing the redundancies to 
n1 - 1. 

AS mcntionc?? in a previous paper concerning a 

CASE tlr) CASE Llbl 

giinilirr problem in flat plates (ref. 6), tliere is 
complete freedom in the clioice of the statically 
indeterminate quantities provided that they are 
linearly indepeoderit of one another. It is agaiil 
conmiient to choose the redundancies as curial 
load distrihutions in the stringers a t  ring 1, nhcre 
these axial loads are zem in the stringers ?n + 1 
to  TL, siiice i t  is assumed that the rings arc unable 
to resist hending out of their planes. F o r  the 
regiilar circular cylinder having equal panels and 
sLringers, i t  is pa%%ihle to  achieve the solution wit,ll 
some considerable elegance as compnred with the 
procedure adopted for the f la t  plate. The reason 
for this is that because of the cyclic symmetry of 
the cylinder, a grcilt niim~her of symmetrical planes 
iire a t  our disposal \?here the orthogonality of 
trigonometric terms can be used to some adranttge. 
For tlie flat plate, tlicre is only one central axis 
of symmetry present and the trigonometric terms 
can only he.uyed to advantage when the external 
axial lands, are symmetrical ahout this plane and 
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then i t  is necessary to m u m e  that the r i b  are 
rigid. 

For thc cylinder under investigation, appro- 
priate axial load distrihutions in the stringers a t  
ring 1 are given by 

I 

I k n  
n 

I’, (n-) = a0 + el cos - + 

I i k r  + 2 a; cos- for cases (a),  
11. 

,,-< ikn 
i = %  ?a 

+ 2 ais in  - for cases (b), 

wherc a, and a, are determined from the-overall 
equilihrium reqnirements and the a; constitute the 
“redundancies” of the problem. It is readily veri- 
fied that the a; distrihutions are statically zero. 

It will be noticed in equation (3.1), however, 
that there are n - 1 unknowns or “redundancies’! 
for ewes (a) and n--2 unknowns for cases (b), 
so the C~ are not independent of one another. 
Their .d;opendence is due to the boundary conditions 
existing in the cut-out region, viz. zero axial load 
in thc discontinuous stringers at the cut-out and 
zcro shear in the panels removed to form the cub 
out. It is coiivcnient to ignore this dependence 
until the final stages of the strain energy analysis. 

l 

4 The ’loads in the cylinder: 

Preparatory to the strain energy analysis, it is 
necessary to have a complete specification of the 
loads. in the structure in tcrms of the a, coeffi- 
cients. The specification of these loads will be 
formulated in general terms and the cxplicit 
expressions are summarized in table 4.1, where the 
various summations have been completed. 

I n  conventional shell theory, i t  is assumed that 
the stringer axial load varies linearly along each 
bay. Hence, the axial load at a current point z 
in the 7ith stringer is given by 

the expressions rcmaining valid only for  the first, 
second and third bays repectively. 

Tthis linear variation of axial load in the stringers 
infers that the shear is constant in each panel, 
so that from elementary considerations of equili- 
brium it is found that the shear in the kth panel 
(i. c. bounded by the k + l t h  and k th  stringers) 
of the first, second and third bays is respectively 
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+ some constant, . ,. 

(4.2) 

where the constant is determined from overall 
cquilihrium requirements. 

It remains now to determine the forces in the 
rings. The rings are loaded by the difference in 
the shear flows of the two adjacent hays, viz. 
rings 0, 1, 2 and 3 are loaded hy the following 
shears rcspcctively 

(4.3) 

where S ( k )  is the external shear distribution. 
The forces in the rings arc determined from the 

cqudtions of equilitbrioni of a seetor of the ring. 
The equations of equilibrium of the kth sector of 
a ring (fig. 3) are 

Pig. 3. Showing the farces actiug on the neutral axis 
of the kth amtor of a ring. 

n 
( T ( k  + 1) - T ( k )  } cos - + 2 n  + ( Q ( k +  1) + Q ( k )  ]sin-- ?i 

--2Z228‘(k)sin--O0, 71 

2 n  

211 
n ( T ( k  + 1) + T ( k )  ) sin - - 

2 n  
Ti 

- {  Q ( k  + 1) - Q ( k )  }COS, =4 
( R - 6 )  ( Z ’ ( k + l ) - T ( l c ) ) +  

+ ( Jf ( k  + 1) - M  (k) ] - 
- Rz (5) &’’(a) = 0. 

n 

(4.4) 

The following are two typical solutions of the 
equations (4.4) and may be verified by sub- 
stitution. 



i ( 2 k + l ) n  
sin 2n 

ir sin - 
211 

ik7i & ( k )  = nqi sin - n '  
ikn !7'(k) =nt; cos - n '  

ikn 
M ( k )  =--1i2nii cos - 

( i )  Whtm &"(IC)= 

then 
,I 

TL 

i ( 2 k + l ) T  
cos 2n 

in sin - 2n 
ikn 

then Q ( k )  =Bqi cas - n '  

(ii) When S ' ( k )  = 

I 
ik7r 

2'(li) =-fitisin - n '  

I ikx  
M ( k )  = l lZnii sin - 

n '  

in n 

211 211 
sinZ - cot - 

where qi = - 
. n  7r 

s ~ ~ ~ -  ( i + l ) s i n - ( i - l )  
2n 2n 

I n 
sin - n 

in 7r 

n n 

t ,  = 

cos - -cos - I 
?,ti = ( H--E T )  ti+4 (s) COSCC* 2n in 

It is assumed f o r  tlie sake of simplicity, that 
the ring forccs w r y  linearly over each sector of 
the ring.. Tlie cviict cxpresqions can be very easily 
written down, but nlicn determining t,he strain 
energy of a ring sector i t  will be discovered tliat 
the work becomes mast tedious. The inflnence of 
the sbcaring deformations in the rings will be 
neglected in the strain energy analysis, so it is 
not necessary to consider their circumferential 
variation. 

The bending moments at a current point 8 in  
rings 0, 1, 2 and 3 are given respectively by 

(4.5) 

n8 

118 

n B  

n 8  

ill&, O ) = n f , ( k ) +  - ( Mo(k+l)-A1"(k)), 
7r 

Ifl (IC, 8)= 11, (k) + - ( MI (IC+ 1)- 11, (k) ), 
7r 

n f , ( k , O ) = 1 1 I , ( k ) +  - ( l f 2 ( k + l ) - J f * ( k ) ) ,  

nr,(lc,.q=n&(k)+ - ( l f 3 ( k + 1 ) - M s ( k ) ] ,  

7r 

n 

and the corresponding axial' loads in  the r i n p  
are given rcspeetively by 
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,, n8 
1 a ( k ,  8)8= T,(k)+ ~~ ( T$(IC+l)- T , ( k ) ) .  

7r 

Table (4.1) gives the explicit cxprasions for 
P ( k ) ,  S(7;), & ( k ) ,  T ( k )  and H ( k )  for  the various 
eases under consideration. 

5 The strain energy analysis. 

The coefficients ai are determind from the 
rectangular set of n - m linear simultaneous cquat- 
ions, each containing n - 1 unknowns 

i 1 (5'1) 

P , ( k ) - 0 ,  k-nz+ l ,m+2 ,  ... n, 
foreases ( la),  (Za), (3a) and (Zb), 

or 
S , ( k ) c O ,  k z n a ,  %+I, ... n-I, 

for  cases ( l b )  and (3b). 

These eyuations are statements of the boundary 
conditions existing in the cut-out region, viz. the 
axial load is zero in the discontinnoun stringers 
a t  the cut-out and the shear is zero in the,panels 
whicli have been removed to form the ent-ont. It 
is appropriatc to explain in some detail tlie par- 
ticular choices of tlic equations (5.1). 

For c a e s  ( l a ) ,  (2a) and (ah) where the shear 
S , ( k )  is always zero i n  the middle bay 'it is oh- 
viously necessary to choose tlie first of equations 
(5.1). For case (3a), the first equation is 'still 
sufficient, for since S , ( k )  is an odd function it 
automatically infers that  the second equation is 
satisfied. For cases ( I h )  and (3b), and also for 
case (3a) if so desired, the second equation of 
(5.1) is sufficient to ensure that all the boundary 
conditions in the cut-out region are satisfied. 

The rectangular system of n--m linear simnl- 
taneous equations (5.1) is insnffieient for tbc 
determination of the n - 1 unknown coefficients 
e; for the cases (a ) ,  or the n-2 coefficients ai 
For the cases (b),  i.e. there are more unknowns 
than equations. I t  is convenient to make some 

'tfamformation, e. g. ' 

a i=  an, + 1.i h w + l  f am+%iX m + 2  + + ... + a.,iX., for eases (a) ,  
or (5.2) 
ai =%,Am + a,,++,;A,,+l + 

+ ... f a,-,,iA n - - l ,  for c a m  (b), 

so that the Rctangular system is transformed into 
a square system of Linear simultaneous equations. 
The coefficients A are  now the unknown quantities 
and the' a's are as yet arbitrary constants. I t  is 
now passible to solve the transformed equations 
for the A's and then substituting these values into 
the exprmions (5.2) the values of the ai coeffi- 
cients may bc found. 
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There are, of course, an infinite number of such 
transformations (5 .2) ,  but there ' is  only one that 
will make the strain energy stored in the struc- 
ture a minimum. It is proposed .to determine this 
particular transformation for  eases ( la )  and (lb) 
only, since the transformations for, the other eases 
follow easily by analogy. 

Proceeding t,hus, i t  is: necessary to examine the 
variation of the-total  strain energy .stored in the 
structure with rcvpcct to the typical coefficient 
ai , viz. i 

where the strain energy is compased of the S.E. 
of the stringers, the S.E. of the sheet covering 
and the S.E. of the Tings for  beiiding and cireum- 
ferential deformation9 of the rings. The strain 
energy of tKe rings due to shear in their planes 
is of second order and will therefore be neglected. 
Thus, equation (5.3) becomes 

Now, the variations of ihe strain energy given 
in (5.5) are  not independent of one another for 
various values of the integer i. Throughout the 
variation of the strain energy, the appropriate 
restrictions given in equation (5.1) must ,be con- 
formed with. So, .. using the mcthod of indeter- 
minatc multipliers, ,+e independent variations of 
the strain energy are  expressed by 

.I , 

" 
for case ( la ) ,  

au ; iP(k)  
--= ani x;+. 

K = tn+ t ' . 

and ( 5 . 6 )  

for case ( lh) ,  ' I  n-t au 
aai 

k = m  

or in more explicit t e r m ,  

( 2 S : ( k ) + S ; ( k )  ) + au a 
a,, aa, 2 p t  11 

h=O 

I 
Referring to  table 4.1 and making the appro- 

priate substitutions and completing thc various 
summations, i t  is readily verified that 

.au 5 . na, 
-=- __ . Aia; for ease ( la ) ,  

and 
aai 3 '  EA^ 

au 

&ere f . ,  

nn . Bjai forcase ( lb) ,  _=__ 
an; EA8 

8 ,  

iw  
A# = i  + a / r o ( E )  s a t a n  ( + ) ( E ) ( A ) c a v x -  2 n  + 

+ '  
t- 

I n 

and 
" I. ,: 

zn + B ~ = I  +3//;'fC) ($)(;)(+) R easee22n 

P - .  
R, 3 A,R2mZi + 

' + ' / c i a )  ( I 

n 

n 

since the indeterminate multipliers X a're indepcn: 
dent of an arbitrary constant mu1,tiplier. 

The transformation (5.2) has therefore been 
found which ena.bles the coefficients ai to be de- 
termined so that the strain energy stored in the 
structure is a minimum. 

Equations (5.1) and the appropriate transform- 
ations are summarized for the various cases in 
table 5.1. Explicit exprmsiom are also given for 
the coefficients ai .when, n - m = 1, and when 
? ~ - n i = 2  for case (2b). 

6 The relative stiffness pammeters. 

with that of the cylinder, containin, " a cut-out. 

I )  

The relative stiffness parameter is defined) as 
the ratio of the stiffness of the continuous cylinder 

Therefore i t  is expressed by the ratios of the strain 
energies, viz. 

where U, is the strain energy 'of the reinforced 
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cyliiider formed by continuing the stringers and 
sheet covering a c r w  the cut-out region. 

Now, sincc the ai distributions ape ortllogonal 
statically zero groups of forem the s h i n  cnergy 
of the cylinder with cut-out may he expressed by 

so that t,he expression for the relative s t i f fnes  
parameter hccomcs 

(6.3) 
1 
"R' 

where 

a.nd 

au 5 ?LR 
am, ~ E A ,  
_- -- a , A ,  for cases (la), (Pa) and (Zh), 

or 

m , H ,  forcilsc.s ( 3 a ) ,  (1h)  and (31~) alJ ?cn _=__ a,, EA, 
The dcrivat,ioii af K rcquires 110 further explan- 

ation and the relative st,iffness parameters ace 
given cxplicitly in tahle 6.1 for the various CBSES. 

7 Numerical examples. 

Thc load distribution in a particular three-hay 
cylinder and the stiffness reduction factor ham 
heen calculated for thc six loading cases of fig. 2 
when n '= 6 and when the values of the non-dimen- 
sional parameters are 

( A,ElZ = 3000; (-)= A,  1.0 
AE 

All rings arc assumed identical and with zcro 
eccentricity. 

In  addition, eaFla t ions  have heen carried out 
fpr casc ( lh) ,  i . e .  torsion, assuming n=12,  where 
thc 'values of 4hc nondimensional parametcrs are 
either the samc as for  n = 6,  or 

(,) E &-)=0.75; As ( - ) = 1 . 5 ;  El 
a 

the total stiffener area hcing the same 'as for 
n=G in the latter case. 

Case ( l a ) ,  i i c c  5. 
For convcnicnre the total applied normal load 

has hecn taken as P = 2 n =  12units. I n  table 7.1 
resiilts for  A,  and a,, calculated after table 5 I ,  
as well as results for P o ,  P , ,  S,, To and M a  as 
determined after table 4.1 are presented. Thc 

sti(fnes reduction factor 7) which was calculated 
after table 6.1, is given in table 7.11. 

C m  (aa), m = 5 .  
For convenience, the.  total applied ,hending 

moment has hcen taken as JI,=nR=G R units. 
Numcrical results are presented 111 tables 7.2 and 
7.11. 

CCUE (3a), m.=.5. 
For .convenience, t h e  total applied ,shear load 

has heen takcn as S,=-n=18 units. Nnmc- 

r i d  results,are presented in tsblcs 7.3 and 7.11. 

C(i.sr! ( lh) ,  m = 5 :  

2 R  
a 

For eonveniencc, the total applied torquc has 

hcen taken is T= A = 3 x B units. Numerical 

kcsults arc giren in tables 7.4 and 7.11. 

Cmo (%)> ni ='4. 
. '  For  convenience, the total a.pplied bending 
moment, has 'hecn taken as If:= nR = 6 R units. 
Numerical results arc given in tables 7.5 and 7.11. 

Case (3b ) ,  +la'= 5. 

2 n IP 
a 

. .  

'For conve&nce, t,hc total applicd shear load has 
2 R  

hecn taken as S:= -n= I S  units. Nnmcrical 
a 

results are  pyesented i n  tables 7.6 and 7.17. 

Ciiss ( l b ) ,  m.-4. 

, .  

For convenicnce, the total a.pplicd torque has 

heen taken as T = - = 3 x R  units. Snhsti- 

t,ntion of the expression (5.7) for  ai , whcrc Bi is 
given in tnhlei7.7, in the rectangiilar swtcm of 
lincar simultaneous equations aftcr table, 5.1 yields 

2 7RZ 
a. 

.~ 
0.080~ii  i, - 0.154538 A, + I ,= n, 

- 0.754538 A, + n . x "  A, + 7 ='o. 
" '  I , ..  

By snbst,itnting ,the solution A5 =-186.6.58, h4,= 
- 90.654 i n  (5.7) the values for, ai, glvcn in 
tahle 7.7, were ohtained. The results for ,  P, , R ,  , 
S1, T, an,d 111, are also g i x n  in tahle 7.7. The 
stiffness reductio: factor 7, calculated aftcr tahlc 
6.7, is given 'in 'table 7.11. . . ,  . 

cnse ( ~ h ) ,  n=12, m = 4 .  
' '. 

. .  
For convenience, the tot?l . :applied .. torque has 

" 2 rill? 
heen takcn as ! / ' --  - 3 x R  units. Numerical 

a 
results are prcsentcd'in tnhles 7.8 and 7.17. 

For. convenicncc, the total a.pplied torque has 
2 T I P  

been taken as  T=- = 3 =it units. Numerical 
a 

results are prescnted in twhles'i.9 and 7.11. ' '. 



For convenience, the total applied torque has 

been taken as T =  -- - 3 nR units. Substi- 

tution of the expression (5.7) for a i ,  where Bi is 
given in table 7.10, in the rectangular system of 
linear simultaneous equations after table 5.1 yields 

a 

3.27716 A i o  - 2.01745 A,, + 1 = 0, 
- 2.01745 A,, + 2.11021 A,, 4- 1 = 0. 

By substituting the solution A,, -- 1.45064, 
A,, =- 1.86076 in (5.7) the values for ai ,  given 
in tahle 7.10, were ohtained. The results for S ,  
and S, are aho given in table 7.10. The stiffness 
reduction factor 7, calculated after. tahle 6.1, is 
given in table 7.11. 

Severa.1 important conclusions follow from these 
results and are summarized below for each case. 

Case (in), *w.rmal load. 

( I )  The maximum normal load occnrs in 
stringer 5 bordering thc cut-out and is 1.8 
times the external normal 1oa.d applied to one 
stringer.. 

(11) The maximum shear in the paneh can be 
determined by inspection and a redundancy eal- 
eulation is not required. This maximum value of 
the shear occurs in the end bays between stringers 
m and m + 1 and is given by 

(111) The maximum normal load i n  the rings 
oceiirs a t  stringer 6 and is 0.24 times the external 
normal load applied to one stringer. 

(IV) The maximum hending moment i n  the 
rings occurs at stringer 6 a n d  is 0.0098 R times 
t,he external load applied to one stringer. 

(V) The .  stiffness is not  seriously reduced, 
7 - 0.878. 

Caw (Za), bending across' the cut-out. 
(I) The maximum normal load oeciim in 

stringer 5 hordering the cut-out and is 1.6 times 
the maximum external normal loa.d, applied to 
stringer 6. 

(11) The maximum shear in the panels can be 
determined by inspection and a redundancy cal- 
culation is not requircd. This maximum value of 
the shear stress occurs i n  the end hays hetween 
stringers m and m + 1 and its value is given hy 

(111) The maximnm normal load i n  the rings 
occurs a t  stringer 6 and is 0.24 t i m s  the maximum 
external normal load, applied to stringer 6. 

( IV) The maximum bending moment in the 
rings occitrs at  stringer 6 a n d  is 0.0016 times tlie 
external bending moment, My. 

(V) The stiffness is not seriously reduced, 
7 = 0.783. 
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Case (sa), shear loud across the cut-out. 
(1) The maximum normal load i n  the stringers 

can he detcrmincd hp inspection and a redundancy 
calculation is not required. This maximum value 
of the load occiim a t  the outer rings in stringers 
0 and n. It is the maximum external n o m "  load 
applied lo one stringer, 

(11) The maximum sheai i n  the p:lllels occurs 
in tlie middle bay hetween stringers 2 and 3 and 

is -- times the maximum external normal load 

applied to stringer 6. 
(111) The maximum normal load occurs in 

the middle rings a t  stringer 6 a,nd is 0.23 times 
t,he maximum external normal load applied to 
stringer 6. 

( IV) The maximum bending moment oceurs.in 
the middle rings at  stringer 6 and is 0.0076 R 
times t,he maximum external noma1 load applied 

1.3 . 
n 

.. 
t o  stringer 6. 

7 = 0.967. 
(V)  The stiffness is only slightly reduced, 

CUE ( I b ) ,  torsion. 
( I )  The maximum normal load occurs in 

0.16 stringer 4 a t  the middle rings and is __ R 
times the external torque, T. 

(11) The maximum shear in the panels occurs 
in the middle hay hetween stringers 4 and 5, i. e. 
in the panel adjacent to the cut-out, and. is 
0.31 
I times the external torque, T. 
aR 

(111) The maximum normal 8loa.d in the middle 

rings occurs a t  stringer 5 and is - times the 

external torque, T. 
The maximnm bending moment .in the 

mi,d'dle ringx occurs at  stringer 5 'and k 0.0075 
times the external torqne, T. 

(V) The s t i f fnes  is ' considerably reduced, 
7 = 0.362. 

Case (ab ) ,  bemding pnrdlcl  to t l ie cut-out. 
The maximum load occurs in stringer 4,  

bordering t,he cnt-out, a t  the middle rings and 
is 1.4 times the maximnm external normal load, 
applied to stringer 3. 

(11) -The  maximum shear in the panels occurs 
in the end hays het,woen stringers 4 and 5 and is 
0.32 __ t i m s  the maximum external normal load, 

applied to stringer 3. 
(111) Thc maximnm normal load in the rings 

occnrj a t  stringer 5, and is 0.15 times the maxi- 
mum external normal load, applicd at  stringer 3. 

(1x7) The maximnm hendin,g moment in  the 
rings occnrs a t  stringer 5 and is 0.0014 times the 
external bending moment, Jf:. 

(V) The stiffness is not seriously rcdneed, 
II = 0.828. 

0.13 , 

R .  , 

(IV) 

(I) 

a 
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Case ( 3 h ) ,  sheiir lomi pnrnllel t o  the cut-out. 
(I) The maximnm normal load oeeum in 

stringer 4 at the middle rings and is 2.2 times 
the maximum external normal load, applied to 
stringer 3. 

The maximum shear in the panels occurs 
in the middle bay between stringers 4 and 5, 
i.e. in the panel adjacent to the cut-out, and is' 

(11) 

- 3'3 times the maximum external normal load, 
a 

applied to stringer 3. 
(111) The maximum normal load in the middle 

rings oeeurs a t  stringer 5 and is 1.6 times 
~e maximum external normal load, applied to 
stringer 3. 

(IV) The maximum hending moment in the 
middle rings occurs at stringer 5 and is 0.029 R 
times the maximum external normal load, applied 
to stringer 3. 

(V) The stiffness is connidcrahly reduced, 
7 == 0.192. 

Case ( l b ) ,  torsion, m-4. 

(I) The maximum normal luad occurs i n  
0.63 

stringer 3 a t  the middle rings, and is - R 
times the cxterikl torque, T.  

(11) The maximiim shear in the panels occurs 
in the middle bay between st,ringers 3 and 4, 
i. e. in the panel adjacent to the cirt,-ont, and is 
- 0'74 times the external torque, T. 

aR 
(111) The maximum normal load in t,he middle 

rings oeeurs a t  stringer 2 and is __ 0'52 times the 

external torque, T. 
(IV) The maximum bending moment in the 

middle rings occum at stringer 2 and is 0.030 
timcs the external torqne, T. 

The stiffniss is excessively reduced, 7 =  

R 

(1') 
0.025. 

Ca.w ( l b ) ,  torsion, n=12, n i= l l ,  
(I) The maximum shear in the panels occnrs 

in the middle bay between stringers 10 and 11, 
i. e. in the panels adjacent to the cut-out, and is 
- times the external torque, T. aR 
0.22 , 

(11) The stiffness is not seriously reduced, 

E t C .  

(I) The maximum shear in the pan& occurs 
in the middle bay between stringers 10 and 11, 
i .e. in the panel adjacent to the cnt-out, and is 
0.21 - times the external torque, T. alZ 

(11) Thc stiffness is not seriously rdnced,  

(111) The effect of doubling the stiffener CFOSP 
sections on the overall behaviour of the construction 
is relatively small. 

= 0.7~0. 

(I) The maximum shear in the panels occurs 
in  the middle bay between stringers 9 and 10, 
i. e. in the panel adjacent to the cut-out, and is 

0.40 times the external torque, T. aE 
(11) The stiffness is considerably reduced, 

n = 0.348. 
I E A  

(111) Comparison with,n=F, v ~ = 5 , ( ~ ) ( ; ; )  I 
= 1.5, etc. shows that the stiffness ;eduction 
ratio is governed mainly by the relative eirenm- 
ferential width of the cut-out, i. e. the ratio 
?L - ni 
-~ . It deereascs very rapidly with in- 

n 

creasing -. 

8 Nomenclature. 

I 
I 

n - ni 
n 

The follo\ving nomt~nclatrrre is used in this paper, 
la 
Ai 

An 

- 
AR 

8, 

Bi 

e 

- 
e 

E 

i 

I 

- 
I 

k 

m 

is tho length of a hay. 
is the ith strain energy coef- 
ficient for cases ( la ) ,  (2a) 
and (2h) and is explicitly 
given in the text. 
is the effective cross-seetion- 
al area of the rings (other 
than those bordering the cut- 
out).  
is the effective cross-section- 
al  area of the rings border- 
ing the cut-out. 
is the effective cross-seetion- 
a1 area of a stringer. 
is the ith strain energy cocf- 
€icient for eases (3a), (11,) 
and (3b) and is explicitly 
given in the text. 
is the eccentricity of the 
neutral axis of the rings 
(other than those bordering 
the cut-out) from the centre 
line of the sheet covering. 
is the eccentricity of the 
neutral axis of the r i n g  
hordering t,he cut-out. 
is Y o u n g ' s  modulus for 
all components. 
is an integer greater than 
unity. 
is the effective moment of 
inertia of the rings (other 
than those bordering the 
cut-out). 
is the effective moment Of 
inertia of the rings bordcr- 

. ing the cut-out. 
is the current stringer or 
panel number. 
there are 2 n - 2 - 1 diS- 
continuous stringers. 
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- 
mi 

IC 

M " ( k ) ,  If,(k) ctc. 

is the ith factor concerning 
the bending moments in thc 
rings (other than those hor- 
dcring'the cut-out), and is 
given cxplicitly in the text. 
is the ith factor concerning 
thc bending moments in thc 
rings hordering the cut-out 
and is given cxplicitly in 
the text. 
is a stiffness factor and is 
defined in the text. 
arc thc 'hcnding momcnts at  
the 76th stringcr .in rings 0! 
1 etc: respectively, 

.#f,,(k., O ) ,  .*lr(lc, 0 )  ete. are tlic hcnding momcnts a t  
a curront point 1 in thr 
kth sector of rings 0, 1 ctc. 
respectively. 
is the total cxtternally ap, 
plied hending moment ahout, 
&he X--% plane (case p a ) ) .  

dfZ is the total cxtcrnally a,,- 
plied hending moment about, 
thc.X-Y plane (easc (2h)) .  
there are a total of 2 n strin- 
gem. 

P , ( k ) ,  P, (k )  ctc. a.re the axial loa& in tho 
kth stringer at rings 0, 1 
etc. respectively 

PI(&, z ) ,  P,(7c, 5) and P,(k ,  5) are the axial loarls 
in the kth stringcr at, a eiir- 
rent point 5 of thc first, 
sceond and third hays rts- 
pcetively. 

P is the total extcrnally ~ J I -  

plied tension (case (la)). 
4i is the ith factor eonccrning 

thc shear in the rings. 
Q,,(76), Q , ( k )  etc. are the shearing forces at 

the kth stringer in rings 0, 
1 etc. respcctively. 
is the radius of proal.nrc 
of t h o  centre line o f ,  the 
shcet covering. 

S ' , ( k ) ,  S 2 ( k )  and S,(k) are the shears per nnit, 
run in the kth panel (?e. 
hounded hy the . 7it,h and 

. k  + I t h  stringers) in the 

n 

B 

8',,(k), S',(k) ete 

t 

first, second and third hays 
respectively. I 

arc. thc differenecs o f  shear 
flows in the kth panels 
whkh load rings 0, I etc. 

is the running cxtcrnally ap- 
plied shear to  t,he 76th panel. 
is the total externally ap- 
plied force parallel to thc 
Y axis (case (3a)). 
is the total externally ap- 
plied' forcc parallel to thc 
Z axis (ease (3h)). 
is the thickness of the shcet 
,covering. 

respectively. 1 

, t ,  is the itl1 hetor  concerning . . the circumfercntisl tinsion 
in the rings. 
are the circumferential ten- 
siom a t  thc lith stringcr i n  

T ' , , ( k ) ,  T, ( I ; )  ete. 

rings 0, 1 etc. rcsspectivc~y. 
T , ( f : ,  O ) ,  !Z',(k, 8 )  ctc. arc the circumferential ten- 

~~ 

sionq at a .  current po,int # 
in the kth sector of rings 0, 
7 etc. respectively. 
is the, total extcrnally ap- 
plied torqur (case ( lh) ) .  
is thc total strain energy 
stored in the stnictnrc. 
is t,he total strain encrgy 
stored in the structure when 
there is no cut-out. 
is t.he total strain energy 
st.ored in all the rings for 
hcnding dcfarmatians. 
is the total strain encrby 
stored in all t he  rings for 
circumferential extensions. 
is thc total strain energy 
stored in the sheet covering. 
is the total strain energy 
stored i n  all t.he stringers. 

, is a longitudinal eo-ordinate 
f o r  each pancl (fig. 1). 
is a system of .reetangnlar 
axes dcfined in fig. 1. 
are statically dcterminatc 
codf icients. 
is the ith sta.tieally indcter- 
minate coefficient. 
is the relative stiffness para- 
meter. 
is an angular eo-ordinate for 

.cadi sector (fig. 1). 
is the 76th indeterminatc mul- 
iiplier. 
is the shkar modulns. 

There are a few additional symbol\ introdtired 
in the appendices, ''hiit these are defincd as they 
are introdwed. 

:i , ' ., , .  
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Appendix A. Concerning the transformations 
for a cylinder with 2 p -t 1 bays. 

Tlic mcthod will he briefly described for  t,hc 
solution of the regular circiilar cylinder nit,h 
2 p + 1 bays and containing a rectangular cut-out 
in the p + l th  hay, i. e. in thc centre hay, as 
shown below. 

f 

It is still assumed that there . i s  complete gcc- 
mct,rical and clast,ic symmetry about the X-Y 
a n d  1'-Z planes so that. the symmetrical proper- 
ties of the strw distributions given in table 3.1 
are still' true. In addit,ion; it is assumcd that tlic 
hays are equal in cvcry respect 'with, of c o u m ,  
the exception of the cut-out bay. These restrictioils 
arc not cscntial cliaraetcristics of thc analysis, but 
thcp simplify the symholization. 

The cylinder is now loaded at rings 0 and 
2 p  + 1 and the redundancies are again chosen as 
tlic axial loads in the stringers at the ring bortlcr- 
ing t,he cut-out, i. e. the pth ring. The most general 
distributions, observing t h e  symmetrical properties 
ahout, the X-Y planc, are given by 

s 5s 

or 

,. . 
where m0 and a,,p arc again dctermibed from the 
ovcrall cquilihrium requirements. 

Now, ,since the ai distrihii'tions are statically 
zcro and orthogonal (i. e. the mixcd coefficients 
in tlic stwin energ,y expressions are' all zcro), thc 
axial loads in the stringers a t  w i v .  utlicr ring q 
are  givcn by 

7 h  
n P"(1C) -(Io + =,,,,cos - + 

and 
kir 
.n P,(k) CC,,,~ sin - + 

(A .  2 )  

whcre T;,,,, is the diffusion constant, a t  ring q for the 
unit. t,rigonometric distrihiitioh of axial forces of 
order index i applied to  t,hc stringers a t  ring P .  
Thc diffusion constants T have the same valnc f o r  
thc sine and cosine distrihutions of same order 
index. I n  addition, for the pa,rticular structure 

: I nuder consideration . .  

~ L , < , = [ T L , * ~ + l - c , l  q s v ,  \ 
i;,o=ri:,:+1=0, 

and 
T i , n = j i i . p + l  l e ] .  

E b n c r and K 6 1 1 e r (rcf. 1) havc dcalt. with 
the compotat,ion of these, diffusion c y s t a n t s  T, 

ahthough it seems as if somc addit,ional tabiilat,ion 
analor nomagraphs are required for the important 
case of the circular cylinder. , I 

Using the expressions ( A . 2 )  the shcars in thc 
pancls and the ring fora% may be determined in 
terms of the ai coefficients, assitniing that the 
diffusion constants r havc already been computed. 
The general expressions arc for  cases ( a )  

( 2 k + l ) n  

-I 
2 n  

sin ,- 2 n  

sin 1 
sq(k)  = - ( ~ L , R -  2 0  ai. q - 1 )  77 

(A.4a) 
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+ Ti,q- , )  aiticos --, 
'I: 1 

i ika 
n 

-I- ri.q-,)aimicos - , q # p , p + l ,  

and for  eases (b) they are 

W k )  - 
( 2 k f l j a  cos 

- 1 2 n  

sin - 2 n  

-- a (%a - %a - I ) a 
, 1 .  

1). - 

For the det,crmination o f ,  the ai coefficiei;ts the 
fundamental equations are the same as equations 
(5.1j. The transformations are of the same charac- 
ter except that the expressions for Ai and Ri must 
be modified to 
'Ai and Bi=4m;f 

ia 
+ 3 ( 3  (2) (C) (+oSeeZ- ? n  + 

x ( 2 + c o s  ")+(,) R (,+ Aa+i --) A&i 
n A ,  

X1= (ri,p+L-ri,p)2 + 2 X ( T , , ~ - T ; , ~ - , ) ~ ,  
q = 1  

P - +  

q = u  
# i = 2  2 ( ~ i . ~ + l  - - 2 ~ i . ~ r i , ~ - ~ j ' ,  

* i = ( T i , # + l - 2  + T i , p , - , ) z .  
- 

It is to be noted that & #  Bi because ~ i , " =  

riSp +, - ~ for the evaluation of A i ,  and = 
- r i .2p+,  ~ for the evaluation of Ui . Using the 
new oxpressions (A. 5)  f o r  Ai and Bi , the e0eff.i- 
cients ai may be determined in precisely the same 
way as for the three-bay cylinder which is one 
particular case of these general formulae. 

When evaluating the relative stiffness parameters 
for this general ease, i t  is of interest to note that 
now . 

. B,a, . \ aU 1 na 
a,, 1 2 .   EA^ l 
_ = _  - 

Appendix B. Concerning uniformly distributed 
stringers. 

The object of this appendix is to consider the 
ewe of uniformly diskibuted stringers over the 
periphery of the cylinder for cut-out problems. 
H o f f  and B e s k i n  (refs. 8 and 9) have made 
invatigations using this assumption for complete 
cylinders under the action of concentrated loads 
and have obtained satisfactory results. 

As mentioned in see. 1, the reliability of this 
assumption could he checked b y ,  investigating 
whether singularities are found in tiie distrihution 
of stresses at the edges of the cut-out in a cylinder 
having continuously distributed stringers. 

I t  is not proposed to enter into any generality 
here, so we shall consider only the problem of the 
three-bay circular cylinder undergoing torsion 
with an infinitely thin slit in the centre bay at 
8=0. All the rin'gs are assumed to be identical 
and wit,h' zero eccentricity. 

The axial load per unit run in the sheet at 
ring 1 is assumed to be given by: 

i m 
P,(B) = 2 aisini8, 

i = 2  

so that 



and the other forces may be obtained from com- 
parison with case (lb) in table 4.1. 

Thns the rectangular system of equations now 
hecomes 

and the tramformation which makes the strain 
energy a minimum is 

x 
zBi 

ni =. - 
It is easily verified that 

(B. 3) 

where the strain energies of the shcar and circnm- 
ferentia1 tensions in the rings have been neglected, 
and t* is the imaginary thickness of the sheet 
covering in tension. ~ 

The ai coefficients are therefore defined ex$- 
citly by  

Ta __ 

where the sum to infinity may easily be found 
and will always be finite. 

The shear in the sheet in the centre hay is 
given by 

which after substituting 
C d 
z* z (z  -1)* & c l +  7 + ., .2 

may be written as 

where 
d 

c + i Z ( i Z - 1 ) 2  

d Pi = 
i4 + ciz + 

.(?-l)* 
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I n  accordance with the examples considered in 
sce. 7, it was assumed that 

t T )  E (T)=1.5, t* (-)=1.5, 'II -=3000 Rzat* 
a I 

giving c = 20.25 and d= 303750, which yields 
(D 

2 p i  -0.471. 
i = 2  

The summation 
m x p *  ( 1 - C c o s i B )  

* = 2  

was carried out numerically for a number of 
values of 

OIBS7. 
The remaining summations arc indeuendcnt of c 
and d ,  their values following from 

this summation being valid only for  0 5 0 5 T. 

Numerical results fo r  &',(I?) are prescnted in 
table B. 1 and fig. B. 1. T,he folloming conclnsions 
can be drawn from these rcsults: 

e 
Fig. B. 1. Ikelatiou between 4 :rnd S,. 

(I) No singularity exists in the stress distri- 
bution a t  the edge of the cut-out, the shear 
stresses decreasing gradually to zero whcn ap- 
proaching this edge. 

(11) Whem B increases from 0 to T the shca.r S, 
increases rapidly a t  first until i t  reaches a maxi- 
mum, after which i t  decreases slowly and ap- 
proaches closely to the shear in thc corresponding 
cylinder without cut-out. 

(HI) A quantitative comparison between the 
results obtained for cylinders with continuously 
distributed stiffeners and for cylinders having 



s 60 

discrete stiffeners ir not..'pa%ible, ,.the' width of 
the cut-out in the circumfeNntia1 :direction heing 
different in both eases. , I n  fig. B. 2 ..the relation 
I)etwecn 8 and S, has been presented !for con- 
tinuously distributed and several cases' of aiserete 
stiffeners.. It is observed .that the increase of .m 
from 10 to 11 for = 12 and ' d e  'increase of n~ 
from 4 to  5 .for n= 6 r$uIts- in a much closer 
approach to the curve 'for continuously distributed 
stiffcners in the neighburhood of":,the cut-out. 
For % = 12 and ~n = 11 the curve for discrete 
stiffeners shows already a quite 'close resemhla.nce 
to .the CUITC for continuously distributed stiffeners, 
csptvially for 9 > 30'. It can be concluded that 
the method of replacing discrete stiffeners hy eon- 
tinuonsly distributed stiffeners will yield reliable 
results providrd the number of stringem is not too 
small, because the general character of the relation 
hetwecn B and S, is the sane>fbr  both cases in 
fig. B. 2. 

I 

. .  
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Fig. R. 2. Campariaon hetwecn rcsults for cylinders loaded 
in torsion and having disorete and euntinuousl? 

distributed stiff  enors. 
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TABLE 3.1. 

Case Stress 

P 
S 

(la) t 
4 
m 

- 

P 
S 

4 
P a )  t 

m 

P 

( 3 4  t 
4 
m 

S 

- 

P' 

t 
4 
nt 

S 

( Ib)  

P 
S 

(2b) t 
4 
m 

- 

P 

(3h) t 
Q 

S 

m 

where p is a stringer 

X-I' planc Y--Z plane 
__________ 

SYM SYM 
ASYM ASYnI 

SYM sm1 
ASYM SIX 

SYM SYM 

SYM SYM 
ASYM ASYM 

SYM SYM 
ASYM SYM 

SYM SI31 1 
SYhl ASYM -1 

ASYM SI'XZ 
SYM ASYM 

ASYM ASY'M 
SYM ASYM 

ASYM ASYM 
SYM SYM 

ASYM ASYM 
SYM ASYM 

ASYM ASYM 

ASYM SYN 
iYA l  ASYM 

ASIql  SYh[ 
SYM sm1 

ASYM SYM 

ASYM ASYM 
sm1 SYM 

ASYM ASYM 
SYRI ASYM 

ASYRZ ASYM 

- 

axial 'strcss, 
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TABLE 6.1. 

The relative stiffness parameters. 

The relative stiffness parameter 7 is given by 

1 
1 + K '  

? =  __ 

The following table gircs tlie explicit expressions for K for the 
various eases. 



s ' I i K  

i I Ai 1 mi 1 1c j . ' P , .  PI 1 as, I l', 
- I - .., . 

- - - 0 1 0.7935 - 0.1033 + 0.0418 + 0.00071 
- - - . .  1 ' .  .. 1 .1.1857 + 0.0825 - 0.0412 - 0.00124 

3 E.06964 + 0.0618609 3 1 ,. 1,1040 + 0.0660 , - 0,0041 + C.00112 
4 1.99982 -0,249621 4 1 0.6683 - 0.2655 + 0.0$50 - 0.00166 

2 273.521 - 0.00182507 2 1 0.8795 - 0.0361 + 0.0260 + c.00130 

1.49066 -+ 0.334878' 5 1 1.7657 
1 6 1.41891 -0.351617 6 .  1 0 
I 5  
I 

- 
- 
2 
3 
4 
5 
6 

+ 0.5 - 0.1668 - 0.00475 
0 C 0.2404 + 0.00976 

0 
1 
2 

' 3  ~ 

4 
5 
6 

I I 1 

+ 1  + 1.2065 
+ 0.8660 + 0.6803 
+ 0.5 + 0.6205 

0 :  - 0.1040 
- 0.5 - 0.1683 
- 0.8660 - 1.6318 
-1 0 

- 
- 

273.521 

1.99982 
1.49068 
1.41891 

8.06964 

a SI 

+ 0.1033 
- 0.0825 
+ 0.0381 

0.0660 
+ 0.2658 
- 0.5 

0 
- 

- 
- 

+ 0.00182507 

+ 0.249621 
- 0.334878 
+ 0.351817 , 

'--;0.0818609 

i I k 

0 $ 3  
\ ' .! 1 

- r '  - 1 + 2.598 
2 2267.30 + 0.000621311 2 + 1.5 
3 57.5575 - 0.0244747 3 0 
4 7.76103 + 0.181510 4 -1.5 
5 3.82629 -0.368162 5 ~ 2.598 
6 3.31279 + 0.425232 6 3 

- - 

TABLE 7.4. 

Numerical results for case ( lh ) .  

- I a s , ' I  a s ,  

1 1  + 1.215 - 0.893 - 1;215 
+ 0.669 1 2 . 8 2 2  -2.553 
+ 0.675 -3.647 -3.902 
- 0.244 -3,891 - 3.414 
-0,006 -2.398 -3.401 
-1.701 -1.5 0 

0 0 0 

I 
j " 

1 ' 0  

- 0.0416 
+ 0.0412 
- 0.0260 
+ 0.0041 
- 0.0450 
+ 0.1668 
- 0.2404 
-~ 

' To 

- 0.0456 
+ 0.0410 
- 0.0310 
+ 0.0363 
- 0.0895 
+ 0.1791 
- 0,2262 

i 1 B ,  1 a i ,  I k 1 PI 1 a s ,  1 a s ,  

- - - 0 0 + 1.051 + 0.899 
- - - 1 - 0.158 + 0.893 + 1.215 
2 2267.30 - 0.00950032 2 + 0.039 + 0.931 + 1.137 

1 
E $10 

___ ___ 
+ 0.00071 
- 0.00124 
+ 0.00130 
+ 0.00112 
- 0.00166 

+ 0.00976 
i 

1 

To 1 If0 

f 0  0 
+ 0.0405 +- 0.00061 
-0,0482 -0,00365 

$Io * .I 
+ 0.00120 
- 0.00111 
+ 0.00061 
+ 0.00020 
+ 0.00086 1 
- 0.00497 I 
+ 0.00764 [ 
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, .  

l i I A i  a6 6 .. p ,  1 a s ,  1 , T~ i E JfO 
1 

- - - 0 0 
- - - 1 0.5 
2 273.521 + 0.00236495 2 ' '0.866 
3 8.06964 - 0.0925607 3 1 
4 1.99982 + 0.323460~ 4 0.666 
5 1.49066 - 0.250534 5 

0 - 0.0156 0 l o  
0.564 + 0.0488 - 0.0116 - 0,00044 
0.805 -0,0124 + 0.0278 - 0.00176 
0.842 - 0.1703 + 0.0142 ' + 0,00221 
1.361 + 0.3246 - 0.1216 + 0.00439 

- 0.1753 + 0.1462 - 0.00654 O 5  I O '  I I 

i Bi 1 ai P ,  j '  a8,  j a s ,  

. . . .  
- - - 0 0 0 + 3.543 + 4.110 

1.5 + 1.089 + 3.133. + 1.931 
2 2267.30 + 0.0354557 2 ' 2.598 + 0.721 + 1.256 4- 0.488 
3 57.5575 -0.606365 3 3 - 1.444 -3.186 + 3.376 
4 7.76103 + 3.45265 4 2.598 + 6.640 + 0.854 - 9.904 
5 3.82629 , -3,25018 5 1.5 -4.952 - 5.598 0 

I 
. . 1  - - - 

I 

0 0 
-0.151 + 0.0030 
+ 0.160 -0.0137 
+ 0.355 + 0.0126 
- 1.399 + 0.0478 
+ 1.553 - 0.08iS 

i I Bi 
I 

- - 
- - 

, 
I'  

2 2267.30 
3 57.5575 
4 7.76103 
5 3.82629 

ai 

/ /  - 0 
1 

- 0.142593 2 
+ 1.66798 3 
- 0.396066 4 ' .  + 3.479 + 1.5 
- 4.27260 5 0 + 1.5 0 0 

- 

0 - 0.481 - 0.0862 
. .  . 

O I  

. ai 

- 0 0.999 
- 1 1.003 

- 0.000541240 2 1.006 
+ 0.0124267 3 0.998 
- 0.076888 4 0.979 

- + 0.178929 5 - 0.972 
- 0.226530 , "  6 1.015 
+ 0.221069 7 1.100 
- 0.190526 8 1.103 
.+ 0.148657 9 0.846 

0.477 
1.5 , .+ 0.0512125 

, -Oo.l01292 

a 8 2  

1,002 
0.993 
0.968 
1.004 
1.042 
1.055 
0.970 
0.800 
0.793 

, 1.308 , 
2.045, 
0 

- 
- 
- 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

- 
- 

5174.61 
145.794 
16.9052 
5.46588 
3.31279 
2.60479 
2.27407 
2.09102 ' 
1.98517 
1.92919 
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TABLE 7.9. 
Numerical results for case ( l b ) ,  n=12,  m=11, (-) k A  (2) =0.75, etc. 

P at 

- l k  - 
ai 

- - 0 1.000 0.999 - - 1 1.005 0.990 
2587.80 - 0.00068343 ' 2  1.005 0.990 
73.397 + 0.015588 3 0.992 1.015 
8.9526 - 0.091682 4 0.973 1.055 
3.23294 i + 0.19103 5 I 0.976 1.048 

6 1 2.15639 
7 1.80240 
8 1.63704 
9 1.54551 

10 1.49257 
11 1.46460 

I 

- 0.21976 1 6  1.034 I 0.932 + 0.20174 7 1.115 0.771 
- 0.16713 8 1.079 0.841 + 0.12700 9 0.798 1.403 
- 0.085074 10 0.522 1.956 + 0.042598 11 1.5 0 

TABLE 7.10. 
Numerical results for case ( l b ) ,  n=12, m=lO, (-) E (-) As =0.75, ete. 

P at 

- - 
- - 

2 
3 73.397 
4 '  8.9526 
5 3.23294 

2.16639 

8 1.63704 

2 5 8 7.8 0 

- 
- 0 1.016 0.967 - 1 1.021 0.957 

- 0.00421503 2 0.996 1.008 + 0.0809695 3 0.925 1.149 
- 0.359999 4 0.880 1.241 + 0.468023 5 1.000 1.000 
- 0.190188 6 1.307 0.386 
- 0.145086 1.446 0.107 + 0.366968 I 's' I . 0.803 1 1.395 

9 
, l o  
11 

TABLE 7.11. 
Numerical results for the rclative stiffness parameter 7. 

1.54551 - 0.439912 9 - 0.395 3.790 
1.49257 + 0.377438 10 1.5 0 
1.46460 - 0.215043 11 1.5 0 

(la) 
( 2 4  
(3a) 
O b )  

(3b) 
(2b) 

Ob) 

Ob) 
(1b) 

(Ib) 

' i  

i 

5 6 1.5 1.0 3000 0.8782 
5 6 1.5 1.0 3000 0.7829 . 
5 6 1.5 1.0 3000 0.9669 
5 6 1.5 1.0 3000 0.3624 

1.5 1.0 3000 0.8282 
6 1.5 1.0 3000 0.1921 

4 6 1.5 1.0 3000 0.0249 
12 1.5 1.0' 3000 ' 0.8248 , 

0.75 0.5 1500 0.7802 
10 12 0.75 0.5 1500 0.3480 1 11 ' 12 

1 : . ' 

11 

9 (radian) 

2 x R 2  
T sz 

7r 
7r 7r 57r 

- 6 - 18 j - j + l z l ~ l  6 

0 I 0.15 1 0.62 I 0.9i 1 1.20 1 0.93 I 1.01 I 1.01 1 1.01 1 1.01 





2.3 Octant gaugc. 2.4 Great-circle gauge 

The octaiit gaugc is a valuablc aid for carrying 
out geometrical drawings and measurements on thc 
sphere surface, in particular for finding the polc 
of a greatcircle. It consists of three YO dLD w e e s  
arcs, combined to a rectangular spherical t.riangle. 
The sides are graduated in  half degrees. One 
degree ,is about.  0.5 em (“u la/<, inch.), so that 
tcliths of degrees can be estimated. The const,riic- 
tion is shown’ in  fig. 1. Its weight is only 0.6 kg 
(=  1.5 lbs) as the main parts have hwii made 
from aluminium alloy. 

Anollicr aid to  facilitat,e the dra&iig of great- 
circlcs on thc spherc is a 150 degrees great-circle 
gauge, gmdoatcd in half degrees (fig. 2 ) .  A short 
cross-har, attac1ll.d pcrpendicularlr to  the middle 
of t t ic  gaiigc, makes the desired ~mit ioni i ig  on the 
snrfacc ~iossihlc. The weight and material of this 
tool are the kamc as that of the octant gauge. 

3 Application of the sphere and drawing-aids. 
As an illustration of the several ways in which 

tliesc tools ma). he iiscd, one applicat,ion with re- 
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gard to thc evaluation of flight test results will 
he described here. 

Suppase that the following six quantities h a w  
hcen ohtaincd from thc aeroplane instrument rcad- 
in@ (sce fig. 3) : 

6 indication of side slip indicator, 
8, truc Pore arid aft  level, 
4 angle of roll about longitudinal 

from gyro- t horizon, 

Thc prohlcm is now to find the angles of inci- 
dence a, of sideslip T and of lateral hank +*. 

It will hc ohvious that a iiumerical solution of 
this problem, even apart from the derivation of 
the necmary formulae; takes rather a ’ long  time 
(about one hour). The use of this method is 
therefore justified only if highly accurate values 
are required. The drawing spberc, however, pro- 
vides thc important advantage of a rapid solution 
with rcasonahle accuracy. 

Proceed tlicn as follows to solve the problem 
mentioned above. To simplify the description, the 
angular points and sides of the octant gauge arc 
ealled A,,  B,, C , ,  and a s ,  h,, e6 respect,ively. 
a Put  tlic octant gauge in an arbitrary pnsit,ion 

011 the sphere and draiv t.he great-circles XY, 
YZ and ZX. 
Mark on Z Y  the point3 1) and IC so that YD 
and YE are’ equal to the given +“ and +. 
Mark point B on XZ so that X B  is equal to 
8,, .  Draw the “apparent horizon” D B  with 
the great-circle gauge. 
Put side a, of the octant gauge on 1IB and 
mark on the sphere the pole P of D B  in the 
angular point A,.  

d Put  the angular point A, on E. Side a, thcn 
passes through X. Turn the gauge on E unt,il 
arc XB, is equal to 0 .  Mark point A in B,. 
Mark the truc horizon hy drawing EA along 
e,; mark also its pole Q which eoincidcs with 

h 

G 

c. 
bg. 

R Measure the desircd ralue oE t,he lat,cral bank 
+* along the grcat. eirelc through 1’ pcrpcndi- 
cnlar to E A ,  

Lt is left to  t h e  veiider to find the met,liod foi. 
determining a and +. 

The complete solution of t,his ,problem takcs about 
tm minutes only. An accuracy of the order of. 
one or tivo tenths of B degree can be obtained. 
Anot,hei. advantage over the numerical method is, 
that thc drtaivinp on the sphcrc givc n very clear 
picture a €  the aeroplane’s attitude. 

Thc example esplaincd ahovc is only onc of the 
many problems w-bich may he solved easily in the 
way dcscrihed. T t  is helicved that a hroad field 
of applications for the drawing sphcrc csists. 
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The Effect of a Spring Tab Elevator on the Static 
Longitudinal Stability of an Aeroplane 

by 

Ir. A. J. MABX and DE. J. BUHRMAN. 

summary. 

An investigation is m d e  of the influeuec of a spring tab provided elevator on the static longitndind 8tability. 
I t  appears that in most e w s  the stick fixed stability is deeren*ad as a result of the %tion of tho spring i n  the 
control mshsniem. 

An expression for the stwbility margin stick fixod is given bij formula (3.8). 
Tho influem of the spring 0x1 stick free stability is negligible. 

Contents. 
1 Intrduetion. 
2 
3 Static lomgitudinnl stability. 

General deseriptiou amd prineiplo a f  the q r i n g  tab. 

3 . 1  Stick fired. 
3.2 Stick free. 

4 Condusiam. 
5 '  Notations. 

N.B. The investigation was carried out by order 
of the Netherlands Aircraft Development 
Board. 

1 Introduction. 

In considering the stick fixed longitu6inal 
stability of an aeroplaito i t  is usually assumed, 
tliat the stick fixed condition of flight implies an 
iiivariable position of the elevator. This is no 
longer true in the case of a spring tab provided 
elevator because of the action of the spring 
element, which is installed in t,hc cont,rol circuit 
between stick and elevator. 

Therefore it is investigated i n  this report hov 
stability is affected by the application of the 
spring tab. Effects of friction in the .cont,rol 
mechanism are neglected. 

2 

f 

General description and principle of the 
spring tab. 

The spring tab is used in order to reduce the 
control-force.3 of Iicavy and fast aeroplanes. The 
operating principle is elucidated with fig. 1. The 
elevator lever AB is freely hinged a t  A, whereas 
the tab lever CD is rigidly connected to the tab. 
When thc pilot pulls. his control the spring S is 
deflected,, which causes a .  deflection of the tab 
depending on t,he exerted force and the stiffness 
of .the spring. For a given spring constant the 

tab deflection is large when the control fore: is 
high. So tlic spring tab may he considered as 
a geared tab with a variable gear, which is high 

STICK 

BTABILIZER 

Fig. 1 

in case of high control forces. It is obvious, that  
increasing the stiffness of the spring decreases 
the effectiveness of the system. 

In an earlier report ') of the National Acro- 
nautical Research Institute (N. L. I,.) the authors 
eonsidered the influcncc of the spring tab on the 
control force as a function of speed. 

3 Static longitudinal stability. 

3.1 Stick fixed. 

l'lic cquilihrium of the steady flight condition 
i s  defined to  be statically stable if as a result of 
a disturhance in wing incidence (or l i f t .  coeffi- 
cient) a pitching nionient is generated, which tends 
to  dccre~isc the distnrbance or 

dc, - < 0, d a -  (3.1) 

wlieti taillieavv Ditching moments are defined to  . _  - 
bu positive. 

Two modes of stetic stability are distinguished, 

') Koport V.1398 



sti, fixed an stick free. The former is r itcd 
t o  the condition, that the stick is held i an 
invariable position. 

For  a normal elevator this implies a constant 
elevator angle; this however, is no longer trne 
fo r  a spring tab elcvator, as the spring allows a 
deflection of the control snrface with stick fixed 
(see the sketch in fig. 1). 

In the usual notation (0 5 )  the pitching moment 
of the whole aeroplane in steady flight can be 
written 

An increase AG, in the liftcoefficient brings ahont 
a change in pitching moment: 

Ac, = ( h  - h,) Ac, - 

Furthermore the elevator hinge moment can be 
written, when the tab hinge moment is neglect- 
ed and the elevator is statically balanced (see 
notations) : 

(3.4) 

The last term of the right-hand side of (3.4) 
represents the hinge moment created by the spring; 
C is the spring constant, 1, the length of the 
elevator lever and S the deflection of the spring 
(positive, when the spring is elongated). 

In fig. 2 two positions of the elevator control 

P 
T O  PiLOT 

Fig. 2. 

surfaces are drawn in the stick fixed ease. Note 
that the point A remains in the same position 
and that A p  and Ay h a w  the same sign. 

From this figure i t  appears that 

6 (3.5) 
1 A y =  L A  
4 

and 

A S  - 1,Ap. (3.6) 

When a disturbance Acn occurs, the new position 
of the surfaces will be such, that 

4 de 
. a dn 

4% = - ( 1 - -1 A& + b,Ap + basAy - 

? 
(3.7) 

Eliminating Ay, AS and Ap  from (3 .3 ) ,  (3.5), 
(3 6) and (3.7) gives for  the static margin stick 
fixed K,: 

K ,  =- - = (h,,-?t) + AC,, 
AC, 

(3.8) 

Fuv a normal clevator the static margin is simply 
, 

r lz  

& 
1-- 

a 
a,. (3.9) H>&= (ho- h )  + v 

If both b, and b ,  arc negative (the elevator is 
nol  aerodynamically orerbalancod and doc3 not 
trail against the local wind) the formulae (3.8) 
and (3.9) show that the spring tab caiises a loss 
in stick fixed stability as  all other quantities, 
except b>,,y, betreen thc square hrackets in (3.8) 
arc positive. Even if b,  is slightly positive and b,  
ncgat,ivc tho st.ick fixed stability is decreased. 
Normally speaking it can be said that a gain in 
stability due to the spring tab is only possible 
i E  b,  > 0. I n  general, however, a spring tab 
will be seldom combined with a closelv balanced 
elevator. 

I n  all cases a large value of C (stiff spring) 
corresponds with a small stability change. 

I n  the next paragraph this change in stability 
will he compared with the stability change as a 
result of freeing the ,stick. 

3.2 SYick free 

According to the well-linown theory the ”static 
margin stick free” IO: in case of a statically 
hdanccd nornlal elevntor can he mpresented hy 

Conip;irisoii of (3.1)) and (3.10) shows that the 
cliange i n  stability on freeing the stick dcpcnds 

on - , a paritive (negative) value of 2 corres- 

ponds with a loss (gain) in stability. 
If  we assume the hinge moment of the tab to 

he small there can only be a minor deflcctioii in 
the spring S (see fig. 1) in the stick free ease. 
From that i t  follows, that the free floating angle 
of the elevator with spring tab. is almost the same 
as for t,be normal elevator. So it  can he concluded, 

bl . h 

b,  be 



that the influcnce of the spring tab on stick free 
stahility is negligible. 

Finally it appears from (3.8) and (3.10) that  
in most cases the change in stability due to the 
spring tab is a fraction of that  due to freeing 
the sticlc. 

4 Conclusions. 

I n  this report the influcnce of a spring tab 
elevator on the static longitudinal stability is ' 
investigated. The static margin stick fixed for 
the n o m "  elevator and the spring tab provided 
elevator tire given in the formulae (3.9) and 
(3.8). It appears from these formulae, that  in 
most cases ( b ,  < 0  and b,  < 0)  the stability is 
deercascd as a result of the spring action by an 
amount which is a fraction of the stability loss 
due to freeing the stick with tab locked. 

The stick free stability is almost unaffected by 
the application of the spring tab. 

5 Notations 

7? iwng .rrea 
F,, area of the horizontal tail surface 
Fg area of the elevator 
t wing chord 
t g  elevator chord 
1, distance of aerodynamic centre of tail af t  of 

aerodynamic ceiitrc of the aeroplane without 
tail 

1' 
p air density 
a incidence of zero lift line 
a,, , tail incidence 
,B elevator deflection (positive when downward) 
f l  dcflcction of. the fixed tab (positive when 

downward) 
y deflection of the spring tab (pmitive when 

downward) 

forward speed of the aeroplane 

E downmash angle 
o tail plane setting 
e,, lift coefficient 
con tail lift coefficient 

ac, 
aa a =- 

M 
c, pitching moment coefficient (+m ; positive 

when tailheavy 

c,,,, em when c,=O for aircraft without tail 

c,, elevator hinge moment Coefficient H .  

positive in the same sense as  c,. 

ac,,, a, =- am,, 
ac,, a, =- 
ap . ' 
ac,, a, =- 
ap' 
ac,,, 

a,, = ~ a, 
acH 
sax 

ap 

ag' 

b,  =- 

b, =- acn 

acH b, =- 

ac, b,, =- 2., " r  
ht distancc of centre of gravity of the aeroplane 

aft  of leading edge of chord 
hot distance of aerodynamic centre of the aero- 

plane without tail af t  of leading edge of chord 
IC,, static margin stick fixed 
IC; static margin stick free 
1,2, lever lengths (see fig. 2) 
C spring constant 
8 spring deflection. 

Completed : November 1949. 
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