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Preface

This volume of “Verslagen en Verhandelingen” contains, as usual, a
collection of  reports on the research work carried out at the National
Aeronautical Research Instituie during the latter years.

For a brief review of the research organization and the publication
policy reference may be.made to the preface of Vol. XIIT (1947). For
various reasons, the contents of this volume eonsist mainly of reports of the
Flutter and Structures Seetions, the main reason being the intensive engage-
ment of other sections with ad-hoc rescarch and with the development of
modern experimental equipment, Thus, no irue representation is given of
the total work of the institute, an impression of which may be gained from
the Annual Reports (in Dutch), which are available upon request,

All of the reports contained, in this volume were distributed upon com-
pletion to research institutes and workers: actively engaged in the relevant
field of aeronautieal scienee. Reprints are available upon request as long
as the stock lasts,

Publications of the members of the scientific statf of the institute
which were issued in typeseript form or pﬁhlished in scientific journals
during the period from November 1947 to the end of 1949 are listed on

the following pages.

C..KONING
Scientifie Director

Amsterdam, Janunary 1950,
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REPORT F. 28

Gust Load Coefficients for Wing and Tail

Surfaces of an Aeroplane __

Dr. J. H GREIDANUS and Ir. A. I. VAN DE VOOREN.

-‘Summary.

Accurate caleulations are made for the gust load coefficients, taking into account rotations of the acroplane about the lateral
axis and the instationary establishment of aerodynamic.forces. The influcnee of the most important parameters on the gust
loads is investigated. The results, which are shown in diagrams at the end of the report, are explained, Derivations of
formulae and comiputational detuils are umitted, but the basic assumptions on which the method of caleulation is founded,

are mentioned.
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1  Introduction.

In view of the increasing importance to obtain
detailed information about the effect of gusts upon
the structural parts of an aeroplane, in particular
upon the wing and the horizontal tail surfaces,
extensive calculations of gust loads have been per-
formed at the WNational Acronautieal Research
Institute (Nationaal Luchtvaartlaboratorium), by
order of the Netherlands Civil Air Service (Rijks-
luchtvaartdienst), This work was started during
the war by one of the authors. Results (after a
long delay 'published recently; ref.l) pointed to
a marked .influence of the statice stability%cg—
of the aeroplane, especially on the tail loads. Tt

was considered desirable to investigate this depen-.

dence more completely, and to adapt -the under-
lying caleulations to modern post-war eivil aero-

planes. Though no major change was brought in
the methods applied, the introduction of a suitable
method for numerical integration of the equations
of motion (ecarried out previously by operator
methods) made it possible to retain more details
in these equations and to raise, therchy, the level
of accuracy. In this way, a rather great number
of cases, covering a wide variation of the most
important parameters, has been investigated.
Results are, as far as neccssary, in good agree-
ment with the older work, but the attained ad-
vantages, particularly with respect to ‘the tail
loads, are manifest. . . . .
In this report a complete survey of all hasie
assumptions is given. Further, ample consider-
ation 18 given to the results. All eomputational
details and derivations of formulac are, however,
omitted. They will be coliected in a separate report
{ref. 2), available on request. e
It may be mentioned that all results communic-
ated in this report apply to a perfectly rigid
acroplane. It is known that the corresponding
loads may be too-low in consequence of oscillations,
gencrated by the gust, of elastic. parts (e.g. the
flexible wing) of the aeroplane.. '

2  Basic assumptions.
21 Gust velocity.

The distribution of the gust velocity slong -the
flight path of the aeroplane is assumed to be

w,,:O if s S 0,

we ="/, w, (1wcosw-§_) t0<s<s, (21)
y .

We—1W, if SgS 8,

s giving the distance along the flight path in
terms of the mean aerodynamic semichord I, of




the wing ),
expressed in this unit of length and thus depends
numerically on the dimensions of the aeroplane.
By its introduction as unit of length, I, is elimi-
nated from the argument of the lag functions in
the aerodynamie forces (eompare section 2.3).

The gradient distance, s,, is likewise

F 2

8, =0 the gust ig called a sharp-edged gust. The

gust intensity w, is positive if it is directed upward.

The gust veloeity is constant in planes pérpendi-
cular to the flight path, which leads to symmetrieal
loads. The right angle between the original path
of flicht and the direetion of the gust leads to
loads of almost optimal severity (vef. 1) (other
conditions being given).

22 Equations of motion.

The equations of motion are formed with regard
to a system of rectangular axes, fixed to the acro-
plane and with its origin in the centre of gravity.
Before the entrance of the acroplane into the gust,
the X-axis points in the horizontal direction of
motion and the Z-axis is direeted vertically up-
wards.

The disturbance of the acroplane due to the gust
is assumed to remain small, i.e. to introduece velo-
cities, small compared with the original speed and
rotations over small angles only. The equations
of motion will be developed to the usual first order
of appreximation (singae, cos p=—1)..

The forward speed V (in X-direction) is assumed
to be unaffected by the gust, which is a usunal
approximation, having no important influence on
the results (ref. 1). This is due to the short time
in which the optimal loads are built up.
~ The remaining motion ig deseribed by two. simul-
taneous equations, one representing the equilibrium
of inertia and aerodynamic forces in the Z-direction
and the other expressing the equilibrium of the
corresponding moments about the lateral (¥-) axis.
Both equations are integro differential  equations,
the integral operators arising from the aerodynamic
lag functlons

The initial steady state ean, of eourse, he elimin-,

ated immediately, In the following, the term
“aerodynamic forees” will always refer to -the
aceording changes, directly or indireetly eaused
by the gust.

In the equations of motion, the time ¢ will con-
sigstently be replaced by the variable s by means
of the obvious relation

(2.9)

Henee, the motion of the aeroplane will ultima-

tely be determined by the funetions w(s) and w(s)
1) Defined By the formula
b
f(z By dy f(z nray
21,=-f == b 2.2y
8

{2Idy

Sée zection 4 for notatmns. .

.k (8) =2 —0. 338‘0-”‘1553*—0.679"0300”82 0

denoting respeectively the speed in the Z-direction
and the angular speed about the ¥-axis.

It is necessary to add a convention as to the
point of the aeroplane to which the coordinate s
refers. This will not be identified with the centre
of gravity, but with the fuselage nose. Hence, at
the moment s=s, , the nose of the fuselage reaches
the point s, of the flicht path. The disturbance
of the aeroplané’s motion hy the gust thus starts
at the moment s=20,

23 Aerodynamic forces on the wing.

The total aecrodynamic foree on the wing consists
of the superposition of forces resulting. from:

(i) the change in 'cim':lillation due to the dis-
turbed motion of the wing

(it) the change in circulation due to the partial
motion of the air

(iii} the dynamic profile eurvature

(iv) ~ the inertia effects of the surrounding air.

At first the‘fespeetive Aforces are eonsidered for
4 wing strip of width Ay assuming two-dimensional
flow and negleeting all compressihility effects.

(i) Tf at the moment ¢ an instantaneous change
oceurs in the angle of ineidence at the three- quarter

chord point, then the force at - the moment s is
given by . :

AL(S) =rmpVik (S‘—o Aa(a) lAy

(2.4}

For the lag function %, Jones™ approximation
(ref. 3) T
By(s) =0 ‘ 30

(2.5)

has been adopted in this report.

The disturbed motion of the aeroplane causes a
continuous change in the angle of incidence. Thus
the total change in this part of the aerodynamie
forece hag heen obtained by integration of (2.4)
with respect to o.

(ii) Ii, at the moment o, the midpoint of.the
strip reaches a_gust field of intensity Aw., the
resulting forece will be; at the moment s:

A (o)
74

AL(S) = 7 p V2 ky(s — o). 1Ay, (26)

For k, the rigorous two-dimensional result has
been used (refs 4, 5). ky(s) is equal to zero if
s=—1.

For a gust field with gradient distance, the
total inerement in lift folIows by integration of
(2.6) to o

{iil) The variation of the angle of incidence
along the profile, when it is rotating about theé
Y-axig, gives rise to an instantaneous foree

2.7)
{iv) Due to the accelerated motion of the Sﬁ'ip,
there ex1sts an instantaneous forece (ref. 6)

AL =7 p Vul?Ay.

AL——':rpa,leJ, (2:8)




where @ denotes the acceleration at the midpoint
of the strip, and an instantancous moment’

AM=—"/ymp %—‘;—’ By, (2.9}
The cireulational forees (i) and (ii) act at the
quarter chord point, the force (iii) at the three-
quarter chord pomt and the foree {iv) at the mid-

point of the strip.
The foreces on the total wing are deduced by
integration to y with the following modifications:
The effect of finite span has been approximated
by replacing the factor 2 = by the actual ift slope
for steady flow: :
), =

)
of the wing?). ‘
The tapered wing has been replaced by a rect-
angular wing of the same mean acrodynamie chord
and the same area. The major eonsequence of the

ocy,
-

da

aCL

e (2.10)

F 3

neglected taper will presumably be that the assum- -

ed lift foree builds up somewhat too slowly near
the tips and somewhat too quickly near the wing
root. Another consequence is that all wing chords
enter at the same moment into the gust field.

It must be noted that the force (ii) begins to
build up at the moment that the wing nose (and
-not the nose of the fuseclage, which is ¢, semichords
ahead) touches the boundary of the gust field.
This ean be represented by an appropriate change
of the variable in the k,-function.

24 Aerodynamic forces the horizontal tail

plaie.

on

The aerodynamic force on the tail plane can he
divided into a force resulting from conditions of
free flow and a forece due to the downwash of
the wing.

The first part can elearly be obtained in a similar

way as for the wing?). With
aCL_) _ BGL _

denoting the lift coefficient for the tail placed
in a-free steady flow (and again referved to the
wing area S,), the finite span effect for the tail-
plane has been taken into accoun‘c by replacmrr

BcL) S
27 by ( St

of the lag functions must be repla,ced by

Further, the argument §$—a

— a

!
if the mean aerodynamic semichord of the tail is
equal to £1,. Finally, the aerodynamic foree
directly due to the gust will not act hefore the
moment, ¢, + B.+ 3 (1 —£), this being the distance
of the leading edge of the -tailplane hehind the
fuselage nose, expressed in wing semichords.

The foree due to the downwash has been calenl-

*) All aerodynamic coefficients refer to the wing area
St Thus L=e¢ Y,¥72.8,

2} No elevator motion is assumed to opeur.

ated as follows, The wing is replaced by a lifting
line (bound vortex) through the gunarter chord
point of the mean aerodynamie chord of the wing.
The Iength of this vortex has becn put equal to
20 =2x1, (V' somewhat smaller than b, X' pro-
portionally smaller than the wing aspeet ratio A},
while its strength T is independent of y, which
implies that trailing vortices are concentrated in
the points y =+ b’. Changes in the circulation
about the wing, i.e. changes in the strength of
the lifting line vortex, will be accompanied hy the
formation of equally strong but oppositely direct-
ed vortices of the same length 29’ carried off
by the flow and forming the wake. The strength
of the trailing vortiees varies accordingly. Hence,
the complete vortex system ean, at any moment,
he decomposed in a system of reetan"ular vortices
of constant strength. In calculating the change of
the downwash, the initial horseshee vortex must
be lett out of consideration. For points of the
tailplane the change in downwash has been put
equal to the veloeity induced by the system of
vortices described above, in that point of the inter-
section of the plane of symmetry and the vortex
plane, which has the same x-eoordinate as the
quarter chord point of the mean aerodynamic tail-
chord. The slight underestimation of the effective
downwash, caused by the faet that the theoretical
induced velocity along a line parallel to the lateral
axis is minimal in this point, has been compensated
by a small numerical reduction of the value of A’
resulting from other considerations (e.g. indueced
drag}.

In caleulating the forces due to the changed
downwash, no aerodynamic lag has heen included
in the part gencrated by the slow variation
in wing cireulation, which results from the dis-
turbance of the aeroplane’s motion. To the part
gencrated by the swiftly varying wing circulation
resulting from the direct influence of the gust on
the wing, the k,-function has been applied, though
this impHes an insignifieant approximation, be-
cause the downwash is not constant when shifting
over the tailplane,

It is, of ecourse, alse possible to obtain the
derivative of the lift coefficient of the steady state
downwasgh force from the vortex model considered
above (reduecing to a single horseshoe vortex).

If the result is written in the form

( ) o dep .
e ), P e

it ce'm be shown that p, takes the value

o6 (2.12)

ey,
b o S ¥y
5.

AL §1 + l/l + (
(2.13)

T8 A 8
The slope of lift curve for the tail, placed in
a steady flow and in the wake of the wing, will

be denoted by
BCE, an,
( Ba )L:I)t aa: !

Pe=ps + Pn.

Pn=——

(2.14)

wherg
{2.15)




2.5 Aerodynamic forcés ow fuselage and mnacelles.

From investigations in a windtunnel for a single
wing and for the combination of the same wing
with a fuselage and nacelles, it appears that an
appreciable lift and moment are introduced hy
the fuselage and the naeelles. Introducing a fusel-
age lift coeffietent (o), it is found that in the

cquation
( 0y, ) - oo
at! f'—"‘],’ 80:

P; may attain a value of ahout 0,07, This relatively
large value suggests that the cireulatory flow about
the fuselage is not eompletely due to interference
with the wing, but that fuselage or nacelles itself
also producc circulation. From the measurements
of the moment it follows that the resulting force
aets at a distanee el; ahead of the quarter chord
point of the mean aerodynamie wing chord, where
¢ is only slightly smaller than e,.

It will be assumed that, also under eirenmstaneces
of unsteady flow, the lifting force on fuselage and
nacelles is not subject to aerodynamie lag. This
supposition is supported by the following argument,

If the cireulation about the fusclage is supposed
to- be generated by some suitable system of bound
lateral vortices, the adjoined frec lateral vortices
forming the wake are, in view of the small width of
the fuselage, so short that they induce veloeities at
the place of the hound vortices, which are small
comparcd with the case of a wing in two-dimen-
sional flow. This, however, implies that the steady
fina! values will be attained mueh quieker and the
remaining lag might well be negligible.

Thus, for the fuselage, the % -function is sup-
posed to he equal to 2 if s> 0. However, the
k,-function dees not suddenly take the wvalue 2,
gince the fuselage penetrates gradually into the
gust, As long as the fuselage has not entered over
its full length into the gust, it is reasonable to
expect a redueed lift e g a lift proportional to
the part within the gust. In faect the following
assumption has been made for the f,-function:

(2.16)

k,—=10 if § =<0,

2s
b, == - — < g = Cn iy .
k, e 0<s< e, + ¢ (217
k,=2 T Gt e s

It is supposed that the lift-on the fuselage aets,
under all cireumstances, at the point indicated by
the steady state measurements. Further, the angle
of incidence at the point which has the same
x-eoordinate as the quarter chord point of the
mean acredynamic chord has been assumed to be
the effective angle of incidence for the fusclage lift.

Inertia and dvnamie curvature contributions to
this lifting force have heen omitted.

2.6 Two dmportant parameters. '

TF'or representation of results it will appear con-
venient to introduee two new parameters, viz.
ey,
1/2 [ a = Sw 0
(= 2.18
. om ? { )

F 4

L
e, P (B—e)p:+ (e + Y, + e)py=

=e—fpi+ (e +/y)pr.?) (2-19)

The parameter €, of which the faetor Y, p % 8.
is proportional to the aerodynamic forces, whlle
—lmﬁis proportional to the incrtia forees (with s

(1]
instead of f as variable), governs the trend of the
aeroplane to adapt its vertical motion to the gust ®).
It must be remarked that ¢, denotes the moment
coctficient, taken abont the centre of gravity
(M=cn.%/,pV?.8:.1).
ng and %%’;‘- can easily be
ohtained ifrom measurements applying to the com-
plete acroplane. They both refer to steady flow
conditions. ‘ :
It will, further, he secn that

The derivatives

Do+ ps + pr=1. (2.20)

2.9 Represenmtion\of results.

If w and o« are solved from the cquations eon-
trolling the aeroplane’s reaction to the gust, the
resulting motion is eompletely known and all loads
on wing and tail can easily be determined. They
consist of a posifive aerodynamical load and a
negative inertia load. Both parts do not, for a
part of the aeroplane, balance each other (in
general), though the resultants for the complete
aeroplane do (first equation of motion). Both
ecomponents of the load have been determined for
the wing and the tailplane and will be stated
separately.

(1) Aerodynamic wing load.

The aerodynamie forece on the whole wing due
to the gust can bhe written in the form
‘ dey, :
A 1/2 p = VSw W, Puw . (221)
Ba

A1 denotes the function of 5 representing the
course of the acrodynamic foree if the aeroplane
proceeds into the gust. It has the significance ot
a load coefficient, whose maximum value is always
smaller than 1, this value representing the imagin-
ary case of an aeroplane prevented to adopt any
disturbed motion (i.e. foreced to proceed with
w==0=0), or, what turns out to be the same, of
an aeroplane which is at once completely submitted
to the comstant gust intensity w, and for which
aerodynamic lag does not cxist. With regard to
this case the maximum load coefficient has the

character of a reduetion factor,

(2)  Imertie wing load.

It is assumed that the ecntre of gravity of the

wing coincides with the projection of the quarter

) Making use of (2.20).
2) Thus € detelmmos in first approximation the quantity

+ ]




chord point of the ‘mean aerodynamic wing chord
on the plane of symmetry. The inertia force on
the whole wing then becomes equal fo

aCL My

—Amm Yap m

The maximum value of  the lead coefficient
Amw can also be considered as a reduetion factor,
the case Amyu==1 applying to an aeroplane, suob-
mitted at once to the full gust, atfected by it
without aerodynamic lag and prevented to piteh.

If the acroplane may perform a piteching motion,
Amw €an be obtained as follows,

F'rom the increase in the moment

acm acb

e, Y VSWWOZO;
an angular aceeleration
1 9m gey,
- . VS,w
mjzl, * dey 2P fa b

-~

results.
Hence, the total aceceleration at the wing cenire
of gravity becomes equal to

ac}?l
£
1 oo % Voo S8 8w,
dx

32

Thus, for an aeroplane submitted at onece io
the full gust and affected hy it without aerodymna-
mic lag

BCm
e
i

Amp=1+

{(3) Aerodynumic tail load,

The increase in acrodynamic foree on the hori-
zontal tail plane is egual to

BcL

i\l.t 1/2 4 V S w Di. (2.23)
The load coefficient A; ¢ has the maximum value
1 if the motion of the tail would be undisturbed
until the tail itself enters the gust and aerodyna-
mic lag is neglected (implying that the downwash
assumes immediately its steady state value).

(4) Inertia tail load,

It is assumed that the centre of gravity of the
tail coinecides with the projection of the quarter
chord point of the mean acrodynamie tail chord.
The inertia forece on the whole tail then becomes

a"’ " S, ”:’ . (2.24)

_— Am,t . 1/2 f

Am, reaches the value 1 under the same circum-
stances 88 Amuw.

If a pitehing motion is allowed, Am, is given by
0Cm
BCL L

(B—e)

Amg==1— i

V Sty —2 . {2.22)

Remark.

The acrodynamic inertia forces have been in-
corporated in A and Ay, It is possible to shift
them to the inertia loads by applying the corres-
ponding corrections to m, and m; {without change
of Amw resp. Amg). In this ease A, must be
inercased with a small amount ranging from 0.006
for small values of € (C = 0.01) to 0.012 for high
values (O =z 0.05) while corrcctions of the same
order of magnitude must be applied to Ay,

The resulting force on the wing is given by

BCL

(pw Apw— Am w) /2 P —a(;— V Suw, (225)

and the resulting foree on the tail by

Hy
l'mt) /2P

ac[,

(P aee— VS,w,. (2.26)

The resulting tail force is mainly determined
. . m, .
by the acrodynamic load, sinee }T; A, 18 at most

about 30% of p:Ar:. For the wing, the two
terms may eompensa.te eack other for the greater
part,

The forees on any part of wing or tail ean easily
he calenlated if funections for the distribution of
lift and mass along the span are known.

2.8 Range of paramefers investigaled.

For the values assigned to parameters in eaeh
case investigated, the reader is referred to table 1.
These values are chosen in such a way that

(i} they agree roughly with the mean values
of some large, modern eivil aeroplanes

(i1) the applied variation gives a fairly eomplete
insight into how the gust loads are influenced by
numerieal changes of paramcters. Attention has
especially been paid to changes in the neighbour-
hood of values lecading to high load cocfficients.

3  Discussion of results,

The load coefficients Az, Amw, A and A
are funetions of the parameters
Dy Pn

Cosoe ot 2 %’L jand B, (3.1)
w w w

acy
T Sw, Lo, v, My, WMy, V

and w, are only of importance .— for the load
coefflclents —- as far as they influence one of the
values (3.1).

in fig. 1 the load cocfficients are pIotted as
funetions of s for case 2. It appears from this
figure that aerodynamic and inertia loads reach
their maximum values nearly at the same time;
these values are reached a little sooner for the
wing than for the tail. Thus, the maximum value
of the resulting force can be deduced from the
maximum values of aerodynamic and inertia Ioads
This conclusion holds for all cases.

The parameters €, s, and ¢ are varied in the
cases 1 to 12. The parameter ¢ will often he re-

The quantities p,




A
placed by " which differs by a constant amount
Cy,

from e, aeeording to equation (2,19). The maxi-
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Fig. 1. Wing and tail lead coefficients as functions of s

for case 2.

mum values of the load coefficients are shown in

figs. 2/3 as funetions of i;cm . Any combination of

Cr
€ and s, vields its own eunrve.

Investigation of the. cases 13 to 23 shows that,
within rather good approximation (errors less than
1Y/, %), the maximum values of the wing load
coetficients are only dependent on

Om
ey

Indeed, it appears from figs. 2 and 3, that the

C, s, and
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Fig. 2. Maximal actodynamic wing load cocfficients.

maximum coefficients for the cases 13 to 23, which
all have nearly the same value of € as the cases
1o 3 are in the immediate vicinity of the eurve
conneetmﬂf the coefficients of these last cases.

F 6

A similar reasoning does not hold for the tail
load eoefficients with the exception of case 13
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Fig. 3. Maximal iunertia wing load coefficients.

(fig. 4 and 5), signifying that these coeffieients
depend on the parameters

Pn

10

Cr 85, .jand B.

w

It is shown in figs. 2/5 that an inerease in O
diminishes all loads, which is in accordance with
its definition (section™2.6), denoting that an aero-
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tatl and load eocfficients.



plane with high C-value can casily adopt a vertical
motion. .
Tt iz shown as well in figs. 2/5 that an increase
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tail load coefficients.

in s, diminighes all loads. This toa is evident, since
the acrodynamic forvees are built up slower if s,
is greater. .

The position of the centre of gravity has a
relatively slight influence on the wing loads (though
a backward displacement of the centre of gravity
definitely inercases them), but is more important
for the tail. If the centre of gravity lies forward
(negative &), the tail acquires already an evading

motion by the acrodynamie foree of the wing, thus -

diminishing the acrodynamic tail load, but increas-

ing the inertia tail load.

Since neither tail nor wing loads are affected
appreciably by the aerodynamie forees of the
fuselage it is permitted to negleet them in com-
dcn
deyg
ginal values. All ealeulations in this report, how-
ever, are performed with fuselage forees (exeept
case 13).

1t follows from fig. 6 that an increase in radivs
of gyration leads to smaller values of {A; ;) max

putations, provided ¢ and retain their ori-

.. ¢ . .
if ch takes small negative values (i.e. &£ ~ 0.2),
L f
Yo OCm
but to greater values of (As¢) maxif T is strongly
L

negative (2 ~-—0.2). Hence, the curves connecting
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20 24 28 32

eients are raised by an inerease of horizontal tail
arca, by an inercase of the tail area or by assum-
ing smaller values for the downwash, always com-
. . dc .
paring cases with equal ¢ and —a—c'"— The influence
L
of the tail arm, however, is rather unimportant.
For readers who want to obtain a more thorough
insight in the disturbed motion of the acroplane,
enabling them to analyse and understand better
the changes in maximum load ecoefficients due to
variation of parameters, figs 10—13 eontain curves
of w and lo as funections of s. The aceeclerations
can easily be determined from these graphs
(e. g. the aececleration of the eentre of gravity is
V o dw .
T (71—5— + Lo ) J. The values of s for which the
(t
maximum wing and tall loads arise are indicated.
The maximum wing loads always precede the
maximum tail loads.

4 List of symbols.

X, Y, 7 coordinate axes, fixed to the aeroplanc
-

¥ forward speed {in X-direction)

o velocity of the aeroplane in Z-direction,
positive upward

w angular velocity of the aeroplane about
Y-axis, positive backward

Wy gust velocity

W, constant gust veloeity behind gradient
distance

I, mean aerodynamie semi-chord of wing

élo ' ' » ' 1 ” horizon-
tal tail plane

z wing semi-chord at an arbitrary section

ERN gust gradient distance

5 eoordinate along the flight path

t time

b =2al, semispan of wing

Py aspeet ratio

b =M1, y-coordinate of tip vortex

S wing area )

Sy area of horizontal tailplane

A, z-component of distanee between quarter-

chord point of mean acrodynamic wing
chord and quarter-chord of wmean acro-
dynamie tall chord

it radiug of gyration ahout ¥-axis

el, z-component of distance hetween centre
of gravity of the whole aeroplane and
quarter-chord point of mean acrodynamic
wing chord, positive if centre of gravity
lieg aft

el z-ecomponent of distanee between fore-
most point of fuselage and leading edge
of mean aerodynamie wing chord

el, z-eomponent of distanee between the
point at which the fuselage aerodynamic
forees act and the leading edge of mean
acrodynamic wing chord, positive 1if
leading edge is aft

el, zcomponent of distance hetween after-
most point of fuselage and leading edge
of mean aerodynamic wing chord

p air density




Cr,
(Cb)w
(Cb)a

(¢0)
{en)

(CL)f

Cm

Pw
Ps

Pr

stationary lift eoefficient of the whole
aeroplane, referred to wing area
stationairy lift coefficient of the wing,
referred to wing area ,
stationary lift ecoefficient of the tail in
a free flow, referred to wing area
negative stationary lift coefficient of the
tail due to downwash referred to wing
area .

= (cL)s 1 (cr)n, stationary lift eoeffi-
elent of tail, including downwash (refer-
red to wing area)

stationary lift coefficient of fuselage and
nacelles referred to wing area
stationary moment coeificient of the
whole aeroplane (positive if tailheavy),
referred to wing area 8., to mean aero-
dynamie semi-chord of the wing I, and
taken about the cenire of grauvily

angle of incidence

( acy, ) / dcL
da /oy O
LivE:
da S a
(5e), /5
da /o Sa
( dcy, ) acy,
o /4 / Da
( dcr ) der
da /¢ / O

lag function of instationary aerodynamic
forces when the aerofoil is subject to a

. change in angle of ineidence .

F 10

k, lag function of instationary aerodynamic
forees, due to partial motion of the air
Y/ 2 P ‘aaﬁ‘ Suly
C = 2
m
0 mass of the whole aeroplane
My wing mass
"y mass of horizontal tail plane
. aerodynamic wing load coefficient, see
eq. (2.21) . .
Moo inertia wing load coefficient, sece eq.
. (2.22)
At aerodynaric tail load coefficient, see eq.
(2.28)
Am,t nertia wing load ecoefficient, see eq.
{2.24)
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TABLE 1.

Values of parameters.

Case X £ pul c Duo f:; g—:) % J B ZZ‘
1 10° —02 0.01 0.01182 0.8460 0.15 —0.0379 0.07 2.5 6.5 —0.5796
2 " 0 . . . . ) o Y — 0.3796
3 . + 0.2 . . N o, . " . . — 0.1796
4 " 0 0.02s 0.02955 . ” . ,, — 0.3796
5 " —02 0.04 0.04728 - . , . . . —0.5796
6 . 0 " . " ” o o . —0.3796
7 25 —02 0.01 0.01182 . " . " ., . —0.5796
8 . 0 " - o - " <, N w | —03796
9 . + 02 . . . . . ,, . " —0.1796
10 Y 0 0.028 0.02955 | . ,, . . ., " — 0.3796
11 Y 0 0.04 0.04728 . . . . . —0.3796
12 ” + 02 o o . » y ,, . . —0.1796
13 10 - 0 0.01 0.01112 0.8992 . . 0 . " —0.6552
14 . 0 . 0.01182 0.8460 ” 0.07 3 . — 0:3796
15 . —02 o . . . . o 2 . — 0.5796
16 " + 0.2 » e ,, o " " . " —'0.1796
17 . —02 0.04 0.04728 , , . ) ) . — 05796
18 . 0 0.01 0.01219 0.8200 0.20 — 0.0505 N 25 - — 0.5672
19 . + 02 Y . . L . " . . T 0.3672
20 . 0 . 0.01180 . | 0.8477 0.15 — 0.0404 " . 5.5 —0.2736
21 . —02 Y _ . . . " . N — 04736
29 . 0 N 0.01165: | -0.8586 o, —0.0553 ,, . 6.5 — 0.2881
23 . —02 . . . . - " . " —0.4881
Pn has heen caleunlated in aceordance with (2.13), agsﬁming =175 for the cases 1 till 21 and X =6 for the cases 22 and 23,
w .
white 2250 %% __ 141 97 for il cases. i
1F Ba

Other parameters, which have for all eases the same value, are

£=2/3’

ey=>5 e=3"/, and e¢,=9.

d
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TABLE 2.

Maximum values of load coelficients.
Case; T T (A'I"iﬁ).mﬂx"' “'—(Am.ﬁ)m“x“ B """"(‘Az‘g')'max T “‘“‘(A'm:r') max: "' -
1 0.797 0.798 0.687 1.167
9. - . 0812 . 0.810. - . [ .. 0.746 . .. 1.060
3 0.832 0.830 0.816 . 0.951
4 0.737 0.721 0.605 0.884
5 0.666 0.634 0.390 0.817
6. _6886 0.663__ | .. 0517 _ 1. 079 _ |
7 0.775 0.766 0.635 1.104
8 0.796 0.789 0.710 1.023
9 0.819 0.816 . 0.798 0.940
10 0.693 0.679 0.551 0,822
11 T 0.626.0 |7 0607 - 0448 0702
12 0.663 0.657 0.605 0.715
13 0.794 0.780 0.660 1.227
14 0.810 0.808 0.749 0.983
15 Rt T 0793 Tl < -0.8027 - 0.658 - - 1363 -
16 0.846 0.843 0.834 1.045
17 : 0.668 0.644 0.386 0,924
18- 0.806 0.798 0,712 1167
19 0822 -l 0812 - | - 0766~ | —- -1.059 -
90 0.811 0.811 0.762 0.964
21 0.795 0.802 0.707 1.070
292 0.813 . 0.810 0.73¢ 0.986
23 | ..0797 .\ . om99. . |. 0860 __ 1097, .|
1
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Loads on Wing and Tail Surfaces of an Aeroplane due’
to a Sinusoidal Gust Wave

by

Ir. A, I. VAN DE VOOREN,

Summary.

Gust load coefficients are calenlated for the ease of a single sinusoidai gust wave. The rotation of the acroplane about its
lateral axis and the dynamic features of unsteady flow (aerodynamic lag) have both been taken into account. Besides the
length of the gust wave, two other parameters with predominant iufluence “on the resulting loads have also been varied.
The results are eompamed with those pertaining to persisting gusts (where, beyond a small gradient zome, the gust velocity
retains a constant value), which have been communicated jn a former report (ref. 1).

Contents.

Introduection.
Gust velocity.
Results.
References.
Appendix.
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Introduction.

In report F.28 (ref. 1), results have been com-
municated of cxtensive caleulations of gust loads
on wing and horizontal tail surfaces of a perfectly
rigid aeroplane, These caleulations pertain to per-
sisting gusts, where, beyond a small gradient zone
of sinusoidal wvelocity distribution, the velocity
remains constant (fig. la).

The present report contains gust lead caleul-

ations for a single sinusoidal gust wave, whose

W

0 55' ——5

Pig. 1e. Persisting gust.

veloeity distribution is shown by fig. 1b (see also

formula (2.1} ).

The case of the gust wave may seem less in-
teresting, sinee loads should, at first sight, be
smaller than for a persisting gust of equal maxi-
mum veloeity w,. This conclusion, however, is

premature, as can be explained in the follow-
ing way.

Paying attention to the aeroplane’s vertical
motion only, the gust of fig. la gives rise to a

"

:

sg zsg-—-—b-s
Fig. 1b. Gust wave.

vertical acceleration of the centre of gravity of
the acroplane, inereasing from zero to a peak value
and subsequently deereasing monotonically in an
approximatively exponential way. The ultimate
vertical velocity attained is obviously equal to w, .
In the ease of a gust wave, however, the vertical
veloeity must ultimately vanish again, which im-

plies that the period of aceeleration is followed

by a period of deceleration, So, the loads first
reach a positive extreme and later on a negative
extreme. Now, it can easily be shown that, if
rotations of the aeroplane about the lateral axis
would really be absent, the second extreme would
he less severe than the first. (The argument is
that the upward velocity of the aeroplanc at the
moment of maximum gust velocity has not yet
attained the value w;, which means that it enters
the “subseguent downward gust” of the resulting
gust wave with an unloading downward initial
velogity). Actually, the oeeurring rotations do not
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affect the loading 'on-the wing to suech an extent
{in the cascs considered), thai this provisional
conclusion is invalidated, but the influence on the
tail loads is appreeciable, making it impossible in
certain cases to attain a definite conclusion with
respect to the ratio of the aceelerative and de-
celerative extremes of the tailload without detailed
analysis,

For thig reason the case of the gust wave attains
some independent significance.

Moreover, the gust wave can well be considered

as a typical element of irregular gusts. So, results
applying to this ease may facililate the tracing
of those features of actual gusts which decisively
affect the optimum loads.

Finally, the extension of these ecalculations to
the case of the gust wave may also facilitate the
comparison with other caleculations pertaining to
non-persisting (for instanee triangular) .gusts.

All ealculations have been performed in exactly
the same way as explained in report F. 28 (ref. 1),
changing only the velocity distribution in the gust.
Referring to this report, and to. report F.29
{ref. 2), containing details of the mathematics
involved, the most important principles may be
summarized, for sake of convenience, as follows:

(i) two degrees of freedom are admitted for
the disturbed motion of the aeroplane, viz: vertical
translation and rofation about the lateral axis,

(ii) aerodynamic lag is properly included in
the formulae representing the unsteady aerodyna-
mie forees,

(iit) direct numerical methods are used for the
integration of the equations of motion.

2 Gust velocity.

The distribution of the gust velocity along the
flight path of the aeroplane is assumed to be

Ao Amgws Al M

w, =10 if §<0 or s>2g,,
(2.1)
w,:l/zwe(l——cDSw?sf) if 0=<<s=<2g,
7

s giving the distance along the flight pash in terms

- ~of the mean aerodynamic semichord 7, of the wing.

The length of the gust wave, 2 s, is likewise ex-
pressed in this unit and thus depends numerieally
on the dimensions of the aeroplane. The ‘maximal

) gust- intensity w, is positive for an upward gust.
"~ The gust veloeity is constant in planes perpendi-

cular to the flight path, which leads to symme-

"o trieal loads.

3" Resilts. -

3.1 The load coefficients Ayw, Amw, Ag: and
Awy, determining the total loads by aid of for-
mulac (2.21), (2.22), (2.23) and (2.24) of rei. 1,
have heen caleulated as funections of s for the
same eases 1 to 12 which also were investigated
in ref. 1 and for one additional case, number 24.
Figure 2 gives a representative result (case 11).
According to this figure, aerodynamic and inertia
loads reach their optimum values nearly at the
same time, Thus, the maximum value of the re-
sulting force ean be deduced from the maximum
values of acrodynamic and inertia loads This
conclusion holds for all cases.

The extreme values of the positive as well as
of the negative load (compare the introduetion)
are given in table 1 and are plotted in figs. 3/6
{being reduced to absolute values in the latter
OCm
aC[,
and €. In principle, the load coefficients depend
on the same parameters as in ref. 1, but from

figures) as functions of the parameters

o8

06

Q4

02

o=

-02

-04

-06 :

-08

4
‘__,)

O 4 8 12 16 20 24

28 32 36 40 44 48 52 56 60 64

Fig, 2. ng and tail load cocfficients as funections of s for ease 11,
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It will be clear that, for tail loads too, the

these parameters only results for the persisting gust and the gust wave

., C and s,, being of

L

decisive importanee, are varied in this investig-

atlon. O Py
3.2 Wing loads. Tt appears from [ligs. 3 and 4 s P —

that for the wing structure the first extreine SMOMENTS OF OPTIMAL TAL LOADS 5
is critical, as expected. Comparing results with /
those of ref. 1, it is secn that the replacement 02

of the persisting gust by a gust wave does not ' .
affect the load cocfficients very much, parti- / :
cularly if € is great, unless s, is remarkably /

small. Indeed, the maxima for s, =25 searcely .o 1
have changed at all. This can be explained by ' / w ﬂg
considering the moment at which these maximum

loads are reached (this moment has bheen marked S

in figs. 7 and 8). The later this moment occurs O 4 B 12 16 20 24 28 32 36
for a given value of s,, the greater the diffcrence
between the loads for the persisting gust and the

|
gust wave will be. If €' is small — which means ‘\30&
that the aeroplane adopts only slowly a vertical coos
motion — the moment of maximum load will be A
QCC4
later than for large values of C. For long gust N
waves, the maximum wing loads are reached at o A\
a moment, that the gust wvelocity has not yet §2
decreased very mueh. . : —Q004 I 1é
3.3 Tl loads. For the tail structure, the sceond —_GOCE =
extreme appears to be more important than the - \\
first (figs. 5 and 6) if ¢ and s, are great and -ooiz =4
OCp . .
o, has a great negative valne (corresponding —0016 bl e 3536
to a forward position of the centre of gravity).
All these factors promote a relatively great pitch- Fig. 7. Motion of the aeroplanc (s, =10).
ing rotation of the aeroplane, causing a great up- -
ward velocity of the tailplane which must evidently will differ more if the moment of maximum loads
amplify the second extreme. In these circumstances occurs later. Sinee a backward centre of gravity

the gust wave leads to greater tail loads than the
pergisting gust.

{small negativ

LT '
07 MGMENTS OF OPTIMAL WING LOADS \
oe )(:MOMENTS OF OPTIMAL TAIL LOADS //__“"\\EN4__
. _ 10
e /7 = 12 ‘%
4 '
/A é
N / /4/ /,/
02 | // g4 '/g .
o R 72N
o1 Z&t’
O

o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60564

Fig, 8. Motion of the aeroplane (s;—= 25}.
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ward tail velocity, it delays the moment of maxi-
mum load. Hence, for the tail loads, differences
in results for persisting gust and gust wave will
he more pronounced if € and s; are small and
OCm.
8CL

Figs. 7/9 refer to the motion of the aeroplane.
The velocity w ig the velocity of the centre of
gravity in the direction of the normal axis of the
aeroplane. Acceleration veloeity and angle of in-
cidenece, hoth for wing and tail surfaces, can be
deduced from these graphs. The moments of

is negative and smail.

maximum wing and tail loads are indicated in
the figures.
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1 GgrEwaxNUs, J. H. aud vaxy DE VOOrEN, A, L.: Gust
load ecoefficients for wing and tail surfaces of an
asroplane. Report I 28

VAN DE VoorRkEN, A. I.: Remarks on formulae and
numerical methods used n the gust load calenlations
of report F.28, Report F. 29,
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- Magimum values of load coefficients. If two numbers are given, the first refers to the first

\
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TABLE 1.

extreme (maximum) and the second to the sccond extreme (minimum)

) dem
Oase. (A z.)max (Aao) mox {A1.e) mas (A mt) Max 87;
1 0.733 0.689 0.624 0.952 — 0.5796
2 0.787 0.696 0.665 0.835 — 0.3796
3 0.742 0.703 0.700 0.727 —0.1796
4 - 0.699 0.654 0.556 0,750 — 0379
5 0.654 0.606 0.397 0.741 —0.5796
—0.271 —-0.282 —0.274 —0.428
6 0.666 0.619 0.486 0.681 --0.3796
7 0.767 0.762 0.642 1101 —0.5796
— 0487 — 0.497 — 0531 —0.815 '
! 0.789 0777 0714 1.003 —0.3796
B g 0.810 0.800 0.794 0.910 --0.1796
10 0.691 0.671 . 0.526 0813 — 0.3796
—0.466 0472 —. 0495 - 0.657
11 0.621 0.599 0.419 0.692 —0.3796
- — 0483 — 0484 — 0.446 —0.636
12 0.661 -0.648 0.575 0.693 —0.1796
) —0.396 —0.398 —0.410 . —0.469
24 0.584 0.560 S 0.9285 0701 ——0.5796
. —0.546 —0.543 - 0.433 — 0,770

'
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REPORT F. 45,

Proposal for an Airworthiness Requirement Referring
| to Symmetrical Gust Loads

Dr. J. H. GREIDANUS and Ir. A. I. VAN DE VOOREN.

Summary.

Four conditions of aerodynamic leading of a ‘conventional acroplane are indicated, each determined by a steady angle of

attack, augmented with respcet to the condition of undisturbed steady horizontal flight by an amount arc tan Fj v
(U: gust velocity; V: speed of flight; F,, j=1, 2, 3 or 4: “alleviating factors”), apt to represent by suitable inter-

v

combination and completion with appropriate inertia forees symmetrieal gust loads onm wing, fusclage and tailplane.
Simple formulac have been established for the alleviating factors, leading to closc agreement of resulting loads with
the maxima of symmetrieal gust loads as caleulated with great care in earlier work. A cormesponding modification of exist-

ing ICAO standards is proposed.

Fransient overstresses are not considered and should be determined by separate calenlation.

* Contents.

1 Introduction.

Proposal for a new airworthiness requirement.
Equivalent gust loads.

31 Wing.

3.2 Horizontal tailplane.

3.3 Fuselage.

4 The formunlae for-Fw and F;.
5 References. '
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1 Introduction.-

At the National Aeronautical Research Institute
muech attention has been paid during the last seven
vears to the caleulation of gust loads. Fxtensive
results, published in ref. 1, have given rise to still
more carcful ealeulations published recently in
ref. 2 and ref. 3. This work has been done on
request of the Netherlands Civil Air Serviee
(Rijksluchtvaartdienst) ; one of the aims was to

obtain reliable data for the establishment of ratio-

nal gust-lead requirements in the Alrworthiness
Standards.

An analysis of the results has, indeed, led to a
proposal, intended to improve the present recom-
mendation in the PICAOQ Doc. 3031, Proposed 1947

"Edition of Airworthiness (AIR) Standards and

Recommended Practices,
In this report it is presented, discussed and
ecompared with the existing recommendation.

2 Proposal for a new airworthiness requirement.

It s suggested that the articles 3'.3.1.4 ; 3.31.4.1;
331432 and 3.3.1.4.3 in Doc. 3031 of the PICAO

(Proposed 1947 Edition of Airworthiness {AIR)
Standards and Reecommended Practices) be main-
tained in their. present form and that the articles
3.3.1.44 and 3.3.1.45 he changed as follows.
3.3.1.44 Equivalent pust loads. "

Recommendation. Apart from transient overstres-
ses, an acceptable approximation for gust loads is
to derive them from 4 conditions of aerodynamic
loading, each determined by a -steady angle of
attack of the whole acroplane, angmented with
respect to the condition of undisturbed steady

horizontal” ﬂight by an’ amount arc tan F g—,

taking
F=F, in the first case,
FP=*/ F, in the sccond case,
F=2F, in the third case,
F-——l/z‘Ft in the fourth case,
while:

U7 is the maximum preseribed gust veloeity;
V ig the f{ight speed (EAR),

The alleviating faetor ¥, is given by the fol-
lowing formula (se¢ also Fig. 3.3)

Fw:l——atho'é,_

' A\t . Bem
where o= 05 1 0.0005 (_) 06
¢ ) dey,
y ocy - .
e
and E —_— ‘W— .

The alleviating factor F; shall be taken equal
to the greater of the two values




(R, =1—a VE,
(Fi), =068 — 06K —15 —

a’
. d\? 0Ca
with a,=0.40 + 0001 (=) —32 2
[ BCL
Moreover
—:C)islopc of 1ift curve of the whole aeroplane
o
(steady aerodynamie }ft being equal to
L=c¢,.Y,pV2. 8 where p denotes the air
density)

¢, coefficient of moments in steady flow {acro-
dynamic moment of the whole aeroplanc being

equal to M —c, .Y/, p V2. 8.¢), referring to

I 20

The function A:.(s) depends on the parameters
of the aeroplane and on the eharacteristies of the
gust field.

The alleviating factor F,, has been determined
in such a way that it approximates the maximum
of the funetion A 1.,{s), obtained in ref. 2 for a
sinusoidal velocity imcrease in the gradient zone
of the gust. For.a gust field with linear velocity
distribution in the gradient zone 1he maxima are
P aehea‘d; the same.

An increase of the angle of attack of the whole

‘aeroplane leads to a lnear acceleration in the
centre of gravity equal to

the centre of gravity and positive if tailheavy

¢ mean aevodyhamic wing chord

d  assumed gradient distance of the gust

v  speecific welght of the air (we]rrht per unit
of volume) .

W  appropriate acroplanc design weight

S design wing area.

Then

(1) The approxxma,ted gust load on the wing is
obtained by combining the acrodynamie loads
on wing and fuselage from case 1 with the
aerodynamic load on the horizontal tailplane
of ease 2 and assuming inertia forces result-
ing from these combined external loads.
The approximated gust load on the horizontal
tailplane is equal to the resulting load on
this plane when the whole acroplane is sub-
jeet to the aerodynamic-loads of ease 3 and
appropriate balancing inertia forces are as-
sumed,

{iit) The approximated gust load- on the fuselage
is obtained hy ecombining the aerodynamie
load of the wing from case 1 with the acro-
dyunamic loads on fuselage and horizontal tail-
plane from easc 4, assuming inertia forces,

a1y

A w(S) and

o v 51,
Cear

1/213

1
— Arw(8) .
™

However, the inertia load on the wing is actually
given by (compare eq. (2.22} of ref. 2):

Bc,

My

Amawo($) - Y/sp V8. (33)
maw(8) are not identical for the two

follomng reasons :

(i) The aerodynamic loads on the tailplane
show a lag with respect to those of the wing, due
to the smaller penectration of the tail into the gust.

(ii) The eentre of gravity of the wing does not
coincide with the centre of gravity of the whele
aeroplane,

The first reason being more imporiant, Awme 18
always smaller than A;. until its maximum is
reached (sce fig. 1 of ref. 2). This has two con-

sequenees:

resulting from these combined external loads,

3 . Equivalent gust loads.
3.1 Wing.

It has heen shown in ref, 2, eq. (2.21), that
the zerodynamic force on the whole wing can he
written as ‘

Pw A1 w(s} 1/2,0 aGL VSU (3.1)
where o s
der ) aCL
;= \ 3.2
pw g ( Brx wing/ aa b} ( )

while s is a coordinate along the flight path of
the aeroplane in the gust, measuring the distance
between the nose of the aercplane and the boundary
of the gradwnt zone of the gust in tcrms of mean
aerodynamic wing chords.

Clearly this acrodynamic 10&(111’10’ is identical

with the loading due to a steady angle of attack
increased by an amount are tan A;,w(s)%‘with

respect to the steady horizontal fhight condition.

eQ4
0.7

/ |

v

(815]
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04
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Fig. 1. Diagram for determining B4,




(i) The unloading inertia Zforces are over-
estimated if the change in angle of attack A;,waf

is also accepted for the tailplane.

(ii) The resulting load, being equal to the sum
of (3.1) and (3.3), has a maximum which is shift-
ed towards the values of s, where the greatest
difference between Ay p and An.w occurs, especially

it py A:-,w and % Amqe are almost equal. This

makes the overestimation still more scrious.
These difficulties are solved by assuming an
aerodynamlc loading at the tailplane corle.spondmrv

to an inerease of the angle of attack of the whole

U

acroplane of are tan 3/, F‘T/' The alleviating

factor F', has hecn determined as an approxima-

tion to the maximum of the funetion A ;.(s).
With symbols explaihed under table 6, the in-
crtia load at the wing turns éut to be

My s 2
sefen(205)+

m
E(e+l./2+8)—-)§}-'7w+

fi—ptgl E(B E)Ez/F:]l/pagL RIS
. (3.4)

78 U, the

Omitting the constant factor

resulting load is given by

m
pwpw—‘ id []

+p,(1+

(145}
e +/2+s)
e / )2

Fo+

J—F—)l Y A R CE)

which must be compared with the maximum of
the exact load:

+pti1”“

P Al,w"— Am,w . (36)

Table 6 gives the values of the parameters. The

resuli of the eomparison between (3.5) and (3.6) .

for some of the cases investigated is shown in
table 1.

The gust load for a part of the wing can be
obtained by replacing in (3.1), hut not in (3.4),

. 0 .
Pw by the ratio of _801_ for the part considered to

2
aCL

for the whole aeroplane. Similarly, in (3.3}
£
m, should be replaced by the mass of the part
considered. '
Sinee it is shown in table 1 that the approxi-
mation for the gust load tends to hecome more
eonservative for deecreasing ratie of inertia to aero-
dynamie load and this ratio decreases towards the
.wing tip, it will be clear that the approximation
for the bending moment will be more congervative
than that for the total force (the latter being given
in table 1).

3.2 Horizontal tailplane.

From ref, 2 it follows that the aerodynamic
force on the tailplane ig equal to

Penge(8) Yap Bc, VST, (3.8)
where
(I3 ocy,
p;—( Ba )zau Da

and that the inertia foree is cqual to

My BG[

Am,t(sJ . 1/2 £ 14 S U. (39)

The alleviating factor F; has been determined as
an approximation to the maximum of the factor
Ar:(8). It has been shown in 3 that in the case
of a gust wave, where the gust velocity after
having attained its maximum, decreases again to
zero, a second load maximum of opposite sign oc-
curs, which for the tail may exceed the first. The
second maximum js approximated by (F,),, while
(F,), gives the first, practically agreeing with
that for a persisting gust.

The aercdynamic and inertia loads of the hori-
zontal tailplane are well approximated hy assum-
ing a steady angle. of attack, increased by the

amount #, %, of the whole aeroplane with regard

TABLT 1.

Mo Max. load

Case Do m {3.5) (3.6) 1‘eaeh¢31 at
s =
2 0.846 0.8 0.060 0.069 7
” . 0.7 0.140 0.135 8
" R 0.5 0.297 0.284 11
3 - v 0.8 0.059 0.064 T
” v 0.7 0.140 0.137 9
» , 0.5 0,299 0.289 11
6 . 08 0.055 0.073 8
" " 07 0.120 0.134 8
i T 0.5 0.250 0.259 9

See table 6 for case numbers.




to the steady flight eondition. The inertia load
at the tailplane then becomes 'equal to

(B—2)
— 2 [ f—2n

NPTy RTINS
+m}1+QL__ lgp%bvsv

which by making use of eq. (2.19) and (2.20) of

ref. 2 may be simplified to _
J — £ aCm 80; 1’ SU
(3.10)

?1 tpz 1/29

Again omitting a constant factor, the approxima-
ted resulting load at the tailplanc beeomes

1
‘ J

& 8cm, -
acbi'h’

My

(3.13)

ptFt —

F 22

Aww and Am: heing proportional to the aceeler-
ations at wing and tail respectively.

Henece, the hendznrr moment of the part of the
tusclage behind the wing, -due to these inertia
forces and taken with lespect to the quarter-chord
point of the wing, is equal to

oCy,

My (ﬁfm)l\nt.w'i'mf\mt -——VSU(?

m -B-

[

if m, ‘denotes the mass of the fuselage per umt
length, This moment will be written as

3’”&33 Mg jr?

~ mpB

where mp denotes the mass, sp ¢ the distance aft
of the wing quarter-chord point of the center of
gravity and jre the radius of gyration, all’ refer-
ring to the part of the fuselage behind the wing
and ineluding the tail. Further, there is an un-
loading contribution to this moment, arising from
the aerodynamlc foree of the- tallplane amount-
ing to

d.?_: Yap

Bcn

Ama T ¥ 8Ue,

(i\m.t A.’aw) i /2P

which is eompared in table 2 with the maximum : ) ac.
of the exact load —BDPeAre-op e V8Ue.
pcA;,g——%Am,g. (3.12) Hence, the total nioment is proportional to
: MpesSp ) mﬂ.?R
It is seen in table 2 that the approximation is -y “mp (& mt — Ame) —
satisfactory and generally conservative. —BpeAr:. (313)
TABLE 2.
: m, - _ Max.\load '
Case Py com " {3.11) (312) reached at .
. - s = :
2 ! 0.095 | 002 0.053 000 | 13
C | . 0.01 0.063 " 0.060 13
3 . 0.02 0.061 0.058 14
» | " 0.01 0.070 0.067 - 14
6 ., 0.02 0.037 0.030 12 .
» » 0.01 0.045 | 0.038 12 '
See table 6 for case numbers

In the same way as for the wing the gust load

for a part of the ‘tailplane is ohtamed hy re-

placing in {3.11) p, by the ratio o
{1’

@ .
and m, by the mass of the part considered.

3.3 Fuselage. '

The loading of the fusélage is almost entirely
due to the inertia forces. The aceeleration at a
point of the fuselage at a distance z ¢ behind the
quarter-chord point of the mean aerodynamiec
wing chord is proportional to

(18—‘37) Amaw + ZAms
8 .

2l

With the approximative caleulation of the pro-

" “posed gust 16&d recommendation, the following sub-

stitution must be made

' 1 nl
; acr, : . M=/, Fy,
part considered 'to ~ac- for thé whole aeroplane =~ :

Amo=pw {1+ #)F +

+[ o L e T
c(B—e 7,
+ py | 1— ] /. P,
. Am,;“—/\-m,w:_‘ % [:E prj’w -+
(e 1yt e)pr— (B—e)pe ) Yy ol (314)




-

Comparizsons are made in table 3 between the
maximum values of (3.13) caleunlated by aid of

the results of ref. 2 and those caleulated with the

substitutions of formulae (3.14).
Along the same lines, the bending moment in any
other fuselage section may he obtained. For see-

tlons more aft than that considered .above, the . .

ratio between the eontributions of aerodynamie
“and inertia loads inercages. This tends to make,
as is shown in table 3, the approximation less con-
servative. 1t is, thought, however, that in the cri-
tieal fuselage section the approximation will remain
satisfactory.

4 The formulae for F, and F,.

It was shown in ref. 2 and ref. 3, that the
maximum aerodynamic wing load depends chiefly

while calenlations published in ref. 1 lead to maxi-
mum values of A7, amounting to 057 and 047
respectively,

The quadratic relation between #, and —;— holds
o d L :
up to a certain value of . only, This value lics

usually well above 50 showing that this restriction
is unimportant for gust calenlations.

The maximum acrodynamic load at the hori- -
0Cm d

den’ ¢

and FE, but other parameters have more influence
than in the ease of the wing., The formula for
{F;), 1s kept more conservative in order to account
for unfavourable changes in those additional para-
meters.

zontal tallplane also depends chiefly on

TABLE 3.
: e Max
Case B p: e malr” (3.13) (\?:'ilt}gl) reaae}{eéoagt
‘ m me exaet (3.14) s =
2 0.308 1.0 02 0.631 0.662 11
N . 0.5 0.705 0.708 12
» 0.6 0.2 0.323 0.362 9
v " 0.3 " 0.126 0137 T
n " 0.1 0.133 0.121 7
3 " 1.0 0.2 0.608 0.641 11
. 0.6 ” 0.298 0.333 8
" 0.3 " 0.106 - 0102 7
" " . 01 0.128 0.102 7
6 “ 10 0.2 (.45 0.553 9
" . 0.6 » 0.298 0.307 8
" " 0.3 ,, 0.118 0.123 7
) Y " . 0.1 0.127 0.111 7
. See table 6 for case numbers-

9 )
' gy, 7'
on the gradient distance of the gust and on a para-
meter £ (=4 C, ¢ being the parameter used in
ref. 2 and ref. 3). Other paramecters have only a
minor -inflnence. An approximation formula was

on -the static stal-)ility of the aeroplane(

established, containing only thesc three quantities.-

1t will be clear from table 6 that in the considered
ranges of the parameters it gives an approximation
t0 (A7 w)max, Which 18 accurate within 4 9%, being
generally conscrvative.

For very great values of E (i.e. E=10.36), the
proposed formula gives the following results ‘

4 dom
c ocy, B
| H — .19 0.584
;12.5 —0.19 0.540 [

In table 4, the alleviating faetor of the presen:.
ICAO recommendation has heen compared with
the alleviating factors F,, and ¥, proposed in this
report. 1t is seen that for flight conditions with back-
ward position of the center of gravity, the new
values for the wing are higher, "The values for
the tail are for these conditions also higher if the
wing loading is large. '

It is not quite elear in the present ICAQ-recom-
mendation if aerodynamic loads at the tailplane
must bhe assumed, when considering wing gust
loads. Consequently, an uneertainty in the balanc-
ing inertia forces exists. If no aerodynamic load
at the tailplane is assumed, the proposal of this
report means, in spite "of its higher alleviating
factor, a gencrally less severe requircment than
the TCAO recommendation since the unloading
inertia forces are larger in the proposal. If at
the tailplane the same change in angle of attack.




F 24

TABLE 4.
v n
(klg_//IiQ) olm) 1 gGTL (ICF;&O) Fo B E)
100 2 —0.10 0.630 0.684 0.631 N.1i5
Y . —0.30. ., 0.627 0.492 .
. 3 —0.10 ., 0.664 0.589 0.225
" v —0.30 » 0.597 0.397 "
’ 4 —0.10 ' 0.637 0.574 0.30
., : —0.30 ; 0.563 0.303 ,
200 2 —0.10 0.700 0.759 0.739 0.075
» » —0.30 . 0.716 0.564 .
, 4 - —0.10 . 0.724 0699 0.15
, , —0.30 , 0.668 . | 0451 ,
300 2 — 010 0.725 0.796 0.787 0.05
N , —0.30 y 0.760 0.644 ,
., 4 —0.10 . 0.766 0.754 0.10
, , —0.30 . 0.719 0.552 .,
1) Assuming y=1.25 ke/m, aa‘: =6 and d=30.5 m (100 ft)
TABLE 5.
Gy | o
Airspeed Ambassador ............ 183 32 0.131
Avro Tudor .....cooceeiiiinninnn, 275 3.6 0.098
Bristol Freighter .................. 127 41 0.242
de Havill. Dove ............c..... 124 1.8 0.109
© Viekers, Viking ...o.cooeene, 188 3.0 0.120
Aérocentre Martinet (Siebel) 122 2.1 0.130
S E. Languedoe ..oooovevveninnnn. 205 3.7 0.135
S. A A B. Seandia ............... 159 3.1 0.146
Consolidated Convair ............ 210 3.0. 0.107
Douglas DC 6 .......cocveninen. 280 3.8 0.102
Lockheed Constellation ......... 236 4.1 0.130

1) Assuming y=1.25 kg/m?

i+

=6.




is assumed as at the wing, the proposal is more
stringent.

In table 5 the values of wing loading, chord
and parameter I are tabhulated for SO0me modern
transport planes {ref. 4).- R

For the fuselage, the proposal seems to be leqs

severe than the present ICAQ recommendation,
since in the proposal aerodynamic tail load in-
creasements due to the gust are taken info aceount
for 50 %.

]
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) . : | TABLE

Comparison of F,, and F, with the maxima

] d A Pa Pn Pr .
Case i . E Bcs £ P . Do Do * Dw K
| =
1 5 0.04728 | —0.290 —01 0.8460 0.15 —0.0379 0.07 1.25
2 o ; —0.190 0 - . N » »
3 " . —0.090 01 - ,., " " »
4 . 011820 | —0.190 0 " n " M »
5 . | 018912 | —0290 —0.1 , » ” - »
6 ” . —0.190 0 " " " . "
7 12.5 0.04728 —0.290 —01 ” . " » ”
8 » ’ —0.190 0 ’ " ” ’ » ”
9 ” . —0.090 0l . ” N " ,,
10 " 0.11820 | —0.190 0 - " " ” "
24 ” 018912 [ -—0200 | —01 . . » ” o
11 ) ., —0.190 0 . : ) » »
12 " . 1 —10.090 01 " » " . "
13 5 0.04448 | —0.328 0 0.8992 ,, .0 o
14 . 0.04728 | —0.190 0 ‘| 08460 Y " 0.07 1.5
15 . . —0.290 - 01 o » ,, " 1
16 " Y —0.09%0 0.1 " " b ” s
17 ., 018912 | —0200 | — 0.1 y
18 " 0.04876 —0.284 0 0.8200 0.20 — 0.0505 " 1.25
19 » N —0.184" 0.1 s ” ” , "
20 ) 0.04720 | --0.137 0 0.8477 015 | —0.0404 . .,
21 . , 0237 | —o01 » ” " ” ,,
22 » 0.04660 | —0144 1] 0.83586 " —0.0553 v e "
23 ’ . — 0.244 —0.1 ” » " » »
p“’:(-aaij )w / %L , if (cu)w denotes the lift coefficient of the wing in steady flow (referred to wing area)
Ds :( acb) / oo Vit (e)e g o . w o, tail in a iree, steady flow
g“ ‘s Jay (referred to wing area)
P = (a_ci) / dou , it (eu)a " ., (negative) lift cocfficient of the tail due to steady downwash of
a"‘ % dar the wing (referred to wing area)
Y ___( 8:? ) / —gﬁi, it (en)y " ,, Nft coeffleient of the foselage in a steady flow
f o (referred to wing area)
Pt =Ps T Pn ‘

e¢ == backward position of the centre of gravity with respeet to the wing guarter-chord peint
Bc =distance between quarter-chord points of wing and tail
je ==radius of gyration of the aeroplane about its lateral axis
ec == foreward position of the point, at which the fusclage aerodynamic forces aet, with respect to
wing leading edge of mean aerodynamic chord ‘
In all calculations ¢ was taken equal to 1.70 and the tail chord was taken equal to 2/, c.




6.

of Arw and Az:, as obtained in refs. 1 and 2.

A In

A in

B (Al,w)max Flw % (Al,t)max.-l (Ft)1 % (Al,t}max.z (Ft)z Case

3.25 0.797 0.798 0.1 0.687 0.706 28 1
. 0.812 0.815 0.4 0.746 0.775 - 3.9 2

; _0.832 0.833 0.1 0816 0.845 36 3
0737 0.734 — 04 0.605 0.645 6.6 : 4

0.666 (3.648 — 327 0.390 0.412 b6 0.274 0.267 5

0.686 0679 | —1.0 0.517 0.550 6.4 6

; 0775 0.778 0.4 0.635 0.677 6.6 0.531 0.532 7
0.796 0.796 0 0.710 0.747. 5.2 8

. 0.819 0814 | -—06 0.798 0.817 2.4 9
0.693 0.705 1.7 0.551 0.600 8.9 0.495 0.489 10
0.590 0.614 41 0.301 0.355 17.9 0.433 0.447 24

. 0.626 0.645 3.0 0.442 0.494 11.8 0.446 0.447 11
0.663 0.676 2.0 0.605 0.633 4.6 0.410 0.447 12

y 0.794 0.796 0.3 0.660 0.691. 4.7 . 13

" 0.810 0.815 0.6 0.749 0.775 3.5 14
0.793 0.798 0.6 0.658 0.706 73 15

. 0.846 0.833 —15 0.834 0.845 13 16
0.668 0648 | —3.0 0.386 0.412 6.7 17

» 0.806 0.796 —1.2 0.712 0.705 — 1.0 18

. 0.822 0814 | —10 0.766 0776 | 13 19
2,75 0.811 0.825 | ] 0.762 0.813 6.7 20
0.795 0.807 15 0.707 0.743 5.1 21
3.25 0.813 0.825 15 0.734 0.809 10.0 99
" 0.797 0.807 13 0.660 (.740 121 23
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A One Parameter Method for the Calculation of
Laminar Boundary Layers

{ Dr. R. TIMMAN,

Summary.

Based on Von Karman’s momentum equation for bhoundary layer flow a new assumption for the velocity profile is made,
taking aceonnt of as many boundary conditions at the wall as is possible and of the asymptotic behaviour at the outer

edge of tho boundary layer

The results are checked with known exsct calenlations and show a definite improvement over those obtained from the
\\9114known Poldhausen method, particularly in the region of retarded flow.
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"1 Description of the method.

1.1 Infroduction.

For caleulations of the flow in ‘a laminar boun-
dary layer it is useful to have the disposition of
a method by which a sclution of the -boundary
layer ‘equations, warranting a reasonable accuracy
can quickly be obtained,

The classical Pohlhausen method (ref. 7) ylelds
the desired results in a very cohvenient way; how-
ever, they are not sufficiently aecurate for many
" important purposes, especially in regions of retard-
ed flow. For the caleulation of the stability of
laminar houndary layer flow, in which the second
derivative of the veloeity profile in the boundary
layer is needed, the Pohlhausen method eannot
be used.

For this purpose Sehliechting and Ull-
rich derived another method, which, however,

fails eompletely in the neighbourhood of a stag-
nation point, .

In this paper, using the same prineiple as
Pohlhausen and Schlichting, ie the
equation of momentum transport, first given by
Von Karman (ref. 5), a new method will be

developed.

The accuracy will be tested by comparing the
results with known ecases of carefully computed
boundary layers.

1.2 Classical approzimalion methods, based on the
momentum equalion,

The equations for boundary layer motion are:

(wut v gy =TT + vy, (2.1)
{ u,+ v, =0. (2.2)

Here, w and v are the velocity components of the
flow in the boundary layer, U/ is the velocity of
the free flow and U is the derivative cile of this
‘\jelocity, z and g are ecordinates along and nor-
mal to the surface, v is the kinematical viscosity
and the suffixes denote partial differentiation.

A solution of this equation, deseribing a physi-

cal flow, has to satisfy the following boundary
condltmns

y=0:4=0 v=0, (2.3)
v'u,v"—"ro/p, (2.4)

where r, is the skin friction per unit length.

Now, from eq. {2.1) and (22) von Karman
has derived the momentum equation (ref. 5) in
the form:

N U ds,
o BRI

(2.5)




- Here, 8, is the displacement thickness, defined by

[ _
Slof(l U)dy (2.6)

and 8, is the momentum thickness

_f (=7 ) dv. (2.7)

The {fundamental idea of the approximation
methods based on this equation is to assume, that
the dependence on y of the solution = (x,y) of
the original equations, can be expressed by some
known expression of y, in which appear coeffi-
clents to be considered as -provisionally unknown
functions of z.

For large values of ¥y the velocity w approaches
indefinitely the value I/ of the free stream velocity
outside the boundary layer, while its derivatives
tend to vanish.

So, putting for a ecertain value of x

T =fw, (2:8)

the conditions

F)(y) > 0 for all m, (2.10)

U > 00

hold.

Boundary eonditions for y =10 are given by
(2.3) and (2.4), but it should be remarked that
7, 18 not an a priori given function of x, bhut a
function resulting from the caleulations. Addition-
al boundary conditions can be obtained from eq.
{2.1) and its successive derivatives to y by putting
y =0,

Ul = — vy, (2.11)
0 =1y, (2.12)
Uy Uy =V Uy . (2.13)

Generally, as many boundary conditions for y — oo
and ¥ =0 are taken into account as is necessary
to express all unknown coefficients in the expres-
sion f{y) for the veloeity profile in one parameter
A, which is to be considered as a function of z.
Al quantities oceurring in eq. (2.5) can then he
expressed 'in XA, reduecing this equation to an or-
dinary differential equation in z, from which A(z)
can be determined. W alt z has given this equation
a very simple form by reducing the distance to
the wall y to a non-dimensional quantity with the
help of the momentum thickness

Y=m,.8,.
Then ;
8, =4,,%,.

The non-dimensional parameter is given by

82 82 b4
e (2 ()
¢ 3y* My =0 St =0

(2.14)

- The non-dimensoinal quantity representing the

smn friction is

= 5=y, =)

By Juymo
(2.15)
After multiplication wit
equation’ can be transformed into
d (A,
U%(Tﬁ) 2[Tz_’\2 (2+A12)]:
=H(x,), (2.16)
or
d (UM .
< (sz ) =t A+ HMA).,  (217)

The advantage of this form of the momentum
equation with respect to other forms (Pohl-
hausen — ref. 7, Howarth — ref 8) is
implied in the fact that it is not necessary to
make use of the values of /", which, generally,
have to he caleulated by numerieal differentiation
and whieh are, henee, unreliable. Pohlhausen
(ref. 7) identifies the funetion f(y) with a poly-
nomial of the 4th degree, satisfying the boundary
conditions (2.3), (2.4), (2.11), and for a value
¥ =325, the “boundary layer thickness”, the ad-
ditional conditions

7(8) =1, - (218)
f{8) =0,
f(8)=0.
hold.
This leads, if
%_zq, (2.19)

to the expression
f(g) =29—29° + 9t + 1/ A(l—n)in, (220
from which it is found that

3 1
A =L = _——(36—2a),
T 120( )

5 1 i 5
A, — L= —_——A— —aAf
T3 315 (37 3 144 )
A2‘:+)\‘522’

1
T,= @+ 5N o,
. 1 .
..H(A)=2A2[2 T h—h @A AJ]:
1 5
— (g7 a )

1190700 3 144
[15 120 — 2 T84 A + 79 A% + 5/, 3%].

In a stagnation point ¥ =10, From (2.16) it is
seen that, in sucl a point, # (i) must vanish also.

So, if the boundary layer caleulation starts at
the forward stagnation point, A should here be
equal to one of the roots of the equation H (1) =0.
Pohlhausen takes the root A=7.052, which
is the only one having phystcal significance.-




This method gives acceptable results in con-
ditions of aceelerated tlow outside the houndary
layer.

In cases with an adxerse pressure gradient

(retarded flow) the method fails to indicate the
point of separation, 1.e. the point where the skin
friction becomes zero.
" Moreover, the method does not yield sufficiently
accurate information about the shape of the velo-
eity profile, required to caleulate the location of
the transition point, which frequently will he
sitnated in the region of retarded flow. For this
reason Schlichting and Ullrieh (ref. 9)
attempted to obtain improved results by using a
polynomial of the 6th degree, satisfying one more
condition for y=2¢ and the condition (2.12).

In this case, however, no suitable representation
of econditions at the stagnation point could be
obtained, the roots of the equation H =0 heing
complex.

For a one parameter method, using polynomial
approximations, no improvement ean be expected
by using higher polynomials, as higher boundary
conditions at y=20 involve the derivatives with
respeet o x.

Therefore, attention is paved to the condltlons
at the outer edge of the boundary layer.

The polynomial methods are all based upon a
transition to the free stream veloeity with smooth
derivatives up to a eertain order.
~ From an investigation of the asymptotic

character of -the solutions of the boundary layer
equations it is possible to introduce assumptions
for the velocity profile having the right asymp-
totic character, the free constants are then only
usced to satisfy the boundary eonditions at the wall.

1.3 The asymplotic behaviour of the solutions of
the boundary layer equations.

Von Karman and Millikan {(ref. 6) in-
dicated a transformation of the boundary layer
cquations, which admits a determination of the
asymptotic behaviour of the solutions for large
values of 4. In consequenee of (2.2) the compo-
nents of the velocity in the boundary layer can
be derived from a stream funetion ¢ (x, y)

oy

oy
o

ax

(3.1)

H

2

=~

(3.2)

Introdueing further a new parametef
.S
== f U (s)ds,
0
i.e. the linc integral of the free stream veloeity

outside the boundary layer, the functions ¢ and ¢
arc considered as new independent variables.

Transformation of (2.1) then leads to the
equation

¢ /U2 —uy? w9 [UP—u?

%( 2 )“'Faw( 2 J'wm
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Denoting the expression
U2 — g2
2

the cnergy defeet, by 2,

0z . u 0%

Op U oy
Now, congidering the outer edge of the boundary
layer, where % — U, this equation is seen to reduce
to the typical cquation of heat conduetion.

Its solution, pertaining te the boundary con-
ditions

(3.3) yields

(3.4)

2=10 Yy=—u00,
(3.5)
?
z:-zﬂ‘_" 2(90) l,,J:O,
is known to be
¥ ”
72 — 2 - v fe $—£
2= = — U8 dE (3.6
5 =) Tgw U0 30
0

From this equation the asymptotic behaviour of

the solutions of the houndary layer equations for

large values of y can at onece be inferred.
Introdueing a new variable of integration

g
2:
- IB (P_*(f LI
(3.6} becomes:
1 d . e .
_ — B2 yr2
— ——r e o —) d . 3.9
= [ (r—%)ap @
v
3
Since for large values -of ¥ u— U, the quotient
Y ’
—fu, dy
¥ b
= — (3.8)
y Ve gV
will tend to the value i__, which is only a
k2
function of =z.
The expression for z= ( v _; u) (U —u) tend-
ing to ‘
e=U (U—u), (3.9)
the asymptotic expression for % will he:

. A @® . U2 (So_ 9&2 )
LS S S P MM R Y
Y Ue V= U2 ()

V__ (3.10)

The assumption to be introduced for the veloeity
profile is:

U n
T2

fe“”“’ ex{x) phdn.  (3.11),
0
)




‘With a suitable choice of the functions ey(x) this

function will be seen to have the desired asymp-

totie character.
Moreover, an approximate expression for e«
will be '

[
= (3.12)
I¢
For a caleulation, yielding satisfactory results for
the whole +boundary layer, the functions cx(x)
have to be determined by the boundary conditions
for y =0.

alz) =

1.4 The new celculation method,

Formula (3.11) leads to a new approach to the
velocity profiles, apt to replace the polynomials
used by Pohlhausen and others.

A suitable choice for the velocity profile, having
the desired asymptotic hehaviour, is, as is shown
in (1.3)

U

¥~
— [(e= at by + ot + day® ), (42)
; .

fln) =1—

where a, a, b, ¢, d... are functions of x, to be
determined by the boundary conditions for y=10.
Now ’

o o}

/

Pl

—1 n%e*"’wfe—"" Wk—1dy  (43)
¥

oo
2 , - —y?
e~ p2t1dy =1 fe‘ # g2k —
L

are, obviously, elementary integrals, yielding funec-
tions of the type e~ " 42% k=0,

Therefore the assumption

- =fl) =1—

_[e_ u? (a"}-CnQ...)dq—ﬂB A”E(b+d’72+---) (4-4)

u

'l .
is a more simple alternative for (4.2).
In order to satisfy the boundary conditions for
n=2~0 an expansion into powers of 7 is useful:
Py =e=" (¢t ogt..) + 2pe"
(b +dpr + ..y —e~ " (2dy + ...) ==
=a+2(b—d)yg+ (c—a)y® +
2(2d--b)y' T (Fe—c)y* + ...

The boundary values of ‘the function itself and of
its successive derivatives are seen to bhe -

(4.5)

F(0) =1-— fe“’z (a . et + ..)dg—b, (4.6)
. O - N }

f7(0) =a, (4.7)

f7(0) =2(b—d), (4.8)

(0 =2(¢—a), (4.9)

(03 =12(2d — b). (4.10)
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Now

o ] !
e_”zﬂ'gﬂd’q:?} fe_ttn_llzdt:-ir(n'{'%)_—_
¢ 1]
1.3.5...(2n—1)
9n + 1

-

n > 0,

VF.

il

(4.11)
=0,

3 Ve,

So (4.6) becomes ‘
f0)=1—b—3V 7{a+3c+ ..} (412)

The boundary conditions to be satisfied are

= TUf(0) =0, (4.18)-

u, = Uaf'(0) = (4.14)

vp
gy == Ue’f" (0) = — Uf] , (4.15)
Uy = U (0) =0, (4.16)
Vit == v a* " (0) == + Wty = Uf"(0).

A Af(0) ) (@l + aU”) + f2(0)al }. (417)
Hence, l ) .

1—bv=3Va{atdct.... Y, (4.18)

a= vanfa , (4.19) -
2(b—d)=— f’; , (4.20)
2 (c—a)=0, (4.21}
va®12 (2d - b) =
=+ af{o(ael + ol’") + aall }. (4.22)

Now, usually only the first four boundary con-
ditions are used, since the oceurrence of the-deri-
vatives to z in the higher ones leads to difficulties
in a one parameter system. The same restriction
will initially be adopted helow.

The parameter A, introduced in (2.20), is

i A=—1f"(0) =—2 (b—4d). (4.23)
From (4.18) it is found that -
1—b

== ———
&

The expression for the velocity profile is:

a

fe—"”(l + )y
o 4
) =1 (=) T

r—be_”z-—de_”znzz

]
[e""z(l + i?)dy

= (1—b) ° —

B —e ) —dyte

+
{




For this velocity profile the displaecement thickness
and the momentum thickness must be ecvaluated.
After tedious caleulatlons they are found to be
equal to

by = 4, = [(l—f)d?—w 17_b +

+iyob w4+ 1dV
A, ==0.752253 + 0133 974 b + 0443114 d.

0

fA—fdy=
—u V7 l/ B)b
— _—+
187
, V2—1) I/?
T E+
1—b V21 l/"{g
4+ d - I
;3l/fr + 4 2
, 3 El

A, = 0.289 430 — 0.014 670 b — 0.015 190 »* +
+ @(0.188 063 — 0.068 279 b) — 0.117 498 d=*.

ad, = A, =

0

— (1__b)z

If now only four boundary conditions are taken
into eonsideration, all terms in (4.4) must be
dropped with the cxeception of three, viz. the terms
with coefficients e, b and ¢. Putting, accordingly,
d==0, it is found that in this case:

A=—20,
A=A'A2:—25.A22,
T, =5, .f(0) = 22 =,
3V
H=2[T2———)\ ]

—9a, [-ZVE +25(2a, +A):]

The value of b in the stagnation point is given
by the equation H =10,
— 0.060 760 A% + 0.209 268 A% + 1.909 973 A +
+ 0.752 253 =10.

The relevant root of this eqﬁa.tion is:
b=——3A=041502
giving

A, == -+ 0.292 90 A, ==0.07124,
This approximation gives reasonable results in the
region of aecelerated flow, as well as for the
Blasius case of zero pressure gradient (comp.
par. 2),

In the case of retarded flow, however, the ap-
proximation fails, as is demonstrated by caleulating

‘formula. The veloeity profiles,
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the separation point for a flow with a linear outer
velocity (par. 5). This is due to. the faet that
already the fifth boundary condition is strongly
violated in the separation pomt

In.faect, the separatwn point is chhracterized by

T,=0, ie. b=1.

‘In this ease the fifth boundary condition requires

A

va®12 (2d —b) =0 v

for b=1, which obviously is not the gase.:

Now, in order to satisfy this boundary condition
in the range of adverse pressure gradlent take
for d the value

d=1%b.

Then, for the separation point, the flfth condition
is exactly fulfilled.

- Thus,

and the funetions A, and A, are:

A= {0752 253 + 0.355 531 b, _
A, =0.289 430 + 0.079 361 5 b — 0.073 704 b*.

The equation for the stagna.tion' point value of b
is, now,

— 0.147 406 b* + (1514 253 b= + D.578 86 b +
+ 0.752 253 = 0.

" Unfortunately this equation has no real root in

the reguired region. This proves that the modific-
ation is not appropriate for the region of acceler-
ated flow,

For retarded flow, however, the result of a
caleulation of the separation point for a flow with.
a constant pressure gradient gave a very good
coineidence with the exaet value.

Therefore, it was decided to use the first as-
sumption (d==0) for accelerated flow (A <)
and the second one (d=4b) in the region. of
retarded flow (A > 0), for A =0 the two velocity
proftles being identical. The curves for Hoand T,
to be used in the solution of the equation (2 17
show a slight ‘discontinuity in the tangent in the

point )LiO this, however, does not effect the
results to any appreciable degree. The valucg of
the funections X,, 4&,, A,, T,, H are given in
table 1 (fig. 1), together with an approxamatlon
together with
their first and second derivatives, are given in
table 2 (fig. 2

By numerlcal integration of equation (2.17)
A, can be obtained as a function of x.

With the help of table 1 and the corresponding
graphs A, A,, A, and T, are, subsequently, evalu-
ated.

The value of « can, further, be derived from
egs. (4.15), (4.23),

U)
[« S I/V,\
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Fig. 2. Veloeity profile funetions f,, f., f; and their derivatives,
Thereupon the values of &, 8, and r, ean be . 2  Applications, checks aﬁd comparisons.
caleulated in accordance with the relations '
: 2.1 Flow with consfant velocity.
A .
§,=—, , As a check on the accuracy of the method
@ : sevgral special cases have been investigated in
a, which an aeccurate solution of the boundary layer
82=-;, equations is known. The simplest of these cases
o is the Blasivs flow (ref, 3) with a constant velo-
ro==vp U af'(0) = vp U a T, _ vo U Y city at thf, outer edge of the boundary layer..
: A, 8, Here, U” = 0 along the boundary layer and, con-




sequently, the form (2.5) of the momentum egua-
tion is advantageous,
The houndary conditions yleld

A= 0,
S0
A, = 0.752 253,

A, = 0,289 430
and, from (4.14},

) Ua 1 —= Jo,
% = vp
Substitution in the momentum eguation
s, T
dx pli?
gives:
A difa = @ v
dr iV R U
Henee, .
e
L 9979 952( v ) :
& b f
and

8, = L= :1.715( Y
&

T )‘f-z
Vil )l;"
[4

7\
= 0.330 pU ( "i ) ’

5, = 2t —0.660 (

a

The exact values of these quantities have heen
caleulated by Blasius (ref. 2, p. 136, 1567).

They are
: 2\l
5, =1.721 (;f ) :
ve \'
8, = 0.664 ( 77 ) .

1,
ro= 0332 pU( "f ) :

The errors in 8,, &, and 7, are — 0.35 %, — 0.6 %
and — 0.6 %.

22 Flow with a constant velocity gradient.

The second example is the flow with a constant
veloeity gradient, The exact solution for this
type of boundary layer has been ecaleulated hy
Howarth (ref. 2),

Assuming
x
U=, (1_f), (2.1)
the equation (2.16) heeomes
dx,
—_ Ag). 2
R T
Putting
z
f= ., (2.3)

this equation takes the form

dh,
dé

a8 e gay. e

" In the starting point £ =0 the boundary layer has

zero displacement and momentum thickness, corres-
ponding to a==00. The initial value of A, is, by
{415), in view of U710

A=, =0.

For positive values of L equation (2.4) has, with
this initial value, been integrated by a modified
Adam proeess (ref. 4); A, heing a known fune-
tion of x, a« is obtained from

. l/ dU 1 v, 1
“= v A
Subsequently, §,, §, and r, can be ealeulated.

The values of these quantities as funetions of £
are given in table 3, and compared with the values
caleulated by Howarth with the aid of power
series (fig, 3). For a few values of x the veloeity
profiles have been determined and compared with
the exaet values (vef. 2) {fiz. 4) (table 4).

2.3 Boundory layer flow along an elliptic cylinder.

A third example is given by the caleulation
of the laminar houndary layer for the elliptic
evlinder (b/a=2.96), for which the results of
Sehubauer (ref. 8) are available,

For the pressurc distribution in the free strecam
the values of Schubauwer are taken.

Near the stagnation point the cquation
d ( U
A \ T
is integrated by a development of w/«’ and A, in
a power series of .
For u/uw' the series:

w/w =x+ 405 x* — 86.2 z°

J\z) =+ HO)

fits the measured values up to x=0.3.
Substituting for A, a series of cven powers of x

A, =00712 + az® + bat + c2® + da®
and for H(A,) the approximation formula
HA,) =— (6116 —4.51 X,) (A,—0.0712)
the following series for A, is found:

A, == 0.0712--1.109 8 22 + 26.638 x4 —
720 2° + 21 271 2%,

From z==008 on, Adam’s method is used.
The step length is indicated hy

h < 0.03 | u/v ],

yiclding
0.08 < x < 0.160 h = 0.005
0.160 < = < 0.24 h=0.01
024 < z <030 ho=0.02
030 <z <050 b= 0.04
050 <z <20 h=01
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Fig. 4. Velocity profile for flow with linear veloeity gradient U = U, (1 —&/L).

The results of the caleulation are given in table 5,
expressed in dimensionless guantities with the
Reynolds number

T/, being the velocity at great distances from the -
cylinder and L the minor axis of the ellips.
In order to compare the caleulated veloeity

profiles with the measured values these have been
caleulated too. Results are plotted, together with
Sechubauer’s profiles in- figs. 5 and 6.

The attained approximation is seen to be better
than that of Pohlhausen in the range of
retarded flow.

Pohlhausen’s method did not give separ-
ation at all, while Schubauer obhserved separ-
ation at x=1.99. The present method also fails
to give separation; it yields, however, a very small
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Pohlhausen ealeulations
-—— this ealculation, ’

EL " 3y

value of = at the observed point of separation, If the equation ' T
much smaller than Pohlhausen’s method. L

Unfortunately, an exact ecaleulation of the fll': f(z, 1)
houndary layer with the given veloeity, that de T
would have been a more reliable check of the is to be integrated, t

caleulation performed here, was-not available. mined by

Vo

he step length 2 is~ deter-

3| o

=

2.4 Boundury Layer flow along a circular cylinder. )
3 A o

Finally, the caleulation of the boundary layer .
flow along a circular eylinder has heen performed, m ‘the pfesent case
taking the values measured by Hiemenz for o
the veloeity outside the houndary layer, pertain- Y=z Ay,
ing to a eireular eylinder, radius 4.87 em, in a v
fluid with kinematical viseosity v=—=0.01 and a 80

velocity at infinity of 19.2 em/sce. of U B
e o : T U W{.t\z‘i‘H(M)}.—
U="7151—0.044 97 2* — 0.000 330 0 77, ¥ 2

where 2 15 the distance in em to the forward Now it is easily seen that
stagnation point (ref, 2).

The integration of the equation iif ~ —6,
. . 2
d ;U _ 80
E{FM)—M+HWV _

U
is again performed by Adam’s method (using ’ h 73 5 ) < 0I5
an interpolation proeedure instead of extrapol-
ation). The step length is drawn from a well- )
known rule of the theory of numerical integration ' U :

: = h—| < 0.03.
(see e.g. ref. 1). U

or
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Pohlhausen ecaleulation.
——— this calealation,

In the neighourhood of the stagnation point
u/v = 0, so here the integration method fails,
It is advisable to use in this range a power series
approximation valid for small z.

Now
U T151z—0.04 97 2* —0.000330 0 2
T T 7151 — (0.13491 22 —0.001 6500 #*

—z (1 + 0.012 57 22 + 0.000 421 7 * +
+ 0.000 010 51 2° + 0.000 000295 #* + ......)

and the equation for A, is:
(i; [z (1 + 0.012 57 22 + 0.000421 7 z* +
+ 0.000 010 51 ¢ -+ 0.000 000 295 %) A,] =
=X, (6.116 —4.514,) (A, —0.0712).
Putting
A, =10.0712 + ax® + bx* + czf + da?

and equating coefficlents, a rather lensthy ealeul-
ation gives

A, = 0.071 2 — 0.000 344 5 z* — 0.000 013 069 =* —
— 0.000 000 256 93 z® — 0.000 000G 005 522 4 z*,

an expansion which is valid for small =z
This approximation is used up to x=23.6. From

3.6 upward the step by step method is used with
4 step length 0.2,

The ealeul:mon gives a good agreement with the
caleulation by power series methods.

3 Recapitulation. '

In order to be able to determine the properties
of the laminar boundary layer with an aceuraey
definitely surpassing the accuracy attained by the
methods using polynomial assumptions for the velo-
city profile (Pohlhausen, Schlichting-
Ullrieh), without, however, extending the in-
volved scheme of computation, a new method has
been devised whieh makes use of veloeity profiles
having the.required asymptotic behaviour. They
are made to satisfy the maximum number of
houndary conditions at the wall that ean be con-
sidered in one parameter methods.

The fundamental equation is von Karman’s
momentum equation

25 as
To 2
= — (8 +235, + .
PUZ Dv ( 1 z) d-E
I/ = frec stream veloeity,

§, — displacoment thickness,
8, — momentum thickness,
7, = skin friction per unit length.




The introduced veloeity profile in the boundary
layer is represented by a suitable funetion

.\

%zf{y),

satisfying the conditions

yp=0: =0,
1
VUy — — Ty,
d P .
1 Tt
v’le:——UU,
v
Uyyy = 0.

1t further contains one shape parameter XA, de-
pending on z. Introducing the parameter

S 2
Ay =—— 17,

1
the. momentnm eqguation:can” be reduced to

(U

= V):M+HQJ

Instead of Pohlhausen’s fourth degree poly-
nomial, expressions for the veloeity profile are
used which have the asymptotie character for large
values of ¥, that ean he derived from the boundary
layer equations with the aid of the von Karman
and Millikan transformation,

For », < 0 {retarded flow) and x, > 0 (acccler-
ated flow), different representations'of the velo-
city profile are used, the onc applying to the
region of retarded flow satisfying one more
boundary condition in the point of separation
and in this point only. This important property
markedly raises the accuracy in the region of re-
tarded flow, but threatens to speil it in the region
of accelerated flow. Tt is possible to drop it there
without introdueing notieeable discontinuities at
the common point i, =0,

In order to check the method, & number of
applications to wellknown cases has heen made,
viz. to

1) the Blasius flow along a flat plate

2y  the flow with constant velocity gradient out-
side the houndary layer

3) the flow around an elliptic cylinder, as in-
vestigated experimentally by Schubauer

4} the flow around a circular eylinder
{Hiecmenz).

In cach ease a good agreement with known
motre or less exaet solutions is obtained. In the
case of the elliptic eylinder, the method, strietly,
fails to reproduce the observed separation, but the
caleulated skin friction falls steeply to a very
small minimum in the vieinity of the pertaining
point, indicating that separation almost occurs.
The error may, therefore, he only small. Un-
fortunately, no cxact ealeulations applying to this
ease are available, which are apt to sharpen the
check.

The calenlated veloeity distributions arc in each
case compared with the exact veloeity profiles,
wherever availahble.

The agreement is always good.
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TABLE 1.

‘The funciions Ayy By, A, Ty, H.

b A, LA, Ae 7, H
N 0.618 279 0.288 190 0.166 938 0.434 667 —0.512926

‘ —09 0.631 676 0.290 329 0.151 724 0.414 962 —-0.437 189

08 " 0.645 074 0.291 444 0.135 903 0.394 631 —-0.355 960

—07 0658471 | 0202956 . 0.119 579 0.373 746 —0.269 662

— 06 0.671 869 0.992 764 0.102 853 0.352 372 — 0,178 745

05 0.685 266 0.292 967 0.085 830 0.330 578 —0.083 683

— 04 0.698 663 0.292 868 " 0.068 617 0.308 435 + 0.015 015

—03 | 0712061 0.292 464 0.051 321 0.286 009 0.116 831

02 0.725 458 0.291 756 0.034 049 0.263 369 0.221 219

—01 | 073886 0.290 745 0.016 907 0.240 585 0.327 617

0 - 0752253 0.289 430 0 0.217 725 0.435 449

0.1 0.787806 |  0.206 629 — 0,008 799 0.200 826 0.483 585

0.2 0.823 359 0.302 354 —0.018 284 0.181 957 - 0.536 621

03 0.858 912 0.306 605 — 0.028 202 0.161 451 0.593 719

0.4 0.894 465 0309382 | —0.038287 0.139 640 0.653 813

| 0.5 10.930 018 10.310 685 — 0.048 263 0.116 857 0.715 707
‘ ' 06 0.965 572 0310514 | --0.057851 0.093 434 0.778 062
0.7 1.001 125 0.308 869 —0.066 780 0.069 704 0.839 382

‘ ST 0.8 1.036 678 0.305 749 —0.074 786 0.046 000 0.898 286
0.9 1072231 | 0301156 —0.081 625 0.022 654 0.953 047

| 1.0 ° 1.107 784 0.295 088 — 0.087 077 0 1.002 095

~ Approximation formulae

Ty

M0 H(A) —— (6116 —4512,) (A, — 0.0712)

A0 H(L,) =04354 — 56537 A, -~ 6.8842 1,2 — 191,65 ),°




TABLE 2,

!
i
!
4 i N N

: ‘ 'l‘hjc veloeity profiles,
|

" L) £/ (n) £ (n) falm) £ (2) 7" (9) faln) £l (a) £ (n)
o | o 0.7523" 0 0 0 2.000 0 0 0, i
02—, | 01504 0.751 6 — 00116 0.039 2 0.384 3 1767 8 0.020 0 01998 i 0.996 2
04 1 0.300 2 0.743 6 —0.0820 0.147 9 0.681 7  1.1588 0.079 7 0,295 4 1 0.944 8
06 04455 0T —02267 | 03024 0.837 2 0.390 6 0.176 8 0.569 3 | 07680
0.8 105834 | 06505 —0.406 2 0.4727 0.843 7 — 02953 0.304 ¢ 06918 ° |- .. 0.4328
10 ° 07043 | 0553 5 — 05535 | 06321 0.735 7 — 07357 04481 0.735 7 0
12 108034 | 04348 — 06159 0.763 1 . 05686 —0.8907 05925 0.6937 — 03572
1.4 '0.8781 || 03136 — 05814 0.859 2 0.394 2 — 08224 0.721.2 0.583 4 ~-0,6087
16 09208 | 02070 — 04762 09227 0.247 4 —0.636 8 08238 0.440 4 06916
18 10,962 6 01249 | —03437 0.960 8 . 01409 — 04293 0.897 3 0.2087. .|..—06238
© 20 09815 | 00690 — 03208 0.981 7 0.073 4 - 0.256 8 0.945 1 0.1835 — 04758
2.2 109916 | 0.0347 — 01264 0.992 1 00348 —0.1370 0.974 4 0.101 6 —.0.3145
_ 24 09964 | 00162 — 0.066 4 0.996 8 0.015 4 —0.0672 0.987 6 ° 0.052 1 —0.186 2
2.6 '0.9986 | 0.0067 —0.0305 0.998 8 0.006 0 —0.0289 0.994 7 0.023 3 — 00984
28 109996 | 00024 —0.0117 0.999 6 0.002 0 —0.0105 0.998 0 0.008 8 —0.0449
30 10,9999 | 0.0067 —0.0036 0.999 9 0.000 6 —0.003 0 0.999 4 0.003 0 00150

f’éo f(n):(l-ﬁfb‘)f](n)+:bf2(n):1t/U-
b=0 () =Q=b)fln) + L) =uU
. f"e¥w2(1+‘;»2)au o
flm) =1—e-7 |

fam) =1—e=7 (1 + 449)

AR |
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TABLE 3.

Flow with a constant veloeity gradient.

U=", (- x/L).

Boundary layer veloeity profiles for flow with constant outer veloeity gradient.

i 5 LA B Y T I/ 4
"Ij” ! vl * pll 2 Ly,
0 0 0 o0
0.01 0.174 0,067 3.09
0.02 0.256 " 0.096 2.09
0.03 0.324 0.120 1.53
0.04 0.382 0.141 1.21
0.05 0.448 0.160 0.98
0.06 0.508 0.179 0.80
0.07 0.567 . 0197 0.65
0.08 0.638 0.215 0.513
0.09 0.682 0.233 0.418
0.10 0.793 0.251 0.283
0.11 0.898 0.269 0172
0.12 1.078 0.287 0.049

TABLE 4.

U=U,(1—gz/L).

&/ L = 0.05 A —0.273
This caleulation
Y T 0.209 0418 0.638 0.837 1055 1.256 1.465
. U '
T ) 0.240 0.507 0.746 0.901 0.972 0.994 0.999
Calculated by Howarth (Goldstein, I. p. 175)
Ue :
y o 0.179 0.358 0.537 0713 0.89_3 7 1.073 1.253
s 0.205 0.430 0.645 0.815 0.923 0.975 . 0.994
x/L == 0.10 A =0.656
This calculation
U, ’ ‘
y v 0.324 0.647 0.971 1.296 1,618 1.943 2.267
i
T : 0.156 0.400 0.665 0.860 0.958 0.991 (.999
Caleulated by Howarth
0, : -
Y T 0.253 0.507 0.758 1.013 1.266 1.518 1.781
U N .
T 0.120 0.294 0.498 0.692 0.844 0.936 0.978




Results for Schubauers elliptic eylinder.

TABLE 5.

0.180 0.914 242 0.050 5 0.713 0.292 0.285 0.592 2.02 0.355 0.145 1.97
0.357 1.142 0.688 0.0358 0.724 0.292 0.266 0.402 1.316 0.553 0.223 1.19
0.545 1.230 0.292 0.020 3 0.732 0.291 0.252 0.304 0.978 0.752 0.295 0.85
0.725 1.266 0.140 0.018 3 0.737 G.251 0.243 0.212 0.813 0.907 0.357 0.68
1.097 1.293 0.024 5 0.005 6 0.748 0.290 0.225 0.066 0.610 1.227 0.477 0.47
1.457 1.292 — 00332 | —00I15 0.758 0.298 0.195 _ 0.136 0.493 1.62 0.604 0.32
1.832 1.261 —0.a21 —0.0656 0.985 0.309 0.074 — 0.684 0.422 2.37 0.732 0.10
1946 1.247 —0.111 — 0.0712 .i.OL’f? 0.307 0.056 —G.779 0.377 2.69 0.813 0.069
2.029 1.240 — 0.095 — 0,067 4 1.003 0.309 0.064 —0.707 0.367 273 0.841 0.076
PEIETRIE .

sF |
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"TABLE™6. t

Veloeity profiles for various sections of the houndary layer about Sehubam}ar’s elliptic eylinder.

z— 0180 T T S R — 24,400
o lo]  oa 08 | 12 .16 | ozo. | 24| 28 | 30 |
yVE=nfa| 0| 0197 0394 | 0593 0.788 0.986 1183 1| 1382 | 1.475
u 0| 0315 0563 0745 0.851 0.897 0910 ., 0914 | 0914
t=03857 N _ - B = 23,500
ool ea } os | 1z | s | 20 | o4 28 | 30
yVR=y/a| 0| 0305 0.608 | 0.913 1.220 1.523 1.828 | 2.130 2.204
u 0| 037 0.692 { 0.927 1.063 11120 1137 1142 1.142
x = (0.545 _ ' R = 24,000
w0 \ 0.4 0.8 \ 12 16 | 20 2.4 2.8 3.0
yVE=n/al 0] 0408 0.816 1,299 1.630 2,040 2.44 2.85 3.06
u 0| 0397 0738 | 0996~ | 1145 | 1207 | 1225 1.230 1.230
©=0.725 : S . R=:23,600
T T R T T 20 | 24 | a8 30 |
yVE = qg/aj 0| 0492 0.985 1477 1.970 2462 | 2954 3.447 . 3.693
u 0| 0400 0.753 1.023 1.179 1.242 1.261 1.265 1.266
= 1.097 ' ' ‘ e R=122,700
w o lol ae ] os a2 [Tee [Tz | esT | om0 ||
yVE=n/a| 0| 066 131 1.97 2.63 3.28 3.94 460 | 493
w . | 0| 0393 0.758 1.04 1.20 1.27 1.29 1.293 1.293
5 =1457 _ ' e ' e R =22,700
. ol o4 } 08 |12 16 2.0 24 | 28 3.0
yVE=nla| 0| 0081 1.62 243 3.23 4.05 4.86 567 . | 607
u 0| 0349 0.704 | . 1.001 1.182 1.262 1.286 1291 1.292
»— 1.832 ' R =24,300
. | 0] o4 08 | 12 | 18 20 24 2.8 3.0
yVE =nfal 0] 095 190 | 28 380 | 475 5.70 6.65 713 |
” 0| 0188 0494 | 0831 1081 | 1207 1.248 1.260 1.261
r— 1.946 . - R =23,900
" 0 04 08 12 16 | 20 24 - 28 | 30 |
yVE=n/al 0] 106 9,12 318 424 | 530 6.36 7.42 7.95
u 0 0.160 0.456 0.797 |- 1.056 1.188 1235 | losd 1.247
- —2.020 _ - T £ — 23,600
. o o4 | 08 | 12 | 16 20 | 24 28 | 30
yVR=mn/a; 0| 108 218 327 L 436 5.46 . 6.55 7.64 818
u 0| 0179 0.479 0.811 1.060 1185 1.228 1.238 1.240
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'REPORT M. 1230 “ . CCLGI01:G103

o Réﬂéctions on Yielding andAgiﬁg of Mlld Stéél

' P by‘{r J H VP&lm . -
Summary. The pheﬁomena "of discontinnous been the subject of a great number of
* - yielding and strain-aging, as they publications *). . : Lo '

find expression in the conventional - Since it is possible to establish microsco- . ‘
stress-strain . curve, are broadly plcally that the brittle ceinentite in mild steel,‘
- discussed. It is shown that these is often present as a kind of network around :
phenomena cannot be attributed to the ferrite crystals, Nadai 1) 2) and Ludwik |
“precipitatesin or around the fer- 3) 4) suggested this to be the cause of the phe-

nomeénon. They assumed that the resistance

to plastic deformiation” is much higher. when

the network-is present than when it is missing,

the nature and the structure.of the ferrite being

the same. When-a tensile testpiece is strained,.

the network starts to break down locally at a :

rite crystals, but must both be due
to C and N which is in solution in
the lattice. New hypotheses are
given. It is suggested that discon-
tinuous yielding is related with a

diffusion mechanism of C and N in certain Ioad. The load is.then transferred to-
. the lattice during elastic straining,” . {he basic ferrite' structure, which can deform -
causing unlocking of the glide plastically under a much lower stress. Conse-
planes, i.e. a decrease of {he injtial qirently, the Ioad stops increasing or at first-"
critical shear stress. After plastic - decreases, dependent on the conditions among
- deformation the glide planes re- which the test is performed. Only after the net-
main unlocked, due to internal work has failed in all parts of the test piece
stresses. Consequently the glide’ can the stress increase again continuously, due-
_planes are locked again' when the  to strain hardening. Most of the subsequent
-internal stresses diminish or van- _ investigators accepted this idea or. have sug-
. ish during aging.' Strain aging, gested si_milarji_‘deas based on the stiffening of
o -, . asfar as the continuous part of the the ferrite grain boundaries or some planes

in the ferrite crystals by precipitates. Even in-
the .more recent publications of Kuroda 5),
Edwards, Jones and Wallers 6), Edwards, -
Phillips and Jones 7), Dies 8) Zener and Hol- T
lomon 9), we meet these assumptions with :
slight and hardly. essential variations. In an-

- . stress-strain curve is concerned, is.
. suggested to be caused by migrat-
- ion of C and N fo the zones with -
imperfect " lattice (slipzones) in
which solubility is increased. Over-

v

aging will then be due to restorat- other paper Edwards, Phillips and Liu10)
ion of the perfect lattice, i.e: to re- suggest that yielding might commence on those
crystallization. = - - slip planes in which the precipitation has

,caused a rather high resistance to shear and ,
subsequently ‘might continue on other slip
planes with a lower resistance to shear. It is,
" however, hard to understand for what reason
. : —_— . . yielding just might prefer to start on planes
The cause of the phenomenon of discontinuous with higher resistance to shear. A few other
yielding. . suggestions have also been made, but the argu

I. The yield i:henomeinon.

M"‘,‘PY il.lvestigators have studied the charac. *y Extentive lists of publications on ‘dliscontinuous-
- leristic yield phenomenon. The cause of the vielding, aging and related subjects are. given in the’

phenomenon itself and especially-the way in Ieferences 45, 64 and 11, mentioned at the end of this
which it is-affected by the several factors, has. paper. . e
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ments, brought forward to support them, are
still more weak or vague. A summary is given
by Low and Gensamer 11) *). Superficially
considered the yield phenomenon can be ex-
-plained with the network theory. A closer
consideration, of the available data must lead
to the conclusion that this idea is untenable.
Even if we leave out of consideration -

whether a network-of a brittle substance, sur-
:roundmg a -plastic basic structure -inay ever
create 'discontinuous yielding, several object-
ions can be raised against this theory. Similar
networks are present in many multi-phase
alloys, however, the yield phenomenon can
appear only in some alloys, whereas in mild’
steel it shows some characteristic features, dif.
fering from thase in other alloys. Even if the
steel is deformed very strongly at room tempe-
rature and after -that is stored during some
time at this or slightly elevated temperatures,
. pronounced yielding re-appears. It ‘is uni-
maginable that the highly destroyed network:
should be restored, during the rest period. At
room température, as will be shown below, a

noticeable diffusion of carbon does take place,

but this cannot lead to the restoration of -the

network: In contrast the distortion of the net- -

work can, when diffusion takes place, only-
stimulate the creation of the thermodyna—
mically more favourable 'shape, to wit the glo-
bular cementite. When a steel with a few hun-.
dredths per cent carbon is annealed at a tem-
. perdture of 700° C, quenched and after that
- heated a long time at 150° C, minute particles
of cementite are precipitated umformly in the
ferrlte Already long before the prec1p1tat10n
is microscopically visible, the yield phenome- .
non has returned.: L1kew1se, the network theo-
ry does 1ot explain the fact that the upper
yield point ‘and the fundamentally: relited

Iower yield point-are much more sensitive to -

the strain velocity than the continuous part of
the "stress.strain curve. itself.” Fettweiss 12),
Winlock and Leiter 13), and Manjoine 14) ob-
served that the percentage increase of the
vield ‘points at” increasing strain velocity is .
ahout three times as high as that of the tensile’
strength. On  the ‘other hand, the fracture
-strength of brittle constituents'like cementite;
depends very little on the strain velocity, so
that a network of cementlte or, other brittle

“

*) After this report had’ been ﬂmshed a paper
by A. H. Cottrell **)} was published in which the Phe-
nomena of discontinuous yielding and strain ageing
are both attribited to locking “of dislocations in the
lattice by C and N atoms. This hypothesis is also. suit-
able to- explain these phenomena in several respects.
However, it cannot explain for instance the great
sensitivity of the yield- pomts to the strain velocity
and the striking difference in the ageing velocity of.

the yield points on the-one hand and the continuous -

part of .the stress-strain curve on the other hand.
Moreover a similar kind of locking might then be.
expected -in. austenitic manganese steel, austemtlc
mckel steel and many other alloys.

**) Phys. Soc. London ¢1948) 30.
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Effect of t1me of wet hydrogen treatment on carbon - :
and nitrogen- content; tensile properties -and strain- . -

aging in l_leavy-gauge, sheet steel’ (0,111-inch thick
rimmedsteel). -[Low and Gensamer 11)],

+

precipitates cannot be the Ol‘lgll'l of thls sen-
srtlwty )

It is still more Chfflcult to attrlbute the vield
phenomenon to fine non-coherent particles,
precipitated at the graih boundaries or in the
ferrite crystals themselves. Such a precipita-
tion' will cause a higher resistance to shear in
all stages of plastic’ deformatlon and not in the
primary stage only, .. .

- Several phenomena now indicate that the
carbon and. nitrogen- dissolved in the ferrite,
must be‘the cause- of the yield phenomenon;,
and that-the guantity and shape of the sepa-

rated cementite play, at most, a secondary part.

Snoek 13, 16) observed that steel wire, which
is decarburized and denitrided ‘as completely
as possible with the aid of hydrogen, does not
show discontinuous kinking, a direct conse-
qiience of the yield phenomenon, when it s
bent. Addition of the slightest traces of carbon
or nitrogen, however, causes a return of this
effect. . :

.Low and Gensamer 11)  found’ that after -
anneahng soft steel in moist hydrogen at 725%
C, the yield phenomenon at room temperature
was only shghtly affected, as long as, the car-

INCHES

PER CENT IN 2

CENT IN 2 INCHES

s



ha¥

bon peréentage did not decrease below approx:
0,004 % (fig.1). After prolonged annealing dis-
continuous yielding became less pronounced
-and finally disappeared completely.. A further
fall of the carbon percentage could not be ob-
served by the method of analysis employed,
but the investigators rightly assumed it to oc-
cur. The size of the ferrite crystals did not
change during annealing. From this we imme-
diately can conclude that the cementite net-
work, or rather the thin layers of cementite,
. situated at random between the ferrite crystals,

as well as/other precipitates of cementite, the .

dimensions of, which must start to decrease
immediately in consequence of annealing in
hydrogen, hardly influence the yield' pheno-
menon. o S :

The following interpretation of Low" and
Gensamer’s observations readily -presents. if-
self. As long as there is more carbon in the
steel than corresponds to the saturation con-
centration at room témperature, the yield phe-

- nomenon mainly remains unchanged. Not be--
fore the concentration decreases helow satu-

ration at room temperature, discontinuous
yielding strongly diminishes and finally dis-
appears at complete .decarburization. There-

fote, one of the causes of the yield phenome-

non must be the carbon, dissolved in the fer.
rite, - - - '

.As has already been mentioned, besides the
“carbon also the nitrogen is removed by the an-
nealing treatment with hydrogen. Like Snoek,
Low and Gensamer observed that the addition
of minute quantities of nitrogen causes the yield
phenomenon to return. Dissolved nitrogen must
therefore also be considered. as a cause of the
yield phenomenon. These conclusions are con-
firmed quite well by the observations of Ed-
" wards, Phillips and Jones 7),- Comstock 17,
18), and Dies 8), who established. that the

magnitude of the yield phenomenon decreases

and finally disappears by adding elements like
Ti, Va, Nb, Mo, Cr in_increasing quantities.
These elements strongly combine with carbon

and nitrogen in steel, forming carbide and ni--

tride and thus considerably reduce the satura-
tion concentration of carbon and nitrogen in
ferrite. The fact that the addition of larger
"quantities of aluminium also decreases the

effect of the yield phenomenon, confirms that '

nitrogen too. is responsible for discontinuous
vielding. A complete elimination can however
not be attained;, because aluminium does not
combine with carbon. Low -and Gensamer’s

observation that the percentage of nitrogen.in -

steel, deoxidised with aluminium, could hard-
ly be diminished by annealing in moist hydro-
gen,” confirms that indeed aluminium com-
bines very strongly with nitrogen in steel..

-The same authors also observed that, by-an-
nealing in ‘moist hydrogen, the total percen-
. tage of oxygen did not decrease, although the
yield phenomenon disappeared at last, This
indicates that oxygen probably does not play

M3

any significant part in the yield phenomenoit.
Statistically considered, the yield phenoménon-
is as pronounced.in rimmed steel as.in silicon
— killed steel. The restricted influence of alu-
minium, notwithstanding its strong affinity to

oxygen, also indicales that this effect is du€ to -

the interaction with nitrogen only, According
to Low and Gensamer sulphur and. phosphorus
are not removed by the treatment with moist
hydrogen. From the foregoing we may there-
fore conclude.that only the carbon and nitro-

- gen, dissolved in the ferrite, are the causes of
the yield phenomenon.- C

o R

The mechanism that iniroduces the yield pheno-
menon, . o - .

Assuming that the dissolved carbon and ni-
trogen-atoms‘are the cause of the yield pheno-
menon, apparently minute quantities of these
atoms. are already-able to block the glide
planes of the ferrite lattice completely, as long
as a definite stress (the upper yield point) is-
not attained. Then, however, a sudden unlock-
ing or at least a considerable reduction of the
locking effect occurs. As is welPkn,own, the
carbon and’ nitrogen atoms do not occupy po-
sitions of the iron atoms by substitution, as do

dissolved foreign metal atoms,”but they are -

assimilated by Interposition between the iron
atoms. The slight solubility of carbon and
nitrogen in the ferrite indicates that these
atoms might deform-the latiice to a rather
great extent. It is not unlikely now that the

- yield phenomenon must be attributed to a dis-
placement of the carbon and nitrogen atoms, -

relative. to_their ofiginal position, which al-
ready takes place during the’ elastic deforma-

tion. In this connection the tlieory of Snoek 15) -

of the elastic-after effect in mild steel, offers
some ground for an explanation of the pheno.
menon of discontinuous, yielding 15) 16). In

- CFigxm . -
Equilibrium  positions -of the carbon and nltrogen
. atoms in the ferrite lattice. [Snoek 15} 18)). -

N



short, this théory can be summarized as fol-
.« lows: The carbon and nitrogen-atoms are dis-

- principal directions in the ferrite’.lattice, as

stresses, For reasons of symmetry Snoek con-
_ siders the x-positions - (14.0.0.) and (0.14.14),

the z-positions (0.0.15). and (14. / 0),- which

~ are mutually equlvalent as the positions where
‘these atoms are in equilibrium- (fig. 2)-*). For

reasons of simplicity only the x-posmons are

. indicated in fig. 2."When the lattice is strained

. tions rernain mutually equivalent, but become
‘'differént from the x-positions. The equilibrium
" in the lattice is now disturbed and consequent-
ly-a _stronger diffusion of the atoms from the
y- and x-positions to.the x-positions than in the
opposite direction, takes place, until a new.
, state of equlllbrlum is reached. Although the
3 ‘ dlstance, over which the atoms have to be dIS-
' placed, is_smaller than the lattlce\parameter,
. this dlsplacement is a pure diffusion process.
The velacity of displacement therefore strong-
ly depends on the temperature and. the degree
* of .deformation.. If the carbon and nitrogen
“atoms-are distributed. umformly over the x-, y-
and z-positions, they cause on the average an
. equal deformation of the lattice in all direc-

on x-positions, the deformation -increases in
" the. x-direction and decreases in the y- and z-
dlrectlons When the lattice is now loaded in

-

this direction takes place (fig. 3). There-after
the “strain still .increases a finite - amount,
durmg the time.in which' the modified diffu-
, sion equilibrium is established..On unloading,
- at first a spontaneous contraction_occurs fol-
lowed by a further contraction durmg the time
that the initial state of equilibrium is restored.

From a quantitative c0n51derat10n of  the

-.....__'._.....__ Lime .

Fig. 3. - cTe

Elastlc after-effect in steel’ at loading and unloadmg
[Snoek 15, 161.. .

¥

*) Whether other equilibrium positions are .inore
plausible will be left out.of consideration here..In
this connection it dees ndt make .any- essentlal diffe--
rence, ‘ ) .

A -

tributed-statistically equivalent along the three .

long as the lattice is not deformed by external'

the y-positions (0.)4.0.) and ( 14.0.14) - and .

-

tions._ When the atoms are more concentrated-

' the x-direction, at first a spontaneous strain i

M4

elastically in the x-direction, the y- and z-posi.- _

~

diffusion proces Snoek con‘clﬁde:s that even at -

room temperature-the carbon can diffuse with
perceptible velocity. This may ‘also ‘be’ con-
cludeded from the quench -aging ‘behaviour of
mild- steel, discussed in more detail later ‘on.

Naturally, -every arbitrary state of -stress
which causes an unequal deformation of the
lattice, causes the original states of equilibrium:
to.become unequal and the dissolved atoms to
concentrate’at preferred positions. A conglo-
merate of ferrite crystals, .orientated -at-
random, will therefore behave essentially in
the same way. For a qualitative explanation
of the phenomenon. the use Of the snnple
plcture is thus permitted. | .

It-is obvious that-the propertles of the gllde
~planes will also be changed during the' diffu-
' sion process. Snoek’s theory may-therefore be -
‘extended as follows*). When the-lattice is

stressed :in - the x-direction slip along the -

[1.1.67. planes in the [1.1.0]. dlrectlon, as
well as the preferred -[1.1.1:] direction, is- at
first impeded by the C- and N-atoms (0.14.0:)
and (}4.0.14), whilst slip on the [1.0.1] planes
is at first impeded by the C- and- N-atoms
(0.0.35.) and (14.15.0.). It seems therefore very

acceptable that slip will not occur béfore these

atoms are migrated fully or- to a certain
degree to the remammg equilibrium positions
(15.0.0.) and (0.14.14.). Consequently yielding
will start at a higher shear stress and ‘there-
affer at first continue on a lower siress. Since
after a certain. plastlc deformation, even wheii
the external load'is taken off; hlgh internal
stresses‘in the crystal fragments initially re.

main, it is also plausible that“these. stresses

" initially prevent the return of the yield pheno-

~,

nmenon, As will'be elucidated in more detail in

following sections. the.essential aspects of the

. yield phenomenén.can be- explained- on the
basis-of this hypothesis of unlocking of glide
. planes. Especially. the great sensitivity of the
¢ vield points to the strain rate fully agrees with
the supposition that the yield phenomenon is
‘related with a diffusion process which already
occurs during the elastlc deformatlon of the
lattlce

'I‘he fundamental character of the yleld pheno- .

menon. . . -

- The ‘way in Wthh the yleld phenomenon -

f:nds expression in -the stress-strain curve in
tension not only depends on the steelitself, but
also on the strain velocity, the .type and con-
struction of the testing machine and the shape
and-dimensions of the test bar..When' a test

. bar is loaded, potential energy is accumulated

in the combination of testing machine and tést,

_ bar, dependent on the magnitude of -the load.

When yielding oceurs under maintained or
decreasing load; this energy is-partially releas-

ed in the form of kinetic energy of the parts: of -

“’) See also ,,De Ingemeur" (1948) No. 27, Mk 1.

/
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the machine and of the test bar. The part of
the potentlal energy, accwmulatéd by the test-
‘ing machine, is determined on one side by the

‘elastic deformation of the machine, on the

other side by the.type of testing machine; it is
a measure of the regidity of the testing
machine. Perfect rigidity, which means that
the energy is zero, is of course unattainable.
The potential energy of the test bar is only

.determined by the elastic deformation of -the

bar and as such related with the shape and
dimensions of the test bar. In addition; these
dimensions affect the stress distribution of the
test bar. For a Judgement of the fundamental
properties of the steel with regard to the yield
phenomenon,.itis therefore necessary to ehrm-
nate the factors, which do not refer to the pro-
perties of the steel itself and exercise an un-
controlable by-influence. We therefore con-’
sider ‘a straight cylindrical tension bar, ta
which the load is applied statistically umform-

1y, and which is tested in a perfect rigid testing

machine. A completely uniform.stress distri-
bution on the end planes of the bar is impos-,

sible and even undesirable. In consequence of

the anisotropy of the crystals, which .are

. orientated at. random, a complicated siress

distribution occurs in the bar. These stresses
are, however, statistically uniformly distri-
buted ~on condition that the erystals are small
with respect to the thickness of the bar. Fig. 4.
shows qualitatively the distribution of the lon-
gltudmal tensile stresses over the cross section, .
Now we imagine that the stress is carried over
to. the end planes in such a way that here the
same state of stress exists as in. the bar itself.
We further leave the dimensions of the bar out
of consideration, in 0 far that it is only assum-

ed that the length of the bar is great in com-

parison with the width of the flowlines, which
will be developed during discontinuous yield-
ing. Now, the bar is strained with such a small
velocity that the homogeneous equilibrium of
the carbon and nitrogen in the lattice is fully

sl
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Fig. 4..
Slmphﬂed representation of the longitudinal stresses
in elastlcally deformed test bar, - .

3

established during the purely elastic deforma- .

tion of the lattice. At C (fig. 5), somewhere in
the bar the critical stress (in reality a com-
plicated state of stress), is reached, by which
unlocking on the ‘glide planes in ghestion oc-
curs, follawed by yielding under decreasing

load. It is evideént that the corresponding no-
.minal stress, at which vielding starts, is deter-

mined only by the propertles of the steel itself.
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Flg 5.

Fundamental shape of the stress- stram curve of mild -

steel in tension.

‘This stress has therefore to be con51dered as a

characleristic . mater1a1 constant, which we
might call the ideal upper yield point ou. On
reaching o.; the unlocked centre cannot stand

" ‘the Tocal high stress any longer, so. that the
stress decreases simultaneously with the occur- -

rence of the plastic deformation. Consequently,
a high stress concentration arises at the boun.

" dary of the primary yield centre and the still

purely. elastically deformed surronndings, so
that the critical stress is reached here too. Un-
locking continues quickly. from the primary
yield centre across the whole bar cross section,
under development of one’ or more flow lines
and simultaneous decrease of the nominal
stress. This process continues under further
deformation in the flow lines and, possibly,
development of new ones at the boundary of
the primary flow lines, till the nominal stress

-has decreased to such an amount that at I) the
- critical stress remains exactly mainiained in

the boundary of the flow lines. A further de-
crease is therefore not possible without .the
yield process coming to a stop. On continued
straining a front. of flow lines passes through
the bar, at constant nominal stress till at E, at

" a strain &, unlocking has taken place thrbugh-

out the whole bar. The corresponding nominal

siress, which we might call the ideal lower..

yield point oy, is also a.charactéristic’ material
constant. On the primary moment of unlock-

ing, strain hardening ‘starts 51multaneously..




with the plastic deformation. The strain har—
denmg increases, independent of the discon-
tinuous shape of the stress-sirain curve, con-
tinuously with the local plastic deformation,
~in the same way as in other plastic inetals.
- 'This is already evident from the well-known
faet that a uniform plastic deformation, which

is smaller than ‘the yield point elongation e, -

is. sufficient to make the stress-strain curve

between C-and D, increases. It now depends
on the velocity of unlocking ini the-boundaries
of the primary flow lines, the local strain velo-
city in these flow lines and other f actors,
whether or not the deformation already locaﬂy
stops at a higher stress than o, In the first
case the local strain will be somewhat greater
thian corresponds to ¢, and in consequence the

) unlocklng of the entire bar is not ended hefore

completely “continuous. Such a deformation, -

which can be atfained for instance by rolling,
just eliminates the lockmg effect completely,
while the strain hardening is still véry small #)-.
Moser 19) and later Winlock and Leiter 13)

" - have shown' that the hardness increases con-

tinuously with the local strain in the flow lines,

in spite .of the discontinuous .slope. of the

stress-strain curve. From this fact they con-
cluded quite rightly that the stress-strain eurve
of steel should be contimious according to
'OAEF, if the cause of the yield phenomenon
would be just eliminated without-a further
' chiange of the properties. We might call the
stress at A the elastlc hmlt of the unlmked
steel, «,;.

. During dlscontmuous yleldmg the Jocal
strain, aitained in the flow linés is equal to &,
apart from slight deviations caused by triaxial

 * stresses. The strain hardening in the flow lines,

is therefore given by the increase of stress
from o, to o; . In E, after discontinious
vielding has extended acress the whole bar,
the strain is uniform again. On furiher sirain-
ing the unlocked state remains maintained and
the bar now-behaves in" completely the same
way as the bar which would be unlocked al-
ready at the outset. This means that the bar
strains umfo;t‘mlj,r and the nominal stress there-
- fore increases continuously.

E’, beyond E, is reached. At continued strain-
ing the bar does' not become fully uniform
before the stress is raised again to the highest
stress o5, at which yielding in the primary
flow lines has come to a standstill. This pro-
blem, however; is extremely difficult to dis-

cuss and is cerfainly of no- 1mportance for

hars of tsual length.

It is also hard to conclude whether or not
the nominal stress might temporarily decrease
iil} below o,;, when the length of the bar is so
small that, this stress being reached, only a
very slight - plastic deformation has taken
place in the primary flow line. A drop ta DY
is fundamentally impossible. The width of the
flow line must always be smaller than the
length of the bar, because the total length of
the ‘bar is practically unchanged. The local

* strain is therefore always greater than the total’

strain £, and consequently the normal stress
must always remain greater thans ¢, . Moreo-
ver, in the flow line a complicated state of
stress exists, due to the necking effect, which
has ‘the same effect as strain hardening and
which helps to keep the stress at a still higher
level. Anyhow, a drop in the siress below D
could not be'realized with éertainty under con-
ditions which were approxunately the same as

. thos€ mentioned ahove

~ Beétween C and.D the bar is in a labile state.
_and in this range the development of the flow -

lines and the decrease of the nominal stress
thus ‘occurs with a comparatively great velo-

city. At a very small rate of strain of the har as

a whole, the fall' from C to D is therefore

-pracheally verti¢al, The strain in the flow lines -

' -is compénsated by the elastic contraction of

the entire bar. The strain in the section, which is

~only deformed elastlcally, decreases to e,.

Dependent on the. ratio of the’ length to the
thlckness of the bar, (the thickiess determines
the width of the flow Jlines}, slight deviations

can ocecur in tie stress strain curve. When the

length of the bar is greater, the width of the -

zoné, over which the deformation must extend
. {

+)- On the other hand rollér levelling ‘of narrow

strips has only a2 small influence on the magnitude

of the lower yield point. The fact, that the steel after
this. workmg does however show ‘rather strong strain
aging, ‘proves that plastic deformation has taken
place. The gliding in the-crystals during this treat-
, ment is however alternating, and that will be, the
cause that the elastic deformation of the crystal
fragments is too small o ehmmate d1seontmous
yielding.

A maeroscopieally uniform sfress dlstnbu-
tion, the ideal condition from which we start-
ed, naturally cannot be attained id reality. As
is wel_lknown a macroscopical stress concen-
tration always exists in the transition of the
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Fig. 6

Influence of stress concentration on the stress-stram
curve of mild - steel in’ tensmn
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straight part of a fest. bar to the fxllets There-
fore, the critical unlocking stress is .already
"reached in €’ at a nominal stress o, smaller
than oy (fig, 6). As has been shown for instan-
ce, by Kérber20) Kuntze and Sachs21) and
Mac Gregor 22) the nominal stress at which the
vield phenomenon starts is less as the stress
concentration is greater.

Stress concentrations may also be caused by
* eccentric loading and by internal factors as
residual stresses, slag inclusions etc.

When the stress concentration is greater
than in the flow lines, local plastic deforma-
tion already ‘starts in C”, at a nominal sfress
which is even lower than o, (fig. §). Then an

befbrehand. Though, at the lower yield point

the same internal stress is necessary to con-

upper yield point is.no longer possible. As has’

been emphasized by Korher the upper yield
point observed on a real test bar does not
therefore have the s1gn1ﬁcance of a material
constant.

.For ‘the lower yleld pomt the case is quite
different. Once a front of flow lines has deve-
loped in the cylindrical section of the bar, the
state of stress in the boundaries of the flow
lines is again defined by the characteristic
properties of the steel itself. In good agree-

ment, Korber also observed that the shape of ,
the cross section of the bar hardly had any

influence on the lower yield- point. If, there-
fore, the tensile test is performed on a real
test bar, with the required small strain velo~
city, the observed lower yield point is equal’to
the ideal lower yield point, provided the test-
ing machine is sufficiently rigid with regard to
the yield point elongation. The ideal lower

tinue y'leldmg as at the upper yield point {o-
start yielding, as hasalso been pointed out by
Davis 23}, the further circumstances are dif-
ferent in many respects. Exactly up to the up-
per vield point the bar strains equally every-
where and only elastically. At the lower yield
point the bar sirains elastically as well as plas-

“tically in the proceeding flow lines. The strain

rafe at the moment that the upper yield point
is reached is therefore much smaller than the
local strain rate at the lower yield point, the

- strain rafe of the bar as a whole being the

same. The ratio of the local sirain rate to the
strain rate of the bar as a whole is'constant for
a definite length of the bar, however, it in- -
creases proportionally with the length of the
bar, Therefore, the lower yield point is not
only dependent on the strain rate of the bar as
a whole, but also on the length of the bar. The
state of stress in the bar at the lower and upper
yield point is also not affected in the same way
by the strain rate. Independent of the strain
rate, the shape of the bar in the region where
the unlocking starts, remains practically un-
changed. This, however, is not the case in the
flow lines, Where at increasing strain rate the
nominal stress,. and therefore also the-local

_ plastic deformation, rather strongly increases.

yield point is therefore a material constant,

which might be actually determined.

P

Effect of the stram velocity at room tempeta-
" ture,

’

As has already mentioned, unlocking of the
glide planes takes place over the whole range
CDE, - and this phenomenon ‘thus plays a role
as well at the upper yield point as at the lower
yield point. Since unlocking must be pre-
ceded by diffusion and this diffusion requires
time, it is clear that both vield points must in.
crease with the strain velocity to a greater
extent than the slope of the continuous part
of the stress-strain curve.-This is in accor-
dance with numerous observations. So Fett-
- weis 12), Winlock and Leiter 13), and Manjoine
,14) observed that the percentage increase of
the lower yield pomt with increasing strain
rate is about three times as large as that of the
tensile strength. Edwards, Philips and Liu 10)
observed that in vanadium-treated steel and
steels decarburized by hydrogen, which show-
ed no discontinuous yielding at'a‘normal rate
of strain, the yield phenomenon ‘was clearly
present at a high strain rate. .

How far the upper yield point and the lower
yield point are differently influenced hy e
strain rate can hardly or not at all be judged

From the results of the investigations by
Kiihnel 24), Kérber and -Pomp 25), Elam 26),
Morrison 27), Quinney 28), Docherty and Thor.
ne 29}, Miklowitz 353) a definite conclusion can -
hardly be drawn, because the conditions under
which the effect of the strain rate was investig-

_ ated are not comparable in every respect. Their .

data give, however, the impression that the
difference between the upper yleld point and-
the lower yield point at first increases with
the strain rate. At very high strain rates, the
difference between the upper yield point and

the lower yield point in most cases seems to be
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Influence of strain-rate on the stregs-strain curve of

- mxld steel in tension, no upper yield ' point being

~ present,




very small $0. that it hlgher stram rate the‘
. lower. yield: pomt apparently -increases | to,’
N greater extent ithan the upper: yreld point. % 1
477 "When 'an upper yteld point is' absént; the

;. must follow O0.GKM, as is schematlcally re-.
',presented in ftg 7. Naturally, ai higher strain’

- rates not a single point of the : stress-strain

) "“curve corresponds to.a state of equxhbrlum ‘As

w4 the front of flow hnes, developed from G to ‘_

a . Khas passed ‘a'part of the bar earlief, the local -

. straln more and mere approx1mates the stram )

. N Flg 8 ‘ . ’ .
Inﬂuence of stram-rate on the stress-strain curve of .

. ' - mild. steel in tensron, an upper yield point bemg ‘
ot : present e

.1‘ 4

ks e T w . R R
| “‘(el, whmh is .in, ethbrmm with the corres-
" ponding stress TTOHM represents the stress-
..~ 'strain curve of the.steel, unlocked heforehand
~at 'the strain rate concerned, then heterog’e-
-neous vielding will not be finished in H, but
"+ -bhetween H and 1, e.g. in K, whilst the bar has
-~ not been stramed umt'ormly Consequently the
~ ¢continuous part of the stress-strain curve in K .
~e ' must be comparatlvely -steep. This is in accor-
‘ dance with most observations.
. The behaviour becomes more comphcated ‘
' «]f an upper yield point is also present. At the
.~ same ‘strain rate, a greater local'strain results
*. during the drop of the stress, than in the case
that the upper yield point is absent. This
e causes heterogeneous yielding to be continued
: - .éven beyond K, up to P (fig.'8). Dependent on*
the magnitude of ¢, and the local strain rate
during the drop of the stress from Q to R, ¢, -
o may be smaller as well as greater thane, (ftg
At a hlgher strain rate it is also possible that
no- statlonary -state, which is shown by a hori-
- zontal part 'ofi the stress-strain curve, is attain-
. ed at all, especially when the steel has a com-
C paratively high upper yield pomt and a com-

matically in flg 9, ' X

stress strain -curve at greater strain veloc1ty P
- of ‘the corresponding tensile ‘strength by the

paratively smadll' local strain raté ‘durihg the "*-
.. fall of the stress. ThIS case is represented sche- .

Bach 30) "and Qumney 28) observed that in -

‘.fevteeptmnal cases. the upper yield point can.

_exceed- the tensile strength at a normal strain
- zrate. Manjoine 14), who made his experlments
‘with annealed steel, observed no “overstepping

‘upper yield’ point, evén at very high strain

-rates, though the dlfference was small. At very -,

~ high sirain rates, the upper vield point as well
as the lower yield point; however, exceed the

- -

Yo Flg L4 w . t‘
Inﬂuenee of strain-rate on the stregs ‘Strain curve of
mrld steel in tension; an 'upper yleld pomt being
- present o . ]

{ ov ersteppmg of the: tensﬂe strength by the up-

per yield point is easily possible at very low
‘temperature, or when the steel is strongly

" plastically deforined and aged.

As has already been mentmned in the’ pre-
cedmg pages, potentxal eénergy is accumulated
in every tensﬂe testing machine .at loading.

This energy 1s partly released adam durmg '

]

7-_' ey

Fxg 19

‘Inﬂuence of the rrgrdrty of the testmg maehme on

the stress-strain curve of :mld steel. in _tension,

4

statlc tensﬂe strength As w1ll be showu below," .
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hetérogeteous' yielding at decreasmg load or
even at constant load, when the machine is of
the direct laoding type.-Hence, the strain rate
is accelerated beyond confrol. The effect of the
r1g1d1ty _of the testing machine has' been

31), Krisch 32), Esser 33), .Welter 34) and
quite recently by Mxklowﬂz 35). The way in
which the shape of the stress-strain curve is
influenced by the" I‘lgldlty of thé testing

!

_ari*alteration of the ‘diffusion equlhbrlum at

studied particularly, by Slebel and Schwaigerer -

each stress.with the temperature. Due to the
higher d1ffus1on,veloc1ty, the percentage of
carbon' and mtmgen atoms, which are really
situated :at every instant in the equilibrium

. positions, decreases with increasing tempera-

ture. A satlsfactory explanatmn however, can

. still.not be given..It is also evident, from the

machme other condltwns being the same and )

the strain rate during loadmg bemg very small,
is represented schematically in fig. 10, If the
I‘lgldlty is relatively 'large, thé shape of the

.curve is: accordlng to OC’'STF and the ideal

lower yield pomt is still reached. In tlic case
that the rigidity is relatively small the shape

investigation of Manjoine that the increase of
the yield points with’ 1ncreasmg strain rate is

.asmaller as the temperature is hlgher, which is

in accordance with. the 1ncreasmg dlffusmn
velomty (fig. 12a and b) .

Exact data ccncermng the behaviour.of the

“yield- phenomenon. below room temperature

is according to OC'UF and &, is reached no- -

“more. If the machine is of the direct loading
> type a drop of the nominal stress is not pos-

sible at all. The ‘shape of the curve is then ~

according to OC'VF,, in which the- horizontal

stretch CV’ is passed w1th great velocity.

The mfluence of the temperature on the yleld
phenomenon. -

Is is obvious from.the mvestlgatlons of Bach '
30), Korber and :Pomp 36) Kenyon and Burns

'37) 'and Manjoine 14) that the yield points, the
- drop of the upper yield point 'to the lower

yield. point, and the yield point elongation all
diminish at increasing temperature (fig. 11).
At normal strain rate the yield phenomenon

" has dlsappeared completely 'at approx. 300°

C'and at. a greater strain rate only a rather
sharp knee appears.

locking app arently than

decreases faster

. the effect of strain hardemng, which  even
again |

at- nominal strain rate incréases
beyond - approx.. 80° C., in consequence of
simultaneous uaging during plastic deform-
ation, Possibly, this might be connected with

are rather scarce.. From the investigations of
Maurer and Maildnder 38), Greaves and Jones
39), Bennek 40) and Mac Adam 41) it may be
concluded that the .yield points increase to a
greater exlent at decreasing temperature than
does the tensile strength; especially below —70°

. C. In' table I some data, from Maurer and Mai-

_ lander, are summarlzed ¥
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F1g 11, :
Stress strain curves of mild steel and stablhzed
. - steel. tested at various temperatures,
[Keryon and Burns 37}].

At —180° C, and possibly even at somewhat
higher temperatures, the upper yield ,point
thus exceeds the tensile strength when the
steel is in a condition of normal heat treatment.

As long as the lower yield point does not,

exceed the tensile strenmgth, the stress-strain
curve, aparl from the presence of an uppr

.yield point, will have the shape according to

OD'E'F’ (fig. 13), which is not essentially dif-
ferent from the curve at room temperature.
If, however, the lower yield point exceeds the
tensile strenﬂth before ' the fracture strength,
correspondmg to the pure, elastic " state, is
‘reachéd, the bar will continue to neck in the
region of primary.yielding, under continuous
decrease of the nominal stress. till fracture
occurs. The othér sections of the bar will.in this
case show no plastic deformation at all. The
stress-strain curve Wlll thew he according to
oD"wW. . '

At-a still lower temperature the fracture
strength might be reached before yiélding oc-
curs, partlcularly if the upper yield point is
comparatlvely high. In that case the bar- w111
fracture practically brittle,

No data are available with regard to the ef-

" fect of the strain’rate on the yield phenomenon

below room temperature, It is, however, not

.
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Stress-stram curves of mild steel, at room tempera-
ture for various rates of strain. [Manjoine 14)].
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Fxg 13

Inﬂuence of temperature ‘below room temperature on
" the stress-strain- curve of mild steel in tension.

~ doubtful that the yleld points will react more

strongly as the temperature is lower. Since’

the tensﬂe strength and probably the fracture
-strength in particular, are much less sensitive
to the strain rate, the temperature below which
" brittle fracture or continued necking in the
primary yleld -region occur will strongly in-.
crease with increasing strain rate. Though the
transition ‘zone in the deformation energy-
temperature curve, - observed when testing
notched bars of ferritic stéels, probably does

not find its origin in the mechamsm of dis- -
continuous yielding 1tself certamly the shape'
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Stress-stram curves of mild steel at 200° C for vamous
rates of strain. [Mamome 14)]
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. of the curve in the transrtmn zone and the cor-

responding temperature are'influenced by this

* mechanism. This problem will be dealt with in

more detall in a subséquent paper. - .

oA ‘

II. The st.ram agmg of steel.

Companson of stram-ag'mg and quench—agmg‘
" and their causes,

‘When plastically deformed steel is, stored
some time at room temperature or a higher
temperature, the yield phénomenon returns at

- a higher level. The tensile strength ‘and the.

fracture ‘strength increase: as wel], however,
‘to a smaller extent, while the-elongation and
-reduction of area decrease (fig. 14). The ex-
planation of this behaviour, as given for in-

stance by Pfeil 42),- Koster43), Kriiger 44), -

Davenport. and Bain 45) and now generally

accepted with slight .non-essential - 'modifica--
tions, is based on the assumption that steel in_
- practically all conditions of heat treatment,

even after very slow cooling, is to some extent
supersaturated with carbon, + nitrogen and

~ oxygen. H is now supposed that these elements
or-at least one of them, in combination with

iron atoms, might rather easily be prempltated

in submicroscopic dispersion, even. ai room'
temperature, if the steel is plastically deform-

ed, and thus cause an increased resistance to
plastic deformation, This €xplanation is based

upon the analogous explanation of the quench--

age phenomenon of steel and other multl-phase

t
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. Fig. 14. ‘
Effect of strain aging on the siress-strain curve in
C - tension. [Kgster 58)]. |

alloys. Masing 46) ‘and Koster 43) were the first
who showed that the tensile strength ‘and the
hardness of commercial steel with low carbon
content, after quenching. from .a temperature
slightly below 720° and storage at roomtempe-
rature or slightly higher.temperature, at first

increases -while the ductility decreases. The-
quenched steel is, in consequence of the higher

solubility of carbon and nitrogen at high tem-
perature, supersaturated at lower tempera-

tures, so that thermodyiiamically precipitation

of iron carbide and iron nitride is pursued. It
is now obvious.from the phenomenon of
quench-aging and also from the yield pheno-

menon, that the diffusion rate of carbon and
" nitrogen in ferrite is rather high. A perceptible
increase in the resistance to plastic deforma--

tion is attained at room temperature in a few
days or even a few hours. From the inveslig-
ations of Késter 43), Davenpori and Bain 45),
Andrew and Trent47) it" may be concluded
with certainty that precipitation of iron car-
bide and iron nitride at low temperature
causes aging, According to Jénsen 48), White-
ley 49) and Kaoster 43) the degree of saturation
of carbon in ferrite at room temperature is
approx. 0,006 % C. As to the solubility of nitro-
gen in ferrite at room temperature, the results

- obtained by several investigators ‘show a

rather appreciable difference. According to
Fry50) and Ehnb51) the solubility is about
0,015 %. Késter 52) however determined the
solubility to be approx. 0,001 %. Though this

value might be somewhat too low, the agree-

ment between the results obtained by careful
measurements of the alteration of the magnetic
as well as the electrical properties, indicates that
the order of magnitude, a few thousandths of a
percent, is probably correct. Carbon, and to a
lesser extent nitrogen too, are therefore res-
ponsible for the quench-aging effect of soft
commercial steel. ' '

It is not clear whether oxygen plays a role in

[

quench-aging or not. Since steel always con-
tains several oxide inclusions, it.is extremely
difficult to ascertain the percentage of atomic.
oxygen dissolved in the ferrite, just as the in-
crease of the solubility - with the temperature,
which is in-all probability extrémely small.

" Anyhow, it is not very probable that- the

oxygen contributes to quench-aging in steels,’
fully killed with silicon or aluminium. Dani-

1off, Mehl and' Herty 53) concluded that the

sensifivity. to quench-aging decreased with in-
creasing_deoxidation. A distinct difference in
the behaviour.of the groups of steel examined,
exceeding the experimental scatter, is present’
only between the rimmed and killed steels. The
mean carbon percentage of these groups, howe-
ver, differs likewise strongly. The results will
also he affected by the fixation of nitrogen by
aluminium in the aluminium-killed steels and
the difference in erystal size. Davenport and
Bain 45) observed that ‘electrolytic iron, which
is rich in oxygen, showed only a slight tenden-
cy to quench-aging, even after extra addition .
of iron-oxide. Eilender and Wasmuth 54) ob-
served the same in iron-oxygen alloys contain-
ing less than 0,05 % oxygen. It s therefore not
very probable thal the oxygen in normal mild
steel plays-a role of any importaince with
regard. to quench-aging. It is obvious that de-
oxidation with aluminium does decrease the

" quench-aging ‘effect to some extent, in conse-

quence of its affinity to nitrogen. Addition of

" a proper amount of Ti, Zr, V and similar ele-
* ments, -which combine strongly with nitrogen
" and carbon, highly  diminishes or completely
. eliminates the sensitivity to quench-aging, as

Eilender, Fry and Gottwald 55) have shown.

Low and Gensamer 11) obseirved that the
ability of mild steel to strain-aging,’as far as
the return and the increase of the yield point
is concerned, did not disappear during treat-
ment in moist hydrogen at 700° C, as long as
the carbon content did not decrease below ap-
prox. 0,004 %. A decrease of the aging effect,

"~ however, became already noticeable at a some-

what higher percentage (fig. 1). When the
decarburized and simultaneously denitrided
steel, was nitrided, the ability to strain-aging
returned, They therefore concluded that both
carbon and nitrogen are causes of strain-aging.
This ‘conclusion is supporied by the observat-
ions of Edwards Phillips and Jones7) and
Comstock 17, 18), that steel treated with the
proper amounts of elements like Ti, V, Ta etc.
which strongly combine with carbon and nitro-
gen, show practically no aging. _
1t is still not possible.to conclude with cer-
tainty, whether oxygen is a cause of strain-aging
or not. Since, according to Low and Gensamer,
{he oxygen content did not diminish during the
treatment with moist hydrogen, though the
ability to strain-aging disappeared, their con-
clusion that oxygen is no cause seems fairly
well justified. According to Daniloff, Mehl and
Herty 53) silicon killed steels show less strain-
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Quench agmg of 6,06 per cent carbon steel No. 1
Hardness after quenchmg from 1325 dégrees Fahr.
(720 degrees cent. ) and ‘aging at thé various indicated
temperatures; - plotted on linear time scale..
[Davenport and Bain 45)].
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agingﬂthan do rimmed steels, but their data are

-not very convincing., Davenport and Bain

found that electrolytic.iron, which 'was inten-
tionally saturated with oxygen and which con-
tained hardly any carbon and nitrogen, was
rather liable to sirain-aging. This, however, is
the only case known to the author, in which
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the aging cannot be attributed: with the same-

right to the presenc“e 'of carbon and nitrogen.*

Y

“at different. temperatures -after. . quenchlng
from 720° C, as has been observed by Daven-
port and Bain 45), in agreeiment with, Koster

The temsile strength principally behaves simi-
“larly, whilst the elongation and reduction of
ares show the opposite. It is obvious from the
results of these investigators that the max-
imum hardness decreases with lncreasmg termn-
perature. Already at-200° ¢ no maximumnr is
.attained at all, but the hardness decreases at
once. At*40° C superaging already occurs after

aboutl one day. The decrease in the maximum -
#0- 200 might be-explained as follows: The true size of

the precipitated parttcles will show' a greater
scatter from the mean size as the temperature
and in consequence the diffusion raie is higher,
As the scaiter at the same. mean size of .the,
‘particles is greafer the hindrance in the glide
planes and consequently the remstance to de-
formation is lower.,

The relation: between the hardness at room
temperature and the time of aging at several
' temperatures, with steel that.has been plasti-
_cally deformed, has been mves’ngated by Kos-
_ ter 58), Kéckritz 39), Davenport and Bain 45):
“The data of Daveaport and Bain, which are

_ fundamentally in-accordance with' those of the
first-mentioned investigators, are represented

in fig. 16. According to -Késter the.behaviour.
of. the- tensile strength is similar; whilst the
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tEilender, Cornelius and . Menzen 56),
wise conclude from their investigations that
blue brittleness, which is nothmg else but a
manifestation of aging during straining, as has'

[Davenport and Bain 45)]..

like-

already been pointed cut by Fettweiss 57), is:

cansed by nitrogen and not by oxygen. Carbon

and nitrogen may therefore be regarded as the .

only causes of quench-aging strain-aging *).

Kdster43) in particular has' accurately in.
vestigated the effect of 'quench-aging on the
mechanical properties. of mild steel. Flg 15

represents the rélation. between the hardness

at room temperature and the time of heating -

.elongatlon agam shows the oppomte effect

Prom fig. 16 it 1s. ewdent now that the max-

*) Conclusions, based on. the aivailable data ob-
tained with the impact test are of less value, because
either the influence of the plastic deformation itself
is fully neglected, or the impact values are ‘estimated
at room temperature only. To attain a ‘¢lear pmture- .
of the lighility to aging from the irmpact test, it is at
least necessary .to determine the relation between-

- impact value and temperature in the range from.

brittle to ductile fracture in the original state of the-
steel, and also afier deformation and after .aging’
separately. This question will be. consndered more.
detailed in a subsequent paper.

i




' finum:in-the hardiess does not diminish with
. increasing.temperature, but remains practical-

ly the same, or even slightly increases, at least

> ‘up. to -350° C:-At 200° .G, where on -quench-
aging no maximum at all occurs, hardly any -

over-aging is perceptible, even after prolonged
heating.- At 350° -C over-aging still proceeds
rather slowly. This behaviour fully corres-
ponds to'the behaviour on straining in the blue
brittle range, as will be elueldated in more
detail in the nexl'section, -

The above-mentioned data indicate w1thout
any doubt that thé mechanism of aging after

+ quenching is fundamentally different from the

mechanism ofaging after stralmng, so that the
phenomenon of strain-aging cannot be inter-
preted at all on the basis of a precipitation
theory, like the phenomenon of quench-aging.

" The investigations of - Koster, Davenport and

Bain. and Andrew and Trent-47) clearly show
that the precipitation of iron carbide and iron
nitride from supersaturated undeformed fer-

rite, thus the diffusion of carbon and nitro- °

gen in ferrite, occurs at a relatively high velo-
city even at room” temperature. The yield phe.
nomenon itself and the return of the yield
phenomenon durmg strain-aging lead to the
same conclusions. It is therefore very unlikely
that steel which has been cooled in air, or
more slowly, after rolling or annealing at hlgh
temperature, still contains some carbon and
nitrogen in supersaturated solution. When soft
steel, cooled in air is heated slightly above
room temperature, the hardness and the ten-
sile strength do not increase. On the contrary,
these quantities directly decrease or at most
remain unchanged. This means that during
cooling the precipitated particles have already
oblained the state of. overcritical. dispersion,”
as far as the mechanical properheb are con-
cerned, On heatmg magnetlc aging indeed oc-
‘eurs, since the maximum magnetic aging effect

- is just attained at a much greater size of the

partlctes as has been shown by Koster 52):
It.is generally accepted that plastic deforma-
tion will stimulate precipitation reacuons
Since, apart from exceptional cases,.the pre-
cipitation has already occurred and reached
an overerilical state previously, only a further
growth. of these particles will be stimulated.
Késter’s 52) investigations on the precipitat-,

_ions in mild steel with-the aid 6f Fry’stetching -
method indeed support this view. After some °

hours heating at 100° C>fine particles- of iron

nitride could be observed in the flow lines of -

plastically deformed Thomas steel with
0,021 % N. At the same time the precipitation

in the updeformed regions was still'very slight.

When- the steel, however, was heated during a
long period at 100°’C, finally, in about-a week,
the precipitation in the undeformed regions
became as strong as in the flow lines and the
test piece was equally darkened by the etching

reagent, Incorrectly and.in confradiction to the

M 13

_ observations already menfioned. Koster himself

concluded that the niiride particles were pre-

¢ipitated from -supersaturated _solution, « in. -
- stead of growing from'submicroscopical super-

critical particles already present’before plastic
deformation and: heat treatment. From ‘the
fact, however, that the stabilized steel - was as
liable to.strain aging as the steel in the original
state, Koster rightly concluded that this precip.
itation was not related to the real’ mechanism

of strain aging. Davenport and Bain obtained
the data, shown in fig. 16, with a steel which

was stabilized by heating at 160° C during 17

" hours and which in consequence contained no

supersaturated carbon and nitrogen. able to
cause -aging by precipitation. Still more conv-

“incing in this respect are the results of the fol-

lowing investigation. A sheet of normalized,
rimmed S. M. steel; with approx. 0,1 % C, was

divided in a great number of strips, in which

the profile of a tensile test piece was made be-
forehand. Previous to the aging test, one series
of strips was heated during 60 days at 100° C
to make preelpltatlon as complete as possible.
The other series remained untreated Strips of
both series were put an mcreaslng number of
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times through a roller leveling suachine and
within 10 minutes after that subjected to the
tension test.. The other strips of both: series
were alternatively  leveled and - heated “six
hours at 100°.C.in the same sequence and then
tesled. Prolonged heating had hardly any in-
fluence. Fig. 17 shows the effect of these treat-

ments on the .mechanical. properties of the

.steel. The strain-hardening effect of roller’

leveling was prachcally zero* (as far as the
mechanical properties before agihg are con-
cerned). The difference in properties_of the
strips after deformation and after deforimation
and aging is therefore exclusively- due 1o. the
aging. effect. It ‘is now .obvious from fig.. 17
that the hablhty to strain aging is about the
same for steel in the original state-and in the
stabilized state. With' the ‘exception of the
lower yield point, which behaves to some ex-
tent divergently, the corresponding ' curves
merely. show a .difference in-level due fo stab-
ilizing. These results clearly indicate that the
strain-aging ‘phenomenon cannot be explained
on the hasis -of the ptemp\tatmn theory. The
supposition that even -after an alternating
treatment of roller leveling and six hours heat-
ing at 100° C up fo 40 times, preceded by 60
days heating at 100° C, still some carbon or
nitrogen might be in supersaturated solution
to cause-aging, is untenable! The effect of stab.
ilizing - therefore. only exisis in a further
‘growth of the precipitated parhcles ‘

\The precipitation theory is still more unten—
able if we consider tlie aging effect during
straining at hlgh temperatures (blue brittle-
ness). Theré is not the slightest argument to

suppose that any precipitation can take place”

in this range. On the contrary, elements which
are prempﬁated at room ternperature will just
go into solutmn

--The mechamsm of strain agmg

’

- Since strain aging cannot be caused by pre- '

cipitalion of carbon and nltrogen this pheno-
menon mist be attributed, in the author’s opin-

ion, o alteration in the state of equlhbrlum of -

these atoms iff the lattice. As is generally
““assumed, the crystals’ of -a metal are divided
during plastic deformation in smaller frag-

ments, which are only elastically deformed. In

the small zonés between those fragments, the

atoms. cannot-occupy the normal lattice posu-'

ions and consequently the lattice is locally in

.a more or less imperfect state. To explain the -

iftitial absence of the. yield phenomenon of
plastically deformed steel, the assumption was
made that_the.fragmenis are elastically de-
formed to such-an extent that the state of un-
locking just remains maintained. It is plausible
now that the deformation of the fragments de-
‘creases on storage at room temperature and
still more easily at higher temperatures. This
will cause a restoration of the state of locking
and in consequence the yield phenomenon will

returm; Since the imperfect zones are therme: -

dynamically less stable, than. the fragments, it~
is very pmhahle that the solubility of carbon
and nitrogen in ;the imperfect zones is also

greater. The consequence will be that the car-

bon and nitrogen contents of -the ,imperfect
zones, which comerinto existence during plastic

deformatmn, will try to increase; As has been

shown in the preceding pages the .diffusion
rate of carbon and nitrogen is relatively high;
even at room {emperature, It is therefore pro-
bable’that the increase.of the resistance to de-
formation during aging is due to stlffemng of
the imperfect zones by the increasing con-
fents of carbon and nitrogen. Though the re-
turn of the yield phenomenon and the alterat--
ion of the other properties are thus closely
related, the aging mechanism is to some extent
different. This might be the reason-that the

-yield phenomenon is more sensitive to” aging
and also behaves somwhat dlfferenﬂy mfother

respects P “

Since the diffusion raté-increases with the
temperature, the velocity of aging increases
with the temperature. As'is obvious from fig.
16 the maximum aging effect at room teipera-
ture is not fully reached in 100 days. At 200°C
however, a few minutes heating is entirely suf-
ficient. Prolonged heating at 250° "G causes
over—agmg, but even at 350° C the over-aging
effect is rather smalil, It is very probable now
that over-aging is related with the primary
slages of recrystallisation. ~Though a micro-

- scopically visible stage of recrystalhsatmn of
* mild steel can hardly be obtained at approx.

500°.C, it is very well possible that the formati-

“on of nuclei with a perfect lattice will already

start in the strongest distorted regions at approx.
250° C. Consequently, the concentration of car-
bon’ and nitrogen in thesé regions diminishes
and overaging occurs, At increasing tempera-

ture ‘the recrystallisation’ occurs at a hlgher\ .

rate and becomes more complete This is also.
in full accordance with the increase of over-

~ aging with time and temperature. As long as
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perature: Hence, the maximum aging -effect
will also be fairly independent of the tempe-
rature, According to fig. 16 this is indeed ob-
served, : S -

Blu'g( brittleness.

If the plastic deformation is performed at
elevated temperature, the résistance to.deform-
ation initially decreases in the same way as
shown by the plastic metals (fig. 18). The ten-
dency. to aging however also increases with
increasing temperatire. From a cerlain tem-
perature onwards, dependent on the strain
rate, perceptible aging therefore occurs during

.plastic deformation. In static tension the aging"

effect becomes already predominant at. approx.
80° C. The tensile strength increases’and re-
aches a maximum at 230° C to 300° C. At
higher temperature, apart from the normal in-
fluence of thé temperature itsélf, overaging
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Tension tests of mild steel at various temperé.tur‘es
and rates of strain. [Nadai and Manjoine 63)1.

more and more predominates. At approx. 600°
C over-aging is apparently complete. As the
strain rate increases, the resistance to deform-
‘ation, apart from the aging effect, increases
too. The same stages of aging and overaging
likewise are attained at increasing temperatu-
res. This behaviour, already observed by le
Chatelier 61) and especially investigated by

Kérber and Simonsen 62); Manjoine 14) and -

Nadai-63), is represented in.fig. 19. In tensile

and hardness tests a higher temperature than-

approx. 600° C for the maximum in the curve
cannot bhe attained, even at extremely high
strain rates. This, however, is not astonishing,
sirice at this temperature microscopically vis-
“ible recrystallisation is already possible within
a few hours. From fig. 19 it may also be con-
cluded that at very high strain rates a-slight
aging effect even up to the transition range of
ferrite and austenite still occurs. )

Quinney 28) and Manjoine 14) have shown -

that aging during plastic deforniation already
occurs at room temperature, if the strain rate

\

\

. ! \

is' extremely low. The minimum in the curve,
which represents the relation between tensile
strength and temperature- (fig. -18. and fig.
19) is then shifted below room temperature.
This moreover-proves the suggestion of Fett-
weiss 57) that strain aging and blue brittleness
are indeed fhe same phenomena, -
The minimum and the maximum in the {en-
sile strength .correspond to a maximum and a
minimum in the elongafion already occur at
somewhat lower temperatures. This is appa-
rently due to a,deviation in the behaviour of.
the uniform clongation: .- _

As i3 .known,. a tensile test bar does not’
strain absolutely uniformly and in all regions
at the same time even in the range before maxi-
mum load. Consequently final necking has:
already started to some extent at a lower load
and the uniform elongation remains somewhat

lower thans corresponds to the true uniform

elongation. of the bar. This behaviour probably
will become more pronounced as the tempera-
ture increases, in particiilar when aging occurs

" during the test. It might therefore be the.cause-

of the deviation in the temperatures of the cor-’
responding maximum and minimum.

The discontinuous strajning of the bar is
likewise the cause of the-strong fluctuations in
the stress. during. testing at temperatures .
between approx. 100° C and'300° G (fig. 11). In ~
the zones of .the bar -where-the deformation
temporarily stops, the state of locking of the
lattice is restored. This results in repeated dis-
continuous yielding up to the moment that
final necking starts. As the yield phenomenon
at the transition from the elastic state to the
plastic state disappears at approx. 300° C, dis-
continuous yielding during further straining al-
so0,disappears. A : o

Kenyon and Burns'37, 64) observed that non-
aging steels, which indeed showed.no change

. ; Temperature, °C.
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Fig! 20. . .
Effect of testing tempeTrature on tensile strength of

mild steel and new stabilized -steel sheets.
[Kenyon and Burns 37)]. ’
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in the mechamcal properties at room tempera-
ture after an aging treatment at 100° C, still
showed some tendency to aging, when tested
in the biue brittle range fig. 20). This may be
explained as follows. If the steel is treated with
the proper amount of elements, which strongly
combine with carbon and nitrogen, the solub-
ility of carbon and nitrogen at room fempera-

- ture is not sufficient to cause noticeable aging
in this range., At increasing temperatures,--

however, the solublhty also increases,” so.

that the ability to aging might still' be main--

tained to some extent in the blue-brittle range.

In normal mild steel, the higher solubility of |

these elements. at elevated temperatures cer-
tainly plays a role as well. Only-after complete

" decarburizing and de-nitriding, will the steel be

free of any tendency to blue-brittleness.
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Samenvattmg

De meest gangbare hypothese ter verklarmg
van het vloeiverschijnsel in. zacht staal, is ge-

“baseerd op het bestaan van een netwerk van:

cementiet of andere afscheidingen: op de- kris-.
talgrenzen, dat bezwijkt bij een bepaalde criti-

" sche spanning. Een nadere beschouwing van de

hekende gegevens leidt echter tot de ccnclusie
dat niet het cementiet of enig ander bestand-
deel dat als afzonderlijke fase aanwezig is, de
oorzaak is, maar dat dit verschijnsel moet wor-
den toegeschreven aan koolstof en stikstof die
in het ferriet zelf zijn opgelost. Een nieuwe’
hypothesé-is naar voren gebracht, waarbij is
aangenomen dat de glijvlakken van het ferriet

- "geblokkeerd worden door de opgeloste kool-

stof- en stikstofatomen, zolang een critische
elastische ' deformatie van het roostér niet is
bereikt. Deze hypothese - is ontwikkeéld uit
Snoek’s theorie van de elastische. nawerking,
volgens welke de koolstof- en stikstofatomen

M 16

J

zich in een ongelifke verhouding zullen ver- '

delen over de hoofdrichtingen van bhet kristal-
rooster, als dit is onderworpen aan een defor-
matie, die niet in alle richtingen gelijk is. De
verandering in de verdeling van de-koolstof-
en stikstofatomen, die tot'stand komt door’een
zuiver diffusieproces, zal eveneens een ‘ver-
laging van de weerstand tegen deformatie op

. de glijvlakken veroorzaken. Dientengevolge
‘begint het vloeien bij een hogere, critische
schmfspannmg en gaat daarna vooreerst bij

"stadlum der rekristallisatie.

een lagere spanning verder. Aan de hand van.
de conventionele trekkromme is toegelicht dat:

. met behulp van ‘deze hypothese het vioeiver-

schijnsel in vele opzichten bevredigend kan wor-
den verklaard. Vooral de grote gevoeligheid
van de vloeigrenzen voor de reksnelheid is in
overeenstemming met de veronderstelling dat .

_een diffusieproces bjj dit verschijnsel een rol

speelt. De aanvankelgke afwezigheid van het
vloelverschgnsel “in  plastisch, gedeformeerd

staal is toegeschreven aan de .blijvend elas- -

tische deformatie van de krlstalfragmenten
veroorzaakt door de interne spanningen. Het .

wederoptreden van het vloeiverschijnsel na .

langer verblijf bij atmosferische of hogere tem.-
peraturen is daarom toegeschreven aan een
verlaging of opheffing van deze interne span.

ningen, waardoor de geblokkeerde. toestand

van het rooster wordt hersteld. _
Verder is verduidelijkt, dat de- mechanische

. veroudering en het identieke verschijnsel der

"

blauwbrosheid, niet, zoals de afschrikveronde- -

dering, wordt veroorzaakt- door submicrosco-
pische afscheiding van IJzercarblde, “nitride of.
-oxyde in het ferrietrooster. Dit blijkt uit het

_essenti€le verschil in gedrag van staal bij af-

schrik- en mechanische’ veroudering, Overver-
zadiging en dientengevolge afscheidmg is in
het bijzondér wel uitgesloten in het tempera-

. tuurgebied .der blauwbrosheid. Mechanische
veroudering is daarom eveneens toegeschreven -

aan koolstof en stikstof die in het-ferriet zijn

e opgelost De oplosbaarheid van deze elementen

is gioter in de verstoorde zones tussen de kris-

talfragmenten dan in de slechts elastisch ver-

vormde kristalfragmenten zelf, zodat de con-

- centratie in deze zones toerieemt .gedurende

het verouderlngsproces Verondersteld wordt
dat dit de oorzaak is van de verhoogde weer.
stand tegen plastische deformatie. In dit ver-
band is de over-veroudering toegeschreven aan
de vervorming van kernen met perfect rooster
in de verstoorde zones, gedurende het pr1ma1re
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1 Introduction.

Plates loaded beyond their buckling stress are
common structural elements in aeroplané struc-
tures. The buckiing of thin sheet metal plates
may be prevented by a system of closely spaced
stiffeners. Except for very large aircraft such dense
stiffening would result in uneconomic structures;
therefore, stiffeners are usually spaced such that
plates will buckle at stresses which are too low
to be acceptable as ultimate stresses in aeroplane
structures. The application of these lightly stiffened
plates is based upon the fact, that the structure
will take a considerable load in excess of the
buckling load of the plate.

A theory of the post-buckling behaviour of thin
plates was presented by H. WagNER in 1929

1) Full version of a paper presented at the 7%
International Congress of Applied Mechanics, Septer-
ber 1948. An abbreviated version will be published in
the Proceedings of the Congress.

(ref. 1). He assumed, that the plate can take no
compressive stresses, each element being loaded
in tension, In this way a plate stiffened in two
directions can carry shear load; buckles are formed
in a direction intermediate between the directions
of the stiffeners. This state of stress corresponds
to the actual stress distribution when the ratio
between the shear load and the buckling load is
infinite and the phenomenon is known as the
complete tension field. Under actual conditions the
ratio between the load and the buckling load is
finite and the stresses in the plate, though mainly
tensile, will also have compressive components.
This state of stress is called the incomplete tension
field. When the load is a compressive load parallel
to one system of stiffeners the tensile stresses are
not dominant; the problem connected with this
type of load is known as the effective-width problem
and has been extensively investigated. The load
system of shear, parallel to the stiffeners, eventu-
ally combined with compression in the direction
of the stiffeners, has been investigated less
extensively. The tests which are reported here are
meant to contribute to the knowledge about the
incomplete tension field, _

The complexity of this problem, due to the
multitude of parameters involved, necessitates
aircraft designers to apply the general knowledge
just for an initial determination of the dimensions.
Then definite conclusions on the strength and
stiffness are determined from ad-hoc tests on a

- section of the structure or on a complete structure.

This paper will not obviate this procedure, since
many of the factors involved have been left out




‘of " consideration; it is, however, hoped that it
will help to reduce the gap between the general
knowledge about the post-buckling behaviour of
stiffened plates and the prediction of strength
and stiffness of actual structures.

The test programme was developed by the
National Aeronautical Research Institute in 1940
and the tests were completed about 1946. At that
time, the oniy fundamental experimental investig-
ation was that of R. LawpE and H. WaGNER
(ref. 2) on long plates having clamped edges.
Since in actual structures the restraint given by
the stiffeners is far from complete, particularly
with stiffeners of open cross section having small
torsional stiffness, tests on plates having supported
edges will give a better approximation of actual
conditions. Therefore, our test programme was
arranged for plates having supported edges.

The available theoretical knowledge of the
incomplete tension field was confined to the theory
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of A. Kromm and K, MARGUERRE (ref. 3), this -

theory dealing with the infinitely long plate
having supported edges. The approximative char-
acter of this solution, originating from the assumed
wave form, is apparent from the fact that it does
not result in WAGNER's solution for the complete

tension field for the limiting condirion X w0,
Yer -

This result is not surprising, since the assumed
wave form agrees with the wave form at the
critical locad, whereas the amplitude of the waves
in the complete tension field is constant along
the crest of the temsion buckle. Therefore, the
theory of ref. 3 seemed to be reliable only for
loads not far beyond the critical load. The object
of the tests was among others to determine the
limits of the reliability of this theory.

Considerable theorerical progress is due to
W. T. Korter (ref. 4) who, simultaneously,
attempted a theoretical investigation at the National
Aeronautical Research Institute in 1944,

This theory deals with the infinitely long plate
which iz supported or clamped at the edges;
numerical evaluation of his theory was mainly
confined to the case of the supported edges.
Kromm and MARGUERRE introduced in their
approximative solution 3’ parameters: the wave
amplitude, the wave length and the direction of
the waves. KOITER accepted: the same scheme, but
in addition he made allowance for the change
of the wave form in the direction of the wave

crest with increasing " Foliowing Cox’s pro-
’ Yer

posal. (réf. 5), KoIter assumed that the wave

form in the direction of the wave has a constant
amplitude over a certain width in the middie of
the plate; in the edge strips the amplitude falls
off to zero in an appropriate manner consistent
with the edge conditions. The width of constant
amplitude is the fourth parameter. For vy, nearly
equal to unity, KOITER's solution corresponds
essentially to the solution given by KroMM and

MARGUERRE. For ' = o KOITER's theory yields’
Yer

WAGNER's solution for the complete tension field,
W. K. G. FLoor has compared the results of the
tests (refs. 6, 7) with the results of KOITER's
theory.

The behaviour of a plate after buckiing may
be expressed by the relations between the external
loads at the edges, the relative displacements of
the edges and the stresses in the plate. In actual
structures the plate is only part of the structure
and the load is taken partly by the plate and
partly by the stiffeners. Knowing how the plate
behaves under load, it is relatively simple to
determine the behaviour of the stiffened plate.
The stiffeners participate in the distortion of the
edges; therefore the load carried by a stiffened
structure under specified edge displacements is
equal to the sum of the load carried by the plate
and the load carried by the stiffeners under the
specified distortions. Consequently, a test pro-
gramme for the investigation of the behaviour of

stiffened plates does not require a variety of

relative stiffener cross sections, provided the
strain of the edges can be varied. In principle
this can be achieved by applying compressive
load to the stiffeners. In our tests we ‘applied
compressive load parallel to the short sides of
the rectangular plates. The application of 2 normal
Ioad in the direction of the long sides would
have complicated the test rig too much. It was
decided to realize a variety of longifudinal edge
strains in an indirect way by means of the
compression developed in the stiffeners by the
tension field. By varying the stiffness of the
stiffeners a variety of edge strains can be
artained. Thete is another reason for this pro-
cedure. Usually the load of stiffened plates
consists of shear and normal load in the ¥-direction
of one system of stiffeners; the other system of
stiffeners being stressed by the loads induced by
the tension field in the X-direction, Therefore, a
combination of large £; and small shear stresses
will not occur and the task of producing appropriate
strains &, may be delegated to the tension field.

On the other hand the strain e, is produced by




circumstances independent of the shear stress;
therefore e, should be applied directly..

Choosing the external normal load parallel to
the narrow side of the plate, we aimed at represent-
ing the conditions in shear webs of aeroplane
wings and in skin panels of wings having no
longitudinal stiffeners between the spars. There-
fore this investigation does not cover the conditions
prevailing in stiffened skins of wings and fuselages,
where the normal load is parallel to the long sides
of the rectangle. Anticipating the conclusions of
this paper, it may be stated that the agreement
between theory and tests presumably will hold
as well for plates loaded in compression along
the long side, so the behaviour of these plates
might be determined by means of the theory -of
ref. 4.

2 The‘parameters of the phenomenon.,

The state of stress depends upon the dis-
placements at the edges, 1. e. upon the strains &,
and e, of the edges and the shear angle y of the
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rectangle, and upon the geometry of the plate

and the mechanical properties of the material.

The geometry is given by the slenderness ratio
a/b of the rectangle and the slenderness of its
cross section b/t ; the mechanical properties in the
elastic region are given by E and v.

Our tests were confined to the elastic region.
Due to the formation of waves, permanent
deformation will occur at the faces of the plate
whete large bending stresses add to the membrane
stresses, provided that permanent deformation at
the rivet or bolt connections is prevented by giving
these connections appropriate strength, It is of
particular interest to know under what circum-
stances the first permanent deformation will occur
in the plate. The behaviour in excess of that
limit is important mainly in connection with the
ultimate load, Since the material yields in bending,
it is to be expected that the relation between the
membrane stresses and the average strains over
the plate thickness will not be affected very much
by plastic deformation. The increment of stresses
after exceeding the yield load might be estimated
in applying WAGNER's theory to the load increment.

It appears from the theory for the infinitely

long plate %: w |, that in the elastic range

the parameters can be reduced to four in number;
viz. the ratios of ¢;, g; and v to the critical shear
strain vy, and Poisson’s ratio v. Since v is very
nearly a constant number for the materials

employed, this practically means that the para--

meters, governing the problem are:

& and L or L, 52 apd Yer
Yer Yeér Yer T Y

It is obvious that a rectangular plate and an
infinitely long - plate having the same y.,, will
not have identical stresses for equal ¢, £, and +.
So, in fact, the stress distribution in the rectangular

£y

r

-

plate will depend upon a fourth parameter %.

Now, the effect of —g— upon Y¢r is only of second-

ary importance for—g— > 3. Théugh cases of
a

b

left these conditions out of consideration and

-
.

1 occur ‘in aircraft structures, we have

decided to have a constant ratio-;—:—= 3.16 during

the whole of the test programme. Thus the results

will hold for structures having % > 3 and in

this range the parameters can be assumed to be
€ €
L, 52 apg Yer,
Y Y Y
In view of these parameters the best test
procedure would be to run a series of tests for

constant —1

Y

and 2% over an _appropriate range of

v

YCT | The test rig, however, was such that it gave
L

the distortions as a result of the loads applied.

In particular this applies to the way in which

gy is obtained.

During each series of tests we aimed at a

. -1 .
constant 'nominal’ % the actual 22 depending to

Y Y
some extent -upon the post-buckling behaviour

of the plate, so we had to accept a gradual change of

2 and =2 durmg each test series, This incon-
Y Y

venience is however not very important, since
the test results show so much scatter that a
more refined test procedure would not have been
worthwhile.

£ o4

The gradual change of —Land 2
Y. Y

other effect, that must be taken into account,

The critical strain y;, is not independent of &

gives an-

€ € . .

and =,; each set of values—2, —2. will result in
. Y Y

a particular v¢r. Therefore, during each series

of tests ygr will change gradually. This means
that the evaluation of the test results cannot be




based upon the value of ~v., observed in the
lower load range. Moreover, it is practically
impossible to determine vy, from the test due
to the initial waviness of the plate. Therefore

Yer (fi, 3) was evaluated from theoretical
Y T
considerations.
MWhile evaluating the test results it appeared
that under certain circumstances y., should be
replaced by some other quantity. This occurs when

gy . C
—2 is large and then the deformation is primarily

compression and only secondarily shear. Even the
infinitely long plate will buckle under these
conditions in one single half wave in the same
way as with pure compression without shear,

. . € £ ..
When deformations increase, —— and > remaining
Y Y
constant, this type of deformation becomes un-

stable and’ will suddenly change over from the
compression wave into a wave form of the 'diagonal’
type. From KOITER's theory FLOOR calculated for
the infinitely long plate the shear y, at which
the ’diagonal’ wave contains less elastic energy
than the ‘compression’ wave. For finite lengths
this shear v, will not necessarily be the shear at
which the compression wave disappears, for it
may be that the compression wave will be stable
with respect to small disturbances. Nevertheless,
the shear vy, will be the unit for measuring v as
soon as diagonal waves are developing and vy,
loses its- physical significance.

Ycr

This is the reason why —°T was dropped as a
Y .

parameter and replaced by _*>__ For the smaller

’

€. . ‘ . . .
values of —2 this change is not essential, since
Y
in that case v, = ygr. Evaluating quantities
depending primarily on the wave form in the

Yer

Y
this method simplified the representation of the

test results, In determining v, it was assumed that
o
Yer

Y-direction was retained as a parameter;

would be equal for the infinitely long plate

Yo

- fer
culated in ref. 7 from KoOITER's theory, is given

in fig. 5.8.

and the rectangular plate. The ratio , as cal-

In principle the range of —° to'be investig-
. ) Y
ated can be covered using only one plate having

S 4

TABLE 2.1.
Range of the investigations.
b ey ey (Yer/t) 13 | Num-
— ber of
¢t | min ' max | min | max | min | max | tests
118 0.01} 0.06 ¢ 0 0.620|1.0051 12
118 0.021 0.07 0.17] 0.19 [0.490 | 0.750] 13
118 0.04 | 0.09 0.30| 0.31 |0415]0.615] 15
118 0.06| 0.09 0.45| 0.56 [0.380|0.595( 10
118 0.03 | 0.09 0.63| 0.75 |0.390 | 0.655 9
118 0041 0.08 1131 1.83 | 0.415]0.670 8
118 0.06 | 0.10 1.54( 1.94 | 0.420 | 0.655 6
167 0.04| 0.12 0.02| 0.04 {0.310) 0.575 8
167 0.08| 0.13 0.02 | 0.05 | 0.340 | 0.495 3
167 0.12] 0.17 0.03 ] 0.04 10.330 | 0.460 3
167 0.06] 0.20 0.01| 0.04 | 0.320 | 0.585 4
167 0.05] 0.11 0.14) 0.25 [0.310|0.405| 5
167 0.07 | 0.13 0.15] 0.21 | 0.305 | 0.395 3
167 0.09 0.17 0,141 0.21 10.2950.390| 3
167 0.09 | 0.20 0.141 0.20 |0.295| 0400 3
167 0.06| 0.12 0.19( 0.26 |10.290 | 0.385 5
167 0.06| 0,13 0.20( 0.29 | 0.285 | (0.370 3
167 0.09| 0.17 0.17| 0.26 | 0.275 | 0.370 3
167 0.08 | 0.20 0.17| 0.25 [0.275 | 0.390 3
167 0.05( 0.11 0.26| 0.41 |0.265 | 0.360 5
167 0.027 0.13 0.25| 0.41 |0.270]0.380] 3
167 0.07, 0.17 0.24| 0.36 [0.260 | 0.360| 3
167 ~ 0.03| 0.20 0.24| 0.41 |0.260 | 0.360 3
| 167 0.04 | 0.10 0.46 | ¢.65 | 0.270 | 0.340 5
167 0 0.04 0.67 ] 0.74 10.290 | 0.340 2
167 0.01 | 0.07 0.601 0.72 10.290( 0.335 2
167 0.091 0.09 0.67 | 0.92 | 0.290|0.335] 2
357 0 0.11 |—0.01| 0.03 | 0.200 | 0.680] 13
357|—0.03] 0.16 | —0.02]| 0 0.255 | 0.685 6
357 0.02| 0.10 0.12] 0.17 {0.215 ) 0.56G | 12
357 | —0.02; 0.14 0.10] 0.12 |0.2350.570| - 8
357 0.02; 0.10 0.23] 0.31 [0.200 ; 0.475 8
357|—0.06] Q.13 0.24 | 0.26 | 0.205 | 0.450 7
357|—0.03| 0.07 0.34| 0.36 |0.205 | 0.465 6
3571 —0.08; 0.11 0.38] 0.42 |0.190 | 0.425 7

. t .
sufficiently small 5 In this way the stresses at

the lower end of the /2 range can be kept below
Y
the yield stress of the material. This method will

have the practical disadvantage that the investig-

ation of the range of Yo just below unity involves

small strains, which cannot be measured reliably.
Besides, the initial waviness of thin plates will
greatly influence the deformation in this range.

In order to improve conditions the tests were

carried out with 3 ratios of {—, viz, ;: = 357

{plate no. 2), —? = 167 (plate no. 1) andﬁf: = 118

(plate no. 3).
The range of load parameters investigated is
given in table 2.1,




3 The quantities to be measured.

For given edge strains &, and ¢ and shear
strain v, the shear foad and the normal loads
on both edges of the plate are to be determined.
The shear load of the panel follows from the
externally applied load.

The ratio between vy and the average shear
stress T yields the effective modulus of rigidity

G ="
Y .

The normal forces N, and N, are important
for the determination of the loads in the stiffeners
of stiffened plates. These forces or the average
normal stresses 6, and o, can be computed from
the membrane stresses in the plate by:

il

JI

oy dy, (3.1a)

| =
NIQ" I\)I

Q|-

oy dx (3.1b)

QI
I

njz

!D N

For the determmation of the rivet loads it is
necessary to know the maximum normal stresses
67 max and o max.

The determination of the stresses in the plate
requires a knowledge of the maximum membrane
stresses o, 65 and © and of the maximum bending
and torsional stresses ap;, Gpy and Tp.

Neglecting third-order terms, the membrane
stresses are given by

E du - dv 1 [fow)?
0= —— e b y— F b —
1—v? | &x gy 21

v {ow)?
+ =], 3.2a)
2 ( 3y) ] (
’ 2
_— EPE+Q+LGQ+
1—v | x oy 2 \ ox
2
i(@)} (3.2b)
2 \ &
- _L[ﬁ v i"i}, (3.2¢c)
2(14v) Loy ax | ox dy .

The bending and torsional stresses are given

.t
forz=+—_—b
T 5 y

— Et |[#w 2w
Cpp =i b v |, 3.3a
b1 +2(1-—v2){ax2 ’ ayz} (3.32)
—- Et 2w 22w
Cho= , 3.3b
b2 +2(1—v2)[_“ o ayz} (3.3)

—  Et o*w
— + .
2 (1+v) oxdy

(3.3¢)

The determination of the stresses requires a
knowledge of u (x, y), v (x, ¥) and w {x, ¥).
It appears that the most direct way to determine
the stresses is by measuring the strain at an
appropriate number of points. At the commence-
ment of our tests the . electrical strain gauge
technique was not yet developed, so we had to
seek ‘alternative methods. It was decided to make
elaborate recordings of the wave form by measuring

x
ion w. This method is basically insufficient since
the membrane stresses depend upon the plane
displacements u and v as well. It will be shown
how in spite of this lack of information useful
conclusions could be drawn by determining
average values,

In view of the results obtained, this method
seems to be more appropriate than direct strain
measurements, Due to initial waviness, the strains
in a particular point will be affected very much
by the occasional local eccentricity. In order to
arrive at fundamental data on the behaviour of
plates, strain gauge measurements would have to
be made at a great number of points and the
recordings would have to be averaged. This
method would be lengthy and would give no more
information than a method which by origin can
produce only average values.

It will appear from § 4, that the longitudinal
edges of the plate have been supported in such
a way that they could transmit practically no
longitudinal load to the supporting stiffeners.
Thus it could be assumed that N, or o, is indepen-
dent of x, and hence

w ow
the slopes x and _6; and in addition the deflect-

a @ b |
o= 25 =L [ 2 25 drdy. (3.40)
a a ab a b
T2 27712

Further it was assumed that the edges x.= +

a . . . .
5 remain straight, which was practically true due to

the large bending stiffness of the lateral stiffeners.

Though the lateral stiffeners were rigidly
connected to the plate, it was assumed that IV,
is independent of y as well. As to N, it was

b
further assumed- that the edges y = + -—

2
would remain straight, which was not guaranteed
by the test rig. So the force N, has been determined
with less certainty than the force IV, which is
acceptable since N, is of minor importance.




Under the assumptions made, the average
stress a, is given by a formula analogous to (3.4a).
The average shear stress T can be expressed in
terms of 7 in the same manner. The result of
the integrations in (3.4a) etc. is:

E

oy = (—ey — vey + EAap + V’32p): (3.5a)
I—v? :
e .
gy = v (~—ve; — g5 + veip F Ezp): (3'5b)
T = _ , 3.5
) (v — vp) (3.5¢)
where
b
2 Bw
€1y == dxdy,
1p Zbe a_[ b Y (3.6a)
2 2
a b .
1 2 2 fow\?
ey = T . - dxdy, 3.6b
= 2ab | 4 f b (3J?> I ( :
-57-3 .

. . a ]
. 1 [ 2 2 w ow

= —_ .~ dxd 3.6¢
Tp ab _/_ a/ b ox oy Y (3.6

57-3

are quantities that can be determined from the
wave pattern, and the strains are defined by the
relative displacements of the edges, ¢ and <,
respectively by the compressive strain of the
longitudinal and the lateral stiffeners and v by
the shear strain of the panel,

For the determination of ¢y, 6, and = it is again
assumed that o, is independent of x, and that
oy is independent of y; then 7 is constant over the
whole plate,

Hence .
_ a N
o (y) = 1 f 2 6y dx, (3.7a)
a a
. ‘ T Q
b
o (x) = 1 [ % o dy, (3.7b)
b )
~3
=T (3.7¢)

The integrals of o; and s, taken over x and v
respectively will contain the terms

[2 5530

S 10=1

vE

1—v2

¢
3+
2

oy ‘(

[ TR~

and

S 6

b

vE

1—»2

a1
? 4

i

2
()]«
2\ ox
which cannot be determined from the measure-
ments as far as u and v are concerned. These
rather small terms have been approximated by
their mean values taken over y and x respectively,
yielding

ox

a
-+ % i (—Z—E))z dx + Vesp %, (3.83)
3
gy (x) = — ea+
g .
2_1b i (%’)2 dy +vey i (3.8b)
2

- The bending and torsional stresses (3,3) may
be determined from w only. This method proved
to be rather complicated and tedious. A more
straightforward method was adopted, giving results
that agreed well with the exact method. The
approximative character of this method seems to
be justified also by the approximation introduced
in determining the membrane stresses. The
approximation consisted in the assumption that
the wave form could be approximated by

w = f cos ™. cos % {x — my).

The maximum stresses occur at x=yp = 0.
Then (3.3) ytelds:

E
oy = - (15 + veop), . {3.9a)
' E )
Gpe = T {(verp + eap) , (3.9b)
1—2
E
= I , (3.9¢)
-+ 2(4v) Y
where
ot f ' _ n? ft . L2\
g1b = 2L2 ’ ab 2L2 (m +?) }_
w2 ft .
w="tmn (3.10)

Therefore the determination of these stresses
requires the measurement of the amplitude f,
the half-wave length I in the direction of x and
the cotangent m of the angle béetween the waves
and the direction of x.




.

Recapitulating, the quantities to be measured
are: a8
1. the relative displacements of the edges, to. be
expressed in terms of the longitudinal strain e,,
the lateral strain ¢, and the shear strain vy;

é
2. the slopes ow and 22 of the plate;
ox oy

3.the amplitude f, the half-wave length L and
the direction m of the waves, .

4 The test specimen and- the measuring
apparatus.

The realization of hinged edges, in contrast to
clamped edges, presents some serious difficulties,
which have been solved in the following way.
The test section forms the middle bay of a beam
with a shear web, consisting of 5 bays (fig. 4.1}.

LATERAL STIFFENERS.
LOKGITUDINAL STIFFENERS.

—— D =

A I
TEST

i peweL. [y

— -

ol e 8 e D £ F
= LONGITUDINAL STIFFENERS:
FIGURE 4.1.

Test specimen,
N

The shear load is applied to the outer bays. Near
its ends the web is clamped between two rigid
steel stiffeners A and F. The intermediate steel
supports B, C, D and E provide a knife edge
support. Therefore the edge conditions of the
outer bays are different from the edge conditions
of the three innet bays. In order to compensate
for the restraint at A and F the width AB (and
EF) is larger than the width of the inner bays.

The ratio %% has been taken such, that the

critical stress of bay AB, assuming full restraint
at A and a hinged support at B, is equal to the
critical stress of the bay CD with hinged supports
at C and D. This means that near the buckling
stress there will be a small interaction between
the first and the second bay. There may be more
interaction at higher loads but this positive or
negative restraint at B will be damped out to a
negligible amount at C. Therefore bay CD may
be considered to be practically simply supported.

The short edges of the plate are clamped between
two heavy flanges, which means that these ends

are rigidly clamped. Since the ratio % ‘has been

S 7

chosen such that the length ais of little importance

" in determining the behaviour of the plate, the

edge conditions here are likewise unimportant,

The supporting members A to F inclusive do
not fix the distance between the spar flanges.
The task of the longitudinal stiffeners in connecting
the flanges together and maintaining their distance
is delegated to separate steel members, which are
connected to the plate as shown in fig. 4.1.
Changing these members gives a variety of

stiffeners, and hence of A3
. ¥
The spar was loaded by a special rig in shear
and compression, such that the bending moment
in the plane of the spar would be zero in the
centre between C and D.

The measurements were restricted mainly to
the centre panel, The strain &, was obtained
from dial gauges which measured the change of
distance between the spar flanges; the strain =,
was measured by Huggenberger tensometers at-
tached to the spar flanges, The shear strain vy
was measured by a dial gauge in the manner

HUGGENBERGER
. STRAIN GAUGES

{ == |

LATERAL
STIFFENERS

'SHEAR DIAL GAUGE

: C}P
P
LONGITUDINAL STIFFENER  CENTRE LINES

FIGURE 4.2,
Instruments for the measurement of €,, €,, vy @t the test panel,

LONGITUDIRAL
COMPRESSION
DIAL GAUGES

1

indicated in fig. 4.2. The slopes %uj— wete record-
X

ed at the longitudinal cross sections y =+ 10 n

. b
mm, =0 to 5 inclusive and the slopes F;p_v
ay

were recorded at the lateral cross sections x =
+ (22430 n) mm, n=0 to 5 inclusive. The
slope recorder (fig. 4.3, ref. 8) measured the
relative movement of two feelers, 10 mm apart,
each of which followed the surface of the plate.
This instrument was also employed for recording
w by fixing the pin carrying the glass scratch
plate. In this way the amplitude f was determined.
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FIGURE 4.3.
Slope recorder.

The recordings gave the half-wave length L
as the distance between successive intersections

F] .
of the curve ; and the reference line, From the
X

shift of these points of intersection in successive
cross sections y the direction of the waves could
be obtained.

The amplitudes of the recorded slope curves
were, as a matter of fact, very small, thus hampering
the direct evaluation of the recordings. In order
to facilitate evaluation the recordings were
elliptically enlarged by means of a specially
designed enlarger, the principle of operation of.
which has been indicated in fig. 4.4 (ref. 8).

MOVING SLOTTED SEREEN

PHOTOGRAPHIC PAPER

_gus' SCRATCH PLATE

FIGURE 4.4,
Operation scheme of elliptic enlarger.
The maximum magnification in the Z-direction
was forty times,but a magnification of twenty
times was found convenient and sufficient. In the
X- and Y-directions the magnification could be
one or two times, the larger magnification being
the one used in the evaluation of the results.
So the distortion could be up to forty times;

usually it was ten times. A record and photograph
with a distortion ratio of ten are represented
in fig, 4.5, '

FIGURE 4.5.
Slope recording of a buckled plate and its elliptically enlarged
photograph  (distortion ratio 20 : 2).

2 , 2
The integrals f (B_w) dx and f (?E) dy were
2x ay

computed by an- Amsler ‘integrator no. 1 directly
from the photographs,

5 The results of the tests.

Since wave formation is the typical feature
of the post-buckling behaviour of plates, the tests
have been evaluated such that they give information
on the functions of w involved in the expressions
(3.5}, (3.8} and (3.9). The integrals of the slopes
included in (3.5) and (3.8) have been expressed
in terms of the corresponding quantities for the
complete tension field for the same ¢,, g2 and vy
by means of the coefficients Pyy, P,,, Pyy. These
coefficients will be zero at the critical load and
they will" be equal to unity for the complete
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tension field. Thus the coefficients P express the

rate of development of the tension field.

The definition of P is:

P, = @ (5.1a)
¢

Py = 12, {5.1b)

' g

p, — 2P 5.1

29 , (5.1¢c)
&

where the quantities e;, e; and g relating to the
complete tension field are

ﬁ&:ﬂ+i§1_

al2
N (_ﬁ_)] g (5.2a)
Y Y
i o + €2
f&:i—i—_{_;l_ Y ¥ ix
Y Y 4 ( e c 2%
(e
Y Y
x% (1+v) (f;l-i%) + (1—) [ 1+
Y Y
qt | :
+ (E—E)J , (5.2b)
Y
oL &2 :
£ _I=v, 4y v 1 . (5.20)
Y 2 2

(-2

The integrals included in (3.8) are e:;preﬁsed
as multiples 2, and , of the averages ¢, and e;p by

a
[ 1 2
{1 [z (?1’) dx] A (5.32)
L 2a _a ax max

2 .
) ’ b

b - _

1 f2 (.‘?E) dy} — e s (5.3b)

- 26 - é 6'}’ max

2

where & and A, apply to the maxima of the integrals,
In this way the stresses are expressed by

*

o1 _
i
+ v Py
oy _
Y
+ Pzﬂ%‘), (.4b)
G oo E (1_p121), (5.4c)
Y C2(14w) Y
6y max _ E (__i—vfi+7\1 P.nﬂ‘"l'
v 1—‘J2 Y Y Y
‘. + v pg‘a‘ei): (5.4d)
Y
Samax _ _E (—- vE 24y py Ty
" 1—v? Y Y Y
+ RoPo “52“) G.4e)
.

In order to account for initial waviness w,
of the plate, £;p etc. in (3.6a) etc. was replaced
by ' -

el EE
1p' 2ab af b ox

2
~(%)
' ax

In calculating e,p etc. it was not possible to
account for initial waviness, due to its irregularity
and the approximative method of computing e;p
etc. Since these deformations are important only
at the higher Joads, the contribution of initial
waves to the bending stresses is of secondary
importance.

Py Piay Pay, 3y, €1p, €ap and yp as following
from the evaluation of the test results are represented
in figs. 5.1 to 5.7 inclusive. As discussed in § 2,

Yer
Y

[T~
o

b

dxdy ete. (5.5}

P,, and &, have been given as functions of ,

- whereas the other coefficients have been given

RGN

Y

The computation of the integral yp could not
be done by the Amsler integrator and would
have been very lengthy. Therefore v, was computed
from the given shear stress t by (3.5¢c):

as functions o

T
=vy— —. 5.6
Yp=7Y G (5.6)

To check the reliability of this method, v,
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was also computed from (3.6c) using the slope
recordings for two representative tests on each
of the three plates,

In calculating = from the external loads corrections
were made for the influence of friction in the
hinged joints of the loading frame. In addition,
tests were carried out after removal of the test
plate which yielded additional corrections due
to the rigidity of the test frame.

In view of the doubtful reliability of these
corrections Py, was also calculated using the values
of vp given by equation (5.6) neglecting either
the corrections for friction only or else all the
corrections in the determination of .

V2

P2
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Comparison between experimental results obtained after
different methods of evaluation,

In fig. 5.9 the results of P, are compared
using the values of yp as evaluated in the various
ways from equations (5.6) and (3.6¢c).

»a was not computed from the tests, but was
assumed to be unity, which is only strictly true for

a
— = oo,
b

From the resultant maximum stresses
Sy=0; max £| b | » (5.7a)
3 = O3 max :{:[ Sgh ! ’ (5.7b)
T=<%|w], (5.7¢)

the equivalent - tensile stress ¢, of Huser—vON
Mises—HENCKY was calculated, viz.:

L

H

ce=| SP+ SP—55,+3T . (5.7d)

Some results concerning the higher loads have
been given in table 5.1.

6 Discussion of results and comparison
" with theory.

Figs. 5.1 to 5.7 inclusive show much scatter of the
experimental results, which can be attributed to the

.. =4 £
variety of values of X and 2, An attempt to
it Y
find relations between the characteristic ratios P etc,

and =L and 2 failed, for even with fairly constant
Y Y

e e

values of —~ and—2 scatter proved to be large. Tt
Y Y o

was, however, possible to make qualitative con-

€a

clusions on the effect of —%, which proved fo

be in agreement with the conclusions following
from theory. ‘

In figs. 5.1 to 5.7 inclusive curves have been
drawn, which have been calculated on the basis
of Komer's theory (ref. 7). In general, the
experimental results for Py, &3, 25, vb and Ay
agree fairly well with the theoretical results.

The experimental results for P,,, as originally
determined from (5.6) (c.f. § 5), are for the
greater part somewhat larger than the theoretical

results, particularly in the range of smaller To

.
values where Pp, is almost unity and even in

a number of tests where P,, is larger than unity.

This latter fact gives rise to doubt as to the -

reliability of the experimental results, Pj; > 1
would mean that the incomplete tension field
would have less stiffness than the complete tension
field, which is physically impossible. It might be
that the shear stress is underestimated by an
overestimation of certain corrections which have
been applied due to friction and rigidity in the
test rig. ‘

In this connection it is significant that Py, as

determined by (3.6 ¢) from the slope recordings, -

agrees reasonably well with theory (fig. 5.9).
The same can be said of the results obtained
from (5.6) by neglecting all corrections in 7, whereas
neglecting only the cortections for friction yields
values of P, which are in excess of the theoretical
results. '
Aithough the values of Py, from (3.6c) and
the values obtained from (3.6} by neglecting all
or part of the corrections originally applied in

Pl
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TABLE 5.1.

Equivalent maximum stresses Ge.

t & T de ; EL | B2 T Ge : =3 T Ge
mm ¥ kgfem? | kefcm? Y | v |kefem® | kgfom? v | kejfem® | kefem®
0.42 0.00 494 1410 0.90 | 0.06 | 0.02 537 1730 1.27 | 0.00 399 1310
‘ 0.00 623 2120 0.08 | 0.03 668 2060 0.00 451 1485
0.00 740 2500 0.08 | 0.03 764 2560 0.00 499 1580
0.12 410 1320 0.11 ] 0.04 1 1084 3400 1) 0.00 547 1795
0.12 458 1440 0.08 | 0.02 540 1690 0.00 508 . 1840
0.12 525 1430 0.09 | 0.03 768 2355 0.00 652 1930
0.12 579 1910 0.13 | 0.05| 1083 33151 0.00 703 2090
0.12 653 2070 0.12 | 0.03 542 1800 0.18 361 1550
0.26 388 1710 0.13 | 0.04 770 2425 0.17 434 1780
0.25 470 1520 017} 0.04| 1050 3390 1) 0.17 505 2020
0.25 542 1940 0.10 | 0.03 549 1725 0.17 572 2250
0.35 289 2110 0.17 | 0.03 774 2470 0.30 291 1440
0.36 360 2465 020 [ 0.04 | 1050 3510%) 0.31 340 1645
—0.01 475 1355 0.07 | 0.16 508 2000 0.30 393 1705
0.00 604 1500 0.08 | 0.15 641 2405 0.30 441 1920
0.10 412 1345 0.11 | 0.14 882 2085 0.30 480 2180
0.11 464 1585 0.10 | 0.16 644 2365 0.30 545 2330
0.11 529 1680 0.13 | 0.15 886 3460 0.54 219 1560
0.24 376 1550 0137 0.15 649 2480 0.45 272 . 1960
0.24 451 1660 0.17 | 0.14 850 3280 0.49 354 2120
0.40 268 1920 0.15 | 0.15 651 2510 0.51 403 2480
0.00 838 2225 020 014 846 3315
0.00 950 2425 0.07 | 0.21 438 1880
0.11 750 2230 0.08 | 0.20 560 2255
0.11 829 2390 0.12 | 0.19 797 3290
0.00 1180 33401) 0.09 | 0.21 565 2285
0.00 1064 |- 30901%) 0.13 | 0.20 760 3285 1) '
0.01 1404 38101) 0.13 | 0.19 569 2355
0.00 1402 3870 1) 0.17 | 0.17 816 3245
0.15 1 0.20 573 2325
0.20 | 0.17 810 3470
0.07 | 0.27 383 1875
0.08 | 0.27 442 2105
0.11 | 0.26 710 3245
0.10 | 0.29 446 2150
0.13 | 0.25 685 3560
0.13 | 0.28 449 2160
0.17 | 0.24 697 3070
0.15 1 0.28 452 2160
0.20 | 0.24 650 3385
0.06 | 0.55 205 1705
0.10 | 0.46 291 2485 1)
small 1213 2)
small 1361 )

1} Permanent deformation observed,
) Heavy permanent deformation.

computing T, have only been determined for a
limited number of cases, it is highly probable
that all Py-values should be reduced a certain
amount, In that case the theoretical results do
not seem to be in contrast to the experimental
results.

The experimental results for P,, in the range

of smaller Yo values are well below the theore-

tical values, in particular for the thinnest plate
(second plate). This means that the average tensile
stresses in the direction of y would be smaller
than according to theory. This effect is to be

, . a
expected, since the theory holding for 3= ©
cannot account for the reduction of w fiear the ends

X = ig with plates of finite length. Theory will




be in better agreement with conditions at some
distance from the ends, therefore with 6, max.
The knowledge about o, is of relatwely little
pract:cal importance, since the direction” of p
is the direction of the heavy spar booms which
are taking the bulk of the external compressive
loads. -

With Yo
»
not far beyond the critical stress, Pya, Py, g5 and

vy are well above the theoretical curves, the latter

falling off to zero at 1% =1 or Yer — 1. Obvi-

Y ¥
ously this deviation between theory and experiment

is to be attributed to the initial waviness of the
plates, by which the waves are in fact more
_ developed than with initially flat plates. Therefore
.these deviations do not give rise to doubt on the
reliability of the theory. :

Permanent deformation occurred at equivalent
stresses (as computed from the deformation
measurements) of about 3300 kg/cm? whereas
the 0.2 % yield stress is about 3500 kg/cm2
Neglecting the corrections mentioned in § 5 these
equivalent stresses will amount to approximately
3400 kg/cm® Therefore the method in which
the maximum stresses have been determined
proves to give stresses quite near to actual stresses.
The fact that the deformation factors e;p, eop
and yp as given by theory are in reasonable agree-
ment with the experimentally determined quanti-
ties means that the theory presents the possibility
‘of predicting the load at which permanent deform-
ation will occur.

near unity, therefore in the region

7 Conclusions.

Summarizing, we may conclude that in view
of the scatter observed it does not seem worth-
while to strive for an exact theory for the post-
buckling behaviour of plates. Due to initial

waviness, actual plates will behave in a different -

way than ideal flat plates. Nevertheless a theory
giving an adequate picture of the post-buckling

behaviour over the whole range of 12 is the best
Y .
source for general information, Experimental

evidence is such ‘that Korter's theory can be
regarded as giving adequate information. Since
scatter of experimental results makes it clear
that the theoretical results should not be considered
reliable up-to the last figure, they may be approxim-
ated by simple formulae. As such, the followmg
formulae are proposed:

1 1
P, = 1—(“f°)3+09 [(%)3 0.75Ye
Y Y Y Y
—025 (l) } (7.1a)
"
1
P, = 1—-0.75( )3—0.6512
AN T
2
+0.40 (L) , (7.1b)
Y
2
Py = 1— (Y” ) 3, (7.1¢)
Y
1
=14 ! ({°)30r11:2
05+02—p3 52 Y
whichever is the smallest, (7.2a)
ho=1, (7.2b)
_ 1
&y = 0.6 (1 + 2;55£) [(Y_°)3-
Y ¥
—h},, (7.3a)
Y
1
ey = 0.9 (1 + 3.63) HY“)?’”
Y Y
Yer } , (7.3b)
e

b= 1.1(1+ 1.53_1) HY_")-”—E} +
Y Y Y
2 3
-6 [o.aiz._(fz_) 06 (,)] y
T Y Y

1 ‘ E]
X [ (32)3 —3% 42 (ﬁ)ﬂ . (7.3¢)
Y Y . Y .

Substituting these characteristic wave form
ratios into (3.9), (5.4) and (5.7) the stresses and
the effective rigidity are obtained.

8 - Notations.

a’ * free length of the plate > b
b width of the plate: ~
ey €y values. of ¢,p, =5p for the complete




tension field (egs. 5.2)

f amplitude of the waves

g value of yp for the complete tension
field (eqs. 5.2)

m cotangent of the angle between the
X-axis and the direction of the waves

¢ thickness of the plate

u, v, w displacements of an arbitrary point
in the middle plane (z=0) of the
plate in the X-, Y-, and Z- directions

XV 2 coordinates in the longitudinal and
lateral directions and normal to the
plane of the plate (fig.4.1)

E modulus of elasticity

G modulus of rigidity

G’ effective modulus of rigidity of the
buckled plate

L half-wave length measured in the
X-direction '

N, N, normal tensile forces in the plate

in the X- and Y-directions
Py;, Py, Py, characteristic ratios for the wave form
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The Elastic Overall Instability of Sandwich Plates
with Slmply-Supported Edges

by
Ir F. J. PLANTEMA and Dr A. C. DE KOCK

Summary. .

The energy method for calculating buckling loads of sandwich plates, developed by the first author, is
applied to a simply-supported infinitely long plate subjected to shear. The results are compared with
thase obtained in previous papers and are presented in a number of simple graphs.

Non-dimensional interaction curves for combined compression or tension and shear are given and,

finally, all of the results obtained by means of the energy method are recapitulated.
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Recapitulation of the results given in ref. 4 and in
this report.
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Appendix A. Derivation of the formula for the buckling
load,

Appendix B. Approximation for s > 2.

Appendix C. Supplementary discussion of the results.
1 Comparison of the cases s= 0 and s= . ’
2 Some practical data.
3 Preliminary proposals for panel design.

. Appendix D. The interaction curves for combined loading,

Appendix E. Some remarks on the integral

U ( Wxxw_vy — w_xy2 ) dx dy.

N.B. This investigation was carried out by order of the
Netherlands Aircraft Development Board,

1 Introduction.

In a previous report of the N.L.L. (ref. 1),

Van WIJNGAARDEN calculated the buckling loads -

of flat, infinitely long sandwich plates having
simply-supported edges and subjected to a combin-
ation of compression or tension and shear. It was

shown in which way exact solutions can be
obtained but the numerical calculations appeared
hardly practicable. Therefore, these calculations
were carried out for a simplified wave form which
does not satisfy the dynamic boundary conditions.
Consequently, - the results were not considered
sufficiently reliable — the buckling load of a simple
plate under shear loading, obtained by this method,
being overestimated by 27 %.

In order to obtain more reliable results for
sandwich plates subjected to shear, an energy
method was developed which was verified by
applying it to plates under uniaxial or biaxial
compression (refs. 2, 3, 4). It is assumed that the
faces are isotropic (Ef, v¢) and that the core 1s
isotropic in the XY plane (E., v¢) but may have
a modulus of rigidity G;p for shear in planes
perpendicular to the XY plane which differs from
that for shear in the XY plane (G¢). In this
report the application of the energy method to
infinitely long plates under shear loading is
discussed. A compatison is made with the results
obtained in ref, 1.

The same problem has also been dealt with
by BIjLAARD (ref. 5), whose method of solution
is based, however, on some rather intuitive
assumptions (c.f. ref. 2) and who only gives a
formal solution. The present results are compared
with those of ref. 5, making an acceptable




assumption for the wave lengths in the latter case.

It is to be noted that in all of these investigations
the results apply to antisymmetrical (or in-phase)
buckling, the distance between the faces being
assumed to remain constant during buckling 1). It
has been shown in ref. 1 that this assumption is
justified for the overall-buckling case, but in
certain circumstances wrinkling failure may be
critical rather than overall buckling (c.f. ref. 6).

No recomputation of the buckling loads of plates
under a combination of compression or tension and
shear is given. It may be assumed that the non-
dimensional interaction curves for such combin-
ations which can be derived from ref, 1, will be
reliable for all practical purposes. Such interaction
curves are given in this report, For convenience,
all the results obtained for plates having simpiy-
supported edges have been recapitulated in a final
section of this report.

B . .

2 Pure shear. The method of solution and

the results,

The general formulae for the calculation of the
buckling loads are derived in refs, 2, 3 and 4.
They are:

a b Jw\2
i ], )
0vo '™
< b a2
+ 1/2.Py /j (—Blv) dxdy +
VO 0 y
17 owe '
w ow
P — ——dxdy=
T "yfo_[ ax dy
a
=1/23[f A(wp)dx dy + -
<0v0 ‘
foa8 oAb
+Bff/ A (w)dxdy +

dxdy +

+ 148 a“’s 8"’5) dxdy, (.1)
3y
S@ws B —(A §¥s
ox = - a ( Wb), _52
, .
= — By (dwp). : 2.2)

The solution is obtained by making a reasonable
assumption for wp, computing 6w /0x and Swg/dy
from (2.2) and substituting these expressiofis into
2.1). |

For pure shear we adopt the wave form assumpt-
ion (ref. 7) -

oy wf mb wy .
‘wp= Wsin—sin- | x+ *;cosr———-%mb , (2.3)

b l b
containing two parameters { (the half wave length)
and m. This wave form has sinusoidal nodal lines,
intersecting the edges y = 0 and y = b of the plate
perpendicularly and having a maximum slope
d 1
£=;at y=131b6 (fig. 2.1_). For a simple plate,

it is known from ref. 7 that the buckling load is

overestimated by only 1 %, this close agreement

being due to the fact that all boundary conditions
are satisfied.

o

IN]

ml:r

o 7' 7

fuly
T

1 1 t
FIGURE 2.1.
Sandwich plate with assumed pattern for wp. Nodal lines:

[

b
X = %mbﬁ-nl—-m—-cos?%y(nzo, + 1,....)
14 .

The derivation of the formula for the critical
value of Pxy from (2.1) to (2.3) incl. is given in
appendix A. It finally leads to

constant

ny = ll/? F ‘(?\7 p‘)r (2'4)

where A = [BfB?, u = m? and F (3, 1) is a fraction
whose numerator 1s of the fourth degree in both
» and p and whose denominator is quadratic in
both 2 and .
The solutions for a number of values of s and
v were determined by a numerical procedure
(appendix A). The results are presented in the
formm of dimensionless quantities ks and kg,
defined by
=B
Py, = kb‘gg_ = k¢ S. (2.5)

' i
The values of 7

in table 2.1 and figs, 2. 2 to 2.4 incl. for the ranges
0 <5< 3and 360 < < << 7500.

In flgs 2.5 and 2.6 the values of I/b, kp and kg
are given for s > 2, these values have been comput-
ed as explained in section 3 and appendix B.

1
, m, kpy and kg — " ky are given

1) This is also true for the numerical results given
in ref. 1; c.f. section 5 of ref. 4.




TABLE 2.1.
Numerical results for pure shear loading.
() (2) 3) “4) 5) {6) (M & M (10} (11)
5 T L kb 13 B ife m ks refi.(bl rej:'? 5
0 — ¢ 5377 1.579 0.101 1.256 0.318 o0 6.78/T 5.35/v .
0.05 360 18 0.0837 0.490 0.388 0.700 0.623 1.674 0.0940 0.0792
1300 65 0.0657 0.2580 0.600 0.508 0.774 1.314 0.0682 0.0632
3000 150 0.0600 0.1696 0.758 0.412 0.869 1.200 0.0600 0.0582
‘ 7500 375 0.0563 0.1054 0.910 0.325 0.954 1.126 0.0529 0.0549
0.2 360 72 0.256 0.2668 0.604 0.517 0.776 1.280 0.262 0.246
1300 260 0.228 . 0.1406 0.813 0.375 0.901 1.140 0.228 0.222
3000 600 0.219 0.0921 0.924 0.303 0.961 1.005 0.217 0.215
7500 1500 0.213 0.0579 1.015 0.241 1.007 1.065 0.210 0.209
0.5 360 180 0.570 0.2070 0,704 0.455 0.838 1.140 0.566 Q0.55%
1300 650 0.538 0.1083 0.905 0.329 0.951 1.076 0.520 0.534
3000 1500 0.527 0.0725 0.970 0.269 1.015 1.054 0.517 0.524
7500 3750 0.519 0.0441 1.085 0.210 1.041 1.038 0.537 —_
0.8 360 288 0.868 0.2147 0.715 0,462 0,845 1.085 0.851 0.843
‘ 1300 1040 0.838 0.1191 0.884 0.345 0.939 1.048 0.824 0.819
’ 3000 2400 0.829 0.0771 1.000 0.278 1.000 1.036 0.826 0.812
7500 6000 0.821 0.0510 1.052 0.226 1.024 . 1.026 0.898 _—
| 1.2 360 432 1.237 0.3010 0.639 0.549 0.798 1.031 1.164 1.207
\ 1300 1560 1.218 0.2210 0.730 0.470 0.854 1.015 1.149 1.150
| 3000 3600 1.214 0.1940 0.766 0.441 0.874 1.012 1.148 1.188
| 7500 9000 1.210 0.1760 0.795 0.419 0.890 1.008 1.234 1.184
| ' 3.0 360 1080 2.386 0.8720 0.490- 0.933 0.700 0.795 2,080 1 2386
E) — o0 5.414 1.575 0.752 0 6.78 5.35
|
. .
‘I ny = kbEb_ZE = kSS; kb :IS}{S

¢
f

-

3 Discussion of the results for pure shear.

Comparing figs. 2.2 and 2.3 with figs, 5.1 and
5.2, which apply to longitudinal compression Py
(ref. 4), 1t appears that the character of the curves
in the corresponding graphs is the same. The
curves for Py, /S of fig. 2.2 are lying slightly
higher than the curves for Py/5 of fig. 5.2, whereas
the curves for [/b of fig, 2.3 are lying considerably
higher than the corresponding curves in fig. 5.1,
the asymptote being located at I/b = 1.255 instead
of at Ifb= 1.

For longitudinal compression it was proved in
ref. 4 that the influence of = vanishes when s>2.
It is clear that the same phenomenon occurs for
shear loading at approximately the same value of
5 {c.f. figs. 2.2 to 2.4). The caleulation for 5 > 3
was not carried out. Instead, as explained in
appendix B, B1jLaARD's method (ref. 5) was used
in this range. The results are given in figs. 2.5
and 2.6 and may be represented by the following
empirical formulae

5.35 [ 5 45—3
s+38 7 b 445417
valid for 5 > 2 and any =

The values of ljb are somewhat smaller than

S=

(3.1}

those computed by means of the energy method -

(c.f. fig. 2.3), but the values of &; and k5 from
both methods are for practical purposes identicai.

In columns 10 and 11 of table 2.1 the values
of kp according to refs, 1 and 5 are given. The
values given in col. 10 have been read from the
appropriate graphs of ref. 1. In ref. 5, however,
only a formal solution is given. The values given
in col. 11 have therefore been computed from eqs.
(6) and (15) of ref. 5 and fig. 2 of ref. 9,1}
assuming that Ijb has the value given in col. 7
of table 2.1. The validity of the latter assumption
has been checked for some representative cases
(compare appendix B). The minimum of ks
proved to correspond to somewhat smaller values
of {6 than those given in col. 7 of table 2.1, which
is in agreement with the results mentioned in the .
preceding paragraph. The numerical differences
are, however, quite negligible.

Comparing the results given in cols. 4 and 10
it appears that positive as well as negative differ-
ences occur which are, in general, small except for
very small values of s.

The results of ref. 1 in the range s = 0.5 show
the curious behaviour that kp does not decrease
monotonically for increasing 7, but has a minimum

1} Fig. 2 of ref. 9 gives the same information as fig. 2
of ref. 5 to a more appropriate scale.




at a certain intermediate value of v and then rises
again, It is certain that ref. 1 yields results which
are larger than the exact values where they exceed
those given in col. 4. It is probable that the results
of ref. 1 underestimate the exact values when they
are more than a few per cent less than those of
col, 4.

A comparison of col. 4 with col. 11 shows
that the results of ref. 5 are systematically slightly
smaller than. those obtained in this report. The
method of ref. 5 vields an approximation which will
most probably be also quite satisfactory in other
cases, Therefore, in calculating the buckling loads
for plates having clamped edges this method can
safely be adopted. According to ref. 5, the resuits
obtained in this way should be somewhat too
small, which would infer that both the results
given, in col. 4 and those given in col. 11 would
be very close to the exact results,

With regard to the values of m, given in fig. 2.4,
it is to be noted that in the practically important
range the angles arc cot m (fig. 2.1) range from
45° 1o 55° For a simple plate (s= o) m= 0.867
and arc cot m = 49°, which values are approached
asymptotically by the curves of fig. 2.4. (For the

S 20

case 5= 0, which also represents a simple plate,
reference is made to appendix C.)

It must finally be observed that these graphs
do not cover the condition of wrinkling instability
and are only valid for the elastic range. With
regard to the former observation, it is possible
that the region of small wave lengths in figs. 2.2
to 2.4 incl. (e.g. I/b < 0.3) will have no practical

. significance owing to wrinkling instability being

more critical than overall instability. Particular
attention should be given to this possibility when
E;n = E., whereas for cores of honeycomb or
similar materials (Egp >> E.) the danger of
wrinkling failure i1s more remote ), -

With regard to buckling at stresses approaching
or exceeding the yield stresses, the development
of a programme of tests to verify the theoretical
results has lead to the impression that with the
existing face and core materials this possibility is
far from remote (cf. appendix C).

An attempt to extend the theory to the plastic
buckling range appears to be worthwhile.

1} Formulae for wrinkling instability are summatized
in ref. 6.
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FIGURE 2.2.
Buckling Ioads for infinitely long plates under pure shear.
Pyy == k¢S. (For 5>2 se¢ fig. 2.5).
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FIGURE 2.3.
Half-wave lengths for infinitely long plates under pure shear.
{For s>>2 see fig. 2.6).

4 Combined loading.

It was not considered worthwhile to tecompuite
the buckiing loads for plates loaded by a combination
of compression or tension and shear by the energy
method. In order to improve the results given in
ref. 1, the following method will be adequate for
all practical. purposes,

From the graphs given in ref. 1 the values of

Py, Py, Pyy, P'y, P'y and P’y can be read, where '

the latter three symbols denote the buckling load
of the plate when it is subjected to longitudinal
compression only, lateral compression only or
shear only. From these values the non-dimensional
interaction surface of the values of Py/P'y, P,(P’y
and Pxy/P'xy can be .constructed. It is now
assumed ') that this surface would also be obtained
if Pyy.and P’y were computed from the energy
method instead of from the method used in ref, 1.

Interaction curves derived from ref. 1 are given
in figs. 4.1 and 4.2, The calculations have been
performed for various combinations of the para-
meters s and 1, which are related to the parameters
AR ] %2

- * f . —
7 and 8* from ref. 1 by teans of T T % and

T =

1
Y

The results have shown that the influence of
large variations of t is negligible and, moreover,
in the case of combined longitudinal compression
(or tension) and shear, that the effect of varying
s is sufficiently small to permit the drawing of
one curve representing all combinations of s and -«
which occur in practice.

Thus the curve of fig. 4.1 is valid for all
combinations of s and ~ and the curves of fig. 4.2
correspond to 5= 10, 1 and 0.1 with arbitrary
values of T. '

Incidentally, it may be remarked that the curve
of fig. 4.1 can very neatly be approximated by

y )2 . Px
P ’xy - Py

The curves of fig. 4.2, though resembling high-
degree parabolas, cannot be represented by simple
formulae. For determining the buckling loads with
combined loading, e.g. longitudinal compression
‘and shear, P’y and P'yy are read from figs. 2.2
and 5.1, Py/P'y and Pyy/P'yy from fig. 4.1 and
Py and Py can be computed. ‘

the formula (

1) A substantiation of this assumption and further
information on the interaction cCurves are given in
appendix D,




5 Recapitulation of the results given in ref. 4
and in this report.

5.1 The results given in ref. 4 and in this report
all'apply to the elastic overall instability of sandwich
plates, having isotropic faces and a core which
is isotropic in planes parallel to the middle plane
of the sandwich, and which may have a modulus
of rigidity for shear in planes perpendicular to
the latter plane which differs from that for shear
in this plane. The sandwich plate has simply-
supported edges.

In ref. 4 the formula for instability of a rectangular
plate under biaxial compression is given,*which
may be written in the form

l anb‘Z o _ nx2b2 o 2
(Px a2 + py ny - T a2 + ny .
. 1 17
T -1
X 2
5§+ a2 + ny

where a and b are the length and width, ny and
ny are the number of longitudinal and lateral
half waves and Py and P, are the longitudinal and
lateral compression per unit run, For given s, t
and Py/Pyx, the values of ny and ny, must be
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chosen so as to minimize Py and Py, both ny and
ny being of course an integer.

Numerical results and simple formulae have been
derived for infinitely long plates (a= =). These
are as follows:

Longitudinal compression.

For 0 < s << 1.8 and 360 < v < 7500 the values
of Py/S and /b (I being the half wave length)
are given in figs, 5.1 and 5.2. For s >> 1.5 they
may be computed from the simple formulae
Px :4_5,- _s—1 (5.2)
S . (s+1)2 s+1

Lateral compression.

The buckling load is given by the formula
P, 1 I

il + —, 5.3
S 145 t ©:3)
where the term 1/t may be neglected for nearly
all practical purposes. -

Shear.

The values of kp and kg, defined by eq. (2.5),
and of /b are given in figs. 2.2 tc 2.6 incl, and in

1.2
m
—. . lasymprote_ ! _
§ ‘M= 0.867
\\
]
—

0.6 L

0.4

0.2

0 0.4 0.8 1.2 16 20 24 2.8 Z a2
FIGURE 2.4,

Infinitely long plate under pure shear.
Relation between m, s and .
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Buchling loads for infinitely long plotes under pure shear
when s > 2.

2
kp =5 ks = 3,335
1 3.8
table 2.1.
Approximate formulae for 5 > 2 are
Pry 535 , 1 5 453 ) (3.1)
S 5+3.8 b 4 4s+1

The latter formula yields somewhat smaller
values than those computed from the energy
method (c.f, section 3).

Combined loading.

The combinations of loads leading to instability
of the sandwich plate are given by the interaction
curves of figs, 4.1 and 4.2,

In these graphs, the buckling loads attained when
only one of the components of the external loading
1s present, are denoted by a dash; these buckling
loads follow from the graphs and formulae mentioned
in the preceding part of this section.

5.2 The results obtained by BijLAARD'S method
of computing the buckling loads (ref. 5) are in
‘close agreement with those obtained in this report.
The former method is particulatly attractive when
the buckling load of a simple plate (S = =) under
otherwise identical circumstances is known as a
function of the wave length.

5.3 In the region of small wave lengths, 1.e. for

5 < 1,0 (approx.) and < large, wrinkling instability
may be more critical than overall instability,
especially when the transverse compressive stiffness
of the core is not large compared with that in the
plane of the plate. .
5.4 It would seem that with existing face and core
materials buckling may quite well occur in the
plastic range. An extension of the theory to plastic
buckling therefore appears to be worthwhile.

6 Notations,

b width of plate (fig. 2.1)

c thickness of core; suffix ¢ relates to
the core.

f thickness of face; suffix f relates to
the face.

ky, ks buckling load parameters, ¢.f. eq.(2.5)

{ half-wave length with infinitely long
plate {fig. 2.1)

m parameter defining the slope of the
nodal lines (fig. 2.1)

5= b2S/n*B.

t= b2S[2=By.

W= wp - wg, i.e. the actual deflection.

wp component of deflection due to
bending of sandwich plate.

W component of deflection due to shear

deformation of the core.

14
A
2 N
\]

e
08 - "
) \
0.4 \\
0.2

0 02’ 0.4 0.6 0.8 Yo

FIGURE 2.6.
Half-wave lengths for infinitely long plates under pure shear
when s>2.
I 5 4—3

b4 4541
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FIGURE 4.1.
Non-dimensional interaction carve for combined longitudinal
compression (tension) and sheqr (Vaiid for any s and 7).’
X,y coordinates in middle plane of sand- L t B 3{14° 2
wich, T e EB—f - _ ? '
E:f (c 2 E . ) .
_ Eif e+ P f) _Bety — ie. the bending y = L AvrEff (e +fF vefe ¢, ;
2{l—vs?) , 12 (1‘f'Vc ) B{ 200—vp) 12 (1 —v D)
stiffness of sandwich per unit run, i.e, the effective POISSOR’S ratio of
Esf3 . . . i
By = I_ZHII_QT i.e. the bending stiffness of one A A thfe sandw:;h glate.
_ —vf , cf. appendix A.
face per unit run,
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0 and 2! instead of 0 and a, which infers that the
change of potential energy of the external loads
and the total elastic energy are equalized per wave
length. ‘The integration between 0 and b may be
replaced by an integration between 0 and Y4b
for wave form (2.3). Substituting Py =P, =0,
w=wp + w; and (2.2) and introducing s and ¢,

eq. (2.1) becomes
20 b

ny/ /
0 v 0
5+‘f f (Awpedxdy +

21

%imwb)i}—y@(w)ﬁ ‘dy=

4
+ l: / ] EA(Awb) dxdy -
st 0 0
f ] (Awp) I A(Awy) dxciy-{—
‘n:zt

s
. .. —2(1— I‘ -r dxd
Appendix A, Derivation of the formula for (=) f f (wp) + ¢ (@(wp) )idxdy +
the buckling load. 21 "%b ¢
s . . b2 i
For the infinitely long plate the first integrations + — f ] VY({Awp) dx dy } . (A1)
‘in eq. (2.1) may be carried out between the limits TSJ0 Yo
F;W 2.0
P,'(y
L"---—---- T~ ™~ \
—— - —— -
—— T - 1.2
F“'--'l.::-_:
——=
-:-::-:h-\
il
0.8 =
~
——d= 04, ANY T. \
~~—-g= 10, ANY T, W
—-—J=10,ANY T, \
. ' . 0.4 \ :
O .
-20 ~16 -12 -08 -04 0 +0.4 08 Ty 12
. Py
FIGURE 4.2.

Non-dimensional interaction curves for combined lateral compression (tension) and shear.
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FIGURE 5.1.
Half-wave lengths for infinitely long plates under longitudinal compression;
for 5>1.5 see eg. (5.2).
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FIGURE 5.2.

Buckling loads for infinitely long Pplates under longitudinal compression
ifor s>>1,5 see eg. (5.2), .




The right hand side may be simplified to

5 2 b .
3 {f f [(Awb)2 + f—% Ad (wp)
a+0 t
21 b
—-2(1-—\!)] f I‘g wh + = @ (wp)
0“0 t :
21 Ab
b* A
+_9/. [ ‘P(Awb)dxdy:ll.
75 S Vo

The operators A, A, T, ¥ and @ are defined by:

} dx dy -I-

dxdy +

(A.2)

A(...):{A{...)]2—2(1—‘1}{‘(.;.),
A(..'.)—E’zfa;c;)ﬁz e

O s G N
- (L) < (),
ch..):FA( J= ()

From the fact that the theorem proved by
KoITER in the appendix to ref, 8 (ff I’ (w)dx dy

is zero in the case of a closed domain bounded
by straight lines on which the argument w is a
constant) is a particular case of a more general
theorem, the conditions of which are satisfied
by the chosen expression for w, it follows that
the integrals

21 b
] f r (wb)dxdy andf / I (Awp) dx dy

vamsh (ctf. appenchx E).

The solution of equation {A. 1} can be written
in the form (2.5). The derivation of the expression
for kp requires an elaborate system of elementary
differentiations and integrations, which will be
omitted. The final result is
1057 Aa, + Way+ Maz + ray + a
20487 AL w (R2ag+ Aag - dg)

2
where :z_, Bo= m
B

kb=sk5=

(A, 3)

a; = 128 3 S+ s+l e+ 14,
ay=32 | s(s+t) (15 + 8) + 321y + 4) +
+ (2554 + 16) |, -
@y =16 {s(s+) (Sp2+ 120+ 8) + 2¢(35u2+ > (14)
+45u + 12) + (735u2 4 504 + 48)
b (35u® + 1202 + 144 + 64) +
+ 2(525p° + 112042 + 720y + 128) !,

a, =
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a; = 63ut + 280u 1 480p2 - 384y + 128,
a=35(s+1) s+ 4), ’

@ = 7 §25(dp + 5) + 5(Ta +5) |,

ag = 24u2 + 564 + 35.

(A4)

The determination of the minimum wvalue of
kp or ks as a function of A and p was carried out
by writing down the simplest of the two extremum
conditions dk/éh = 0 and &k/éu=0, which proved
to be the former, being an algebraic equation of the
sixth degree in & and . This equation was solved
for » by substituting a number of well-chosen
values of 1. The pairs of corresponding values
of A and p were then substituted into eq. (A.3)

and the minimum of k was determined by plotting -

k against p. This procedure infers that the
accuracy of the values of 2 and g corresponding
to the minimum of % is less than the accuracy
with which this minimum is determined; never-
theless, the error never exceeded 1 %.

Appendix B, Approximation for 5 >2,

~In the range s > 2 the influence of © on the
buckling load vanishes and in determining the
solution we may take 7 infinitely large. Eq. (A. 3)
is then simplified, but it remains a rather compiex
expression and, therefore, no attempt was made
to use that expression in obtaining the required
information. It has been shown in section 3 that
the results of ref. 5 are for practical purposes
identical to those of this report, which permits
the use of the data given in ref. 5. )

When © = « the buckling load according to
ref. 5 follows from

1 .
111 &
Pyxy PEg Pg

where Pg is the buckling load according to the
normal plate theory (S= ) and Ps is the
buckling load of a hypothetical plate having
infinite bending stiffness and shear stiffness S,
assuming in both cases that the wave pattern is
the same as occurs when the actual sandwich plate
becomes unstable. These buckling loads Pg and
Pg are given in ref. 5 as
PE=kl—g—andP5==S‘/1+7\, (B. 2)
where k, is a function of A given in fig. 2 of ref. 5 ).
Eq. (B. 1) can now be written in the form

1} Actually, the more accurate fig, 2 of ref. 9 has been
used, It is of interest to note that in the case of longitudinal
compressiont we have according to ref. 2: Ps = 5§ (1 +2).
For a sandwich strut or strip, as well as for an infinitely
long plate under lateral compression, Pg = 5.
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1 w1
ks k V14n
and it remains to determine the maximum of the
right hand side as a function of . The minima of
ks and kp and the corresponding values of I/b
are plotted in figs. 2.5 and 2.6 as a function of
1/s. Approximate formulae for 52 are given as
egs. (3.1) in the body of this report.

For 53>100 the buckling load is represented
with an error of less than 59 by

Pyy = 5., 535 S =

(B. 3)

(B. 4)

which is the exact expression for a simple plate
(S = ).

It has been shown in section 3 that the energy
method of this report yields slightly higher buckling
loads. For the case T= s = « eq. (A. 3) reduces to

yid .
=——= 82+ 2 (150 + 8) A + 502 +
m&Vp? (154 + 8) A + 5u

+n@+s§ | (B.5)

The extremum conditions Ohy |or=0kp | 0p=0 yield
x=1.575; u=0.752; kp = 5414, (B. 6)

It must further be observed that at large values
of 5 the tacit assumption made throughout this
report that the core carries only a small part of
the loads may no longer be valid, which would
infer that the expression for .S and the approximation
1:=3(1+t:/f)2 must be replaced by more accurate
expressions. It can be shown that a more accurate
expression for § is

5= (C+f)2 GC!I 1 — EC (lhvfg)

- ¢ 3Ef (1—vc?) ’
The correction factor
Ec(1—vs*) _ nf G,

N

3Ef(1—ve?) 382 (l—ve) Gen
may be disregarded for practical purposes as long
as it remains small, e.g. less than 0.05. Assuming
bjec >20, ¢/f>10, G¢p =G¢, we find that no
correction will be necessary as long as s does not
exceed 50. Since for s>50 the influence of the
finite value of .S is already rather small, the simple
expression S = (c+f)? G¢p/c appears to be satis-
factory for any value of s.

With regard to =, the more accurate expression
T Bf2Byf can be used when necessary.

Appendix C. Supplementary discussion of
the results.
1 Comparison of the cases s=0 and s=w

The cases s=0 and s=w both represent buckling
of a simple plate. In the former case the core

stiffness vanishes and the buckling load is equal
to twice the buckling load of one face by itself,

For the latter load table 2.1 vields
(Pxy)face = 5.3777 Bf/bz'

- At first sight, it ts surprising that the constant

5.377 in this formula differs from the constant
5.414 found in the case s= w. This .difference
can only be caused by a different wave-form
assumption. .

The wave depth w is a superposition of wp
and w;. In the case 5= w the latter component
vanishes so that w=wp, cf. eq. (2,3}, In the
case s= 0 the middle plane of the face is not
strained by the buckling deformations, which infers
that wp = 0 and w = w;. From eq. (2.2) it appears
that wg is proportional to Awp and it is therefore
confirmed that the wave form in the case s=20
1s indeed different from that in the case s= <.
It is interesting to note that the wave form w;
yields a better approximation to the exact result
than the wave form w;.

The wave forms can also be found from eq.
(A. 1).

Substituting = s = « we obtain

,.ny J’f@wb g dx dy

= 1; (B+2}_§f) ff (Awp 12 dx dy.
Substituting s= 0 we obtain
Pyy jf 8Awp 8Awb dx dy

= By fJ. (AAwp ) dx dy.”

Since in the former case the wave form is wp,
the latter case must correspond to a wave form Awp .

With the sandwich subjected to biaxial com-
pression the wave forms wp and w; are similar
(ref. 4). Consequently, the above-mentioned
paradox does not occur in this case.

2 Some practical data.

Some figures relating to a proposed programme
of compression and shear tests will now be given.
The test panels are assumed to have duralumin
or high-tensile steel faces, f = 0.5 mm and f= 1 mm,

“and Dufaylite honeycomb or onazote ‘cores,

¢ =10 mm and ¢ =25 mm.
The width of all panels is 30 cm.

‘The material properties are assumed to be

steel: Ey =2 . 10® kg/em?, vy = 0.3,
duralumin: Ef = 0.73 .. 10° kg/cm?, vi.= 0.3,
Dufaylite: G¢p = 280 kg/cm?,

onazote; Ggp= 100 kg/em®




The duralumin faces are glued to both honeycomb
and onazote cores; the steel faces only to honeycomb
Ccores:

The computed values of s range from 0.18 to
1.27 and those of = from 360 to 7800,

The compression panels will have sufficient
length to be considered as infinitely long and

their longitudinal edges will be simply-supported,

so that the theory of ref. 4 is applicable. The
computed elastic buckling stresses are above the
yield stress of the face material for 3 out of the
9 panels (2 duralumin-honeycomb and 1 steel-
honeycomb). The computed values of /b range
from 0.16 to 0.37. The ratio of the buckling
load to the buckling load of a simple plate having
the same bending stiffness as the sandwich ranges
from 1/3 to 1/20; this ratio may be considered to
represent most adequately the influence of the
finite transverse shear stiffness of the sandwich.

It should be noted that the figures given above
probably correspond to the lower end of the range
of 5 that will occur in practical applications. The
widths of the test panels were restrictéd to 30 ¢m
in view of the dimensions available in the testing
machine at the N.L.L. Since s is proportional
to 5% much larger values than 1.3 may occur in
practice, as well as correspondingly larger values

of ljb and of the buckling load ratio ‘mentioned

in the preceding paragraph.

3 Preliminary proposals for panel design.

Pending the results of further research, in
particular regarding the efficiency of sandwich
panels, the following procedure is proposed.

We assume that a panel of 70 cm width, which
may approximately be considered as infinitely
long, has to be designed for buckling under a
combination of Py = 450 kg/cm and Pyy = 150 kg/
cm. The faces consist of duralumin, Ef = 0.73.10°
kgfecm? vf=0.3, A honeycomb or lightweight
foam core is to be used, so that we may neglect
the part of the.loads carried by the core,

According to HUBER's yield criterion the ideal
load is (Py? + 3Py} = 520 kg/cm.Choosing the
ideal stress as 2600 kg/cm?® we find f= 0.1 cm.

From figs. 2.2 and 5.2 we observe that Py’
and Py, will be approximately equal, so that
Py[Py' = 3 Pxy[P'xy. From fig. 4.1 we thus
find Py /P’y = 0.9 and therefore Py’ = 500 kg/cm.

We now assume that either ¢ or G¢p (ie. the
core material) is chosen. As an example of the
first case we take c=2 cm.

Then we compute successively

=3(14c/f)=13 . 212= 1323,
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CEff e+ f) _ 073 10°. 0.1 441 _

T 2(1—vp) 2.0.91
= 1.77 . 10° kg/cm,
Pyb 500 . 70° Py’

=14 =3
B xt . 1.77 . 108 :

From fig. 5.2 we now easily find s=1.45 and

°B 2. 520
S=s =2 =520 kgjem; Gen— —
B glom; Gen 4.41

= 236 kg/cm?,
For the second case we assume G =250 kg/cm?,
We then compute
73 . 108 . Q.18

12 . 0.91
Py . Py 500 . 4900

f_t == = . = 1850,
S m:B w2, 134 .

B = 2tBf = 2~ 0 = 134r,

r=3(1 + 10cc+0.1=01Y1/3; c =

= 0.1 V=3 — 0.1,
> 0.833
g L+ 01y oy PEPT
c 0.1¥ 1/3—0.1
4900 S 30.9

= . 1341 V%——l’
T=3(1+309) BB

= 1850; .._'-.

f S
We can now choose s, compute 1, read Py'[S
from fig. 5.2 and compute ¢ Py’/S. After some trials
we find that ¢ Py'/S=1850 corresponds to s=1.62

and ¢ = §—0~901— 1.91 cm.
1,62

A rather rougher but quicker procedure may
be used when it appears that s will not exceed
approx. 1.5. In that case we observe from fig. 5.2 .
that P'x/S roughly equals unity. We therefore
find that S=500 and in the first case G.p follows

as Gep = _ti% 500 = 227 kgjcm?, whereas in the

(+0.)2 _ 500 _ .

c 250
method is somewhat unconservative when actually
P,' is somewhat smaller than S; for s<21.2 1t is
conservative,

second case = 1.8, This

Appendix D. The interaction curves for
combined loading.

~The interaction curves for the combinations
of longitudinal or lateral compression (tension) and



shear (figs. 4.1 and 4.2) have been determined
from the graphs given in ref. 1. A minor difficulty
is that P’y is not given explicitly in ref. 1. Its
value was computed from eq. (5.3), which can
also be easily derived from eq. (6.14) of ref. 1
when it is observed that for pure iateral compression
I= o, .

The curves for combinations of lateral coth-
pression and shear show that up to a certain
value Pyxyp crie, of the shear, the compression
Py, is equal to that at Py, = 0. This phenomenon
was already known for the simple plate (ref. 10)
and it is clear that, as for the simple plate,
buckling of the sandwich at Pyp<C Pyy crie.
will occur with a cylindrical wave form (I = ).

The values of Pyy crit ate not given in ref, |
and for reasons to be stated hereafter they were
computed from the energy method.

All points of the interaction curve satisfy the

S 30

_ buckling condition eq. (2.1}, where Py = 0. The

wave form (2.3) can be retained; for pure lateral
compression {{= w) it yields the same resultas
given by the rigorous treatment. Also for Pyy<
Pyy crit. we have [ = o, which infers that the
external shear loading does not contribute to the
change of potential energy (ow/dx = 0).

From eq. (2.1), where Py =0, can be denved
an expression
nyﬁpxy (m, 1, Py) (D. 1)
where, when prescribing Py, m and ! must be
computed so as to minimize Py,

.. .. 7
Combining the extremurm conditions I;xy =
. m

__ 9Py
Bl =0 with eq (D. 1) it is found that, when

P, P’y (ie. l>w), then

ny crit. =
_3nt"6 B s V(s+1) P25+ 1P+ tls + 1) + tsf §2(s -+ L) (s + 4 + s(s + 1) + 2st(s -+ 4) |
16 ¢ (s+1F (s+4) (D. 2)
whence &‘:‘_’ﬂ?=
y
_ 376 ]/(s+ D326+ 12+t + 1) +tst §2(5+ 1) (s+ 42+ s(s -+ 1) + 2st(s + 4 ) |
16 G+ E+DEs+e+1) (D. 3)

The cases s= o, t=w, and s=10, t=0, both
corresponding to the simple plate, give respectively;
— —1—1/6 ny crit. 37?1/6
3 Py '
value 2.87, ref 10),

me— —1—1/6 ny crit. 377]/6

12 P’y
the wave forms bemg different and corresponding
to the cases referred to in appendix C 1.

A graph has been drawn (fig. D. 1) showing

= 2.885 (exact

—=2.885 (loc.cit.),

. . p .
the variation of LJ’;C_T“_

with s (ie. with the

influence of the finite shear stiffness of the core), -

for various values of 7.

It is evident that the influence of t vanishes
when s>1, For values of s between 0 and 1,
minimum values are attained which decrease as
7 increases. For very small values of s, the in-
fluence of the faces asserts itself and is shown

ny crit,

by the values increasing sharply to 2.885.

The wvalues of Pyyj cri. computed from the
energy method prove to be in good agreement
with the values which may be estimated from the
curves of fig. 4.2. This is a rathet convincing
proof of the validity of the basic assumption made

in section 4 that the interaction curves will not
be significantly influenced by the method of
computation.

No interaction curves for combinations of Py
and Pj, have been given, because they proved to
be unsuitable for accurate interpolation. I this
case has to be calculated, the solution of eq. (5.1)
can be performed simply and rapidly. For an
infinitely long plate, eq. (5.1) can be simplified
by substituting a/ny = I and ny = 1, which yields

1 1
Py + Pyh= S(1 42 [m ] (D.4.)

Appendix E. Some remarks on the integral
ff (wxxwyy —wyy?) dxdy. 1)
In ref. 8 it is shown that |
I= ffA (Wxxwpy-wyy?) dx dy=10

in the case of a rectangular domain A, on the
boundary of which the function w is a con-
stant, This is a particular case of a more
general property which will now be investigated.
The integrand D = wyxWwy,—wyxy® can be con-
1} For convenience, differentiation of w with respect

to x will hereafter bz denoted by adding a suffix x to w,
eic.
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sidered as the JacoBIAN of the functions £ = wy,
n=wy. S0, by a transformation from the XY
plane to a plane with coordinates £ and =, the

integral will be transformed into I = ff £ du,

the integration being taken over the region A’
into which the rectangle is transformed. The
condition I = 0 requires that the total area of this
region should be zero. This requirement is ob-
viously satisfied if D=0 evefywhere in the
rectangle, in which case the rectangle is trans-
formed into one point. Then the surface w =
=w (x, y) is developable i.e. it consists merely of
points where the curvature is parabolic,
Now, a surface w = w(x, y} will be considered
which is not developable, the function w(x, y)
being for simplicity supposed analytic in the
interior of a rectangle in the XY-plane. In order
that the total area of the image in the £ v plane
is zero, the contour of the rectangle must be
mapped on a single line in the £ 7 plane. This

will be the case if the contour in the XY plane

can be divided into two parts, such that to any
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point of the first part a point of the second part
can be joined, having equal values of £ and .
Then the two parts of the contour are mapped
on the same curve of the £ v plane. This is seen
to be the case if the function w(x, p) satisfies
certain conditions of symmetry as is shown by the
following examples.

Examples,
1. A simple example is furnished by the function

w(x,y) =
ed by (0,0); (Za, 0); (2a, ¥5b); (0, 12b).
Then £ = wx = = cos —= sin E}_),
a a b
T X TIy
n=wWp=—8in — cos--L,
b a

The correspondence between the XY plane and
the £ » plane is given by the following table.

x y wx=F | wy="

CB |0 >%a|0>0]0 > 00 - /b
BE |ta> a0 >0|0~> 0}z 0
EF |a >%4a0 > 010 > 0| 0->-x/b
FN [Yaa—>2a|0 > 0)0 > Ol-x/p>0
NL {26>2a {0 >3 {0 >xfg 0 > O
LG | 2a—> %] 15>13b |ia> 0]0 > ©
GD PPa> a| >33 0>-x/g 0 = 0
DH |a >ia| 36> [n/g>0}0 > 0
HA Via—> 0] >3]0 > x/gf0 > 0

AC [0 > 0] > Olrja> 0{0 > 0

The table is graphically illustrated by fig. E. 1.
It is seen that the image of the contour of the
rectangle in the XY plane consists of line segments
on the axes of coordinates in the £ v plane enclosing
a total area of zero. It is also clearly seen that
the integral is zero when extended over a smaller
area, for instance CEDA or EFGD.

The line segments AB, BD, DF, FL are the
projections on the XY plane of the locus of the
points on the surface w=w (x, ¥) where the
curvature is parabolic, i.e. the locus of the points
for which the Gaussian modulus of curvature

K= , 18 zero. This locus consists of the arcs

14%2

BM*A, BS*D, FT*D and FU*L.
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2. A somewhat more intricate example is

Then £ = wngsinﬁ—gcosf A;

: ] LTy . !
furnished by the fuction w (x, y) = sm—;—) sin” 4,
7)== wy-—kcosn—ysm Ta - s T 4.
mb my . - b b ! l b l
where A = x4+ — cos — — }mb, in the region
T b The correspondence between the XY plane and
0=x=2]; 0=y=1b. the & 7 plane is given by the following table.
b
. foz7== bim=1}%
. z . Z
x 4 g 7 =" -
™ . T
OD |0~ 3#] 00 00 — SmE>t s 0> 0 [—059>+ 191
™ .
DE | y~> 1| 0>0 00 + o cosfo-+osin 3 0> 0 I+ 191>+ 059
TC
EF | 1% 0+ 0 0->0 + oy sinf>—cosf 0> 0 |+ 059>—191
Tr B +*
FA |30>20| 0>0 00 — cosfpr—sinfl 0> 0 |—1.91->—0.59
T T, TTm "
AB | 2121 | O 0 4 Jeosa — Sinp>—— cosa 0->+ 0.97]— 0.59->— 0.32
™ T ™ T
BG | 213,01 $b->1b + 7 cos o 1 s T CoS &> *’T snd )+ 0.97>—0.26 |— 032>+ 0.08
I T wm o, s
GH %01 | 1> —7 sina->—- cosa + 7 sinog >+ cose | 0,26>—0.97|+ 0.08>+ 0.32
T ' T mwmn o,
HK | >3 | > oS« sina Topeesee st L 0.975+ 0.26(+ 0.32->—0.08
T . Fis . m
KC | 50 | b + 7 sin o>+ cosa —p sina>——rc0s & (4 0265+ 0.97(— 0.08->— 0.32
T ™ T,
Co 0->0 >0 +E cos o >0 7 cos 0“>“‘_bsmﬁ + 097> 0 |—0.32>—059

. . _ b
The values given in the last two columns are for y =

The area enclosed by the image of the contour
of the rectangle OABC in the £ v plane is zero,
as this image consists of line segments which
are described twice in opposite directions when
the contour of OABC is followed entirely.

Although the latter does not apply to the halves
OEHC and EABH separately, the integral [
nevertheless vanishes for each half, which is evident
from an inspection of the images in the £ v plane,
taking into account that the boundaries of the
areas EHN and NBO in the £ v plane are followed
in opposite directions (clockwise, respectively
counterclockwise), so that these areas cancel out.
The same result follows from the fact that the
contours of these rectangles consist of pairs of
points such that the values of £ and 7 in these
points are equal.

hm=

%, from which fig, E, 2 is readily derived.

For_=_, m — 1 the locus of parabolic points is

2 3
computed.

From D = wxyx wyy — u}xyz = 0 it follows

! = ( Ty
X=_-|m 5—-—(:05% tg «-arc tg(sec o coth

™

(sm = * 1)}

which is the equation of the projection of this
locus on the XY plane.

The results are shown in fig. E. 2 (dotted
lines). From this graph it is also evident that
I must be zero and that the same is true for parts
OEHC and EABH separately.

When w is constant on the boundary of the

rectangle (0,0); (2,0); (a, b); (0, b) it is clearly a

~ Qe
b
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FIGURE E.l.

) LM WY . .
Perspective view of the surface w (x, ) = sin — sin ?y with its parabolic curves
a

(left hand side) and mapping of the contour on the £ w plane (right hand side).

particular case of the foregoing more general one,
as in this case the points on the contour satisfy
the condition mentioned above. In this case the
proof that I vanishes can immediately be derived
from the application of the integral formula of
Gavuss—BoNNET to the rectangle, according to
which

Eii-l—JJ-Ddxdy:%:.
Bg

When w = const. the sides of the rectangle are
geodetics, hence the geodetic curvature gg is
infinite and the contour integral of the geodetic
curvature vanishes apart from the contributions

at every corner, which are equal to the external
angle. Thus

4, g + ff D dx dy = 2=, from which it follows

that ff D dx dy = 0.

Finally, a few further remarks may be made:

1. The extremes of the w surface are mapped on
the origin of the £ « plane, wy = & and wy =7
being zero; e.g. G* and H* of fig. E. 1 and
K, M, N, P of fig. E. 2. '

. 2.1= ff D dx dy is independent of the orien-
A :

tation of the axes of coordinates, provided they
are rectangular, D being an invariant for all
systems of such axes,

3.1= fj D dx dy taken over a closed domain

A

is defined as the whole curvature of the domain,
i.e. the area described on a sphere of unit
radius by radii drawn parallel to the normals
of the surface along the boundary. Thus the
whole curvature equals a solid angle the extent
of which depends solely on the boundary conditi-
ons, provided that the surface contains no singular
points inside the boundary. Integrating for in-
stance over a semisphere one finds I = 2m;
integrating over a cone the result is zero as the
contribution to the whole curvature by the radii
of the sphere drawn parellel to the boundary
normals along the base of the cone is cancelled by
the contribution of the normals through the top
of the cone. ,

4.In all cases hitherto encountered

& b
j f %(Aw)xx (Aw)y, — (Aw)Pxytdxdy vanis-
00

a b
hes when / ] (wyx Wyy — Wxy?) dx dy vanis-
. 0 Yo




S 34 -

hes, both integrals taken over the same rectan-

gle. A general proof of this statement, however, where J f D dx dy is zero, other than for the

has so far not been given. case mentioned in ref. 8.
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Load Distribution and Relative Stiffness Parameters
for a Reinforced Flat Plate containing a Rectangular

Cut-out under Plane Loading

L. S. D. MORLEY.

Summary.

A method is given for the determination of the lead distribution and relative stiffness parameters for a three bay' flat
monocoque plate containing a rectangular eut-out in the cemtre bay and under plane loading. Conventional shell theory is
used and mo new principles or assumptions are introduced. The paper serves as an introduetion to a general theory for the dis-
tribution of loads thronghout opem and closed shells containing cut-outs.
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1 Introduction.

One of the most pertinent problems in the
theory of aircraft struetures is the determination
of the stress distribution in the neighbourhood of
a large reetangular cuf-out in a reinforeed mono-
coque structure, Examples of such eut-outs are
the openings required in fuselages for doors, ete.
and the openings in wings required for retraetion
of the undercarriage mechanism. Also, espeeially
for flutter caleulations, it is necessary to have a
reliable estimation of the stiffness of such strue-
tures. ' ]

There does not appear to be mueh available
literature on this type of problem: P. Kuhn
and other authors (refs. 2 and 3) have devised
an approximate solution for the flat plate with a
rectangnlar cut-out under a pure tension load only.
This consists essentially of the substitute stringer
method of shear-lag analysis and solutions are
given for two and three substitute stringers. An
article by D, Williams (ref. 4) considers the
effect of eover discontinuities on the strength and
stiffness of stressed skin wings, but the method
does not . permit’-of generality. It is therefore

intended to present a method which permits of
some considerable generality, whieh is based on
conventional shell theory and does not require the
introduction of extraneous assumptions.

It is not proposed to deal with the general
problem in this paper, which is intended merely
to serve ag an introduction to the general theory.
With this in view, a very simple problem has been
chosen which consists of a flat three bay rein-
forced monocoque plate containing a rectangular
cut-out in the centre bay. In total there are
27 + 1 stringers and 2 m — 1 disecontinuous string-
ers for the plate with an odd number of stringers
which is eonsidered here; an even number of
stringers requiring simple .and obvious modificat-
iong in the formulation. The plate has a high
degree of symmetry which permits an. extremely
rapid eomputation of the load distribution through-
out the plate.

The problem of discrete stringers has been
chosen beeause uniformly distributing the stringers
does not appear to cause worthwhile advantages
and is of doubtful praetical significance for plates
having a moderate number of stringers. Further-
more, discrete stringers allow the investigation of
the effect of reinforecing the stringers hordering
the cut. However, because of the introductory
nature of the paper, it has been decided not to
investigate this effect and other current problems
such as the decay of the stress perturhations in a
many bayed plate, the effeet of the bending of
stringers and rihs in the plane of the sheet, ete.

Conventional shell theory has heen used and it
has not been found necessary to introduce any
new assumptions and prineiples.- Conventional
shell theory infers that the shear stress in a panel
is constant. and this will be very nearly true pro-
vided that the length of the panel iz not too great.
For long panels, one must consider the exponential
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decay of the forces which entails some additional
labour, although the solution is yielded by a similar
procedure as presented here. T. Rand (ref. 5)
has made an extensive investigation of the usu-
ally accepted approximations used in shell theory.

For the plate considercd the solution is'mathe-
matically exaet within the confines of conventional
shell theory. As usual, the ribs and stringers are
assumed to have vanishing rigidity in bending in
the plane of the sheet. This immediately infers
that the axial load in the diseontinnous stringers
at the, eut-out must he zero. This is quite justi-
fiable for it canm be shown that the ribs must
possess an extremely high rigidity in bending in
the plane of the sheet in order to influence the
stringer loads in this manner.

The flat plate econsidered is shown in fig. 1 and

it is assumed to have complete symmetry about
the X and Y axes, g0 that for symmetrieal loading
such as uniform tension, pure bending and pure
shear, as shown in fig. 2, the degree of redundaney
is reduced fourfold. The number of redundancies
can casily be assessed, for when all the axial loads
in the stringers arc known the internal load dis-
tribution is completely specified. Since the constant
shear in the panels infers a linear wvariation of
axial load along eaeh hay, it is neeessary only to
define the axial loads in the stringers at the inter-
section of stringers and ribs.
_ Attention can now be confined to one quadrant
of the plate and for eonvenience this is chosen
as the second quadrant because the resulting for-
mulation is rendered somewhat simpler. The re-
dundancies are chosen as the axial loads in the
stringers at rib 1, this choice being discussed in
more detail later on in the analysis. The values
of the redundancies are found by making the
strain energy stored in the plate & minimum,

One numerical example is considered in detail
for a 13-stringer plate having 5 discontinuous
stringers. It is shown that the problem of pure
shear (case (e¢) ) yields the simplest and most
rapid solution., Numerical eomputation has been
reduced to a minimum by the artifice of operating
on only one bay.

2 The reinforced flat plate.

- The structure considersd for thig analysis is a
flat plate of monocogue construction having three
equal bays with a rectangular ent-ont in the centre
. bay. For simplicity, the analysis will be restricted
to plates having complete symmetry about a pair
of rectangular axes with their origin at the cen-
troid of the plate, as shown in fig. 1. »

The plate is made of thin sheet mefal and is
reinforeed with four transverse ribs and a system
- of longitudinal stringers. To gimplify further the
analysis, it is assumed that the ribs and siringers
have. constant and equal cross-sectional areas Az
and Ag respectively and that the sheet has constant
thickness ¢. In conformity with usnal shell analysis,
the part of the sheet which is considered effective
in. carrying axial stresses is added to the' eross
sectional area of the ribs and stringers to form

the total effective cross-sectional area resisting
axial stresses. Furthermore, it is assumed that

aip O aie | mea 2 @p 3

Perspective view.

) Fig. 1 |
The flat menoccogue plate.

the neutral axes of the ribs and stringers’ lie
on the skin line and that they have wvanishing
rigidity in bending in the plane of the sheet. It
is convenient to choose rectangular systems of axes
#-—2 for each panel as shown in fig. 1.

Finally, Hooke’s law is assumed” to be valid
and buckling is excluded.

3 The redundancies, .

In general, the plate shown in fig. 1 possesses
4 (n—m) redundancies or statical indetermin-
acies and when these are known the stress dis-
tribution in the whole plate is completely specified.
However, for the separate loading conditions of
Tension, Bending and Shear (as 'in fig. 2 for
cases (a), (b) and {e) respectively) there is an
immediate reduction in the number of redundan-
cies which is due to the symmetry of the geo-
metry and stress distributions about the reet-
angular axes X and Y., It is proposed to deal
only -with these three regular distributions of
loading sinee they are of the greatest interest,
but the method given in this paper can cope with
any distribution of the external forces. '
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The loading cases.

Now, it follows that the stress distributions for
the varfous loading conditions will safisfy the
underlying symmetrical properties with respect to
the X and Y axes, viz.:
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case | stress X axis | Y axig
R T i
p-.. | sym. sym.
cagse (a) s - | antisym. antisym.
g sym. Sy,
p .| antisym.. } sym.
case {b) s Sym. antisym.
g antisym, SV
P antisym. antisym.
case (e) 8 sym. sym,
! q antisym. antisym

where p is an'_a,xia'l stress in a siringer, s is a
shear stress in a panel and ¢ is an axial stress
in a rib; eg. for case (h), the axial siresses in
the stringers are antisymmetrically distributed
about the X axis and symmetrieally distributed
about the Y axis.

- It is therefore evident that attention” may now
be eonfined to one guadrant of the plate, thereby
redueing 'the redundancies to n—m in number.
At least, there are n—m redundancies for cases
(a)} and (h) but it will be shown later that there
are only % —m-——1 redundancies for ecase (¢).

There is complete freedom in the choice of the
statically indeterminate quantities provided that
they are linearly independent of one another;
they may be taken as axial loads in the stringers,
ghears in the panels, axigl loads in the ribs or
they ean even be a eombination of these possibili-
ties. A careful choice of the redundant quantltles
will, however, enfail a eonsiderable reduction in
the algebrme formulation and arithmetic com-
putation. With this in view, the redundancies
have been chosen as axial load distributions in
the siringers at rib 1. Here, 2 m — 1 of the loads
are zero, which is a direct consequence of the in-
ability of the ribs to resist bending in the plane
‘of"the sheet, so that »—m4 1 linearly indepen-
dent axial load distributions can always be found,

Following - the procedure of -¥ b ner and
Kéller (ref. 1), these distributions Xi(y)
will be chosen so that they are statically zero
and contribute nothing to any boundary condit-
ions that may exist, while the particular solution
X, (y) may. be. taken ag_any statically correct
‘distribittion which also satisfies the houndary con-
ditions. The Xi(y) then constitute the redundan-
cies of the problem and it is* neeessary to find
the particular linear combination of them which
satisfies the condition for minimum strain energy
in the plate. If the distribitions X:(y) were not
chosen as being statically zero, the ensuing strain
energy analysis would" be rendered more complie-
ated beeause when- thé ondition of minimum
strain energy is imposed it would be necessary
to impose a restriction on the variations of the
redundancies, and this infers the-existence of two
extra “redundancies”.

The axial foad P(_j) in the yth stringer at
rib 1 consists of a linear eomhmatlon of the X, ()
and is




Py(y) = X,(y) + S aXu(y),
where i=1, 2 3, ...... n—nt for eas%'(a) and
(b) and i=1, 2, 3, n—m —1 for case (e).
The equatmns of ethbrlum that P (y) must
satisfy are:

(3.1)

......

for  case (a)' 2y§mP1<y)=2'u§mA}o(y)=T
for ecase (b) -’ 2 E yP,(y)u;’.- yE yX (y) =M
y= n
and case (c) ,,ém yP,(y) = y% yXo(y) =0,
2 3 Py =2 yi X,(y) =,

The last equation for ease (¢) is the houndary
condition whieh reduees the number of redundan-
cies by one. This condition is essentially depending
on the antisymmetry about the Y-axis of the axial
loads in the stringers.

The choice of the distributions for X, o{y) and
Xi{y) is quite arbitrary provided that they satisfy
the appropriate conditions (3.2) and are linearly
independent. The linear independency of the dis-
tributions ean be expressed by the non-vanishing
of the following determinants:
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It is, however, rather more convenient when
choosing the distributions to make the X (y) ortho-
gonal with the X;(y), i.e. they satisfy conditions
of the type

the total applied tension, : |

, the total applied moment,
' (3.2)
where § is the applied shear/unit run.
3 X, (‘y) Xi('y) =0, - (34)

y=m

ag then there is some considerable simplification
in the eomputational work. To achieve this ortho-
gonality, it is only necessary to choose the dis-
tributions X,(y) in a certain manner, so that they
consist of a linear combination of the two natural
distributions, viz. uniform tension and simple bend-
ing, and satisfy the appropriate conditions (3.2).
It can be verified that the correet distributions are:

X, (n) X, (n) Xo—m—1(n) Xo—m(n)
fOr cases ((1) XO (n—_l) "Xl (n —1) )in—mfi(n‘_“]) Xn—m(n_ 1) 0
and(b}.-......... ...3‘E
XO (m+1) ’ ‘Yl (m+]) )(n--m—-i(m—f" 1) Xn—m(m+1)
X, () X, (m) Xn—m-1(m) Koo (m)
wi (33)
1 n X, (n) . s Xn-;h-z(ﬂ) Xpmm—1(n)
a'nd for 1 n—1 X-l (n"-].) Xn—m-—E(n"—l) Xn-—-m—'l("f‘l) :}&0
case (c) [ . . . . .o M . . . . . . L S - & A = e . . .
I m4-1 X m4+1) . . voe o Xpemea(mA4-1) Xpomei(m4-1)
1 m X, (m) ’ Xewm—a(m) Xp—m =1 (m)
) . i . .
case (a) X, (y) =55 y=mn, n—1, ..... m-+1 m
case (b) X,(y) =§n%_ Ym—m, 1, . —m+ 1, —n
case (¢) X, (y) Z*Z—@:i—‘f;)—(f?)‘—g); y=mn n—1, ... m+ 1, m
__.‘?,—(Qveai—*’fz_)—(fyi_‘_ g);y:—m, "_m_“_]-a ----- hn+1,~n (35)

where: e==n—m + 1

-

f=
T e

M=

g“_"

y=m

y="/{n(n+1) —m@m—1)}

Y= {aGti+1) Cn+l—mm—1) @m—1)}
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and then the ounly remaining condition is that the

Xi(y) are statically Zzero to achieve the desired &

orthogonality relations. 5 —
The foregoing will be clarified by considering a ‘

particular example, such as n =6 and m=3 for

the plate shown in fig. 1. There are then three 3

redundancies for eases (a) and (b), and only two 3

for case (¢). Suitable Xi(y) distributions are
shown. in fig. 3 and the X (y) have heen deter-
mined according to equations (3.5). It ecan be T T T
verified that the distributions arc linearly inde- -
pendent by making the appropriate substitutions N
into the determinants (3.3).

-3 p—
4 The loads in the plate. bl

~5

The problem has now resolved into the deter-
mination of the expression P,(y), or in other x
words it remains only to find the values of the
coefficients o; so as to obtain a complete specifie-
ation of the load or stress distribution in the plate,
It is now proposed to express this load distribution |
throughout the plate in terms of the «; in pre- 6t S 5 T

<

paration for the strain energy analysis. | e |
The load distribution in the stringers at rib 0 ° e ° ¢ [
must mateh the boundary conditions existing there, 4 725 1 | e
thus they are given by 3 5 |- | ———— 4
; RGN
P, Sl v for case (a), . *
3My L0 . - - )
Po(y) = or cas (4.1)
W) = STy O e (), ST 1 1
-2 ] 1 1
Py(y) =0 for case (c), Y e
these expressiohs remaining valid for —n < y << n. -4 = f ————-5 — 3
In the following general expressions for the load © o5 i f—— s fe——
distribution throughout the structure, the appro-. e ‘__7:;5 _ 5 4 1
priate values of P,(y), P,(y) ete. must be sub- Txem TF X013 xen
stituted depending on the partieular ease under C° ' , : ?
consideration. Now, ‘simplified shell theory’ infers case (b)

a linear variation of axial load along each hay,
hence the axial load along the stringers may he .
expressed by v . .

6 ———a=—055,5 et
Py, ) B y) Py — Pol) ) S T S R
4 'r——"OBSaS r—"1 t———2
Py(y, z) =P, (y) +—(;{P2(y) — Py}, p (42). S B s
- 2
x - -
Py, ) =P, (y) +-E{P3(y)—~P2(y) h .o ! ‘
. 1
the expressions remaining valid only for the first, -
second and third bays respeectively.
_ This linear variation of end load in the stringers -2
infers that the shear is constant in each -panel; -3 je—————-0gas]’ s
g0 that from elementary considerations of equili- 4 f—a ) P J SN
brium the shear in the top panel of the first bay ¢ . s = e
must be ‘ ~5 O1as’ frm—- 2 | i
~6 el ()55 25 L}
Sum) =8 + o { By(n) —Py(n) }, - "o s e
where § is the applied gshear per unit run. In case (c)
the second panel down, the shear is ;
Fig. 3
8. (n—1 1 T Y Linearly independent distributions of exial load in the
o y==81(n) + a {P(n—1) Po(n—1) ), . stringers at Rib 1, for n =6 and m=23.




40 that in the yth panel of the first, second and

third bays respectively

Sx(ff)
1

Sz(y) =8+ —
' &

1
Si(y) =8+ —
t

It follows that the axial loads at the yth stringer

—5+ 1§
—~

b =y
I(J) },

E‘ { P(j) —

j=y

in the ribs, are respectively

0.(y) =b £
Q,(y) =10 >

Qi =b T {

{(§—8.) 1},

i=y+!

. J=yH
n

(£ =P},

S (P —P) )
=¥

CAORRONN

8, (H —8:(7) 3,

S 40

Finally, the constant shear in the panels infers

a linear variation of the rib axial loads between

suceessive stringers.

Hence, the axial load along

a rib between the ¢ th and y—lth stringers is

(4.3)

ol D)= Q)+ 5 {Qo('y‘_’l)— RS

Q. (Y, 2)== Q. (y) + 7)"{ Q. (y—1)— &, (y) }:

Qz(J;z)'_Q )

W

noting ~that

(4.4)

Q (Js Z)_Qs(J)+ Yy {Qs J‘““'l

Q0= Qu(m=:n)=

- (4.5}
{ Q. (y—1)— @, (y) } .

Q. () },

Qu(n)—

The symmeétrical properties of the plate and

Qo (y, 2)

j=gtto stress distributions permit a great simplification
Q.(y) =h j=§+1 [8,(/) —8}. gﬁrt};fee Sf;%nai;aifi)mméllllllage éiar;(is they are summarlzed
Case (a) Case (b) Case (e)
T 3 My
Po(y) on+ 1 aln+1) @n+1)b 0
P, (y) C X (y) T3 eaXi(y) Xo(y) + 21 e X(y) X, (y) + ? ai X (y)
P,(y) P, (y) P, (’U) — P {y)
P,(y) Po(3) Py(y) -0
Py, 2) | Poy) = (P(y) —Py()} | Poly) + = {Py(y) —Poly) } = P.(v)
P,(y,2) P,(y) P, () (1—2 %))
P2 | Biy) + 2 (P —Pi)) | Pule) + L (Py(n)—Pu(n) ) (5—1)pw)
n ' 1" ,
8:(y) —i’ _2 {P,() —Po(f) } -}; 2 {PH—P} S+ 2 B())
i=u b=y : i=y

"8, (y) 0 .0 38 —=28.(y)
Sa(y) —'Sl(y) _Sl(y) -8, ()
Q) —b I 8 —b 38,0 b3 (S—8,0))

j=y+1 Je=y - J=y+1 T
Q1(y) L"Qn('y) '_Qu(y) '_3 Qo(y)
@.() — Qu(y) . — QoY) 3Q0("y);
Q. (¥) @ (¥} . Qo(y) —Qoly)
Qu(1,2) | Qoly) + 5 { Culy—1)— Qu(v)} | Qo) + {10} | Q)+ F { i(y—1)— Qu(1)} |
Q1(y’ z) - Qo(y: ) - Qo('y: z) —3 Qo(ya
(Y, 2) — Qo (y;2) — Qoly, 2) 3 Q. (y,2)
Qs(y! z)- Qn(ya Z) . '_-Qo(y}z)




5 The strain energy ana.ly31s

"The cocfficients m can. be determlned from a
strain cnergy analys,ls by equatlng to zero the
derivatives with respect to the total strain energy
stored in the strueture. The strain energy equat-

“ions will be formulated in general terms and then

the individual cases may be examined later.
The total strain energy stored in the stringers
is denoted hy Ugrr and is .

4 2
TFA, y_ f{P (y,x)+

+P (J#m)_‘_l)z(y:ﬂ:)}dm—

DYS'{‘R _—

1 J2
= STA y_.—n f {2P:3y,x)+
+ P2y, z) }dxx
a i 2 2
- 6EA3 y-z_“{zpo ('y)+3P1 (y)+
+ Pry) + 2P (P (y) + P ()P, () }

and differentiating with respect to a;

aUgTR‘ & g n 2
e T 4+
dw B EA by L)
+ P (y) P, (4} }, (6.1)

because P,2{y) = P%*(y), and P,(y) and

E P ()P, (y) are independent of a;, remem-

hermﬂ that P (y) consists of the partienlar solut-
ion X o{1), equation (3.5), plus the statically zero
dlsmbutmns X0

The total strain energy stored in the sheet in
shear ig denoted by ¥Us and is

D
Us= -2 3 (820 8200+ 8°(0) ) =
K oy=1
.ab " '
= 3 {282+ 82y )
BEy=1

and differentiating with respeet to a:,

ali b o
G = 5 I {28+ 82W). (52)
i i oy=1

Finally, the total strain enengy stored in the
ribs in tension is denoted by Uy and is

b
1 n
UB:::E—uA—n y.z—.i{)/. [ Q3 (y,2)+ Q7 (y,2) +

T @Ay, Ot Qf(y,2) Y de=

b

2y [ (erwat eiwe yia=

T Eany

()

3 EA.R y21 { Q02(y) + Q02(,y_1)+
+ (1) Qo (y—1) +
+ @l + @ (y—1) + Q;(y)Q1(y'_'1) }

and differentiating with respeet to «i

We 20 2 .
E—_m‘é—'ﬂi—yé {Qn (y)+Q0 (Tf_l)

-+ Qn(y)Qo(y_1)+ )
T Q=D+ @ (1) {y—1)). (5.3)

Whenece the coefficlents «; are found from the
condition that the strain energy i a minimum, viz.

W W | 0Us . W
a{xi o aai + aa; + aa{,

=1 (5.4)

which yields a set of simultaneous linear equations
for the determination of the coefficients. There
will be n-—m such equations for cases (a) and
(b), and n—m —1 equations for case (e).

Now, referring to the table which gives a sum-
mary of the loads throughout the strueture, it will
be seen that the expressions (5.1); (5.2) and (5.3)
can be considerably simplified for the individual
cases. It can be readily verified that equation
(5.4) resolves into the following equations for
eases (a), (b) and (e) respectively.

For case (a),

B tigpy + (%) (f;) ( b ) 6 e +

+(_b_) ( A“) 2ai,==0, (54a)

._a‘ AK
where aiq,, = y:mP (u) 8P6a(1 y) )
ass.=a=y_§41sz(y) L
a=(4) 2 x [{26;» ) +
+ Q1)) ey

F (20— + ety G|

for i==1,2, 3 ..... LN — M.

For case (b),

S+ (2) (%) (Z) o

+(i) (A* )215;3:0, (5,4h)

Vol \ A
where byg,, == yﬁm P(y) af&;;(,»y) ’
bis:?zyi S, (y) @31;(;&
ra=(3) & [2ow +
- + Qly—1)} BQ"W
F{2Qu(y—1) + Qply) },Q_(EL_._)]
for i==1,2 3 ...... B —- M,




Finally, fo? ease ('c),
o+ () () (
8
+ (a,) ( Ag
BP (y)

2
S‘ Pl( ) 1.

E

— 1 18c. +
.u) s

45

(6.de)

) 100,'“ '==0,

where ¢; st —

1(y)
Der;

: [zaw+
BQO y)

cs":a‘z So S‘l(y)

y=m

=(“

H

b y-'-m+

—+ Qo(y_l) }

Cig

+ {2@0(11——1) + Qo y))}
for L-l 2, 3

aQu(y )]

6 The relative stiffness parameters.

The relative stiffness paramefer y is defined as
the ratio of the stiffnesses of the plate with and
without cut-out. It is given by the ratio of the
strain enecrgies, viz.

U, :
o Uern + Uy + UR’ (61)
where U, ig the strain energy of the plate with-
out cut-out. For the computation of ¥,, it is
assumed that the sheet and strimgers are continu-
ous across the cut-out.
It is convenient to re-express (6 1) in terms
of the ¢ non~d1mensmna1 strain energy’ components,
viz.,

= U (62)
T Ve ¥ U 0 ‘

where for case (a)

37+
Vo= amn v 1y’

1) 2T R
Usre == 3 2n+1+l)2P (J)l
L o A, m(4m2—-1)’1’2 .
Us—z(a’)(‘;‘)(fz) B@n + 17 (6.3a)

+ a? E 8,2 (J)}

y=m+1
, 414 Ag 4 o,
URIT_E (—E-) (~A—;) yi1 { Qo (y)H‘

+ QY — D+l —1) ).

Tn deriving the expression for U/gra, it must be
remembered that P, (y) is composed of the parti-
cular solution (3.5) and statically zero distribu-
tiong of forces. For the derivation of U, it is

known that
' T 1
S, (v) b e Ryl (2y_1) for y-_1 2,.

[}

5.42

The relative stifiness parameter for case (b) is
of no major significance, but for completeness the
expressions will be quoted here.

For case '(b) ,
7 — 9M: '
" on{n+1) (Cnt1)b?! -
1 6112
Ugrn = ’ -+

3 anF1) @nF1)be
+5 3 Bry)

| — (6.3b)
re=2 () (2 (5) = 2w
=i (G) (55,5, e+

+ Q2 (y—1) +Qo(y)Qo y—1} }.

Finally, for the important case of shear loading
the expressions beecomne,

for case (¢)

o= (2) (D) () s
Vsrr = , mef(y),
V=3 (-b(;) (%) (%) { (4.5m—n)a*8%+
| + 2a2y;§+1s,?(y) 3, (6.3¢)
B o i
+ E Qe

+ QF (-1 + Q1) Qoly—1)] | -

In deriving the expressions for case (¢), we have
used the condition that S,{y) is composed of the
particular golation plus statlcally zero distributions,
of shear. - Also, the axial load 1n rib 0 is known
to be :

- .

: 1 /.6
Qo(y):jz—(—*) Y. aS y—(} 1,2,
sinee

8;{y)=158 for

7 Nu;irterical Examples.

The load distribution in a particular plate will
now be caleulated for the three loading cases,
where n="0 and m=23 and whete the values of
the non-dimensional parameters are .

As E':”‘-1.0;
at

il

e

=7

Ay
Ag

] -

=3

1]

The redundancies X (¢) are chosen to have the
distributions as shown in fig. 3,




ol
iy
b

Case (a): Tension.

For convenience, the total applied -tension will

he taken as T= 13 units; and for the particular-

distributions of the X{y) it is readily deduced
that the axial loads in the stringers at ribs 0 and
1 are respectively

P (6) =1, P,(6) = 1.625 + o,

P (5)y=1, P (5)=18625—a + a,

P (4)=1, P (4)=18625 — o, + ay,
P,(3) =1, P,(3) =1.625 — 0y,
P {2) =1, P.(2)= 0,

Po(l)zl? P,(1)= 0,

P,(0y=1, P,(0)= 0

From equation (4.3), the shear §,(¥) in the
yth pancl of the first bay is given by

08,() = S {P.(5) —Pold) )

i=u

and hence
C a8, (6) = 625 + o,
a8,(56) =1.25 + o,
aS, (4) = 1.875 + a,,
a8,(3) =25 |,
a8, ()Y =15 ,
a8, (1) =05

From equation (4.4), the axial Joad in rib ( at
the yth stringer is given by

a 8 A
T Q.(y)y =— 3 @a8,(j),
Fe=y 1
so that
T ©:(6) =0,
7 @u(5) =— 0625 —a,

% Qo(4) =— 1875 — o —a,

fbi Qo(3) =310 —ay—a,—aj,
% 0,(2) =—625 —a, —a,— 2y,
% Q1) =— 175 ——ay— ay— e,

% 0,(0) =-—825 —a, —a,—ay.

For the chosen values of the non-dimensional
parameters, equations (5.4a) resolve into

5 Gigpnt 2 aigt 0.01852 0 =0,
where
alSTR _= 2 & —
a.zsmx——al—i-Qaz—» w; ,
sy = — apt 2a,
g = 0.625 + o, ,
Ay — 125 + @, ,

= 1,875 + a,

S 43

— 45

8y, = 145,625 + 32 e, + 2T, + 2 sy,
Oy, =14125 + 2T, + 26, + 214,
@y, ==129.375 + 21 o, + 21 @, + 20 -

whence the three simultaneous equations for the
determination of e,, «, and «, are

12593 a,— 45 o, + 0.38889 a, == — 3.9468,
o, 12481 o, — 46111 «,-—— 51157,
0.38889 @, — 4.6111 , + 12370 o, =— 6.1458,

these equations yielding the following values of the
coefficients

a, =— 0.62400,
a, = — 0.94071,
a, == — 0.82791.

The loads throughout the structure are now
completely specified and are summarized below for
one quadrant of the plate.

P,(6) =0.07692 T, P,(6) = 0.07700 T,
P, (5) ==0.07692 T, P,(5) =0.10064 T,
P (4) ==0.07692 T, P,(4) ==0.13368 T,
P,(3) = 0.07692 7. P,(3) =0.18869 T,
P,(2) = 0.07692 T, P(2)= 0,
P,(1) =0.07692 T, P {1y = 0,
P,(0} = 0.07692 T, P,(0)= 0,

. where P,(y) and P, (y) are the axial leads in the

yth stringer at the interseetion of ribs 0 and 1
respectively, ' :

S,(6) = 0.00008 T/a,  8,(6) =0,
S,(5) = 0.02379 T/a, S 0,
9, (4} = 0.08055 T/a, & 0,
§,(3) = 0.19231 T'/a,
8,(2) == 0.11538 T/a,
S, (1) = 0.03846 T/q,

2(0) ==
2(4) ==

where S, () is the shear in the panel in the first
bay bounded by the y th and y—1th stringers
and similarly 8,(y) is the shear in the correspond-
ing pane! in the middle bay.

Q,(6)= 0, Q.(6) =0, °

Q,(5) == — 0.00003 T,
Q,(4) = — 0.02387 T,
Q,(3) =-—0.03480 T,
Q,(2) = —0.09891 T,
Q,(1) =—-013737 T,

Q,(5) == 0.00003 T,
Q.(4) = 0.02387 T,
0,(3) = 0.03480 T,
0, (2) ==0.09891 7, .
0Q,(1) =0.13737 T,

- 0,(0)==—015019 T, Q,(0) =0.15019 T,

where @,(y) and @,(y) ave the axial loads in ribs
0 and 1 respectively at the intersection of the » th
stringer.

Substituting the above values into equations
(6.2) and (6.3a) it can be readily verified that
the numerieal value of the relative stiffness para-
meter is n==~0516.

Case (b): Bending.

For convenience, the total applied moment will
be taken as M/b == 182 units and for the partieular
distributions of X () shown in fig. 3 it can be
verified that



P,(6) =6, P,(6)=6.3488 + 54,

P,(5)y=5 . P,(5)=52907T—6a +4a,,

P.(4) =4, P,(4)=-42826 —Ha, + Ja,,
P,(3) =3, P (3 =31T44 —4 @y,
PO(Q):Z P1(2)=: Or -

Po(l) =1, Pl(l) = 07

P, (0y =10 P.(0)= 0.

The shear S,(y) is given by equation (4.3)

al,(6) = 0.34884 + S, ,

e8,(5) = 063952 — o + da,,
e8,(4) = 087208 — a,— e, +3a,,
081(3)$ 1.0465 — @) — oy — Wy,
©S,(2) =--0.9534% — &, — a— a,,
ILSI(I}:‘—_-——I.9535 — e by @y,

and the axial load Q,(y) in rib 0 is given by
equation (4.4), so that

7 Qu(6) =0,

% 04(5) —— 034884 — 5 ay,

7 @o(4) =— 098836 — 40, — 4 ay,

5 Qu(8) =--186 — 3o, —Ba,—3a,
%90(2)_—:—~2.9069 —2a;- 20, —2ay,
%Qa(l_):-—l.9535 — o— g— a,
20,0 =0.

.. For the chosen values of the non-dimensional
parameters, equations (5.4) resolve into

Sbigpp + 2bic + 0.018526;,R: 0,
where
I)WTIR = 6le,—240,,

s =-—28a, F4la,—15 ¢, .

i5rR T —15a, + 25y,
bys= 2.0930 + 30 e, ,
623z 3.5465 + 20e,,
b, = 44767 + 12 ¢,,

b p=11219 + 300e, + 180 e, + 84 a,,

b, ==100.28 + 180 ¢, + 160 e, + 84 «,,
byp= T5.616 + 84a, + 8la, +.T2a,,
whenee the three simultaneous equations for the

determination of e, «, and a, are

37056 oy — 116.67 a, + 1.5556 a, — — 6.2636,
— 11667 o, + 277.96 o, — 73,444 o, — — 8.9500,
1.5556 «, — 734444 &, + 150.33 o, = -— 10.354,

these equations yielding the following values of
the coefficients

o, = —0.044991,
a, =— 0090716,
Ty —— 0.11270.

These values of the eoefficients give the follow-
ing distributions of load throughout one quadrant

of the plate

P,(6) = 0.032067 M/b,
P,(5) = 0.027473 M/®,
Po(4) == 0.021978 M/b,
P,(3) = 0.016484 M /b,
P,(2) = 0.010989 M/b,
P, (1) = 0.005495 M/,
Py(0)= 0,

P,(6) = 0.033648 M /b,
P, (5) = 0.028559 M/b,
P, (4) == 0.023890 M/b,
P,(3) = 0.019436 M/,

P1(2) = 0,
P(l)= 0,
£ (0)= 0,

where P,(y) and P,{(y) are the axial loads in the
yth stringer at the intersection of ribg 0 and 1

respectively.

8,(6) = 0.000681 M/ab,
8,(5) = 0001767 M/ab,
S,(4) = 0.003680 M/ab,
8,3} = 0.007115 M/ab,
8,(2) = — 0.003874 M/ab,
8,(1) = — 0.009368 M/ab,

S,{8) =10,
8.(5) =0,
Sy(4) =0,

where 8,(y) ig the shear in the panel in the first
bay hounded by the yth and y—1th stringer, and
similarly 8,(y} is the shear in the corresponding

panel in the middle hay.

@ (6) = 0,

0.(5) = — 0000227 M/b,
0,(4) = — 0000816 M/b,
Q,(3) = —0.002042 M/,

Q.(6)= 0,

0, (5) = 0.000227 M/b,
0, (4) = 0.000816 M/b
0,(3) = 0.002042 M/b,

Q,(2) = — 0.004414 M/b,  Q,(2) = 0.004414 M /b,
Q,(1) == —0.003123 M/b, Q,(1) = 0.003123 M/b,
@,{0) = 0, (0= 0

where Q,{y) and @,(y) are the axial loads in
rihs 0 and 1 respeectively, at the intemection of
the yth stringer,

The relative stiffness parameter for thlS case
has no major practical signifieance (5 = 1.0).

Case (¢): Shear.

The applied shear will be taken as o8 =1 unit;
and for the distributions of X(y) shown in fig. 3
it ecan be verified that

Py(6) =0, P1(6):_0-55+Q1 .
P,(B) =0, P =—-01 —2a, + e,
P, (4) =0, PMHY=+03+ o —2a,,
P(3) =0, P (3)=+08 +oomy,
PU(Z) =0, P1(2) = a, .
Pn(l) =1, Pl(l) =, 0;

2, (0)=0, Pl(o)z 0.

From equation (4.3), the shear §.(y) in the
yth panel of the first bay is

S ) =aS + § (P —Po(i) )

=y
and hence

a8,(6) = 045 + o,
a8, (5) == 0.35 —a, + a,,

a8,(4) =010  —a,,
a8,(3) =15,
a8,(2) =15,

al, (I)~15




From equatlon (4.4), the axial load in rib 0
at the. Jth strlnger is given by i

Lo =3 (S-S0},
so that

2 9.(6) =0, '

% Qo(5) = (.55 — &, ,

%Qn(;):].z —

3 @s(3) =15

%Qn(z) =10

%Qﬂ(l) =05

7 0u(0) =

Tor the chosen values of the non-dimensional
parameters, equations (5.4) resolve into:

| Beigg, + iy 0.09260 6, =0,
where =
Crorp == ba,—4da,; ¢ = 010+ 20, — a,,
czs:m:——-ial'lrﬁ_az, g ==—035— o+ 2a,,
¢ p==—34 +'dea, + a,,
Cyp==—6.85 + d oy ay

whenee the two simultaneous equations for the
determination of «, and a, are

30.370 o, — 17.907 ay —
—17.907 o, + 30.370 @, =

— 028519,
27343 ;

these cquations yielding the followmcr values of
the coefficients

a, == 0.06702,
oy = 0.12955.

These values of the coefficients give the follow-
ing distributions of load throughout one quadrant
of the plate

P,(6) =0, P,(6) =——- 0.48298 a8,
P,(5) =0, P,(5) = 0.10449 a8,
Py(4) =0, P{4) = 015792 aS,
Py(8) =0, P(3) = 092955 S,
Py(2) =1, P, (2)= 0,

Po(l) :07 P1(1) = 0,

Py (0) =0, P (0)= O,

where P,(y) and P,(y) are the axial loads in
the yth stringer at the intersection of ribs 0 and 1
respectively.

8,(6) = 0.51702 8,

- §.(5) = 0.41253 8,
S, {4) = 0.57045 ,
8,(3y =158,
8,(2) =158,
S,(1) =158,

S,(6) = 1.96595 8,
S,(5) ==2.17494 8,
S,(4) =1.85910 8,

where §,(y) is the shear in the panel in the first
bay hounded by the yth and y—1th stringers, and

8.(1) iz the shear in the correcspondmﬂ panel of
the middle bay.

0,(6) =0, 0.(6)= 0,

Q,(5) == 0.16100 aS, 0.(5) — — 0.48298 a8,
Q,(4) == 0.35682 a8, Q[ (4) = — 1.07045 &,
Q,(3) = 0.50000 S, Q.(3) =—15aS,
0,(2) = 0.33333 ¢S, 0,(2) = _ 1048,

Q, (1) = 0.16667 aS, Q,(1) =—0.5 08,
0,(0) =0, Q,(0) = Q,

where Q,(y) and @, (y) are the axial loads in
ribs 0 and 1 re%peotnely at the interseetion of
the Uth stringer,

It is to he noted that for ease (c)

S, (y) =38 —28.(y)-

0, (1) —=—3 Qo).

Substituting the ahove values into equations
(6.2) and (6.3¢} it can be readily verified that
the numerical value of the relative stiffness: para-
meter is n==0.546.

Several important coneclusions follow from these
results and are summarized helow for the- three
separate cases.

Case (a).

(I) The maximum tension occurs in strin-
ger 3 bordering the ent-out and is
2.5 times the external tension applied
to one stringer.

(IU)  The maximum shear in the panels ean
be determined by inspection. and a re-
dundaney ealeulation is not required.

This maximum value of the shear oc-
eurs in the end bays bhetween stringers
m and m -1 and its value is given by

2m-—1 T
2a T2an 417

and

Tension,

S(m)‘ =

(II1) The maximum axial load in the ribs
occurs at stringer 0 and is twice the
external load applied to one stringer.

(TV) The relative stiffness parameter ig

5 = 0.516.

Clase (h). Bending.
The perturbations due to the presence
of the cut-out are very small.

Case (c¢). Shear.

(1) The maximum value of the shear oe-
curs in the middle hay hetween strin-
gers 5 and 4 and iz 2.2 times the ap-
plied shear. The distribution of shear
in these panels does not appear to vary
mueh from the general rnle -

8,(m) = 8.

?n—"n

(IT} Again, the maximum axial load occurs
in the stringer 3 bordering the cut-out
and is 0.93 oS.




(III) The maximum axial load occurs in
the centre ribs at stringer m and is

3b

=7 m.eS. This value holds for

2a

any given number of stringers and
does mot require a redundaney eal-

culation.

(IV) The relative mzlffness parameter is

7 = 0.548.

8 Nomenclature.

_ e
Gi gy Bigr Gig

4

Ar

b

bi, b

bs srrr Yigy Vig

Cigrmr Cign Cig

Py(y), P.(y) ete.

distance between ribs,
coefficients appertaining to
ease (a) and defined in the
text.

cross-sectional area of a
stringer plus effective arca
of sheet.

cross-seetional area of a rib
plus effective area of sheet.
distance hetween stringers.
coefficients appertaining to
case (b) and defined in the
text. ’
eoefficients appertaining to
case (¢} and defined in the
text.

Young’s modulus.

there are 2n + 1 stringers
and 2m-—1 discontinuous
stringers,

total applied moment.
axial stress in a stringer.
axial loads in the yth strin-
ger at rib 0, rib 1 ete.

P, (y,x), P,{(y,%), P,(¥ ) axial load distributions

q
Qo(y), Q:(y) ete.
Qﬂ(y:z):,Q1-(y;2) ete,

s
8

S;(y): S-z(y)» Ss(y)

along the yth stringer in the

- firsf, seeond and third bays

respectively.

axial siress in a rib.

axial loads in b 0, 1ib 1
cte. at the yth stringer.
axial load distributions in
rih 0, rib 1 ete. between the
yth and y — Ith stringers.
shear stress in a panel.
applied shear per unit run.
shears in the panel between
the yth and y — 1th strin-
gers of the first, second and
third bavs respectively,

Us
Ur

y, &

X Y
X, (y)
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total applied tension.
thickness of sheet.

total strain energy stored in
the plate.

total strain energy stored in
the stringers.

total strain energy stored in
the sheet.

total strain energy stored in
the ribs.

rectangular systems of axes
for each panel as shown in
fig. 1.

rectangular axes with origin
at the centroid of the plate.

a statically correct distribu- -

tion of axial load in the
stringers at rib 1 and satis-
tying the bhoundary eondi-
tions.

a statically zero distribution
of axial load in the stringers
at rib 1 and contributing
nothing to the boundary
conditions.

eurrent stringer number,
coefficient which is deter-
mined by a strain energy
analysis, ] L0
relative stiffness parameter,
shear modulus.
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the rings, which pay a major contribution in the
distribiition of the perturbation stresses arising
from the cut-out. Cicala iunvestigated the in-
finite eylinder under the action of asymmetrical
loading conditions which .are typified by cases
(3a), (1b) and (3b) of the present paper. This
analysis does not take into account the exact
effect of changing the sectional properties of the
rings bordering the eut-out. In faet, it is easily
demonstrated that for equal stresses the rings
bordering the cut-out should be three times as
heavy as the outer rings for the asymmetrical
loading of a three-bay eylinder {ci, table 4.1).

The analysis presented here is fundamentally
the same as used by the first aunthor in the
solution of the flat monocoque plate containing a
rectangular cut-out (ref. 6). It essentially con-
sists of a strain-energy analysis where the defor-
mations of all the component parts are considered,
using the prineiples and assumptions of the con-

S 48

be relied upon without eareful investigation,

In Appendix B of this paper there is a short
note concerning the stress perturbations in a three-
bay eireular eylinder undergoing torsion and with
an infinitely thin slit in the centre bay, it being
assumed that the stringers are uniformly distri-
buted over the periphery of the cylinder. It is
shown, that no singularity exists in the stress

distribution at the -edges of the eut-out.

2 The reinforced circular cylinder,

The fuselage considered in the analysis is a.

¢ monocogue eylinder of ecirenlar cross-scetion as

ventional (or simplified) shell theory of ref. 1.

It has not been found necessary' to introduce any
new prineiples or dassumptions. Conventional shell
theory dssumes that the shear is constant in a

panel which infers that the stringer axial load

varies linearly along each bay, and in addition it
is asspmed that the rings have vanishing rigidity
for bending out of their planes, Rand (ref. 7)
has made an extensive investigation 'into the
validity of these assumptions,

The problem, resolves. into the determination of
the ecoefficients for the discrete Fourier series
which gives the:most general distribution of axial

ioad in the stringers at the intersection of ring 1.

These. coefficients are found from.a rectangular
system of linear simultanecus equations which are
merely statements -of certain boundary conditions
(the; rectangular system containing more un-
knowns than requations), this system- being trans-
-formed into a.square system of simultaneous linear
cquations from which the Fourier coefficients are
-gventnally determined, There are an infinity of
such transformations, buf there is only one that
will make the, total strain. energy stored in the
structure a minimum, The 'square gystem of
simultaneous equations is equal in number to half
the. number of panels. that have been removed to
form ﬂlg -eut-out, so that -when .only two panels
have been -removed the. Fourier coefficients are
explicitly . defined. , When' these: Fourler. coeffi-
cicnts have been determined, the stress pertur-
bations and, the relative stiffness parameters are
easﬂy evaluamd h} usmg the approprlate ex-
pressions, .

Sometimes’ it. nnght be convenlent to repldce
- the; actual - eylinder . having 'a . reasonably large
number of diserete stiffeners. by a: eylinder” with
continuounsly d}qtrrbuted stiffeners when: ealculat—
ing the stress distribution. -

Howexer, when in the case “of contlnuously
distributed stiffeners any singularity in the stress
distribution: should occur-at the edges.of the cut-
out, - such a mmphfleatmn ‘would yield unreliable
reqults . .

In. that- casa .even; replaclng a great number of
discrete- stltfeners by a smaller number could not

shown in fig. .1, where free warping of the end
sections is permitted. The method developed in
this paper permits however, the determination
of the stresses in cylinders hamn.g different end
conditions,

The eylinder is made of thin sheet metal and
is reinforced by {four transverse rings, each one
having a' constant. cross-section — the two outer
rings having the:same eross-section. and the two
inner rings being identical. - The distance between
the rings is, for simplicity, assumed to-be the same,
but this i3 not a necessary assumption. The eylin-
der is reinforeed longitudinally by a system of
2n stringers which are equally spaced and have
the same and constant crosssectional area. The
cut-out is assumed to extend from thé mth to the
2 n—mth stringer, there bheing no local edge. re-
inforeing. The cylinder is assumed to possess
geometrical and elastic symmetry about the X—-Y
and Y—Z planes.

In the nomenclature it will he observed for in-
stance that 7 is the “effective” moment of inertia
of the outer rings, and this is meant to include
that portion 'of the sheet covering which may be
considered as working in eonjunction with the ring.

In addition to the foregoing assumptions, the
stringers are considered as offering negligibly
smail resistance to bending, and the rings are
assumed {to have finite rigidity in bending in
their plane, but vanishing rigidity in bending out
of their plane as well as in torsion. Finally,
Hooke's law is assumed to remain valid during
all the deformations that are EYpEI‘lchCd by the
srrnofure

3 The redundancles

The cyhnder shown n flg 1 has in general
4 {m-—1) redundancies or statical indeterminacies
and when thiese are known the stress distribution
in the .whole 'strueture is completely specified.
When the external ‘loads -are’ symmetrieally or
asymmetrically disposed (ref. fig. 2), there is an
immediate fourfold reduction in'the number of
redundancies because .0f the geometrical and elastic
syminetry ahout the X—Y and Y—Z -planes. It is
proposed to deal only with the six regular dis-
tributions of external loading -shown in fig. 2
sincé these have the greatest interest. By regular
distributions, it is meant that the loads are ap-
plied according to the elementary theories, i.e.
equal axial load in all the stringers, the engineers




AING O RING | RING 2 RING 3

Fig. 1. The monocogue cireular cylinder.
A

theory of bending and the Bredt-Batho theory of
torsion. The methods developed in this paper are,
however, not restricted to these distributions of
the external loads.

It follows that the stress distributions for the
various eases possess the symmetrieal propertics
about the X--Y and Y—Z% planes as shown in

table 3.1, So for case (3a) for example, the
axial stresses in the stringers and the bending and
cireumfcrential’ siresses in the rings arve symme-
trical about the X—Y plane and asymmetrical about
the Y—Z plane; while the shearing stresses in the
panels and rings are asymmetrically disposed about
the X—Y plane — the former being symmetrical
and the latter asymmetrical with respect to the
Y—Z plane.

Therefore, it is evident that attention may now
be confined to the quarter portion of the eylinder
formed by the interseetion of the X—Y and Y—Z
planes, thereby reducing the redundancies to
i — 1, ‘

As mentioned in a previous paper coneerning a
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Fig, 2. Showing the varicus londing cases,

similar problem in flat plates (rvef. &), there is
complete freedom. in the choiee of the statically
indeterminate quantities provided that they are
lincarly independerit of one another. It is again
convenient to choose the redundanecies as axial
load disteibutions in the stringers at ring 1, where
these axial loads are zero in the stringers s -+ 1
to #, since it is assumed that the rings are unable
to restst hending out of their planes. For the
regular circular eylinder having equal panels and
stringers, it is possible to achieve the solution with
some considerable eleganee as compared with the
procedure adopted for the flat plate. The reason
for this is that beeause of the eyelic symmetry of
the eylinder, a great number of symmetrical planes
are at our disposal where the orthogonality of
trigonometrie terms ean be used to some advantage,
For the tlat plate, there is only one eentral axis
of symmetry present and the trigonometrie terms
can only he.uséd to advantage when the external
axial loads are symmetrical about this plane and




then it is necessary to assume that the ribs are
rigid. '

For the eylinder under investigation, appro-
priate axial load distributions in the stringers at
ring 1 are given by

Pk)=@ea, t ¢ (:()S—'k;— -+

n ik
+ % a; eos — Tor cases (a),
i=2 ki

and (3.1)
Py (k) —a, sin =7 4
n
n—1
+ =

i=1

. thr
a;8in —— for cases (b},
n

where o, and «, arve determined from the overall
equilibrium requirements and the «; constitute the
“redundancies” of the problem. It is readily veri-
fied that the o; distiibutions are statically zero.

It will be noticed in equation {3.1), however,
that there are n.— 1 unknowns or “redundaneies”
for cases (a) and n—2 upnknowns for cases (h),

80 the «; are not independent of one another, .

Their dependence is due to the houndary conditions
existing in the cut-out region, viz. zero axial load
in the disecontinuous stringers at the cut-out and
zero shear in the panels removed to form the eut
out. 1t i3 convenient to ignore this dependence
until the final stages of the strain energy analysis,

4 The Joads in the cylinder.

Preparatory to the strain energy analysis, it is
necessary to have a complete specification of the
loads in the strueture in terms of the g coeffi-
cients, The speecification of these loads will be
formulated in gencral terms and the explicit
expressions are summarized in table 4.1, where the
various summations have been completed.

In conventional shell theory, it is assumed that
the stringer axial load varies linearly along each
" bay. Hence, thé axial load at a current point x
in the kth stringer is given by

Py(k, z) = Po(k) + - { P,(R) —Po(k) },
Py(k,2) = Py (k) + - { Py(k) — Py (k) ), o (4)

Py(k, o) =P,y (k) + 2 { P,(k) — Py(k) },

the expressions remaining valid only for the first,
sceond and third bays respectively,

This linear variation of axial load in the siringers
infers that the shear is constant in each pansl,
so that from elementary considerations of equili-
brium it is found that the shear in the kth panel
(i.e. bounded by the & + 1th and kth stringers)
of the first, second and third bays is respectively

k
S;(k) =— 32 {P () —P(i) } +

1
a4 j=q
+ some constant,
1 k
8, (k) =— % {P,(j) —P,{] + '
() =2 % (Pl —Pa()) (4.2)
. + some constant,
1 & . .
Se(k)y=—- 3 {P,()) —P,(j) } +

(Lj=0

-+ some congtant,

where the constant is determined from overall
cquitlibrium requirements,

It remains now to determine the forees in the
rings. The rings are loaded hy the difference in
the shear flows of the two adjacent bays, viz
rings 0, I, 2 and 3 are loaded by the following
shears respeetively

8y(k) =8,(k) —8(k),
S"l (k) =8.(k) — 8,(k},
8%, (k) = 8, (k) — S, (k),
8 (k) = 8 (k) — S,(k),

(43)

where S{k) is the external shear distribution.

The foreces in the rings are determined from the
cquations of equilibrium of a sector of the ring.
The equations of equilibrivm of the kth sector of
a ring (tig. 3) ave

Teksty

(4.1}

Fig. 3. Showing the forees scting on the neutral axis
of the kth sector of a ring.

{TG+ 1) -~ T(k) } cos -Q%ﬁ+

QG+ 1) + Q) }sin_;;—

— 2 RS'(k) sin zlﬂ‘-:o,
{T(& + 1) + T(k) }sin ‘2’%“ (4.4)

—(QUE+ 1) —Q(k) } cos 57— =0,
(R—e) {T(k+1) —T(k) } +
A M+ 1) — M E) ) —

— & () sy =0.

The following are two typical solmtions of the
equations (44) and may be verified by . sub-
gtitution.



1(2k+1)=
: 2
(i) When 8 (k) = ———fq-fb—— ’
in i
5 2n
then  Q(k) = Rgs sin -2~ |
T(k)y = Ri; cos St N
n
M (k) = — K*m; cos 1—;:;— .
1{2k+1)w
(0] T
{ii) When S8'(k)= . )
T
5 2n
then  Q(k) = Ra; cos T ,
¥
T(k) =-— Rt;sin f—#—;
_ n
M (kY = Remg sin 27
. n
; s
ot s S ey
where ¢; == -— ’
. oo . N ki .
sin—— (1+])Sln24??(1,—1)
. ™
sin —
",

?

i T
0§ —— — 08 —
n n

It is assumed for the sake of simplieity, that
the ring forees vary lincarly over each seetor of
the ring. The exact expressions can be very easily
written down, but when determining the strain
energy of a ring sector it will be diseovercd that
the work beeomes most tedious. The influence of
the shearing deformations in the rings will be
neglected in the strain energy analysis, so it is
not necessary to eonsider their cireumferential
variation.

The bending moments at a current point ¢ in
rings 0, 1, 2 and 3 are given respectively by

E—e ™ i
S I z YT
R )t1+%( 7 ) aosee In

2

M, (%, 8)— M, (k) + %; (M, (et 1)— M, (5)), |

Mk, )=, (k) + 22 3, (b 1)~ 8L, (K ),
. ki3
nd (4.5)
My (k, 0)= M, (k) + ™0 { My (bt 1)— M,(R)),
T
Mk, = Mk + 0 g, (1) — ML),
w
and the eorresponding axial loads in the rings

are given respectively by
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né

Tolk, O)=T,(ky+ —— { T, (k+1)— T (k)},

Tk, )= T, (k) + 0 (T, (h+1)— T, (k)},

ng > (46)

Tk, 0)="To(k)+ —{ T, (k- 1)— T, (1)},

To(k, 6)="T,(k)+ o { P (bt 1)—T.(k)}.

Tahle (4.1) gives the explicit expressions for
P(E), S(E), @(k), T(k) and M(k) for the various
cases under consideration.

5 The strain energy analysis,

The coefficients e; are determined from the
reetangular set of #-— m linear simultancous equat-
jons, cach containing n—1 unknowns

P (k)=0, k==m+1, m+2, ... ,

for cases (1a), (2a), (3a) and (2h),

These equations are statements of the boundary
conditions existing in the eut-out region, viz. the
axial load is zero in the discontinuous stringers
at the eut-out and the shear is zero in the panels
which have heen removed to form the eut-ont. It
is appropriate to explain in some detail the par-
ticular choices of the equations (5.1).

For cages (la), {2a) and (2b) where the shear
8,(k) is always zero in the middle bay it is ob-
viously necessary to choose the first of equations
(5.15. Wor case (3a), the first equation is 'still
sufficient, for sinee S,{(%) is an odd function it
automatically infers that the second equation is
satisfied, For eases (1b) and (3b), and also for
case (3a) if so desired, the second equation of
{5.1) is sufficient to ensure that all the boundary
conditions in the eut-out region are satisficd.

The rectangular system of n—m linear simul-
taneous equations (5.1) is insuffieient for the
determination of the w—1 unknown coefficients
a; for the cases (a)}, or the n—2 coefficients a;
for the eases (b), i.e. there are more unknowns
than equations, It is convenient to make some

or )
S, (By=0 k=m, m+1, ... n.—1,
for cases (1b) and (3b).

(5.1)

‘transformation, e, g,

a;:“mH‘M:nM‘F am+2,ihm+2+
+ i+ @pih o, for cases (a),

"

or )

i 2}
o — am,ihm + a'm+1,i‘\m+1 -+
T @ aih w4, for cases (b},

so that the rectangular system is transformed into
a square system of linear simultaneous equations.
The coefficients A are now the unknown quantities
and the e’s are as yet arbitrary constants, It is
now possible to solve the transformed equations
for the A’s and then substituting these values into
the expressions (5.2) the values of the a; coeffi-
cients may be found. '
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There are, of eourse, an infinite number of such Now, the variations of the strain energy given

transformations (5.2), but there iz only one that ~in (6.5) are not independent of one another for

will make the strain energy stored in the struc- various values of the integer 4. Throughout the

ture a minimum. It is proposed -to determine this variation of the strain energy, the appropriate

particular transformation for cases (1a) and (1b) restrictions given in equation (5.1) must be con-

only, since the transformations for the other cases formed with, So,. using the method of indeter-

follow easily by analogy. minate multipliers the independent variations of
Procceding thus, it is necessary to examine the the strain energy ale expressed by

variation of the total strain energy -stored in the L
strueture with rnspect to the typiecal ecoefficient

a;, viz. L SU Z M. ala’(k) for case (1a),
5L — aUs'I'R + aUS + aURM + aURT , (53) i K=t @i
Oars Jei Oa; Oats Da;

. . and : (5.6)
where the strain energy is ¢omposed of the S.E. : , .
of the stringers, the S.E. of the sheet covering

and the S.E. of the rings for behding and circum- as (k)
ferential deformations of the rmgs The strain Ba‘ E A da; for case (1b),
energy of the rings due to shear in their planes fr=m
is of second order and will therefore he negleeted. »
Thus, equation (5.3) becomes . or in more exp-_licit terms,
VA ’”*1 | aR r '
= P2k, )+ P2k, + 22 T (28,2(k)+82(k) ) +
oz [zmqf” 2+ Pl ) ) do (2850820 )
o . . . ]
" 0 ‘9# 2(k 2k - 2
[(RME 0 2MAE0) 2Rk 0) -, 2Tk 6) )] (5.4)
2K o I I ! A}z AR
Referring to table 4.1 and ma.king the appro- : 1 id ik
priate substitutlons and completing the various “= 7= - A eo8s — for case (la},
summations, it s readily verified that k=m +1 i
-eU 5 . na, . N and’ _
—_— =, —— . A;e; forcase {l1a . )
b 3 E4, A Teremsedla), T -  i(Bk+1)m GD
and ‘ - A1 008 ————
s S (5.5) a;— -}- E Ak —i— for casc (1b),
o _ Bio; for {1b B = sin 2~
b Ty case (1b), = o
whire ' ‘ o f.. since the indeterminate multiplicrs A are indepen-
F. N R , dent of an arbitrary econstant multiplier.
Ai=1+73/, ( ) (__“) (_) (_”_) cosee® 7 4 The transformation (5.2) has therefore been
M at a n Zn found which enables the eocfficients &; to be de-
RS/ AgR*m?, ' termined so that the strain energy stored in the
+ 2 (#) (—“f—* ' structure is a minimum.
—, L Equations {5.1) and the approprlate transform-
+ AR i) (1) (2 + eos T ) " _ ations are summarized for the various cases In
T n - T table 5.1. Explicit expressions are also given for
B S/ Ay 'Ag T i 1. the coefficients e«;.when, # —m-=1, and when
+ 1/, (m) (_f + ;i)(_”_) tz, (2 + cos L’L)J n—m=2 for case (2b).
) i a B R o o . n . f .
and . , 6 The relative stiffness parameters. !
R S
R i ‘ i i ; i ine
_ 2 Agy (Lo yf 2 The relative stiffness parameter is defined as
Bi=1+%/, ( ) ( at) ( a ) ( n ) eosee 2n + the ratio of the stiffness of the continuous eylinder
R 3 A R2m2, " with that of the cylinder, containing a cut-out.
S (—) (—}— + Therefore it is expressed by the ratios of the strain
oA R —, a energies, viz,
Ji2 s y . . .
+ _hin_L.L.) (_T_) (2 —I— COS i) + ‘ U . . '
I f #n p= 0 (6.1)

Ag Ag) ( . o ) .o
1 + — — 2+ cos — ). . o . . .
/a( ) (AR Ag n-.T) 1( n where U, is the strain energy 'of the reinforeed




¢ylinder formed by continuing the stringers and
-sheet covering across-the cut-out region.

Now, sineec the «; distributions are orthogonal
statically zero groups of forces the strain energy
of the eylinder with eut-out may be expressed by

n.orn—1 aU
U—1U,+ 4 Z O (6.2)
j=2

so that the expression for the relative stiffness
parameter becomes

1
e .3
TSI ©3)
where
— 2T, U —
and
mgﬁ — —;%;L— ad; for cases (1a), {2a) and (2h},
a; Tdg ,
or
2—U== %— a;B; for cascs (3a),-(1b) and (3h).
o 8

The derivation of K requires no further explan-
ation and the relative stiffness parameters are
given cxplicitly in table 6.1 for the various cases.

7 Numerical examples.

_The load distribution in a particular three-bay
eylinder and the stiffness reduction faetor have
been caleulated for the six loading cases of fig. 2
when n= 6 and when the values of the non-dimen-
slonal parameters are

(?) (f:) =15; (%)zl.ﬁ;
(A‘}R ) = 3000; (i:)_lo

All rings are assumed ldentlcal and w1th ZOTo
eeecntriecity.

In addition, caleulations have been ecarried out
for case (1b), i.e! torsion, assuming » =12, where
thc ‘values of the non-dlmenblonal parameters are
elther the same as for n==6, or

-

'(E)(As E

IMRAYT: s
( A2

I
I

the total stiffener area bheing the same as for

n==6 in the latter case,

Case (Ia), m—25,

For convenicnce the total applied normal load
has been taken as P==2n==12 units. In table 7.1
results for A4; and e, caleulated after table 5.1,
as well as results for P, ' Py, §,, T, and M, as
determined after table 4.1 are presented. The

5-

)=075; |

) = 1500
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stiffness reduetion factor n which was caleulated
after table 6.1, is given in table 7.11,
Case {Da}, m = 5.

Tor convenience, the- total ‘applied hending

.moment has hcen taken as My=—nR =46 K units..

Numerical results are presented in tables 7.2 and
T.11.

Case (3n), m'="5,

For convenience, the total applied shear load
' 2R

has heen taken as S, # =18 units, Nume-

rical results-are presented in tables 7.3 and 7.11.

Case (1b), m=25.

For convenience, the total applied torque has

2= I*

heen taken a8 T= =3 = ¥ units. Numerical

restlts are given in tables 7.4 and 7.11.

Case {3b), mi=4,
_ For convenienee, the total applied bending
moment has been taken as M,=nR =6 R units,
Numerieal results are given in tables 7.5 and 7.11.
Case (3b), m=25,

For convenicfnc'c, the total applied shear load has

o 2R , .
heen taken as S.— —gnc 18 units. Numerical

results are présented in tables 7.6 and 7.11.
Case (1b); m—4.
For convenience, the total applied torque has

T’IZ
27R Substi-

t’1’.
tution of the expression (57) for «;, where B; is
given in table,7.7, in the rectangular system of
linear simultancous equations after table 5.1 yields

= 3« units,

been taken as T'=

0.080411 A, — 0.154538 &, + 1=0,
F—O1’54538A + 0‘329299,\ + 1=0.
~t { N

By subs‘rltutlng the Solutlon As :l»-—]86 658 A, =
— 90654 in (5. 7) the values for a;, given m
table 77, were ohtained. The results for P,, §,,
8., T, and M, are also given in table 77, The
stiffness reduetion factor 4, calenlated aftc:r- table
61, is given in- table 711

Case (1b), n=12, m—sﬂ

For convemcnce the total apphed torque has
2wl

heen taken as T—— =3 'rrR units. Numerieal

results are presentcd'in tables 7.8 and 7.11.

Case (1b), n=12, m=11, ( )(As)—()?‘ﬁ, ele.
fi-

For - convenienee, the total apphed torque has

2xR?

been taken ag T —= __374-!{ units. Numerieal

results are presented in tables 7.9 and 7.11.

Case (1b), n= .i2, m =19, (—‘Z—ﬁ) (%) = 0.75, ete.




For convenience, the total applied torgue has

2
2 wf’ == 3 xR units. Substi-

been taken as T—

tution of the expression (5.7) for ai, where B; is
given in table 7.10, in the reectangular system of
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linear simultaneous equations after table 5.1 yields

3.27716 Ay, — 2.01745 A, + 1==10,
201745 A, + 211021 A, + 1=0.

By substituting the solutlon A,,=—— 1.45064,
Ay =—186076 in (5.7) the values for a;, given
in tahle 7.10, were obtained. The results for §,
and 8§, are also given in table 7.10. The stiffness
reduetion factor », caleulated after fable 6.1, is
given in table T.11.

Qeveral important eonclusions follow from these
results and are summarized below for each case.

Case (1a), normal load.

(I) The maximum normal load occurs in
stringer 5 bordering the cuot-out and is 1.8
times the external normal load applied to one
stringer. .

(I1) The maximum shear in the panels can he
determined by inspeetion and a redundancy cal-
culation is not required. This maximum value of
the shear oceurs in the end bays bebtween stringers
m and m + 1 and Iz given by

n—m—05 P
8, (m) = oy Sl

(ITT) The maximum normal load in the rings
peeurs at stringer 6 and is 0.24 times the external
normal load applied to one stringer.

(IV) The maximum bending moment in the
rings oecurs at stringer 6 and is 0.0098 B times
the external load applied to one stringer.

{(V) 'The. stiffness 13 not seriously reduced,
p= (L8785,

Case (2a), bending across' the cut-out.

(I) The maximum normal load occeurs in
stringer b bordering the cut-out and is 1.6 times
the maximum external normal load, applied to
stringer 6.

(11} The maximum shear in the panels can he
determined by inspection and a redundancy eal-
culation is not required. This maximum value of
the shear stress oceurs in the end hays hetween
stringers m and m + 1 and its value is given by

aM,
nR 3 + eos ——:)
e 41

(mnn The maximum normal load in the rings
oecurs at stringer 6 and is 0.24 times the maximum
external normal load, applied to stringer 6.

(IV) The maximum bending moment in the
rings occurs at stringer 6 and is 0.0016 times the
external bending moment, M,.

(V) The stiffness is not seriously reduced,
n = 0.783.

S(

_stringer 4 at the middle rings and is

Clase (3a), shear load across the cut-out.

(I) The maximum normal load in the stringers
can be determined by inspection and a redundancy
caleulation is not required. This maximum value
of the load occurs at the outer rings in stringers
0 and #. It is the maximum external normal load
applied to one stringer,

3 alS,

Poom = 55 -

(TT) The maximum shear in the panels oceurs
in the middle bay between stringers 2 and 3 and

.13 . .
is — times the maximum external normal load
a

applied to stringer 6.

(ITI) The maximum normal load oceurs in
the middle rings at stringer 6 and is 0.23 iimes
the maximum e\:terndl normal load applied to
stringer 6.

(IV) The maximum bending moment oceurs in
the middle rings at stringer 6 and is 0.0076 R
times the maximum external normal load applied
10 stringer 6,

(V) The stiffness is only slightly redueed

n = 0.967.

Case (1b), torsion,

(I} The maximum normal load occurs in

0.16
k

times the external torque, 7' ]

{II) The maximum shear in the panels occurs
in the middle bay between stringers 4 and 5, i e.
in the pancl adjacent to the cut-out, and is

akl ‘
(IIT) The maximum normal load in the middle

times the external torque, T.

rings oeccurs at stringer 5 and is —OR%E times the
external torque, T.

(IV) The maximum bending moment .in the
middle rings oéeurs at stringer 5 'and ig 0.0075
times the external torque, T.

(V) The stiffness is eonmdembly
n == 0.362.

Case (8b), bemding parallel to the cul-out.

(I} The maximum load occurs in stringer 4,
bordering the eut-out, at the middle rings and
is 1.4 times the maximum external normal load,

reduneed,

- applicd to strmger 3.

(IT) "The maximum shear in the pancls oceurs
in the end bays between siringers 4 and 5 and is

032 ,
— times the maximum external normal load,

applied to stringer 3.

{111} The maximum normal load in the rings
oceurs at stringer 5, and is 0.15 times the maxi-
mmn cxternal normal lead, applied at stringer 3.

(IV) The maximum bt,nding moment in the
rings occurs at stringer 5 and is 00014 times the
external bending moment, M..

(V) The stiffness is not  seriously rcduced
n = (828,




Case (3b), shear loed parallel o the cuf-out.

(I)  'The maximum normal load occurs in
stringer 4 at the middle rings and is 2.2 times
the maximum cxternal normal load, applied to
stringer 3.

{II) The maximum shear in the panels occurs
in the middle bay between stringers 4 and 5,
i.e. in the panel adjacent to the eutout, and is

3.3 .
= times the maximum external normal load,

applied to stringer 3. _

(IIT) The maximuom norma} load in the middle
rings occurs at stringer 5 and is 1.6 times
the maximnm external normal load, applied to
stringer 3.

(IV) The maximum bhending moment in the
middle rings occurs at stringer 5 and is 0.029 B
times the maximum external normal load, applied
te stringer 3.

(V) The stifiness is
7 = 0.192.

considerably

Case (1b}, torsion, m=—=4.

load oecurs in
0.63

R

(I} The maximum normal
stringer 3 at the middle rings, and is

times the extertal torque, T. :

{II} The maximam shear in the panels occurs
in the middle bay between stringers 3 and 4,
i.c. in the panel adjacent to the cut-out, and is
al

(I1I} The maximum normal load in the middle

times the external torque, T.

i times the

rings oceurs at stringer 2 and is

external torque, T.

(IV)} The maximum hending moment in the
middle rings occurs at stringer 2 and is 0.030
times the external torque, T

{(V) The stiffnéss is cxcessively reduced, n=
0.025.

Case (1b), torsion, n=12, m=11.

(I' The maximum shear in the panels occurs
in the middle bay between stringers 10 and 11,
i.e. in the panels adjaecent to the eut-out, and is

2 . ,

R times the external torque, T.

{IT) The stiffness is not seriously redueed,
7 = 0.825.

. E\(4,
Case(1b), torston, n =12, m — 11, (4)( —i-) == 0.75,
@
elc.

(I} The maximum shear in the panels oecurs
in the middle bay between stringers 10 and 11,
i.e. in the panel adjacent to the eut-out, and is
3 -

(I1) The stiffness is not seriously reduced
y == 0.780.

{III) The effect of doubling the stiffener eross
sections on the overall behaviour of the eonstruction
is relatively small,

times the external torque, T.

H

reduced,

. . . o Ag
Case (1b), lorgiom, n=13, m_TIO, (_;L_) (_af)
=10.75, elc.

(I) The maximum shear in the panels ocecurs
in the middle bay between stringers 9 and 10,
i.e. in the panel adjacent to the cut-out, and is

times the external torque, T.

{I1) The stiffness
7 = 0.348.

B4
(IT1) Gomparison with n==6, m =5, (=~ )( <)

A
=15, ete. shows that the stiffness reduetion
ratio is governed mainly by the relative ecireum-
ferential width of the eut-out, i e. the ratio
n—m

is considerably reduced,

- It decreases with in-

very rapidly

nN—"m

creaging

8 Nomenclature.

The following nomenclature is used in this paper,

a is the length of a hay.

y: is the ith strain energy coef-
ficient for cases (1a), (Z2a)
and (2b) and is explicitly
given in the text, ’

Ag is the effective cross-section-

al arca of the rinpgs (other

than those bordering the eut-
out).

Az ig the effeetive ecross-seetion-
al area of the rings border-
ing the cut-out.

Ag is the effeetive cross-section-
" al area of a stringer.
B is the ith strain encrgy cocf-

ficient. for cases (3a), (1b) .
and (3b) and is explicitly
given in the text.
e is the cceentricity of the
nentral axis of the rings
(other than those hordering
. the ent-out) from the centre
line of the sheet covering.
is the eeecentricity of the

®)

neutral axis of the rings
bordering the eut-out.

E is Young’s modulus for
all components.

) is an integer greater than
unity.

I g the effeetive moment of
inertia of the rings (other
than those bordering the
cut-out).

T is the effective moment of
inertia of the rings border-
- ing the eut-out.

k is the current stringer or
panel number.

m there are 2n—2m-—~1 dis-

continuous stringers.



My is the ith factor concerning

‘ the bending moments in the

rings {other than those bor-

. dering”the cut-out) and is

. given cxplicitly in the text,

m; is the ith factor concerning

: the bending moments in the
rings hordering the eut-out
and is given explieitly in
the text.’ :

iy is a stiffness facior and is

, defined in the text.

M k), M (k) cte, arc the bending moments at

- the kth stringer in rings 0,
1 ete.” respectively,

Mk 8), M (% 8) ete. are the bending moments at
a current point § in the
kth sector of rings 0, 1 ete.
respeetively,

M, i the tota)l oxiornally ap-
plied bending moment about
the. X—Z plane (case (2a)).

M, is the total externally ap-
plied bending moment about
the. X—Y plane {case (2h)).

n there are a total of 2 n sirin-
gers.

P,(k), P,(k} ete. arc the axial loads in the
‘ ete, respeetlvelv

l(k x), P(E, :x:) and P,(k, x) are the axial loads

in the kth stringer at a eur-

rent point z of the first,

second and third bays res-

‘ peetively.
P is the total externally ap-
plied tension (case {1a)).
qi : is the dth factor concerning

the shear in the rings.

0, (%), @,{k) ete. are the shearing forees at

. the kth stringer in rings 0,
1 ete. respectively,

¥is is the radius of curvature
"~ of the eentre line of the
sheet covering,

S, (&), S,(k) and 8,(k)} are the shears per nmt
run in the kth panel (i’e.
bounded by the . kth and
k& -+ 1th stringers) in the
first, second and third bays

. ‘ rerectlvelv '
8 (k), 8 (k) ete. are: the differenccs of shear
- flows in the kth panels
which lead rings 0, 1 ete

respectively. |
S(k) is the running externally ap-
plied shear to the kth panel.
8y is the total externally ap-

plied foree parallel to the
. + Y axis (case {3a)).
8. is the total externally ap-
-plied’ foree parallel to the
L Z axis (case (3b)).
t is the thickness of the sheet
. jeovering.

kth stringer at rings 0, 1

t;, . is the ith factor concerning
+ + the eireumferential tension
in the rings.

T,(k), T,(k) ete.  are the eireumferential ten-

gions at the Lth stringer in
rings 0, 1 ete. respectwely

Tk, 8), T,(k, 8) etc. are the eircumferential ten-

siong at a. eurrent pomt &
in the kth sector of rings 0,
1 cte. respectively.

iz the total externally ap-
plied torque (ease (1b)).

is the total strain energy
stored in the structure.

T, is the total strain energy
stored in the structure when
there i3 no cut-out.

Upwr is the total strain cnergy
stored in all the rings for

_ hending deformations,

Upy ~*g the total strain energy
stored in all the rings for
circumferential extensions.

Ug is the total straln energy
stored in the sheet covering,
Usrr is the total strain energy
stored in all the stringers.
@ _is a longitudinal co-ordinate
‘ for cach pancl (fig, 1).
X Y Z is a system of -rectangular
axes defined in fig. 1.
oy, @ are statically determinate
: cocfficients.
@; is the ith statically indeter-
minate coefficient.
7. is the relative stiffness para-
meter. '
4 ts an angular eo-ordinate for
. - each sector (fig. 1).
A " is the kth indeterminate mul-
. upher
i is the shear modulus.

There are a few additional symbols introduced

in the appendiees, ‘but these are defined as they
are introduced.
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Appendix A. Concerning the transformations
for a cylinder with 2p - 1 bays,

The method will be briefly deseribed for the
solution of the regular ecireular eylinder with
2p 4+ 1 bays and containing a reetangular cut-out
in the p -+ 1th bay, i.e. in the centre bhay, as
shown below.

o 1 q Pl P / 2P+

qth
BAY

It is still assumed that there .is complete gco-
metrical and clastic symmetry about the X—Y
and Y—Z planes so that the symmetrical proper-
ties of the stress distributions given in table 3.1
are still" true. In addition, it is assumed that the
bays are equal In every respect ‘with, of course,
the exception of the cut-out bay. These restrictions
" are not essential characteristics of the analysis, but
they simplify the symbolization,

The eylinder is now loaded at rlngs 0 and
2p + 1 and the redundancies are again chosen as
the axial loads in the stringers at the ring horder-
ing the eut-out, i. e. the pth ring, The most general
distributions, observing the symmetrical properties
about the X—Y plane, are given hy

k
Py(k) =a, + a, ,co08 T‘n’ -+

ik (A-1)
+ 3 aie0s S for cases (a),
it n

i=2

8y(k) =

or

1 : '

IR
Py(k) = o, ;8D ——:—-&- ' -
n—1" w (A1)
+ E o; sin for cases (),

where a, and ®,p are again dctermmcd from the
overall equilibrium requirements.

Now, 'since the e; distributions are statically
zero and orthogonal (i.e. the mixed coefficients
in the strain energy expressions arc all zero), the
axial loads in the stringers at-any-other ring g
are given by

. B
Py(k) = o, + &, 4 co8 Z

-+ E Ting i hx A8CE '(l),
and ‘ . (A.2)
Pi(k)y—=a,, sin ﬁnl +

~+ E Ty & sin

(=2

4+

, for cases (b))

where 14, is the dlﬂuslon constant at ring g for the
unit trlgonometrle distribution of axial forees of
order index i applied to the stringers at ring P.
The diffusion constants r have the same value for
the sine and eosine distributions of same order
index. In addition, for the partmuhr structure
under consideration

.
Ti,qz[fi,?n-{-]—-ql g=p,
Ti0=— 7“72]]:_*_] f—t 0,

and (4.3)

Tip=!ti,pi1|=1L

Ebner and Ko6ller (ref. 1) have dealt with
the eomputation of these diffusion consiants =,
although it seems as if some additional’ mbulanon
and/or nomographs are required for the 1mportant
case of the eireular evlinder.

Using the expres&mns (A.2) the qhearc; in the
panels and the ring forees may be determined in
terms of the e eoefflclents, assuming that the
diffusion eonstants r have already been eomputed,
The gencral expressions are for cases (a)

 (2k+1D)n
sin
: 2n .
(31,11_“1.(1—1) _—
. m
s1n _-—6—?-{

e

N ¢ S T
sim ——e

2a

2n
+ 5" 2@ Z (ria—Ts, q—l)"‘t ——”““;;T_’ (A.da)

i=3 JE

2n
R

Q

i=2

. ?Jyﬂ'
+ n!q_;) @i; sin __‘n—"-




n

R
To(k) =-’-2—a— E (Fiq+1— 27ig +

=2
%]»Tl’
b Tigwy) ail; cos et

Mo (k) =5y E('ﬁq+| —27,+
i=2 (A‘4a.)

ik
+ Tig—1) aim; cos = q#p,pt+1,

R H
My(k) =— 5 Z(n,p+, —2

=2

thar
-+ Tl,p—l) atmt cos ‘ﬂ_ y

and for eases (b) they are

Sq(ky =
(2E+1)=
eo§ ——
__1_( _ ),_4__2_"’_*
24 oy q ®rg— ) - _
811 42? e
%(2]»-{*1)
1 = ST
D DTS P
i=2 sin ——
2n
n—1
QQ('L)_—'—_— E (Tt,q+!_‘27$q+
i=2
+fr,,q,,)a,q,cos %—kf—,
" (A. 4h)
Ty(k) —%E( bt —2Tig+
-+-'r,q_.)a1t,sm ﬂ—,
f
n—1
Mr,.(k)_——mz(awuzmﬁ
i=2
+Ti,q-n}mmssin-%i,q:f—’-p,p+1
R n—1
Mp(k)'zz—'_z—aﬁz:g('fi,p-u—z-f-
i=

_ -
—|—T,r,p_1) ;Mg S1n T

For the determination of the o coetficients the
fundamental equations are the same as equations

{6.1). The transformations are of the same charac-

ter except that the expressmns for A; and B; must
be modified 1o

'Ai and Bi :4({3. +

3 () (£) (2) () w5

4 ( R )3 (AsRﬂm”p,h AsREm2 ) (__) X

+

o I T n
; 3 s e
o (2o ) (B (A A,
n @ - Ag Ap
m™ ?f".'r
St - 08— )
x ()24 s T, (A. 5)

where
=2+ 7ipyrTiy) +

Hs
+ 2 3 (Tzi,q.“!'Tiqui,q__.-f- 72i,qpr),
g =1

i
75¢=(Tim+1‘*7ip)2+2 S (Tig—Tig )%
g=1
';!“‘—2 S (Tiq+[—“2'fiq tq—l))
q_
Iz =(Tip1—2 1 7ip1)%
It is to be noted that A4;= B; because 7i,=
Tigp+1-¢q Lor the evaluation of 4:, and ri4=

— Tigp+1 _ ¢ for the evaluation of B;. Using the-

new expressions (A.5) for 4; and B;, the coeffi-
cients «; may be determined in precisely the same
wiy as for the three-bay cylinder whieh is one
particular case of these general formulae.

When evaluating the relative stiffness parameters
for this general case, it is of interest to note that
now

ol/ . 1 it A
da; 127 B4y TUY?
or (A. 6)
1 )
aU = —. _na B .

aa{ ].2 EAS !

Appendix B. Concerning umformly digtributed
stringers,

The ohject of this appendix is to consider the
case of uniformly distributed stringers over the
periphery of the eylinder for eut-out problems.
Hoff and Beskin (refs. 8 and 9) have made
investigations using this assumption for complete
eylinders under the aetion of coneentrated loads
and have obtained satisfactory results,

As mentioned in see. 1, the reliability of thlS
assumption eould he checked by . investigating
whether singularities are found in tHe distribution
of stresses at the edges of the ent-out in a eylinder
having continuously distributed stringers.

It is not proposed to enter into any generality
here, so we shall eonsider only the problem of the
three-bay circular cylinder undergoing torsion
with an infinitely thin slit in the eentre bay at
§:=0. All the rings are assumed to be identical
and with zero eccentrieity.

The axial load per unit run in the sheet at
ring 1 is assumed to be given by:

P (8) = 2 a; sin 24,

i=2
so that
. T B - .
8,(0) = TR T a Z —- cos id,
. R LI o
= _— ; B.1
Q) =— = Emz y s, (B.1)

R? ..
T,(0) = Z (e- bln15,

R# 2 : a; .
4;1[0(9) :? m Sin TG,
ioz?




and the other forces may be obtained from com-
' pdmson with ease {1b) in table ¢.1.

Thus thé rectangnlar system of equations now
becomes

i
W‘HZT—”’

- and the transformatio’ﬁ which makes ‘the strain
energy a minimum is
A

o] = =

B ¢ (B9

Tt is easily verified that

Bi—1+ 6(%) (i:-) (_1;;);5+

4 20(!{3) (R;t') . 7:4(#1_1}2 ,

where the strain energ:es of the shear and cireum-
ferential tensions in the rings have heen neglected,
.and {* is the imaginary thickness of the sheet
coveiing in tension. .

The «; coefficients are therefore defined expli-
citly by

Ta

_Ta_ |
= AT (B. 4)

miﬁ

i=2

where the sum to infinity may easily be found
and will always be finite.
The shear in the sheet in the centre bay is

given by
I N cosw€~|
T :-—2

= l—r——— .5
8.00) = 553 S . (B.5)
i=2 izB.i
which after substituting
¢ d
may be written as
= g
cosw
— p,(l—cosw)
D >
PN S
=% i=2
where
d
CF Em 1)
Pi= d
it + ci? +

(B.2)
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In aceordance with the examples considered in
sec. 7, it was assumed that

E t* 'R - Reat#
(;) (T)=1.5, (F)_I'E” 2 3000
giving ¢=20.25 and d=303750, which yields

3 pi=047L

i=2
The summation

0201 p; (1 — cos id)

=2
was carried out numerically for a number of
values of
0=g=<m

The remaining summations are independent of ¢
and d, their values following from

Eﬂfw—l

=2

2 2

}w: cos i LG w8 4
Iz :T—"—Q—"FT——COSG,

i=%2
this summation being valid only for 0 <8< o

Numerical results for S,(#) are presented in
table B.1 and fig. B.1. The following econclusions
can be drawn from these results:

1%3—2- S @)
1.4

+2 N 2303550 |

SN

ol [

0.6 L_ﬁLT\__[ |

ol

ol

Oc 50° 120° 1809

Fig. B.1. Relation between 4 and S;. °

(I) No singularity exists in the stress distri-

hution at the edge of the ecut-out, the shear

gtresses decreasing gradually to zero when ap-
proaching this edge.

(II) When 9 inecreases from 0 to = the shear S,
inereases rapidly at first until it reaches a maxi-
mum, after whieh it decreases slowly and ap-
proaches elosely to the shear in the eorresponding
cylinder without cut-out.

(FII) A quantitative comparison belween the
results obtained for eylinders with continuously
distributed stiffeners and for cylinders having




a

discrete stiffeners is not. possible, <the width of

the cut-out in the ecireumferential :direction being
different in both cases. In fig. B.2 the relation
between € and 8, has “been presentedlfor con-
tinuously dlstrlbuted and scveral cases: of discrete
stiffeners.. It is observed .that the inerease of m
from 10 to 11 for n =12 and 'thé increase of m
from 4 to 5 for n=—==06 results in a much closer
approach to the ecurve for continuously distributed
stiffeners in the mneighbotirhood of :the eut-out.
For n=12 and m=11 the curve for discrete
stiffeners shows already a quite'close resemblance
to.the curve for continuously distributed stiffeners,
cspecially for 4 > 30°. -It-can he concluded that
the method of replacing discrete stiffeners hy con-
tinuonsly distributed stiffeners will yield reliable
results provided the number of stringers is not too
small, hecause the general character of the relation
hetween # and §; is the same for hoth cases in
fig. B.2.

aSz(e)
10 :
T aF . CONTINUOUSLY
. ———DISTRIBUTED
ar STIFFENERS
. =& m-5
, 7 ——n=S mad
=1 ol =12 mail
“Ze—n=12 =10

! i S
T 11200 180°
A

Fig. B.2. Comparison between results for cylinders loaded
in torsion and having diserete and continucusly
" distributed stiffeners,

1
N
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TABLYE 3.1,

Properties of the Stresses.

Case Stress X—Y plane Y—% plane
P SYM SYM
8 ASYM ASYM
(1a) ¢ SYM SYM
q ASYM SYM
m . SYM SYM
D SYM SYM
8 ASYM ASYM
(2a) t SYM - SYM
q ASYM SYM
" SYM 8YM
P SYM ASYM
8 - ASYM SYM
{32) ¢ . SYM ASYM
q ASYM ASYM
m SYM ASYM
P ASYM ASYM
s SYM SYM
(1b) t ASYM ASYM
q ‘ SYM ) ASYM
m ASYM ASYM
P A\SYM SYM
s SYM ASYM
(2h) t ASYM SYM
q SYM SYM
n ASYM SYM
P ASYM ASYM
$ SYM SYM
(3b) t ASYM ASYM
q SYM ASYM
m ASYM ‘ ASYM

where p is a stringer axial ‘stress,
¢ s a panel shearing stress,
t is a ring circumferential stress,
g is a shearing stress in a ring,
m is a stress in a ring due to bending.




SB?




S 65

TABLE 6.1.
The relative stiffness parameters.

The relative stiffness parameter n is given by

1
TEIRE
The following table gives the explicit expressions for K for the
various cases.
Case K
0n? <
(1) e D aths
. 571,2( R )2 .
(2'3«) 9 o, 122 ai’d,
4R\ (n\2 N (BN [ As
@ |57 (3_) E.f*zB*/}C”(‘E) L (::) ()]
7 8Ins ——
2n
. 2wn(p (at (R R\2'S!
aw | 45 ) () () (7)) 2 e
50t [ B \2"G'
(2b) a | M) 2, s
4 /R n2"a! & Fv i As
o | () (5) 2 ‘“’B*/is(ﬁ)Jf = — (=) (5]




Numerieal resul‘ts for easc (1a).

Siti6

TABLE 7.1.

. . i
1 A; o k P, P, a8, 7, F A,
— — — 0 1 0.7935 | —0.1033 | + 0.0418 | + 0.00071
— — — 1 -1 11857 400825 F —0.0412 | — 0.00124
2 273.521 | — 0.00182507 2 1 0.8795 | —0.0381 | 4+ 0.0260 | + (.00130
3 8.06964 | + 0.0618609 3 1 < 11040 + 0.0660 | —0.0041 | + €.00112
4 1.99982 | — 0.249621 4 1 0.6683 — 0.2658 .+ 0.0450 | -—0.00166
] 1.49068 | "+ 0.334878° o 1 1.7657 + 0.5 -— {11668 | — 0.00475
6 141891 | — 0.351817 6 ¢ 1 0 0 402404 | + 0.00976
| T ]
TABLE 7.2 %
Numerical results for case (2a). _
. B 1
1 . Ai I g k Po P1 CBSI . To F M—u
— — — 0 +1 + 12065 |:4+'0.1033 | —0.0418 | -+ 0.00071
- — — 1 + 0.8660 | 4 0.6803°| —0.0825 | + 0.0412 | — 0.00124
2 273.521 |+ 0.00182507 2 + 0.5 + 0.6205 | + 0.0381 | —0.0260 | + (.00130
3 8.06964 | —;0.0618609 3 0: — 0.1040 | —0.0660 '| + 0.0041 | -+ 0.00112
4 1.99982 + 0.2449621 4 — 05 — 0.1683 | + 0.2658 | ——0.0450 | — 0.00166
5 1.49068 | - 0.334878 5 —0.8660 | —1.6318 | — 0.5 + 0.1668 | —0.00475
6 1.41891 + 6.351817 6 —1 : 0 0 — 00,2404 + 0.00976
. — _
; TABLE 7.3.
Numerical results for case (3a), <+ 7
. : " 1
1 " By o k P, P, a8, as, T, }T'M“
1 ! » ! A "
— — P 0 + 3 + 1.215 t 0.893| —-1.215| — 0.0456 | -+ 0.00120
— — — 1 + 2,598 | 4 0.669 ] — 2822 —2553 | + 0.0410 | — 0.00111
2 2267.30 | + 0.000621311 2 +15 |+ 0.675| —8.647 —3.902| ——0.0310 | + 0.00061
3 57.5075 | — 0.0244747 3 | 0 — 02441 3891 —3414| + 6.0863 | + 0.00020
4 7.76103 | + 0.181510 4 — 1.5 ~—0.006 | — 2,398 | — 3.401| — 0.0895 | + 0.00086
5 3.82629 | — 0.368164 5 — 2598 —1.701 | —15 0 + 01791 | —0.00497 |
6 3.31279 | + 0.425232 6 -—3 0 0 0 — 02262 | + 0.00764
TABLE 74.
Numerical results for case {1b).
) B @ ¥ P, al, oS, T, ¥ M,
— — — 0 0o - 4106511 4 0.899 7 0 0
— — — 1 —0.158 | + 0.893 | +1.215 | 4 0.0405 + 0.00081
2 2267.30 | -— 0.00950032 2 40039 | + 09311 +1137) —0.0482 | — 000365
3 57.6675 | + 0.216065 3 + 0.655 | -+ 1.586 | -~ 0172 | —0.0950 + 0.00343
4 7.76103 — 0.925135 4 —1.547 | + 0039} +2.922 + 0.3748 4+ 0.01280
5 3.82629 |+ 0.870883 5 +1461| + 15 0 — (4162 | --0.02350
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TABLE 7.5.
Numerical results for case (2b).

1
i 4; oy k- P, P, s, T, = Mo
_ _ — 0 0 0 — 0.0156 0 0
— _ — 1 a5 0.564 -+ 0.0488 — 0.0118 — (.60044
2 273.521 + 0.00236495 2 " 1 0.866 0.805 —0.0124 | - 0.0278 — 0.00176
3 8.06964 — 0.0925607 3 1 ) 0.842 —0.1703 4+ 0.0142 - + 0.00221
4 1.99982 + 0.323460 4 0.866 |. 1.361 + 6.3248 — {.1218 + 0.00439
5 1.49063 — 0.250534 | 5 0.5 0 —0.1753 + 0.1462 — 0.00854
TABLE 7.6,
Numerical results for ease (3b).
' 1
1 B; o; k Po P1 O‘;Sl a82 To F Mo
— - — 0 0 0 + 3.543 | -+ 4110 0 0
— — — Y1 15 +1.089 | + 8.133. + 1.931 | — 0,151 | + 0.0030
2 2267.30 4 0.0354557 - 2 2598 | 4+ 0721 + 1.266 | 4+ 0488 + 0180 | — 0.0137
3 57.6575 — 0.806365 3 3 -—1.444 _ — 3188 + 3376 ) + 0355 + 00128
4 7.76103 + 3.45265 4 2.598 +‘6.640 -+ 0.854 | —9.904 | —1.2399 | 4 0.0478
5 3.82629 | —3.25018 5 15 —4.952 | — 5.598 0 + 1553 | — 0.0878
TABLE 7.7.
Numerical results for case (1b), m=4."
’ 1
i B; @i % P, as, S, T, ' M,
— — . — 0 0 + 0977 | +1.046 | —0038 | —0.0204
— — —_ 1 — 0.937 -+ 0.040 + 2.919 — 0770 | + 0.0027
2 2267.30 — 0.142593 2 4 3.921 + 3.962 —4.923 4 1.647 ; + 0.0932
3 57.5575 + 1.66798 3 _ —5941. }, —1.979 —+ 6.958 —0.833 | —0.0475
4 7.76103 — (.398066 4 + 3479 + 1.5 0 — 0481 { —0.0882
5 3.82629 - 4,27260 5 0 + 1.5 0 0 0
TABLE 7.8.
Numerical results for case (1b), n=12, m=11.
% B, . oaj k 14 Sl as 2
— — —_ 0 0.999 1.002
— — — 1 1.003 0993
2 5174.61 -— 0,00054124G 2 1.000 0.588
3 145.794 + (.0124267 3 0.998 1.004
4 16,9052 — 0.076888 4 0.979 1.042
5 5.46588 + 0.178929 5 0.972 1.055
6 3.3127¢9 — 0.226530 B ] 1.015 0.970
7 2,60479 -+ 0.221069 7 1.160 0.800
8 2.27407 — 0.190526 8 1.103 0.793
" 9 2.09102 * + 0.14865"_1_ 9 0,846‘ . 1.308 ,
10 1.98517 —0.101292 10 0.477 2,045
11 1.92919 + 0.0512125 11 1.5, 0




Numerical results for case (1b), n =12, m =11, (
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TABLE 7.9.

i B, @ | * L a8, as,
| — — — 0 1.000 0.999
| — — — 1 1.005 0.990
!i 2. 2687.80 — 0.00068343 -2 1.005 0.990
! -3 73.397 + 0.015588 3 0.992 1.015
[ 4 8.9526 -—0.091682 4 0.973 1.055
: 5 3.23294 + 0.19103 5 0.976 1.048
: 6 2.15639 —0.21976 6 1.034 0.932
7 1.80240 + 0.20174 7 1.115 0.771
8 1.63704 -—0.16713 8 1.079 0.841
9 1.54551 + 0.12700 9 0.798 1.403
10 149257 .| - —0.085074 10 0.522 1.956
. 11 1.46460 + (.042598 11 1.5 -0
‘ "
TABLE 7.10.
Numerical results for case (1b), =12, m =10, (fj—) ( 4s ) = 0,75, .ete.
: ' " at
i B: @ k. a8, | s, |
— — — 0 1.016 0.967
— p— —_— : 1 1.021 0.957
2 25817.80 —{1.00421503 2 0.996 1.008
3 73.397 + 0.0809695 3 0.925 1.149
4 8.9526 — 0.359999 4 . 0.880 1.241
- B 3.23294 -+ 0.463023 5 1.000 1.600
6- 2.15639 — (.190188 6 1.307 0.386
T 1.80240 -— (.145086 T 1.446 0.107
8 1.63704 + (.366968 8 . 0.803 1.39
9 1.54551 — 0.439912 9 —0.395 3.790
‘10 149257 + (0.377438 10 15 0
11 1.46460 — (.215043 11 15 0
TABLE 7.11. :
Numerieal results for the relative stiffness parameter 4.
EAg As AgR®
Case n n ) . 7 7.
(lay 5 6 15 1.0 3000 0.8782
(2a) 5 6 15 1.0 3000 0.7829 |
(3a) 5 6 15 1.0 3000 0.9669
(1b) 5 6 15 1.0 3000 0.3624
{2b}) 4 ] 15 1.0 3000 0.8282
(3b) 5 6 15 1.0 3000 0.1921
{1 4 6 1.5 1.0 3600 0.0249 |
(1b) 11 12 15 1.0 3000 " 0.8248
{1b) 1 12 0.75 0.5 1500 0.7802
(1b) 10 . 12 0.75 0.5 1500 0.3480
TABLE B.1.
Numerieal results for the relation between # and §,.
. T k3 ks T ki ki3 2 ™ 5 Fiy
O (radian) | 0| ig ’ % | w |5 | 3| = |3 |% | "
2;",3 8 0 | 015 ‘ 062 | 097 | 120 | 093 | 101 | 1,1 | 1ot | 101
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' Fig. 1. Druwing sphere and support,

2.3 Octant gauge.

The octant gauge is a valuahle aid for carrying
onl geometrieal drawings and measurements on the
sphere surface, in particular for finding the pole
of a greateircle. It eonsists of three 90 degrees
ares, combined to a rectangular spherical triangle.
The sides are graduated in half degrees. One
degree 4s about 05 em (= ¥/, ineh), so that
tenths of degrees can be estimated. The construe-
tion is shown' in fig. 1. Its weight is only 06 kg
(=15 lbs) as the main parts have been made
from aluminium alloy. .

V 60

24 Great-circle gauge.

Another aid to facilitate the drawing of great-
civeles on the sphere i a 150 degrees great-cirele
gauge, graduated in half degrees (fig, 2). A short
cross-har, attached perpendicularly to the middle
of the gauge, makes the desired positioning on the
surface possible. The weight and material of this
tool are the same as that of the vetant gauge,

3  Application of the sphere and drawing-aids.

As an illustration of the several ways in which
these tools may be used, one application with re-
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gard to the evalnation of flight test results will
he deseribed here.

Pig. 2, Great-circie gauge.

Sﬁppose that the following six quantities have
been obtained from the aeroplane instrument read-
ings (sce fig. 3): :

Fog, 5. & is the angle of sideslip as measured by the
instrument deseribed in ref. 6, i.c. the angle hetween the
longitudinal axias of an aeroplane and the plane’ through
the airspeedvector and the pole P of the apparent harizon.

§ indieation of side slip indicator,

4 true fore and aft level

v oL from gyro-
¢ angle of roll about lengitudinal horizon,

axis
#. indication of pendulum fore and aft level,
¢, indication of pendulum bank indicator,
v tlight-path angle from altitude.and airgpeed
time histories.

The problem is now to find the angles of ineci-
dence «, of sideslip v and of lateral bank ¢..

It will be obvious that a numerical solution of
this problem, even apart from the derivation of
the necessary formulae, takes rather a-long time
{about ome hour)., The use of this method is
therefore justified only it highly aecurate values
are requived. The drawing sphere, however, pro-
vides the important advantage of a rapid solutien
with reasonable accuracy.

Proceed then as follows to solve the problem
mentioned above. To simplify the deseription, the
angular points and sides of the octant gauge are
called A;, By, C., and a,, h., e respectively.

@ Put the octant gauge in an arbitrary position
on the sphere and draw the great-circles XY,
YZ and ZX. . |

b Mark on ZY the points D and T so that YD
and YK are equal to the given ¢, and .
Mark point B on XZ so that XB iz equal to
8,. Draw the “apparcnt horizon” DB with
the great-cirele gauge.

¢ Put side a; of the octant gange on DB and
mark on the sphere the pole P of DB in the
angular point A,..

4 Put the angular point A, on E. Side a, then
passes through X. Turn the gauge on E until
are XB, is equal to 4. Mark point A in B,.
Mark the true horizon by drawing EA aleng
¢;; mark also its pole } which coincides with
G, .

¢ Measure the desired value of the lateral bank
$: along the great circle through Y perpendi-
cular to FA.

[t is left to the veader to find the method for
determining « and -

The eomplete solution of this problem takes about
ten minutes only. An accuracy of the order of
one or two tenths of a degree can be obtained.
Another advantage over the numerical method is,
that the drawings on the sphere give a very clear
picture of the aeroplane’s attitude.

The example explained above is only one of the
many problems whieh may he solved easily in the
way deseribed. Tt s helieved that a broad field
of applications for the drawing sphere exists.
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The Effect of a Spring Tab Elevator on the Static
Longitudinal St_ability of an Aeroplane

by

Ir. A, J. MARX und Drs. J. BUHRMAN,

CCL Class

Summary,

An investigation is made of the influence of a spring tab provided elevator on the statie longitudinal stability.
Tt appears that in most cases the stick fixed stability is decreased as a result of the action of the gpring in the

econtrol mechanism.

An- expression for the stahility margin stick fixed is given bij formula (3.8).
Tho influence of the spring on stick free stability is negligible.

Contents.
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Genoral description and principle of the epring tab.
Statie longitudinal stability.

31 Stick fixed.

3.2 BStick free.

L2 By

4 (Conclusions.

5 Notations.

N.B. The investigation was carried out by order
of the Netherlands Aireraft Development
Board.

1 Introduction. ?

In considering the “stick fixed longitudinal
stability of an aeroplane it is usually assumed,
that the stick fixed condition of flight implies an
invariable position of the elevator, This is mno
longer true in the case of a spring tab provided
clevator hecause of the aetion of the spring
element, which is installed in the control eireuit
between stick and elevator.

Therefore it is investigated in this report how
stability is affected hy the application of the
spring tab. Effeets of friction in the .control
mechanism are neglected,

.2  General description and principle of the

spring tab.

The spring tab i3 used in order to reduce the
eontrol -foreces of heavy and fast acroplanes. The
operating prineiple is elucidated with fig. 1. The
clevator lever AB is freely hinged at A, whereas
the tab lever CD is rigidly eonnected to the tab.
When the pilot pulls. his contrel the spring S is
deflected, which causes a deflection of the tab
depending on the exerted foree and the stiffness
of .the spring. For a given spring constant the

tab deflection is large when the control force is
hich. So the spring tab may be considered as
a geared tab with a variable-gear, which is high

TO CONTROL
STICK

ELEVATOR
BTABILIZER

Fig. 1.

in case of high control forees. It is obvious, that
inereasing the stiffness of the spring decreases
the effectiveness of the system.

In an ecarlier report') of the National Acro-
nautical Research Institute (N, L.T.)} the authors
considered the influenec of the spring tab on the
eontrol foree as a function of speed.

3 Static longitudinal stability.
3.1 Stick fixed.

The equilibvium of the steady flight condition -
is defined to he statically stable if as a result of
a disturbanee in wing ineidence (or Iift. coeffi-
cient) a pitching moment is generated, which tends
1o decrease the disturbanee or

dem
da

<0 (31)

when tailheavy pitching moments are defined to
be positive,
Two modes of statie stability are distinguished,

Y Report V. 1398.




stick fixed and stick free, The former is related
to the eondition, that the stick is held in an
invariable position.

For a normal clevator this implies a constant
elevator angle; this however, is no longer true
for a spring tab elevator, as the spring allows a
deflection of the eontrol surface with stiek fixed
{see the sketeh in fig, 1).

In the usual notation (§ 3) the pitching moment
of the whole aeroplane in steady flight can be
written

do ) Ou F

Gt == Cpq + (h - ho)cu - Tf [EL (1 —_—
n
+ ot a,f el +oawy | =0 (32)

An inerease Ae¢, in the liftecefficient hrings about
a change in pitching moment:

A= {h — k) Ac, —

-V (JH de )Acﬂ-{—aaﬁ-lr(m/_\.y] {3.3)
@ da

Furthermore the elevator hinge moment can be
written, when the tab hinge moment is neglect-
ed and the elevator is statically halanced (see
notations) :

b,
cH,“a(1~ de Yoot ba b8+ b+

a da
8L

+ by — ‘}_—_—Pvzﬁﬂtﬂ =

(3.4)

The last term of the right-hand side of (3.4)
represents the hinge moment ereated by the spring;
C is the spring coustant, !, the length of the
elevator lever and 8 the deflection of the spring
(positive, when the spring is elongated}.

dn fig. 2 two positions of the elevator control

TO PILOT

surfaces are drawn in the stick fixed case. Note
that the point A remains in the same position
and that AB and Ay have the same sign.
From this figure it appears that
i
Ay == N AR (3.5)
2
and
AS=1ARB (3.6)

When a disturbanee Ac, oceurs, the new position
of the surfaces will be such, that - -

b, ¢ d
aoy =L (1— 7 ) A + b,A8 + bysdy —
ASL
S A 1§ ,
4 pVFglg 37

Eliminating Ay, AS and Af from (3.3), {3.5),
(3.6 and (3.7) gives for the static margin stick
fixed K,:

Acn
Kn:—ﬁ_ (}Lo—-—-h) -+
d ' ' !
N 11— di . bl(a2+£~la3g)
+V —1a— ki
4 bt b Le
‘ P, T Vil
(3.8)
For a norrﬁal clevator the static margin is simply
de
1—
da

Hy== (h,—h) + V — . (3.9)

It both b, and b, are negative (the elevator is
not aerodynamically overbalanced and does not
trail against the loeal wind) the formulae (3.8)
and {3.9) show that the spring tab causes a loss
in stick fixed stability as all other guantities,
except b.g, between the square brackets in (3.8)
are positive, Even if' b, is slightly positive and b,
negative the stick fixed stability is deereased.
Normally speaking it can be said that a gain in
stability due to the spring tah is only possible
it &, > 0. In general, however, a spring tab
will be seldom combined with a closely bhalanced
elevator,

In all cases a lavge value of G (stiff spring)
corresponds with a small stability change.

In the next paragraph this change in stahility
will be compared with the stahility change as a
resuli of freeing the stick.

32 Slick free.

According to the wellknown theory the “static
margin stick free” K, in case of a statically
halanced normal elevator can he represented hy

de

d b
- (- T ) (3.10)

Kﬂ’: (hu_—h) ;+ 1_;
Comparison of (3,5)) and (3.10) shows that the
change in stability on freeing the stiek depends
6 o b,
on -b—‘—'; a positive (negative) value of —— ¢orres-
2
ponds with a loss (gain) in stability.

If we assume the hinge moment of the tab to
be small there can ouly be a minor deflection in
the spring § (see fiz. 1) in the stick free case,
From that it follows, that the free floating angle
of the elevator with spring tab is almost the same
as for the normal elevator. So it ean be concluded,

L)



that the influcnee of the spring tab on stick free
stability is negligible.

Finally it appears from (3.8) and (3.10) that
in most cases the change in stability due to the
spring tab is a fraction of that due to freeing
the stick.

4 Conclusions.

In this report the influence of a spring tab
elevator on the statie longitudinal stability is
investigated. The static margin stick fixed for
the normal elevator and the spring tab provided
elevator are given in the formulae (3.9) and
(3.8). Tt appears from these formulae, that in
most cases (b, <0 and b, < 0) the stability is
decreased as a result of the spring aection by an
amount which is a fraction of the stability loss
due to frecing the stick with tab locked.

The stick free stability is almost unaffected hy
the applieation of the spring tah.

5 Notations

' wing area

Fy area of the horizontal tail surface

Fg area of the elevator

t  wing chord

iz clevator chord

Iy distance of aerodynamic eentre of tail aft of
aerodynamic centre of the acroplane without
tail

7 ( Py

T Ft

¥ forward specd of the aeroplane

p air density

a ineidence of zero Iift line

ay tail incidence

B clevator deflection (positive when downward)

# deflection of the fixed tab (positive when
downward)

y  deflection of the spring tab (positive when
downward) -

) tail volume

-

c‘nln

I{u
K,
11 12

downwash angle

tail plane setting

lift coefficient

tail lit coefficient
dcq

=_ Oa

o .. A ‘s
pitehing moment coefficient ( ir_ﬁf%‘"—t; positive

when tailheavy)
€m when ¢,=0 for aireraft without tail
. I
elevator hinge moement coefficient (———~—;
5 + pViFglp
positive in the same sense as ¢,

CCun

Oay

Can

o

acfrH

4

OCan

dy

aCH

Bzr,q

aCH

op

BCH

B’

BCH

oy
distance of centire of gravity of the aeroplane
aft of leading edge of chord
distance of aerodynamic centre of the aero-
plane without tail aft of leading edge of chord
static margin stick fixed
static margin stick free
lever lengths (see fig. 2) .
spring constant
spring deflection.

Completed : November 1949.

s N



'V 8

x
~






