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Preface 

This volume of "Veidagcii e11 Verliandelingen" contains ii seleet,ioii of 

rcports, which ~ v w e  vcleascd fo r  publication in 1950, 1951 md 1952. Two 
extensive reports (F. 100 and S. 402) have 'heen pnhlished separately in 

Vol. SVII, whicli >vas issued somc t.ime ago. 

I'rei1omiii;incc ,has  , l m i i  giwr iii this v o l i i m ~  to reports dealing with 

mrious tispecis of the research work, iiicluding ineasuhg  met,hods, of t,he 

.Aerodynamics Sect,ion, since tlie intensive eiigagenicnt, of this scctioii in 

ad-hoc rcscareh and the  dcvelopmcnt of modern c:zpcrimental cqiiipmcnt,: 

~ircrcntcd the prcpanition of pnhlicat.ions for tlic previous punt-var vohrmcs. 

As nsual, t,he mpiirts coiitained in t,his voliime foim only par!. OS thr. 

piihlieations issued in  the  pei,iod covered. h list of other papers, piiblislied 

i i r  typescript form or in scicnt,ifii: journals, is given 011 the following pa,gns. 

A i:omplet,c list of pnhlic;it,ions (1920 to 1952) is arailiihle npon request. 

liomugc sliould he paid iii this prefaec to the memory of 11. C. K,oning, 

former scicnt,iEic director of the N. L. 1 1 ,  By Iris deat,h in July 1952, the 

instit,utc mas liereft of his oiit,standing sciendific ahilit,ies, part,ienlai~Iy as a 

t'hcoretieal ncrodjm~mieist. €1,: also will he rcmemhcred hy many of h 

colleagues ahroad t i l i d  113- his (!ollahorators ill t i l l  ?;inks, i1. o. for liis IWBII 

and liriiid interest, in t,heiv teclinieal as ~re l l  as personal affairs inid his 

smsc of ,Iinminir and ~ ~ r o p o r t i o n .  I\ glance a t  t,lic list, of pn1ilie;itiiins of 

11, Koning on pp. v t o  VII will diow liis importuiit cont,rihution to the 

Iia.tion;il and iritc1~ll;itional n~~pn!ciatioli id thc research work of bliis institim. 
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1 General considerations concerning the mount 
ing of the models. 

Carrying out measurements in the windtunnel 
to  determine the aerodynamic forces acting on 
vehicles, vessels or constructions, we distinguish 
objects which are either moving or .at rest with 
respect to the ground or any other supporting 
plane. The plane mentioned ‘has to he represented 
in the windtunnel by installing a flat plate.. In  
several case6 the .influence of the supporting 
plane, such as the road for a motor-car and the 
water-level for a ship, may ,be imitated in a suf- 
ficiently exact way by applying a dummy or 
image-model, so that it will not be necessary to  
install the plate referred to in the tunnel. 

The supportjng,plane (further also called “base 
plate”) being installed in the tunnel, it will depend 
on the kind of the measurements and the model, 
whether the--model has t o  he fixed to the plate 
or not. For  carrying out pressure-distribution 
measurements there is, from t e point of view of 
measuring technics, no objecti 2’ n to fix the model 
to the slipporting plane in case model and plate 
do not move with respect / t o  one another. In 
this report we will not enter into the pressure 
measurements, but consider the . case of force 

measurements which are as a rule less simple. 
The mounting o f  the model can be carried out 
in the following ways: 
u fixed to the ‘base plate, 
b free from the hase plate. 

In case a one can fix the base plate to the 
halances with wires or  rods, but this should be 
done in such a way, tha t  these suspension-parts 
do not give a disturbing influence on the model. 
The model forces are then determined as a dif- 
ference between measurements of the plate with 
and without the model being fastened to  it. This 
method is however only recommeridable if the 
mutual influence between plate and model is ’ 

small or anyhow if it can be determined easily. 
A further condition is tha t  the model forces are  
not too  small with. respect to the aerodynamic 
forces acting on base plate and model as a whole. 
This method is fo r  instance preferable in case of 
measuring a number of similar models in success- 
ion. The mo’dels can be mounted on the base plate 
successirely, in order to avoid suspending each 
model separately to the balances. blurther, this 
way of measuring will he called ,the ruetho’d “plate 
with and without model”. 

I n  case 71 the model itself is suspended to tbc 
balance whereas the base plate is.fixed separately 
to  the bot,tom of the tunnel. Then the model 
forces are  determined from the difference between 
the measurements of the suspension-parts, such 
as wires or rods, both with and without the 
model. Using a well chosen wire suspension, the 
mutual influence between model and wires will 
in general be small. Often, this method is pre- 
ferred to the way of mounting and measuring. 
mentioned under a. The way of measuring models, 
being mounted separately from the plate, is called 
the method “model without plate”. 

With regard to the model measurements here 
mentioned, one has to consider first, whether the 
body to be examined moves with respect to  the 
supporting plane ,or not on full scale. ’ 

‘If the object does not  move : ( fo r .  instance ‘a 
building or a floating dock) and one has to deal 
with the case of forces a s  a result of tlie natural 
wind only, the ground ‘(water-level) has to  be 
imitat,ed by a plate at rest, consequently not 



A 2  

moving with.respect to the model. The plate has 
to achieve the right variation of the wind velocity 
as a function ‘of the height above the ground. As 
a result of the restricted length of the #base plate, 
the slowing down of the airflow along the plate 
will often be too small. Therefore, if required, 
one can use a retouch or smoothing screen, which 
has t o  be placed upstream of the model in order 
to obtain the right distribution of the wind 
velocity above the ground. In  chapter 3 we mill 
enter further into the mounting of bodies ,at rest. 

The other case is that where the object does 
move with respect to the supporting plane (a  
ear, train, ship). Leaving the natural wind out 
of consideration, the base plate and the air in the 
tnnncl have to mow with the same vcloci,ty with 
respect to  the model. Then, in accordance with 
the fullscale situation, the same velocity distri- 
hution with respect to the model occurs in every 
point in front of t,he model. Going against or 
down the wind, the base plate velocity has to be 
slowed down or  accelerated in the right proportion 
t,o the air velocit,y in the tunnel, to imitate the 
velocity of the natural wind varying with the 
distance t o  the ground. As the construction of 
the moving base plate leads to  a rather complicat- 
ed mounting, this fundamentally correct method is 
usually replaced by approximate methods, where 
the model is either suspended above (eventually 
attached to) a d a t e  a t  rest or built together with 

which can he adjusted at the right velocity for 
conditions either with or without wind. Applying 
this method it will he possible to  get a nearly 

Fig. 1. Mountings for objects which are m o v i n g 
with respect to the ground 

v 

X 

I MODEL ON MOVING 
BASE - PLATE 

II MODEL ON BASE-PLATE 
~ AT REST 

III DOUBLE MODEL WITHOUT 
BASE- PLATE , -  

an  image model, thus forming a double-model. In  
the following, the ‘‘plane of symme. 
t ry” will he used for the hypothetical support.ing 
plane, which is supposed to  lie between the hot- 

goes into the subject of the .moving objects. 
Apart from the question whet,her the body 

moves with respect t o  the supporting plane, one 
has t o  distinguish between objects which touch 
the supporting plane in some points only (wheels 
of a car or train, supporting points of an open 
frame-work construction) and bodies which con- 
tact the supporting plane fully (base of a building, 
water-line of a ship). In  the first case there will 
be an air flow between the object and the ground 
which of course will he present on model-scale 
too. In  the second case there is no air flow along 
the bottom of the body, so on model scale no 
flow is permitted between model and ‘base plate. 
The slit between model and plate has to be scaled 
for  instance with a labyrinth seal, in case of 
measuring the model free from the plate. Of’ 
course there are  other methods t o  avoid “slit 
flow”. -for instance bv connecting model and 

Situation with flow between model and supporting-plane. 

toms of the two parts of a double-model. Chapter 2 V 

P DOUBLE-MODEL 
WITHOUT BASE-PLATE 

plate t o  each other by means of a frexible rubber 
strip. supportingplane. 

Situation & h t  flow between model and 

2 Models of objects which are moving with 
respect to the ground (see fig. 1). correct velocity distribution in front of the model, 

but a rather complicated special apparatus is 
2.1 Sitmtwn with flow between mode?, a& sup- 

porting plane. 

In f i g . ’ l a  the folloiikg three mountings are  

I The base plate exists of a moving conveyor 

required. This method is recommendable if ‘this 
type of measurements is carried out regularly I 

(for instance for automobile works). 

given for objects belonging to this category. I1 In  this case the base plate does not move 
with respect to the model. The wind is slowed 



down in; the ueighbourhood of the plate and the 
velocity distrihution- in front of %he model is u o  
more constant. IIowever, if the model represents 
a situation without, natural wind, the velocity in 
front of the model has  to  he constant and eqnal 
the moving speed of the object on model-scale. 
So, in this case we, have to reckon with an error 
in the velocity distribution. Applying a small 
base plate which extends just a short distance 
upstream of the model, this error can he kept 
within reasonable limits. Measuring a situation 
of ‘head wind (tlien the natural wind is slowed 
down along the ‘ground), it  will he clear that 
some slackening action of the base plate is. desir- 
able. Apart from that it will always be possible 
to correct the velocity distribution. upstream by 
artificial means (for instance with a screen). 
Making use of this method, the results will mostly 
be sufficiently accurate, even without special 
means to correct the flow. I n  this connection 
one has to consider that a limit is already put to 
the accuracy for other reasons, such as the in- 
fluence of Reynolds number and suspension-parts. 
If uo special precautions are taken, the measured 
resistance is somewhat lower than the real resis- 
tance, as a result of the slowed down air stream 
along the lowest parts of the model. This state- 
ment, of course, only holds in case there is no 
natural wind, for otherwise the air has just to 
he slacken,ed more or less in t,he neighhourhood 
of the plate, as stated before. 

As noticed already in chapter I the measure- 
ment itself could he done by measuring the plate 
both with and without model. Attention is 
drawn to the necessity of imitating the influence 
of the model on the plate, during the measure- 
ment of the plate without model. Therefore the 
model is not taken away, but removed slightly 
upwards from the base plate, in order to measure 
the plate, heing just free from the model., 

. .  
I11 I n  case a double-model is applied, the 

slowing doivu iuflueuce of the base plate on the 
air moving along its surface will be eliminated. 
The condition, prescribing a flow pattern where 
no  velocity components perpendicular to the sup- 
porting plane occur, is satisfied with a good 
approximation by the presence of the plane of 
symmetry of the donhle-model which replaces the 
base plate in this respect. Considering a situation 
without natural wind, this method gives an ini- 
provemeut with respect .to the method mentioned 
under 11, because of the coustant velocity distri- 
bution in front of the model. Here too, however, 
the flow in the plane of symmetry between model 
and image is slowed dowu more thau in realit,y. 
In case I1 the relative velocity on ground level 
(with respect to the vehicle) was zero hoth in 
front and a t  the hack.of the model. In case 111 
the relative velocity in the plane- of symmetry 
(hypothetical base plane) is .correct, in front of 
the model, but too small a t  the rear of the model. 
This can he seen at once, considering that a 
correct representation of the full-scale situation 
can be achieved only .hy  moving the base plate 
hack in the plane of symmetry between the two 

I 

models with a speed equal to the driviug velocity 
of the vehicle. Then .  the full driving velocity 
with respect to the model does not exist in front 
of the model only, bu t  also behind the model in 
the plane of symmetry. In case 111 this velocity 
is so much slowed down by friction along the 
bottom and the .projecting parts of model aud 
dummy model, that it will have hut a low value, 
especially hehiud long models having a narrow 
slit in between. So in general, one can espect 
here too the measured resistance coefficient to he 
somewhat smaller than the full-scale drag  coeffi- 
cient, though the difference will be smaller than 
in case 11. It may he stated here t,hat the Reynokls 
number mostly has an opposite influence ou the 
drag coefficient, which might compensate the 
differences more or less. 

Concernin,g the flow in the plane of symmetry 
it may he pointed out that  acute angled projecting 
parts a t  the hottom of a vehicle, causing separation 
of the flow, often form periodically detached 
vortices which go through t,he plane of symmetry. 
Of course this will not take place on full scale 
because of’ the presence of t,he s n p ~ ~ o r t ~ i n g  plane, 
such as road, railroad, etc. This difficulty makes 
itself felt to a smaller extent as the parts in the 
neighbourhood of the ground are better stream- 
lined. I n  case the phenomenon should he trouhle- 
some (vibrations), it might be helpful1 to  monnt 
locally (i. e. at the spot where the vortices occur) 
a small thin plate in the plane of symmetry. 

Only, if forces and moments parallel to the 
plane of syiiinietry ‘have to  he measured, i t  will 
be allowed to connect the models immovably. If 
it  is, however, necessary to deteimine the centre 
of the aerodynamic forces above the ground or 
forces perpendicular to the ground, one model 
has to ‘lie fixed to the balances, whereas the image 
model has to be fixed in the t,nunel. 

2.2 Situation without flow between model and 
supporting plane. 

If there is now flow ,between the object and 
supporting plane, such as in case of a ship, it  
will he clear that slits between model and sup- 
porting plane or in the plane of symmetry must 
he avoided on model-scale too. Two usual ways 
of mounting the models are given in fig. lb ,  I V  
and 1’. 

:IV Using a base plate for measurcmeuts with- 
out natural wind, the difficnlt,y of the slowed 
down flow in the neighhourhood of the water- 
level arises ,here too. IIowever, the error will be 
smaller than in case 11, for the slit flow, heing 
too slow and therefore responsihle for the greater 
part  of the difference, does not exist here. 

A labyrinth seal provides for the sealing of 
the clearance hetween model and plate. \\’ith 
regard to t,he question whether the measurement 
has to be carried out either “with and without” 
or “without”, the model being fixed to  the plate. 
the following remarks can be made. At, first sight 
there might be some preference to measure the 



“p :e with an, w iut mo. ,I”, to- avoi the 
labyrinth seal which would in any case be necess- 
a ry  for the method “model without plate”. Rut 
if one would determine the model forces for 
case IV by measuring the plate both “with and 
without model”, . ye t  it would be necessary to 
mount .the model in the latter case (measuring 
the plate without model) with a labyrinth seal 
above the plate in order to imitate correctly the 
influence of . the  model on the plate. From this 
it ‘is evident tha t  a labyrinth ,seal which is the 
very thing . that  asks for the greatest attention, 
cannot be avoided by applying mounting IV, the 
model being measured either separately or in 
combination with the plate. 

In order to  ascertain undesirable contacts in 
the labyrinth seal, ,this can be made of brass 
strip which forms part o f  an electrical circuit, 
giving a signal in case of contact. 

For ships the resistance of the natural wind 
often contributes to a large extent t o  the total 
air resistance. I:n that case there is an  advantage 
in using a base plate, as the velocity distribution 
in front of the model will be in better accordance 
with the reality as a result of the presence of 
the plate. 

V !Po avoid the difficulties of mountings having 
a labyrinth seal (compare witli case 111), a ,double- 
model can be applied. Considering a condition of 
calm’ weather, .the ri,ght velocity will occur in 
front of the model. Since we have nothing to do 
with (incorrect) flow through slits and no yeriod- 
ically detached vortices can be expected in case 
of good streamlining, this method may be re- 
commended. The influence of the natural wind 
can .eventually be imitated by mounting a free 
plate in the plane of symmetry in front of the 
model. 

Here too, the models have to be mounted se- 
parately if one wants to determine for instance 
the height of ‘ t he  centre of the aerodynamic 
forces above the water-level: Gut then there will 
of course be the difficulty of the labyrinth seal 
between model and image model. 

A 4  

rig. 2. Mountings for objects which are a t  ‘r 
with respect to the ground 

PI MODEL ON 
9AS€-PLATE AT REST 

Situation with flow between modal and supporting-plane. 

XU MODEL WITH 
LABYRINTH-SEAL ON 
BASE-PLATE AT REST 

V L 

3 Models of objects which are at rest with 
respect to the ground (see fig. 2) .  

3.1 Sitnatwn with flow between model and sup- 
pmting plane. 

I: 
’ For objects a t  rest a base plate has to be 
applied to obtain the disired velocity distrihution 
of the natural wind. 

\ 

VI If ohere is ‘an air flow between the object 
and the supporting plane (see fig. Za), the model 
can be measured io a simple way by suspending 
it just free from the base plate to  the balances. 
If there is any preference to do so for some 
reason (for instarice to  measure a number of 
models), the  method of measuring the “‘plate 
both with and  without model” can he applied 

Pm WUBLE-MODEL WITH 
BASE-PLATE AT REST 

Situation without flow between model and 
just like in case 11. ’ supporting-plane. . .  

7 
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3.2 Sitletion without flow between model r r d  
.supporting plane. 

In  this case t,oo a base plate is applied, Init, 
here we encounter the eomplicatioii to prevelit 
the aiv from flowiug t,hrough a slit between model 
and hase plat,e (see fig, 21)). Therefore we use 
either a model with labyrinth seal (VII)  or ;I 
douhle-model (VIII). 

VI1 111 order to rcdoce t.lre slit flow as mneh 
as ~~ossihle ,  the space lietween model and plate 
has t o  he sealed with i i  labyrinth sed. 

VIII 11; many cases, it will lie possible to 
avoid the application of a lahyrinth seal by 
tnzkiiig use of R douhle-inodel. The hase plate 

I , .  (provided wit,h a gap) is locat,ed in the plane 
of symmetry, but is mounted free f rom the model. 
In this case too, the mo,del eoul,d be fixed to’ the 
plate if there is any prefereuce to follow the 
method of measuring the “plate with and without 
the  model”. 

4 Conclusion and summary. 

i t  is riot possible to give a clear-cut scheme 
which is generally holding for the application of 

measuring methods for  windtunnel reseitrch 011 
models of vehicles, vessels, constructions etc. The 
choice of the inonuting depcnds smoi~g othw 
things o n  the aiiswer to the followiug questions: 

1)oes the oliject on full scale move with respect 
to tihe supporting plane? 

Does the olijeet, touch the supporting plane in 
some points oiily (car: slit flow), or does it, 
make full coutact with this plane (ship: 110 

slit) ? 

Are .there certain ntlrantsges in measuring the 
.base plate together with the model (model 
forces not too sinall with respect to t,he aero- 
dynamic forces acting 011 the plate, a iiuinl)er. 
of models or model configurations) ? 

l l a s  a high accuracy t,o be pursued? 

A geiieral view is given of a number of useful 
metrhods, elassifie’d according to  the conditions 
mentioned under (c and b. The advantages arid 
disadvantages of thc irarious metliods are cou- 
sidered. At the same time items c and (1 are 
&sed: so Ear as this might be of iiuy irnportani:e. 

Completed: November 1950.’ 
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On the Determination of the Transition Point from Measurements 
of the Static Pressure along a Surface 

by 

Drs H. WIJKER. 

Summary. 

I n  this report a. enleuli~tion has been carried Out of tho difference p(6) --p(O) between the static pressure at the edgo 
of the boundary layer and at tho Burface of n flat  platc, placed &t zero angle of attack in 8. parallel flow, fo r  the laminar 
as wall as for the turbulent boundary layer. These dcu la t ions  can make elear the appanent diserepmcney between, the 
cxperimentd remits of FAGE and “NIGER both using a corner point in the pressure distribution along the surfnec 
for tho determination of the transition point. I t  hns been made.evidcmt, that  this method is not always suitable f a r  the 
dcbermination of the transition point. 

I n  connection with thw ealeulations i t  I~RS been shotin (see appcndix 111) tihat tlii!.Iaw of Rsktmm af the tunbbulent 
boumh.ary layor, given by F A L ~ R ,  has to be preferred to  P R A K ~ ’ S  one, far  the latter has been derived with the aid of 
an inaccurate supposition. Then it appears, th&t objections, raised against the condition J ,  = constant at transition, m 
not wl id  any longer. 

Contents. 

1 lnt,rodnction. 
2 The pressure difference across the laminar 

boundary layer. 
3 The pressure difference across the turbulent 

boundary layer. 
4 The pressure difference connected with trans. 

ition ; conclusions. 
5 Nomenclature. 
G References. 
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exact laminar velocity profile. 
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the resistance of the tnrbulent 
,honndary layer. 

Appendix XV. Calculations in the case of a tnr- 
bnlent bonndary layer. 
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5 figures. 

,’* 1 Introduction. 

I n  1928 FACE (Ref. 1) perceived a corner point 
in the p-s-line (fig. l a )  when doing pressure 
measurements on a circular cylinder ( p  = static 
pressure, s =distance to  the stagnation point 
measured along the surface). Later measurements 
(Ref. 2, 3) confirmed this. FAGE pointed out, 
that this corner point should indicate the tran- 
sition point. PFEEihTGW also used this method for 
determining the transition point (Ref. 4). How- 
ever the deflection in the p-s-line he found 

(fig. I h )  is just t o  the other side as that found 
by FAGE:. I n  this article the author wishes to 

0. Po 
PRESSURE OISTRIEUT10N 1 ON b SPHERE 

SPHERE 

Fig. l a  (from ref. 3) 

%, 
ORUCKVERTEILUNG 

N A C A  0010 

*=TRANSITION 

Fig. Ib (from ref. 4) 

show, theoretically, that both the measurements of 
FAGE and PFEKNIWX may be correct: the p-s-line 
may deflect to  one side or the other depending on 
the circumstances. Only the simplified case of a 
flat plate placed with zero angle of attack in a n  
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f may be written in the form (Ref. 5,  p. 87) 
f = z - p  + p(z )  in which p(m)  =0,  p s ( c a )  = O  
and lim ..znqZ = 0 for arbitrary n, /3 = Re@e$ = 

1.73 (Ref. 5, p. 89), 

R e , , = S , U , / v ,  SI= [(l-ujdy. 

z+m 

0 

Integrating (2.3h) from y = 0 to  y = m one gets 
_D 

p ( m ) - p ( O ) = -  /uv,dy--Iv2(OC) +.v,(m) 
0 

and as computation carried out in appendix I 
gives v ( m )  = & P R e ; ' k ,  

v u ( m ) = O  
and 

m 1 uv& = $ Re;l lim . p ( 2  z -p )  
l + m  o 

we can write 

p ( m  ) - p ( O )  = + Re;* (-p2 + p lim , z )  = 
e+m 

-_ - 0.76 Re,' + 0.43 Re;' lim . z = m . 
z 4 m  

This result, surprising at first sight, can be ex- 
plained as follows: the stream lines are bent 
towards the plate, as known. This means, that the 
flow direction of the mass between two streamlines 
changes. Therefore a pressure gradient in y-direc- 
tion is indispensable. 

&s in the outlines, commonly used in the 'bound- 
ary layer theory, the m a s  of the .bulk of flow 
to  be changed is infinite, one needs an infinite 
pressure difference. I n  these outlines namely 
v( 00 ) # 0 as is the case in reality. 

For our purpose, the exact solution of the 
boundary layer equations cannot ,be used and we 
shall use the well known approximate solutions 
found with the method of VON K h f h ,  POHL- 
H A ~ N  and others, in which method is introduced 
a boundary layer thickness S well defined by the 
impuls equation of the boundary layer 

incompressible parallel flow will be. considered and 
it will be shoivn that in this case the direction 
of the deflection only depends on the REYNOLDS 
number of the transition point. The author has 
not tried to solve the problem for other cases: 
these are much more complicated and the author 
does not expect them to give new points of view, 

2, The pressure, difference across the laminar 

The equations of continuity and of motion for  
stationary flow in the laminar 'boundary layer 
(Ref. 5,  p. 81), may be written, as follows: 

u, f v,=o @la) 

(2.2a) 

(2.3a) 

where u =  U/U,  , v = V/U,  , p = P / p U ;  , a = 
v / U ,  ; U = velocity-component ljarallel to the 
plate, V ditto normal to the plate, U, =the 
velocity of the undisturbed flow, P = static 
pressure, p = density and.  Y = kinematic viscosity. 
A suffix denotes partial derivation. Following 
Pw%, the second t e m  of the right hand sides 
of the equations (2.2a) and (2.3s) may be neglect- 
ed in the boundary layer, for they are small com- 
pared with the other terms. 
., Moreover p ,  is supposed to he zero in our pro- 
blem so that the equations can be simplified to 

ZL, + v,=o (2.lb) 

uu, + u % = a u ,  (2.2b) 

uuz + vvy = - p ,  + a&$, (2.3b) 

From (2.l.b) and (2.3b) one can find the ap- 
proximate values of u and u in the well known 
way. Using these values in (2.3h) one can cal- 
culate p y  and by integrating one ,gets the pressure 
profile in the direction normal to the surface. 

All terms of (2.3b) are very small compared 
with the terms of the other equations and there- 
fore usually neglected. I n  our case, however, we 
have to  take (2.3h) into consideration, for the very 
cause of the corner point in the p-s-line is the 
difference 'between the pressure profiles of the 
laminar and the turbulent boundary layers. As p ,  
found in this way, will be a function of both x 
and y, p ,  will not be zero as assumed beforehand. 
The variations in p however will he so small, that 
the values of u and u, calculated from (2.lNb) and 
(2.2b), will be very good approximations, It seems 
not necessary to recalculate them and to  use the 
new values in (2.3b) i n  order to get a 'better ap- 
proximation of. p .  

Introducing Re, = xU,Jv *), z =Re? y / x ,  the 
solution of (2.lb) and (2.2b) is (Ref. 5,  p. 85) 
u fs , v = & &;'I* (zf. - f )  where f is the solu- 
tion of the differential equation 2 + ffSz = 0 
with the bounda.ry conditions f (0) = 0, f.(O) = 0 
and f . ( m )  =1. 

boundarg layer. 

uu, + vu,=-pp,.+ mu,, + au, 
uu, + uvu=-pp, + av,'+ av, 

- 
") A suffix of &e dves not den& p a d l  &-.-ation, 

but tlue lemgth which Re is related to. 

s dP dU _ _  
p d s - v ( ; i ; j - ) y E o  . ' 

or ,as in our case dP/dx = 0 
- -  

(u' - u) 6, = - atLy(0) 

with 1c2 = 1 u2d7, u = j (ud7  and 7=y/S 

(2.4) 
1 - 

0 0 

Introducing the new independent variables 7 and 
S instead of x and y with the aid of the equations 
S = S ( x )  and q=y/S, one gets 

dy = 7dS i S a l )  (2.5a) 
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and equation (2.4) can be written (see amen-  
dix 11) Introducing the momentum thickness S , = ( - d ) S ,  

so that Re - ( U - c ) R e a ,  (2.8a) becomes 
- -  

*, - 
Atp=Re-? [uP(0 ) .  (u -u2)  + 

can he written as (see appendix I1 for calculat.ions) + u, ( 0 )  . u,(l) . (u--u’)] : (2 .8~)  

(2’6) Results of calculations for several velocity profiles - .  uV = q u, /BS.  

2) can he found by integrating (2.6) and &n he are given .in t$hle 1. For all chosen profiles 
substituted in equation (2.7), derived from (2.3b) u, (1) = O  except for the roughest approximation 
by integrating: u=7. ‘Though the agreement of the results of the 

approximate velocity profiles is not very good, i t  is 
P(6)  - P ( O )  = sufficient for our purposes. A n  impression of the 

. accuracy of the approximate method by compari- 
=- / uv&dll-*v*(,y) + a 2 ) , ( ~ )  son with the exact one, may be got from the last 

column, in which Re, ( p ( 0 )  --p,(O) } is given. 

dX=BSdS with B =  ( ~ - ~ ) / a u , ( O )  (2.5b) 

I n  the new coordinates, the continuity equation 32 x 

d 

(2.7) 
0 

LOGAP 

Fig. 2 
0 

I Transition stark at Res = 2.3 X 10‘. For Re, = IO‘, the prmure follows tho line ABDII (sharp bond upwards), 
for Re, = ICP the line ABEU (,gradual bend, from which the determination of the t d t i o n  regioll is w r y  in- 

Transition starts at Res’= 106; Re,  = IW. l%e pressure follow8 tho line AFGII (bend d o m s r d s ) .  
. a.&cumto if  not irmpossible). 
I1 

After substitution of the coordinates 6 and q ,  
(2.7) will give 

A i p = p ( S )  - P ( O )  = 
~ -2 ~~ 

=nesa [ -1P(O) . { u--16’) - ? {  u-u ) + 
+ u y ( 0 )  .u,(l) {;-g)-l] (2.8s) 

The suffix 1 indicates “laminar”. 
From (2.4) : 

- -  
(u-uuZ)dI led /dRe ,= + u , ( 0 ) / R e d  

l or 
- -  
(u - uz)  I2e; = 2 tt, ( 0 )  . Re, 

SO that in the coordinates Re, a n d  7 equation 
(2.8a) can be written as 

Atp=Re;*[*tc,(O). (U-g)- l  ( u - u )  + -? ~ 

+ &uv(i)i. (2.8h) 

p,(O) is the pressure indicated by the point where 
the asymptote intersects the p-axis (see appen- 
dix I). 

T,he linear connection between log Alp  and 
log Re is given in fig. 2 as well as that between 

6, 
log A l p  and log Re, .  

3 The pressure difference across the turbulent 

Choosing a.gain from experiments an adequate 
velocity profile u=u(7) ,  2) can be calculated with 
tbe help of the equations 

ZL, + w V =  0 (equation of Continuity), (3.1) 

(u  - u’) 6, = ~ ( 0 )  ‘(impuls equation), (3.2) 
~ ( 0 )  is defined by r ( 0 )  =T(O)/pU; in which 
T ( O ) ,  the shearing stress for ?j = 0, is known from 
experiments. I n  the case of a wholly tnrbulent 
bo-undary layer ~ ( 0 )  can ,lie written in the form 

boundary layer. 

~- 

~ ( 0 ) = A R e p  (3.3) 
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in..which A and m are constants and X 'denotes 
the distance from the stagnation point to the con- 
sidered point in a boundary layer, turbulent from 
the very beginning. 

I n  the c,ae of a boundary 'layer flow partly 
laminar, partly turbulent, Rex .can, if required, 
be expressed in Re, and Re,,t,, the Rmsom 
number of the transition point (see appendix 111). 

Once u is known, p can be calculated from an 
equation, .analogical to  (2.3b), namely (Ref. 6, 
p. 610) . .  

Uu,~+'vV,=-pp, + 
+av , - (Au .Av) , -  ( A v . A v ) , ,  (3.5) 

in which A u  and Au'are fluctuations of u and u 
and the bars denote mean values in time. 

I n  the turbulent boundary layer the molecular 
contribution to the shearing stress can be neglected 
compared with .the convectional contribution: 

~ 

r = - A u . A v .  (3.6) 
For I we can use the formula of F E D ~ V S K Y  
(Ref. 7) ,  for p.=0 well confirmed hy the experi- 
ments of DRYDEK (Rcf. 8, fig. 11) 

(3.7) 
Calculations, carried out in appendix IV, give' the 
formula 

7/7(0) = 1 - 4 773 + 3 74. 

-~ 
Atp = 0.1 AZ(u-u2) -Z  { l o (@-  l)? 4 

. .  
6(p  - 1)G- 5 ( p + l ) u 2  + (16 -'6 p); ) Re:! (3.8) 

with p=-m/ (m + 1 ) .  

The suffix "t" denotes "turbulent": 
.. Atp can be connected with thc momentum thick- 

ness of the houndary layer 6, = (u-u"*)S or 
with Re 

Atp ~ 0 . 1  ( V I  + 1)""A2('+"' (ty-u')-'. 

-~ 

instead of with Re,: 
8, 

{ 10( p - 1) 7>+ 6 ( p  - 1)s - 5 (p+ I) ~1" + 
+ ( I 6 - 6 p ) i } I t e C 2 ?  . (3.9) 

The vclocity profile can approximately be written 
in the form 

u = 7u.fr  (3.10) 

so t h a t  (3.9) becomes 

8,  

a,p= ( m  +. 1)-*p.@"+p)'Re-2fi ( N  + 2 ) .  
82 

( l l N + 1 6 - ( ( N - 4 ) p ) / N .  (3.11) 

According to  FALKNW A = 0.0131 and i n  = - 1/7 
(see also the discussion in appendix 111). As for  
N, some investigators assume N = 7, others N = 5 
(see the discussion in appendix 111). 

With the given values of A and m, (3.11) be- 
comes 

a.nd 
A t p  = 0.00051 R e d *  for N = 7 

Atp = 0.00042 Re - ' l a  for N = 5. 

8, 

8, 

I n  fig. 2 the linear connection hetween logA,p 
and logRea2 is given for both cases. 

' 

4 The pressure difference connected with trans- 
ition ; conclusions. 

.Assuming, that the laminar velocity profile 
suddenly changes into the turbulent one in a de- 
finite point, the ,transition point, with 5 = zt,, 
log Ap will, independently of the chosen ve1ocit.F 
profiles, decrease for , log < 1.75 and in- 
crease for 10gRea~ ,~ ,  > 2.0 (sec fig. 2) ,  as 6 ,  will 
be the same in the tran$tion point 'both f,or the 
laminar and the turbulent velocity profile (see 

According to fig. 2 the values Res, = 1.75 and 
2.0 agree with the values Re, =1.5 X 10' and 

kr p(O)'=p(S)-Ap and we assumed'), that 
the prcssure outside the boundary layer is con- 
stant = p ( S ) ,  we c a n ,  draw the following con- 
clusion : 

The pressure on the wa.11 just behind the 
.transition point will be lower than that just bc- 
fore it, if transition takes place in a point 
with > 4 X lo4, and it will ,be higher, if 
f ie , ,* ,  < 1.5 X lo'. 

The yalue of ztr depends on the turbulence of 
the bulk of the stream; it is smaller il thc tur- 
bulence is,  greater. In  reality transition does not 
take place.saddenly in one point, but in a region, 
so that we can conclude: 

Depending on the turbulence of the bulk of the 
stream the p - d i n e  will bend either upwards or 
d,ownwards i n '  the transition region. 

Hovever the lenmgth of the transition region plays 
some part in this phenomenon. If the length t of 
the transition region is given and r ( 0 )  in this 
region as well, it is possible to calculate Rea, at the 
end of the region (which will be indicatcd as 
Re** for  a given value of Rea, a t  the beginning 

22 
of it (indicated as Re* ) 

62 ' 
These calculations have been carried ~ out in 

appendix I11 and the results are given in the 
graph domn at the left of fig. 2. The use of this 
graph can he explained with the following cx- 
ample. 

Transition' may start a t  Re, = 2.3 X lo3 and 
the Rersoms number, based on t,he length t ,  will 
hc Ret=103. Using lines "d" of f i g . ~ 2  for the 
laminar flow, log A p  is known a t  the heginning of 
the transit,ion (see line I), and consequently 
log Rea, (see point B ) .  The vertical line through B 
intersects the 135O-linc in the point for which the 
ordinate equals'logRe* ( ~ l a g i l e  fo r  B ) .  

From this point going to  the left till the line 
for  Ret = lo3, we find log Re** and the vertical 
line gives the point D ,  the ordinate of which is 
Ing'Ap at the end of the transition region. So 
IogAp follows the line ABDH and the p - d i n e  
will have the same character. 

I n  fig. 2 more examples are.  given,. from which 
may be seen, that the p-z-linc may bend down- 

appendix 111). ?,, 

4 x 104. 

82 62 

82 : 

*) Smme rmarks on this assumption are given at the 
ond of appendix 111. 
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wards, sharply upwards or \Till not show any 
marked transition. " " 

The same may be expected if p.#O; for bhe 
essential part of the discussion is the difference 
of the slopes -of the log Re log Ap-lines in 
fig. 2 for the laminar and the turbulent 'boundary 
layer and this is caused by the different values 
of the exponent in the expression ~ ( 0 )  = A  RE:. 
Therefore the method of determining the transition 
point from the p - d i n e  seems to be somewhat in- 
adequate: there will exist cases in which it cannot 
be used at  all. 

62 - 

5 Nomenclature. 

A 
B 
c 
CD 

co 

u 
L 
m 
12, 
N 
P 
P 
AP 
Re 
S 

t 
T 
zi 
U, 
u 
- 
U 

AU 

= constant in eq. ~ ( 0 )  =ARe," - -  
= (u  - 212)JC uy ( 0 )  

- = .A-1-fym + l ) F ( ; T G ) ' + P C - , "  

= local drag coefficient ( T ( 0 ) / &  pUz) 
. L  

= drag coefficient ,( = 7 1 1 C d X )  

0 

= CU" -. . 
.=  length^ of a plate 
= exponent in r ( 0 )  =Age;  
= exponent in u = 7% 
= l/n. 
= pressure 
= P / p  lr; 
= P ( 6 )  T ' P ( 0 )  

, .  

. .  

= R m x o m  number 
'= distance to the stagnation point, 

measured along the surface 
= length of' the. transition region 
= shearing stress 
= velocity component parallel to the plate 
= velocity -of the undisturbed flow 
= u/u, 
== / i d 7  '' ' 

6 
= fluctnation of u 

~ 

A u . A u  = average in time of the product of the 

= velocity component normal to the plate 
= V/ l i  

flnctiiations At1 and Av 

I I I  

= fluctnation of v 
== abscis; distance from a point of the 

= 5 for a shortened plate' with a wholly 

= ordinate; distance from a point to the 

. .  plate to the leading edge 

turbulent boundary layer 

plate 
= IIQy/x 
= "Ill- 
= boundary layer thickness 

OD 

= displacement thickness = (1-u)dy 
6 L 

6 r = momentum thickness I u(1-u)dy 

7 = u / s  
P = -m/(m + 1) 
" = kinematic viscosity 
P = density 
7. , .. = T/pliL 

Indices : u =asymptote 
2 =laminar 
1 =turbulent, except in Tiet (see below) 

; t r  = transition 

The other indices denote either partial derivations 
or lengths (if used for R e ) .  
Asterisks : 

one asterisk indicates: a t  the beginning 
of the transition region 
two asterisks indicate: a t  the end of the 
transition region. . .  
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APPENDIX I. 

Calculations in the case of the exact laminar 
velocity profile. 

BY intepration of eauation (2.3b), uu, + uu, =' 
~ 

- p , + u u w ,  from y=O to y=m one gets, as 
, u ( 0 )  = o :  

tP ip 

Fig. 3 

The first term on the right hand side can be 
evaluated as follows 

- J uu,dy =- 1 f ,  (- + Re;'lw-'(z2f,,.+ 

+ zf.-f) )d ( zRe; ' / * z )  = 

= f Re;' / zf.(zfss + f , ) d z -  ,'Re;' / ff.dz = 
n 6 

Exxt  solution Approximate solution 

m 

0 0 

m m 

m m 

= i~ Re;* / zfs(zf.)rdz-+ Re;* / fdf = 
0 0 

m 
= Q' Re;' [ z2f:-p ] = + Re;* lim. (zfz - 

n z + m  

-'f) (zf= + f )  = & Re;' lim (z+* + p - 9) (2  z - 
i + m  

- p + q, + 9) = Q Re;* lim p ( 2 2 - p ) .  
i-, 10 

So p ( m )  - - p ( O )  = +Re;' lim pz- 
z 4 m  ~. 

- k R e ; ' p z - + . i  p R e ; ' =  
- J. Re-' (-p* + p lim z). - 4  I 

i + m  

The asymptote (fig. 3)  is 

and intersects the axis z = O  in a point with 

or with p = 1.73: 

p.=p(O) - +Re;1  p' + +Ke; ' ,p z  

p. (O)=p(Oj-~p?P'e - ' .  

R e , ( p ( 0 ) - p p , ( O )  )=0.75. 

I )  

Y 
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Introducing I =  udv and a bar for the mean 

value of a function f according to f= / fdq, so 

that for instance 

0 ir 1 

0 

1 t 
~ = / ' u r  d q = @ = +  ( z y i )  - rS (o )  = + u  -2 , 

0 0 

one can evaluate the integral in (2.7), taken a t  
constant x and thus at constant S, as follows: 

a Y 

- / uu,dy =- j l L H - 2  *-?(vu- /' udv+ 
0 d 0 

+ q%,) Sdv = B- l  S - 2  (3 - 2 + qzduz) = 
0 .I; 

- .  -2 
- - -2*-2  - (?-+?( ++-qu')= 

-2 
= + B - 2 8 - 2 ( l - ~  ). 

With the aid of this formula and of the fomulas  

V"(8) = u u  (l)/S =B-' P U ,  (1) 
and 

~ 

' u ( S )  = U ~ = ~ = U , , = ~  = u ( l )  =B- 'S- ' ( l -u) ,  

equation (2.7) becomes 
- 

alp = B-2 8 - 2  (u- 2) + a--.i s-zu, (1) 

and as 
- 

B - 2 S - 2 = a Z  u-(O). 9 (u--u1)-2*-2= 
'I - -  

= Res7u; ( 0 ) .  (u-u ' )  -* 
and 

a - a - a z  - UY ( 0 ) .  (U-2)-'*--2= 
- -  

=Re;% (0)(u-u2)- '  
'I 

one gets (2 .h ) .  

APPENDIX 111. 

On the conditions at transition and the resistance 
of the turbulent boundary layer. 

As (U--)S.=1(0) or ( U - ? ) d R e b / d R e , =  

~(0) and S,= (U-G)8 or Re,  = ( u - u 2 ) R e a ,  
one gets 

(W1) 
Assuming that transition occurs in an infinitesimal 
small region with the length dx, dRea2 will ap- 
proach to 0 if dx and conrequently d R e ,  ap- 
proaches to 0, for r ( 0 )  is finite in this region. 
So, if transition occurs in a point x = xtr , 8, will 
he the same for the laminar boundary layer just 

- -  
2 

d Rea, = r (O)d  Re,.  

before xtr and for the turbulent layer just be- 
hind it. 

I n  order to calculate the turbulent houndary 
layer, one can replace the par t  of the plate with 
the laminar boundary layer (length = xtr)  by a 
shorter part, length=Xt,, where the boundary 
layer is turbnlent from the very beginning,  RE,^,, 
for x = x t r  in the laminar layer being the same 
as Rea2,, for X = X t ,  in the turbulent layer (see 
fig. 4). 

. x  

Fig. 4 

Rea,,[ can be calculated as follows: 

Rea2,, =/u(l-u)d Re,=(using the exact veloci- 

ty profi1e)Re:r f , ( l- f ,)dz = Re> ( l - f * )d f  = 

Re'& 1 [ f - f f  ] + / f f . &  1 = (see differential 

equation for ?) -Re$  2 f,,,dz=2f,,(O) .Re?= 

0.664Re:. (see ref. 5 ,  p. 86 and 88, where a =  

As X - X t ,  = x - xtr or Rex - E E X , ~ ,  = R e ,  - 
Re, , , .  and ~ ~ ( 0 )  = A R E : ,  
Rea , , l  can be calculated from (111,l) as follows: 

m 

0 

0 i U i' 

i 
m m 

0 0 

0 

A,=f,,(O) ~ 0 . 3 3 2 ) .  

~ ( 0 )  d Rex = A Re;  d Rex = 
0 .i- 

=- A 

Rea,,, = 0 i 
m + l  

I n  the transition ppint Rea,,,=Rea,,c so that 

~ Re;,:: = 0.664 Re?,, A 
m + l  

or 

and 
Rex = Re,- Re,,*,+ 

So from ~ , ( 0 ) = A R e y :  

Rex,, ,  = { 0.664(m + 1 ) l A  }"@"'). Re!$'+2' 

+ { 0.664(m+l)/A }'I@'"'' Be'~'2m+2'. (111, 2) z, $7 

logq(0)  =logA + mlog [Re,-RRe,,t, + 
+ { 0.664(m+l)/A }'/(m+ij (111, 3) x. r r  

and in the transition point 
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en( in local resistance in case of transition. The 
dif w x e  .found .in this way is greater than that 
for L by experiments. Therefore PRUIWL pro- 

the transition point and to rcplace~it  by the-con- 
ditidn X = 5. 

I n  that case ~ , ( 0 ) =  0.0296 Re;'/&. or log T ~ ( O ) =  
log 0.0296 - '/e log H e , ,  which equation is repre- 

The difference in local resistmce a t  the trans- 
ition p.oint, found ,in this way, agrees, much ,better 
with experimental ralues and P R F ~ L ' S  proposi- 

. .  log7t,tr(o) = - - l0gA + 
1)a + 1 

m 
. .  .. 

+- log0.664ina + 1) + 2(m + I )  log&,: pased to cancel the condition.RebZ,I=Hes,,lin 
( I I I , ~ )  

For the laminar layer ~ ~ ( 0 )  =a~&,(Oj =mu,(O). 
. "  -. R e 2 / x  =fz.(Oj ..Re;'"= 0.332,Re;'ls so that  

m + l  , 
. .  

l ag~ , (O)  =log0.332-+1ogRe; CUI, 5 )  sented by line of fig, 5,  
~. . .  and, for the transition point 

(111,6) is given as line 1 in fig. 5. 
log T W ( O )  =log 0.332 -4  1% Res,tr ( I I I ,6 ) .  

, .: . . . ,  

Fig. 5,  Wall sheari?ng stre99 along B flat plate in parallel flow. 

From the  experiments of WIFSFULIKRGER ,(ref. 9) 
WL deduced the following formula for the 
drag coefficient CD,z of a plate, length I, with 
t,urbulent boundary layer (ref. 10) 

-' Co,t = 0;074 Re;'/6 ( m 7 )  

The local drag coefficient cD is connected with 
Go by the equation 

L 

L'& = / cDdX 
.- 1 0 ' . ,  

so that 

c D = d ( R e x C D ( X ) ) , / d R e x = 0 . 0 5 9 2 R e x ' i i .  

one gets ~ ( 0 )  = + cD so that, following PRAXYIT 
As Z ' ( O ) = c , . + p U ;  and. r ( O ) = T ( O ) / p 0 2 ,  

~ ' ( 0 )  =0.0296Re$l'. ' 

Using the va.lues A=0.0296 and W L = - ' / ~ ,  
equation ( I I I , 4 )  can be represented by line 2 in 
fig. 5 .  

The,vertical distance hetween line 1 and 2.for 
a given value of Re,,t,  is a measure of the differ- 

tions are accepted in several handbooks (ref. 5, 
p. 152; ref. 11, p. 329). 

However, PRL"L'S suggestion. X = 2 instead 
of Res,,,=Rea in the transition point must, bc 
rejected, as the discrepancy between theory and 
experiment, found by ;him, is-the result of an in- 
accurate supposition in his derivation of formula 
I I I , 7  from WESXBB~GER'S experiments. 

PMNDTL'S derivation of the formula CD,t = 
0.074 ZleT'h is. based on 

1 bonndary .layer measurements of VAN DER 
HEGGE ZIJ" (ref. 12), who found the velo- 

. city profile u = 7'17 for the turbulent bound- 
ary layer of a flat plate. 

2 dimensional analyses of vos K ~ R ~ s  (ref. 13), 
mho derived for the turbulent flow through 
a pipe m = - 2 n/(3 11. + 1) in which 11 is 
defined , b y  = 7%. Using this expression 
for the flow along the f la t  plate too, PRAX~TI. 
suggested C& = constant. F l e i l / 5 .  

3 resistance measurements of WIFSFLSBEXGER, 
from which the constant of the formula above 
was found. to be 01074. 1 . 

2 9 1  

. 

.. 
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T,he following objections against PnA"'s  'deri- 
vation can be raised : . , 

HAN,SFS experimentally found u =.;'I6 instead 
of ' 1 ~  = v' i7  (ref. 14).   he^ showed that the 
existance of a small pressure gradient in the 
direction. of the .flow- in v m  DER HEWE 
ZIJXES'S experiments has ,been very probable, 
which pressure gradient may account for the 
difference in the exponent. The .exponent 
n='/ ~, or in accordance with this I I =  
S J S ,  = 1.4, is also accepted by others e. g. 

.FAUKER (ref. 16) and S Q ~  and YOUKG 
(ref. 16). 
The formula nz=-Zn/(3n + 1) does not 
apply for the flow along a f la t  plate, as 
FALK~WR (ref. 15) pointed out. VOX K&RM~K'S 
analysis applies only in case the velocity 
profile is independent, of x. So  m is not 
fixed by the choice of n and must be derived 

Thc best equation to f i t  the measurements of 
WIIBEISBEKCER, is CD,t = 0.0375 I t e ~ ~ . ' ~  . By these 
measurements Rec had a range from , 2  X lo5 to 
8 X IO".. FALK?YER sorted out and correlated a 
great number of measurcments, known t o  him 
from several papers. The range of ReL was from 
lo6 to 4 X lo8.' He found 0.0306 R e i ' h  , 
a formula which agrees very well with the 
formula, fitting WT~SEISBFJICER'S measurements 
best. FALK~YER'S formula will .be used in this 
report. From this formula one derives rt(0) = 
0.0131 I l e i ' i 7  SO that (111, 4) can be written 
log T ~ , L , ( O )  = - 2.156 - log Re,,t , ,  a formula, 
rcpresented by the line 4 in fig. 5. T,he differ- 
ence between rt,t,(0) and rr,tr(0) is less in this 
case thali when taking S, = constant and = 
0.074 1le;'la. For z 2 X 1 0  it  a,grees with 
tlie diffcrence .found by P R L ~  when using 
Co,t = 0.074 I l e ~ ' / 6  and z = X .  

So one can conclude, t h a t  S2,, = S , , t  . a t  the 
transition point.' can be used in connection with 
the right formula for the rcsistanee of the tur- 
bnlcnt ,boundary layer. In modern calculations 
they do indeed (ref. 16, 17, 18). 

In fig. 5 also lines are drawn representing 
log ~ ~ ( 0 )  as function of fie, following (111, 3) with 
7n=-'/? and A=0.0131 for Re, , t ,=10 (l ine5),  
5 X 1 O j  (line 6 )  and loG (line 7) .  Line 8 is the 
asymptote 

log ~ t ( 0 )  = log.0.0131- 
log Iie, for 226, )) 

Up to here, y e  #have assumed, that transition lakes 
place suddenly. But this involves, that the dis- 
placement thickness 8 , .  is discontinuous in the 
transition point; a fact, that. is difficult to bring 
in accordance with the assumption of constant 
x-cloeity a t  the outer edge of the ,boundary layer. 
One -can avoid this difficulty by introducing a 
transition region, in which the velocity profile 
gradually .changes from the 'laminar one into the 
turbulent one. T,he region may have a length t 
and outer. points z = I* and 5 = x** ; asterisks 
denote values in these points. 

1 

2 

. .  independently from the experiments. 

- 

'From (II1,l) it follom, tha t  
s** 

~. ~ e $ ;  -Reg2 = J T ( O )  . d R e , .  (111,s) 
z* 

;(O) 'versus z will be approximated by a, linear 
function in' this region. 

z** 

Then /" r(O)dRe 1- - * (  .. !** (0) + r * ( 0 ) ) R e t .  

Now 
. .  3c* 

A 
m + 1 

r** (0) = A R e ;  and = - Re;+*, 
so that 

Xoreover 

r* (O)=CRe;'i* and Res*;=ZC(Re;)'ls 

60 that 

7* (0) = 2 C*/Re$2 

Therefore (1II,8) leads to 

= R E $  + Cz R e ~ l R e ; ~  ._ (III,9) 
Using A=0.0131, nt=--l/, (ref. 15) and 

C = 0.332 (exact velocity profile of laminar flair-) 
one finds, 

. ,  
Log &e$: versus log Re$* for a number' of values 
of Ret is given in fig. 2 (in thc corner left down). 

If assuming another velocity profile for the 
laminar boundary layer tha.n tlie exact one, C will 
change somewhat, but the changes in. the lines 
log Reg: versus log will not be of any import- 
ance. 'Therefore no calculations ,have heen carried 
out ,for other velocity profiles. 

-4PI:I*GRTDIX IV. , 

Calculations in the case .of a turbulent boundary 
layer. 

Using the boundary conditions v(O)=O, v,(O)= 
-uz(0)=O and in connection with the first of 
these, { A u ( 0 )  )* = 0 one gets by integrating (3.5) 

p ( S ) - - p ( O )  = A @ = -  uw,dy-~w*(S)~+  /? 
0 

6 

+aW,(S, f [ ( A U . A v ) , +  ( A W ( S ) } ~ .  ( I v , 1 )  
'. 6. 
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The last term on the right hand side will be 
omitted: it depends on the turbulence outside the 
boundary layer and by not introducing this term 
in the calculations of the laminar boundary layer, 
we tacitly assumed that there is no turbulence in 
the hulk of the stream. If however some dcgree 
of turbulence does exist outside the boundary 
layer, the term 

{W) )* 
will be found in the expression for Atp as well as 
in that for Alp and these will cancel each other 
out in Alp -Alp. Therefore we can omit this term 
without limitating our conclusions only to a b u k  
'of stream free of turbulence. 

The fourth term on the right hand side of (IV, 1) 
can be evaluated as follows: 

d -  8 

- / (Au.AW),du= (see 3.6) f i n d ? / =  
U 0" 

8 -  

= /" ixdy = (see 3.7 and 3.3) 

i [ A R e ; ( 1 - - q 3  + 3 q 4 ) I x d y =  

U 

a u . .  

= mA ReY--l(li, /v) J (1 - 4 q3 + 3 q*)dy + 
U 

I , d  

+ A Rex" / (1-47% + 3 79, .  7 8 .  S& 
6' 

As the integration has to  be carried out a t  con- 
stant X or at  constant 8, one gets from (2.5a) 
dy =Sa,,. The expression q6 has to be taken a t  
constant V and n-ill be = - q / S  (see 2 . 5 ~ ~ ) .  

d 

So - / ( A L L .  Aw),dy = mA Re;-'(U,/v)S. 

. f ( l - ; q 3  + 3 q 4 ) d 7  + A R C ? &  /(-12q2+ 

1Zq3)(-q)dq=(see3.2and3.3)=~ mAlleY-' Res 
( u-uz) - I  ---ReZm 

l+n i  + AZ(u-u2j-' R e i m =  ' A' 

as ReJ=A(U-uZ)-' __ . ~ e y + l  (from inte- 

gr;Lting 3.2..after substit,uting i (0 )  from 3.3). The 
other terms of (IV, 1)  can be evaluated in  a way, 
analogical to t h a t  used in appendix 11. 

The only difference is that (2.5b) has to  he re- 
placed by d X = d x = C W d 8  with p'=-m/(l+m) 
and C = A - l - P ( n ~ + l ) ' ( u - - u Z ) ' f ' U ~  v - p ,  for 
instead of (2.4) we have to write (3.2) combined 
with (3.3). Now the cnlculations are carried out 
as follows : 

U 
i 

0 d 

_ -  -~ l + 2  na 

_ _  
1 + 111 

_ _  

I&=u,q&=u, . .  ( - q / S ) c - ' S ; p  = 

- C - ' S - @ - ' U y q ;  v y = v y  q*=vr j8 .  

So from the equation of continuity 'ha + vu = 0 
one gets . V , = C - ~ ~ - " ? U , .  

Integrating this : 
7 

W='C-ls-yq%- 1 id1)) "). 
U 

From this 

(vu - = c-48 -P - pc-lS - P I  I , v z.- - C - - ' * - P  

- / udll) + ~ - 1 s - y ~  + qu4- t L j  (-;IS) ] = 

U , 
- _-  c-2 8 -?P-I  [ w u - p  /' d7) + ,%I 

so that - ( uv& = /" C-'S-2'-' (("vu2 - 

+ 8 /  '1 2du2) = + C-26'"( 1 - puz + 

" 
J 1 

U U 

- 
-pu u d q +  uqZ ILy )  Sdq=C-=S-ypqU2-puT+ 

1 
- 

0 J' 
U 

. .  

+ 2 ( p - l ) q ) .  

For CU;%.' = D,  say, equation (VI, 1) becomes 

AtP=hD- zRe-u* { 1 -pi' f 2, ( p -  1)~u '  ] - 

- + D - 2  Re; 2('( 1 - z)z + D 
- 

Ile;'-'u, (1) + 
1 + 2 Re2nI - + * AyT- 2 j Y - l  

=.AZz<ey (u  - UZ) 2 [ ( p  - 1) qua + 
+U-& (1  + p)u + $ ( l - p )  (U-P)I+ 

'+ uy (1) (?a,+ 1)Ee,'. 

1 + 111 x - - _ -  

-2 

For a well chosen velocity profile u,(l) = O  
and the second term of the expression is cancelled 
out. 

And eyen, for an in this point less well chosen 
velocity profile, e. g. for the velocity profile u = 7", 
this tenm may bc omitted. 

For, as nt > - 4  for the tnrhulent boundary 
layer the second term will be negligeahly small 
compared with the first term in the ease of a not 
too small R e x .  So 

A ~ ~ = o . ~ A z ( ~ c - ~ * ) - ~ {  10 ( p - l ) q u z  + (16- 

- 6 p)<- 5 (1 + p)gz+ 6 (L- 1)G) Reim 

- _~ 

and as 
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~~ 

Atp 1 0 . 1  A2(P+4)(m + l ) - z p G (  --?LZ)-'{ 10 ( p -  (u-w*)-?{lO(p-l);;li+ 

- 1 1 2  + (16 - 6  p )  u-5 (1 + p ) u 2  + + ( 1 6 - 6 p ) i - 5  (1 + p)%'+ 6 ( p - l ) G ) =  
+ G ( p - I ) ? ) N e - * ' .  = ( N  + 2) ( (4 -N)p  + 11N + 16)/N. s, 

For the velocity profile u = 7'/N is v = N / ( N  + 1) ; 
uz = N/s(N + 2)  ; vuz = N/2(N + 1) so that 
- - 

Completed: March 1952. 

velocity profile 

TABLE 1. 

Results of calculations for the laminar houndary layer. 

See 

Ref. 5 

Ref. 19 

Ref. 20, 686 

- 

r ( 0 )  . R e 2  

0.332 

0.289 

0.365 

0.323 

0.343 

0.328 

1.25 

1.67 

1.26 

1.79 

1.33 

R e 2  A l p  
82 

' 

0.416 

0.889 

0.527 

0.840 

0.5il 

0.77 

0.76 
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The image-method gives rise to a sqnare round 
each angular point of the rectangle described on 
the tunnel, n.ith 4 discrete vortices on ' the  sides 
(see fig. 1). 

I 

1 .Introduction. 

The tunnelwall inflncnce on models in a rect- 
angular 'working-section can be determined in a 
well known way by the method of images. 

With the oetagonal tunnel the walls cannot be 
represented cxolnsively by a set of image-vortices, 
as the image-method fails for walls enclosing an 
obtuse angle. 'This method gives rise ,to singulari- 
ties a t  places where they do not exist in reality. 

G:K. B I ~ ~ m ~ m  (refs. 1 and 2) has solved this 
difficulty by replacing the oblique tunnelwalls by 
a row of vortices with a strength varying linearly 
with distance along the ~vall. 

The linear vortex distributions on the ohlique 
walls are chosen so that the oblique walls be- 
come approximately streamlines. One can obtain 
a further simplification by replacing the vortex 
distribution on the ohlique side hy a discrete 
vortex, introducing' howcver a,gain a small error. 

Fig. 1 

In this report it  is proposed to replace the 
vortex distribution not by 4 discrete vortices but 
tip a quadrnpole. The calculation ,becomes simpler 
whilst the boundary condition on the oblique side 
can he fulfilled more satisfactorily. 

2 

. .  

The perturbation field of the  tip vortices in 
a rectangular tunnel. 

2.1 Aerofoils with small aspect ratio. 
For acrofoils with small aspect ratio the trail- 

ing vortices can. be approximated by a dipole I*. 
The image-method &fives rise to a set of dipoles as 
shown in fig. 2. Indexes 11. and m are introduced 
to denote t,lie dipoles, the dipole ( a m )  being in 
the nth column and in the mth row; the dipole 
representing the trailing vortices of the aerofoil 
nil1 be indicated hy (0, 0). 
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T,he velocity field corresponding to the half 
infinite dipole (n, m) ") can be wi t ten  in com- 
plex form as 

Y 

1 t m = t  

Fig. 2 

- -ip(- l ) m  
V%"L = 4 T( z - im7~ - T L ~ ) ~  ' 

The resulting field of all dipoles can be obtained 
hy sliming over n and m 

n , m  being integer numbers. The douhle sum t 
can lie simplified with the. aid of the relation 

n.0: 

(2.1.1) changing into 

(2.1.2) 

The perturbation field Vw due to the tunnelwalls 
is equal to  the field of all dipoles, tlie field of the 
central dipole (0, 0) being suhstractcd 
- 

P ( z )  = 

(2.1.3) 

T,he expression (2.1.3) is indeterminate for z = 0 ;  
honerer, continuity conditions lead to 

V * ( O )  =limV"(z) = 
z+n 

- - 

(2.1.4) 

For the  points on the X-axis of the tunnel (fig. 2) 
V' is purely imaginary, with V*=V,*-iV,* 
follows 

- - 

. *) All velocities are in the plane perpendicular t o  the 
tanml centre line and through thc lifting ,vortex o f  the 
mod,cl. 

T',"(2) = 

1 

sin-(z - imh) 
11 . 
7r  

and 

V U * ( @ )  = 

(2.1.5) 

(2.1.6) 

The dipole-strength @ can be expressed in the 
lift A 

. .  
(2.1.7) 

A 
I".= - (see 2.2.7) 

PU 

U representing the free-stream-velocity. 
With A = + pU2caF (P =wing area) and 0 = bh 

( 0  =area of working section) (2.1.5) and (2.1.6) 
reduce to 

(2.1.8) 
F 
0 V'=S,(z) . U c .  ~ 

P!l 

from which follows for the correction of the angle 
of incidence 

T,he dimensionless coefficient S,(z) is given by 

and (2.1.10) 

(2.1.11) I (- 1)" 

The tunnelm-all influence gives an upwash. angle 
Aa at  the aerofoil, so that a lift coefficient in the 
tnnnel with geometrical angle of incidence aT 
corresponds to a lift coefficient in free flight 
with a geometrical angle of ineidenee 

av = a ~  + Aa. (2.1.12) 

2.2 Aerofoils with large aspect ratio. 

For aerofoils with not too large aspect ratio the 
trailing vortex section can be replaced by a dis- 
erete vortex pair. I n  order to investigate the 
optimum representation of the vortex section we 
consider the vortex pairs (0) ,  (1) and (2 )  re- 
presented in fig. 3. 

Wc want to determine the pair (0) so that its 
field agrees as much as possible with the resutling 
field of the vortex pairs (1) and (2). The fields 
of the pair (0) and of the sum of (1) and (2),  
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" 1 ' '  2 J - z z ,  z + a ,  
r +- __-.I_ 

can he developed in power series of l/z, 

- 1 r z roz,,g vo=7 (- + __ + ..,......) 
na 2 24 

The two unknowns r, and z,, mill he detwmined 
lip' tmi) independent equations. 

Fig. 3 
! . .  , ,  

The best agreement hettvcen 7". and v,LP is 
therefore obtained if the first two terms of the 
series for 7, and T,,, agree,. 

roe, = r,z, . + r,~, , 
res: = r,z: + r2a:. 

Extension to w vortex pairs. gives 

n 

roz: = rkxh3. (2.2.2) 

These relations a.re n o w  used td calculate the 
vortex pair that represents as closely as possible 
the field of the trailing vortex sheet AB (see 
fig. 4). 

Calling the stren@h of these vortices r and - r 
and their locations z = G and 5 = - G respectively, 
and indicating the  vortex strength per unit length 
of the distribution AB ,by y ( z ) ,  then (2 .2.1)  and 
(2.2.2) 'yield 

P = l  

s/z 

r c =  J 'y (z ) . .sdz ,  (2.2.3) 

,rP= r Z y ( z )  . 9 d z .  . (2.2.4) 

0 

. .  i *  

J."m (2 .2 .3)  and (2.2.4) follows 
sh2 I '  y (2) 2 3 d 2  

{ r(s)zdJ: 

_ .  ( 2 2 5 )  0 
i PI c2 = 

U '  

l-lance for a n  aiwofoil with an ellil,tieal distri- 
liiitioii of circulation 

6 - 
c =  a l/:3 . '- ( 2 2 . 6 )  2 '  

Fig. 4 

This formnln €or the location of the 8nbstitntiiig 
vortices will also he used when the ciren1;ition- 
distribution over the aerofoil is nnknown. I n  
general, the real distributions will not diverge 
mncli- from the elliptical distri1)ution. 

Whereas the value of e depends upon the cir- 
culation-dist,ribotion round the aerofoil, the pro- 
dnet rc can obviously he expressed, independent of 
the cireiilatioii-dist,ribution, in the lift A, the free 
stream velocity 7j and the density p. 

Calling the circnlit,ion around the aerofoil I"($) 
tlicii y ( s )  =---so that partial integration of 

(2.2.3) lcads to 

, ' dr' 
dz 

S/2 

r e=  /' -/(z)zdz=-. 
b 0 I ) . .  

si2  

r c  = { ~ ~ r l ~ .  
n 

For symmetrical circulation-distribiitions P(s) is 
given by 

SI? 

so that 

After replacing t h e  trailing vort,iees in t,he 
above mentioned way by a discrete Tortex pair 
the latter is reflected against the horizontal and 
vertical tiinnel malls. This gives rise bo a vortex 
confignlrxtion as represented in fig. 5. 
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Each 'vortex pair is indicated by tho indexes 11 

and 911, 11. determining the column and 111 the r o ~ .  
Y 

Fig, 5 

The field of the half infinite vortex pair (n, 7%) 

can- be expressed by 

4 na 
- r 1 

1 
z - (nl, + inih - c )  

- v",m = 7 (- 1)m j - - 

V ( 2 )  = - 2 (-1)m. ] 

2 -  (nb. + ihnt + c )  

1 .  - 

Hence the field of all vortex pairs hecomes 

- r 1 

z - (n ,b  + i m k . - c ) I .  

- 

4 & a , m  2 - ( n b + i h m + c )  

(2.2.8) 1 - 

With the aid of the relation 
x 71 -- - cotg-(2-intk-c), -v 1 

% z-iimh-c-nnb b . b  
F(z) can he simplified to 

V ( z )  = 
r 

4 Ti b ,,, b 

- 

7r . 2 (-1p 1 cotg-(2-iimh-c)- - _- 
II - e0t.g- fz-iimh + G) 1 .  .(2.2:9) . b  

The perturbation field due to the tunnel walls is 
equal to the field of all image vortices, 
- 
V * ( z ) . =  

n 
-cotg -(z-i ihm+c) I - b 

. ) .  (2.2.10) 
-=(----- r 1 

z--6 z + c  
I n  the same way as shown in section 2.1 (32.10) 
can be written as 

(2.2.11) 
F 

VFU (2) = S , ( l )  . Z7C" 0 , 
with 

h . a  
b 

2 (- 1)s' 1 cotg - (z - i9nh - c ) -  6 ,  (5) = - 
1 6 c  ,,> 

II - cotg - (1: - itnh + C) - 
b 

an expression which is purely real as a result of 
symmetry. The correction angle follorm fram 

(2.2.13) 

The disturbance due to the oblique walls in 
an octagonal tunnel. 

3.1 Borofoils with smaa mpect ratio. 

1" 
Ala== S,(z)c, - . O '  I 

3 

The flow field of a dipole in a rectangular 
tunnel has '  heen found in (2.1.2)' t o  he 

I 

(3.1.1) 
We now want to determine the velocities normal 
to the oblique wall C D  of fig. 6. Along the line 
CD we assume a parameter 1, which is zero at C 
and is equal to 1 at D. 

" 

Fig. 6 

The paints on the wall are given by 

z = - + + a + t ( i - l ) ( - - a a )  b h (3.1.2) 
2 2 

The veIocity normal to CD, 
v,,=t1/2 (V*(t)  + VV( t ) )  

can now he determined. 

VZ(t) = 

With v=V,-iV, follows from (3.1.1) 

= 

(3.1.3) 
in which the expression (3.1.2) has to be substi- 
tuted for z. As an example, the velocity ' V,,, 
nornial to the oblique walls was computed for 
the working seetion of tunnel 3 of the N.L.L., for  
which b = 300 em, h = 10 cm and a = 55 om. The 
results are represented in fig. 7. 

It is seen that the distribution of V,, is anti- 
symmetrical with respect to  t = g  and roughly 
linear. The square generated by reflecting the 
oblique .wall is drawn in fig. 8 ;  on t,he sides t,he 
normal vclocitiaq ore schematically indicated. We 
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now seek a flow vith a singularity in the angular 
point E,  which neutralizes the normal velocities 
on the sides of the square. Approxiinately this 
is satisfied by the flow of a quadrupole v i th  a 
suitably s t r eneh  Q. 

To a half infinite quadrupole lyhich lies in the 
origin and is orientated a s  indicated .in fig. 9> 
helongs a velocity field 

- . - Q  
V=- 

4 ilz? 

The quadrupole (m,  n) with a strcngth -(-l)?l'.Q 
at  

b h 
2 2 z = - + i - + nb + imlt 

consequently has a velocity-field 
- - (- 1)"Q 
V",,, = b . h  

2 2 4 x (o  - - - a  -- nb - iixh)3 

The influence of all quadrupoles together 

can be calculated by first summing over n, making 
use of 

cos z =- 
1 

i Y ,, ( 8 - n ~ ) ~  sin% ' 
Then 

7r b . h  . 
- (av- - 2 -  - m h )  

il b . h  . 
b 2 2 

- --& b 2 2 

sin3 - (8 _- - z - - zmk) 

is obtained 

For the points along the oblique 
wall C D  

according to (3.1.2), so that the 
velocity components are given by 

(3.1.4) 

: . 

Fig. 8 Fig. 9 

. (3.1.5) 

! 

sin' [ii-iih(l/+m)'+t(i- 1) ( h / 2  - a ) ]  b 

cos [ ia  - ih(l/? + m) + t ( i  - 1 )  (Ill2 - Q )  ] 
b 

b 
sin3 - 71 [ia- i h ( x + m )  +t( i  - 1) ( h / 2  - a ) ]  

The velocity normal to the wall C D  is given hy 

V,,(t) =+ Vj(V, , ( t )+V, , ( t ) ) .  (3.1.6) 
For the tunnel mentioned under 3.1 V, , ( t )  is plotte'd together mith V,,(t) in fig. 7 



The choice of Q has to he so that the average 
velocity normal to tlie,wall C D  is a smajl- as pos- 

directed vertically 'because of tlie symmctry, are 
now given by 

F siblc. This happens when the transport through t,he 
Vpu(z) =S,(z)rjc, - half. wall (from t = O  till t=+)  is zero. Thus, 0 

the strength Q of tlie quadrupole is determined &h . .  

. .  

from the equation 
' ; z  Q ' .  IL 

S a ( % )  =- __ ( b) 3 (- l)lfi s z r c b  ,II . . .  
(3.1.7) - b . h  . 

cos LL (x - - - ' I  - - anih) 
. b  2 2 

- b . l i  . sin3 (z  - - - a - - a m h  ) 

6' 
The field (3.1.4) of the quadrupoles now gives 
only-. vertical perturbation velocities along the 
X-axis Of the tunnel 1) 2 2 

An;rlogous to 2.1 and 2.2, (3.1.6) can be written as, 
F 
0 V,(Z) = S,(Z)UC" - , 

with 

(3.2.4) 

( 3 . 2 . 5 )  

(3.1.6) 

(3.1.9) 

(3.1.10) 

&nee the correction angle due to the oblique The correction angle can he determined from 
tunnelwalls is - 

(3.2.6) . ,  fi' F .  ..< I A*rr=S , (Z )C ,  o. 
(3.1.11) . I  A,a=S,(z)cn - . O '  . 

3.2 Aerofoils with large aspect ratio. 4 Aerofoil-fuselage-tunnel interference. 

For- aerofoils 'mith lalrge aspect ratio the cal- 
culation of the perturbation field and of the 
factor S,(Z) as a result of the presence of the 
oblique tunnelwalls is about the same as for aero- 
foils with small aspect ratio. 

The only difference appears in the formula 
(3.1.7) where the normal velocity Vpn  has to he 
replaced by V,,. which corresponds with an aero- 
foil with finite aspect ratio. 

From (2.2.9), . the componmt .orma1 to  the 
oblique . .si&. is obtaine!,. as 

With an aerofoil-fuselage combination placed in 
a rectangular tunnel the flow has to satisfy two 
hoipdary conditions; both on the tunnelwall and 
on the fuselagc the normal velocity has to dis- 
appear. 

When the fuselage is long enough it can be sub- 
stituted in first approximation by an infinitely 
long cylinder. The normal'velocity. can be  made 
zero both on the t u n n e l d l s  and oL1 the cylindrical 
fuselage hy applying a twofold ima,ge-process eon- 
sisting a€ the reflecting with respect to the tunnel-. 
walls, discussed earlier, and moreover a reflectina 

The dimensionless quantity __ can be deter- 

mined from 
z rei) 

. V,, being given by (3.1.6). 
The perturbation-velocities along the -X-axis of 

the tunnel, induced by the oblique walls and 

in Appendix A ;  we will restrict ourselves to such 
cylinders. 

The complete image-process is as follows: 
The trailing vortices are reflected with respect 

t o  the rectangular tiinnelwalls (linear reflection). 
The so generated virtual vortex. pairs are now 
taken as dipoles and reflected n-ith respect to the 
cylinder (circular reflection), through which a set 
of virtual dipoles are obtained within the cylinder. 
In a plane perpendicular to the.  nndistnrhed flow 
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this set of dipoles has  the centre of the Piiselage 
circle as a limit point; with small relative 
fuselage-diameter all these rirtual dipoles can 11c 
thought in the centre of the circle, giving rise to 
a single dipole in this point. This dipole is now 
reflected linearly, tlie generated images being 
reflected circularly afterwards. With unlimited 
continuation of this image-process the virtual di- 
pole within the circle converges to a limit dipo!c, 
with the aid of which tlie aerofoil-fuselage-tiinncl- 
vrall interference can be. determined in first ap- 
proximation. 
In fig. 10 the acrofoil-fuselamge combination in 

2.5 

dipoles have now to  be reflected with respect to 
the circle. 

According to Appendix A the image of the. dipole 
(n ,  m) with complex strength Mn,nl = - ip(- 1) n~ 
and lying in  thc point x = nb + im7t is a virtual 
dipole with.complex strength 

7 1 l k  where a,,,,,, = bg  t g  - . 
Thinking all virtual dipoles in 0 and reflect,ing 

all dipoles generated by linear reflecting a virtual 
dipole with complex strength 

?2 b 

T - 
2c 

Fig. i n  

free flight is represented. I n  first approximatioil 
the trailing vortex section can be seen as a vortex 
pair with strength ft r and distance 2 c. 

The aerofoil-fuselage ' interference can now he 
expressed by the field of the'vortex images reprc- 
sented in fig. 10.-(within the circle) with strength 

i- r and distance -, I< representing t,hc radius 

o i  the fuselage circle. 
The resulting dipole strength of the two vortex- 

pairs togctlier is 'given hy 

It' 
2 c  

'' r. (4.1) p = 2 ~ r - - r =  z c  -=) I P  
2 c  

attaching to the down-pointed dipole-vector a 
positive strength. Considering now this aerofoil- 
fuselage combination, in a rectangular tunnel, the 

I 

i J m = 2  

"=-, n. 1 

Fi8. 11 

first linear reflecthg will hare to \IC carvied out 
with a dipole {vith strcngth p (4.1). The rksult 
of this reflection is represented in fig. 11, the 
dipole in the 71th column and on the nith row having 
a complex stmigth AVn,m = - ip(-)". The rirtual 

is generated, the dash at  the sum indicating that 
the term with n = m = 0 has to be excluded. 

Out of considerations of symmetry $1' is purely 
imaginary (resulting dipole-vector in Y-direction). 

The ratio 

Jfo = - i p  representing the comples notation f o r  
the "initial" dipole, is consequently real. . , 

The extra dipole W=&, generates hy linear 
reflecting a row of image dipoles as in fig. 11, 
however, the st.rength of the dipoles now is E times 
as large. Circularly re5lecting the  latter dipole set 
generates i n  0 a new image dipole v i th  strength 
E X '  = 2No . Unlimited continuation of the linear 
and circular reflections gives in 0 a dipole with 
a complex strcngth 

Jf" 
nf*=nf,(l + E f E * +  ......) =- 

1 - e  " 

As E is real, the streiigth of this dipole is gircn 

Snpposing that the trailing tipvortex has the same 
strcngth r in both the free-flight situation and the  
tiiiiiicl situation tlie aerofoil-fuselage-tiinnel inter- 
ference has the following consequences : 

,, 

1 the lift in free-flight is A = p u p * ,  p rcpre- 
senting the  resulting dipole strength of the 
t,railing vortices plus the image-vortices. 
The lift in the tunnel a t  the same strength r 
of the trailing vort,ices is A' = pup*, where 

P *-- 
- 1 - E  

Betwecri t,he quantities A en A* there. esists 
the 'relation 
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2 The velocity Vp!,* due to  the tunnelwall in- 
fluence has to  be calculated with the aid of 

the dipole strength p* = 
Consequently the. ~xeri~ured hf t  coefficient co* 
has to be used  in^ (2.1.9). 

3 Compared to the free-flight situation, an 
extra dipole with a s t rens l i  I*.*- I*.= 
p * ' ( I - ( l - e ) )  = ~ p *  is located in 0. 

This dipole induces a field which generates an 

A* 
PTJ. 

. 

I extra induced rrelocity variation 

A" = f pU2~,"F 

(4.7) 
E' 

A3a=8, (z )c , ,*  - 0 '  .. 

E h b 2  
a,(%) = -(-) (-) : (43) S n  b z 

. .  
5 .List of symbols, 

2, !/ Cartesian coordinates 
z = 3: + i g  complex coordinate 
b tunnel width 
11 tunnel height 
u vertical distance hetween tunnelaxis 

and intersect,ing line of ,the oblique 
wall with vertical tunnelwall 

S wing-span 
2C distance between the substituted vor- 

R radius' of the fuselage 
F wing area 
0 tunnel cross sectional area 
%'z I VY velocity-components in X -  and Y-di- 
- rections 
w = &-ivy conjugated complex velocity 
U free-stream velocity 
r vortex strength 
I*. dipole strength 
ill complex dipole strength 
Q 
A 
P dcnsity 
t paramcter along the oblique tiinnel- 

C, liftcoefficient 
E interference factor 
8, ($1 tunnelwall influence factor in rectan- 

' gular tunnel 
S,(z) tunnelwall influence factor due to  the 

oblique walls 
&(2) influence -factor due to the aerofoil- 
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APPENDIX A. 

Reflecting with respect t o  EL circle. 

I n  a flowfield with complex potential F ( z )  a 
circle C is drawn with radius R and centre 0. 

Y 

. Fig. 19 

We now look f o r  a correction flow which neu- 
tralizes the normal velocities on the circle, C be- 
coming a streamline in . the resulting +low. 

We shall prove that a correction flow with eam- 

plex potential function'F (E)  satisfies this require- 

ment. 
The complex potential of the resulting flow is 

equal to 

z 

'Rz +"+.ill.=P(Z) +3 (z); 
For points on. the circle z = RE'" , so 

y + i+=P(Re'X)  + Y ( R e - ' " ) .  

The two qunntities in the right2hand side are con- 
jugnted,eomplcx, the sum therefore is real. Hence 
the flow function ll. = 0 vanishes on the circle and 
the circle is a streamline, 

We  shall apply this theorem to  the flow of . a  
dipole with strength p and orientation p lying a t  
the point. re'" (see fig. 13). This dipole has a 
f low-f ield 

- 
tJ1 = 

27(e-  re'")$ 
and a complex potential 

The correction flow which bas to he superposed to 
make the circle coincide with a streamline, conse- 
quently has a complex potential 

and a velocity field 

Completed: March 1950. 
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This flow field corresponds to a dipole with a function within the perid-parallelogram is equal 
to  the number of poles lying withm it (a pole 

Counting the number of zero-points of the con- 

R2 
strength P ;;i and a direction (7 + 2 a - a),  situ- 

ated at the point e = =e"', being the k " o n -  

the nlth order is nL-fold), 
R= 

ingated comr,lex i. e. the number of 
_ I  

nation-points- within the period-paralleloglam ,this 
number appeaas to be at least ten in the presence 
of one trailing vortex pair (see the numbered 

point of veaa with respect t o  the circle. 
Rcf4ecting a dipole with respect to a circle thus 

gives rise to a virtual dipole in the image-point, 

Fig. 13 

the direction being reflected with respect to  the 
tangent of the circle in P (see fig. 13) and the 

R2 strength being multiplied with a factor7 
T 2  ' 

APPENDIX C. 

The number of pales and stagnation-points in the 
octagonal tunnel. 

Reflecting in the horizontal and vettical tunnel- 
walls gives rise to a doubly periodical flow field. 
The conjugated complex velocity then is an elliptic 
function, of which the period-parallelogram is the 
.rectangle which can .be described on the octagonill 
tunnel, doubled in height (see fig. 14). The fat 
drawn parts of the contour belong t.o the parallelo- 
gram. the dotted parts do not. 

Now, according to the third theorem of l i ~ ~ ~ ~ ~ ~ ~ , ~  
(ref. 3) ,  the nuinher of zero-points of an elliptic 

__- 

Fig. 14 

points in fig. 14).  'Except the 4 sortiees shown 
in fig. 14 at  least six other poles are distributed 
in the period-parallelogram. 

As the $lo? field in the tunnel is fxce from 
singularities, except for the drawn vortices, the 
remaining six poles can only be situated in the 
squares described on the oblique tunnelwalls. We 
now place the poles in the eent,res of these squares, 
i. e. i n  the angular points A and L' of the rect- 
angle, which can be described on the tunnel. 

Beeansc of anti-symmctry the six poles have t,o 
be distributed anti-spmmetrically ore13 A and B,  
so that  a t  least a pole of the 3rd order at A and 
a reversed pole of the 3rd order a t  B #have to be 
situtted. 

Formerly me have called a pole of the 3rd order 
of t,he velocity-function a, quadrupole (as t,his can 
be formed out oE 4 vortices). So it has been proved 
that the o1,lique wall of the tunnel can ,be repre- 
sented lis qoRdrnpoles, if no more stagiia~i.tion-points 
are prescnt than indicated in fig. 14. 

When there exist still other stagnation-points, 
poles of still higher order will be situated in the 
angular-points of the rcct,angle. 
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1 Some remarks on the mechanism of transition. 

Iluring the last four yews some experiments 
have been carried out a t  the N.L.L .  in order to 
get acqnainted ivith the technique of the determin- 
ation of the transition point, i. e. tlie point where 
the boiind,ary layer flow changes from laminar into 
turbulent. . .  , 

The experiment,s werc carried out partly in wind 
tunnel iir 3, in which Re,, = 3.5 X 105 for a sphere 
of 150 mm diameter (ref. 1) and the intensity of 
turhulenke I = 3% "/"" (from hot-wire measure- 
ments)., and partly, viz. smoke experiments, ,in 
tunnel nr 4 (Re,,= 3.1 X IO5; I = 4% o/oo).  

E'or these, values of I ,  the fluctuations of tihe 
pressare ili t,he flow outside the  boundary layer 
will play a part  in the Wansition phenomena 
( r e f .  2) .  It, is holieved, that, in this case transition 
d~vays is preceded hy laminar separation( refs. 
3, 4, 5).  As the pressurcs and pressure gradients 
llnctuate with t,ime, the scparat,ion point mill a,lso 
fluctuate with t,ime. -The distance .between the 
separation point and ' the point of rc;ittachment 
may he rather luge,  especially ut low REYNOLDS 
numbers. The sepa.ration and the sudden onthurst 
into a t,urhnlcnt jet can he seen very clearly in 
Sig. l h  (see p. A41). A smoke generator (fig. Z ) ,  
developed a t  the N.L.L. (ref. 6) ,  was placed in 
front of the model. T,his generator has the a &  
vai;ta,ge that the smoke generation can he started 
and stopped very snddenly liy switching an  electric 
current on and off. Fig. l a  (see p. A41) was 
taken shortly after bhe current ]lad been switched 
on. The dead region between the separated flow 

insulating layer 

I streamline body 1 
reservoir 

Fig, 2 .  Hot-wire axnukc gcncratur. 
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and the model has not yet heen filled np with 
smoke. Before this occnrred the current \vas 
switched off. The smoke will stay longest near the 
surface, where the velocity is lowest. Though at 
the edge of bhe dead rogion the velocity is not 
zero, it is low enough (see appendix I) to enable 
the smoke to stay bhere for a rather long time 
(see fig. Ih, p. A41).  

The distance hetween the senaration point and 
tlie point ‘of reattaohment decreases rapidly with 
increasing R E Y N O L ~  numbers. If this distance 
has heeome smpller than the segment swept over 
hy the f,l,uctuating sepaption point, it  will hc 
difficult t o  discern separation a t  all. When using 
the H,S-method (ref .  7)  on a cylindricd model 
with N.A.C.A. 0018 profile a t  rather high velocity 
and REYNOLDS nnmher (v = 41 m/sec, Re = 1.7 X 
‘IO“), it once happened, however, t,hnt, after a long 
time’) only a brown spot appeared round the 
hole out of which the gas was flowing. (The 4th 
hole from helow in t,lie lead-white layer of fig. 3, 
see p. h41). With the China-clay method ( re f .  8) 
it  coudd be s h o b ,  that the ,hole just happened 
to he on the transition line. 

This result stren,@hened our opinion, that even 
at  high velocities tramition commonly is preceded 
by laminar separation, provided that the turbulence 
of the main flow is not too low. 

2 

2.1 The Ghina-clnj naothod. 

some remarks on methods used. 

Although using (lacquered) plastic models, 
me encountered difficulties similar , to those 
found by other investigators in the caSe of 
wooden, models (ref .  9) .  Therefore it, may ‘he 
usefnl t,o describe, how we have overcome t,hese 
d,ifficult.ies, thanks t,o kind information of D r  R. C. 
Pankhurst of the National Physical Tjahoratory, 
Teddington. They found ,their origin in the fact, 
‘chat the liquids, used in this technique, have a 
great penetrating power and partly dissolved the 
lacquer. T,herefore it is necessary t,o use a special 
lacquer of great hardness. A suitable lacquer is 
“Phenoglaze” which can bc ordered from the 
“Phenoglaze Timited”, 466 London Road, Croydon, 
Snrrey. 

The lacquer is sprayed in three layem. The 
drying time hetween the-spraying of two succes- 
sive layem is I day,’ after the bhird layer 1 week. 
These times may he’ reduced considerahly by using 
infra-red drying, which however generally will 
not be allowed with wooden models. As for polish- 
ing, it is recommended to use waterproof cmcry 
paper ( n r  600 for finishing) and water. 

2.2 The 13,s-method. 

From the chemical methods, described in ref .  7, 
we choose the H,S-method as it is possible to 
regenerate the layer in this case with the aid of 

*) Abaut tilo m e  timc as the line in the turhulcnt 
boundary layer behind tlur 5th hale from belom hnd hcen 
pladuecd. 

30 % H,O, (hydrogm peroxide). This is basad 
on tlie well known equation 

PbS + 4 R,O, + PbSO, + 4 H,O . 
The white PhSO, will react with €I$ in a similar 
way as the original P.hC0, , and mill then give 
the brown or black P b S  too. 

The a.dvantaye of the methml is, that it is 
possihle to make a lead-\\-hite layer of the same 
smoothness as the bcst lacquer layer. 

2.3 2’ronsition indication with ssioke. 

0 

At low air velocities it is po 
transition point with the aid of a smoke generator. 
PRIBIOX and S W ~ I S G  ( ref .  10) described a me- 
$hod, where smoke 7% introduced into the hound- 
ary layer from a small hole in the surface. I n  the 
tnrhnlent honndary layer the smoke will be diffused 
much more rapid.ly tha,n in the laminar honndary 
layer, so that the visual smoke line ends a t  the 
transition point. With the smoke technique, used 
a t  the N.L.L., similar photos were obtained hy 
ta!king them just a moment after having switched 
off the elect,ric current (1). It may be pointed 
out, that originally we a h a y s  found a smoke spot 
at the end of a line (fig. 4). Such a spot which 
could be very well reprodnced, mas caused by the 
small amonnt of tnrhulence introduced into the 
stream hy the streamline hody of the generator. 
By the .l,iquidfilm technique (ref .  11) it could 
ha shown, thut this t u ~ ~ h u l ~ n c e  gives transition 
sooner (hcnd in the transition 3ine of fig. 5).  
Comparison of the extdnsion of tthe bends with the 
corresponding smoke spots showed, that they 
coincided entirely. 

I t  is suggested, that only near the surface is 
the t,rirbulcnee somewhat stronger at t.hese spots. 
hut that in the outer regions of the boundary 
Iayer the fl’ow is laminar. Then the diffusion may 
be stronger than in the entirely laminar boundary 
layer, so that the liquid there evaporates more 
rapidly. However diffusion at  this spot will be 
slower t,han in the entirely turbulent boundary 
layer, so bhat the smoke disappears M e r  than it 
does flirther on over t,he snrface. 

The bend could be made smaller by increasing 
the dista.nce between the leading edge of the model 
$nd the smoke generator. In this way we have 
taken smoke photos in flow, where the influence 
of the generator has heen reduced to a negligible 
amount. 

T,he smoke technique, used at the N.L.1,. has 
scveral advantages compared with the teclinique 
of ref. 10. viz. (I)  : hole and tube in the model 
are not required; ‘ ( 2 )  : with tfie same amount Of 
distnrhance, introduced into the flow by the mere 
fact that smoke has , to  he introd’uced, bhe smoke 
density is aGpreeiahly higher; (3 ) :  as a conse- 
quence of (2), t,he exposure time is appreeiahly 
smaller (0.05 see. for the N. L. L. measurements, 
30 see. a t  those of ref .  I O ) .  

Another method of indi,eating transition points 
with the aid of smoke gives photos like fig. 6 (see 
p. A42).  The generator is placed so high, that a 
small part  of the laminar boundary layer near 



the sopface is not Mlcd with smoke. As soon as 
the fiiow becomes turli,ulcnt, the smoke diffuses to 
the surface and t,he hlack line, which can be ob- 
served in the laminar houmdary layer between $he 
smolrc ind its iniagc, reflected by the smooth black 
lacyiier, disappears. 

3 Some remarks on obtainable results, 

3.1 7% E H,S-nietkod. 

When using the II,S-mcthod. for transit,ion in- 
dication, it i s  necessary to be sure that tlie reactive 
gas enters the flow in the laminar boundary layer. 
If, however, the H,S enters bhe flow in the turbnleiit 
houndary layer, it will also draw a dark line behind 
the thole (in fig. 3 the line behind the 5th hole 
from below). It only requires more gas, hcfore 
the line becomes visible. 

\?ret 
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Tmhe nearer these lines are together, the higher 
is the velocity between them. The curved lines 
111 fig. 7b arc st~eamlines. The product of the 
velocity and the distance hetween a line and 
its neiglrhonr h a s  ,heen thought Constant. So the 
smaller t,he area of the segment, the higher the 
velocity over it. The cliitgram helow gives a survey 
of possible transitions (in the direction of the 
arrows). If such a transition can give a line of 
demarcatioii between wet and dry surfaces, the 
tirrow is drawn; if this is not the case the arrow 
is dotted. In some cases (d,inc I) the latter is the 
usual one, though the former may occur fo r  an- 
other drying time. 

The regi0n.s of separation arc divided into closed 
and open regions. Behind the former, the bound- 
ary layer reattaches to the surface, behind the 
latter it does not do so. Furthem.ore wea>k and 
stron'g separations are distinguished (fig, 8). In 

* ( L I Z  Y 4 5 0 
I Laminar boundary layer 

IT 
I11 Final part of the turbnleiit houndary layer . .  

1 Closed region of laminar separation 

n $1 11) I I  . .  

It may occur that one #gets a line in a direction 
opposite to t,liat, of the main flow. This indicates 
reversed flow, which may he detected when for in- 
stance transition is preceded by a somewhat extend- 
od region of laminar separation. I n  this ease a 
line starting from a hole in f,ront of the laminar 
separation point will end at the separation point. 
;md not a t  the transition point. 

3.2 Eunpomtion inetlwds (Cl~ina-cluy (ref. a), 
liqnid film (ref. J1)) .  

.Evaporation methods often give more than one 
line between wet and dry surface, as may be seen 
from fig. 7a (see p. A42). The possible expla.iiation 
is given in fig. 7b. The vertical lines on the 
fuselage are lines of constant pressure, if the wing 
would . have :beem removed (simplified 'outline) I 
'Phese would ,have to be changed somewhat for the 
wing-fnsela,ge combination. Bu t  for a rough insight 
this is unnecessary and is therefore omitt,ed. 

the former tlie speed of evaporation is very low, 
in the lat,ter it is high at the trailing edge of the 

closed region of 
laminar separation 

J.'ig. 8a. 
Laminar sapuation 

(closcri region). 

direction 

Pig. 811. Fig. 8c. 
\\%ah eapnratiaan. Strong soparation 

model and slows down. in .the direction of the 
leading edge. So drying up starts at the trailing 

. .  edge. 
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The s p e d  of evaporation and tlie mall shearing 
stress ( T ~ )  arc closely related; qualitatively they 
nuy lie givcn hy tlie same line (fig. 9). The drying 
t.ime is inversely proportionate to bhe speed of 
empoiation, provided that the amount of liquid 
per unit of arca is constant a t  the start. In what 
folloms t,his proviso is assumed. 

Between the 1amina.r and tlie tu rhnknt  layer 
there exists a transition region in which the 
velocity profiles gradually change from t,ypically 
laminar profiles into typically turbulent ones 
(fig. ' 9) .  After trhe running time t, the surface 

4 
'chord or Lhe model 

for an entirely laminar boundary layer 

pd'tly Iamindi-. partly turbulent boundary 

-.-.-POT an enrlrely turbulent boundary layer 

layer 

l,'ig, 9. Shcnring strcss, s p w l  of  ovapwat i i i i i  a n d  
drying t i m c  along tlw snrfncr. 

will he dry  along OE (front part of the laminar 
boundary layer) and AC and still wet aloty E/< 
and C D  (final part of the turbulent bouiidary 
layer). From the measurements one would conclude, 
that, the Wansition "point," moves from A to B lit?. 
t,weeii the times 1,  and t ,  . T,he transition region is 
smaller for large pressure gradients in the direct- 
ion of flow than for m a l l  ones. A t  high, and 
even at  moderate angles of attack, tlie cxtcnt, of 
t,he transition region is negligibly small. 

Fig. 10 gives somewhat idealized drying time 
curves for some flow conditions. The positions of 
t<hc demarcation lines between wet and dry for 
several running times are given by the inter- 
sections of the drying-time line and the horizontal 
dot,t,ed lines. The numbers refer to the arrows in 
the "diagram of regions a.nd transit,ions" on 
page A31. 

3.3 l'urbulence ?ner~.mrementr in the b o m d n r y  
layer. 

Turhnlcnce measurements without compensating 
for the time constant of tlie hot wire have been 
carried out in the boundary layer for two-dinieii- 
sional flow over a N.A.C.A. 0018 profide with 

chord-lcngtli = 0.6 tu,  at, an mglc of incidence 
n = O O  and velocit,ies v = 2 9  and 63 d s e c .  The 
results for  7: =6:3 m/sec are givcn i n  fig. I l a  

drying t i m e  

weak separation 

dry ing hme 

' laminar"l/open region or strong separaraon - 
Fig. I O .  Drying tiiiiii u.7 placo 

Figures  refer to the  diagram on page 1. 
I'iguras in parcnthcsis = inri.;ihlc t,mnsitious. 

and 11,li. The 2, corresponding wibh the maximal 
values of VT/U in fig. 1la only varies 3 % 
chord with jj. This nearly constant value is in 
;mordance with experimental results of R l i m  
atid A ~ ~ ~ S A R U  (ref.  12)  and corroborates hhe basis of 
RLlcrmL's method of finding the trausit,ion point 
for dmg calculations ( ref .  13). Fig. l l h  was 
derived from fig. l l a ,  omitting the points with 
question marks. From the measurements of & I I C ~ L  
and RI~ARD one can derive a similar pattern for 
lines of constant turbulcuce viz. a maximum and 
a saddle surface behind it. The following explan- 
zition is suggested,: - 

After tlie laminar separation a turbulent jet 
ori'pinntes (fig. l h )  in which, starting at  a point 
not too f a r  from the apex, the mean square root 
of bhe velocity fluctuations in the direction of the 
maiu flow, u', may decrease in the direction of flow 
(compare re f .  13). The mean. velocity U decreases 
as me11 but we believe, that in our c g e  this de- 
crement will be Par less than in the case of a jet 
in free, air. I n  the latter u'/U becomes nearJy 
(:omtatit ( r e f .  14,: fig. 16)  ; so in the former u'/U 
may decrease. After the flow has reattached to 
the surface, u' may stay nearly constant in the 
direction of flow, (e, g. ref. 15, fig. 8 for z be- 
tween 17 and 20 f t ) ,  U however decreases, so th,at 
d / l J  will increase. 

It, is surprising that very similar patterns a+e 
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ohtained in the turliul,cnt honnda.ry layer just 
I~oEore separation ( r e f .  15, fig. 8 ) .  

Whether the points with question marks in 
fig. 11a are hlunders or not is difficult to decide. 
It seems imgrohahlc t,hat, the same mist& could 

3 0  4 0  5 0  60 7 0 % C  

rig. Ill). iiiiics of coiistiiiit turhitlcueo ~ : o m p m ~ : n I  
I'Z - 111 thc i,u,in,i;,i.,v 1:iycr. us i, X.AC;\ Ill118 ~ m r i l c  

U 
at E =  11" i l l l l l  0 = fi:< 11116CC. 

IK niadc bhrec times a t  11i ferwt Iiositious. l h y  
1io t,he minimnm is a real t,y, whose existence is 
due to the 1;lminar scliaration. O n  the other l1;1n11 
however we did not find siniilar miiiima a t  = 
z!) m/sec. 

3.1- ~ I e u s i o ~ e ~ i w i i t  of t/ie twiisitioii regioii with ii 

fu ta l  keud tuba. 

1VI1en moving a total liead tulie liarallel to the 
surface 5rom leading edge to trailing edge, the 

1 first decrease, t h e n  increase 
case again. Usu;illy one considers 

the reginn lietween the minimum and the maximum 
1:or a line ncar t , h  sicrfaee tis the transition region. 
In reality t,he t,ransition region extends from a 
point in fi,ont, of the mininrnm to a point some- 
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what hcliind the maximum as is demonstrated in 
fig. 12. In  this figure the ealuat,ed va:lues of t,he 
pressure coefficient T =  (h-p) /?L2 (71 = 
total head, p = static pressure, ?/z p'V2 =dynamic 

Fig. 1% Fig, 1% 
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] p i g .  12. ~ ' r c s s u r c  eocff ioimt = h--P 

R e x  

Big. lee  

"2 

= V r l v  :nid Rea = V a / "  for  f low over a f ia t  pl;ite . 
With d,,/d:?: = I). 

pressure outside the b o u ~ ~ d a r y  layer) for  f low over 
a flat, plate arc given as ti fiinct,iou of the position 
of the total head tube (fig. 12h). The following 
;~ssumptions were made : - 

1) the velocity profile i n  t,he laminar 1ioilnd;lry 
hyer can he represented by I'OHLRAUSEN'S fonnula 
U = V ( Z , - Z , 3 + , 4 ) ,  q = ! i / S ,  S = hoiiinrlary 
layer t,liiokness, TI =velocity component in x-di- 
rect,ion, V =velocity a t  the edge of the 'horuldary 
layer = constant. \Tit,h this velocity lirofile one 
finds (wlien using Vox ' K i i d x ' s  i n t e g d  equ' d t' 1011 

for the homdary layer) that S/x = FiX?,/Re~ with 
Rc,=Vx/v  ( re f .  16) .  

the vclocity profile of the turbulent honnd- 
ary layer ea11 he represented hy the formula 
U = V ( y / S ) " 6 s ) .  This leads to the formula S / X =  
0.1285/Iie'$ with Re.,.=VX/v ( r e f .  18) for a 
bonndary layer, turbulent, from the very lieginn- 
ing. (For X see Iielow and fig. 12e). 

3)  Trailsition occiiis suddenly for Rez 15.10:.. 
At, the transition point t,lie momcntiim t,liickncss 

2 )  

'. 

P 

0 =  i' (u /v ) ( l -u / ;v )d! /  
17 

is the same for the laminar and the turbulent 
velocity profile. This impdies ii discontinuity in 8 .  
After having calculated 0 = B t  for the transition 
point, one can replace the first part  of the plate 

") In this formula t.lie expownt 1/7 i~ nftmi iiscil iii- 
stmd of 115. The exponent 1 /1  tiinov?tir;Llly found 
by VON K t m ~ r 6 ~  for turbulent pip0 flow, for which 
d+/& < O .  This derivation however dors not hold for the 
flow dung B flat plate with d p / d z , =  0 (ref. 18) and, SB 
IL\h.SEN (ref. 17)  pointe,rl Out, V m  IIER HEnoE ZIJNES'S 
( ref .  19) orpcrimentxl yerifiration of thr cxpoiicnt I / ;  
. x m s  tu he aiSpllt&lc. Tho exponent 115 k a h  t u  n vniur 
II = P*/O = 1.4, which is gonorally accepted -(a* =displace- 
ment thiolmcas; 1= mammtum thicknm). 



with length 5, by a par t  with l,en,gth X I ,  so t,hat 
a boundary layer, tnrhnlent from the very heginn- 
ing, has the momentum thickness 8 for X = X ,  . 
Then s - X = z t - X t  (fig. 12e). 

Hereafter, the 6 of the turbulent boundary layer 
can he ca,lculated. 

Starting with the assumptions mentioned above 
one will get lines T versus Re, for constant ne,, = 
T7a/v (a = distance between centre line of the tot,al 
head tube and thc surface), which. lines have dis- 
continuities a t  the transition point (fig. 12a) .  

I n  rcality however the velocity profile will 
gradually change from t,he laminar one int,o thc 
turbulent one, so that the discontinuous rises of 7 

a t  the transition point must he replaced by con- 
tinuous d i n e s ,  as sketched in fig. 128. T,he points, 
where these lines depart from and rejoin thc 
original lines, c a n  he connected, and by cxtra- 
polation to the surface (Re,=O) one gets the 
region AB in fig. 12a which ought to he defined 
as the trmsition region instead of C I )  (fig. :l2a). 

This has ~reeently llieen coilfirmed by the meas- 
urements of MALOTAUX, k " m  V A X ~  DER G'ov ;ind 
YAP Kn: JAX (ref.  20, p. 18).  They determined the 
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3.5' Illenadmnents with. u transition wire. 

A transition wire, placed on the surfaec in 
the laminar boundary layer normall, to the direct- 
ion of flov, increases the resistance of the model, 
for the par t  of the boundary layer between the 
wire a.nd t,lie t,ransition point of the undisturbed 
flow has hem made turbulent by it. So irhcn 
moving a transition wire from the ledding edge 
hackwards, this part will decrease and the resist- 
ance will decrease as well. Once the transition 
point has heen passed the resistance will not changc 
appreciably any more ( r e f .  21). Fig. 13 gives ii 

typical result of the measurements at the N. 1,. Id. 
which differs somewhat from those of RICIL~IWS 
and Hxoivs ( r e f .  21), who did not find a minimum 
or relative maximum. This may be due to the small 
nnmlier of their points with bhe wire in the 
tnrhnlent. boundary hyer.  By using an integrating 
inaiiometev (ref .  22) developed at  the X. L. L., for  
the dcteimination of the resistance from the total 
hcnd measurements in the wake, we could measure 
n grcat, num'ber in  a reasonable time (half an honr 
for the series of points givcn in fig. 13) .  

Vig. 13. I.ncrense of drag,'csused by a transition wire on the surface. A C, ,  
eomparcd with t h c  drag of the  modo1 without transition wim, C,, vcrsus 
the situation of tho wiro (0.5 mm q), C D W = i d r c  drag if placed in flow 

with 21 = 63 ~ n l s c c .  

value of Re,, at  wliieh transition starts, with the 
aid of a hot mire, placed in a static pressurc hole 
j u t  below the surface of the aerofoil. This value of 
Re, appeared to be somewhat lower bhan the value 
of Re,, at vluch the pressure coefficient 7 had 
i ts~minimum (7 was measured with a total head 
tube, the axis of whieh was situated about 0.2 mm 
shove the surface e.i. 0.013°//,, of the chord; 
ne, was shout 750). 

I n  practice hkvever it bill he impossihle to 
determine AB by measurements with a total hca,d 
tube, so that, using this method, one has to be 
satisfied with CD as a first a,pproximation. Along 
the same lines one can .  airuie tha8t the t,rans- 
ition region is larger than the distance between 
the relative maximum and minimum of .  drying 
time (fig. 9).  

The ,drag coefficient of the model withoat trans- 
ition wire is 

C D  = /' Tax& pvzc 
, I  

( e  = chord, pu2 = dynamic pressure, T =shear- 
ing stress given by ABHDE-in fig. 14b. llhis value 
i s  given by the ordinate of the horizontal part  of 
line n of fig. 14d). 

For the model with transition wire the drag 
coefficiant will be 

in which D,=drag of the wire per unit length 
and 7 is represented I,$ ABCDE (fig. 14b) for a , 
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wire in  P I  (fig. l+a), h;- AHIIliUE for a wire (1 tnrhulenee (4.3) 
b total head tohe (4.4) 

in ' P ~ .  IJinc n of fig. 1kl gives ~ d d x  pvzc c t,i-a.iisition wire (4.5)' 
d stethoscope (The noise, heard in a st,ethosaopc , /  

versns the ~iosition of the wire. cminected 174th a total head tube, is a measure 
7Iz0 depends on the position and the diameter of of  the pressure flnctoat,ions). 

the wire for  a given value of 7'. The average valiie l'he results iirc givcn in  fig. 15 "). They show 
of the velocity U over the heisht of the wirc ii grmt dead of scatter. Fig. 15 gives ailso a com- 
decreases in  the laminar bonndary layer, when parison with results giaen in  ref. 23 which arc 
moving the wire hackwa~rds, increases in the trans- ohtained from the measurcmcnt of the velocity 

E 

Fig. 1.1,: 

ition region aiid deereases again in the turbulent, 
layer, hut much more slonl,, 7 v now. 

11, is closely rol~ated to this trvemge speed, so 
the curve D,/% pi:'c versus z of the wire has a 
similar eha.racter (fig. 14c). By  addin,g the eo- 
ordinates of cnrve n of fig. 14d and t,lie clime o f  
fig. 14e, curve 71 of fig. 1411 mils obtained. Fo r  a 
thinner wire a cuwe  of type c (fig. 14d) may I i n  
obtained. Thcn the end of the transition region 
cannot he estimated any  more. 

From these considerations i t  follows that thcrc 
is no contradiction in the results of & c m i i D s '  and 
aiid BROWX'S nieasuremenlts and ours. 

4 Transition on a cylindrical model with N.A. 
C.A. 0018 profile. 

4.1 Co~iqiarisoii of vesults at a = Oo, obfniiied b y  
,ixi riotis techniques. 

The t,ransition region at an illiglc of incidence 
n = 0' was determined liy the following tech- 
iiiqnes : 

with hot wires d o n g  a line a t  0.14°/oo chord from 
t,he surface. The transit,ioii regions given in  ref. 22 
are miich larger than those found with the total 
lit?atl tube.. a t  the N. L. L. There are two reasons 
1'01, tmliis. 111 t,he first place the eent,re of t8he hole 
(if t,lie total head tube was at a distance of 034 o/oo 
chord Iron1 the surface (e. i. 6 times m much as 
in ref .  2 3 ) ,  in  the second place the tube was moved 
i i 1 o i I ~  a straight line iiistedd of parallel t o  the snr- 
face, which also results in  a smdler distance be- 
t,\r.cen niinimiim nnd nuwimum. F'nrtherniore tlhe 
','transition points" obtained with the H,S, the 
Ohii~a-cl;ry aiid t,he liquid film technique are given 
in fig. 15. 

Their average valnes for constant speed lay as 
n niean iihoiit 1 % chord from t,he average starting 
points of t,he ineasurcd transition rcgions, which 
have a,ii averagc lengt,li of 5 % chord. 

*) I"ur total head t u k  and tiansition wirc "sliromcnts 
tho ilisttanec l r t rwcn  minimum and maximum has been taken 
zii transition rcfioii instead of tho m@on d w l i l r d  it1 3.4. 



I ,  (N.A.C.A. ; relocitp measurements with hot 
- I  
- 1  

wire) 

v =  
71 m/sec 

... .. & m , s e e I . ~ '  .. ! . . . . ... ... ... ............. . I . ~ ...... .... .. . .. ,. . 
I 

I .  I mnsition wirc 

Total head, tube 
I i 

i 'I'urhulence 63  111/sec 

h n s i t i o n  wipe 
rota1 head tube 
Stethoscope 
>hiiin-clay 1 
iiqaid film 

-I 

56 in/sec I- 1 

... . I  (N.1 
with 

C.A. ; yelocity measurements 
hot wire) f '? 

f ? l- 

41 tu/sec I- 
l l  

l'ransition wire 

29 m/sec Total head tube 
Tui~hulence I- 

Stethoscope 
Chiiia-cli!y 
Liqoid filin 

Stethoscope 
C:hina-clav 

I I  l I l / S ? C  

Fig. E. Comparison of transit ion regions and transit ion points incasured following vmious techniques 
for a N .A.  C.A. 01115 pmfilc (chord 0.6 m) :it, j r  =Os.  
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I<esults (if the measurements of the transition 
poititq with the H,S, t,he China-clay and the liquid 

m/sec 
Y 

'11 tei 

12-  

8- 

40 

0" 

- 4' 

- e" 

Fig. 16. Trwieitian p i n t a  for N.A.O.A. 0018 profile 
(chord 0.G i n ) .  

tique at various angles of incidence a and 
velocities are given in tahle 1, p. A 40. A negative 
angle means, that the surface is the pressure side 
of t,hc model. Only occasionally is bhe sea,tter more 
than 2 % ctiord, and if.so, this occurs chiefly for 
negative values of' a, in which case the trsmit.ion 
regions are rather large. 

With the aid of t,he mean values, fig. 16 and 17 
tire plotted, giving the position of the transition 
point versus a and u and versus C ,  and Re. 
Froni lig. 17 the values of zt could be obtained 
at  values of C, and Re, at  which measurements 
Ipcre carried out in the N.A.C.A. full sealc tunnel, 
which has nearly the sa,ine turljulenee characteris- 
ties as t,lie N.1iL. tunnel. 

Froin table 2 m e  can see, that, the points found 
at. tjhe N.L.L. lay in the regions, found in the full  
scale tuiinel ( r , e f .  23),  cxcept one point, which lays 
only 1 % tiefore the starting point, of hhe region. 
This resiilt is very satisfactory. , 

0 0 1  0 2  0 3  0 4  0 5  06 0 7  08 09 1 0  

Corrclatian of tranuitian po in t  monxnrcments for :L 

Fig. 1Ra. 'Transition point VBISOS vdocit? f o r  v a r i o u ~  

Fig. Ilih. l'mnnition point Y ~ T P U S  nnglo of a t tack  f o r  
w r i o w  vnlries of thc  relrxit.v J :  u f  t h e  nndisturhcd flow. 

values <>f the  an& of attack. x 1 / =  

I'ip. '18. 
N.A.C.A. 0018 profile. 

Fig. 17. Tran&tion point on N.A.C.A. 0018 profile vs lift coPfficient nn,d Roynalds 
nunth?r of thc  utdistwhed f l m .  



BECKML (1,ef. 24) found, that for the N.A.C.A. 
0012 and N.A.C.A. 23012 profiles the tr~ar~sition 
points t for various speeds and angles of attack 
could he rolilted witli zlll, the abscissa of the 
position 01' inasimnm speed vxl, following the 
formula 

(s,-z2,,,)/c=584Re_'It -0.05 
with Re,, = u,,c/v.. 

The rcsults obtained i t  the N.L.L. with the N.A. 
C.A. 0018 profile did not fit this formula; they 
could he correlated by the ioiniula 

(Zt - ZnJ/C = 2 .  103 lie,;',' + 
+ 0.2 . l i e  - 1.38 with l i e  = . L . C / V .  

il+ ean'bc seen in fig. 18: the deviat,ioiis from the 
45' line are only small. 

5 
1. 

5. 

6. 

10. 

11. 

12. 

13. 

14. 

15. 

IF. 

17, 

Completed : January 1952. 
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APPENDIX 

Calculation of the velocity at  the edge of the 
dead region. 

For  the calculation of the laminar boundary 
layer in retarded flow, Tr"v (ref. 25) introduced 
the following velocity profile, having the asymp- 
totic behavionr derived by VON K ~ " N  and 
MILLIKAN (ref. 26) : 

u/v=1- 

- /e-+ (A,  + n,, + cI72 + 0 , 7 3  + ...... 
Y 

which, when sat,isfying houndary conditions a t  the 
wail, ieads to  
u/v = I3 (1 - e-") ~ U72e-X2 + 

u i' i--* (1  -1 7 7 d 7  
4(1-13) 
3v; 

+ 
'Here H and D are constants and 7 =a]/ wit~h 

Tnmm shows, that a t  the s e p a r a t i o ~  point 
R = 2  D .  When adopting this relation for t,hc 
whole retarded boundary layer flow, he gets very 
g o d  results. 

In the followin,g we shall assume that the for- 
mula for the velocity distribution, given above, 
also holds behind the separation point. We shall 
calculnto the velocity a t  the edge of the dead 
region (fig. 19 ) .  

a2 = - ( d V / d z )  12 Y ( B  - D )  . 

Developing e-nz in a series, one finds 



A 30 

A t  the separation point, B - 2 D = 0. So the 3rd 
term on the right hand side disappears. As the 
5th term is 4 % of the first, fer = 0.8 and we 
only want to study the flow for  rather small 

separa1,on pmnr  

border of the dead water regmn _ _ _ _ _ -  l ine ioor which u = o  
Fig. S,9. Velocity profilcs and dcad-imtor region in 

the e m c  of laminar senaration. 

values of 7, we shall omit all terms except the 
first two. 

so 
4 

U I V =  ~ (l-B)vj + (B-D)?'. 
3 v, 

From this 

If there is no exchange of fluid hetween the 
main flow and the dead region, the amount of 
fluid going to the left  between = 0 and 7 = 7, 
must 'be the same as that going to the right he- 
tween 'I=?, and 7 = v 2  (fig. 19). 

SO 

0 

One finds 
2 B-1 

'I,-- ~ 

'- V, B-D 

T,he assnmption, that B = 2 D holds for the separ- 
ated flow as wrll, leads to ahsurdit,ies for somewhat 
larger distances hehind the separation point (for 
x - z 8  > 4mm in the ease of fig. 1). Therefore 
it, seems better to connect B and D hp an experi- 
mental result instead of using 13 2 11. We 
choose instead t,he relation 1~~ = 911 ( 5  - x8) ~ ex- 
pressing th;\t the cd:pc of the dead region is n 
straight, line. See fig. l b  and ref. 4. 

Then 

and with = 4(B - l ) ' / w ( B  - D)' we find 

4(B--7) Z/$( B-D)= - m 2  (X- - z* )  Z (  dV/dz )  /2", 

so ttiat 

71 (?*)/V =- m2(z - s , ) * ( d V / d ~ ) / G  I,. 

For the ease, given in fig. 1 (chord of the model 
c=0.30 m ;  ' V = 3  m/sec), dV/dz=-?.4/sec 
and 911 Î 0.1, so that with v = 15.10-' m2/sec, 
U(7,)/V=0.02; 0.08 and 0.18 f o r  z-xs,=0.5; 
1.0 and 1.5 em respectively. 
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N.A.C.A. 

N.A.C.A. 
2.7 1 .  N.L .L .  

N.A.C.A. 
N.A.C.A. 

3.3, X.A.C.A. 
N. L. L. 

1.7 N. L. I,. 
Velocity measurements with n hot wire 32-53 25-35 15-28 

Velocity measnrernents with a hot wire 
12 

10-2i Velocity nie?sureinents with a hot virc  25-39 20-28 . . ~ 

Total head measut.enients 
Velocity profiles 

'. . 44 1 29 ~ 16 . 

2-3 22-31 13-26 ' . 

1 __ - 

I 25 I 38 

26-39 14-20 '. 

5;-81(?) 
61. 37 22 10 
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Vig. Ib. S m e  t ime  sftcr tlrc smoke gcnc- 
rutor had been switehod off. 'l'hc stnokc has 
n o t  yet disnlipcorcd f rom regions wit,li s n ~ : d l  

ralmities. 

.. , .  

ti = 41 n,lsce.  

Direction of .flan- 

Fig. 3 ,  Cbinn-clay mcthod gives t,raneition line. 
I,c.atl-\rhite layrr has reacted with hgdwgcn sulfur flaT,.ing 
from tho Ist, Znd, 4th nnrl 5th hole f r o m  below; f r o w  the 
4th a n d  5th hole duriiip a comparative17 long time'. Spot 

round tlw 4th bole indieatcs scpnmtion. 
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Ditching Tests on a 1/8 - Size Model of the 
Fokker S-13 Crew Trainer 

Summary. 

A d.”&dly similar model of the Fokker 8-13 ( U S  size) IVLLS subjretcd to a aumbcr of ditohing tests nt tho N U  

Contents. 
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4 Test method and conditions. 
5 Results. 
6 Conclusions. 

12 Fi- anres. 

Description of the launching grar. 

1 Introduction. 

A series of tests were made at the request of 
the Netherlands Aeronautical l he lopmin t  Board 
wihh the object to  determine the best way to makc 
a forced landing with the Fokker S-13 aeroplane 
and to detwmine its prohablc behaviour. As no 
suitable installation for these tests was arailable, 
a launching catapult \vas built a t  the edge of the 
small ,harbour adjacent to the N.L.L. site. 

Testing in the ol)cn involves a disadvantage viz. 
that a variable wind velocity is added to  the 
launching speed obtained with the catapult. 
Windless days are very seldom in Holland,, so 
that it is no use in postponing a test because of 
a slight or medium wind: The necessity of ob- 
servation excludes working at night, when the 
atmosphere is .more calm. 

The nature of the wind is gusty, owin,g to  the 
height of the surrounding buildings. During the 
tests it was attempted to start. the model at the 
moment the wind appeared to be at a minimum. 
Adso the tests were repeated several times under 
such’ conditions as were thought to have a chance 
of #being suecesful. 
An eyewitness’s estimation of all launchings was 

recorded, as welL as the indication of the de- 
celeration gauges. Those tests from which good 
results were expected were filmed as well. 

From the films were obtained the length of the 
run of the model on’the water, the attitude of the 
model during the run and at the time of first con- 
tact with the water a i d  the effect of the imnersion 
of the nacelles. 

Although the tests do not give absolute certainty 
of the behaviour during a full size ditching, a 
number of rulcs are proposed to  improve the 
chance of success. 

2 Description of the model. 

The model is a reproduction of the Fokker S-13 
erew trainer, scale 1: 8 (fig. 1, 2) with several 
simplifications: no separate ailerons or rudder, no 
landing gear, no gunturret, astrodome or wireless 
a.ntennw are reproduced. These parts are of 
little or no conseyuenee in case of ditching. 

The hinge axis of the elevators was put, 1 em 
fbrwsrd in the model, to augment the elevator 
capacity. Lateron, additional surface was added to  
the elevators, with the same ohject iu view. 

The apparent failing strength of. the landing 
flaps can bc adjusted by changing the amount of 
friction in the flap hingcs. It was .found that even 
a sma11,l miowit of flap “strcngth” impaired the 
hchaviour of the model after contact with the 
water. More friction in the hinges was not used 
[or that reason. 

On top of the fuselage a i d  parallel t o  its longi- 
tudinal axis was fixed a wooden strip painted black 
and white, from which the attitude of the model 
could ,be measured on the films. Fig. 3 shows the 
deceleration gauges mounted between the boards by 
which the model is suspended from the catapult. 

In order to maintain dynamic similarity the 
total weight of the model should be ( V 8 ) l  of the 
fu l l  size total weight. So that the model is 11,4ig 
for 5775 kg full size. The centre of gravity was 

, 
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brought to 25 % MAC by means of lead in the 
nose of the fuselage. 

The model wing was constructed of ha.lsa mood 

. and nacelles were carved from balsa and hollow 

UodeZ pwpeZ2or.s shaped from aluminium sheet 

model, the rest was taken up by the brake and 
by tthe leiigtli of t,he carria,gc. 

Z'he cnrriagc runs 011 rubher covcred wheels and light J b v o o d  frames and skin. The fuselage 
carried in two opcrl 2100,ks at the front of 
carriage, and rcsts with its tail against a light ed out. 
frame which is adjustable in height for setting the 

could be fitted. annle of iriciderice of the model. Wooden strins 

alolig lomcr flallge of tile rail, T>lre lnodel is 

on-tlie carriage work the hrwke a t  thc end of tiic 
rini, so that it comes to  a stop. 

T h e  d iopweaght  lrangs in a tower 3 m (10 feet) 

l ' l i c  decelerii t ion gciuqes are simple and able to 
operate innder the conditions prevailing during 
ditching tests (rongh usage and .wetness). Each 

= 

Fig. 1. Dimensions of 5-13 Ditehingmmodel 
M~mmisions of model i n  mm. 

gauge has a weighted arm, retained in a near 
vertical position a.gainst a back-stop 113. an adjust- 
able spring a t  the ,base. The me.itght and the 
springtension are adjnstedl on a whirling-arm, so 
that the deceleration a t  which the arm will move 
over is :known. As several ganges are fitted, emh 
adjusted to its own deceleration vdue, it is pos- 
sible to judge the maximrim value during the test 
from the 'indications. 

3 Description of the launching gear. 

The .main components are:  

a. the rail; 
ti. the carriage; 
c. I,lre ,dropweight,, winch, etc. 

2 % ~  id is a n  I hcam 12 m (40 feet) long and 
suspended from two frames. It is adjustable in 
height and inclination. During a.11 tests tlie in- 
dination was 3". The lowest position of the heam 
just dlowed' t , l~e model to clear tlie cdge of 'the 
trai~honr. 111 this way tire height above water a t  
which t,he m d e l  began its free light IWS rather 
great,, escept with a very high watcr level. 

,OF t,hc total length of the rail, ahout 10 ni 
(32 feet,) was arnila1)le for acceleration of the 

high from a rope, connected at one end to the 
carriage and at  tlic other end to the winch. A 
system of pulleys is provided so that thc speed 
of the carriase is four times the speed of the - 
wight .  

Additional wcights of 10 or 20 kg (22 or 44 Ihs) 
can he added as deiired to the basic whirlit of - 
50 kg (110 Ibs). 

A certain launching speed  can lie ohtained 
through the IISC of an appropriate weight. If Tve 
p u t  (change in potential energy) X (efficiency 
of the installation) = (change in kinetic energy), 
w c  find that :  

wlmrc: A = wiight of carriage, model and part  
of tlie rope; 

B = total weight'in tower; 
g = acceleration of #gravity; 
V = laiuncliing speed. 

\V,hen 'thc carriage travels 10 m, the weight.in 

the tower descends - m. Also. if t,lie final speed 
'V of the carriage = :V, that of the wci'ght. = - 
4 '  

10 
4 

F o r  .these tests A = 18.6 kg = 5 $g (carriage) i- 
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+ 11.4 kg ( m d e l )  + 2.1 kg (rope). The efficienoy 
was put at ,0.90. .. 

From this fomula  the value of 61 cau hc cal- 
culated for any Iainiehing speed V. The airspeed 
of the model.is the rector sum of thc launohing 
speed and the negative mindveloeitJ-. 

in ii,g. 4 ciirves are given for:  
Iminohing speed ( V )  us weight in tower ( B ) .  
Lift  coefficient C, us airspeed, 

Thcse .curves are only applicable to this m d e l .  

. . 

The centre of graui ty  >vas hrought to 25 % oE 
the mean aerodynamic chord .with the aid of iead 
in thc nose. The tota.1 weight had a value of 
5835 ,kg (full size). During some tests with thc 
hallast removed, the e. g. was at 39 % MAC and 
the equivalent full size weight mas 5375 kg. 

As a result of the numerous immcrsions the 
weight v a s  augmented hy water absoirption, so 
that in the end, the weight (with ballast) increas- 
ed to:  6560 kg (full size) with e. g. at  30 % MAC 

v IN 
m/& ~. .. 
20 

18 

16 

14 

. ~ ~ .  
12 

I I I I I I I 
40 80 120 160 2 0 0  240 . 280 320 360 

B I N  *g. 

Fig. 4. hushing  s p e d  F YS iveiglit in tower B for S~13-model. 
Lifteueffieioi;t C, 18 air speed for S-13model. 

4 Test method and conditions. 

Vniinldes w e :  

Launching spcecl; 
Elevator angle ; 
Laiidiiig flap a,ngle: 
Centre of gravity; 

.(these can he choscii a t  will). . 

Height of rail above watcr lcvel: 
Rindforce and direction : . .  

(these are out,side influences and must he 
taken as  they come), 

Vertical speed and 
Position ,of thc model a t  the moment of con- 

tact with the water (these are a result of all 
variahles mcntioncd before). 

l ’he  lnunchiny speed had a value shetween 12 
and 16 m/sec (120 and 160 km/h or 75 and 
100 mph equivalent fiidl size speed) although at  
f i r s t  higher speeds up to 18 m;/sec (IS4 km/ or 
114 mpli fall size speed) wcre used. . 

T k e  elevator &*as used.’to trim the model in a 
tail-down position till i t  tonchod the surface of 
thc water. Owing to ground effect the original 
clevators wcre too small to be effective ,they were 
t:nlarged to obtain a better trim. 

T h e  7miEing f l aps  were either “‘up’’ or 60° 
“down”. The frictiou in the hinges was adjusted 
so tha t  .the flaps returned. to .the “up” position 
as soon as they tonclied the water. Even so thcre 
is a bad effect on the hchaviour of the model, and 
no’larger amount of friction in the hinges was 
tberi!f?m used with flaps “down”. ! 

and without ,ballast to 6100 kg with c. g. a t  43 % 
*IAC. 

The wind velocity varied considerably during 
the tests. As fa r  as possible the periods of ‘low 
velocity were chosen for the tests but these were 
rather few at  that time of the year. 

The wind velocity at thc moment of launching 
was estimated. It was usually in the range of 
1-2 mJsee ( 2 4 . 5  mph) hut speeds of 4 m/sec 
(9 mph) also occurred. 

Thc direction of the wind was usually the op- 
posite of the direction in which tho model was 
launched.. This is eomparahle to the full  scale 
situation. 

The lreiyht at which bhc model is set free could 
he varied. I n  practice the model always just 
passed over the edge of the han~k, with the launch- 
ing gear in thc lowest position. l‘he effective 
height is also influenced hy the level of the water 
itself; variations of 0.20 m (6 ”) are possible. A 
high level improved the behaviour of the model 
(fig. 11) a s i t  reduced the length of free flight. 

The ni~gZe of incidence a t  the moment, of first 
contact with the water is obtained from the film. 
The attitude at  this momeiit is very important for 
tile subscquent run. 

T h e  vertical velocity was 5 % of the launching 
speed at the beginning of. the free flight. How: 
ever, it was ,hrgel\- illfluenced by bhe peculiaritics 
of the free flight. 

It was not attempted to t ry  out all comhinutions 
of the different variahles. The clcvator sctting 



was changed systematically, for different launch- 
ing speeds and attitudes of the model, also with 
and without ballast. kind with flaus un or flalm - .  
60° down. 

Films weye made of those tests from which 
. rcasonahle results were expected. 

From each film was obtained: 

a. the attitude of the m d e l  a t  the moment of 
contact wit11 the water; 

11. the dcngth of the run;  
c. the attit,itdc at the t,ime the nacelles hegan to 

dig in. 

The range of maximum deceleration for each 
test was ohtained (at that time) from the deceler- 
ation gauges on the model. It was not thought 
worthwhile to analyse the films in  order to oh- 
tain the speeds and decelerations as the back- 
ground in the film di,d not allow a sufficiently 
accurate measurement of the exact movement of 
the model. 

During the tests the gauges were set to indicate 
decelerations of 2 g, 2.5 g and 3 g respectively. 
These values were chosen according to the e v a h  
ation of the run  as satisf(rctory if the deceleration 
was-helow 2 g (no indication) as unsatisfactory 
when it vas more than 3 ,g (threc indications), 
and passable with one or two indications. 

The quality of bhe run. is also shown by its 
length. A bad landing (has a run of only 2 #lengths, 
a nicdium one of about 4 lengths and a 'good run 
may be up to  6 .  lengths of the model. 

All these ralues are valid for the S-13 .plane 
only. 

5 Results. 

A number of enlargements of the films of sever- 
al runs are reproduced in figs. 7-12. Starting 
at  the moment of first contact with'the water, the 
equivalcnt full  size time is given for each picture, 
as well as the length of the run, the ap,proximate 
maximum of the dcecleration, the airspeed and the 
windvelocity. 

The runs depicted in figs. 7,  8, 9 are unsatis- 
factory. Very s w n  the nacelles dia in, as can hr 
observed from the mass of water chrown up in a 
ncarly ~~erpcndicular direction, with a dive as 
rcsult as well as a high deceleration. 
, . .  The run on fi,g. 10 is somewhat better although 

a certain amount of diving is visible towards the 
end:. It, is important that the ta$l, of the model 
first touches the wa.ter. 

The best run  of all is that in  fig.'11. The 
attitude during approach is definitely tail-down, 
and. this is maintained during the run. The nose 
of t,he cockpit keeps above. water all the time until 
the model is at rest when it floats on an even keel. 
The maximu" deceleration is low' (<  2 g )  so that 
the gauges give no ind,ication. 

It is curious that by coincidence another satis- 
factory'run was obtained (fig. 12) when the model 
appl.oaelied tail-down and touched water initidly 
with the starboard wing tip. AS can be seen in 
fig. 12 the coclupit-nose stays out of the water all 
the m time. The longit,ndinai deceleration was over 
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2,5 g, hut nothing is k n o w  of the radial acceler- 
ation due to  the angular speed. A similar ditch- 
ing in tail-up position resulted in a serious dive. 

6 Conclusions. 

The only way to ditch the S-13 succesfully is 
to  bring it down so that the tail touohes the water 
first. Compare fig. 5, the attitude ,for a=12O. 
Otherwise the nacelles will dig in and a dive is 
the result. 

.'I 

Fig. 5 .  Attitudo of madel on surface of w t e r  at 

The bottom of the fuselage aft of the wing is 
flat and wide so that the normal tendency of the 
pressure of the' water on the model is to reduce 
t,he angle of incidence. It can be seen from fig. 6 
that at  a = 7 O  the nacelles will start t o  &g bhem- 
selves in. T,his has :to be avoided with all pos- 
sihle E lem.  

.I 
different ~ngleU (a = 12", 9" or ti'). 

, 
l~ 
; 1. 

, 

a" 
20 

1 6  

12 

8 

4 

0 

FOR FULL SIZE 

2 6 7 
TIME IN 5ec 

.< 
- 0 ;  I 

Fig. .6. Change o f .  attitude 'of model ,during sercral ~ 1 1 1 8 ,  

obtainad from f ih s ,  

I n  general, it is advisable to  reduce the 'landing 
speed its much as possihle, as RTell m the vertical 



speed. The attitude should be with the tail down. 
To reduce the tendency of the nose going down, 
flaps and 'landing gear should be retracted, and 
propellers. feathered. The centre of gravity should 
be as f t r  aft as possible a d d i t c h i n g  stations for 
Ihe crew should he in the rear compartment. This 
is also advisable in connection with the risk to  
the occupants of the nose cockpit if the plane 
should dive. 

The t e t s  give no indication of the effect of 
waves. It is felt that in a regular swell the best 
chances are for a ditching along a wave. 

Should a wingtip touch the water first, a rather 
violent swing is to be expected. As long as the 

I 
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tail is kept well down, this should not be specially 
dangerous. 

If no maior damwe wcurs. the attitude of the 
plane, when" at rest i n  the water, should he about 
level (fig. 11). It will prabably fill up more or 
less quickly after that. So long as no dive takes 
place, there is not much damage to be expected. 
As a result of diving, however, considemhly da- 
mage will occur to the front of the fuselage, for 
instance to the bomb-aimers compartment and to  
the nose-wheel covers. This will reduce the buoy- 
ancy of the fuselage as well as the longitudinal 
stability on the water. 
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Fig. 3. T,hree maximum deceleration gmgea loeated 
on t h e  S-13 ditching model. 

.The gauges on the left and in the middle iirdientc 
heriain dwelerntions, bhe am of the right hand 

The puges are acljmted by seron+ng x small ma* 
up or dorm the ami, or by variing the tension ef tho 

retsining spring with a ,sercn. at tlic holtom. 

gauge is still in the original position. 
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Preface. ' I , . ;., 

Early in 1947 tho Netherland.; Aircraft, Deve- 
lopment Board (N. I.'V.) ordered the National 
Aeronautical Research Institute to- make a theo- 
retical investigation of the design of laminar flow 
and high spead aerofoils. At that time' results 
obtained in Britain and America during and after 
the war were not yet known in t,his eount.ry and 
hence the investigation started from prewar papers 
by Bmz (ref. 1) and MANGLER (ref. 2) .  

The method developed appeared afterwards to  
be closely related to LIGHTHILL'S method (ref. 31, 
which again involves the same basic idea's as 
M A N G ~ R ' S .  Also -E'S method is based on the 
same principles. Ementially, all main differences 
concern to the principles applied in the numerical 
application and evaluation. 

The present, report gives a complete review 
of all work' aone in the National Aeronautical 
Researah Institute on the theory of incompressible 
twedimerikional' potential flow about aerofoils and 
thus covers all ,results published previously (refs. 
5 to 11 inel.) ipcln&,ng,jatest improvements. More- 
over an attempt has been made to give at the same 
time a modern ,account 'of the whole basic theory. 

Reference is made to important eontrisbutions of 
Dr. J. A. ZAAT to the perfectioning and facilitations 
of the involved methods' .. ., of:%umerical computation 
(refs. 10 and 11). , ' " &  " 

. .  
PART I. 

General theory. 

1 

1.1 T X ~ -  field' kqwtimvi 

General ,theory of two dimensional, steady, 
irrotation&l .flow ,of .an incompressible fluid. 

I , ' .I,. 

..f, 
EULER'S .equations of.'motion for. t,wcydimcn$ion- 

al, steady, .irrotational flow, of an incompressible, 
non-viscous fluid are (referred to Cartesian co- 
ordinates %, y),< , , 

they represent the,relations between the components 
u. and wy of the velocity and the pressure p in 
any point of the field. 

In view of (1.2) a function 'h (5, y), known as 
the stream function, can be introduced by putting 

If t i c  flow is irrotational, 

a similar function can he introduce 
potential x ( s , ? ~ ) ,  such that 

(1.3) 

(1.4) 

! velocity 

(1.5) 
ax : W " C  - . au  

In this case eq. (1.1) can at once be integrated, 
yielding BEEXO~TZLI'S equation 

(v.' + oY2) +,$= const. = -, P" (1.6) 
2 P 

where p ,  is the presynre in stagnation points of - 

1 
the flow. 
By substituting (1.3) in (1.4) and (1.5) in (1.2), 
the funct,ions and Y are both seen to satisfy .. 
LAPLACE'S equation 

From (1.3) 'and (1.5) t,he relatiokq, 

ax - a, 
a s  ay I 
- _ -  

(1.8) 
. ,  , .  

. .  

identical with the CAUCHI-R~~ZANN equations for 
t,he real and imaginary p+rti of .'an analytic func- 
tion of t,he complex variable z = x  + iy, are ob- 
tained. 

Hence the function 

,~ "(z)=P(Z+iy)=x(%,? / )  +iU(X,f / ) ' (1 ,9)  

. .  
is analytic in 'the whole region of tbe complex z 
plane, where equations (1.8) hold:' 



- .  .. 
: 1  

I .  : .Thc derivative , 

. /  

(1.10) ax . ax . ad a. 
as all ax au  

= - - t - = t - + -  

yicl&, in view: of (1.3) and. (1.5) 

I, dF 
dz 

, ,  , .,, .,.,l '.( 

. -  
, . B  ( x ) = - c c , , - i i u u t z i u ,  (1.11) 

, _  . -  
where u is t!x conjugate ,of the compl,ex velocity 
vector v. 

In thc ease of steady t!vodimiensional flow ahout 
a c~l indrical  aerofoil, th'c contour of t.hc section 
is a streamline of the ,flow, i .  e. a line , = const. 
The flow is further known to  he irrotat,ional. If 
the field has, apart of the surface of the acrofoil, 
110 boundaries, neithcr discontinuities nor infinities 
of the velwity components oeeur anywhere in the 
field.outsidc of the contour. So the function P ( z ) ,  
representing the flow must be regular evcrywhiere 
in t,he corresponding part  of the complex z plane 
and 

, ,  . . . ? '  

.. $.Fl(x)dz=O (1.12) 

f o r  any reducible cont,our'in this part  of the plane.' 
If, however, the contour encloscs the imagc of t,hc 
acrofoil, it is irrcduci'hle and 

I"'(z)d,x=r=const,. (1.13) 

independent of the spec& choice of the contour '). 
The value 1' of t.hesc iutcgrals is called the cir- 
culation (ahout the aerofoil). 

If the complex vc1ocit.y I' is regular even on t,lic 
contour reprkcnting thc .aerofoil itself (which ap- 
plies if this. contour' i s . a  regular arc) ,  the path 
of intcgration in (1.13) can be identified wit,h 
this contour. Then, sincc o= const. 011 this line 

' i., , . s  ' ~ ,  

on this line and, by (1.10) and (1.14) 

(1.15) 

.which shows that the constnnt r is real. 

. .  . 
1. . , . 

') A contour is always assumed tu he R s,inple loop, i. c. . .  tij Iinre!nu dauhlc points. ( '  I 

1.2 dluppi'ng of fields. ,of flow. .. 
. .  

t :  

Let 
[ = f ( z )  , , .  ' (l.lG) 

he a functional relation 'mapping the 'complex x 
plane on a complex i plane. Define, i n  hhis plane, 
a complcx potcqf,ial @(i) connected with P ( z )  by 
ident,ifyjng t,hc valoes .ofl both functions. i l l  eorrcs- 
poiding points, I . I  

@ { f ( X )  I=B!@), (1.17) . . I . , ,  

or, denoting,,thc inverse transformat,ion of (1.16) 

= s ( 0 ,  (1.18) 
1 'i . l y  , , , 

@([I =I" ( s(P) I. (1.19) 
If f ( z )  is i n  snalytic Function, the transformat,ion 
is known to 116 conformal except. a t  zerocs or. singn- 
1aritie.v of.f'(z). A eloscd contour in the 'z plaiic, 
not passing t,lirougli oiic of thme points, is mapped 
into a clmd contour in t,he 5 plane. If 

[=O+ i7, (1.20) 
the functiou @ defincs a flow in a physical <, 7) 
plane wit,h a complex vclocity, whose conjugate 
is equal to , .  

Rcncc the ratio of the complex yelocities in cor- 
responding points of the z and. 5 planes is com- 
pletely detcrmincd by bhc ,derivative of tlrc mapping 
function, 

If f ' ( z )  is non-vanishing and regular in the 
whole part of the x plane and, moreover, tends 
t,o a lion-vanishing constant c at, infinity, the flow 
around t,hc aerofoil in the .z plane i&transformcd 
into a flom in the i planc, ahout t,he corrcspond- 
in# contour, which is again free of douhle points, 
and t,hc flow patterns in .infinity are similar. ' 

For slieh transformations, the circulation, being 
defined iii exactly t,he same way, is evidently. in- 
variant. 

2 The flow about a circle. 

. Thc mapping of fields of flow, consihcrod in 
t,he prcccding section, can ,hc used to analyse the 
field of flow ahout, an arhitrary profile by reducing 
it, to  the well-known flow ahout a circle. 

This field is detcrmincd hy the following pro- 
pcrt,ies : . .  

a) for largc values of z the complex velocit,? 
convcrgcs to a constant valuc represent- 
ing a parallel flow wit,h velocity us nnder 
a n  angle a with the X axis. 
The complex potcntial function .Z ' (x)  is regu- 
lar everywhere outsidc and on the circle. 

. .  
' 

h )  

e) The circle is 'a streamline. ' . 
. .  

.. Taking the circlc to have its ecntre in the 
origin and radius 12, the, only fnnct,ion, which 
sat,isfies these three conditions- can he. shown 
to be . . .  



where r is an arbitrarj. constant, ivhieh repre- 
sents the circulation. 

The velocity function is 

( 2 . 2 )  
whence, on the circle, 

showing that the velocity vector is tangential to  
the rircle and that it has tlie magnitude 

r 
4 x v , H  

I v< I =2 v-. sin (p - a) - 
If 

< 1  
r 

4 x v,K (2 .5 )  

the velocity vanishes in  two points on the circle. 
If one of these points is denoted by p = - 0, t,he 
circulation r is equal to 

I r = - 4 z Z v u , ~ i n  (0  + p )  (2 .6 )  
and 

3 The conformal transformation of the flow 
about a circle into the flow about an aerofoil. 

3.1 R"x's theorem. 

The 'existence of a mapping .funct,ion f(z), trans- 
forming the flow abont an aerofoil into the flow 
about, a circle results from RTEMAW'S fundamental 
theorem 'on conformal transformation (ref. 19, 
p. 398). 

Any simply-connected region G with at least, 
one boundary point can he mapped uniquely 'by 
an analytic ,function on thc region inside a given 
circle. The mapping function is uniquely deter- 
mined by specifying one pair of conjugated points 
and one pair of ctorresponding direct,ions in these 
points. 

I n  the application, considcred here, where thc 
field of flow outsi'dc an aerofoil is mapped into 
the field of flow outside a circle, the conespond- 
ing points are taken to h e  t,he points at infinit.)- 
of the planes of the aerofoil and the circle, 'both 
considered BS internal points of the mapped re- 
gions, while the region inside the circle to which 
the theorem .refers is mapped on the region out- 
side b y ,  a simple inversion. The corresponding 
directions in the point of infinity are t,he direc- 
tiom of the undisturbed flow in both planes. 

If the boundary consists of parts of analytic 
curves, i.e. curvk, on which the coordinates can 
he r ep rese~ed  as analytic functions of a para- 
meter, t,he mapping fnnct,ion is not only: an!ilyt,ir 

F 4  

in the whole region outside the circle, hut can 
be continued analytically over the contour of the 
circle (ref. 19, p. 400). 

. 

The singularities of the mapping function arc  
all located either at the inside of the circle or on 
its contour, where different analytical arcs join, 
as is e. g. the case at a sharp trailing edge of an 
aerofoil. 

The mapping of the regions ,being unique, the 
mapping €unction is one-valued in  the region ont- 

I 

side-the circle. 
Denoting the plane of the circle as the z plane 

and the Dlane of the aerofoil as the C ulane. the 
mapping-function can, outside the crrcie, he re- 
prcsentcd by a Lament series 

[ ( a ) =  ... + L 2 2 *  + e - , z  + C" + 
C c + + + 5 + .._ (3.1) 

heeause it is, in t,liis. region, regular and single- 
v a 1 u e d. 

The behariour of the function in infinity is 
detelanncd hy the condition, that the points at 
infinity correspond and that the directions of flow 
in these points correspond. This means that, 

CL2 = CL3= .............__ = 0 (3.2) 

'and that e-, is a rcal positive constant. 
If, moreover, t,he condition is imposed, that, t,hc 

[ and z planes shall coincide at infinite, c - ,  = 1 
and the mapping function has an expansion, valid 
in the whole region outside the circle: 

C C  f(z) = c - c , , +  2 +I + L+ ....... (3.3) z 22 

The derivative has the expansion 

3.2 2'hn relation between t h e  uelocifiea nnrl tke .  
mapping function. 

dQ ' d P  According to (1.21) t,he dcrivat,ives - and - a[ , ' d z  
of the complex potential functions, which are equal 
to  the conjugates and Gc of the velocities in the 
flow fielLs, are related by .thc equation 

which ho lh  also on t,he contour oC t,he circle and 
the aerofoil in non-singular points. 

T.his formula reprc~ciits the hasie relation .of 
the following theory. It. will prove to he adequate 
to represent the mapping function by two rcal 
fnnctions v(z,y) a,nd ~ ( z ,  y), defined hy 

~ ( z , y ) + i i ( z , ? ~ ) = I n f ( z ) = I i i ~ ( ~ + i ~ ) ,  (3.6) 
. .  



Then 
VC u = E E (  Inf'(z))=In/f'(z) /-In - (3.7) 

a n d  1LD1 

7 =Im(  I n  f'(z))=argf'(z)=arg wp-arg uc. ( 3 3 )  
u represents the logarithm of the ratio of tlic relo- 
cities in corresponding points of the fields of t'lo\v 
and 7 remesents the difference in  direction of thcsc 
velocities. 

Since f ' ( z )  is, outside the circlc, nowhere sin- 
gular nor zero, the function In f ' ( z )  is regular 
cvervwhere in"thi.i region, including infinity and - .  - 
so its.rea1 and imaginary parts, u and I are COII- 
jugate regular harmonic funct,ions in t,his rcgion, 
including the parts of the circumference, corrcs- 
ponding to the regular a.rcs of the profilc. In t.he 
singular points of t,he aerofoil contour, the  func- 
tions have singnlarities to he considercd scpar- 
ately. 

From a practical point of view, the values 01 
the velocities on the acrofoil contour arc of par- 
ticular importance, for t,hey determine the prcssnrc 
on the aerofoil and thus .its fundamental aero- 
dynamic characteristics. Hence, thc relation he- 
tween u and r on the cireumfercnec of the circle: 
merits closer invcst,igation. ' 

4 The relation between the conjugate functions 
on the circle. 

4.1 PQIEX)E;,'S i?bfEgd. 
> .  Let 

z=x ,+  ilJ = rei* ; 1' > K (4.1) 
be a poitit, outside t h ~  circle reprcscnting t,lic image 
of the contour of t,he acrofoil, and let, 

. .  
h ( z ) = o + i r ,  (4.2) 

mlicre u and T are the functions, dcfiticd in see- 
tion 3.2. Then, since k ( ~ )  is analytic and regular 

Fig. .I. Tho h i m t i o n  of tho Poissoa iutegral 

i n  the part. of the plane outside the circle, by 
CAUCHY'S thcorem applied to the region, boundcd 
by the circle and a circle with lapge radius p 
(fig. I), 

If p +  cc , t,Iic funct,ioii 71 ( P O ' ' )  tends to a con- 
stant, ~ a l n c ,  sa.y e o ,  according t,o the suppositions 
made about f'(z), and the expression hccomcs: 

If 2% is tllc i m q c  O C  z with respect to tho circle, 
i. e. 

h ( z )  . 
1 - z* 

tliell- IS regular in thc " u c  rcgion considcr- 

ed ahove n n d  its integral over a closed contour 
in thid region vanishes, whencc 

the intcgration along thc circle a t  iniinitx yielding 
the samc resnlt as ahove. 

Suhtraetion of (4.4) and (4.6) givcs: 

h ( z )  = u  + ir= 
7a 

Y 

(4.9) 

These formulae express thc valnes oE the functions 
u and T in a point outsidc the circle in  their 
boundary values on the circle.. Formula (4.7) is 
known as P O ~ N ' S  integral, 



4.2 Relalions bett&n'ithe functions , . ,  I (I iiid i on 
the circle. 
. .  

Addition of ($4) and (4.6) yields,: 
, 

h ( z ) k u ' t i 7 =  I 

I 

F o r  r +  m , 

and so 

( I + i r =  
2 1  

l?utting 
I 

a(,= a, + i I ) , ,  , ' , , (4.13) 

I scparat,ioii of real and .imaginary parts- in (4.12) 
\ 

. .  
yidds 

I o ( r ,  $1 =a, + 

In the limit r +  I? the intcgials h$ome impropcr. 
Defining their values as principal values in t,he 
sense of CAUCHY, the corresponding formulae for 
(I and T, mhich on thc circle are denoted by (I(?) 

'i and' ~ ( y ) ,  become: ": . .  

o ( $ ) = a , + z  T(F) . c o t s +  ( $ - ? I d $ ;  (4.16) 

, , , . ,  . , 

I , ,  1 7=. 
~ 

~, 

I1 

i ' \  
. %  

? X  

I 
T($) =bo-% 1 d v )  . cotg t ($ - dQ, '(4.17) 

(I 

as can he shown hy'clc.m&tary reduction. " ' ' 

' . These f p h u l a e ,  relating conjugate functions on 
the circumference of the'cirele, are a main tool for 
the solution of proh1em"of aerofoil theory. 

4.3 Piit irier series eqmisions of the fundatiuns 
u and 7.. 

: '  , L  " I  . ' : 
Accordi!ig to (4.8) and (4.16) : 

o(rc'.*) + i7 ( i - O i * )  =ib,,-  . ' 

, i .  

2a 

t + %  
2'* ., t - 2  

d y .  , ,, (4118) 7 - -io,,-- c u ( R e ' P )  __ 
0 

. . , ,  t + ,e fixpanding _ _ ~  I z I > 1.I  A,, .in .a uniformly' coil: 
f - x '  . .  vergetit serics, ' , . , i  

t--z 

fbriiiula (4.18) is transformed into 

o(rc'4)  + i , ( re i*)  =ib , ,  + a,, + 

wlicrc a,, is defincd by ( 4 l l ) , , a n d  

Separating real and imaginary parts, the following 
Fourier expansions of the eonjugate functions are 
ohtained: 

(I(re'*)  = 
= + no + 2 (7) R "  (u. cos n$ + b, sin n$)  (4.22) 

, ,=I  

7 - 
= + 2 b,, - 2 (T) (a .  sin n$ - 71, cos $) (4.23) 

n = l  

4.4 Condifions f o r  the  Fourier coifficients. 

In section 3.1 the derivative of ,.the. .mapping 
function has hecn argued'to admit the expansion 

valid in t,he whole region outside the Circii. .?:; 
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Hencc, for the function k ( z )  =Inf'(z), the ex- 
pansion 

c 2 c , ,  3 c a + 4 c , 2  h(z) =-'--- ... (4.25) 
2' 23 e,' 

holds. Comparing this with (4.21), it i s  seen that 

(4.26) 

(4 .27)  

mo'= a, = bo = 0 

a, = a, c b ,  c 0, 

. Tddn, = j-: ( 7 )  a9 = 0 

and 

or 

(4%) 
,I I1 

and 

(1 u 

4.5 T h e  ease of singuk&ies on the contour. 

Thc case, where the function h ( z )  has singnlari- 
ties on the  contour needs separate considcration. 

An t,he formulae of the preceding section are 
hwed on CAUCHY'S theorem, i t  is seen, that a pole 
on the contour of the circle introduces half of the 
residue of t,hc function in that pole into formula 
(4.2). This case is, however, of little practical 
importance and can thus he waived. 

The ease of a branch point of the function h ( z )  
i n  of mimh more importance. I n  this CLISE, for- 
mula (4.2) holds, if the contour of integration is 
wholly situated on one blade of the Riemann sur- 
face. pertaining to the funct,ion. The function h ( z )  
heing regular in the whole plane outside the circle, 
thc hranch line, starting at, the branch point, on the 
contoor extends into the inner region of the circle 
a id  the condition is, thus, s a t id id .  

Hence, all results of the preceding sections also 
hold in bhe case of the branch points of the func- 
tion h ( z )  on the contour of the circle. 

' 

5 

5.1 Th.e singzlhrity at the teading edge. 

Usually aerofoils have a sharp trailing cdge, 
which causes the mapping function to he singular 
in the corresponding point on the circle. 

Denoting the tail angle by 6 (fig. 2) t,hc map- 
ping function must transform, in this point, an 
angle 2 ~ - - 6  in the 5 plane into an angle 71 in 
tha z plane: 

Hence, in a sufficient,ly small neig,hhourhood of 
this point, (to be represented by z 0 = R c - ' @ ) ,  the 
mapping function admits the eapansion 

The singularity of the mapping function, due 
t o  a sharp trailing edge of the aerofoil. 

7 

Putting ! 5 , , ' .  

,:. . I;= z n - 8 .  =2-?!;!j1~ i (5 .2)  
li li 

, , , .  tho derivative has the ekpinsion , I  

If 6 < T, I; > 1, by (5.3), 

Now, the  Kutta conditim requires G,, to' remain 
finitc at  thc trailink edge. Ohviously, this con- 

\ 
dition can be sa.tisfied only hy taking 
zero, i. e. the velocity on t,hc circle in the point 
z 0 -  -Re- i@ evrrcsponding to the triiling :)'edge 
mmt vanish. 

According to (2.6) this I condition determines 
t,hc value r of the circnlation. 

From (5.3) it, follows that,. 

'/ , I 

\ 
, o+ i r=In  - = ( k - l )  a% z n ( Z - z " ) + g ( Z ) .  (5.5) 

dz I .  

where g ( z )  is regular in the point z,, nnd, if the 
aerofoil contour has no other 'singularities, in all 
points on and outside the circle. 

Elimination of t,he singularity a t  the trailing 
edge. 

On the circlc z -Re'p  and ' (5 .5 )  reduces to 

+ ( / c - l ) i .  *+'--' + g ( p ) .  (5 .6)  2 
Hence, thc function o(.p) has a logarithmic sin- 
gularity at the trailing cdge and the function T 

is disoo::tinuous at p = - p ,  its valus increasing 
with ( k -  1)li  a t  each revolutionwmd the cirele. 
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are .the real arid imaginary parti  on the eontour 
of ,an analytic function of Q and hcncc arc also 
related by P O ~ Y ' S  integral, when thc integrand 
has no singularities. It should be remarked, how- 
ever, that it, is not strictly neewsary to use the 
particular functions,\iyolved in ,  (5.7) and (5 .6 )  
in order to elimiuate the singularity. Any pair of 
conjugate functions, having t,he propcr singnlarit.y, 
q a y  be.subtracted from v and T to ohtain n pair 
of non-singular conjugate functions. Use of this 
remark will be made later on hy assuming thew 
functions to  he gepcrated by a known aerofoll with 
tail angle 6. ~ - .  

i ;, '. I 

6 Formulae for the contour and the radius of 
curvature of the aerofoil.' ._ ~ ~ 

6.1 The coordinates. 
I '  
, : 

Integrating the, relat,ion . 
.*'f 

.i I h( i )  -_ - Y ( z ) = e  az c e x p .  { ~ ( z )  + & ( z )  ) (6.1) 

along the circle from any point z, to another 
point B the formula 

I 

- ,  ;. g-(,= .dx (6 .2 )  
20 , .  

/ 1  ,.., is 'obtained. , I  

respond to i = , O ,  the formula 
Suhstit.uting z = Re'? and taking 8, ='R to cor- 

' 

[ , + i 7 = R i  # e ( q ) + i v ( P ) + i Y  , a 7  (6.3) 
,; i . , ,  

is obtained, or 
.I. 

lim. ' , - ns = lini 131 = jdii, (6.7) 
' - & s + O A a  A r + O  da 

\diere a is the angle hctweeoi the nornva1:ht. the 
acrofoil and the X-axis. 

Now, in  the planc'of the cirele,,'thc tangciit in 

Fig. 3. Thc radius of curvature. 

thc point' rei?: corrt.spohdiii,b tb the point of thk 

ticrofoil considered, mikm an .angle 9 +- with 

tlic X-axis. It. is, by the transformation, turocd 

x 

2 

over an angle ( , I  ,,... 
. (6,s) arg - =are e" + i7- T '  

,,I D dz 

311d so the tangent of the aerofoil contonr.makes 
811 angle 

with thc .X-axis. Hence, 

and ' ' . 
a=v .+  T ,(6.9) 

J. 

- _  7 .-pw [.oi (. + +)&, II 

From the expansion (3.+) it is seen, that 

(6.5) 
, :\ 0 :!!' , \ , \  . .  , 

. . , < ,  

F;(z)+:(z) ., dx=O . ( 6 . 6 )  
,' 

along the circle. So, the acrofoil connects u p  to 
a .closed contour, provided o. and i satisfy eon- 
ditiom (4.28) and,  (4.29). 
. ,<,, * , r , ,  I ,, I :!!: ,' 

6.2 'The' radius 2ofrCuriJalzLre. 
. .  

A useful formula for the radius of curvature 
of the contour of the amofoil can he obta.incd as 

' . follows (fig. 3).  By definition ',' and 

~ 6. 

for, on the circle 

(6.12) 

1 -- , 
7 

7.1 Velocity a,&, pressure dist;r'bution., 

'The velocity, and,pressnre distribution on the 
aerofoil. . .  

11,::  
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8 The principal problems :of aerofoil theory. 
S.l Fonidat ion  of the principa.2 problel,is. 

The two principal problems of aerofoil theory 

- 
1. 1 '  (2'3) 

the velocity distribution on the aerofoil contonr 
is given hy ape : 

- i o -  by 2Sl l l  ( p - a )  - 
' .  . 271umR 

vc 
U m  
_- 

thc rclocit,ies in  "infinit,y ,11cing equal 'in thc two 
planes. I .  

If the circulation is fixed hy the KmA-con- 
clition, this foi-inula reduces to 

. ,  - 

= o-'(p), 2 { sin ( y  - a) + sin (i i- p )  .] , e ' - i  ~'+$j-S/z{ 

(7.2) 
The 1iressnre is, relatcd to the, rclocity by BER- 

.. .. 
SOIJIILI'S law 

P =Po -4 P ., VP I (1.6) 
or 

-2 puzr0 {sin ( ? - a )  + sin (a + p )  1 2 .  e - z e ( q ) .  
(7.3) 

hccording to B~.ASI~JS the formula f ~ r  the com- 

P,r - P o  = 

plex force is (e.g. ref. 12) 

. f  - ' 
P = P z  - iPq t=- i  p a Z = t i p f v f , % r .  (7.4) 
- 

If thc integral is evaluatcd by means of thc theory 
of residues the fomhula 

- 
P = p ~ m  r.ie-'"= 
- 4 7  p uzm R .:siTi (a, + .p), . o ( r / Z - ' )  i (7.5) 

results, showing that 

8 T K  
2 CL = ~ .sin (a + p). .  (7.6) 

B u m '  formula for thc moment. ahout the origin 

(7 .7)  

can he cvaluated in. the same. yay. It, is apt  to 
show, in combination with (7 .5 ) ,  that a pointexists 
about which thc moment. is independent of the 
angle of incidence a. For the samc point, the real 
value 

' .  iK=2apu2,  b*R2.sin2 (7 + p ) ,  (7.5) 

is obtained, where h2 and y are defined by 

$1, = - - 2 Re f i p % i Z  

a, = a2 + ib, = bze2'7. (7.9) 
If y =- p, t,he moment M about tllis ,point, .is 
zero, independent, of a, whioh means that, the 
resulting lift, force passcs invaria.ntly through a 
fixed point, the centre of pressure. 

I f ,  i n  particular, the reference axes are so 
chosen that p=O, this condition yields 

Z S  

b; == s o ( ? )  :sin 2 & = 0. ' , (7.10) 
1 

I The calculation. of the \&dies , in the two- 
dimensional incompressil~lc flow about an acro. 
foil of given shape, and in particular'thc rclo- 

. . c i h s  on its contour, the magnitiidc and dircc- 
t,ion of the velocity in infinity being'&iven (thc 
direct problem), 

I1 The calculat,ion of 'the coordinates of ihc  con- 
.tour'of a.n acrofoil, which generates, for  a given 
mag.nitude and dircction of the flow i n  infinity, 

' a given distri'bution of the velocity along its 
contour (the intrerse problem), 

T,he first, prohlem has bcew solved long iigi~ 
(ref. ' 12): The second has 'heen attacked during 
the war and h a s .  been! solved approximately by 
OOLDSCEXN (ref; 20) and exactly by LIGHTHILL 
(ref. 3). The method,. presented herc, is funda- 
mentally the same as 'IJIGHTHILL'S solut,ion, hut,, 
being established independently, differences, of 
some .importance do occur. Moreover, it. enahlcs 
the establishment of an alternative solution of 
problem I. 

8.2 .#ldtkenicLtiut.l furniulne t o  bo used f o r  t he  

Mat,hcmaticallp the solut,ion ' of hot,h prohlcms 
depends on thc following cqnations, for t.hc co- 
ordinates of thc aerofoil established previously : 

I . ,  

solution. 
' :  

a )  eqs (6.4) and ( 6 . 5 ) ,  
4 

(8.1) -=---/e"(y)siii < (7 + , ? ) d y ,  

R o  
4 

9 bcing thc angular variablc'on the circle with 
radius K, on which the acrofoil is supposed to he 
mapped. 

11) cqnations (4.16) and (4.17), reprcscnting 
Pomx's  integral 

1 
2 

o ( p )  cotg- (#-+)dp. (8.4) ,($) =- - 

e )  cqimtion ( 7 . 2 )  for the velocity dist,rihution 
on t,he aerofoil, I .,, 
- 
_ -  011 - , - U ( P ) . Z  { s i n  (?-a) + s i n e ) .  R i(T12.9 -.) 
om 

(8.5) 
assuming y = 0 to represent the trailing edge. 



Thc ~solutio~is~of both. problems will hc,cstahlish: 
ed hy aid.of iteration methods. . .  . .  I I .  

. .  
8.3 'z le,ut ivQ soluiiox'of t h e  direct probloni: ' " 

:'.,I : 

To obtain the solution of, the direct problem 
assume a referencc system with &%gin soniewherc 
in the interior of the acrofoil, the X-axis p&ng 
through the trailing. edge: The velocity distribution 
can be calenlated if the coordinates 6, 7 and'  the 
fnnct,ions u and, T are all known as functions of 
the angle 'p on the circle. The anglc between a 
tangcnt to the contour and.  the X-axis i n  thc 

.point 3: = I .  is a given function of (.. I n  scction 6.2 

this anglc was shown to he cqual to Q + r('p),,+ -, 

so ' k a t ,  the given shape of ' thc  'aerofoil induces 
a: rclation' 

. .  
II 

' .  2 

I 

(P.++(+")  = A ( ( ) ,  (8.6) 

where A ( ( )  is.a known function' of. (: 
The unknown functions u('p),  ~ ( p ) ,  !(+p);and?('p) 

arc detcrmined,hy an iteration process. 
Asynme a buitahlc, zero-order 'approximation ' 

1 

5 io($"). . ' 9  (8.7) 
, . .  
Then, t,hd iteration .formulac 'rtp %s iollows ., , 

' ,  a) .  from (8.6) ' 

3) from (8.3) . . 

.. 
r n ( ( P ) = A { 6 t 8 - 1 ( + " )  I - Q ,  (8.8) : .  . ,  

.. . .  
. I  

2 x  
1 
2 : , , / ,  

' 
' u+9) +/ i.($) cotg ~ ( + L $ ) d $  (8.9) 

and. '  , : ,  ,: ., , / o . .  . , . ,  . : . . .  : I  . ' ' , 

(8.10) 

, ' r. , ' ,  i. 
e )  from (831) 

7 . ,~ Q 
~.( 'p)  =- -R  /"e.;(*) 'sin (7 .  + +)d+. 

ii 
'> Having obtained . .  , I. 

: .  
u = lim un, 7 = lim T ~ ,  (8.11) 

"4- , . n 4 m  , !  

the' velocity distribution follows from ' (8.5,). 

SA ,Iterative idiution' of thb inuerse..problenl. 

I n  t,hc inverse problem the velpcity distributioii 
v,, ca.nnot, ,tx. @en along the contour, which, initial- 
ly, is unknown, ~ b n t  it i s  supposed to  he gi%n'as 
a function of the coordinate ( along the chord. 
Furt,her, this function cannot he chosen arbitrarily, 
as the funct.ion u,.,',which is dirivod from it,' has 
to satisfy the conditions (4.28), (4.29), and, in the 
case, of an acrofoil with fixed centre of pressure, 
'(7.10). 

I n  order to be able to satisfy'these conditions, 
j,hc vclgcity distribution is introduced as a function 
u,, ( I . ,  x ' ,  2 , ~ ~ ~  K ' ) ,  containing four parameters. 

According to (8.5) the function u(p) is related 
to I 

" 

( I ,  

by the formula , . 

/ 
F 10 

.,:I r .  , \ ' 
If , . .  . 

lim u,,-u, . lim T % = T  

arc known, the coordinates follow from (S.1) and 
(8.2) and the velocity~distri'hutions at, other angles 
of adtack from (8.5). 

"4- It+- . , , ?  '. I 

8.5 Choice of. initial ..appro'pamalwns: 

."In both &scs 'suitable initial relations can ;)e 
drawn from.an "intermediate acrofoil" with knobn 
propertics. This aerofoil should be ,adapted, ' with 
respect to gcomctriial shapc, to the aerofoil con- 
sidercd CProhlem I) or to the aerofoil expected to 
result from the calculation (Problem 11). 

It could be chosen from a sufficiently extensivc 
family of aerofoils, depending on a limited number 
of parameters, which admit a simple analytical 
trcatment. 

A point of particular importancc is thc coinci- 
k n e e  of the tail angles of the intermcdiate acro- 
foil and the acrofoil considercd or requested. This 
precaution removes the tail-point singularity i n  
the differences u - 0" and i -.T~ and, hence, sim- 
plifies the numerical calculation of the Poison 
integral to a great extent. 
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9.1 Prelinainury. considorutions. 

The convergence of the iteration procdurcs, des- 
cribed in section 8 should, of coume, be demoii- 
s t r a t d .  The first proeess is wsentially the 6011- 

formal m q p i n g  of the acrofoil on the circle. The 
prwf of the convergence ca.n bc given in a way, 
rescmhling more or le.% WARSCAA\I%KI'S proof of 
the convergence of the Theodorsen-(l arrick process 
(rcf. 21). It will hc omitt,cd lierc. The convergcnct: 
of second, process, the computation of an aerofoil, 
having a required velocity distrihution along the 
choi*d, will ,,lx considered somewhat mom .closcl~'. 

A simplified casc is taken, where the imposed 
vclocity distrihnbion contains only one parameter 10 
in a very simple way. f.'o account has hceu taken 
of a hranch point. of the mapping fnnct,ion. Such 
n point is; , a s  already mcntiond, diminatcd in 
pract,iec hy taking a zero approximat,ion with the 

'same singnlarity, thc difference functions heing 
regular everywhere on the'  contour of the circle. 

9.2 Two leninins. 

Convergence of the iteration procedure.! 

. / < '  

Lelllnlrc 1. .. . 
If He z > R e i ,  t,heii' 

.. . 
I ~ P - c ~ )  < / 2 - - f j . ~ n e . - .  (9.1) 

The proof is easy.' ' ' : I . ,  

Lemma 2. 

If the furict,ion 

. h(z)  - u ( z )  + k ( e )  . (9.2) 

is regular on and outside the circle z = RaiQ, and 
if '  

F I I  

If , 

a )  I " . ( ~ )  is a regular, periodic function of 0 
. wit,h period 2 T ;  

b) u0(y). and ~ ~ ( 9 )  are  the real add imaginary 
parts on tlic circle z c  Rc'Q'of a function 
h. (z ) ,  analytic on and outside the circle, 
satisfying, tlie condition 

c,: 

2 r  

. , / ~ , , ( p ) d ~ = 0 ; :  , . ,'.(9.6) 
n . . .  . . . ., 

t,lie functions u . ( y ) ,  T.(Q) a ~ i d  [ , j ( ~ )  arc <it:- 
fined by 

e )  . .  

On(?) =P(o,~-r) L'Kn-l 1 . .  , , (9 .7)  

(9.8) 

(9.9) 

1 
2 - c"-j (1 -cy B n - J  =<,&-I, 

, .  
I :. 

Q 

# , h = J e r d * )  sin ( 7 .  + $)d$ ,  
0 

cR-j  c m a x  &*) sill (7. + (9:10) 
Ll / 

(9.3) 
I .  , . :  

along t,lie circle, ihcn' ' \ 

' .  2 r  2- \ '1 .r'(Q)dQ (9.4) 
0' 11 

and 

;: ( y )  . 7(y)dp=O. (9.5) 
0 

This lemma is proved hy expanding the funct,ion 

into a Laorant series h ( z )  = 2 - and',consider- 

ing the expansion of h Z ( z ) .  

m a, . . 'a 

y = ,  zv 

, .  
9.3 Convergence of t h e  second ~ T O C C S S .  

The eonyergcnce of the design procedure of an 
itemfoil with given velocity distribution along the 
chord is, in  a simple case, established hy' the fol- 
lowing theorem. 

" . . . , ,  
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By SCHWIHTZ' iiicyuality I 1  

10 

I, 

Further,  k i n g  regular for 0 s  yl 5 2 7 ,  p is 
bonnded in the closed interval; hence 

. .  
p < ni.: 

(9.1s) 

As I* is adjnsted sa that, f .  ___ d z  = 0, along 

thc circle, application of Lemma 2 yields 
, .  

2 .TI h,- h,-t 1 d$= ' ; 

2a 

= 'J { ( u " - o ? L l ) ~  + (7" - r*-,y 1 d$,L 
. ,  0 

, .z* , 

= ?  / l (g . :Tu , , - j )2d$.  , I (9.20) 
0 

As, further,, p ( 8 )  is regular, it satisfies a Lipschitz 
condition 

I p(8',) - - I " ( B , )  I < JG I 8 ,  --8, I (9.21) 
. .  1 . 1  I for any pair  of valuei 8, and-8,. Hence, 'there is 

a number M, so that 

I 5 - (4 e 4 e ~  ) n - 1 J (u,-u,,)'d+, ( 9 2 )  
0 , I  

This completes the proof of t.hc theorem. 
This thcorcm shows, tha.t the process eoiirergt:~ 

for sufficiently small values of m and X, yielding 
a limit set of values o, i and E,  from which 7) can 
lie found easily. In practice, a satisfactory result 
will gcncra.lly Ire obtained after the first, step, as 
will he shown in the chapter on numerical methods. 

10 Approximate 'theory> 

10.1 GC?&Z formulae. 

From the set, of exact, formulae, rel;rtirig t81ic: 
velocitj.. distribution with the geomctrical proper- 
ties of the aerofuil, a simple apgroximatix theory, 
valid only for t,hin aerofoils, can ,be obtained. 

This approximation allows a 'rapid conversion 
ut' geometrical specifications of the aerofoil in to  
specificat,ions of the velocity distrihihon and con- 
versely and map thns facilitate ,considerably tlic 

For a flat plate at zero incidcnec the transfur- 
design of aerofoils. . .  

mat,ion formula into a circle is 

nnd 
I 

Henec, 
circle 

I? 
p-z+- 

z 

functions ~ " ( 9 )  and .T,,(Q) t: 
, .' 

z = B o ' ?  
the value 

so = In 2 sin 9, 

To =TI2 - yl. 

Now, assume for a thin aerofoil 

(10.1) 

(10.2) 

! on thc 

I 
(10.3) 

( 1  0.4) 

(10.5) 

(10.6) 

(10.7) 

where and 47 arc relatively small corrections. 
T,hen, the formulae for the coordinates become 

. . .  
yl - = z J  t s i i i y l . e ~ r . e o s A r . ~  -2(1-cosyl ) . -  

3 = 2  1 s i i i p , e * ~ . s i n 4 i . ~ =  - 2  

0 
R 

- 2 /4o d cis  9 z 2 (1 -cup y l )  (10.8) 

(D 

' 0  

,I 
(10.9) 

R o  
and 



-- - tg  AT z AT. at (10.10) 

Hence AT is the slope of t,hc ta.ngcnt, to t,lic aero- 
foil contour (except near thc narc). 

The fmnction An is related to the vckxit,y dk-  
trihot,ion u,,* at, an& of incidence a. 

From 

F 13 

it Follows dhat 

2.n0 
AU = - hi - (in.12) 

~ J 
where ?in@ is the rcloeit,y distribution at, zcro in- 
cidence. 

Furt,hcr, introducing the function (excess relo- 
city at zero incidence) 

which is ensily found from the distriliution a t  in- 
riclcncc a, 

Now AU and A7 arc conjugatc functions and, hencc, 
ielatod by POI~~N'S integral. 

A u = - A  o Q ,  ( ) (10.11) 

TYie formula 

2 r  
1 '  1 

2 7  A u ( Q ) = -  / A T ( $ )  .cot: (?--$)a$, (10.15) 
U 

or 

admits thc estimation of X,(p). (or the velocity 
distrihution) from the shape of the aerofoil, as, 
liy (10.8), the derivative, which initially is given 
as a fnnction of f can he expressed as a fnnction 
of 9). 

Hence (10.8) and (10.16) solre problem I in 
first order approximation. 

Conversclp 

1 
277. 2 

o($) . cotg- (?-$)a$, (10.17) 1 /r 
A T ( ? )  =- - 1 

or 
0 

2a 

Sul~stitution into (10.9) yields 
0 2a 

As the conjugate of, the integral of a function is 
equal to the integral of the conjugate function 
this can be transformed into 

Together wit,h (103) this formula derivcx the 
shape of the acrofoil from & ( p ) ,  whioh is itself 
derived from the prmcrihed keloeity distribution 
at  angle of incidence a. Hence (10.8), (10.9) and 
(10.19) solve problem I1 in first approximabion. 

Note that the conditions, impwed on the velo- 
cily distribution in thc exact theory do  &t, occur 
licrc. They refer to the requirement, h t  thc 
acrofoil should harc a closed, contour. As the 
;ipproxiniat,ion formulae developed .here, are no 
longer valid near the nosc, it cannot bc decided 
in this approximat.ion whether the aerofoil contour 
will hc closed or not. 

10.2 Synrmctriecd uerofoils. 

. .  

I n  t,hc easc of a'symmetrical acrofoil ~ ( 9 )  is 
an crcii and ~ ( 9 )  an old function of arid the 
formulae can Bc somewhat. simplified. . ' 

. (10.20) sin $d$ 
cos $ - cos p 

Ao(9) =- A T ( $ ) .  
n 

0 

So, by (10.8) and (10,10), the wcll,known formula 

I "  

is obtained, where 

= 2 Z1(1- car p ) ,  t = 2  R(1-  cos $), (10.22) 

T,his formula expresrcs the e x e s  vclocit,y in first 
tipproximition at. zero incidence. , 

In  the samc approximation, the vcloeity distri- 
but,ion a t  other angles of incidence is given Iiy 

I m=cosa:+sina. tg-rp=l  + a . t , g ~ ~ .  (10.23) 
2 ,  . '  

Hence, the excess velocity at  incidence a 'is 

1 A , = ' ( l + a t g ~  p ) ( l + A o ) -  

a formlula, which docs not hold nrar thc leading 
edge 6 = 4 K. 



- 

F, 1'4 
, 

1h"the '%e of"a .symmetrical aerofoil A,(?).  is 
a n  even function of :'p 'and likewise . '  ' . .  

: I , <  

A,(8) sin 8d9. 
. I  : 

' U  . .  ! 1, 

Renee' t,he fotmula for the .coor&nat,cs liccomcs 

. . .  
, .  

,. 1 :  

c .,. I 
.. : 

. , /  . 
from w6eh  t.hc shape ,of bhe aerofoil can hc derived 
to first approximat,ion. . ,  

PART:3I.. . i ,  

Numerical methods. , , ,  . 

11 Basic properties of, , , . ~ , ,  numerical , methods. , 

11.1 Preliminnry ,considerations. 

I . . .  
, ~, .I,, . ,  

.. . , .  I 

, ' . I . .  . . ,  
' . I . , ,  i . , .11,1:  . ,  , i ' , 

, . .  

. . , .  . ,  

.Disregarding ' t h e '  fen,' special cases where pro- 
lilem I and I1 can ,bo solved analytically, the analy- 
tical operations involved in the iterat,ion proec- 
durcs developed must he approximated by purely 
numerical methods. , (., 

Aside from simple operations like differenti- 
ation or integrat,ion of analytic functions, adequa- 
tely ~ ,soluble ,by :  .aid ,of conventional .numerical 
methods, the numerical eGaluation of the principal 
value of POESON:S integral; 

I ,  

, .  . .  

is. a,,more complicate? prohlem, occurring in every 
iterat,ion step: The function o($) is approximated 
hy interpolation. polynomials, through the valuw of 
u ( q )  in 4 11 equidist,ant,,:polt!ts ,. , , .  (lattice . points) . .  

yn = wi . - . , , in  ,= 0,1, :4 n- 1. 
2:n ' 

0, ,: , , I ' 8 .  
71' (11.2) 

The ohoiee of this interpolatid~lformula! is 'govern- 
ed by a practical considerati.on;.viz. 'the $act, that, 
waviness of the aerofoil contour deteriorates the 
aerodynamic, properties hence, that any wavi- 
ne& w r c l y  ' resulting from iriiccuraeies of the 
numerical design procedure is t,o be prevented as 
much.:& possible.' So. the numerical 'procedures 
should not affect properties of the functions (T 

and 7 referring t? ,cont,inuou differentiability 
and non-oscillatory variation.' It is not so easy to 
specify accurately the cond,itions involved (apply- 
ing to the methods ,of numerical ;e+aluation); but 
the following propaition may be satisfactory. 

Any, interpolatory function must be continuously 
differentiable and -non-ascillatory (i, e., its,: graph 
must not, contain waves of order 10'Xmax. valiie 

of +e ,function with a wave leizgth comparahlc to 

or smaller than -). 

If  the function, eonsidere  shows ,eit,lier discon- 
t,inuities, or 'discontinuities of ' its f ia t ,  derivatve, 
these must he treated separately by subtracting 
from t,he function a suitable simple function with 
the same discontinuit.ies, apt, to be treated. analy- 
tically. This condition should not, be considered 
to imply that cases, of a steep gradiew along a 
distance of. one or two intervals are exeludd. 

Under these circumstanc&, the Poisson integral 
can be evaluated numerically with the help of 
interpolation formulae. Two different msethods 
have found extensive application. The first, pro- 
ceeds from TH~OWRSEW and GARRICK (ref. 12)  and 
is based, not only on t,hc 4 n  lat,tice point. values 
of the function itself, but also on the values of the 
derivative in t.licsc points, which gives risc to in- 
accuracies if the function is not defined by 'ii 

analytical expression. 
The second method has heen developed hy 

R m m  and WITITCH (ref. 14) and, independently 
by GERXAEV (ref. 15) .  It makes use of trigonu- 
metric interpolation polynomiak and results, by a 
skilful use of the properties of the coefficients of 
t,hesc polynomials, in a simple matrix-multiplication 
operat,ion. T,he method is entirely satisfactory in 
many cases. Difficulties, however, emerge i n  cases, 
yhcre ,a  steep gradient is present, as referred to  
and definitely admit,ted above. If the interpolatory 
function nsed is a trigonometric polynomial, i t  
obtains, in such cas?, a larger waviness! than is 
acceptable. ' A t  the spot, where the gradient, is 
s t e p ,  the interpolatin,g function shows Cham' 
phenomena, commonly encountered; in approxima- 
ting Fourier polynomials for a function with a 
diseontinuit,y. The resulting values, will. show the 
sanie waviness in bbe lattice points. Even if this 
fcat.ure is only slight, it may be .inaeceptahle, for 
it, may, e. g. in the caleulation.jof .laminar flow 
icrofoik, lead to waviness in the' contour. %or this 
reason, a new method .has been dcvelopd, based 
on, algebraic interpolation polynomials of special 
kind;.kstablishcd ,by SCIIOETXF:RG (ref. 17) and Bpi 
to a.Goid ..irregularities 'of any ur!aceeptahle type 
as.much as possible. 

.. 
71 "' 

2 n  

11.2 Inferpo7nltion po2ynominls. , _  
, .  

Introducing the variable 

whence 

the interpolation will'tie, requircd to 'reprcqent 'a 
function, whose values are given '.in the lattice 
points, determined hy integer values of t,hc abs- 
c i b e :  . .  . ' 

Now, .any interpolation formula 'can he repre- 
I . .  

. .  



s,ented bJi a "hasic function" L ( z )  with the 
property 

L ( 0 ) c l ;  L(n)=O, n c i n t e g e r f o ,  (11.5) 

t,he interpolatory function being rcpreserxted ,by the 

,~ , , .  

. .  expression ' . J. 
[ t  ~ I..' 
P ( P ) . F  2'. A , & ( p - - - v ) ,  (11.6) 

" = - m  
, ,  

whcrc A, is the sequence of value.+ of the function 
in the iattiee points.: In  the cases considered thc 
functiqn, is periodic and !the ,sequence i s  infinite '1. 
Taking the Lagrange interpolation as an example 
of interpolation' with a central difference. formula 
of the second order, thc:interpolation, polynon.ia1 is 

P ( P  + 

F ii5 

tion of the second degree, its 'values. 'are: repro- 
duced exaet.ly. by 'the, interpolation formula (11.6) 
and the discontinuities cancel in the addition of 
the successive ternis in (11.6). In  all other cases 
t,hesc discontinuities of; the intcrpolatory function 
do not cancel md may ca"e considerable errors, 
e. g. when, as mentioned! above, a local steep gra- 
dient of the funct,ion:A(z), eausing large differen- 
ces in successive values :of !&", is present. They 
have proved to affect the conjugate function in 
the calculation of 'the Poisson integral, derived 
from a o function, interpolated by Lagrange intcr- 
polation, in a quite unsatisfactory way. 

These difficulties can be moided'by the appli- 
cation of interpolat,ion by one of the basic func- 
t,ions, introduced by SCHOENBFX. This hasic func- 
t,ion L has the following, properties: 

(I) it is continuous,: together with its first deri- 
vative. 8 . :  

(11) any function of t$e second degree is repro- 
'duced exact,ly., ! I 

I I ; j  

(111) it has the me "span",.,as the Langrangian 
basic function defined ,by (11.8). 

( IV)  it. is composed of arcs,of at, most the third 
degree. 

i ; " .  

. . .  

(11.8) 

. ,  
. .  

, .  
and From these co~ditions, the function can he deduced 

to he 
, ,  . .  . ,  . .  . 

L(-P)  = L ( p ) .  

(11.9) 

. .  
This ' f b h o n  is reprodtieed in fig. 4. !I; is dis- and"' '.' 

. ,  continuous in the points p=intcger'+ 4.' ' I n  the 
special case, , .where ,.. ,the I +alnes' , .  A" belong t o  a flint- 

, , ,.. 
L ( - p )  =-L(p) .  

, ,. 

Its graph is 'given in fi'g. :5. 'The :general met,hod 
indimtwl bv SCHOENBERG, to generate suo11 inter- . ~ .  
ijoiition functions will not be- considered here, as  
the function,(11,9) can be deduced from the pro- 
pcrt,ces (1) 'to (IV) mint,ioncd a1)o~e ' b y  quit: 
elementary reasoning. 

') The practical interpolation in finite spqucnezs may 
d l  Edr modifications of the' interpolation f ine t i i n  L near 
lhe end pciiirts of the interval, or fur extmpoiitio,, * t p t i l  
sides of the interval. . "  .i 1,: , . I  . .  
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,The interpolat,ion formula ,valid in the interval v + m  -:+ 5 p 5 . 4 ,  belonging to (11.9), is. P,(P) = X um+" L ( P - v ) .  ') (11.13) 
Y=-m 

I /  

.I 

' L  , .  S:ahst,itnt.ion of (11.12) yields 

T ( Q )  = 

'i 77 

i ' I? 
1 In-' 

-f- 4 17, m=O /F",(1?!'.Cot~11(Q"'-Q) +P2;;/.dP. 
- 11, (11.15) 

I '  ' 

.; : , .  I t .  If it is sufficicnt to determine the values of r ( p )  

in thc lattice points Q ~ =  k - , substit,ution of 

(11.14) leads to integrak of the form 

I .  6 ,  , 71 

2 n  
Fig. 5. .The Schmnberg intcrpdatian. 

+ ' I .  
77 

2 n  

k=m-Z=0,1, ...... 4n--1. 

(1; + p)77 . d p ,  (11.16) 
4 n  pk,u = - 1 p' , cot&?. 

- I/* 

1 9 :+ A, (TP' + pZ + 16: p )  + 11.4 Calculation of the integrals pk."  

1 
32 For small IC, the r a t i o ' k f p  is small, and usc 

4n 
which will be u s d  to evaluate thc Poisson integral. is 'made of the expansion 

XT 
4725 ' 

(11.17) 

z r - 0 , .  - cot,. 5 =  - - - X  - - 2 3  - - 
11.3 Reduction of the ,  Poisson integral. x 3  46 945 

1 1  1 2 

The Poisson integral (11.1) is, for t h e  prcsent n < q< 1. 
p i i r p i ~ e ,  written in the form 

I?ubting . 
+ ' k  

. .  
- 'I* . .  I 2 . .  

Qni-' 
' it. is I'onnd that 

. .  mitli 
1 7 r  

(k) - 77 77 
ynb = m - ' e=- 2 n  ' 4 n  ' 

2 
It is cralnated hy substituting in each partial in- 
teyrul an interpolat,ion approximat.ion for u 

. \  

2n 
. .  . n < o , < i  

, '  =-"r(P), -4s,P,s'+h,, '(11.12) 

?here P " L ( p )  , .  is laken , fr?m . ~ .  (ll'ln) with A = ') Taking amount of the definition (11.12). of Fm(p) 

tion of p ,  independent of m. ' , 
th6 .expression (11.13) is wen to 'vcprcscnt tlw mme f m w  

' i r  ,.. c * + r .  
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The !I'r(k) are calculated from k=3, agreement of the results up'!to 6 ,  decimal 
nlaces has  been obtained. 

[ 0 , v = 2 h + l  For values of k > 2 n, the functions Pk I are 

atid the recursion formulae as can be shown as follows 

replacing the integral by its pritieipal valuc for 

For small values of fc these methods arc suffi- 
ciently accuratc as can, if desired, be infcrrcd from 
the error term. 

. .  . k=O and p=--1. r\ . ' . , , I  

For large values of k the function 

cotg jr+p.-l IC rr II 

n 4 n  

is expanded in a Taylor series. Putting 

(11.22) k7i cotg-=t 4 n  

elementary calculations yield 

k a  x PT 
4 n  4 n  I n  cotg I- + p .  -1 = t - (i + t 2 )  .- + 

+ ( t  + t 3 ; .  (F) n 3 

- 
15 

.Substitution into tl;d intcgral gives 
. .  (11.23) 

(11.25) 

The coefficiCnts Pk," are calculated in the case 
n = 9 ,  corresponding to a division of the circlc 
in ares of lo0. The first methd  ik' used for 
k = 0 ,  1,2,3, the second €or k=3 ,  ... 18. For 

+'I* 
71 k I I  pa = 

2 71 

The symmetry 'properties (11.26) prove, .,, that 

A ; , - , = ,  A; (11.31) 
I , . I  , .  

. .  and hence , .  

c,,-,=- c k . ,  ,, "' (11.32) 



and 

ami = cm-1 -F C4"-m-i = Cm-i- C,+I, 

Pnr~ = ?m-,i- C+-m-t =,$"-I + cm?,, (11.34) 
. . q.v ;,, , 

formula (11129) ean"hc reduced to 
, ,  , 

: 
411 P t l  , ' 

r(lpj').- + 2 emf.%z + 2 /3m~&+. (11.35) 
! ;, 

. I  
' m=O m=n! 

R&rict,ing also the values of, , Z  to 0 5 2 5 2 n, 
the coefficients eml and 'c?n .be recolleetcd 
in two matrices of ,order 2 n  ,and the column 
~ ( l p t )  (0 5 2 5 2 n)' is the sum a'bf two columns, 
the first, U1 , resulting from, a multiplication of 
the a , matri,x ,with. thc pow S ,  , .the, second Si , 
from .a .multiplication :of the @ matrix wit,h the 
row d, . 

I:, ,: i )  r ( p i )  =.SI'% Di 0 5 2 5 2 n. (11.36) 

To find thc val)ies;of;(lp,) for.Zn.5 1 , 5 4 n - l ,  
note that 

.:, 

' ~f I 

, I  

am,4n-l = C-4n+m+l - c4n+m-f = 
J t~ .= Cm+f-,Git-i =-.h~.,;, I (11.37) 

Pm,4i!.-l C-4n+m+I ,+ c4m+m-l > .  ,: ,\ , i ; . ,c',.~...' ! ' 'e 
whence , .  ..T ~' 

= ,,,+, + - +'PA, . I 1  ' ' 

.... -. , . , / .  

s(rpen-i) = S I  - - I .  0 5 2 5 2%. (11.38) . .  
, ,  

. > ; I  , ( , > . , ' ' : , , ' . :  . . .  d . ,  

If' e(?) 1s an even function 'of p; d,=O and 
; r , = O ,  T is an odd function, and if i ( p )  , i s  an 

Finally, a number of relation.? hetwccn the 
, odd: f,unition,. r-is'jeven .... : ' I '  .-; \ . , ,  

matrix elcmmtstcan he estahlished , 

anl=Cm-1-Cm+f= ;,: , ' .  
( ( ! : . ~ L l  7-(Ci-m+.c,+-(;1)=.4PIm, (11.39) 

1 ,  , .  

azn-m.zn- i=  C I - ~  - C4n-i-m = 
(11.40) 

(11.41) 

. .  " --.C;i-l/:Cf+,,=-aa,Ll ) .  

7,Cm21 - Cm+, = - P a r  * 

Pzn-m.zn-r= G - m  + G , - I - ~  = 

So the ,8 matrix is the transp0.d of the a matrix 
with a negative sign. , (o:F, n t  9 ,the a matrix is giveh in table I. 

v .  
I 

11.6 Calculation of the derivative of the conjugate 'fu&twd'i (d:,! :: -.# ,(.ll, ,' , . . I . /  >: ., 

". 
( L1n':ccrtain &e.$. especially, for the cjlculation 
of the radius of curvature in any poi,nt of thc 
scrofoil, it is convenient to  dispose of 'the 'h&iis 
(of;.t,he derivative ,of ~t,he--conjugate function. 

Using the interpolation polynomial (11.14). for o, 

, . . T. .. , ! , ,  ; ,. Now, from (11.14) , 

3 " 9  7 ,  I + (rl,,-, ( -- - p 2  + 2 p - - 16) - r p . ovr + 
4 

' .  r 
, , .  :I.: I > , . . '  , ,  

Tntroducing 

1 
B L  = (- 12 Pm-m - 8 Pm-1,i - e,,-,, 0 )  , 

' (11.45) 

Again the symmetry pioperties of tlic P - ,, 



With the symbols s,,,d, of (11.33)' and :' 

12 A class of intermediate aerofoils. 

12.1 Prelimiiiary consjderations. 

In the general theory, of part  I, the desirability 
to choose , a n  adequate intcimediatc acrofoil was 
emphasized. This intermediate aerofoil, .serving as 
zero-order approximation in the iteration. procc- 
dureu, must be so chosen that the differences u- u,, 
and I - io arc, everywhere on the circle, analytic 
i n  order ' to  realize the conditions necessary for  a 
successful application of the numerical procedure 
of chapter 1 for the Poisson' integral. 

, . , nloreover, with a suitable choice of the intcr- 
mediate aerofoil ilroady t,hc first s tcp ,  in  the 
iteration procedure' yields. a ,siifficicntly aceuratc 

A suitable family of intermediate acrofoils hiis, 
for practical purposes, to satisfy t,wo. condit,ions 

(i) It must be possihlc to represent, its coordinates 
as well as its functions v and T. by simplc 
analytic formulae. 

(ii) t,hese fomidae mut , involve a few paramct,ers 
.so as to give a.fair;variety of sliapcs, in ordcr 
to secure a satisfvtory adaptahility to a re- 
quired shape or velocity distribution. 

Initially, Karman-Trcfftz aerofoils have hem used 
for  this purpose (ref. 7), hut Z L T  (ref. 10) has 
developed a new-family of aerofoils, which involvc 
simpler calculations: Of coumc, , howcvcr, othcr 
well known aerofoil familics, like t.hose of PIERCY 
(ref. 22) or RCSKER (ref. 23) could be uscd io?  
the same purpose. 

12.2 . ,The niiipping function. ' ,  

It Follows from 1.5 that, a very simple mapping 
function transforming an acrofoil with tail angle 
6 in the plane in a regylar, closed analytic curve 
in the z-plane, the point, z = a  corresponding to 
the trailing edge e= 0, is giving,:by 

". 

I rcwlt. 

I ,  

, 

, .  

(12.1) 

This funct,ion is seen .to sa t i s f i  ~ the addit,iona.l 
requirements for the mapping function, i. e. iden- 
tity of the 5 and z plane in ipfinity-and regularity 
throughout the outer part, of any contour, enclasing 
,thc,qrigin. 1 
" The derivative is. ' 

d% , i a k-1 

dz z z 

c k  
> ,  

e = z ( 1 - - ) .  2 : 

i 
' , I  

-- - k  (l'--) - ( /~-1) , : (1-~)~:  (12.2) 

By mapping a circle in the, e-plane with thesorigin 
as centre a one-parameter family of .aerofoili. is 
iihtaincd. . . .  

I n  order to obtain a ' g r a t e r '  v h e t y  ZAAT con- 
siders an ellipse in the z-planc, with centre in the 
point n ( c  + i v y ) .  

z = z + ~ ~ ~ a { e + c o s p ' + i v ' ( ~ t ? ~ s i n ( ~ ) } ,  : I  , ,  (12.3) 

8 . .  , I 

. . .  . 
- :  \ 

.. , 

, . .~ 
I ? . .  

which rcsnlts from a circle * i  

. I  \ 
in a ~ : - p l a n c  Ly the transformation 

The coordiniitcs of the aerofoil are found by sub- 
stit,ution of (12.3) into (12.1)'; dhdosirig fo r  a, tlic 
point in the z-plane corresponding, tb -the trailing 
&e, the i,ntersc$ion of the ellipse with the z axis, 

Q ? $ ( E  + V 1 - y ' ) .  (12.6) . * -  <.' 
The .c+lculation is simplified by introducing anxili- 
in? functions h 'and p, defined by 

I -  

I I t !  

@ + i f l - l - - = ]  a - '. ' e + v m  - 
z E + car p + iv(y + siy p )  

or . . (12.7) 

(12.9) 
I. ,... I - . .  

T,hus the ckkdinat&P df' the ierofoil' can' l x  cal- 

. . , . , , : : I . ,  '. , ( I  .' , 
, ,  , . >  L , .  . , 

culated from . .  
' : , ' ,  

can, on the circle, he found frbm"(12.2) ?and :(12.5) 

en('+) + ir (9)  = { / c . ; . e ( k -  I) @,+ irY- , 
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Introducing functionsh; and 'by .put,ting 
. .  

. . .  ' 1. or 

, .  . I ( .  

the functions u(p)  and ~ ( p )  can he writtcn as 
' \  

, . ' ,  
(T= ( k L < ) A ' + & i +  A,, (12.19) 

' T =  (&-'yi)'+ + PI f (L2 -Q.  '(12.20) . , , \ I .  

From ~ ( p )  the velocity distribution round the 
aerofoil can he calculated 

1.51 =e-n [sin ( 9 - a )  + sin ( e - p ) ] . .  (12.21) 

' p  is the point on' tlk circle, corresponding 
to the trailing edgc of the aerofoil. From (12.6) 
i t  follows that 

sin p =- y.. 

Any intermediate aerofoil of this'family can easily 
be. ,calculated' and the  parameters can easily be 
adapted to the specification of the aerofoil to be 
considered, either i n  p,roblem ,I .,or problem 11. 

12.3 flirst-order approxiniation for  t h e  infermedi- 
'ate aerofoil. 

'' .By using ' ahproximate 'theory for small 
values of "-1, s, 7, and putti,ng 6 = O ,  t,he for- 
mulae for the coordinates become 

( ' , . . , )  5--2 (1-ceosp), (12.23) 

. .  . .  

(12.22) , .'.: I .' 

. .  

1 . :  4 : .  

?,= 2 e :  sin9 ;T .~  s i n 2  p,- (1 -cos 2 9 )  y -' 

.' ...'I - ( ~ - 1 ) s i n p  ( I - ~ e m c 2 ~ ) ,  (12.24) 

from .Grhieli'it is seen; thatmthe camber line is 

\'&j v )  + v(-.rp)=- 2 (1-cm22)y .  (12.25) 

Hence, the camber i's determined by y.  
<,:ymrther, (,the thickness distribution is 

If E = 0 and Y < 1 the maximum thickness is eqiial 
to 1-v, and occurs a t  Q = & T ,  if E > 0 and v = l  
i t  is equal to E and is iltxated at p + 2 / 3  n, ,for 
E > 0 and Y < 1 it,,lies in between these points. 

H'ence it is easy to estimate values 'of E and Y, 
which will yield a given .value and location of 
maximum thickness. 

13 The design of aerofoils with specified velo- 
city distributions. 

73.1 Gentrcil con.riderations. I 

Problem 11, stated in sections 8 of par t  I,! refers 
to the design of aerofoils wit.11 velocity distributions 
speeif,icd along the chord. It' can he .solved ' I)y 
means of the iteration process, .indicated 'in the 
same, scct.ion. 

In the practical design of laminar-flow or 'high- 
speed aerofoik it is generally not necessary to 
keep rigorously to a given velocity' distrihution 
along thc chord,, gcncrally the velocity distribution 
at a ccrtain a,nglc of incidence has only, to shom 
cert.ain prope'rtics, e. g. to involve a. non-decreasing 
velocity on the forward part with a giver] m?xinrum 
value down to a certain point. 

Chcral ly ,  i t  is possible to specify the velocity 
distri'bution as a function of the image angle +, 
as the relation between chordwisc coordinate and 

is approximat,ely known (compare I, 10).  This 
fnnction can serve as a first approximation for 
the iteration proccss, if a closer a.greemcnt with a 
chordwise specified-velocity ,distribution, j s  requir- 
ed, which, usnally, is not the ease. 

T,he velocity distribution tm a function of +, h o w  
cver, cannot be ehoscn arbitrarily, but has to satis- 
f y  thc conditions, derived from the relations (5.27) 
and (5.28) . , ;  

I 2a 

; ' I 'U (v )&=O,  ' ' (13.1) 

, .  u 

v ( p )  C o s p d p ~ o ,  (13.2) 
. I ,  , I .. , , 

2R 

'7 U 

/ v ( p )  sin ='o, (13i3) 

to  which, in the case of aerofoik with fixed ccnt.rt' 
01' pressure bhe condition 

T v ( y ; , s i n 2 p d Q = "  (13.4) 
0 !, 

. ,  . .  0 ,. , 

. . I  

is to he added. 
Thk funct,ion ~ ( p )  is completely determined bg 

t,lre specified velocity distrihht,ion vu(?)! at a n  
angle of inci'dcrice a, as '. , I < +  

,if the sh?rp trailing edge of tile xeroEoi1 is trans- 
formed into the point Q = 0. ' 
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I ,  

h b ( 8 )  s in8df l=~f ( l~ -eos+)  '+ 
. .  

+ h(eosp,(l-ccos+)- 

Tile conjiigate function r ( p )  is derived I'rom 
u(p) by using POISSON'S int,egral and thc coordi- 
uatcs of the aerofoil thcii fellow from 

--= t / d ( ) ) s i n  (7 + $)a+, (13.6) 

11 . 
R 

' 

11y , numcrical .integrat,ion. 
Since, in hhc case of a sharp trailing edge, the 

I'onction o(p) !liecomes infinite for p =0,  the ma- 
trix method cannot he used. Hence, use is made 
(J[ an intermediate aerofoil as cxplaincd earlier and 
the mat,rix method is applied to  the difference 
o(p) - o c ( p ) ,  which is nowhere infinite in the 
inteiwil, 0 5 Q < 2.r. 

In  principle any velocity distrihution u,,@(y),  
dclivcring a funct,ion o ( p )  satisfying the conditions 
(13,1), (13.2), (13.3) and perhaps (13.4) yields a 
closed aerofoil contour. I n  order to obtain a sur- 
vey@le, suitably organized system of aerofoils, 
certain general properties of form arc imposcrl on 
t h e  velocity di,strihntions to be considered. Thcsc 
i,cstrict,ions, Ihowwer., leave a sufficient margin t o  
design aerofoils u j th  considerably vwying propcr- 
tics. It. is,, moreover, easily possihle to  wiry tlie 
calcnlat,ion met,hod to meet, other rcquircments, 
e. g. the design of snet,ion aerofoils with .a pres- 
crihcd j u m p  in the velocity 'at, t,hc suct,ion slot. 

The velocit,? distrihut,ions to he considered. arc all 
of the s? called "roof top" t,ypc. , 
AT. a certain iingle of inci,dciicc the logarithm of 

111c vc1ocit.y along the, forward par t  of the upper 
side is assnmed to ,  he a. constant, np  to a certain 
point and then to decrease liiiearli with p 

. .  

... 
= n ' +  rJ(p-p2) n < p < pI (13.8) 

p1 < p < x (13.9) 
. -  

In the ease of a symmetrical acrofoil the  velocit,y 
distrihution at, the lower side ( x  5 p < 2 7 )  is 
then complctcly determined, u ( ~ )  being a symme- 
trical function. I n  the case 01' an asymmet,rieal' 
;ierofoil, however, the velocity a t  the lower part, 
mist  be specified by an analoguons distrihution, 
pertaining to another (negative) angle of in- 
cidencc. 

A rigorous compliance with persistence hf these 
distrihutions in t,hc vicinity of the leading edge 
and of a sharp trailing edge, however, is not pos- 
sihle; at. the sharp tmiling edge y =  0 t,he velo- 
cit,y mnst go down to  zero and near the nose it 
also falls off, because of the p r e s "  of a stag- 
nat,ion point a t  y =  r + 2 a, which, a t  least for 
angles of incidence- -a, occurring in practice, is 
quite near the nose, just at. the opposite of the 
side to which the distrihution (13.8) refers. This 
means, that in  the small region II 2 , x + 2 a 
t,he velocity distribution must fall off very steeply 
causing irregularities in  the contour. A better 

< 

contour can he oht;iined by designing the velocitx 
dist,ribntion in thc neighhourhood of the nose and 
t,he tail by special parameters, to ,be adjusted 
during t,hc calculation in  order to meet the s;icial 
condit,ions necessary to obtain a closed contour. 

13.2 I"ir.st-;rdet upprosimutwn. ' 

Usually, in acrofoil design, t,he imposd  con- 
ditions apply to gcomet,r/cal as well, as to vclocity- 
distrihntion propertics and i t  is, for this reason, 
very useful to dispose of a set of formulae, giving 
at, lcast approximative relations hetween bhe para- 
meters involved. 

Such Eormnlae arc furnished hy the first-order 
approximat,ion m e t h d !  dcrivLd, i n  sect,ion I, 10. 
A s n m c  for  a synimetrical acrofoil the 'excess 
velocity distrihution on  the npper side at, angle 
( ~ f  incidence c to be given hy . .  

h ( p )  is given hy 

Ao(P)  = - A , , ( Y ) ,  

4 i ( p ) = A u ( 2 . x - p ) ,  a < p ' < 2 n  
"< '" < x  (13.11) 

and the coordiniitcs of the acrofoil aTe found from 
tlie formula 

(13.12) 

" 1. (13.14) 
y - cas + + (cos px - 1 + 4 sinzp,) 

QZ 
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1 + 'pZ , CWQ, - 4 sin Q~ - 4 pZ em Q . (13.16) 

For any given valne of n, b, p2 and a the shapc 
of , the  ,aerbfoil and the ,maximum th icknw and 
loeat,ion' of maximum thickness can he calculated. 

Strict,ly; b is not independent froin the othgr 
constants it has to satisfy the conditions securing 
closing of t.he acrofoil contour. Usually, the ratio 
h / n  is small and t,o a very rough approximation, 
for aerofoik having the maximum thickness near 
the middle of the chord, 

t " b  ' 

R 
(13.17) - Z ( l - C O S Q , ) ,  ,,.; . . 

Emm which rough gtimatrs for and a, for a 
given t,hieknw r a t i o ' h d  given position of maxi- 
mum.  thicknes, can be ohtained. . . 

13.4 The dmign of. aerofoils with presciibed velo- 

The velocity distributions of the "roof top'' type, 
mentioned in section 13.1, are, in principle, used 
for the design of a very general e l m  of serofoils. 
to he used 'either as laminar-flow or as high-speed 

city distribzctions 0 f . a  ckrtain type. 

aerofoils. I .  

. .  

. -  . , ' (  , I 

,. I .  

I,. . I  .:. 

.22 

Owing to t.he o ~ e i ~ ~ r e n ~ e  of stagnation points 
near the leading and, trailing edges of the aero- 
foil i t  is not convenient .to ,extend the roof top 
type of velocity distribution to these regions, hut 
to specify the velocity in these\regions separately. 

The interval I 0 5 Q 5 2 li is therefore divided 
into 8 parts by the points ~i (4, .___.. 6 )  and, of 
eoiirsc, the tail Q = O  and the nme Q = " ,  separat- 
ing the upper and lower side. ., 

I n  t,he regions 'pl '< Q < pr and Q, $ Q < p(, the 
roof-top velocity distribution is used, near the tail, 
in the regions 0 < Q < 'pl and Q~ < Q < 2 li, the 
velocity is adjusted so that t,he singularity, corres- 
ponding to the prescribed' tail angle; is properly 
represented and that the velocity passes continu- 
oiisly and with a continuous derivative into the 
va.lue.i, prescrihed over the mid,dle part. Near the 
nose, the velocity is determinod hy its values in 
a certain number of latt,icc points and intcrmcdiatc 
values are assumed to he provided by Sehocnherg 
interpohtion polynomials. . 

If  the index i refers to the intermediate a c w  
foil rhe functions c ( p )  and T ( Q )  are put  equal to 

U ( Q )  = u~(Q) :+. C ~ ( Q ) ,  , (13.19) 

' ( Q )  =ri(Q) ? T z ( Q ) .  , . 
. ' , i .  

Then, i f  v , ~ ~ ;  iii0 'refer to the velocity distriln;tions. 
of the aerofoil and of the intermediete acrofoil, 
and vu,$ to t,he velocity distribution round the circle 
at incidence a, the relations 

, I  hol,d, .yliich are altcrnatively used. ( I :  

The values of u,(Q)  now are given by the iolloa- 
ing table, (eomp. fig. 6 )  taking Q, = T / Q ,  Q:, = li - 
719, p4 = li + H / Q ,  Q ~ : =  2k + z/9 (which mcans 
that the excluded rcgioiis,-near the nose and the 

tail extcnd over 2 -). 7 '  

. .  9 
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The function u,(?) already satisfying the four 
conditions (13.1) . . . (13.4), u 2 ( p ) ,  has to satisfy 
them separately. 

Introducing functions g b ( + )  by 

(13.21) 

they can be written as ? .  i f ,  :;. 
. , .  . .  ,.,,.: 7,: .. . . ,  

2* 

Thcse four conditions yield four relations between 
the 12 parameters ax, 02, a, ~ a z , ' b l ,  b , ,  8, Z o ,  
Z,, Z-,. p2 and 'ps,  linear in a, ,  a ; ,  b l ,  b, ,  
Zo,  s,, X -, with coefficients depending on a,, 
a*, p 2 ,  pz and on characteristics of the intcrme- 
diate acrofoil. These relations result by performing 
the integrations 

I I  

' . ., . . ,, . 
' t t :, , . r : ' C ' ,  

. . . 

. k = l , . . , 4 .  . (13.22) 



5 ,  I 16 20 
18 18 

In view of the interpolation- by the Schocnhcrg plynbmial in the intcival - li < y < - T, 

:. I 
.. 

(13.21) 17 767 
. .  

~ ! , %  
Now, .introduce the follolving abbreviations: 
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arid the following functions of thc intermcdiatc acrofoil * ' 

. ,  
For 'a symmetrical aerofoil only t:wo conditions 
'reinnin! Ik = 1.3) thc ot$er(<t,wo k i n e  ideniicallr 

.. - 1,027124 (2, I+ 2 -,) - 
-.+ n,99s698x0+ P , ( & ~ )  + P ; ( - ~ ~ ) : + ,  ~ , , ? n ,  I. 

,'. 

(i3.32) 

1,,526497 (a ,  + a,) + b,F3(+oz) + b,B";(2 rYP3);-  

satisfied.' T<he four conditions (13.22)'do not de&- 
mine the 5 parameters unanthiguously; hence one eon more relation ea? be imposed, e. g. the radius of .. . . .  

I + + iL ,) +,; I .. . , i , curvature of tEe nose. 

(13.33) 

This radius of curvature is given by - 0,998698 xo + P,  (,,) + P, (- .,) + 8:; = n, 
. .  . .. . 

' (13.36) : . , I . '  , .  p ' . ,  ;((; , e"  . , ,  -=- 
R dn ' 

0,181110 (2 , -Li )  + b x F 2 ( q s ) -  b,B',(2 r - v 6 )  + '"'"''. ' 
,I ! 

s + P s ( ' % ) +  P,(--u,)+11,26356~(a;-.a,)=O, ' )  
(13.34) ' 

.its value atq:k can bd exprmed into So and 2, ~ 

using the value of the derivative of the conjugate 



. .  . . dr  
Iunction- expressed into the values of. U(Q) as G 
provided hy the matrix of seetion 11.6 

-=-- " '" 1,6554X0+0,6692 (&+L, )+  ....._, 
I \ (13.37) 

G G  

whcre tlic dots stand for terms with small cocffi- 
cients, which are neglect,ed for the present purpose. 

I Then a prescrihcd vduc  of plR at the ncse pro- 
vides a f i f th  relation 

P 
'I 

. .  
e- xo + ri 

-= ..  
1 ,$ ' k L  + 1,6554't,) + 0,6692 (2, 4- ,XL,) 

d'# 
(13.3s) 

which finally determines the values 01 t:hd eon- 
stants nnaml~ignously. . .  

In order to obtain acceptable vclocit,y dist,ribii- 
t,ions,, however; ccrtain ineqnalitics must, also he 
satisfied, warranting a monotonic non-decreasing 
velocit,g ovw the forward part of the,aerofoil a t  
the anglc o l  incidence for which thc veloeldy dis- 
t,ril~iition is nrescribed. 

, .  

If all parameters arc determinrd, the 36 kalues 
of the'frinct,ion U.(Q) in  t.he latt,icc points can hc 
calculated and the conjugatc function ..((p) is to 
he determined by. the matrix method of section 11. 

Thus the coordinates of the acrofoil contour 
follow frqm . . .  . 

by numerical integration. 

F 27. 

Hcrc again thc iiitrodoctii of the intermediate 
acrofoil improves the accuracy. of the calculation. 
As the coordinates 6 ,  and arc known and 

formulac (13.40) can he replaced 11y 

+ ~ ~ . ; { c - ~ . e o s ( i i - i ~ + i ) - e o s ( r i  '\ + p )  )+. 

. , . (13.42) 

I..&irc ' the  intdgi,ands a r c  Smal l~ ind  tlrc krrors in- 
volvcd ' in the 'numerical. computation affect, thc 
results less t,han in t.he case of a direct, nnmcrical 
intcgratioii of t,he formulae (13.40). 

13.4 A.n rrlternnfive npthad: tks d y i g n  of ns!lna- 
' met& ~ nerofoils from ymniet+r7. norofoils.  

Owing to the fact, that, sgmmetriehl acrofoik <)f 
thc family dcdcnd 011 6 p.aranneters a, F, h,  %(, , 
X ,  and 6 only, interconn'ccted by' ,  two relafions, 
the design. of,'symmetrical' aerofoils is considcrahly 
morc simplc tlian the design of asymmetricil acro- 
foils, especially as it appcars to he easier to satisfy 
the additional inequalities for the d o c i t y  para- 
mctea near the' nose. 

For a symmetrical aerofoil thc function o,(Q) 
is an even function . '  ' 

, . ,  

u 8 ( Z z - q ) , ~ u 8 ( ~ ) ,  O < v ' < w  ,(13.43) 
, .  

and t,hc valucs on the lower side are thus known 
if the values at. the npper side itre given hy the 
velocity .distribution at a' certain angle of inci- 
dcnee a. . .  

From a symmetrical aerofoil an asymmetrical 
aerofoil can he obt,ained with a vclocity distrihntion 
at the upper side which retains, f o r ,  the angle of, 
incidence a, its original characteFistics by, prc- 
serving the function b(p) at the.upper side (cxccpt, 
for an additive constant) and adding an asymmc- 
tric function a t  the lower side .\ 

'1 ?. 
, O S Q < K  ' 

(33.44) 
where (T.(Q)' is the 'fnnction for thc symmetrical 
acrofoil. The three conditions for a closed aero- 
foil then.yield ' 

.\=,'. . - .(Q) = dQ) '+ io, 

n(F) = u8(:) + A, + s A ,  sin vQ, 7 p < 2 ii 
" = I  

'\ 
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X .  

sin v'pdq = 2 77 . A, + 

+ : A ,  1-(-1)" &., : (13.45) 
Y = t  Y 

21 

" + l  
(13.47) a. 1 - ( - l j  =z A" , =o. 

v=2 " 2 - 1  

to which, for  an acrofoil with fixed centre of pres- 
sure, the condition 

is to he added. 
The ralne of u(q) being defined by a suitahle 

choice of the constants A , ,  tlir conjugate Suiiction 
T(Q) is 
r ( $ )  =..($I + 

2% 
1 .. 

2 t . 2  A "  , [ s i n v ' p  cotg - ( q d $ ) & ; '  (13.49) 

while r , ($)  is already known, beini the conjugate 
Cnnetion' for the symmetrical aerofoil. 

, " = : l .  . 
R 

The integrals. can he cvaluated analytieilly. . .  . , .  . . .  !". , .  

sin v'p . cotg j ('p - $)&p = 

1 7 .  cos2  p $  + 2sin 2 &+,In I t g & $  I,+'; 
n 

' 1  

,'P 1 I.  
( 1 4  z - . s i n ( 2 p L 2 p + I ) $ ,  u = Z p  

p = l 2 P  t 1 
(13.50) 

. .  . 
, I / '  . . . .  , ,  

The coordinates of the asymmetrical acrofoil , call 
be calculated hy numerical intcg?at,ii!p f ~ m ,  . ,,,,?. 

Two simple c1;rsstrs of asymmetrical aerofoils result 
by taking 

o = o , f  - , O < ' p < 7 7  

.. '. . .  
I 

., . 
A '' " , 

(13.52) 
. .  . 377 

r .  . : i ..... 

u=ua ' '  > + A  (% + s i n 3 p )  , r < p < 2 r  

or . . '  

' .  
e = u* , O<'p'<n 

(13.53) 
5 .  
d ,  - 

u =  us f A (sin 3 y - - T ~ i n  5 y ) .  li < 'p < 2 7  

Insertion. of higher-order terms will .cansc 1111- 

desirable rravincss i n  t,he acrofoil contour. The 
indicated elasscs already contain a large variety 
of useful acrofoils. If the condition, of fixed centre, 
of pressure is dropped, another elass of asymmc: 
trieal acrofoils is obtained 11.y putting 

u = u *  ', O < q < 7  
(13.54) 

5 .  
2 

Calculation of the velocity distribution about 
a given aerofoil.: '1 ' ! ,, . 

u =  us + A (sinZy--sin4'p).  li < 'p < 277 

14 

The numcrical evalnation ,of t,he iteratirc solntion 
to the direct, problem of  aeraPail theory, as des- 
c r i l d  in pa.rt, I, can he performed with the same 
aids LS u s e d  in thc preceding section? 

The intermcdiat,h 'aerofoil'is so adjusted that the- 
tail angle is the'same'as for the given aerofoil in 
order to avoid the singolarity in the calculat~ion 
of t,he conjugate. .funbt,i,on hy the matrix mcthod., 

Iforcover, tit, is convcnicnjt' t o  adjust the nose 
ladins of the intermediate acrofoil to thc given 
aerofoil in  order to make t l y  difference fnnet,ion, 
u(9) - ~ ~ ( 7 )  small. The coordinate' in'each s u - '  
ecssive step in the iteration proems must hc norm- 
ed so that 'the ' inte7val for t' always I rkmains the 
same. Hence the {-axis musf he so chosen that it 
passcs through t,he tail and bhat the tangent to 
the eontiour in the nose is ort.hogona.1 to it. Then t,he 
slope A(()  of the tangent to t,he aerofoil as a 
function of , €, can 'he determind by analyt,ical 
operations if "the .eonrdinates' are- given by ana- 
lytical formulae (e. g. the. NACA form and five 
digit aemfoils) or by numerical (or graphical) 
methods." 

For the a yet nnknowi~ functions i ( p )  and < ( ? I ,  
sat.isfying the .relat,ion 

. .  . .  

(14.1) li 
9 + T(P) = A ( t ( 9 )  1 - 2 I . .  . 

an init,ial approsimat,ion is takcn ii) ( y ) ,  per- 
taining to tthe intemedintc aerofoil and: 

77 

, . .  r")(q) = A ( {(')(p) - p - z. ( l i . 2 j  

The intermediate aerofoil, which, for simplicity, 
is taken symmetrical, is so adjusted; that its no& 
and tail coincide with t,hose of the given arrofoil 
and its symmcdry axis with the {,axis. 
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For the calculation of the conjugnt,i: t'niic!,ion 
,2"(v) it, is. colivenicnt, to introduce 

(9) --ii(p) 
[I! (0 

T Z ,  ( 9 )  = 7 

., GP) =. T; ' ) (v )  + ~ ~ ( 9 ) .  

iind to calculiitc tlie conjugate u("(p) from I 

(1) 

(1) Because of the jump of r (p)  at, thc trailing 
edge and the fact, o< (9) ha? the same discontinuity, 
the difference .funct,ion ~ : ) ( v )  is eont,inuous' and 
t,he matrix method yields the conjugate function 
.."'(p) accurateIp. 

The next sten in the iteration prows3 is to  
rstahlislr a ncm approximation for f ( p )  

,, 
wlicrc ?(" dcnotcs the nosc, i. e. thc .value of 9,  
where the tangc!it, is vcrtieal. It, is useful to cal- 
culatc t,hc integrals numerically li? int,rodnetiorr of 
tlic preceding approximat,ion 

P 
~ p - j i  1 ep)-#("-*i sin (r'"', '+ q )  - 

,, . .  . .  
, . .  . 
-sin (T'*--li + p )  j dp. 

Tlic numerical integrations call be carried out hy 

A few examples for thc applicat,ion of this 

, .  

ercnce formulac. 

mct,liod arc i i rcn  in ref, 11. 

15 Recapitulation. 

T h e  met.hods explained in part I of this rcport 
arc limed o n  the representation of two-dimeilrional 
irrotabional ficlik of flow of an ineomprcssihle 
i'liiid lip analytic functions of a. coniplcx variable, 
which rcduees the solving of a flow prohlcm in- 
volving a complicated contour to the determination 
of ii conformal transformation and the solving of 
a flow problem for a simple contour (usually a 
circle). Chapter 1 conta.ins a hricf account of these 
foundations and C.haptcr 2 a discussion of thc 
potent,ial flow about a circle, 

The ohviously very important, gencral propcrtics 
of the conformal transformations encountered in 
aerofoil theory (Itnazzm's theorcm) are dikcussed 
in Chnptcr 3. The wcll known theorcm reducing 

the ratio of the complex-velocities in corrcsponding 
points of  t,he planes of the aerofoil and of the 
circle to the complex derivat,ive of the mapping 
fuiict,ioii is cstahlished. Separating real and .ima- 
ginary 'parts of the logarithm of this derivativel 
a set, of conjugate potential function9 is Ghtained, 
which, in particular on the circle, can be represented 
by conjugate Fourier series in the angular variable 
on the eirelc. T,he first of these functions cT4dent,l>- 
determines the ,magnitude of the velocity in the 
plane of t,hc aerofoil and t.he sccond the direction 
(,given, in both cases,' thc flow ahout the circle). 
Thcse funcbions are t,he adcquate representation of 
the mapping function in this mathematical t.hcory 
of aerofoil sections. Their rclation is discussed in 
Chapter 4, dealing with the Poisson integral and 
with thc Fourier expansions of conjugate functions. 

I n  Chapter 5 t,he singularity of the mapping 
function causod by the sharp trailing edge of thc 
aerofoil .and its consequences with regard to the 
mct,hods of calenlat,ion are discussed. 

I n  Chapters 6 and 7 formulae expressing t,he 
coordinates of the aerofoil contour, the radius of 
curvatnrc in any point of the contour' and the 
velocit,y and pressiirc distributions into the rcal 
arid imaginary part of the logant.hm of the deri- 
vative of t,he mapping function are cstahlishcd. 

Ikfining,'in Chapter 8, as principal prohlems of 
aerofoil theory: 

I The calculation. of the velocity distriliut,ion at, 
the contour of a givcii aerofoil. 
I1 The design of an aerofoil which gcncratcs, a t  
its surface, a given chordwise velocity distrihutiori 
at, a 'givcn angle of attack, the general theory is 
cmily secn to lead to au iteration procedure for  
Ihc solution of,eaeh of these pmhlems. The proce- 
durcs are to some extent related to each other a i d  
the convcrgence of both depends critically upon the 
choice of the initial approximation. If  a suitable 
inlermcdiatc aerofoil with known propert,ies is 
tnkcn, sat,isfactoiy results can he ohtained aftcr 
one iteration step. The mathemadied proof of thc 
convergence of t,he sceond procedure is out,lincd in 
Chapter 9. The first procedure requires in  this 
respect, a somewhat more lcnghty consideration, 
which has been omitted. 

In Part, 11, containing numerical methods, Ihc 
evaluat,ion of t,lic Poisson integral, which forms the 
h&is of all numerical work on aerofoil thcorp, is 
discussed at length in Chapter 11. All existing 
methods ( TXICQDORSW-GARRICK (ref. ' 12), ~ \ Z A N G L I ~ I <  
(ref. 13), REWIS-WITYICH (ref. 14) and its Anglo- 
French counterparts (refs. 15, 16) to  perform this 
operat,ion hare (a t  least, by t,h% author) heen found 
to imply imperfectiom and so a new method has 
hcen devdoped. 

This method makes use of matrices ,essentially 
likc thasc of refs. 14-16, but, t.hc trigonometric 
polynomial approximbtions of the ,basic conjugate 
functions used there, have been replaced by ap- 
proximations by aid of intcrpolation polynomials 
of a type, established recently by SCHIOI,~REIIG 
(ref. 17). I n  this way the occasional introduction 
of quite unacceptalilc waviness rcsultiug from trigo- 
metric approximatiolw: is avoided. 



'The conjugate function is finally' obtained by 
simple matrix multiplications, the transforming 
matrix being given'in table I .  

I n  chapter 12 of Part I1 a useful class of inter- 
mediary 'aerhfoils with 'very simple analyt,ical pro- 
perties ,deieloped by ZMT (ref. 10)' is presented. 
' In  principle, all. kinds of :"mathematical" acrofoil 
familics (KARM.A~-TR~FI,T*z;. -CY and mnnerouq 
ithers) can. he used for the same purpase, but the 
family .pr&nted is at the same time sufficiently 
adaptable and numerically quite easily manage- 
able. For this class extensive .preparations and 
auxiliary tables for t,he applicat,ion of the general 
procedures d k h e d  in this report have been made 
avaihhlc '(ref: ,la). 
"'. I n  ehaptir.13 detaile'd rules and procedures arc 
given, for t,hc ,'design, by the preceding i r d h d s ,  
of an extensive elass of' laminar-flow or high- 
velocity profiles, having' at, a certain. angle of in- 
eidence'consttxnt velocity along a forward ,part of 
t,he upper side'of t,he contour, followed 'by a linear 
decreaie backward and an analoguous distrihution 
:it the loner side at a negative angle of incidence 
(.~vliose absolute value mag'differ from the value 
of the above-mentioned "positive ansle). In  the 
nose and tail .regions- the velocities are to he nd- 

. justcd .S6 as to lead ;to a suitable nose: radius and  
to  secnrw continuitli of the velocity distribution. 

I n  t,he final, fourteenth Chapter. the numerical 
evaluation of the plocity distrihntion round i i  

given aerofoil 11,: ';lie iteration 'metiiod, in;licatca 
in chapter I, 8 . .  is discuised.' , .  
',; ' , . .  , , ,  , , ,  
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k. 1 
a 

0,501786 

0,073470 

0,199282 

0,035358 

0,021841 

.0,01.4062 

.0,009937 

0,007499 

- 0,005945 

- 0,,004897 

- 0,004163 

0,003635 

- 0,003249 

0,002964 

0,002755 

0,002606 

0,00250~ 

0,002449 

0,002.430 

0,146940 

0,302504 

+ 0,038112 

- 0;221123 

- 0,049420 

- 0,031778 

- 0,021561 

- 0,015882 

- 0,012396 

- 0,010108 

- 0,008532 

-- 0,007412 

- 0,006599 

- 0,006004 

- 0,005570 

-- 0,005261 

- 0,005055 

- 0,004936 

- n,00489s 

Ok, 4 

0,103222 

0,111582 

0,280663 

+ 0,024050 

- 0,231060 

- 0,056919 

- 0,037723 

- 0,026458 

- 0,020045 

- 0,016031 

- 0,013357 

-0,011496 

- 0,010167 

- 0,00~205 

- 0,008310 

- o,nn8ni9 

- 0,007691 

- 0,007504 

- 0,007442 

h ,  4 
a 

0,076224 

0,081381 

0,097520 

0,270726 

+ 0,016551 

- 0,237005 

- 0,061816 

- 0,041886 

- 0,030093 

- 0,023294 

- 0,018995 

- 0,016112 

- 0,014102 

- 0,012673 

- 0,011654 

- o,nio94o 

- 0,010468 

- 0,010197 

- 0,010110 

-~ 

%,5 
~ - 

0,059540 

0,062162 

0.071444 

0,090021 

0,2647S1 

+ o . n i i ~ 5 4  

- 0,241168 

- 0,065453 

- 0,045135 

- 0,033057 

- 0,026049 

- 0,021601 

- 0,018618 

- 0,016551 

- 0.015103 

- 0,014103 

- 0,013446 

- 0,013074 

- 0,012952 

~. 

ak, 6 

0,048100 

0,049603 

0,054663 

0,065499 

0,085124 

0,260615 

+ 0,008019 

- 0,244417 

- 0,068415 

- 0,047890 

- 0,035663 

- 0,028555 

- 0,024050 

- 0,021048 

- 0,oigoon 

- 0,017609 

- 0,0161in9 

- 0,016201 

- 0,016036 

0,039666 

0,040601 

0,043658 

0,049766 

0,061336 

0,0814S9 

0,257369 

+ 0,005055 

: 0,247172 

- 0,07102i 

- 0,050396 

- 0,038112 

- 0,0309~5 

- 0,026499 

- 0,023554 

- 0,021606 

- 0,020364 

- 0,019673 

- o.ni9450 

Matrix a .  k, , 
x 

0,033102 

0,033721 

0,035704 

0,039495 

0,046131 

0,058087 

0,078525 

0,254634 

+ 0,002449 

- 0,249578 

- 0,0i3470 

- 0,052826 

- 0,040561 

- 0,033431 

- 0,029105 

-- 0:026809 

.- 0,024570 

. - 0,02361:3 

- 0,023306 

ah 9 

0,027776 

0,028205 

0,029558 

0,032069 

0,036246 

0,04316i 

0,055332 

0,075919 

+ 0 , 2 5 m s  

0 

- 0,252208 

- 0,075919 

- 0,055332 

- 0,043167 

- 0,036246 

- 0,032069 

- 0,@295.iS 

- 0,028205 

- 0,027iiG 

ai;, 10 

0,023308 

0,023613 

0,024570 

-- __ 

O , O Z G ~ O ~  

0,029105 

0,033491 

0,040561 

0,052~26 

n,o734io 

+ 0,249578 

- 0,002449 

- n,,25m4 

- 0,078525 

- 0,058087 

- 0,046131 

- (1,039495 

- o,o3"i 

- O,033'i21 

- 0,03310'2, 

a k , l l  

0,019450 

0,019673 

0,020364 

0,021606 

0,023554 

0,026499 

0,030985 

0,038112 

0,050396 

0,,071021 

+ 0,247172 

- 0,005055 

- 0,257369 

- 0,081489 

- 0,0613:16 

- 0,049i66 

10,043658 

- 0,040601 

- 0,039666 

A. 12 
a 

0,016038 

0,016201 

0,016709 

0,0 17 6 0 9 

0,019000 

0,021048 

0,024050 

0,028555 

0,035663 

0,047890 

0,068415 

+ 0,244417 

- 0,008019 

- 0,260618 

- 0,085124 

- 11,065499 

- 0.054663 

- 0,049603 

- 0,048100 

Report F.16. TABLE 1 

0,012952 

0,013074 

0,013446 

0,014103 

0,015103 

0,016551 

0,018618 

0,021601 

0,026049 

0,033057 

0,045135 

0,065453 

0,241168 

- o,oii654 

0,264781 

- 0,090021 

0,071444 

- l),062162 

- 0,059540 

%.14 

0,010110 

0,010197 

0,010468 

0,010940 

0,011654 

0,012673 

0,014102 

0,016112 

0,018995 

0,023294 

0,030093 

0,041886 

0,061816 

+ 0,237005 

- 0,016551 

- 0,270726 

- 0,097520 

- 0,081381 

- 0,076224 

~~ 

ak.15 

0,007442 

0,007504 

0,007691 

0,008019 

0,008510 

0,009205 

0,010168 

0,011496 

0,013357 

0,016031 

0,020045 

0,026458 

0,037723 

0,056919 

+ 0,23io60 

- o,o2-1n;,o 

.- 0,280662 

- 0,1115s2 

- 0,1032"'?: 

% . I C  

0,004898 

0,004936 

0,005055 

0,005261 

0,005570 

0,006004 

0,O 0 6 5 9 9 

0,007412 

0,008532 

- 

0,010108 

0,012396 

0,015882 

0,021561 

0,031778 

0,049420 

+ 0,221123 

- 0,038112 

- 0,302504 

- 0,346940 

ak.17 

0,002430 

0,002449 

0,002506 

0,002606 

0,002755 

0,002964 

0,003249 

0,003635 

0,004163 

0,004897 

0,005945 

0,007490 

0,0 0 9 9 3 7 

0,014062 

0,021841 

0,035358 

+ 0,199282 

- 0,073UO 

- 0,501786 

~ 

Ok. 18 
~ 

~ 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

. o  
0 

0 

0 

0 

0 
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A Calculation Method for Threedimensional 
Laminar Boundary Layers *) 

by 

. .  ., 
. .  

Dr. R. TIMMAN. 

Summary. 

Thc momentum equation, which in the e88c of two-dimensional flow lcads to an approximative method for the 
ealculntion of 1aminar:boundary layers i s  extended to the ease of three-dimensional flow. By introducing velbeity profiles, 
depcnding on B thickness parsmctcr and (L parameter, which indicate8 the deviation of the boundary layer vcloeity f rom 
the free stream direction, a sct of quasi-linear first order partial differential oquntions i s  ahtained. These can he solved 
numerically by the method of chariurteristies. 

,.. 

Contents. 

1 Intruduotion. 
2 Three-dimensional notentid flow about a hady of ar 

hitrary ?hap.  
  he momentum equation'in &i!inmr coordinates. 3 

4 mduetion to a set of quadinear  first order partial 

5 The velocity profiles. 
6: I  TIL^ conditions i n .  a stagnation point. \\ 
7 Tho method of ollrarxcteristies. 

differential equations. k\ 

I 
Appendix. 1.  the .calculation ,of  Some integrals. 
Hcfcrcnees. , .  

1 Introduction, 

, .The, calculation of laminar, boundary layers in 
t,lrc case of thre,e-dimensional flow has as yet re- 
ceived very littlc attention in the literature. .. 

h i d e  from a small report by @ANLTL (ref. l), 
which outlines a possible met,hod for rcally three 
dimensional calculations, t,he papers known to  the 
author refer only t o .  the ,formulation of general 
equations of motion (ref, 2) or to the infinite 
yawed wing, which is essentially a two-dimensional 
case (refs. 3 and 4). 

I n  this paper an at,tempt will be made to treat 
the general three-dimcnsional case 'and to develop 
a general method to solve the equations. 

The set of boundary layer equations, toget,her 
with the'boundary conditions at the wall and in 
infinity can be replaced by the momentum equa- 
t,ion (ref. 5 ) ,  completed by a, in principle infinite, 
number of boundary conditions a t  the wall and 
in infinity. 

In the usual approximate calculation method, 
t,he velocity profile in the boundmy layer is re- 
presented by a .  funet,ion, depending on one para- 
mteer. 'By choosing this function so, that  it ap- 
proximates the free stream velocity in a proper. 
way, as can be inferred from an asymptotic 

") This report :mas .prepared by order of the K. 1. V. 
(Netherlands Aimraft Development Board). 

solution of tbe boundary layer equations, and by 
satisfying a number of boundary conditions at 
t,he wall, i t  is posible to replace the boundary 
layer equations by a single non-linear first order 
ordinary d,ifferential equation. Here a practical 
limit is posed on the number of boundary eon- 
ditions at the' wall, which can be satisfied, as the 
first three yield only an algebraic condition on 
the veloeit,y profile, while the higher boundary 
conditions require the additional solution of dif- 
ferential equations and so great,ly complicate the 
calculations (comp. ref. 6) .  If  the initial con- 
ditions at, the stagnation point are known, this 
equation can be solyed numerically. This initial 
condition is obta.ined by requiring the solution in 
the stagnation point, which is a singular point for 
the differmtial equation, to be regular. Substitut- 
ing. the power series expression .the initial values 
and .the higher coefficicnts of the power series 
can be .obtained, thns providing a start  for the 
numerical calculations. 

A similar procedure, applied to the boundary 
layer eqimtions ilk t,hrw-dimensional flow would 
replace the set of .  partial differential equations in 
the three velocity components by a set of two non- 
linear first order .parti,al differential equations in 
two unknown functions. These functiom are two 
parameters, characterizing the velocity profiles in 
the direction of . the free stream a t  the outer edge 
of t,be boundary layer and the deviation o f .  the 
boundary layer flow in a direction parallel to the 
xurfaee and normal to this free- stream direction. 

I p  .boundary layer calculations the free stream 
flow is assumed to be.  known. In , t h e  case of 
irrotational motion i t  can be described by a velo- 
city potential ~ ( y ' )  where the y' are  Euclidean 
coordinates in ordinary space. 

This velocity potential 9 mnst satisfy the con- 
dition that on the surface of the body grad .9  is 
tangential to this surface. With this condition in 
view a new set of curvilinear 'coordinates in 
space is introdneed, .formed by a set of Gaussian 
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coordinates z ' ( n = 1 . 2 ) .  on the surface and a 
coordinate zo, which expresses the Euclidean dis- 
tance of a point in space to the body. If the body 
is eonyex and the surface is regular, the coordin- 
ates describe the space round the body uniquely '). 

The boundary layer equations acquire a simpler 
form if the Gaussian coordinates on the surface 
are so specified, that thc coordinate linev are the' 
equipotential lines and the stream lines on the 
surface. T h e s e c o o r d i n a t e s ~ " ( P ' = ~ , P - ~ ,  E ' = $ )  
will he called "free stream-line" coordinates. 

The momentum equations arc derivcd'from the 
boundary layer equations. Intfoducing a displace- 
ment thickness vector and a momentum thickness 
tensor they can be written as simple differential 
relations hetween those quantities. 

The general equations can he solved approxim- 
ately by the introduction of special velocity pro- 
files, which are chosen according to the same 
principles as in the twod.imensional'case (ref. 6) ; 
viz. a set of profiles having the asymptotic be- 
haviour a t  the outer edge of the boundary layer 
as derived by VON KARMAN and MILLKAN (ref. 7) 
and satisfying only thme boundary conditions at 
the wall tha.t do not involve additional differen- 
tiations with respect to  the variables $J and 7. I n  
each of the two velocity profiles (in free stream 
direction and perpendicular to it) one parameter 
is left free, which serves as the unknown function 
in the resulting first order partial differential 
equations. 

These partial differential equations are quasi- 
linear and can be solved numerially by the method 
of oharacteristics, wellknown from the theory of 
supersonic flow. 

The circumstances here are somewhat more com- 
plicated as in th,e case of, plane supersonic. flow, 
owing t o  the fact, that in the coefficients of the 
partial differential equations the Coordinates occur 
explicitly, which makes it. impawible to use a fixed 
set of characteristics. 

The initial conditions are found,from a con- 
sideration of the conditions a t  the stagnation point. 
As' the singularity of the equations in this point 
is rather complicated, at first an approximate ex- 
pression for  the streamlincs in the. neigbourhood 
of this point is deriv@, which .is used to describe 
the behaviour of the 'coefficients in the partial 
differential equations. 

The stagnation point is a so called "nodal" 
point for the equations of the streamlines and 
these streamlines behave as a set of higher order 
parabola's touching one line t,hrough the stag- 
nation point. Then it can IF shown that all, 
boundary layer quantities in the stagnation point 
are, approximately, only dependent on the ccmr- 
dinate in the direction of that particular line. 
Using this approximation the partial differential 
equations can he replaced hy a set. of two simul- 
t'aiieous ordinary differential equations of the 
same character as in t,hc two-dimensional theory. 
The initial values then are determined in the same 
way hy t,he substitution of power series cxprasions. 

*) For thc purpose of 'boundary lnyor~ealeulations, trhere 
only B small layer round the body is considered, the  con- 
dition of convexity can in practical cases be rclsxed. ' 

2 Three-dimensional potential flow about a body 
of arbitrary shape. 

The potential flow about a body in a three; 
dimensional Euclidean space with coordinates 
y' (i= 1 ,2 ,3 )  is fully determined by its potential 
p (yi), which satisfies the-condition, that in any 
point of the 'surface the gradient - a9 IS . tangential 

aY1 

to this surfke.  Suppme, on the surface, a set of 
Gaussian coordinates to  be introduced, so that its 
equations are 

y'=y'(z"). i = l , 2 , 3 ;  a = 1 , 2 .  (1) 

Then the line element on the surface is given ,by: 
(comp. ref. 8, p. 88, ref. 9) 

ds2=g.o a x r d d ,  *) (2)  
where 

(3) 

Introduce now in the complete space a new set 
of coordinates P,z' and z2, z1 and z2 being the 
coordinates on the surface and 9 the Euclidean 
distance from a point in space to the surface 
measured along the n o m 1  to  the surface through 
this point. If  the surface is convex, these coor- 
dinates can be unambiguously defined. Then the 
line element in,ppace is 

ds,'=gaodz'dxP + (&I?)*. (4) 

The components of the velocity vector in .Euclidean 
coordinates are 

as in E,uclidean coordinates there is no difference 
hetween eo- and contravariant components. 

I n  the new coordinates the covariant components 
of the velocity vector are 

The condition that the vector is tangential to the 
surface thcn requires U , = O  for xo=O; 

Hence, on the surface, the velocity vector is com- 
pletely 'determined by its two components U. 
or U" in the Gaussian system zr (a= 1,Z). Now, 

*) I n  this report tlic summa.tion canvention is used 
throughout, 80 that for any tensor equation, as: 

a = 1  



a new system of orthogonal curvilinear coor- 
dinates tA(h=1,2) ,  is introduced on the surface 
defined by requiring the covariant components of 
the velocity vector to  assume the simple form 

- 
U,=1 ,  u,=o.  ( 8 )  

The transformation formulae then read 

or 

The formulae ( 6 )  and (10) show that 

P = &  1, (11) 

taking the value of the constant of integration to 
bc zero. 

The second coordinate t2 is ,to he determined 
from the orthogonality conditiohs. 

Dienoting the new metric tensor by Y~,, the 'line 
clement is 

a s 2  = g'.gdx'dx@ = Y A P  a<"? . (12) 

If the new coordinstes are orthogonal 

Y l Z  - Ym = 0. (13) 

The contravariant components y Aw are 

where 

Y =  1 detvAr I = Y l r .  y Z 2 .  (15) 

Then i t  follows that 

From the conditions y12 = y2' = 0 an equation 
for 6' can be derived ' 

at1 a t 2  
y'2 = y z l  = g"P - , - ~ 

axK a 8  
a t 2  at* =g"@. U.. -- U p  - = 0, (17) a d -  ax@ 

or  explicitly 

(18) a e  a t 2  

ax* axz  
U ' - +  us- =o.  

Denoting from now on t2 by +, .the partial dif- 
ferential equation is solved by putting 



3 The momentum equation in curvilinear coor- 
dinates. 

If in tlic coordinates +',z1,z2 of the preceding 
section a new variablc [ normal to the surface is 
introduced hy putting 

and for tlic velocity component Uo in this direction 
is put 

then, according to LLN (ref. 9) ,  the boundary 
laycr equations assume the form 

I a, 0= - 
ac ' 

arv  + ai=O. 

Here UP denote the contravariant components of 
the velocity in the boundary layer and ?i denotes 
the pressure, divided by the density of the air. 

The comma's denote covariant differentiation in  
the coordinates z' (a=1,2) ,  so that 

The lioundary conditions imposed on the solution 
U" of thcsc equations, require that for [+ m 
the flow passes into the free stream with vclo- 
tit>' U". 

ub- TI", ( 8 )  
7r + n ,  

. , .  

while 

Regarding the fact that accordin; to (4) n is in- 
dependent of [, the equations become 

- 0. a w  
"PP ai - 

From this pair of equations the momentum q u a -  
tion is found by'integration with respect to [ 
from 0 t o  m ,  By partial integration and applic- 
ation of (11) the result is 

=[%I U 

Introduction of the displacement length vector 

6 P = [ ( u Q - u P ) d [  (14) 
0 

and thc momentum length tensor 

gives to the equations the form 

Now, in the streamline coordinates p and $ of the 
prcceding scction the covariant components of the 
frcc stream velocity are  

u, = 1, (17) 
u,=o 

and the covariant derivatives Uv,  in (16) become 
. .  

1; u,,, = - rl,l = , 

Using the covaSiant components 
' .  

s, = Jl- uj)dC, i ,  
n 
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4 Reduction to a set of partial differential equa- 
tions in two unknown functions, 

(19) , Thc momentum equations, derived in the pre- 
e- ceding section are not sufficient to determine 

completely the boundary layer flow. In  fact, the 
boundary value prohlem formed by the boundary 
layer equations together with the boundary con- 
ditions at  wall and in infinity is equivalent 
to the momentum equation and a set of illfinitely 
many boundary conditions for i= 0 and 5= m ,  
obtained from (3.10) by differentiation with res- 
pect, to 5 and putting [ = O .  The first of these 
equations reads: 

9,, - [u,u,di = + S, f >,, , 
u 

11 

which have only the dimension of the coordinate 
5 (T t,he cq11at,ions (16) are transformed into 

&, p..  yes 8 ,  + ypr 3nE, @ = [$lo (20)  

or explicitly, taking account of the values 

1 ’ Tb p j ,  
+ - ( 2 - + - )  2 T p  9,,+ 

Unfortunately the following boundary conditions 
contain already derivatives of unknown functions, 
as is seen hx differentiating (3.10) once with 
respect to [ and putting %=O, 

and hcnee cannot he taken into account withont 
. greatly complicating the calculations. 

In  the streamline coordinates (1) becomes 

I n  order to specify the velocity profiles in the 
boundary layer the covariant, components of the 
velocity profiles, which are dimensionless qnanti- 
tics, are considered. 

For l+ m thcsc covariant componcnb tend to 
the components of the free stream velocity zi, = 1, 
TJ,- 0. The velocity profiles are introduced as 
functions of a dimensionless variable 

’I- 5 ~ e-’’*, (4) 
where :’I is a measure for the boundary layer 
t,hickness. These functions have to  satisfy, besides 
(3 ) ,  t,he following boundary conditions. 
For ’I = 0, 

and for q + m ,  
u 1: -uu,=o, ( 5 )  

2L1--fl9 % + O ,  
%’+ u/* u,J+ u/ ...... + 0. (6) 

Assume, that u, and u, a.re linearly compmcd from 
ihree hasic functions f(q), g(7) and h ( ? ) ,  which 
satisfy t,he conditions 

f(0) =o,  f ” ( 0 )  =o,  (7) 

g(0) =o,  g”(0) =1, (8) 
g(  m)=g’( m ) z 6 ’ (  CC) F . . . = = O )  

h,(O) = 0, h’(0) = 1, h”(0) = 0, (9)  
h( m)=‘72’( m)=h”( m)=- ... =0.  

f( o o ) = l ,  f ’ ( m ) = f ” (  m ) =  ... =0, 
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Putting 
% = f ( d  - A 0('1)> 

16, =V,c "7) - M 0 ( q )  }, (10) 

where p is defined in the preceding section and 
i\. 111 and N are functions of Q and $. 

Then the conditions (3) yield 

1 

1 
(11) 

A = - T  2 Q . u ~  

M=-V-T  2 P *.UP 

so that A a.nd df can be expressed into the para- 
meter a, whieh also is a function of Q and $. I n  
this way only two unknown functions C ( Q ,  $) and 
N ( Q ,  $) remain. 

As the covariant components of the displacement 
thicknm vector and the momentum t,hiekness ten- 
sor have the dimension of the coordinate 5, it is 
convenient to introduce new quantities by putting 
(compare (4) ) 

and 
8 2 ,  (12) 

31, I 

- 'I* 'I9 - ' I *  

' I ,  -I$ 

- '18 

Then the equations (3.22) pass into 

A , = ,  S,, A , = p  

9,, 8 % q = P  0 
- '11 oll=0 

021 ~ p'h - '1, D 3,, , @,,=pa 3 2 , .  (13): 

(14) 

Here the quantities 0, and Ai contain only the 
parameters A ,  M and N and their differential 
quotients contain the derivatives of thcse func- 
tions. As the unknown functions are only D and N ,  
the functions A and M being related with (I ,by 
(ll), it is more conveniant to write the differen- 
tial equations explicitly in ,the form *of relations 
between the derivatives of (r and N only; From 
the definition of A and M by (11) follow the 
relations 
2 a AQ c a2TQQ ' f  usQ 16 == 2'AuQ + v2Tqq, 

2uA.4, =2TQg,  + ca+TQ c 2  '\a+ + w 2 T Q + ,  
2 2 a M = 2 v, T+Q + vuQ vi Tg, -+ r , p Q  T 3  g, 

=2MO, + .Za(I/;T*),  (16) 
aq 

2 u M + = 2  (b"FZ'+)+ + Tg,ag,= 

= 2 Ma* f, 2 v; T* )* . 

Substitution into eqs. (14) and (15) yields the 
differential equations for (r and N .  

( 2  i\ + @ J U Q  + 
t ( 2  I I ~ O , ~ , ~  + 2 A + OL2) Via,+ + 

+ 2 . l'PN+ = 

5 The velocity profiles. 

The velocity profiles are determined by the 
choice'of the functiom f, g and h. The form of 
these functions is suggested by an earlier report 
(ref. 6) ,  referring to the case of two-dimensional 
flow. I n  that report a method, similar to I'OHL- 
IXATJSEN'S method for twcedimensional ease is 
developed, which does' not use polynomials but 
functions, which have t,hc asymptotic behaviour as 
derived by Vox KARMAN and. MILLW (ref. 7 ) .  

The velocity components u1 and up are intro- 
duced in the general form 

. .  
u, = 1 - a *  J'.- lJ1 dy : 

Y 
" .  

- e - " ( b ,  + c,q + dlq2 + ._.... ), 
(1)  

u, G a2 [ e - "dy  - e-U' (a, + czq + d,q2 + ...... ) .  

" 
A set of functions f (q ) ,  g ( q ) ,  h ( 7 )  of the form 
(l), which satisfies the Conditions, imposed in 

sect,ion 4 is 
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Then the veloeity profiles are 

% = f ( 7 )  --ns(q), 
vi,, = ( 7 )  - AMq), (3)  

and the formulae for the displaccment thickness 
vector and momentum thickness tensor are 

(4) 

a,, = - N 2  / k2dq + 2 &IN [ ghdq - 
0 U 

0 

The integrals arc cvaluated in the appendix. The 
results are 

A, = 0.752 253 - 0.066 967 A ,  ( 6 )  
a,-- 0.5 N - 0.066 987 M, 

o,, = 0.269 430 .+ 0.007 335 A - 0.003 79s A 2, 

- 0.022319 i\ N - 0.003 796 i\M, 
O,, = 0.205 372 N + 0.037 161 A I  - 

(7) 
Q,, = - 0.294 628 N - 0,029 826 A I  - 

- 0.022 319 ,\ N - 0.003 7 9 % ~  Jl, 

- 0.003798 ,%I2, 
aZ2 = - 0.156 664 N* - 0.044 638 M N  - 

Further 

2 
(2 + A )  == 0.376 127 (2 f A), 

(8) . ,  vF[$] = N + -  2 
7 v = u  . 3 v ;  M =  

= N + 0.376 127 M .  

- P T  1/ , (VFT4)+,  (9) 

PVT - 

2'[k1uy + A* &u+ +.B'N,+ + B ' V P N , ]  = 

= C + C' ~ - C"TTprp - C2'T( l /pT+)v  - 
P 

- c"1' yF (VQ T+),l, , (10) 
whcre 

0.289 430 .+ 0.022 005 A - 0.016 990 AZ, 

- 0.018 990 A A I ,  
a 2 . 7  0.205 372 N + 0.111 463 JI - 0.066 957 A N - 

6' = 0, 

: ( I )  

bZ =&(0.410744-0.044 638 A ) ,  
c = 2 (0.752 254 - 0.665 556 A f 0.059 652 A * f 

+ 0.003 796 A 3  + 0.156 664 N2 i\ + 
+ 0.044 6 3 8 : ~  M N  + 0.003 79s A M*), 

61 = (0.289 430 + 0.007 335 .4 - 0.003 79s A X  + 
+ 0.156 664 N Z  + 0.044 636 M N  + 
+ 0.003 798.11f2)u, 

6'' = (0.007 335 - 0.007 596 A)o*, 
c"= (-Oo.022319N-0.003796M)o*, 
c== (0.037 161 - 0.003 79s A ) ~ z ,  

arid 
A' =- 0.066 957 A N  - 0.016 990 A 111 -. 

- 0.089 478 M - 0.294 628 N , '  
A* = - 0.156 664 NZ - 0.133 914 M N  - 

- n.016 990 P, 
BL = .(- 0.569 256 - 0.044 638 A ), 
B* = u(- 0.626 656 N - 0.089 276 M), 
c = 2 (A'- 0.665 556 &f + 0.059 652 A &f f 

+ 0.003 798 Az&f f 0.156 664 MN* + 
+ 0.044 63s JPN + 0.003 798 ~ 3 ) ,  

c' = 2 .(- 0.294 628 N - 0.029 826 M - 
- 0.022 319 A N - 0.003 798 A M) , 

C" = uz (- 0.022 319 N - 0.003 798 M), 
c2* ,= u* (- 0.029 626 - 0.003 796 A ) ,  
P= u2 (- 0.044 638 N - 0.007 596 no. 
6 The conditions in a stagnation point. 

I n  a stagnation point the velocity components u, 
are bot4h zero. Assuming this stagnation point to 
he the origin of thc system of coordinates zz and 
thc velocity potential to be regular, its value on 
the surface can be expanded into a power series, 

Q = a z @ a 2 P +  a,p/x"ZP2Yf _..___, U , f l = 1 , 2  (1) 
since the terms of the first degree vanish because 
of the condition 

,Then thc final form for the differential equations 
(4.17) and (4.16)- Ls 
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The quantities a m p  are the valuas in the. origin 
of the tensor 

i16 the second terms on the right hand side vanish 
in the origin because of (2) and similarly for 
the a,pv. 

The line element in the origin is given by the 
cqua.t,ion 

as* = $7 .p (0) . ax " a x @ ,  

T = gZ8(0) C"Up = U p u p ,  

(4) 

and the magnitude of the free stream velocity 
vector by 

(5)  

which vanishes in the origin. 
Hence the origin is a singular point for the 

differential equations and the conditions there 
need a careful consideration, 

At first a new system of canonical coordinates 
is intrdueed in the neighbourhood of the origin 
in which the two quadratic forms 

and 
Q(0) =Q,@Z'S@ (6) 

G =  $ 7 , ~  (0)z'zp, 

m u m e  simple representations. 
1 
2 ~ ( 0 )  = - r(xz + AZ'), 

G = xz + i'. (7) 
Then, in the neighhourhood of the origin the velo- 
city components are 

( 8 )  v1 = u1 = rx, 
,( v,  = v z  = rAp, 

and the function 'T c v,v' + u2v2 becomes 

T = rZ (x' + A'['). (9) 

The streamlines are given by the 'equation 

which bas the solution 

A InX - In i= +, (12) 
where $ is, in this neighhourhood a constant along 
the streamlines and is here equal to  the "surface 
stream function". 

Consider now the ease A >) 1. 
Then the approximation formula for the stream- 

lines is 

c-e-4 .x".  (13) 
The origin is a so called nodal point for the 
differential equation and the streamlines have all 
as a common tangent the line [ = O .  Because of 
the large value of h the raceordanee is of very 

high order. Then it is seen, that along a stream- 
line the value of i in the neighhourhood of the 
origin is extremely small against x and hence i t  
is permitted to neglect those values of 5 againvt x 
for all streamlines except Wose, where - $ is very 
large. It follows, that if the differential equations 
are solved by power serifs expansions, the terms 
containing < may all be neglected against the terms 
containing x in the neighhourhood of the origin. 

\ I 

Fig. 1 

But then D and N may be Considered as functions 
of x only and the partial different,ial equations 
heeome ordinary differential equations. In  order 
t o  obtain these the partial differential equations 
must be transformed into the coordinates x and 5. 

From the transformation formulae 

'py c rx, = AIX, 
p c  =: A.6, $c = - 1/p, (14) 

I 

and t,he inverse formulae 

rX ,i,=-, 'hi 
x'p r T 

XJ. T T 
'X . rxi,  P J .  =-- . rxi, ' (15) ArL 

it follows easily that 

Further the form of the function 
can be determined from the definition 

in the origin 

wbieh yields, as g = 1 
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Hence i t  lis seen, that in the origin M goes to zero 

like & or __ As this denotes the order of 

the velocity component ,u, in the origin, a new 
unknown function r is introduced by 

T w;' 

Putting further 

both i and m remain finite in the stagnation point. 
Then the equations (5.9) and (5.10) take the 

form 
pup + f ' u J ,  + + g%*=d, (23) 

P'oy + F2u+ + G'rQ + G'r+=U, (24) 
where the new symbols f', f', g', g2, PL, Pz, GI, Gz 
are defined by ., 

f ' ( u )  = n ' ( A )  =0.289430 + 0.022005A- 

f ' ( u ,  T )  c i / ,a2= --[0.205 372 7 + 
, ,  

. ' -oo.018990A2, 
. I  

1.2 

1' 
+ 0.111 453 m - O . ' O ~ G  957 A 

- 0.018 990 A m  1; (25) 
0' = b' c 0, 

and 
g'(u) LZ=~I '=O (0.41074~-0.044638 A),  

Tvp A' - F' = - - - - 0.066 957 A T - 
r2 
- 0.018 990 A m - 0.089 478 m - 

- 0.294 625 i, (26) 

PZ= ~ '' = - 0.156 664 rZ - 
r2 
- 0.133 914 m - 0.018 990 m 2, 

G'(u) =B1=u(-0.589256-0.0W638 A ) ,  

Gz(o, 7) = I',B2= u(- 0.626 656 r -  

- 0.089 276 m ), 
where A, m and u are related by 

(27) 
1 

A = - Y  (r 2 Q '  

The ri8ht hand sides of the equation are:  

wherc 

Y = 2  [ 0.752 254 - 0.665 556 A + 
+ 0.059 652 A z  + 0.003 798 A3 

+ ( 0.156 664 rZ A + 0.044 638 A m r t 

y l  = 1.0.289 430 f 0.007 335 A - 

b - 0.003 796 A 2  + ( 0.156 664 rZ + 
+ 0.044 635 m $- 

+ 0.003 79s m z  } (31) 

y" = (0.007 335 - 0.007 596 A)u2, 
r 

y12  = (- 0.022 - 0.003 798 m ).z ~ 

r = 2 [ - 0.665'556 m + 0.059 652 A m t 
+ 0.003 79s ~ x m  + ( 0.156 664 m p + 

2'vp.' : 
y" = (0.037 161 - 0.003 798 A)u*,  

+ 0.044 63s m z T  + 0.003 798 9 } L] 
, .  , 

TZP 
ri = 2 .(- 0.294 625 T - 0.029 826 m - 

- 0.022 319. A - 0.003 798 ~m ) , 
P = 0.022 319 I - 0.003 795 m ), 
r*z = o*(- 0.044 63s - 0.007 596 m ). 

(32) 

1'*'=uz (-0.029826-0.003798 A ) ,  

The initial values of u a.nd I now are obtained 
by requiring that  the solutions on the streamlines 
in' the neighhourhood of the origip 'are regular in 
x and 5, so that the dcrivatives in the stagnation 
point ox, ut and r Z  rc are finite. Then, 

These dcrivatives arc of order b and can, on thc 
streamlines with moderate values of $ be negleted. 
Then the system reduces to a system of ordinary 
differential equations for u(p) and ~ ( y )  which can 
be integrated numerically in the ordinary way. 

The numerical integration starts with assuming a 
power series expansion I 

u = u "  + 0,Q + 'e2 + ......, 
T = r , ,  + I,'p + T2$ + ......, . . (37j 

the coefficients in ivhich can he determined by 
subst.itution into the equat,ions and, using the 
known expansions of t.hc functioiis on the right 
hand side, equation of equal powers of 'p. ( I n  
actu;rl calculations, it is somewhat 'more convenicnt 
to use x instead of Q as il variahle. This will .he 
discussed in the numerical example, to he discused 
in a subsequent report). T,he solntion of this 



equation yields the value of (I and T in a region, 
where the approximation is valid and hence these 
values on a certain curve in, this region ,enclosing 
the stagnation point can be taken as initial values. 

7 The method of characteristics. 

The set of partial differential equations 

1 = f ' u  Q + f%* + g1rp + g2r* =d,. (1) 

(2) L Flup + P*u+ + f f , ~ ~  + G*T+ = D. 

where f', f', ...__. d and D are functions of D 

and 7 can be solved by the method of character- 
istics (ref. 10 Ch. V, ref. 11 Ch. 11). Assume 
the values of (r and 7 to be known on a curve 
C Q ( ~ ) ,  $ ( t ) .  Then, denoting differentiation with 
respect to t by $ts, along this curve 

The four equations (1) ... (4) generally determine 
the values of the derivatives e,+, 0+, rQ and T+. 

Now, following C o m ?  and, FRIEDRICKS, intro- 
duce the characteristics a.s a '  new set of coor- 
dinates along C, so that the equations for the 
derivatives o-, u p ,  T a  and assume a simpler 
form. Detersine a set of multipliers h and A ,  
so that in 

the derivatives of o and T are taken in the same 
direction a. Then 

which admits only a solution for  h : A ,  if 

(7) 
f '$=-PQe F $ Z - ~ ' Q ~  
g ' h - g 2 Q #  G ' + , - ~ ' Q ~  

i = O ,  
g) 'pse - ( f 'GZ+f2G1-2 i (2  (fzGz-BF 2 0 -  

- F ' g Z ) p a $ ,  + (f'G1-FP' 9 M Z a  =o. ( 8 )  

Then the characteristic directions a and p are 
found from ' 

l 
or 

. . . .  

+,= Pn '?a 3 

$p= P p P p !  (9) 

where pa: and p p  arc the roots of the quadratic 
equation 

( f 'G'-FP'g')p2-((f 'GZ f fZG'-Fzg'-FP'g2)p + 
(10) + ( f a G . 2  - F y )  = 0. 

(5) 

(6)  
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From ( 6 )  then follows the ratio h / A  along the 
a and p characteristics and the differential equa- 
tions become 

(h,f t AP) ( Q ~ u ~  + D + $ A  + (A, g1 + A,G') 

(TQ Q I  f T + $ e )  == ( A n d  f A R ~ ) P ~ ,  

and similarly for the p equation. These equations 
then finally become 

(f'R*-fZFl)(r6 + 
+ ( (f'G1-F1gl)pm + g 'Fz-  f * G )T,= 

= (  (f'D-p'd)p, f ( F 2 d - f f Z U ) ) Q x ,  (11) 

(f'F'-f2$P')up + 
f ( (f'G'-F'g')pp +,g 'F ' - f 'G ' )  r p = =  

= {  ( f ' D - F % q p p  + ( F 2 d - f ' D ) ) p p .  (12) 

Now,, it is shown in  ref. 10; Ch. V, that in the 
coordinates O( and p .the boundary value problem 
with given values of o and 7 along a curve i n  
the a,p plane is uniquely solvable. 
This fact being established, a finite difference 

method can be derived which enables a stepwise, 
approximative solution of the boundary value 
problem. 

Assume, that along a curve in the p, $ plane 
in a row of points Pn,m m e  const. 
t,hc values of a, p, o and r are known. Then the 
coefficients in the 'equations' are known and the 
characteristic directions can be calculated from 
(10). 

The next row of points is then determined as 

/. 3 \-- 
Fig. 2 

the intersection of characteristic lines a = const., 
p = const. from s u e w i v e  points 

P,I, I , ,  P"+ 3.7".  

Using only first order finite difference approxim- 
ation the equations for the point P , , + %  become 

$n.m + I - $n.m 
= P p  (c, 7, yl, $)n,m 

Q n,m t 1 - Yn.m 
(13) 

and the increments of p and $ can be solved, using 
the known values of the differences Q , , , ~ - Q ~ + ~ . ~  

and $.,, - + i. . 
~ 



~ PP 

P P  - P. 
+n,m+* - +*,m = ( * n + t , m - + n , m )  - 

(14) 
Pu PP - (pn+t,m --",A. 

P p - P P a  

Then t*he values of un.,,+t and T , , . ~ + ,  can be 
determined by the use of eqs (11) and (12) 

( f ' F ' - W )  (u",ln+*-u*l$"2) f , .  

f Slpz- f 2 G 1 I (rn.m+i - r n + t , m )  = 
+ { (f'G1-8'' S-)P,t- 

= ( ( f ' D  -A P'd)p,  + 
f (FZd-ff2D) ( Q n . m + + - Q n + * , m ) ,  (15) 

(f 'P* - P F ' )  (urt,m,+t - ~ o , , m )  + 
+ { (flG1-FP'gl)pp + 

+ g'F2"zPG1 I (r,a,m+~--rn.m) = 
=.( ( f D - P P ' d ) p p +  
( P ' d - P D )  ) ('pn.m+t-'pn.m). (16) 

In  actual calculations, the free stream flow is only 
given in t e m  of the curvilinear coordinates xi, x2 
on the surface and hence these coordinates must 
also be expressed into the vahm of + and p in 
order to  calculate the new values of the coefficients 
in the following row of points. + is defined by the 
differential equation 

which also has to be solved. 
Snpposc, along a curve z'(s),s*(s) thc values 

of +(s) and Q(S) are known (this curve is later 
on identified with the mth row of points). 

Then: 

which serves together with (16a) to determine the 

differential quotients - a+ and - a+ along the 
ax1 ax2 

oupve. 
3x1 ax2 

as as 
Introducing A, = U z  - - U'- the result is 
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the increments of y and + are related to the. in- 
crements of x1 and x2 by 

Applying these formulae to  the case, considered 
here, the parameter s '  is to be replaced by the 
index 1~ and the formulae for the new values of 
the coordinates x1 and x* become: 

~~~ .~~~ 
OJ 

the values of the coefficients in the equation can 
ax1 ax2 be determined and the calculation can proceed. It 

lics a t  hand, that second order difference formulae 
. deliver more accurate results, but for a first cal- 

d a t i o n  t.hese formulae arc sufficient. 

su'pposing that. A, = U2 - - U' - # 0, which 

meam that the initial' curve does not touch a 
streamline. Then, proceeding in another direction 

as as 
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Appendix. 

Calculation of some integrals. 

(1 -f- e - + ) ,  
1 
2 

-- - 

1 
4 

- - v k  - 0.0669871. 

/ e - Z P ( 1  + z2)dz- 

0 , .  

- r e - +  (1 + $)@7 [e-.. (1. + g2)dy 

0 v .  

introduce polar coordinates 

Then 
z or y = r c o s 8 ,  q-rs in8 .  

. rZsin8 drd 0 - 

m 
1 m 

- [ ( l - . f ) e - x * d 7 +  - jee-xzd?  2 
0 " 

and 

3 7 r + 2 '  1 1 
- - +-v77- 

12 vl7 4 

-- - 0.007.335. -94 +66 v; 
36 V G  

- - 

--/(l-f)e-v*dv+ 1 

0 0 
2 

4 
- - 1 J'( 1 - f ) e - x 2  dq + 

2 
n 

rz sin 8 drd 8 = = 0.0037975. 



3 
4 ,  

- - E 0.205 372. 
- 

24 

(1 --f)y . a?= 2 P 0 U 

0.022 314 - _- - 12-5v2  I 6 - 5 v F  
48 8 48 

- 
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, I  

1 Introduction. 

I n  a previous report [l] a method has been 
given for the solution of problems concerning 
lifting surfaces. This method, whme pract,ical ap- 
plication (compare [Z] ) involves fairly elaborate 
calculations, may have value for a final investig- 
ation of a given. wing design, howe3xer, more con- 
venient, simplified, procedures are urgently needed. 
Such proeedorcs are, actually, available in the easc 
of straight wings of large aspect ratio. They are 
incorporated in Prandtl's lifting line theory. For 
st,raight w i n e  in oblique flow as well as for swept- 
hack wings, this theory is knouli to be inadequate. 
It, will be shown in the present report that the 
famous Prandtl equation can be generalized so 
that, in its seneralized form, it becomes applicable 
to these important cases. 

It is remarked, that the reader is assumed to 
be acquainted with the results of [l] from which 
the present analysis starts. 

The reductions, required to ohtain "the final 
results, being very tedious, the next chapter will 
contain a survey of the basic principles and the 
results, u i n g  a minimum of mathematical for- 
mulae. 

As to the adequacy' of the generalized Prandtl 
equation, some results have been acquired which 
seem very promising. They refer to 

( i )  a wing of infinite span in oblique flow 
wit,h pcriodie vorticity distribution in spanwise 
direction (compare [3] ), , 

a plane elliptic wing undcr yaw; here a 
comparison with the resnlts of Krienes [ll], is 
passible (compare [4] ). 

2 ' Survey of principles and results. ' 

2.1 2'ke fundamental formtk1a.e of l inemized l i f t ing  
surface theory.  . . 

I n  linearized lifting surface theory for steady 
flow the region of the (thin) wing and that of 
the corresponding wake vortex sheet is replaced 
by two regions A and A' lying in a plane, the 
6, q plane. T,hcy bear a vorticity distribution 

r (4 7) with components rt (t ,  7) and rn ( t ,  q )  
(compare fig. 1) inducing in the points of A a 

(ii) 

-+ 

I 

Figure 1 

downwash, vr, which must be equal to thc com- 
ponent of the main velocity normal to actual wing, 
hence, 

(2.1) 

where u is the slope of the wing surface and v,  
is the magnitode of the main velocity. 

tlr = U" . tan a ̂ I v, . (1 

The following conditions must be fulfilled: 
(i) r, = O  on A', 1 

' .drE dr, -0  on A + A' (expressing (ii) - +-- a< an 
the fact that voAex lines are either closed or 
extend to infinity), 

on A' (follows from 
(i) and (ii) ), 

(iii) q is independent of 



+ 
(iv) a condition on the behaviour of F near 

the trailing (Kutta-Joukowski condition) and the 
leading edge, to he introduced later on by a 
suitable choice of the series representing r ~. 

By the wellknown law of Biot and Savart 
(compare PI, PI) 

where 
r2 = (< - + (7 - 7J2.  (2.3) 

The integrals are improper and, as explained 
in [l], the principal value in Cauchy's sense has 
to be taken (if necessary). 

An alternative formula, which holds in the 
oblique reference system (<', 7*, [) (compare 
fig. l), is 

+ 
?here r,. and rE, are the compononts of I? in 
the oblique system (compare [l] ) .  

Finally, the pressure difference is, then, given 
b y .  

in rectangular, or 
' ' (2.5) 

.(2.6) 

11 = pv,r, 

n = pv,I',* cos 'p 

in oblique coordinates. . , 

I t  ,is observed-that (ii) implies 

where 

is the equation of the lcading edge. 

2.2 Th,e Prandtl approximation for straight wings 
of large aspect ratio under zero yaw. 

I n  this ease, considering the downwash in 
P =  ( to ,  q O ,  0) (see figure 2), the vort,ioity eom- 
ponents are decompos.d 

<=&('I) 

, 

rl fb d = r,,(Yt, d + r,,(z~(t, 7) , 

where <=&('l) and [=&(7)  are the equations 
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of the leading and trailing edges respectively. . P ( 7 )  is the circulation round the wing at  section 
7, hence 

lDlRECTl0N OF MAIIN FLOW I 
'1- I n2 L n- 1, 

Figure 2. 
I 1  

It is pointed out that r 1(') (t,  7) is axqumed to ,he 
defined in the strip bounded by the dashed lines 
(fig. 2 ) ,  elsewhere it is taken zero. 

It will be shown that the downwash induced in 
P ,by r r  is approximately equal to the downwash 
of r *(I), where I';') is to be considered as defined 
on the Ihole strip mentioned above (from 1) = - to 
t o  'I = + m ) .  It is, thereby, assumed that P docs 
not lio near one of the wing tips. Indeed, eonsider- 
ing the first integral of (2.2), substituting I?*(') in- 
stead of r, and integrating over the whole region 
where r ,(p) is, now, defined, this .integral will be 
small: the integrand is, apart from a small sub- 
region, of order ( ~ - 7 ~ ) ~  near ~ = 7 ~  and of 
order fa r  from this chord. At least a 
first order term is, hence, obtained by replaeing 
r u b y  the distribution I?,,(') defined on the infinite 
strip between <=b(?, )  and <=t t (7 , ) .  

Now the antisymmetric part  (with respect to 
7 = T,,) of can, obviously, be eaneelled- at 
once, because the contr ibdons o f ' i t  due to the 
subregions at both sides of 7 = 70 compensate each 
other. IFenee, the downwash induced by the dis- 
tribution r,, on 'A can approximately .be represent- 
ed hF that induced by the two-dimensional distri- 
hution r ,  i. e. by 

where {'denotes the principal value of the con- 

sidered integral. 
It will, now, be shown that the second integral 

in (2.2) is, approximately, independent of the 
situation of P on the chord 7 = q 0 .  Indeed, sub- 
stituting (2.9) and integrating with respect to E ,  
where possible, this integral reduces to 



-The last two t e r m  in this result are  negligible 
with rtxpeet to the first. Actually, in all three 
integrals the regiom near and a t  both sides of 
'I = yield contributions which compensate each 
other, a t  least approximately, but  for  17- 7,l 

large (assnming, for the moment,, - and ri 
to be bounded, which actually is not true, hut 
which does not invalidate the resnlt) t,he contri- 
butions to these integrals in the last two of them 
are small as compared with that in the first one. 
I n  fact, the integrand in the second integral is, 
in this case, of order (7-7a)-2 and so is that in 
the single integral emerging from t,he third one 
bij int.egrating first over 6. 

The first integral in (2.11) is retained. I ts  in- 
tegrand is only of order ( ~ - 7 ~ ) k '  for I 7 - ?  1 
large. It is hence large with respect to the In- 
tegrands of all integrals which have, up till now, 
been cancelled. In fact the considered term isl 
cxecpt for a eomtant factor, the term of F'ra.ndtl's 
equation which contains an integral and which 
represents the induced downwash. 

By the previous henristic.argnments the follow- 
ing resnlt has, hence, been obtained: 

dP 
dl) 

Mhich is simply Prandtl's equation. Assuming the 
expansion 

(2.13) 

and 9 t,he 
(compare the first part of appendix 3) ,  

where Z(7) is the chord at  the section 
familiar chordwise 'parameter defined by 

Z(7) t -  h ( 7 )  = 7 (1 - COS >), (2.14) 

it follows that 

(2.16) 
7-70  

S P A N  

, I t  is pointed out, that, though it  might be 
expected that the applieahility is restricted to  
points P fa r  from the tips i t  is proved by prac- 
tice, thnl no difficulties arise here. I n  fact the 
Prandtl equation is commonly used in a slightly 
othcr form, not to be given here, which contains 
only the complete circulation as unknown. .For 
the solution of that form of Prandtl 's  equation 
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the wellknown iUulthopp method uses scetions lying 
very near to  the t ip (depen'dent, upon the number 
of sections chosen). 

2.3 Generalization to straight wings under yaw. 

I n  the case of the straight wing in 'oblique flow 
hcnristic arguments-.analogous to those used above 

. I  Figtire 3. 

tyill be employed. It is profitable to start  from 
(?.-I). A similar suhstitution as (2.8),, .viz. 

r,,. (p, f y = r p ( t * ,  7n0)  + I',*(z)(E*, q.1, 

(2.17) 

in the first integral of (2.4) yields again the 
result that this integral can be approximated by 
replacing r,* simply by r . p ,  which depends 
linearly on the spanwise coordinate, and to in- 
tegrate over thB strip bounded by the dashed lines 
in figure 3. Eowever, now the contribution of the 
part containing the spanwise gradient of I',,. viz. 

is not zero and must be determined and taken into 
account. 

For the contribution yielded by the second in- 
tegral in -(2.4) a similar reduet,ion can be given 
as for the eorrfsponding integral in  the ease of 
zero yaw. Ncre also, no compensating effects due 
to  the vorticity near and on ,both sides of the con- 
sidered chord or its prolongation can be takcn into 
account explicitly. Henee, here also an estimate 
for t,lie 'effect due to this lack of eompensalion is 
necessary. Though, for the chordwise vorticity 
components, the situation is much more complicated 
than for the spanwise components, it may, here, 
already be stated that,an. acceptable approximat,ion 
will be t,o deduce this estimate from the vorticity 
distribntion r,i(*) on the above mentioned strip (ex- 
tended at  both sides to v = q 0  + 6 and 7=7"-  S 
respectivel>~., where S > L(v0) ). How t,his can be 
done will be explained below. The final result is 
an equation, 'verj- similar , t o  Prandtl's equation 
(2.16) for zero yaw viz., with the same notations 
as above (and expressed in rectangular eoordi: 
nates E ,  71, . . 

I 
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2T%?C? . m  ,This  implies that the c'.(?) will, generally, he 
discontinuous for n=O. as will he shown later 4nur  = ,(_, )C,(?,) - 2 en(%) c"sn30/ 

n=i  
*! ' IO/ on. The continuity of r ,  for '1 c 0 mians, 

+ 2 7 sin ip 3 e.(?,) cas n9, - gcomctrieally, that the vortex lines 'on the wing 
' n=1 e r r s  the root chord perpeiidicular and have 

there, hence, a continuous tangent (except, per- 
haps, for a. restricted number of .singular points 
ai e. g. the points on the leading and trailing 

I 

- 7 { C ; ( d  + + c:(%) }a(?) - 
ar (2,18) 

n 
- 1 K(v2 ' lo) . & d? I 

S P A N  

where the e.(?,) are simple linear expressions 
in the 

a(?)  is an elementary function of t,he angle of 
yaw 9 (not depending on wing plan form) and 
K ( q ,  7.) is a function of very simple structure, 
which eont.ains only 'p as parameter. In  fact, dif- 
ferent alternati\.es for this kernel will he con- 
sidered below. This equation has to  ,be considered 
as a genuine generalization of Prandtl's equation 
in the form (2.16). It contains,, indeed, a line 
integral only and, as will be shown below, it 
reduces f o r  q = O  .to Prandtl's equation for the 
stmight unyawed wing. 

2.2 Generallzatwn to swept back wings. 

. .  
I. . )  \ 

I n  thi., report only swept back wings of sym- 
metrical plan form consisting of tvWstraight parts, 
which join in the plane of symmetry, are con- 
sidered. It is assumed that each of the mentioned 
parts has  a large "aspect ratio','. 

I n  this case, practically the same reductions as 
used heuristically for  a fitmight +ng in oblique 
flow remain valid if the point P lies. not near the 
?bot section. The main change in the previous 
result (2.18) is a replacement of K ( ? ,  'lo) by an- 
other kernel which is nearly equally simple. More- 
over, the influence of the spanwise components of 
the vorticity distribution on the wing-half on 
which P doesn't lie, must be taken into account. 
I n  fact, this influence, now, becomes of the same 
order as the contribution of the trailing vortices. 
It will be clear that it can be accounted for, ap- 
proximately, by concentrating these components 
along e.g. the v4 chord line and taking P also 
on this line (on the other wing-half). This, at 
least, will give a first estimate of the considered 

.effect. Hence a corresponding term has to be 
added to the equation which expresses the down- 
wash in P in the intensity of fihe vorticity distri- 
bution. Besides this, only the e m  of P lying on 
the root chord will he considered. Here the situ- 
ation is much more difficult. 

,Assuming a .development. for r,, as given by 
(2.13) it is; first, necessary, to .obtain 'an idea of 
the behaviour of the functions ~ ( 7 )  nea.r 7-0, 
the reference system, being .taken so that the root 
chord lies on the (-axis (see fig. 4 ) .  These func- 
tions must be such that rg;whieh follows from rn 
by means of (2.7), is continuous and, by virtue 
of the assumed symmetry, zero for ?=O. 

. 

Figure 4 

edg&). For the prolongation of the root chord, 
the condition that l ? ~  is continuous means that, 

IXenee c;(?) + +c: (q )  must ,he continuous at 
7/ = 0 and its value there is zero, Finally it will 
appear to he necessary to impose the condition . .  

C,(O) = 0 

in order to obtain 'a hounded downwash near the 
leading edge of the root chord. 

With these conditions satisfied a similar proce- 
dure as discussed above for the straight yawed 
wing will he applied, viz. an estimate for  ,the 
effect, due to t,he la.& of compensation present in 
tkis case i s  infcrmd from that for a vort.icity dis- 
tribution 

m 

t 2 ( c.(o) + \ 7 I . c/t+>) ) sin n> 

and the corresponding (compare (2.7) 9 ri-distri- 
hntion, defined on the region bounded by the 
dashed, lines in figure 2 (extendini at both sides 
t o  some value \ 7 1 = 6 where 6 )> l ( 0 )  ). 

3 

n - i  

Prandtl's equation' for straight yawed wings 
of large aspect ratio. 

Let, figure 5,  the angle of yaw he . p  and let 
a left banded') rectangular system of reference 
be given such bhat the z-axis points i n  the dim- 
tion of the main stream, the z-axis points vertically 
downwards. Assume the fdlowing distribution for 
the y-ccmponents of the vorticity: 

*) Erroneously this reference sfstem bss hcen termed 
"right handed" in the reports F.51 en F.58: 



so that, by (2.7) (compare [I] or [ 2 ]  ), on the 
wing, 
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r,=-cc,'(y)(> + s i n > )  - 

1. I 
- + e:(?/)  (3 -$sin 2 3 )  - 

sin (12-  I )  3 
ll= 2 72-1 12 + 1 

+ [ v ( Y )  - 4 r ( y )  COS 31 . ru 

, .  

i sin (IC + 1) 3 0 -+$E C.'(Y) I - 

(3.2) 

where Z(g) represents the chord and 

z = h (y ) (3.3) 

is the equation of the mid-chord line. 

I 

-\- -I- 

--. 

Figurc 5 

In the oblique refeRnce system (<,7,[) ,  whosc <- and <-axis coincide with the 5- and z-axes res  
pectively and whme 7 - a i s  lies in the direction of 
the straight wing, so that y and Taxis make an 
angle ip (compare figure 5), 

and 

q =-c/(y) (9 + sin 3 )  - 
- 4 c,'(y) (3 - 4 sin 2 3 )  - 

+ (h'(y)-+2'(y)eos9-tanip}ceosip.r,. (3.5) 

The vorticity distribution in the. wake is obrriously 
given by " , 

. , .  .. 

r,=o, r+-( C;(U) + 1 c:(y.) } 7 .  (3.61 

Now, in accordance with the preliminary results 
of section 2.3, the following problem is disciwed 
in Appendix I. 

If a vorticity distribution on the region of the 
parallelogram with vertices , ( O , - S ) ,  (0, S), ( 2 ,  S) 
and (z, - S) in the oblique reference system (<, q )  
(compare figure A.1.1) is given by 

and, on the corresponding wake region, by 

r,, = O  rE = - = ( b o  +.& b:) ,  (3.9) 

determined .the downwash distribution along the 
chord .q.= 0 provided that S >> 2. The result, proves 
to be 

-where is the angle of yaw (see figure A L l ) ,  

1 + sin? 
1-sin? 

e(,) =In + Zsinylncosip - 2 s i n p  

(3.11) . .  and 
1 . .  

a;'=* ( b ,  + Z b , ) ,  e,= - ( b  2 n ,  , n + ~ - k , - t ) ,  n 2 2 .  .. 
(3.12) 

This result is derived if the chord is 2.- It is seen 
that, if the chord is 2 and i f ,  the dist'ribution of 
'the components ru is represented by . , 

~ 

c.(q) =an + b"7, (3.13) 

the distributions of r,, in the wake and of I?$ on 
the wing and in the wake are, again, given by 
(3.8) and (3.9) and, further, that the downwash 
in q = O ,  3-3, is, then, 

+ 2 n s i n v  2 e,cosn>; 
(1 = 1 

(3.14) 
- ( b ,  + *h,)=*(9)  + 

8 
1 2 n ( b 0 + + b , ) s i n ? 1 n  - S + O ( S - ' )  

The first term represents simply the two dimen- 
sional downwash for the distribution which is ob- 
tained if S+ m and b , -0 .  The second term 
represink an effect which is typical for the in- 
fluence of yaw.' It includes induced camber. The 
,other .parts are constant along the chord. 

T,his result is transferred to the general case 
considered in thiS chapter as follows: In accord- 
ance with chapter 2.3 a11 terms of the previous 
result (3.14) are, mutatis mutandis, .retained ex- 
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cept for the last two. The term O ( P )  is cancelled 
and the term 

2 s i n p .  ( b o + J b , ) ~ l n - ,  (3.1411) 

which accounts,' "roughly", for the influen'ce of 
the trailing vortices, is first written as an inte- 
gral and will, then, be transferred to the present, 
more general, case. 

8 s  
2 

Write the considered term as 
8 s  

2 
- ( b o +  i b , ) ~ . - 2 s i n p . l n  - ,  

The first factor represents the vorticity intensity 
in the wake for .the distribution determined by 
(3.13). The last factor is written as 

'4 . 

or, altcrnatively, as 
6 

It is easily checked that in both cases the inte- 
grands are approximately 

so tbat both integrals for bounds 8', 8" which are 
cither both' positive or both negative' and which 
are, ;further, in absolute value both )) ZJS or )> Z/4 
respcctiqely, represent the downwash induced by 

* the parts of the wake between '1 =S' and '1 = 8". 
In  a general case, the strength of the trailing 

Portices is 

and, therefore, the eonsidered term is, writing 
down the results in rectangular coordinates (2, y)., 
replaced by 

- { e; (?)  + d Cl'('1) 1-x. :, ; 
I 

respectively. Here =yo indicates the chord 
which bears the pivotal point, Z=Z(vo) and the 
"ng is, further, assumed to lie between y = +, b 
and  y - - b. It will be consistent with the ap- 
proximations introduced thus far  to  replace the 
(straight) wing, considered here by a pseudo 
lifting line as indicated in figure 6. The. final 
formulah  obtained from the results of Appendix I 
by writing -cc.(y,) for &, cn'(yo) for b, and 2 

Z ( Y d  

by introducing the integral (3.15) I or (3.16). 
&nee, if 

I 
.i 

Figure 6 

(3.21) 
can be talten. 

If in (31.9). the Fourier expansion of wz (which 
is given by ' the geometry of the wing) is intro- 
duced, this equation can be. separated into a 
system of linear differential equations together 
with one integrodifferential equation. 

' I  , "  

Observe that if ?=0 ,  (3.19) reduces to 
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It is, further, remarked that 

a.9 can easily be checked. Hence, as the series a t  
the right hand side is convergent and 

i t  follows that 

I@(?) I S 2 ( 1 - h 2 )  .sin3'p=0.6137... ,sin8? 

and especially 
a(0) = 0,  

the last relation also being evident from the defi- 
nition of e(4). 

Now; in this case ( ' p = O ) ,  

or 

and i t  can be shown that the integral in (3.22) 
is an approximation of 

mhich is t,hc ordinary form of the integral which 
occurs i n  the Prandtl  equation. This will be 
shown in more detail in Appendix 4. Another 
kernel will be considered in Appendix 5, which 
reduces exactly to the kcrnel of Prandtl's equation 
if 'p+ 0. 

1: <,,is pointed out, that applications of the 
equation (3.19) have been made (compare [3] 
and [4 j  wit,h results which seem very satisfactory. 

4 Approximative treatment of a symmetrical 

The only case which will he considered in the 
present report is that of a swcpt'back wing con- 
sisting of two straight p a r k  which are symmetrical 
with respect to the median section of the complete 
wing. The a p e c t  ratio of the wing is, again, 
assumed to be great and the chord only slowly 
varying along the span. Two fundamentally dif- 
ferent positions of the pivotal point will be con- 
sidered below. Fimt the pivotal point is taken on 
one of the parts fa r  from the median section and, 
of conrsc, f a r  from the tip. Afterwards the pi- 
votal point is taken on the median section. The 
latter case is, as can he expected, by f a r  the most 
complicated. 

4.1 Pivotal point far from median sectioit. 

swept back wing. 

It \vi11 be obvious that, if the symmetrical parts 
arc denoted by A, and AIr (compare figure 7 )  the 
chord has, for  convenience, been taken constant 

and the pivotal point P lies on A, ,  the contri- 
bution of the  vorticity on dr and its wake to the 
downwash in P can be approximated in the same 
way as above for the straight yawed wing. The 
only difference, comes from the Contribution of 
the vorticity, on A,, and its wake. 

I 

Figure 7 

Indeed, if the vorticity on Arr is decomposed in 
directions parallel to the mainstream and to the 
direction of the leading and trailing edges of A,, , 
i t  will be ohvions. that the contribution of the 
"spanwise" vortices on A,, to the downwash in P 
is of an order which cannot be neglected (com- 
pare section 2.4). In order to obtain this cont,ri- 
bntion these spmwise vortices may be conccnt,rated 
in a single (singular) line vortex along (for in- 
stance) the f/4-chord line and the pivotal point P 
may also be taken on the '/4-chord line, as the 
chordwise position of P seems to be Ius important. 

If the %-chord line is (figure 8) 

Figure 8, 

z = y t a n ~  and z=-ytan'p, ,  (4.1) 

(where 'p is the angle of sweep) for A, and A,, 
respectively, the downwmh induced a t  the point 
(z;, yo) corresponding to the pivotal point (z,, u0)  
is determined as follows. T,he strength of the line 
vortex is 

r(Y) = 7 r  { C d Y )  + 4 CI(2J )  } (4.2) 

and the contribution of an elemcnt of this line 
vortex z', y is given by 



ivhcre,& is the Line element, x and T alre specified 
in fig. 8, so that 

. , . r2=(d-z:)z  + ( y - ~ ~ ) ~ .  (4.3) 

The complete,'result is, ohviousiy, 

(4.4) 

if 2 b is the span of the wing and 'if yo > 0. 
A similar result is obtained for yo < 0. It can 
he written as 

It is obvious that in both cases 
c:=Iy,( .tan?, d = ( y ( t a n y  

and figure (8) yields immediately 

Hence (4.4) and (4.5) reduce to 

for yo > 0 
and 

for yo < 0 

These integrals are elliptic if the usual development 
for r(Y) is chosen. As, however, the influence of 
the vorticity components near the tips is only 
small, the actual approximative computation of 
these integrals will give no difficulties. 

The complete equation for a pivotal point 
(za,go) is, in the present case 

I 

where e,  and G(p) are  given hy (3.17) and (3.18) 
respedvely and r ( y )  'by (4.2). 

It is pointed.out that equation ,(4.6) is only 
valid if 1 yo 1 is not too small. 
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Indeed, the discontinuities in leading and trail- 
ing edges introduce additional effects which make 
deeper investigations necessary. This question will 
he discussed helow in 4.2. 

Finally, the kernel K(y, yo), given by (3.20) or 
(3.21), has to  be altered in a simple way in order 
to account for the discontinuity in leading and 
trailing edge which is present here. If yo > 0 i t  
is obvious that the original definition applies for 
y > 0. However for 1~ < 0 

where $(?I) is specified in figure 9. 

Figure 9, 

These kernels are defined with ,respect to the 
l&hord line, which will apparently not intro- 
duce appreciable errors. 

4.2 Pivotal point 'on the n1edia.n section 

In  this case, assume the usual development, 

in the rectangular reference system ( 2 , ~ )  im- 
plying the development for r, given by (3.2), viz. 

r, = i- c,'(y) (>+sin 9) -+ c,'(y) (3 -&sin 29)- 

+ [w?J) - 4 zy~)  COS>] . r,, (4.11) 
where 

h'(y) = i-  tan^, (4.12) 

Q being' the angle of sweep. Here the + - or 
---sign has to be taken for A, and A,, respeet- 
ively. The axis of z is taken as indicated in 
figure 7. Now, from the results of appendix 3, 
it is obvious that in general, with sufficiently 
regular functions c.(y), the vorticity distribution 
will have discontinuities a.t y=0 .  These discon- 
tinuities can be avoided by assuming discontinuities 
in the .derivatives c.'(y) at y=0.  The general 
character of the behaviour of the functions cn(y) 
near y'=0 is discussecl in detail in Appendix 3 
and a solution is given, there, to the problem of 

'finding a development of the type (4.10) for 



which the vorticity distribution remains continuous 
near y=0. It is, thereby, shown, that the oh- 
tained functions automatically fulfill the condition 
(which is also obvious from physical consider- 
at,ions) 

c,'(O) + +c,'(0)=0, ' (4.13) 

a n  equation which expresses the fact that 

CUI(!/) + + c ; ( v )  

is a continuous function of y taking the value 0 
at y = 0 (only t,he symmetrical case is considered 
in the present report). It is pointed out that 
c,:(?/) and c;(y) apart need to be continuous for 
u= 0. I n  fact experimental results. (compare [ 5 ] ,  
(61 ) seem to indicate that the coefficient e , ( ! / )  
rapidly decreases to  zero for  .yo -+ 0, in such a 
wag that the assumption of a discontinuity i n  
e;(!/) seem feasible. On the other hand the oc- 
currence of a term 
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in the result (A 2.31) of Appendix 2 indicates 
that c , (O)  must be zero provided that the down- 
wash will be bounded near the pointed nose of 
t.he wing. It is observed that according to the 
same result of Appendix 2, again, c,'(0) + 3 c,'(O) 
must he zero provided that the downwash will 
remain finite at the trailing edge of the same 
chord. 

Nom, according to the arguments of srction 2.4, 
it follows that the results of Appendix 2 can be 
applied immediately to  the present case. 

I n  Appendix 2 the following problem bas been 
solved : 

Determine the downwash in the points near the 
chord y=0 if a vorticity distribution on the 
region indicated in fig. 10 is given by 

I 
Figure 10. 

3 -. 

2 l t - 4  
r ,=c,cot -+  c,sinn>, c , , = a , + b . / y I ,  

(4.14) and, hence. 

L= 1- bo(> + s in>)  - 1 O , ( q  -+ sin 2 3 )  
!I 

sin (n-1)> - sin ( n  t 1)>]1 
* = 2  n t l  . .  

+A- I Y I  :r, (4.15) 
?/ 

and the, usual, corrcsponding distribution on the 
"wake". Here 

i = t a r i y  (4.16) 

and it is assumed that 

8 >> 2 

I n  Appendix 2 it was shown that, the downwash 
u; in (zo , yo),  y o  small, is given by the following 
fo~mula 

I m 

4 m s = 2 s s e c p  I . '  

1 + sin p 
1 -sin 9 

- 2 see p 711 l x 0 ,  30) 

-22rg.(0,3,) 12 f s i n ~ l n  
1 - sin 'p 

i sinn3, 
, , = I  sin 3,, (4.17) 

t 2Tsinp 2 a, 
x 

sin>d9 
W 

+ 2  
n I 

+ 2 .(bo + 4 a,) ( - (1 -sin ?) - 
- (1 + sin ?) Zn (I + sin 7) + 3 h i  2 + 
+ In ( 2  - <")- (1 -sin Q )  271 4 S scc 7 ] It 

' + 0 ( ! l U 7 , ? Z I ! / , ~ )  + O(S--Z) 
. ,  where 

further 
1 -cos 3, = z,, , (4.18) 

rz(+ 0,9,) = lim r,(qo, io), (4.19) 
no-, + 0 

next, w denotes the distance of (zo, y o )  from a 
point on the chord y=O oharactenzed hy its 
parameter 3, which is the variable !f integration 
and, finally, 

- _- b,(3 + s i i i3 ) -1b , (S- - t s in23)-  

Xow, if, .as has already been remarked; 
r,(+ 0 , 3 )  =0, w, will he.finite for 0 < 9, < ?r 

and + 0. Tf, furthermore, t,he chord is 2 instead 
'of 2,  and if moreover the development of r, is 
taken to  be 

e,, =a, + bn I ?/ I (4.21) 
so that 

r, = - l Y l  [ - b o ( >  + sin>) - + b,(>-+sin2 3 )  
tl 

sin (n- 119 sin (n  + 113 I] ' - 
n- 1 n f l  -+ $ b ,  I 

n = 2  
,',.- . , I  .. . .  . .  . 

+ A  - 1 ' '  r,,, (4.22) 
!I 

it follows easily that 



m 2 
1 n - l  

4 nu, = 2 n see p - ] a, - u. cos 

f 277 ( b o  + $ b , )  ['- (1-sinp) - 
- (I + sin p )  Zn. (1 ;t sin p) + 3 Zn 2 + 
+ In (2 - to)  - (1 -sin p )  h 4  6 see 91 

+ O(?lo In  I ?/,.I ) + O(S-? 

!. 
.!.. , :. .. r 

I 

.~ I 
I . . .  

., ... 
+ 2 ;sin9 3 en( +%, 0). cos n3, ' (4.25) 

n - l  ", !i'ili 

54 

and 

I?y(O>>O) =--e,.(+ 0)(9, + sin>,) - 
- $ G ; ( +  0) (3 , -~s in2> , )  - 

(4.28) 

e , ( +  0) = + {  c,'(+ 0) + 2c:(+ 0) }, e , ( +  0) = 

=- (c:+, (+ 0)-ccln-t(+ 0) ) ,  n 2 2 .  (4.29) 

5 summary. 

1 
2 71 

I n  this report generalizations of Prandtl's equa- 

(i) straight wings of large aspect ratio under 
t ion are derived applying to: 

yaw; 
the final result is equation (3.19), 

(ii) symmet&al swept hack wings with a sym- 
metrical distribution of vorticity, the wing 
consisting of two straight parts, each having 
large "aspect ratio" when considered apart 
and joining, of course, in the plane of 
symmetry; 
the final result is, in this case, given b r  

In both easa  the result is a genuine generali- 
zatioli of Prandtl's equation, as it expresses the 
downwash at the surface of the wing in the vor- 
ticity distribution associated with it and, further, 
as it contains only line integrals to he extended, 
e. g. over the l/q-chord line. 

The resulting equations, mentioned 'above, ex- 
preFs,the downwash at the surface after assuming 
a suitable expansion for the spanwise components 
of the vorticity distribution viz. that given by 
(3.1). Special care has ,been taken (compare Ap- 
pendix. 3 )  to ensure the continuity of the vorticity 
distribution along the root-chord in the case of a 

. 

. (4.6) and (4.25). 

swept back wing 
Analieations. made thus f a r  onlv of (3.191. in- 

dicate the adequacy of the obtaine"d results (com- 
pare [3J and [4] ). 

It is remarked that throu,ghout the present report 
the chordaise vorticity distribution is taken into 
account. This is in contrast with the wellknown 
Weissinger lifting line methbd ("Traglinienver- 
fahren"; compare [9] ) which constitutes the main 
method used, up till now, to  calculate thejdistri- 
bution of the circulation for swept wings. 

I n  connection with the results of this report the 
work;of,E. Iteissner must, still, be mentioned [IO]. 
This author has derived integro-differential equa- 
tions for both the lift- and themoment-distribution 
along the span and'has indicated a method to in- 
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trodnee higher moment-distrihntions as well. In 1)0=0, Ib--1151, 
this way the chordwise vorticity distribution is not 

distribntion). ; , S 

&, z - ( < - & , ) * + S * - Z  - ( ( - to)  S s i n p =  introduced directly, lint in the form of certain 
intcgral quantities (as e. g. the lift- and moment,. 

( ' - * o ) 2  1 ,  (A.1.4) 
6 2  

' 
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AF'PEN1)IX I. 

The.downwash for a "linear" vorticitydistribution 
on 'a straight yawed wing of constant chord. 

In this appendix an approximation formula is 
derived for  t,he downwash due to the vortieity- 
distrihution which is defined by the following dis- 
tribution of its ?-components: 

rv = c, cot 9/2 +. 2 c. sin 1/9, 
30 

, I  = 1 

Cn=n,'+6,?, n='O,l , .__,  ' ( A . l . 1 )  

on the region (compare figure A.1.1) defined hy 

O ? S [ 5 2 ,  1 -cos 9 = <, (A.1.2) 

- s < . ? < s ,  s )> 2. (8.1.3) 

Using the notation of [ I ] ,  chapter 4, it is oh- 
served that in the considered case, taking the 
pivotal point on the median chord, 

so that 

F ia i r e  A. 1.1 

l+rther , 

#,=a> Pz=-% (A.1.7) 

A, =a, (A.1.8) 
. .  

o n d  

i = 1,2, (A.1.9) 

2 
1 where the * signs correspond to i =  < 

Hence 

C& = 
2 s i n p + ( + )  2-<  -S 

- - - - 
2--b 

= I+ sin p t 



and, therefore, 

bn+a bn-2 

2 n  - b . ) ,  n = 3 , 4  ,... . 

Further  

I 

1 + [, 1 + sin? 
l-c, 1- sin^ 
~- - -__ 

x 

-aa,s1nq (1 + cos>) . 
11 

" I 
1 

1 

-bb,siny (1 + cos9)  . . 

(A.1.15) 

0 s 
. 12 f 0 (&)I a> 

. o  

1 = - 2 uor - 2 b,,r sin (p + o (F) . 
Similarly 

J ,=2a ,ncos9 , -bb , rs inp+ 0 (&) (A.1.16) 

= 2 an= cos 1 ~ 3 ~  + 0 (y-) (A.1.17) 
and generally, fo r  li 2 2, 

1 -  

Piext, consider 

J'= rt s in>.  f2-sinV + 
a 

t - &  
tl 

x 

sin n9, 
sin>, i: an-- - 

4 n --1 1 d. 2 CM(n-1-22p)9,= ekcosk30 
n = o  p - 0  h' = 0 

1 1 (A.1.18) 12 + 0 (+)I a>.= 

(A.l.14) 

It follows from (A.1.6), (A.1.7) and (A.1.8) that 
(compare [ l ]  ) 

J , = = b , I  ( ( - to)  . ( I +  

n 

0 

it follows that 
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ek = 2 dkt, + 2 ~ i k + ~  + ... = 2 1 d,,,,,,, , 

Using, now, the definition of the d, (A. l . l9 ) ,  it 
is easily seen tbat 

i (A.l.20) 

p = 0  
k = l ” 2 ,  . . . . 

e ,  = 0, 
e ,  =+ ( b z  + 2 bo) 

and 

1 
2 n  

e,, = - (b,+, - b“-,), 11 = 2, 3, . . ., 

i +  9 
= 2 7i I 4” - n,, cos 113“ 

* = I  

m + 2 x sin p 2 e,, cos T L ~ ,  
l l - I  

~rlicnce 

J’=- 

- - s i n ?  1 - ( b , + + b , ) = ~ n 2 1 2 -  

- - € “ I f 7 1  2 e,eosn9, ,  1 +o(,) 1 

J , = -  ( b o  + +b,)rr [ZZw 

+ z , l . l - s i n Q  + o ( &  1 

‘ I  
= - ( b , + + b , ) ~ .  [In i-siIlp + 

=- (b,> + * b , ) 7  [h 

,I = 1 

Considering finally J, ,  it is seen that 

1 + sin p 
1-sin? + 

1 + sin ‘p 

- s i n ? (  In,’(l +.sin?)  (1-s inp)-  

-In (i ,  + sin Q )  (6 ,  -sin 9 )  } 

1 + sin (p 

1 I 
sz + o (-) -sin 9 1 . ~n eoszp - 

’ 1  
eosZ9 + 0 2-& - 2 h -  s 

1 + sin? 
1 - s in?  + 

+ 2 sin +- In I cos? 1 + 

1 -  + 2 sin p In I 2 - to 1 - 2 sin p 2% 2 s 

I 

:A.l.Zl) 

+ 2 s i n p i n ( c o s p I  - 2 s i n ?  - 

- ~ s i n ? l n 4 ~ j  + o ( ~ )  1 
s :  

The final formula for the downwash is, hence, in 
this ease given by 

4 TU. = 2 7 (a, - 1 a,, cos n3,) + m 
7 

m - 1  

+ 2 ( b , + + b , ) r r s i n Q  

I 

(A.1.22) 
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APPENDIX 11. 

The downwash for a “linear” vocicitydistribution 
on a swept back wing. 

111 this appendix an approximation formula is 
derived for t,he downwash due to the “linear” 
~vul~ieit3.-distrihution defined by the following dis- 
trilintion of its ?-components 

r 

r? = co cot, 9/2 + 3 c,, sin n>, 
n - 1  

c , = a , + b . 1 7 1 ,  n = 0 , 1 , 2  ,..., (A.2.1) 

011 the region (compare figure A.2.1) defined by 

E . k : f  
Figure A. 2.1.  

1.; I 5 # 5 I 7  I + 2 
1 -cos 3 = #, A = tan y?’ (A.2.2.) 

- -S< ,<S . ,  S > 2  (A.2.3) 

The distrihntion (A.2.1) written in the oblique 
reference systems (#’, v’) and (Y;?’’), for the 

’ right and left, part respectively, reads 

r.,, = ( a o  sce + bo?‘) cot >/a + 
r + 3 ( n .  see p + bn7’) sin n3 (A.2.4) 

n - 1  
and ’ 

rX., = (ao see Q - bo?”) cot 3 / 2  + 
m 

+ ( ( i n  see ? - b.7”) sin n9 (A.2.5) 
“=I 

rcspeetively. 
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Now, the downwash will be determined in 
(,&,, lo) lying near the (-axis and, then, the ques- 
tion will be raised whether this downwash tends to  
a definite limit if lo --f 0 (compare figurc A.2.1). 
The methods and formulae of [l] can immediately 
be applied if the following 'substitutions arc intro- 
duced 

(A.2.6) 

where one or two accents arc added for quantities 
which refer to the right and the left side respect- 
ively. This notation is usnd throughout the follow- 
ing calculations. 

With (A.2.6) it is clear that (compare [I] ) 

(I 

tinuous in 0 < f < 2 and lct 0 < t o  < 2. It is 
easily seen tliat if 2 zz l o ,  To (< 1, 

Here w, w," and w,' denote the distances of thc 

chords l = O ,  7 =- 6 and q = S  respectively. 
These distances are, for fixed ( to ,  q o ) ,  obviously 
functions of the parameter 9 alone. 

Next., the integrals occurring in bhis result will 

Hencc 
pivotal point ( g o ,  lo) from a variable point on the 

(I 

( t  - ( 0 )  d 9  = 
0 

2 

I +weos9 
d t  be estimated. = I cot9/2 -' ( - 6 0  

w 
0 ,  

(I I a, ji,+;9 ' (Zt-&'-&'')d> = 
0 = J cot9 /2d(  - 

m 0 

Eo 

-2 /" eot9J2dt  + O ( l o s )  
= 2 J ' ( l ' + c o s 9 )  __ d3. , w  , 0 

6 Consider., more generally, 
= ~ - 2  (9, +s in>, )  + O ( q , % )  

2 

d(. 8. Remarking that according, to (A.1.6) (re- 
placing to by t: or f /  and S by (8 - vo)  sec Q 
or (8  + io) s e c ~  respectively) 

t - E" J f ( 0  7 
0 

where f ( f )  is an integrable function which is con- 

d9 - 1 + cos9 
w21 -to? 

(A.2.7) 

I 
I 

(A.2.8) 
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1 
sin p ) + o (SS) = __ 

6 see F 
1 _- - ' 1  

wl" ( 6  + 7") see y (1-  (S + 'l") see 9 

it, follows that 

R 

R 

0 ( S - 2 )  

(A.2.10) 

2 n  (<;-+I + O(' l , )  + O(8--2): 2 
s see i" 

1. ( < - < o ) ( 1 + c o s 9 ) a 3 + O ( ' l , )  + O ( S - Z ) = -  
6 see p 

0 

the limit of which for 90+ 0 is 6. According to (A.2:9) 

where f ( < )  is an integrable and a t  least once con- 
tinuons differentiable function. Then 

f ( 0  =f(6:) + ( t -<d )s ( t )  r 

.a3 + O(6-2) + ( I  + cos>) sin 'p 
with: continuous a n d  integrable g ( t ) ,  the above =-n- 1 

( S - d  seep integral is 11 

which converges to the first  term if 'lo --t 0 and, 
therefore, the terms 

R 

yield, i f  it is observed that  for  the second term p 
has to  he replaced by -p in the above reduction, 
a contribution 

(A.2.12) 
whieh: again, converges to  t,he first term if 'lo-+ 0. 

By a similar argument, which uses the development 
(A.2.10) for (to,")-' 

c 

s i n p  ' + = - 2 a g  see - 2 a,n - I 
S 

+ O(S-2) + O ( ' l 0 ) .  1 

E.' Consider . 

I '  ' 
This integral is, for small I 'lo 1 ,  of ordcr In I v 0  I . 
I<ence the last four terms of (A.2.7) can he re- 
presented by 
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p. 17, by J', is considered. Here, again, eontri- 
hutions of bobh symmetrical parts are denoted in 
a similar way as above 'by (J')' and (J')". 

The sum 
' .  ' 

J'= (J')' + (7)'' (A.2.18) 
is now easily estimated on the hasis of the previous 

I 

I 
+ 2 no tan y T + O ( S - ~ )  + O ( 7 0 ) - 2 b o ~ s i n y l  S see 9 

2 nb, sin2Q 
8 see ? 

as can easily be cheeked. 
The result of these reductions is that for 17"'l 
small 

J,' + J / = 2  bo { T- 2 (9, + sin 9,) } - 

( t o - + ) .  - 

A 

- 2 a < p  see Q - 2 b,n sin Q- 2 a, tan Q J' +:Os a3 
0 

(A.2.14) 
Similar reductions give 

J,' + J,"= b,  { r- 2 9, + sin 2 3, ] + 
r 

1 + sin p 

1-sin? 
' + 2 a, see Q . sin >o In + 

+ 2 a,n see Q - a ,  tan Q a3 
20 

1 + sin 'p 

1 - sin yl 
+ 2 uz see 9 sin 2 9, In + 

(A.2.16) 
and generally, for ?L 2 3, 

Jn' + J."= 2 b, ( n  + 1)3, 
1h + 1 

sin (%-I)>, 
n- l -  

.- 

1 + sin? 
1 - s in9  

+ 2 a. see Q sin n3, In + 
! '  + O(70Z?~70) + O(S-') .  (A.2.17) 

Next the contribution of the chordwise vorticity 
components on the wing, which is giSen in [l], 

results. 
I n  an obvious notation 

r $' - r 
and, according to [I], p. 18, 

m q' sin 9 = d> sin > + 3 d, cas N 
l l - 0  

with 

, d = - ( b o  + 3 h i ) ,  
1 

a , = - - ( b , + 2 b 0 ) ,  4 

d * = - - ( L T ) ,  1 b, b, 
4 2  

d, =- - 4 3  (- - 2 bo - 1 b4 4 
b ' ) ,  

(A.2.19) 

(A.2.20) 

for n=3,4,  ... , J 
Hence, denoting Q'sin9 by A (9) and using 
(5.12), (5.13) and (5.14) of [l], 

A 

A 

(A.2.22) 
The second term, here, is O(S-Ij.  

I t  is, in fact given by 

+O(S-*)  1 d>= 
2 - A ( > ) .  1- 

6 see Q 
0 

A 

2 
S see p 

0 

I 

- j ( d 3 s i n 9  + d,)d> + O(Sz)  = 6 see Q 

2 n  
6 see p 

0 

. (d + do)  + O ( S - * ) .  -~ 

. .  
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Thc third term yields, by the considerations 
under y ,  

Here " ( 3 0 )  is simply t,he raluc of rg..on the right 

hiilf of the wing i. e. 
sin 3, 

___-  "('") - ( h ,  + &b,)9, , -12b0sin3,-  sin 9, 

a,+l-b6,-1 . . I D  - +  sin 113, . ( k 2 . 2 3 )  
" . = I  11. 

The last two terms of (A.2.22). yield by (A.2.9) 
and (A.2.10) 

n 

a 

sin2? 
6 scc $0 + 2- . r ( d  + d" )+  O(7j") + O(8-')  

Hence, the final result is 

is considt d. This eoi ihution is written down 
in the form given in [ , formula (5.21). As no 
singularities arise if qa + 0, provided to < 2 ,  the 
value of J ,  f o r  7,) = 0 will be written down im- 
mediately. It is easily shown that for some general 
small value of 7" the difference is f ~ ( ? ~ ) .  

Consider., hence, first 
m 

1 1  
- ( b o  + + b r ) -  (G - 2 ) ' d t  + 

2 

m 
1 1  

-2 (bo  + 2 b , ) ~  [ (; - z ) d C .  ( 8 . 2 2 6 )  
2 

I n  dhis case , 
w = t - &  (A.2.27) 

and the previous integral is reduced to 
A 
' 1  - 2 (bo + 3 0 , ) m  lim 

- 2 ( b , + + b , ) r  lim I 1In----9- 8--s: 
A + =  2-t" 

according to the results of [l], pag. 7. Here, 
for  A )> 6, 

where P denotes some convergent power series of 
its arguments. 

A-to 

I '  - 2 sinq 1 - (bo  + 2 b , ) 3  - 14 basin 3, 

* '  I 

Finally, in the notation of [I], p. 19, the con- 
tribution 

J ,  = J,' + J," (A.2.25) 

Hence, the considered integral' reduces to  

- S,') + In __ + p 2 ;  + In6 seep + In (1 
1 - s *  

2 -  

-sin p) 

according t o  
lim Sa'= 0 

and formula ,(A,l.lZ), (Observe that S in this 
last formula has to  he replaced by 6 seep here!) 

' A 4 m  
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Taking, finally, the remaining contributions 
emerging from the second integral of [l], 
(5.21), their sum, for  both halves of the wing, 
is 'given by 

2 (b , )  + &b,)Tsin? (--In (1 + 
+sin p) + In 2 8 see p - ZTL (2  - 6,) ) + 

(A.2.30) 

where the results of [;I, pag. 7, and (A.l.ll) 
have been used (observe, again, the replacement 
of S by 8 see y !). 

The complete result is, according to [l], (4.161, 
given by 

1 + sin p 
1-sinp -2sec~r , (0 . ,3 , )  In 

It is observed that, if r, is eontinuou! 
(compare the developments af Appendi 
integrals which occur in this result 
finite value of the downwash is, then, obtained in 
each point of the chord, except probably the end 
poi,nts of the chord, This, restriction is obvious. 
Only if special precautions are taken the result 
will yield a finite downwash. over the ,%-hole con- 
sidered chord. " . .  . 

A.2.31) 

r y=O 
11) the 
ieel. A 

A P P E N D I X  111. 

The condition for the continuity of the vorticity- 
distribution at the root section; 

J l  
Figure A.3.1 

' Let (compare fig. A.3.1) the root section be 
taken along the 6-axis, the leading and trailing 
edges being given by 

& = X J t ) /  and t t - 2 = = J q , / ,  
(A.3.1) X =tan Q, 

respectively. Introduce the chordwise parameters 
[ and 3 by 

I .  

- 

- 
.$=(-A 1 7 I c 1 -cos 3 

E 

(A.3.2) 
and let 

p ( t , . v )  =- r, (h,  VI)&. (A.3.3) 
f f  

It is observed that a ( & ,  7)  is the circulation r(q) 
at the section ?.and that for 6 > t t ,  p depends on 
7 only. Further 

First, the character of p will be investigated for 
a general value of q. If 

8 ,, ,,:, 
Fi3 ,q)  = P(& 1 ) ) s  i t  

6 - X 1 7 I = 1 -cos 3, (A.3.5) 

thdn I 
- 
I".(0,'))=0, F(T,V) =r. ' (A.3.6) 

I !  

Renee . ,  j 
(A.3.7) - 3  p*=I*--r 

T 

is zero for 9 = 0  and 9 = ~ .  
It is, therefore, feasible to p"t 

Now, the Kutta Joukowski condition requires 

r L 0  'I at f = & .  
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Hence, as according to (A.3.2) 

1 
(A.3.8a) 

as 
a< s i n 9  ' (-) =- 

which implies 

and thus 

P =; = 

This may be written as 

m 

p h  sin k 3  f 3 (PI - 2 p, + 3 p. - _. .). 
(A.3.10) k = 1  

. .  ' ' (A3.12) 
if the condition 

(-) aP = - 2  GO (A.3.13) 
, as 9,0 

is imposed. Indeed, this condition yields 

-- c c o = ( p , + 2 p , + 3 p , +  ...) + 
+ ( P , - - z p , + 3 P , -  ... ) 

= 2 ( p , + 3 p , + 5 p 6 +  ...) 

and, hence, 

C o = - ( P P , + 3 p , + 5 P , +  ...) : (A.3.14) 
By comparison of coefficients, 

- ( c ~ + ~ c 1 ) = P 1 - 2 p P ? + 3 p 3 - . . . ,  
.- (Go + 1 c2) =PI ,  

a ~ L - + c , = p z ,  . .  
1~ c -.I c --p 6 2 6 4 - 3 ,  

etc. 

Therefore, . .  

It is hence shown that (A.3.11) is a feasible ex- 
pansion for p which is, moreover, adapted t o  the 
Kutta Joukowski condition;. I n  fact, the expansion 
(2.13), assumed previously for  r,, without com- 
ment, follows from i t  immediately by applying 
(A.3.4) and (8.3.8a). 

Now, coming hack to the problem stated in t,he 
beginning of this appendix, let the G'S he func- 
tions of 71, , 

G ( 1 )  = h(0)  if ?C.'(O) '+ e,"(,), 1 2_ 0 

where c,".(q)' is of order q2 near 7 = 0 .  Because 
of (A.3.2), 

1 
- A , - - . -  as _-_  1 7 1 1  

a1 7 s i n 3  ' 
, /  and so, for 71 > 0 

This'. reduces, according to (A.3.11). and (A.3.12) 
to 

1 t h [c.(. cot 9 "  + 3 c,(q)'sin 129 . (A.3.17) 
n = 1  

Now, using 

(A.3.18) G o ( 0 )  = o  
(compare section 4.1), the condition r, = O  yields 

. .  

and, hence, 

In  order that, this result is, again, expressible in 
the form (A.3.11), only the condition 

a 
- ] 2 c.(O) sinn9 0 for > = T  (8 .320)  a 3  ,,=, 1 T,,., 
has to be imposed. This condition is, obviously, 
necessary. I t  is shown, now, that it is sufficient. 
Indeed; the condition states that 

m 

/ .  ( - l )"nC,(O)=O. (A.3.21) 
n = 1  

If n = r  2 C.(O) sin'n3 . ,  

m 

is to be rearranged in 2 !+, , . 

the following equations must ,be solved 
n = 0 

a. + +a,=O 

-a, f C a y 4 C , ( 0 )  ' (A.3.22: 
-al + a* = 2  i I ( O )  ' ' I  

-a2 + a, -6  c,(O) 
'I etc. 

If, first, a finite series 

5 
c.  sin m9 

n =I 
with 

... 
(-l)rrnc.=O 

n = 1  



~~ 

is ( 

(A.: 
rem 
*olv. 

- 

widered, the dvability of ' the uations 
12) is easily chc red. If m + m and (A.3.21) 
ns true a sims limiting process yields the 
ility in the general case. The solution is 

a,=-2{2e , (O)  +4c,(O) + 
e ,= -2{3cc , (0 )  +5c,(O) + 
a , = - 2 { 4 ~ ~ ( 0 ) + 6 c ~ ( O )  +...} 
CtC. 

and 

a , = 2 ~ , ( 0 ) + 4 ~ , ( 0 ) + 6 c , ( O )  +.... 1 
Consequently, (8.3.19) transfers into' 

+6c,(O) + ...) ' 

+ 7 c,(O) + ... ) 
(A.3.23) 

I ,  

This formula yields by (A.3.4) a vorticity distri- 
bution of the desired properties i f ,  I) is replaced 
by 1'1 I , Obviously no further conditions have to 
be imposed on the e.*, i. e. en* is of order 7% near 
1) = 0. 

As an example, ,take . .  

c,(0)=e.(O)-C3(0)=1, 
c,(O) =Y., C , ( O )  -0, 11 2 5, 

, I  ., 

t,hen 

IL =- ILL-  Pa - ILLS - 1 P4 -AI )  { 4 Po - 
m 

- 8 k - 6 ~ s - 4 ~ 3 ) -  e * ' ( ' ~ ) h . ,  

The formulae for  rH and rz become, 'g&erally, by 
(A.3.4) and. (A.3.24) 

I, = 0 
' ' ! \  

3 rrr = [ A I I) 1 a, + c o * ( d  1 cot +. 
m + [ 'c,(O) + , A  I I) /a, + ~ " " ( 7 )  I sinn3, (A.3.25) 
*=I 

It is remarked, that the previous development 

C,'(O) + C,'(O) = 0 (A.3.27) 

(compare the first of the equations (A.3.22) ). 
Further, as an extra condition 

C,(O) = o  (A.3.28) 

automatically implies that 

has been imposed. 
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A P P E N D I X  I V .  

. .  The limiting case, Q = 0. 

I n  this appendix'the differences ,are considered 
which exist between the integral in .(3.19) using 
the kernel (cos Q = 1) 

and the common integral of lifting line theory viz. 

the sign k" dwgnates the principal value in 

.,- b 
Cauchy's sense. Hence, writing 

the following integrak have to he compared: 

b 

and . .  
0 

(A.4.3) 
II - yo - 0  

where 

(A.4.4) 1 
r=-z 

8 : 
Put  

which agrees with the usual assumptions on the 
behaviour of the coefficients c,,(y) fo r  y-+ f b. 
Then . .. 

. . .  
b 

, '  ?/-yo. 
I ,= f (%)  1 i v - c ) l ~ , 2 d ~  +I,", , . - b  

b 

'(') dy (A.4.6) 
- b  

b 

- b  
', 

I,"= ( '(') dy. (A.4.7) 
[ t I ) , , ' J  - b  0 



Now 

1 (A.4.8) 

. .  and 

so that if yo is not nearly equal to + h or --b 

T2 Y 
A P P E ' N D I X  V. 

An alternative form of the kernel. 

L 'I 

&-I,' $5 2 f ( l J o )  . f . (A.4.10) 

Remark, further,., that 
In this appendix an alternative form of the 

kernel K(y.,yo) in (3.20) and (3.21) will be dis- 
cussed. ConGdering the term,which gave rise to  

dY 7 2  i-- ( 2 / - l 1 2 / a ) Z  f 7'' 1 / T - y Z / b z '  
(A.4.11) this integral, viz. 

I Z,"-I," 15 M .  
- b  

Putting , 8 6  - (bo +fb , )~ . -22inpZn - 
y c b cos +, yo = b C O S  + o ,  (A.4.12) 1 

(using the notation of 3 ) ,  it ean be written in 1 

b sin + the fo1lowing"form 

- ( b o  + f ' b , ) n  lim 

bycos+-eos~,) '+ 7% - E! 
d'1 

0 

1 1(1 + sin?) 1 
- 6  

+ , __- (A.4.13) S I  + 11 
d+ Mr' 

e2 +II 
' 8  

' sin yi .h 

where 
i" _- - us. (A.4.14) 
/I 

Now the latter integral .is, as, can be proved by 
contour integration, 

m. 

(A.4.15) 
Hence 

n 1  
o sin +o 

1 I /  - i 2 l P  1 s 6.u. . - + 0(4 ( A . ~ . M )  

Y which is, again, small if 121 lies not near 1. 
1 " l  

It is, indeed of order U. 

Hence 
I, --I, = O ( 0 ) .  (A.4.17) 

,Similar considerations are valid for the differ- 
ence I ,  - I ,  where 

+ (1-sin?) 
€2 

where.E1 and .z2 converge tp:zero in a, yay which 
' .  , . is,specified, below. ' ,  ~ . ,: . .  

Now 

if E~ and e2 are positive. 
&nee, 

-2siiipZn6 + (1fsin?)ZnE1-(l-sin?) Zne, .  

This mill converge to 
b 8 8  - 2 sin 'p In - 

provided that c1 and E? converge to zero so, that 
the relation 

(1 +s in?)  h c l -  (1-sin?) $ne,= 

13- { f ( d  Y-Yo 1 dy. I 
- b  I Y - Yo I . v (?I - IJd2 + r2 

One has here, however, to split the interval of 
integration in the parts (+(yo- b ) ,  *(yo + b ) ) ,  . 

(A.5.1) 8 2 sin? In - 1 
- (-b,&(y0-b)) and (&(yo+ b ) , b ) .  _- 
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holds. For an ordinary principal value in transform for p+  0 exactly in Prandtl's equation. 
Cauchy's sense one has to take e 1 = e 2 = &  and The approximate equation for a yawed straight 
then E + 0. Indeed this is. yielded by (A.5.1) if wing reads, when this generaliqd principal value 

ked principal value is indicated by the scheme 
Q = 0. I n  the present case, for (p # 0, the general- I '  is used, as follows: .. 

where E , ,  e Z  arc both pasitive and related hx -7 { e,'(!/") +'+ C:(?/d) -. 

(A.5.1). A similar generalized principal valuc 
has, previously, been introduced in the theory of 
swept wings in [7]. Elowever, its use was, there, " 

" . ( A  -7 i { c,'(u) + 1G;(u)> ~ 

I !J - Y" not justified from lifting plane, t,heory. Actually, - b ,  

.5.3) 

the final elaboration proved t,o {he in error, as was .- '. flere rectanglllar coordjnates (5, v)  are used and, 
already remarked in [ X I .  according to (A.5.2), 

Considering this generalized principal value 
more closelv. observe that it is defined using b b " ,  ~ 

oblique coordinates. If, generally, a new coordin- 
ate is introduced by 

I , .  

also 'a'new relation for the quantities E,' and 6,' 

emerges .viz. that relation which .emerges if the 
( 1 f s i n p ) Z n ~ ~ -  ( l -s inp)ini . ,= ' 

0 
old relation is transformed. It will be clear that - 2 sin ~n 1 see Ip i 

' \ 1  

Similar equations can be given for kwept wings. 
If the pivotal point lies on the root chord the 

. .. it transforms into ., . .  

I ,,. 
(1 + sin?) in I 8 ;  (*) - 

ai' * = n o  integral 

or 

j . ,  

. - b  

(1 + sinp) In] E: I - (1 -.sinp) 2 ~ ~ 1  E; 1 = can, however, immediately be replaced by 

6 (-) 'dh . (A.5.2)' - 2 sin 7 19% - 
d.? . v ='10. 

- b  
It is obvious, that with this generalized principal 
value the equation for a yawed straight wing Le. by the ordinary principal value. .' . ,: 1 1 , 1  

I '  

, .  . 
I . .  

. .  

. .  
. I  

'1. 

. .  

I ,".. 

I 

, 

I. , . 





x, 9 : codrdiriates along a.nd normal to the wall 
I[, u : according components of the velocity 
p, p : density and pressure 
p, r :  dynamic viscosity and shearing stress. 

The first equation is the residue of the Na-  
v i e r - S t o k e s  cquat,ions, the second is the equa- 
tion of continuity. 

U : velocity just outside the boundary layer. 

The hoiiudaiy conditions arc 

u=  0 :  u=o;v=o. 
y = w :  U . - U  (2.2) 

V o 11 hl a r m an's momentum eqwatioii is obtain- 
ed by integrating (from y = O  to m ) the first 
equation (2.1). It is conventionally written as 

-io; (2 .3)  
d lJ a3 

p u  - - (a*  + 2 2 )  + p u s  __ - 
az .ax 

au 
(shearing stre? a: the wall) = p (-,) 

I a!/ I = o  . .  
cr 

11 
P ( a )  = ( 1  - y) dg : displacement thickness. 

CF 

11 u 
>(.z)= f F(l-F) d y :  momentum thickness. 

IJ 

Since 6" and 9 are each in a different way de- 
lwidcnt 011 the velocity profile ~ "(!/) in the bound- 

ary layer, the ratio 8*/3=H can be Considered 
as a charaetcristic of the velocity profile. I f ,  these 
profiles constitnte a onc parameter family, the 
same dimensionless qoantity can conveniently re- 
present this parameter. 

Adopting, from now on, this point of view, all 
propertics depending on the velocity profile can, 
if expressed in a dimeimionless form, hc taken t o  
IJC functions of If only. So, e. g., the shearing 
stress at t.he wall can lie written as 

U 

. .  . =He,-' . T ( H ) .  ' (2.4) 

i t lci =,- R e y n o 1 d s, nun& referling to 

T(N) : dimensionless function of H only. 

ivitii 'V : kinematic viscosity 

f l3  
' ,  

, .  

Y 

momciitum thickness 

This serves to write the momentum equation in 
2 

t he  form (multiply Iiy lie,) 
P lJ 

1 dU a3 
2 - 9 (U :+. 2) + 2 K e B X  = ax 

n 
, L '  .. - - - - L e 3 j T U = 2 1 ' ( H ) :  
, . p u s  , , 

This invites to'the introduction of the new varidble 

B = 9 t l E ,  (2.5) 
. .  with the derivative 

1 d l j  
u dz 

+ - - SRE;.  

The resnlt can he written as 

1 dU =22'(11) - 2  (U + 2 ) 6 -  1 - do- _ _  dB 8- - ti d.c ti dz as 
(2 . i )  

The accelerations - - dli , however, a t  once geuer- 

ate traccs in the velocity profilc, for by (2.1) and 
(2.2) 

u ax 

1 .  d l i  . 1 d l i  
0 - (2.8) - -_ - >Re. -  --- 

, ' U  ax , u  . ,az  
Due to tlie one parameter assumption, the left 
hand side can again be taken to he a fnnction 
of H only, say (to retain agreement of symbols 
with (ref. 1) ) - A 2 ( f I ) .  Hence (2.7) c a n  be 
reduced. :to 

_ _  h , ( N ) = 2  T ( H ) - 2 ( H + 2 ) A , ( H )  (2.9) d2 . 
in perfect 'agrcement with formula (2.17) in 
(ref: 1): Now it appears that the fnnction 

2 ! 7 ' ( 1 1 ) - ( 2 ( H . +  2 ) - l ) h z ( H )  

involving the' velocity profile characterist,ics 

can with satisfactory accuracy be approximated 
by a linear fnnetion of h2 

' 2 T- ( 2 H  + 3) As- A -  Bh, (2.11) 

with constant coefficients A en I) (compare 
W a l z ,  (ref. 3), and T h w a i t e s ,  (ref. 4)): 
Suitable values of A and B. can he inferred 
from fig. 1 in .(ref. l), .&king .the' straight line 
A - - ( B  + l )A ,=H,  through the points represent- 
ing the stagnation point profile and the "aceeler- 
ation zero profile". They appear to be 

A = 0,44 and B = 5JS. 

The resulting simplification of- (2.9) 
. .  

l~as  the general solution . 

U 

or with.c=O . ' : 



0 
Now 

u=u 

924 U,L u 32 u 9 R e 4 = Y = 9 * . -  -=- " . UJ L '&<e> 
L being a characteristic length and U ,  a eharae- 8 2  

tcristie velocity, thc velocity at infinity of the 9 

payallel flow, and Re the ad'joincd Reynoldr- - - -A, 

= (eonip. (2.10))-Ax, = 

main'flow in the. case of an airfoil in a uniform 

numher. Hence (0,2894 - 0,0147 b - 0,0152 b*) ,  . (2.18) 

- - 

!!=0 

*I 

The numerical relation between b and A, is given 
(2'13) in the following table: 

0 

I 
I 

b 

A, I 0,1669 1 0,1517 1 0,1359 1 0,1196 1 0,1029 1 0,0858 1 0,0686 1 0,0513 1 0,0340 1 0,0169 1 
I -1 ,O I -0,9 I -0,8 1 -0,7 1 -0,6 1-0,5 1 -0,4 1 -0,3 1 -0,2 [ -0,l 0 1 

0 1 
___ 

which gives the momentum thickness by a simple 
integration. 

Further 

Other properties of the boundary layer (e.g. 7,) 
carmot he deduced without recourse to  an explieitc 
spceificatioii of the d o c i t y  profiles. Using the 
propositions of T i m m a n, slightly different de- 
finitions are used in the regions of accelerated and 
retarded flow. For accelerated flow, t.he profilc 
family is ( q  = y/S, S "boundary layer thickness") 

and for retarded flow 

Both formulae involve one parameter, h. 
Formula (2.15) yields, as shown in (ref. I), 

m 
U 

== (1 --) dv = 0,7523 i- 0,1340 b ; 
8 .  U 

. u  
m ,  9 U 

-= S J' &-;) &/=0,2894- 
0 

- 0,0147 b - 0,0152 b2. (2.17) 

This formula determines b i n  terms of A, (as 
given by (2.14)). The parameter H follows from 

H 2 = ( - )  =-- (0,7523 + 0,1340b)Z. (2.19) 

Finally 

s* 2 2 b  
9 A* 

9 1--b 
s 3  

= pUZRs,-~ - . __ = 

7 V ,  
1--b 

= pUZ&e,9- 1 I/"-- - 2 h  3 (2.20) 
,V, 

At thc presurc minimum, i. e. at the point where 

the uceclcration vanishes (-= 0) ,  (2.15) mast 

be replaced by (2.16). According to  (2.8) and 
(2.10), X,=O in this point, and hence (see 
(2.18)) b=O also. The profiles (2.15) and (2.16) 
arc, thus, identical a.q required. I n  the region of 
rctardcd flow the last members of formulae (2.17) 
must, as shown in (ref. l ) ,  hc replaced hy . 

0,7523 + 0,3556 b 
and 0,2894 + 0,0794 b - 0,0737 b 2  (2.21) 

respectively. The equation (2.18) for  b changes 
into 

dU 
ax 

b =  -A, (2.22) 
(0,2894 + 0,0794 b - 0,0737 b')' 

and is given numerically in this table: 

, I , 



b 
b, , A2 

HB =- - (0,7523 + 0,3656 h)' (2.23) 
:ind ..: 

11 
t ,  
I ,  

(2.24) - 
7o = p / / * ~ < e  3-* I - 

¶ '  

\rhich shows that laminar separation occiirs as 
soon i ~ s  I J = I ,  or by (2.22), as 

ha = - O,OS708. 

Th,c ,calculation, by (2.13), of 3 should, hence, 
never he continned beyond t.he point, where (2.14) 
yiclds valiies of h,  smaller than - 0,08708. 

3 An empirical formula of Ludwieg and Tillmann 
for the shearing stress at the wall in the case 
of a turbulent boundary layer. 

Turbulent houndary layers are supposcd to h a w  
a laminar sublaxer which is so thin that i t  gener- 
ally escapes observation. Experimcntal rcsnlts for 
the'variation of t h e  average velocity (on which thc 
rapid fluetaations of t urhnlence are superimposed) 
with the distancc to the wall do not take acconnr, 
of this suhlayer. ' Hence the expression 

fo r  the shearing s t r c s  at thc wall in the ease of 
laminar flow cannot he related with empirical 
velocity profiles of the tnrbulent boundary layer, 
nor \\-ith theoretical proposit,ions dednced withou! 
due reference to the alleged sublayer. 

No adequate' ,basic theory being available, the 
only method to predict the shearing stress a t  the 
wall in the ease of a turbulent layer is to make 
nsc of suitable condensations of extensive syste- 
niatic measurements. All semi-empirical. methods 
t o  calculate tnrbule'nt boundary layers' thus I I ~ ~ C S P -  
arily imply purely empirical data Cor the shearing 
st,re.ss a t '  the wall, which relate this strc 
appropriate propcrtitr of t,he velocity pr 

Measurements ils required have heen carried out 
hy several invest.igators and a part of .them is 
since long availahlc. The shearing stress has, as 
far as known, uevcr .bcen measured direcdly; thc 
usual .procedure 'is, to 'compute i t  hy aid of' v o II 
K a,r  m a n ' s  momentum equation from measurcd 
velocity profiles, For @e case of a uniform main 
atream, both along flat plates and in cylindrieal 
tubes, satisfactory results have heen established, 
hut. most data obtained, in particular; for retarded 
flow outside the boundary layer arc of  question- 
ihlc reliability. 'Tho quecr point is that they sug- 
gest that the shearing stress at the wall would not 
vanish in the point of t,nrbulent separation, ,?s i t  
yet, prohzbly does. 

.Exactly thcse. problems have recently been re- 
considered with great care hy L u d w i e g and 
T i l l m  a n n  (rcf. 2 ) .  These authors have ad- 
vanced a quitc plausible explanation for  the im- 
perfection of existing data ,referring, to  retarded 
flow; the experimental conditions are exactly sneh 

as to favour strongly the gcnerxtion of so called 
secondary flows, that are strong disturhances ori- 
ginating from the side walls enclosing the main 
st,ream and spoiling thc twodimensional character 
of the boundary layer on t,hc top or bottom wail 
nscd ,for measurements. . They claim to have 
found, that this. nndesired phenomenon can affect 
results for the shearing stress at  the wall.to over 
40 %. L n d w i e g and T i 1 1 m a n II further 
claim to have developed a method to measure the 
shearing st,ress which is f a r  less sensitive to second- 
ar:y flow phenomena. They do not, compute the 
shearing st,ress ,by aid of v o II K a r m a n's equw 
tioii (which. does not hold in cases of thrcc- 
dimensional flow), 'hiit they deduce i t  from direct 
measuremer~ts of the' heat transition coeffieient, 
with which it is very closely related. This method 
indeed looks very promising. S e t  it must be said 
that L u d w i e g and T i 11 m a  n'n's paper. zon- 
sidercd, (ref. 2 ) ,  does not contain decisive and 
completely lucid arguments showing how they 
succeeded, if so, in alirninat,ing all interferences 
of secondary flon- phenomena. The rcsiilts of their 
quite extensive mcasurcments, however, do shox 
the expected deercase of the shearing stre% a t  the 
wall when approaching the .  turbulent scparatioii 
point, and moreover comply satisfactoril:? with 
cxist,ing data referring to zero deceleration. They 
can 'he condenscd to the f.ollowing empirical for- 
mula 

- 0.078 H - 0.208 e ,  =L = - I" - - 0,246. 1 0  . Be, 
P 4 - u p  
2 

kith: as usual, 
(3.1) 

s* f7= ~~ =ratio of displace men$.^ to momentum 
9 
thickness , 

ment,nm thiekncgs (F) 
IIej = R e  y n o 1 d s number referring to mo- 

The cxperiments of L n d w i e g and T i 11 m a 11 n 
may ako he, said to confirm the finding of 
G, r n s c h w, i t z, that the velocity profiles of the 
t.rirhulent boundary layer constitute a onc para- 
meter family, the basic postulate of all semi- 
empirical calculation methods available. 

Formnla (3.1) will be adopted in the modified 
theory p.msentcd hereafter. It entails the very 
great advantage, that i t  allows a clear and prac- 
t,ically unambiguous prediction 'of turbulent separ- 
at,ion, at present a. \I-& point in the compiitativc 
treatment of torbnlcnt ,honndary layers. 

4 A revised semi-empirical method fir the oal- 
culation of turbulent boundary layers. 

The semi-empirical theories ' b f  ,tho turbulent 
boundary layer have the object to establish me- 
t,hods for  the prediet,ive calculation of the average 
characteristies of the turbulent layer. They, thus, 
do not take care of the fluctuations: occurring in 
the flow which represent its tnrbulencc. For the 
sa,me reason: velocity $41 ,  in this chapter, mean 

.~ 



time avemge of vclocity, presure time average of 
pi'essure, etc. 

The basis of d l  semi-empirical theories of  the 
t,iirbulent boundary layer is formed by the as- 
siimption of G r u s  e h w i t z, that the velocity 
profiles constitute a one parameter family. This 
makes it, possible, just as in the one parameter 
methods to determine the properties of the laminar 
boundary layer, to operate wit,li snitable integrals 
of the differential equations of motion imtead of 
with the differential equation< themselves. The 
integral taken is agaiii v o II K a r m a 11's momen- 
tum cqiiation, which can be shown to hold again 
in the form 

-- Tu (4.1) d 2  1 di j  
- + (11 + 2)3 - -- dx. U d.c p7P ' 

all qiiant,itics involved heiiig defined in exactly 
the same way as in the laminar casc, \ITith the 
proviso t.hat, in these definitions, fluctuating 
quantitics (u,  r o ,  p ,  etc.) are to be replaced hy 
the according time averages as prcconccrtcd. 

A second rclat,ion Mween t,he three quantities 
2, II and I" appearing in (4.1) is 1; u d m i  e g  
and T i 11 m a  11 n's formula for t.he shearing 
stress at the mll 

- 0.618 H - o.m _-  T o  -0,123 10 , Re9 (4.2) pu' . , 
Wliat is needed in additiori, is o suit;ible eqtiatiori 
for the variation of the parameter H .  No adequate 
theoretical principle being available, this relation 

will again have to be empirical. The Same problem 
ariscs in all semi-empirical methods to treat t,ur- 
hulent boundary layers, and the most recent,, prob- 
a,bly best one, the method of D o e n h o f f  and 
T e t e r v i n (ref. 5 ) ,  makes use of a formula 

d t l  % . w ( H - w ~ ~ )  [- 9 ,* 2 q > - = e  -_  
dX (I ~ dx r0 

(4.3) I - 2,035 ( H -  1,286) 

wit,h q = + pV>. This formula, howcver, cannot he 
adopted i!nmodificd in the present case because it 
implics references to a. predecessor of the relations 
(4.2) for the shearing stress( viz. to an according 
formula of S q 11 i r.e. and 1'0 u II g) invalidated 
h y ' t h e  results of L n d w i e g  and T i l l m a n n .  
I t ,  yet, gives o raluahlc iiidicat,ion ahout the type 
of formula probably coming into eonsiderat,ion. 
It, will, indeed, be shown t,hat. the following m d i -  
tied version is apt, to corer quite adequatelq thc 
cxpcrimcntal data available 

dN 
. ds o t . -  = f ( i r ) .  ~ ~ r - ~ ( u - w ) ]  (4.4) 

& = > f i e ,  , (4.5) 

with 
0.208 

[ ( H ) ,  c , € I ' :  faiictioii and constants to he deter- 
mined by comparison with cxpcrimintal data. 

d H ,  Fig. 1. 4 2' Against r for H=1,5;  I+%; 1,6; 1,7; 1,8. 1,Q. , , 
. ,. dz. :. , 
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, ,  

.Symbol 

with symbols cxplaincd in the table bclolv), and 
the parameters f ( H )  and f(II)c(f171J') of the Considering that . .. 

d?: az R.e, i- 
dRt , d 9  , 0.2m ~- = - 

Suthor, ref. Aerofoil or surface 

the folloiving equivalcnt of (4.1) and (4.2), con- 
veniently adapted to  (4.6), can easily he established 

0 
+ 
A 

X 

0618H - 1,268 r(lI + 1,7886). 
(4.7) 

dBt 
"P 
- = 0,156.10 - 

i 

v o n  D o c n h o f f  5 NACA 65(216)-22% 
v o JI D o e II h o f f  5 NACA 65 (216) - 22% 
Y O I I  U o e n h o f f  5 NACA 65(216)-22: 
V O I I  I l o e n h o f f  11 NACA 66,2-2216 
S c h u b a u e 1' 12 Elliptic cylinder 

G r u s c 11 \Y i t I: 7 Rectangular channel 
v o  n D o e n h o f f 5 

(33/8 thick) 

Nose-opening 
aerofoil shape 13 

The calculation e m  be performed by aid of the 
triple (4.4), (4.6) and (4.7), starting from scleeted 
initial values of H and &.  

The experimental data, available for the detcr- 
mination of f ( H ) ,  c and H', have been collected 
by G a r n e r  (ref, 6). Denoting G a ' r n e r ' s  q u i -  
valents of r and B by rl and O , ,  it is 

'16 ; . 0 t = 8 , , , 1 1 e g  0.1013, . 
B r . 1  =9ne,  

I I I I I 
lE 16 17 1.8 1.9 

d H  
ax First, measured values of F and B t  - referring 

to one and the same. constant value of H are 
plotted against each other (see fig. 1 and table 1, 

Fig. aR. f(E) against Ii. . 
,01.i47S (H10.6) (H-1.87) 

The drawn line repre&ents f (Ii) = 10 

The symbols, indica,ted in fig, 1 a,nd tcdile 1, refer t o  following measurements. 

* 
circle 
plus sign 
triangle 
square 
ellipse 

cross 
diamond 

Re 

2,64 X loG 
2,67 X loG 

2,60 X loG 
0,35 X lon 

2,69 X loG 
4,18 X loc 

0,92 x 100 

Incidence 

-01 ' straight line. represented by (4.4) are determined 
hy aid of the method of least squares. .,This pro- 
cedure is performed fo r  an appropriate. sequence 

Next, the double logarithms of the obtained values 
of f(H) are plotted against H (given in fig. 2A). 
They  suggest^ n parabolic curve, representable by 

loglogf(N) =1,1475 ( H - O , 6 )  (H-l,87). 

-03 of II values. 

-0.2 

- 0 1  The resulting expression for f ( H )  itself. 
,0t.i615(H-0.6) (H-t.81) 

f ( H )  = 10 
0 

, is given in fig. 2B and can be seen to cover the 
calculated values quite satisfactori,ly. 

Finally., the coefficients G and H' of the straight 
line c ( H - J I ' )  have again been determined by 
the method of !cast squares, demanding compliance 
vi th  the sequence of c ( H -  II') values obtained 

I B  ~ 19 
. 0 1  

34 . I . 5  1.6 1 . 7  

Fig. 2A. Log. log. f(E) against II. 
The dramn line roprcsents,the p&-aboliq curaq , :, Log.log.f(H) =1.1475 (E-O0.G)(E-lS7). earlier. It is found that 
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c = 0,02489 and II'= 1,3025 

hut  t,he resiilt, is, as shown in fig. 2C, not very 
satisfactory. It can easily he improved by adding 
an oscillatory term to c.  Taking 

c = 0,02214 + 0,Ol sin 14,s ( H  - 1,46) (4.8) 

the aeeeptnhle result of fig. 2C is obtained 

C In-H) 

I 1 I I I I 4' 15 16 1.7 la 1.9 2 0  

Fig. 2C. C(n-W) against n. 
Tho dotted liuc represents c(n--n') = 0.0~480 (n-1.3025) 

The d l a ~ v n  liric rapreseats formula (4,s). 

Tlins, the final specification of the empirical 
relation (4.4) becomes 

. [- r -(w - 1,3025) 

( 0,02214 + 0;01 sin 14,5 ( H  - 1,46)]. (4.9) 

The empirical formula (4.9) has the satisfactory 
property to agree ,in principle with a. result of 
T e t e r v i n and 1, i n (ref. 13) for the law con- 
trolling the variations of the parameter H ,  de- 
duced from the energy equation. 

For  the flow along a flat plate, r = 0  and 
dH - = 0,  equation (4.9). gives, 

H = 1,3025 

in appropriate agreement with the value 

H = 1,3037 

following from direct measurements carried out 
by N i k n r a d s e  (ref. 9) .  ' 

The calculation of a. turbulent boundary layer 
by the met,hod explained thus .requires the in-  
tegration of the two simultaneous non linear dif- 
ferential' equations (4.7) and (4.9). 

This integration can 'conveniently and accw 
rately .hc performed by a modified A d a m ' s  mc- 
thod (see appendix), 

Further the shearing stress is given by 

Denoting t.he initial value by the index 1 
0 1mfi1 -0.105Fd x= 3 ($) ($) . (4.11) 

I n  the calculation of the turl~ulent boundary layer 
by means of (4.7) and (4.9) the separat,ion is no 
longer, as in D o e n h o f f ' s  and T e t e r v i n ' s  
formula, connected with some more or less elearly 
specif id  values of H.  

Separat.ion occurs, if suddenly fl increases so 
rapidly, that the numerical integration procedure 
breaks down. At. the same time the shearing stress 
a t  the rvall as gireii by L u d iv i e g and T i 1 1 -  
m a  n n's formula also decreases very rapidly (near 
the separation point,). 

Xxamples show that the computed location of 
thr separation point is very insensitive with res- 
pc'ct to variat,ion of the initial value of 11. If this 
initial w l n e  is unknown, the value II,  = 1,3, can 
be seleeted but any other value < 1,6 will do also, 

i f  t,he eorrcsponding value of - dH is not too large. 
a x  

5 A numerical example. 

As a numerical example the momentnm thick- 
ness >, the form-parameter II and t,he shearing 
stress 1" at the mall will be calculated for a n  
aerofoil N h C A  65(216)-222 at  an angle of in- 
cidence a=10,I0 and a R e y n o l d ' s  numher 
Re = 2,64 X IOo. u =  

The measured'pressiire diitrihution = (q) 
a t  the outer edge of the boundary layer, Its deriva- 

q - .  

tive - c dq - (c = aerofoil chord) and the init,ial 
9, (18 

value of the momcnt,um thickness >/e will he 
takcn from NACA report 772. The numerical com- 
putation according to formulae (4.7) and (4.9) 
will he performed by a modified A d  am's method 
(ref. 30) for different init,ial values of the form- 
parameter H ( H =  1,4; 1,56; 1,7).  

The variation of the initial value appeals to 
ha,vc no inflnence on 'the position of the separ- 
ation point of the tnrhulent boundary layer. I n  
each of the three eases the separation point, is 
found to be located a t  ; -0,545. The same 

variation [if restricted to If < 1,s) appears to 
have hardly any influence on ,the course of the 
momentum thickness which is calculated from 
(4.11). The course of the shearing stress a t  t.he 
wall, however, does depend on the initial value 
of H. The calculation and the results are given 
in the table 2, and figs. 3A, 3B and 3C. If a 
mcasured value is taken as initial value for H ,  

the graph of H against - agrees well with 
mcdsnrements. 

Tho methad has the advantage that the calcu- 
lation of the separation point is no longer conncct- 
ed with a badly specified value of H ,  as  in ot,hcr 
methods (a r 11 s c h w i t z, D o e n h o f E and 
T e t  e r v i n ) ,  Separation occurs if H grows so 
rapidly that a further numerical calculation by 
A d a m ' s  met,hod breaks down. I n  addition this 
rapid increase of H causcs the wall shearing s t r y  
to decrease very npidly: 

S 

S 

c 
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Fig. 313. Variation of the wall shearing 9tr-s with -. 
. .  

' 'tl' 
21 

24 

23 

2 2  

,' 21 

r.9 

IS 

17 

16 

I5 

0 . 01 .02 0 3  04 + 0 5 ,  
1 4  

Fix. :3G. . Variation o f  experimental and calcnlated vnlue 

of shape pnrametcr E with 5 ,  
I :  
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APPENDIX. 

Numerical integration of the ordindy differential 
equation y = f(s, v)  by aid of a modified Adams' 

method . 
In order to integrate n~~mcrically the ordinary 

differential equation 

wit11 t,lie initial condition 

iiidroduce an appropriate small-step subdivision 
q,, k, ,' z,, ..,:.. of thc interval of thc '2 variable, 
taking a l l  differcnces si+, - z; = w eqnal, and 
prepare t,he following scheme ' 

5 83 6' 

Y' = f (5, I/) 

. ! j=yo  for x=z,,, . .  

The lost four columns contain fimt, second, third 
and fourth differences of the S o  eolnmn, which 
itself contains the values 

d s I = W f ( 2 & ,  21.). 



The 6-' column, called sum column, contains the 
Slim values of the So column, so that the So column 
on its t,iirn contains first differences of the 8 - I ,  

column. 

Insert yo to  z,, and put 
The procedure is as follows: 

' . O  0 ' .  0 .  0 ' 0  
i ;  

,SI) =s, = G2 = 6 3  = s g  =wf(., , y,) 

- =s,-o. 
I ' 1  1 2 2 2  

4 
st,, = Sll ,  = &Ip =sir, = SI  = S a  = sa = 

Xoxt,, insert 

deeordingly, replace the zeroes inserted i n .  the 
dil'fei~cncc colnmns. tly f i r s t ,  second, third and 
fourth diffcrcnccs appropriate to the S:! values. 

Next, replace the S,i:13 vdue  for i = O ,  by the 
result, compcitcd Srom the following general for- 
niiila 
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> .  

(using linear extrapolations in the S columns as 
f a r  as necessarr). The other sum columns follona 
hom 

! 

8.7' ~ ~ ' 1 , -  -&-I  < - ' I 9  ,+ 8;. (2) 
Similarly, replace & values inserted previously by 
the rcsdts  (if the general fnmi i* lu  

and go 011 1'3:. computing new So values From the 
?ormula . ,' 

s Y c w m ,  Ui). ~ 

This recurrent process is repeated untill, to; the 
rcynired accuracy none of t,he inserted \!<lues 
changes any more. 

Stihseqoently, the S z  and the S 4  columns .arc 
completed up to 6 and Si ( in  general: up to 
S :  and S': by extrapolat,ion, and an y: (- .?cncr- 
;illy y;+i) valnc is calculated from 

0 1  1 4  Y;+, =?yi-, + 2 si + T s f  - - si .  (4) 3 YO 

xsxt 
.-I 

s:+, =wf(Si+i,  !/<+I) (5) 

is inserted, and the extrapolated djfferences arc 
mod i f id  so as to agree with this 

The value of v G ,  generally of giiU; can now be 
calculated thy means of (4) ,  and the value St, 
generally S i + 2 ,  ,by means of (5). Thc extrapolated 
differences can be revised accordingly. The final 
value of y 5 ,  geuerally yi+,, then follows from 
(3) .  The final va,lue of Sp+, is brought in accord- 
mcc with this ryu l t  and \he scheme of differences 

) . , ( .  ! 
is revised sa as to agree with ai+,, and so on. 

The magnitude of the 3; steps is to he adjusted 

so t,hat t,he next term, - __ 19' 8: in the  exprms- ti0480 
ion (3)  can be neglected wit,hout r edudon  of the 
accumcy decided upon. I t  is possible to halve, or 
to  doi~hle., the magnitude of t,he steps, if desired, 
a t  some appropriate point. 

The method will, in most applications, he found 
to work very eonvenient,ly. The convergence of the 
i t e r a h n s  is usually cxt,remely rapid. The result- 
ing accuracy is high. 

value. 

0 

. I  n 
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4910 -0,0054 0,00-53 

4wu  -o0,no92 0,0104 

1880 -0,0175 0,0235 

55000 -0,1291 0,3220 
I 

8G90 -0,03iC! 0,1623 

7000 ,: - 0,024'3 0,1277 

2600 -0,0166 0,0347 

10340 -0,0400 0,0996 

1100 -0 ,0330 0,iogti 

3060 - n,o:i71 ,o ,onz,  
70100 - 0,2444 0,9742 

TABLE 1. 

1,55 

~ 

1)s 

' 

. 
],ti 

I 

1,Q 

9770 

7600 

2990 

7860 

1190 

37s0 

73800 
__ 

7230 

6430 

1980 

7730 

920 

2370 

63600 

10340 

8350 

32.40 

13900 

1 2 i 0  

4090 

80S80 

. .  

___ 

r 

I_ __ 
- 0,0138 

- 0,0156 

- 0,0044 

- 0,0206 

- 0,1626 
__ 

- 0,0495 

- 0,0283 

- 0,241 

- 0,0493 

- 0,0400 

- 0,04311 
- 0,2537 
__ 

- 0,0560 

- 0,0321 

- 0,0293 

- 0,0596 

- 0,0433 

- 0,0448 

- 0,2057 

d H  k- 
d r  

0,4069 

0,2242 

0,1529 

0,6242 

0,2372 

0,2543 

2,4747 

0,0019 

0,2951 

0,1704 
I I  

0,0882 

0,3178 

0,1881 

1,5386 

0,1613 

__ 

d H  
l' I k- 

d z  



- s p  n 
M P  

op -1 

bP 3 

_ -  
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T A B L E  2 (continued) 

Acrofoil seetion NACA 65(216)-222; Re=2,64 X 1 0 ~ , n = 1 0 , l D .  
Calculation of H, 3 and T~ for initial values of ET = 1,564, 1,400 and 1,700. 

l I 

: :  

__ 
d H 
ds 

c-  

__ __ 
- 6,004 
- 4,072 
- 3,001 
- 2,293 
- 1.890 
- 1,519 
- 1,256 
- 0,9!Il 
- 0,831 
- 0,695 
- 0,431) 
- 0.261 
- 0,163 
- n,m1 
- 0,041; + 0,042 

0,301 
0,682 
1,254 
2,165 

5,742 

2,494 
3,663 

8,7.14 
21,9i 
in'% 
__ 

, . .  . , .  
, .  

... 

, .  . 

. .  . . 
1 

.... . 

I 

I '  I 
0,095 
0,105 
0,125 

0,265 

n,4,45 
(1,485 
0,605 
0.- , ,>la  - 
n l x :  
n , s :  

OJ4.5 

0,345 
0,405 
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Spontaneous Oscillations of an Aerofoil due to Instability 
of the Laminar Boundary Layer 

by 

Ir A .  I .  17AN DE VOORBN and II. IDCNO1-I *). 

Summary. 

Spontaneous oscillations uf an aerofuil with a spanwise a i s  of rotation :rt t hc  quorter chord point were <rbserved io 
a windtuoncl a t  Hcynolrls numbers f o r  which thc lusjor p ' t  of thc boundary lnyor was laminar. Tho oscillations 
%rem of small amplitudc, $7-hilc tho frequcneics coihoidcd c i t h  natural frsqucneies of the model. Moreo~.er, the  fru- 
quoncics u - m c  snch that,  nerordiny to the usual theory, the? were within t h e  r i ~ n g e  for which the  lantinar houndary 
laycr is uustable. Thc motion of the nerofoil f n d l i t a t c d  t h c  wxuncnec of initial distuhanees of the silme froquenoy, 
nhioh in the unstable region of t hc  h o u n h r y  laycr wcrc again amplified I n  t,his vay a self-exciting. feed-hack 
rncebanisnc !,-it11 its :tniplifie:ition in t h c  bonnd:rn? I : y x  \ m s  rcnlimd. 

Contents. 
1 Introduction. 
2 Nxperimental resnhs. 
3 Cumpariso~i w i t h  the stahility theory of !,he 

4 The meehnnisni Imdirig t i ,  t h e  vihr.nt,ions o f  
I the model. 

5 
fi References. 

laminar boutidnry . Inyer. 

The effect, rif a pressitre gradimt, 

6 figures. 

1 Introduction. 

During the performance (if iiii rxperiniental 
program intended to nieasnre the acrodynainir: 
forces 011 an oscillating aerofoil. s ~ ~ o i i t i t n c o n s  
oscillat~ions of t,he niodel occurred uitder~ certain 
circumstancrs. The model, whicli h a d  a spau of 
0.8 m and a (:hard of 0.3 111, conl,d rotate about 
a spanwise axis and was kept in the position of 
zero angle of incidence hy a couple of. springs. 
which gave t,he model a natural frequency of 
5 cps. The oscillations occurred in the wlocity 
range froin 4 to  1 3  m/scc and oiily if t,he axis of 
rotation coincided with t,he quarter-chord 'l~oirit. 
It was established by aid of hhe st,et.hoseopc 
method that for speeds helow 1.1 ni/see t,he whole 
boundary layer was laminar, while for speeds 
above 11 mysec a part of the honndary layer 
hecame tnrhulent,. When the whole I~o~nictary 
layer was made tiirhnlent,, for  instance by fit,tinq 
disturbance wires a t  hot,h sides of the aerofoil 

occurred. 
rlear the leading edge, n o  spontanrous oscill a t '  lolls 

! 

I, 
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The oscillations tire considered t o  be due to  
instahility of thc laminar bonndary layer. This 
instability h i s  first heen predicted hy Toi2ilmxs 
(ref. 1 )  and SCIILI~ITISG (ref. 2) on theoretical 
grounds, while Ills (ref. 3) ohtdineil more accu- 
rate results.Eor the  critical values of the imliortaut 
i~nrarneters, E2xperimental eridence has been oh- 
tained front the iiieasnrenients of SCIIWBAUER and 
SKRAAL~TAU (ref. 4) ,  while recently, MALOTAUX, 
v. u. Go\- and YAI, Krrs TAX (ref, 5 )  have found 
nnda~npeil i~scillations i l l  the lan~iuar  ,bonndary 
layer of a11 iicroplnne in free flight. 

In the present experiments wnditions in a part 
I J ~  the honndary layer are such that aniplificatio~i 
of disturhauces of certain' frequency can occiir. 
Such iiscillations in the hoiindrlry layer mill lead 
to periodic Eloctnations in the pressui'e and hence, 
ill generall a siiiall tniinient will act 011 the modal. 
In order that. this monient will iniliicr oscillat,ions 
of t,he niorlel, t.he t,wo following condit.inns mnst. 
he sat,isfieil 

( i)  the model innst be in a state neat' to indiffer- 
ent equilibr~inm, as is t,he ease wheri rotatiom 
a)iont the qu;lrter.-chord axis are allowed. 
Ot,hcrwise the monient will lie trio s rnnl l  to 
yie1,il any ~je~'ceptable motion. 

(ii) the frequency of the inonient niiist, eoincide 
with one of the natiinil frequencies of the 
model. In fact,, it was f6und that  the fre- 
qiicncies of t,he spontaneous oscillations were 
t h e  same as the natnrtil fwq1ieneies of the 
elastic aerofoil (they were eqnal to 81 niinvlier 
(if  discrete values raiiging froin 60 to 300 cps). 

An oscillat,ion of the inodel, affected in this 
way, will, moreover easily induce new disturb- 
ances of the same frequency a t  points more ahead 
in the hinmdary layer and these disturhances will 
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again he amplified Hence, ii self exciting feed- 
hack mechanism wit,h it,s aniplificat,ion iii t.he 
Iioundary layer has heen realized. 

This investigation has heen perfornied hy order 
of the Net,herlands Aircraft 1)evelopment 13oarrl 
(N. I. V.) .  

2 Experimental results. 

An aerofoil (span 0.8 in, clwrd 0.3 in, inasiniuw 
thickness 7.3 % at 30 % of the chord, Symmetrical 
profile) was placed in ii rectangnlar channel 
(width 0.8 m, height 1.1 in ) ,  which itself was 
bnilt in a windtunnel. The purposc of the ch:innel 
was to make the flow two-dimensional (channel 
width = aerofoil span).  Moreover, this contrac- 
tion gave some r e d i d o i l  (if the turt,nlence in 
the tiinnel. 

The aerofoil could rotate tibont the uuarter- 
chord axis and i t  was kept in a mean position. 
corresponding to n small angle of incidence by 
aid of weak yprings (fig. 1 ) .  

(&XIS OF ROT&TION- QUARTER CHORD LINE 

The expcrimcntal set-up i i i  the ~~.indtnnncl.  Fig. 1 .  

When the speed in the chaunel .was bcl,wecll 
4 and 13 m/sec spontaneous oscilliltions of the 
inodel occurred. The freyuency which w a s  meas- 
ured by menns of' a sound-analyzer. appeared tu  
he always equal to one of the. following discre!c 
valnes: 60, 133, 170, '240, 288 c .  p. s. The aniplitnde 
was very small, hut the oscillation w a s  clearly 
iiidiciited by an electromngnetic pick-op (voltapc 
plopo~tioiial  t,o velocity) and could be felt hy 
hand. hloreover, the higher freynencies ploduced 
an audible t,une. 

It appeared that, the lower freqneneies were 
predominant a t  the lower speeds, while the highel. 
frequeucies were fo~in,d :it the higher speeds of 
t,he range. For certain speeds two or even thrcc 
frequencies conld be present at  the sanie time, 
hut, usually only one of them iierseimred after 
some time. Fig. 2 shows t,he re1;ition betweell 
freqnency and specd for various angles of at,tack. 
The diagram is roughly symmet.ricn1 almut, the 
zero angle of attnck line, :is is to lie espectcd, 
while an increase in the angle of attack has t.hc 

effect of producing a same phenomenrin at. a 
lower speed. 

kpeed range in which a certain frequency occurs, 
is not continuous. For  special. well reproducible, 
values of the speed no oscillations appeared. This 

Another characteristic property is that, the ' 

Fig. 2. Exprimental "Ita for frequency p of spontaneous 
axcillations, giwn in dcpendenee of thc spwd of flow U 

ana the angle of ineidmee p ,  

effect was, in particular, well pronounced f o r  the 
lower frequencies. Wit,h 60 e. p. s. two  speeds for 
which no oscillations occurred differed aliont 
0.25 m/sec. 

With the stephoseope method i t  was established 
that a t  the trailing edge t.he boundary layer is 
laminar for speeds below 30 or 11 m/sec (sera 
angle of incidence)? while for higher speeds it, 
hecomes turbulent. No important differences were 
discovered when the measurements were done 
with the wing completely clamped or with the 
wing perfurming spontaneous oscillations. 

Neither the position nor the strength of . the 
springs, which kept the model in its mean po- 
sition, had any influence on freqnency o r  ainpli- 
tude of the spontaneous oscillations. 

It, was found that t,he frequencies of these 
oscillations all agreed with natural freclneireies 
of t,he elastic aerofoil (chiefly torsional). T O  
show this a very small electromagnetic exciter 
was held against the model and the response of 
the model turned out to he masimal for  thc 
same frequencies that were charact,eristie for t,he 
spontaneous oscillations. 

When the boundary layer was made turbulent, 
a t  10 % of. the chord by fitting disturbance wiws 
i o  the aerofoil, the phenomenon of the spoil%aiie- 
ons iiscillnt,ions completelg vanished. 

3 Comparison with the stability theory of the 

Since the experintents were made with a thin 
iirofile (inasimnm thiokkness 7.3  %), it seems t o  
be allowed to compare the measurements .with 
zero angle of incidence wit,h t,he t,heory for a 
f la t  plate as given by LIS ( r r f .  3 ) .  In sectioii 5 
t,he influence of t.he pressure gi;nrlieut, introduced 

laminar boundary layer. . 
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by thickness aud hy a 11011-zero aiigle of attack By takiiig special d u e s  f o r  t, the diagranie of 
mill be considered. fig. 3 have now been transformed into the dia- 

l!'ig. 3 reproduces the vesults of LIN, the nppw gram presented in  figs. 4 a n d  5. The procedure 
half of the figure presenting t,he frequency and followed is tha t  for each value of x (not sur-  
t,he lower half t,he w a r e  length, both a s  functions passiiig x = 0.3 m, which is the trailing edge) 
of t,he Keyno1,ds number: referred to the dis- and Liz 6. can lie calculat,ed and, hence, Rgr 

'i..lO-. 

Fig. :;. Theoretical results for unstable lsminar 
houndsry layor according t o  LN. 

placement thickness 6" of the boiindary layer. 
For a flat  plate 6' is given hy the Blasius formula 

where v is the kinematic coefficieiit of viscosity, 
which wider standard condit.ions is equal to 
14.6,  lo-" m2/see. z denotes the distance from Ihe 
leading edge and T/ the  speed of the imdistnrhed 
flow. 

The Reynolds numher Ma* is t,lien given Qy 

US' R p  =- 
Y 

'I'hc quantity p appesriiig in the oxliiuite of 
the upper figure denotes the freyiieiiuy in rad/sec, 
while 0: of the lower figure is gireti hy 

whcrr A is the wavelength. lt. shiiulrl IK noted 
 that^ the ve1ocit.y by which ,the waves progress is 
not equal to U ,  hut to c=p/a,  which usually lies 
between 0.26 U and 0.4 U and can, of c o m e ,  he 
inferred f rom the two diagrams presenterl. 

u ["/...I 
Pig. 4. Unstable frequmneies :LS function of speed for 
diffcrcnt positions at  the nerofoil. The experimental 

points were found  with zero anglc of inoidenee. 

I I I I I I 
0' 2 L  6 8 10 12 

Uphe,) 

Fig. 5. Wawlength :is tunetion of speed. 

Q3 

x hl 
0 2  

0.1 

0 
u [,/e,) 

'l'he values of p lying ii; the unstal)le legion and 
the  correspondiiig values of h tJhen can be obtain- 
qd from fig. 3. Furthermore fig. 6 shows the  
region of the profile, where oscillations of cer ta i~i  
specified freqnencies ai'e iinstitble. This diilgl.iiiii 
has been obtained as a crossplot f rom fig. 4. 

Comparing now with t.he experimental results 
for  zero aiigle of inci,denee, it is seen that  the  
measnred frequencies lie very well withiii the 
Imstablc regioii. Only the 60 c. 11. s. wunlrl ,hd 
expected froin theory to eitd a t  6.8 m/sec i~istt~ail 
of at 7.8 ni /sec  'I'he higher freqnencies wo11ld 



probably have been observed also a t  speeds above 
12 nu’sec, if the turbulence of the tunuel woald 
have been smaller. 

4 The mechanism leading to the vibrations of 
the model. 

While in the foregoing sectitin ample evideiiw 
has been given that the osoillntions are narrowly 
connected with an instahility in t,he lat~linar 
boundary layer, it will now be explained how 
these oscillations leiid tii sustained vihr:rtioirs (if 
the model. 

Though in houndary layer tlheot,y of steady 
flow the prcssare is constant. i n  t.he direction 
normal to  t,he surface, this result is out ret;iine(l 
for the pressure pruduced hx the disturhances 
(ref. 4. $ ’La). The reason for  this difference is 
that, in steady bounrlary layer theory the velocit,y 
coniponeiit normal to the surface is sinal1 con-  
Iiared witth t,he par:nllel relocity conipoiient :iwl 
lienee is neglectetl, while f o r  t,hr disturbnnccs 
both coniliorierits are of the same order of mag- 
nit.ude. I t  follows that the pessurtt fIn~~tuat,ioris 
are of the same type as the velocity fluctnations~ 
viz. 

I 
I 

where t,he sign of p denotes whether the oscillition 
in the hounda.ry layer is daniped or undamped. As 
a result of this varying pressure a moment, about 
the axis of rotation will, iu gcnei’al. exist. This 
periodic moment call protlnce vibrations of tha 
model if its frequency is sufficicnt,ly ucar t o  on0 
of the resonance frequencies. I n  such case the 
motion of the model in points ahead of A 
( A  = point, where instahilitg hegins), will i:ause 
disturbances in t.he boundary layer, which when 
arrived a t  A, will again be amplified. ’I’hesa 
disturbances will differ 180° in phase for  up])er 
an,d lower sic& of the profile and. hence, the same 
phase difference exists for the pressure at both 
sides. This is the reason tha t  eren for  a sym- 
metrical profile at. zero angle of attack a inonnciit, 
is built up. 1% fact, that, t,he velocity fluct,u- 
ations at the trailing edga are hy int,erinediary 
of the aerofoil, again brought into the  houndary 
layer at a more foraard p(iint. iiiiikes that the 
relatively small ninplificntion. characteristic for  
the small values of Ka* (see fig. 19 in ref. 4). 
is sufficient for t,he genetatioii of the v i b ~  a t’ 1011s. 

.The direct measurement. of velocity fluetnatians 
in the houudary layer hy aid of hot wire equil). 
ment requires a much liuger :unplification if 110 

artifiicial excitation ahead of the instability region 
is introduced. This is the reason that SCIIIJUAIJI~R 
and SKR.,WSTAD required for  their originnl measu?e- 
~iients, which were dolie without artificial exci- 
tation, a wind tunnel set up with extremely Ion, 
turbulence. However, with excitatioii of the 
houndary layer, instability could he observed for 
much lower Ea. . I n  fact, ‘the largest value of 
& ,  which occurred in the preseut experiments, 
was 900 ( l J = l %  m/see.. ~ ~ 0 . 3 0  in). 

The pressure distributiori along the choril dci? 

t,o .the velocity fluctuations i n  the houiidar5- 
layer will lie of the type showu by fig. 7.  
A denotes again the point, where the iustabi- 
lity hegins. Ahead of A the pressure dif- 
ference is not exac.tly aero since flnctuatious 

- I  

W 

Fig. i. I’ressuri: diatrihution along bhe chord. 

it1 the bounilary laye? are i n d ~ ~ e d  here by the 
inotion of the aerofoil. However, the  inonlent 
tihont the axis of rotatian is largely due to  the 
~iressnre diffeimices aft, of A.  When z= 0 deuotes 
the axis of r?tat,ion, the moment is giveu by 

zn 

M = e io1 / ze(p-i.e)x clx 

21 

N;oW, to  l)ro(Iuce a rihration of the model :I 
necessary condition is that the velociby fluct,ii- 
;it,ions iitdiiced by the iiiot,iini, arrive a t  A with 
t.he right phase. If this phase is exactly the 
opposite of the phase of the velocity fluctuations: 
which l~roduced the nioment. 119 vihration will 
result. This imikes i t  probable t.h3t ohere are 
certain speeds in each range of speeds, where a 
specified freyuency is amplified, which do  not, 
lend t,n a vibration of the model. Such speeds 
have in fact, been observed. Since. the ~ i h a u e  of 
t,he iiioinent will be roughly the same when the 
distance between A and B is increased by one 
wavelength, an estiination of t.he difference 
hetwcen .two such “extinguishing” speeds can he 
obtained from fig. 6. noting that the wave length 
of the oscillations of 60 e .  11. s. is about 0.03 t i l .  

The ;Imldit,iide of the oscillations is, prohalily 
deterriiined by the condition that :in increase. in 
amplitude wonld spoil the Imninai~ ch:irncter of 
t.he I~o~uidary  layer. 

5 The effect of a pressure gradient, 

The ex~~erinients  considered have uot beeti per- 
forinccl with a flat;plate, hut  with a thin aerofoil. 
Hence: there will he an increasing pr 
the rear part of the aerofoil. The effect of a 
pressnre gradient. upon the stability of the laiiiinar 
Imnndary layer has ,been iiivest,igated hy PRETWGH 
(ref. 6) ;ind SCHLICHTING (ref. 7). It, can he. in. 
ferred from these papers t,hat i n n  increasing 
pressure: i. e. a delayed niotiou, ~ironiotes insta- 
hility, Hence, fo r  the case of an aerofoil with 
ii noti-zero angle of incidence t,he regions of 
speed where the instahility occut’s will he shifted 
toward lower values of the slieerl as is confirtnrd 
hy the  espei~iniental results showii in fig. 2. 



Au accurate calculation for the ease of ~iressiire 
gradients requires the cnlculation of the dis- 
placement thickness S f  under such ciicumstaiices 
and, Inoreover, t,he ehan,ge t o  which the stability 
curves of fig. 4 are  subjected, when the houiidnry 
layer profile does not  agree with the Blasius 
profile. It is intended to rnnke such calcul n t. 1011s 

at a -later nioinerit. 
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. .  . -  . . - ' I  -' ,The effect of. notches on  the strength .of .aluminium alloys 
under' static iensile' loading 

. .  

Summary. . .  ' ,  deration of the notch'iffect. which has already been 
. The true fracture-strength in static tensile loading 

of sharply notched cylindrical test'bars of 24 ST 
and 51 SW aluminium alloys was investigated, The 
following factors &re varied:. 

' 

length of testbar; 
size; 
notch angle; : . ' 

section: 

. .  

. notch 'depth at constant diameter .of notched 

A notch. angle of zero degrees with'practically 
infinite sharpness was obtained by pjrecompression. 

The principle of an optical method is described. 
which enables to measure the change of diameter 
of the notched section and to 0hserv.e the initation 

fi may he conclude; fiom.the test data that; ' 

the fracture 'strength has a slight tendency to de- 
crease with increasin; length and'size of the test 

' 

of cracks.' . . . .  

done by seveial investigatok For instance Leon 21, 
Inglis 8) .and' Neuber 9). gave calculations for the 
stress distribution ' j n  bars' with soecial types of 
notches and stfained  in >he elastic. region. Mac 
Adam 4) and particularly Sachs 6). treated the plastic 
range, for which the problem becomes extremely 
difficult and for which an exact quantitative or even 
qualitative solution can still not be given. In pre!i-. 
minary reports concerning tests .on notched copper 
and steel bars the stress and strain distributions 'in 
the notched section during plastic deformation are 
also qualitatively treated .for sharp and rounded 
notches lo)., ~ 

W e  shall restrict ourselves here to a short survey 
of the main experiments regarding the notch 
strength of. aluminium alloys found in the literature 

.and to our own experiments. Experiments on alu- 
minium allqys, the basic mdtals for the aircraft in- 
dustry, reported in the literature are of fairly recent 
date and have even been partly published during 

oar; 

notch angle. and eventually increases again; ' 2. Investigations reported in the literature. 

the course of our own investigations 6 ) .  . , . 
. . ,- . , the fracture strength first decreases with decreasing , .. 

the fracture strength at first decreases. sharply with 
increasing notch depth and. then increases again; 

Mac Adam, Mebs and Geill 11) use'd round duralu- 
inch diafieter in which notches with min bars of . . ~~~ 

fl the fracture strength decreases with increasing prior ' angles vaiying from 1'80: to 30" and notch radii 
compressive load. . . ' varying from 0.25 to 2.0 mm were applied. The notch 

. .. 

1. Introduction, depih w a s  Cept almost constani, i a ry ing  only 
between 54 and.60 % of the oridnal.diameter * * I . '  - - ~  ~~ .. ~ .- ~ ~ ~ 

~ ~~~~ . The fact that.notches influence the strength and Tbe.,,+tal was tested at temperature, -78" C. 
ductility of metals is known Since a long time. Kir- and -188" c, in the original (age hardened) condi- 
kaldy 1). already observed the effect of notches on tion and after 1 3 %  prestraining. Their experiments 
steel bars. A more systematic investigation of the 

~ led to the-conclusion that for the ranges investigated 
. problem was started by  Ludwik and Scheu2) and .  the fracture -strength and the nominal tensile 

especially by Kuntze 3) Some 20 to 25 Years ago. strength increase with decreasing notch sharpness, 
More, recent investigations are partjcularly due to  . . . 
Mac Adam 4) and Sachs 5)  6) and their coworkers. 

**) These authors express notch depth as K ='- in It is not intended here to give a theoretical consi- 

*) Formerly Head .Materials Dept: National Aero- which do = diam. of notched section,and Do = diameter 
of cylindrical part. 

do2 

D,2 . ,. . \ 

nautical Research Institute, Amsterdam. 
1 - 

- 
; . . . .  - 

1 .  I 



.notch angle and'temperatuie and increasing notch 
depth. and prestraining. 

maximum, This maximum occurs at  a 'greater 
notch sharpness the higher the notch depth. 

. I  \. ' and jnVestigated, l 4  ST.' 24 ST 
, 22 ST mdchjned .after heat. ' frealient (not repre- 

'I 
. .  . . .  . ,  

. ,  
sented in fig. 1). ~ 

. ' and f 5  ST aluminium alloys. .. 

'. ' . . I  
' . .  In their test-on % inch bars ,with circumferential 

~ '. " 
~ -.notches the notch angle was constant (60:)). T h e  FRACTURE 

STRENGTH 
D2-doz ,. . kg/mm2 

. . notch depth, expressed as. . ' . 100, :was 4, .?.8# 
Do2 . . ' . 

5 .  . and 15.3 %,;the notch radii 0.5 and 0.05 mm. From 
their data it follows that for.the range investigated 
the fracture strength increases .with .the notch 

-sharpness and as far as 14-ST and.75 ST are con- 
cerned'alsb with the notch depth. For..24 ST there is 
a, very small increase of the fracture strength With 
.the notch depth for notches of 0.05 mm. radius. With 
notches of 0.5 mm radius the fracture strength was 
tound to decrease with incieasing'notch depth. 

.Extensive investigations were done by  Sachs, Aul 
and Dana 10) on % inch round bars of 24 ST,. 75 ST 
and 24.ST 86. Instead 0; keeping the diam.eter Dcof. 
the'cylindrical part of the test bars constant, as is 

c. ' - isually'done. the diameter d, of the notched section 
was kept constant (at 5:4 mm) for the'determiAati,on ~ 

of the effect of the notch depth, like in our experi-' 
ments. The'effect ,of notch depth was investigated. 
for notch radji varying from appro;:0.01 mm until 

radii, The lengtk'of the .cylindrical par:, inclusive 
the notched section was 25-35 mm. After com- - , 

to obtain the desired strength and to insure a high 
degree of unifoimity, i.e. to eliminate- the effect of 

A number of tests were made on bars with 59% 

. 

. ,  
. , 

' 
' ' 

I 

... 
' 

. .  

. .  

. . 
, 

. ' & 50 mm; the notch ani le .heing60" for the small , 
.? <. 

. .  .. 

' , ' .  ,pJete,m&hining the test 'bars Were reheat-treated . 
' . ,  

:,, . , , , 

.~ cold deformation in the notch due to'machining. ' 5.7. -107 ., . . 29.5 , %!Q~OQ 55 " ,. 

Do NOTCHDEPTH 
. .  . .  -- 

. .  notch depth' and varyiig notch radii. heat treated' , ( .  Fig. 1. 
only before fina! machining.. . 

The obtained fracture StreSSeS (in' kg/mm? ,at . Infiuence of the notch depth and the notch sharpness 
on 'the fracture strength derived from data of Aul, Dana 

(do = 0,212". lo ='0.?5", a = 60") - - 

' 1 , -  , 

, constant notch radii are represented in'fig. 1 as a " and Sachs'). ' ! . .  
, . .  . .  

function of the notch depth, -expressed in percen- 

tage, removed.cross section (- 100). The follo- 

, .' wing conclu$ons may be drawn from theif data: 

. _, (B) Ai constant notch radius the frac'ture stress',at 

.~ . .  . . -  . -.DZ-d2 . 
s i  , .  

' Only-for fairly sharp notch notches (r < 0.3 mm) . '. :. 
the fracture stress at a notch depth 'of 50 '% is sqme- 
what lowe; (5%) thans for bars heat: treated after : 

. . . ' 

' and the% increases more slowly with increa-.  . , however, the minima at  low, notch dep,th are very . 

. I DP. , 
. , 

. .  
I machining. .- I '  

: 24 ST heal lrealed after machining. ' ' ' _  

. , .  

, .  24 ST 86 heal treated ailer machining. 
, , '. ' first sharply'decreases for very sharp.notches., . The general behavio(lr is &milar to that of 24 ST; ' . 

, 
sing notch. depth' ufitil the original.value is.. small, . . , - '  I 

, ~ readdd, again. Fo: medium notch sh'arpness ., ' . ,  . : :  . (r N.0.25, mm) the initial de&ase is smaller, 75 ST , .  heal lrealed after machining. . , 

., 
;. 

and at  SO,% notch.depth the ,original .value. is I 

already exceeded in th,e reverse direction. Fpr 
The geieral  behabiour is al$o similar to that of ' .  

24 ST arid thk minima .at low notch depth are also 

. 3. 1 Materials and procedure of own investigations. ' 

\ 

. .  
~ -eak notches the fracture. strength increases rather, pronounced.' . . . i  . -  

i ' .  Tontinuously and shows a 'weak  maximum or . \  

. , . .  remains constant at high notcp dephts. , 
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' Too late, as 'shown in figure 13, it became ob- 
vious that the,, 51 SW 'bar h a d  a large. inclusion 

with this'har therefore. cannot .he regarded as fully ' 

The test specimens 'were carefully machined and. 

notches of 60'-ana Less dnd with very sharp.notches 
no appreciable .deformation was' measurable during 

. denly, - in most of the tests the usual hydraulic 

I 

c . .  . 
=--' over ,liearly the whole length. The results bbtained ' loading, and-fracture therefore.occurred very sud- , ; 

' I  I reliable. , , - .  loading system of the machine was used. The frac- . I  

. ture .stress Sr was based on.  the diameter of .the ' ,  

.' provided with threaded ends. Apart from the un- . notched s e c t i h  after fracture. 
I . .  

. .  notched specimens for t l& determination of the ' . 

noYches of the utmost sharpness (r. N 0.01 mm). 

sensitive'ball. shackles., In some preliminary tests 
the specimens were loaded on a 50 tons, Amsler 

.moved by means of. a worm wheel transmission 

in the lowest position. In this way,'this machine 
:.' acted as an extremely rigid one and enabled a very 

. .  slow tearing of notched metals like copper and 
stkel. The load was measured by means of a strain- 
gage dynamometer.' . 

. basic properties, .all test pieces were notched with " 4. . Test scheme a'na . .  
1 Apart' frdm the determination of tlicbasic tensile 

Very.good centric loading was obtained by using ' properties of the metals on unnotched bars, the 
effects ..of the' following factors on the' fracture 

.! strength were inyestigated. All .tests on .notched 

' effect, were with very. few exceptiolis at  least 

Eiie?' O i  length Of 'the cylindrical Parts of the tesf 

. 

,, 
hydraulic ,machine, the '  head of which could be ~ .specimens, except those for investigating the length ', 

instead of by using the oil plunger, which remained . ,, duplicated. . .  

e _  
, .  

I . , '  ' 1 .,, . , . \ I  

. >  . .~ 
. .  

\ .  
. bar. 

~ T ~ ~ '  s q i e s  

' . It 'was pied to measure the.change of diameter' and softened. 

tests 'with, different-diamet& D, ~ 

were do?% both with 24 ST in the state of deiivery , .. - .  , .  
. .  . . ' hy'means of the optical system schematically re- , . . r . 

' ' presented in fig. 2, which was first  applied for the 

bars10). With this system the change of, diameter' . 

measured with an accuracy of approximately 0.01. . L, 

mm without touching the notch with extensometers, . s 
which may damage the notch. Moreover, 'it enabled 

1 an exact observation of the onset of fracture, at  the 

, 
( 8  

s tudy,of, the'effect ,of vetches in copper and steel . .- . 
d of the notched Section during loading can b e  

. 

- , .  

. _  . I  

.~ 
.. . .  . . notch bottom, and its.proceeding up to the moment LENS 

. .  that the system'of bar and testing machink becomes -.. Fig. 2. . 
unstable 'and.' fracture proceeds at  high speed. Scheme for the dbservition and m,easuring of the not- 

ched section during loading. ,. 

. 

. . \  . 
Since in test pieces of the aluminium alloys with ' 

.. . .  
~ 

* . .  . ,  
. ~( 

.. . .  

. .  .>  
. . - .  - 
. .  

. , -  

. .  . . .  

. \  . .  . .. 

.- 

. .  

do= 10 m m  . , ,  , 
\ &&* ' , . '  

r=aoimm 1 .  . 
. .  10 2 0  30 4 0  . 50 601y270 . .  
. .  ' . .  

Fig. 3. 
Influence of the, length of the testhar o n  the fracture . :  , .. 
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1 .  . .  ' Size eiiect. . \ 

the state of delivery. 1, was 50 mm, eo was 45", ro , , '  

was 0.01 mm and the ratio. d,/D, was 0.4 d, was 
varied from. 5 to,. 15 mm. 

, . Eiiect of  the notch angle! , 

" 

-Tests were done with 24 Sf and 51 SW,'both in, .\, ~ 

FRACTURE 

~* . .  
. .  . ,  . .  

. .  .,. . . .  
1 .  

, 
r I , .  

, ,  ._ 
4 .  

'Tests were done with.24 ST and 51 S W ,  both in' 
the state of delivery. D, was 30 mm and ro was 

i 0.01.mm: In one series d, was 10 ",,with 1, = 50 
mm. In another series d, was 20 mm. Due to a mis- 

to 10 mm. 

, .  I 
, ,  

, . <  

* 

.>  

' take in machining the heads, 1, had to be reduced ' ' 

The notch angle eo was'varied from.30" to 120".: 
I .  . . ,  

\ I  
, 

- , 

~. , 
'Effecl of nolch depth. . I  

\. . ' 
Tests y e r e  donc with 24 ST.and 51 SW,_hoth in 

. the state of delivery. 1, was.50 mm, en was 45",.r, '. 

was 0.01 mm and 'do was 10 'mm. .Do was varied 
from 10 to 30 mm. 

Efiecl oi compression prior 10 tension; 

1 ' :  ' ~- 
. .  

- '. : \ .. . .  

Tests were made only with 24 ST in the state of 
I 

Fig., 4. - delivery. 51 SW being no more avai1ahle:Test bars . with'D, 20 mm. do .  = 10 mm, a; = .45',: Influence 2 the size o,n the fracture strength. . .. . .  , t o . =  0.01 hh and 1, = 50 mm were preloaded in 
compression with loads ranging from 12 to 14 tons, 
corresponding to stresses rangihb from.38 to 44.5 
kg/mm? on the original notched area. 

. In figuies 3 to 7 -the fracture strength is plotted 
. against 'the factors investigated. Figures 8 .to -13 
. show photographs- of the test bars after fracture. 

~ 

. .. .~ . ,. 
\ '  

' In one serieb D, was 30 mm, in'the other series 
Do was 12.5 mm. The notch angle a; was 4.5". the 
radius of curvature rd, of the notch was 0.01 mm . and d, was 10 mm. The length 1, of ,the 'cylindrical 
parts ranged from I O  to 70 mm. 
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- 5 ,  ' Fig. 5 .  . . .  . . .  

. , . Influence of th> notch angle' on the fracture-sirehgth. 
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NOTCHDEPTH . COMPRESSION LOAD .. 
Fig, 6. 

Influence of 'the notch depth on the fracture strength at . , Fig. 7. . 
.~ 

-coiistant diameter of the notched -section: Inf1,uence of prior compression on the f r ac tuk  strength. 
. I  . 

i 

, .  

I .  
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Fig. 8.- 
Effect of length. 24 ST 
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. '. ' .  crease in fr&ture.stredgth with increasing size aLd . 7 )  , .  5. Discussion'of results. . - '  . .  ' 

Effect bf lengti oi cylindrical parts'(figs. 3 and.8). 

duplicate tests of other.series in general was very 

tendency for the fracture strength to decrease with 
increasing length. The effect is, however,. very 

'small. To eliminate it'completdy I, was taken 50..  
mm in the other tests, e'xceqt "in one. s;iries of 
varying notch an'gle. as mentioned in the.preceding 
section.' - . ' 

'. 
also the initial increase may h e  fully due to, the .I, ., 
change in relative notch. sharpness,. , . , , 

.. 
, \  . 

.Decrease of the notch angle from 180" to 30" . 
apparently tends Lo decrease the fracture .strength,'. 

. especially for the bars with.d, f ZO,mm, which run 
at a lower stren&h level, and then tends to increase 
it again. For.the bars with.d, = 10 mm the original I 

values are eventually reached again. For the hark 

' ' Taking into account that the-'scattdr' between . .  . 
. ,  

, .  . . . small,-it might.be concluded that there is a_sli&t Effect"0f \ '  notch angle (figs. 5 and 10). . .. ' . 
I 
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. .  , ,  Fig. 9 .  . -. . . .  

. .  
Sire effect.'24 ST. . -' - .  . *  

- . .  I /  

~~ 

I 

. . I .  

. -  . .  ' . *  
: .  

, . ' 
Size'eilecl (figs:4 and 9). with d, = 20 mm .the increase is very small, if 

, .  ' At incfeasing size,the fracture is fo& 
to decrease continuouslv for 24 ST: 51 Sw at f irs+  ' 

"pri'sent at all. The irregularity in t h e ~ c u r v e  for 
51 SW and do .= 10 mm at an angle of 45" (too low 

~ ~, .~ ~ ~. .~~ ~~... 1 ~~~ 
~~~~ 

. .  shcws a very. slight'increase and then also a Lono. .' 
efiect becomes' doubtful .if we realize that the 
notches have in'fact no infinite sharpness, hut have , 

a .  nearly constant finite radius With inc,r:asing . ' the fracture strength' is governed by the stress . ' 

size the relative notch sharpneis d,/a therefore,is 

of Sachs' tests (fig. 1) it then follows,that the de-, 

strength) 'is probably due to i n  error, as- fol~ows . . ' I 
. tonic decrease. whether this really is.simply a size ' also from comparison with results obtained . *  o?.bars , , 

with'do = 15.". 

. ,  I  the .generai conclusion that c a r h e .  drawn is that 

concentration and 'the. triaxiality in such- .a way'  
'that the first factor tends to decrease the fracture 
strengTh and the latter factor on the conkrary; tends . ' . 

.' 

. ,  
'. "' ' .' not constant but increases as well. On the basis ' 

.. . .  , . .  . . 

, .. 
. .~ 

- .  

. ., -_ \ r, . . .  
. .  I ,  

. .  
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Effect of notch .angle: 24 ST. _. I . .  - 
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fo increase this guantity. At large angles tlie,stress 
concentration 'is predomjnant; tiowever. with de- 
creasing angle'the effect of the triaxiality increases 

, therefore.preferably to'be studied 'on.notched bars . 
' with constant d,. The meaning of the curves beyond 
'.60% notch depth is nai clear. On the.one Land it 
seems logical that the, irregularity in the c&ve for 
24 ST is -due to some error in the test, though . 
values of both test.hars coincide very well, On the 
other hand it seems justified to conclude from fig. . - 

45' the 
fracture strength is about 45. kg/mm2., This means ' , 

that for 51 SW in fig. 6 the cuive should show a~ 
similar irregularity as for 24 ST at a notch.depth of . 

; ; ' ' 

- at 'a stronger rate., - 

Effbct of notch depth [figs. 6 and ' l l ) .  . 
and notch depth is, at least up to about a notch- 
depth (Do-d;)/D, of 55 to 60% similar to that oh- 

, served by Sa& and co-workers 6 ) .  Their curve for ' 
r, 0.01,. m_- only runs 'at a somewhat lower 

The relation between fracture,stren@h , 

. ,  
. 5 that for 51 Sw at do '= 10 mm and a, 

' 

- .: 

. . '.  r I '  

, .  , Fig. 11. 
. _  

I .- Effeht .of notch 'depth. 24 ST. . I .  

strength 1e;el. For very sharp &tches the fracture, 
strength at first decreases sharply, due to,predomi- 
nation of the, stress concentration. but very soon 
increases again as  a, result of the predominant. 
effect of increasing triaxiality. The same may also 
be.-concluded from fig. 5 concerning 'tests -with 

' . constant' Do instead of .constant do. However, as 
already' pointed out .in discussing the sfze 'effect, a 

' changf. of d, is accompanied b y . a  change in the 
re1ative:notch sharpness which -interferes with the 
pure effect of notch depth. 'The latter effect has 
. ,  

. .  . _  

'63.6%. It seems;however, most probable that the ' . '  . 
curves beyond 55 to 60%-notch 'depth, should be. 

Influence of prior compression (figs. 7 and 12). 

t 
, .  nearly horizontal. . . , 

- 
I On prior compression the fracture strength appa- 

' rently decreases. The notch 'angle decreases and, 
the notch sharpness increases on compression. 
Among other factors are the, increase of cross- 
section and the- induced strain hardening and resi- 
dual internal stresses. At sharp notches a decrease. 

. , 

, e  

I /  
I ,  

., Fig. 12.. 
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Effect of prior compression. 24 ST. 
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fracture strength at  increasing.precompression .load 
. 'must be  due to  strain hardening. As a consequence 

of strain hardening.the ductility decreases and the 
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1 Introduction. 

1; is ivell-known that the d,istortions of a loaded 
elastic body are, in general, not exactly proportion- 
al to the applied load, even if the material, of 
which the body exists, exactly obeys Hoom's law. 
On thc other hand, such deviations from linearity 
are of importaiice only if the shape of the body 
is rat,her essentiadly changed by the deformations. 
So, the effect will be of interest especially for 
flexible bodies, like thin rods and rings, in short 
for spr inss :  The principle of the deteiminat.ion 
of the deformation of a thin - eventually origin- 
ally curved - md, loaded at  its ends only, is 
known, but nevertheless it seems \vorthvhile to 
communicate in some detail the solution if some 
special problems of this type, partly for the sake 
of the interesting result%, partly because a number 
of other investigators,. dealing with prohlems of 
the same type, either gare DO theoretical solution 
at  all (ref. l), or  overlooked the possibility of 
an exact solution (ref. 2) or, a t  last, hare not fol- 
lowed the most suitable ivay (ref. 3) .  

The problem that we want to  solve especially, 
deaLs with an originally uniformly enrved rod 
(length rr) that we bend into a semi-oval ring 
hy clamping both ends perpendicularly to  their 
connecting line a t  a distance 2 p r  (fig. 1). If 

I 

p = l ,  the ring is semi-circular. As a matter of 
fact, we are interested particularly in the ease 
p > 1. This ring is loaded at its middle A by a 
noma1 force P (positive, if it is directed inwards), 
and A undergoes a deflection u. This deflection 
will by no means be considered as small, as the 
most interesting phenomenae jnst appear if u is 
about half the distance AM. 

Fig. 1 

L 2 S r  I 

Fig. 2 

, 
First,'::.e~ have to determine Uhe shape of the 

ring i n  the unloactea Ejidiii6i:?-'?% therefore con. 
sider a closed cireula,r ring (radius T) ,  loaded by 

' a diametml pair of forces, applied a t  B and C 
(see fig. 2), of such a magnitude as to  distort the 
ring into an oval, the major axis of which being 
equal to 2 pr .  In particular, we calculate the radial 
inward deflection u' of A. It is obvious that the 
half of this ring exactly represents our semi-oval 
ring: 

Next, we consider the same circular ring, hnt 
now loaded by a diametral pair of forces P and 



a second pair of diametral forces VI' at  right angles 
to the first one (fig. 3) .  For every value of P, 
Y is determined in such a way, as to make the 
major axis of *lie distorted ring equal to 2pr. 
ilgain, v e  calculate the inward displacement u" 
of A, and after subtracting u', we find the de- 

I 
Fig. 3 

flection u., measured from the unloaded semi-oral 
ring. hs i t  is obvious that t,he calculation of (1' 

is pnly a special case of that  of u", me can con- 
fine ourselves to the solution of the second problem. 
The formulae that ive shall develop are, however, 
by no means restricted to  the case oE closed cir- 
cular rings. 

2 The differential equation. 

We consider a' thin ' rod that is - in the u11- 
loaded state - arbitrarily curved in a plane hhat 
contains one principal axis of inertia of each 
normal cross-section of the rod. The flexural 
rigidity ma.y vaiy arhitrarily along its length. 
The rod is supposed to be 1,oaded at  a number 
of discrete points hy forces and conples i n  the 
plane, so that it is bent in that plane only. 

Wc denotc by P, the points where external 
forces or couples are applied, or ~ d i e r c  there is 
a discontinuity of either the radius of curvature 
li, (in the unloaded statc) or the flexural rigidity 
E l  themselves, or of one of their derivatives vi th  
respect to ehe length coordinate measured along 
the rod. W e  can c,onfine ourselrcs to t,he stud>- of 
a part PI.Pllfl that is, therefore, loaded only at  
its ends P, and Pk .L, and along which both R ,  
and EI are continuous together with all their 
derivatives. 

At the end P, thc load mas- consist of a couple 
,!Ih and a force Fn (fig. 4): a.ud at  the otheu 
end P,,+, of  such a couple and a force'as to be 
in equilibrium. We introduce a system of axes 
XY, having its origin in P,, such th,at the X-axis 
coincides wit,h the tangent in P,, (in the distorted 
state) i n  the direction of PI,+, , aiid the Y-axis 
coincides with the normal in P, in the direction, 
in which ( i n  the undistortcd state) lies the centre 
of curvature. FA. m#kes an angle p with the X-axis. 

The bending moment If in an arhitpary point 
1'(zy) of the rad - IVC give it tha,positive sign, 
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if it decreases the curraturc - follows from 
reasons of cqnilibrium to be: 

ilf=ilIk-Fp, (zsinp-yceasp) .  (2.1) 

On the other hand, if R is the radius of 
curvature in the distorted state, the differential 
equation of the rod, if tlle effects of tension and 
shearing are neglected, is: 

We pass from the Xlkoordinates to the natural 
coordinates s and p, where s is the length of the 
arc PkP, and y is the angle betmeen the Y-axis 
and the noimd in P. In the undistorted state 
? = p 0 .  Then 1/R = dy/ds. and IIR, = &,/cis. 
Furthermore dzlds = cos 7, and d y / d s  = sin 9. 

nig. 4 

From (2.1) and (2.2) we find, after differentiat- 
in:. with respect to  s:  

(2.3) 
If  r a.iid EI,  are some suitahly chosen standards 
of len'gth and stiffness, and if ire introduce the 
non-dimensional quantities 

we can write equation (2.3) as 

The initial conditions are:  

For u = O :  p = O  and --.O- + - &  p. (2.6) 
do du 

.As 110th conditions hold for the same value of v, 
equation (2 .5 )  can be integrated directly either 
analytically or, in more complicated cases, by 
numerical met,hods. It should be mentioned, how- 
ever, that those cases that me usually denote as 
statically determined ones, are. generally not so 
if we deal with large deflections, so that w e  



mostly do not know the magnitude of F k ,  p 
and N x ,  or of ,,, p and p. To illustrate this, 
we consider a horizontal straight (if uiiloaded) 
beam, clamped a t  oiie end and loaded by a 
veytical force P a t  the other end (fig. 5 ) .  Now 

Fig. 5 

the beam is distorted and so we know a t  the 
clamped end P, hoth F ,  ( = P )  and p (= 90’) 
but  not Jf,, and a t  . the free elid P, we know 
&IJ2 (= 0) and F2 (= P )  bnt not p. So, even 
in such a simple case, me shall have to modify 
the conditions (2.6) into a more practical f o m .  
Only if t,he relative direction of t,he force and 
the rod ( p )  is kept constant, we can use the con- 
ditions ( 2 . 6 ) .  An example for such a case is for 
instance t,hnt of a straight, heam, supported at 
two fixed points (fig. 6 ) ,  if t,he beam can move 

Fig. G 

freely over those supports. If  this beam i s  loaded 
at  its middle bx a force I’, we know at, the snp- 
port 111 (= 0) and p (90° -t angle of friction). 
We do not know t,he supporting force F ,  hut we 
can assume a value for it, and find afterwards 
the value of P for which the result holds. 

3 The solution of the differential equation in 
its general form, 

An analytical way to solve (2.5) in its general 
form can he followed by expanding the known 
functions o ( o )  and and the unknown function 
p ( v )  into power series with respect to o 

m 

‘ f ( o )  = 2 4 d  (3.1) 

if, at least, o(o)  and pO(o)  admit sudh expansions 
oo # 0). Now, we can also expand sin (p and cos 7, 
first with respect to (D and then by means of (3.1) 
with respect. to c. If  we substitute these expansions 
into (2.5) and ( 2 . 6 ) ,  and compare the coefficients 
of eqiial powers of o, we find the following set 
of equations : 

I 

So, we can find the coefficients pi one hy one. 
The rest,rietioii oo # 0 can he removed if p = 0. 
Then the first equation (3.2) va.nishes as a whole, 
but also the left-hand sides of all the other eqna- 
tions r-anish. If  we bring the first t e r m  of the 
right-hand side to the left-hand side, me obta.io 
aga.in a set of equations of the same type as .(3.2). 

4 The solution of the differential equation for  
the uniformly curved rod with constant flexu- 
ral rigidity. 

If  the curvature of the rod is uniform in the 
unloaded state, and the flexural rigidity is con- 
stant = E I , ,  then 2 & L O  and o = 1 ,  so (2.5) 

- dZ, + psin ( p - p j  =0, 

do 
is simplified to 

(4.1) 

which ean be integrated, after multiplying by 

a 2  

dP 2 -, 
do 

(z) d(D - ~ ~ c c o s ( Q - ( ~ )  =2py. (4.2) 

Here, y is a constant of integration, and, accord- 
ing to (2.6) 

From (4.2) ITe f ind:  

We must carefully pay attention to tlie amhi- 
guous sign. If the load is small, the shape of the 
elastic line does not differ much from the original 
circular one. This means, that (D increases mono- 
to!iically with u f,rom zero to its final value. If 
the loid is large, i t  can, however, occnr that the 
clastic line shows one or more points of inflection. 
I n  fig. 7, for instance, there are two points of 
inflection. Here, first decreases from zero to 
a negative minimum value pmi., reached a t  A, 
that  we shall denote as a “lower” point of in- 
flection. Then ? increases to a maximum va,lne 
Q~~ a t  B (“upper” point of inflection), and a t  
last decreases again to its final value. So, in 
equation (4.4), successively tlie minus-, plus-, and 
minussign should be used. We shall denote all 
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integrations with respect to Q by the symbol/ !d+, 
where the note of exclamation should call 'attention 
to  these questions. 

Norv, we can give the solution of (4.4) in the 
form: 

/ l \  

Tlhrse integrals can easily be reduced to  the stand- 
ard elliptic integrals and elementary functions : 

A(/;, p j  = V I  -kzsinZF, I 
____ 

by means of simple tra.nsformatiom, so that the 
modulus and argument satisfy t,he said conditions. 

In  particular, if k is real, and [ li 1 > 1, we 
find, by siihstituting k sin + = +' that, with 
I<* = sin 3* = l / k  and sin p* = k sin Q: 

f l ( $ ( a )  =P(KX, 
f , ( k , ( a )  = 2 E ( P , q * )  - i?(k* ,v*) ,  
f:,& y )  = 2 16" cas (a*. 

(5.1) I 
If, on the ot.her hand, k, is purely imaginary, 

the use of the substitution - -+=$' gives, 

ivitli k**=sin>**=-ik/v- and (a"*= 

a 
2 

6 The points of inflection of the elastic line. 
by means of the suhstitiitions. ,+ = k!? and 

For the points of inflection of the elastic line 2 

k = G / " -  . If we put for  ahhreviation _- dy  -0, and from (4.4) it follow that for the 1'+ y dv 
extreme values (a,, of p : f L ( 7 6  Q) =kF(7$ (a), 

5 Modification of the equations (4.7) 

The elliptic integrals that occur in (4.7) are 
tabulated for the case of real k (=sin>)  and 
1 k 1 S 1, and real p a.nd 0 S y 5 ~ / 2 .  . However, 
IVC often get values f0r .k  and Q tnat do not satisfy 
these conditions, bu t  in those cases .that are of 
interest to us, we can always reduce the integrals 

y + cos (QW --p) = 0. (6.1) 

Evidently, points of inflection. can only occur if 
I y 15 l8 so if kz I .  Therefore, we better intro- 
duce 3' instead of y .  Having done this, we find 
for  the valnes pmin and Q~~~ that correspond to 
the "lower" and "upper" points of inflection 
respectively 

Qmin = p  - 2  9*, ) 
Qmar = p t 2 9%. ( (6.2) 

* .  

These expressions pmin and as defined by 
(6.2), are only mathematical expressions (without 
a physical sense), unless points of inflection really 
occur. 

T h e  quantity - p, that appears in the limits 
of integration in (4.8), talres for these values of Q 
the simple form : 

. I  1 (6.3) 
( .wm*o.--P)/2 =- 9*, 

- @). I2  = 3.. 
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Wc must now distinguish several. cases of in- 
tegration, according to the number and type of 
pomts of inflection. Fig. 8 gives a survey of some 
simple typer of an clastic line that I 'UIIS f.mm 
'p = 0 to v = T/Z. I n  case 0 there is no point of 
inflection at  all. ' I n  case I ,  therc is a lower one, 
whereas in case I b  an upper one.appeai-s. 

Fig. 5 

In case I I ,  there arc two, fi ist  a lover,. follow- 
ed by an upper one and in case i l a  there arc 
also two hut first comes the upper one. Generally, 
i n  case N there are N points of inflection, to 
begin wit,h a lower one in ease A',<, and with an 
upper one in case N b .  

If me denote by Gi , IIi , I i  and Ji respectively 
thc values of f i ( k ,  v )  for the values of the argu- 
iueiit (q - p) /Z ,  - p/Z, - 2" and 2' respectively, 
then 

- ( v - P ) / 2  

- N 2  ' 

f i ( 7 i : Y )  ! - 

- G i - I l i  in case 0, 
in eiisc I , ,  

-Gi-H; + 2 J ;  in  case l a ,  
- Gi '+ Hi - 2 I< + 2 J i  in case IT,, 
Gi - €Ii - 2 li + 2 Ji in case Ilb 

- 
I I  

Gi i- Iri - 2 I j  

and so on. . .  

ma.tter of fact, me have: 
Moreover, ii and Ji are simple values. As a 

. -  .I I ,  = ~ J ,  = - Ii(74, 
I,=-J,=-z E(JC*) + K ( J P ) ,  (6.5) 

. I , =  J , = O .  

7 The closed circular ring, loaded by two ortho. 
gonal pairs of diametral forces. 

Wc consider t,he special ease of a closed circular 
ring (radius T ) ,  loaded at  the points u = O  and 
&=a eliy a. pair of normal forces P (positire, if 
eompressive for small P ) ,  and a t  u = ~ / 2  and 
c = 3 n / 2  by B pair of noniial forces vP (fig. 3) .  
Evident,ly /3 = ?r/2 -tan-' I,. \\'e sha,ll consider 
only the doulily symmetrical distortions, 

liistead of p, &e usc ohe qnantit5- a = -  = 

p . 2  sin /3. Furthermore, the deflections u" at  
u = 0 and u = vi2 respectively, can ,be gircn hy 
$'( O ) / T  =A"( 0)  = 1 - 7 (  +?), and d ' ( d 2 )  /r = 
A ~ ' ( I ; / ~ )  = 1 -$(T/Z) ,  respectivcly. 

As /3 is a knon-n constant, we can calculate u 

PrZ 
E l  

from the first of the equations (4.8), and A"(0) 
and A " ( T / ~ )  from thc third and second equation, 
if ~ v e  assume a certain value of k (or k', JF) 
and also, if k > 1, the ease with regard to the 
mimher and t?pc of points of inflcction. We shall 
illustrate this by treating in detail the case Y = 0, 
i. e. the ring loaded only by one pair of diametral 
forces P. 

As p = 90", the equations (4.8) take the 'form : 

For small vaaucs of 2, a is small. With increas- 
ing 9, a increases (figs. 9, 10 and 11) to read1 

100 I 

I I I I I I 
0 0.5 1.0 1.5 2.0 ?,-c0,25 

O l  

Fig. 9 

the value a = 0,62972 for 9 = 90'. For  h i g h  7c 
we can make a ohoice out of several possibilities. 
If wc take the case 0, we obtain,, of course, that  
part  of the a-A"-cume that suits immediately 
to tlic part  that we have. alrcady obtained. The 
quantities qmi,, and pmni are now real, but  still ha.ve 
no physical sense. Wc better express now our 
results in terms of 9". If k increases f w m  1, 9' 
dccrcases from 90°, a.nd vmin increases from - 9O0 
to heconie O0 for  9" = 4 5 O .  Lower values of >* 
are not passible, as otherwise pmin: should become 
positire. So this point (a = 2,7866) is thc end of 
case 0. Case I ,  suits here, and if >* increascs 
again to 90°, a increases indefinitely. This part  
of the a-A"-curve can bc completed for  negative 
values of a. T8hen k is purely imaginary, and we 
introduce IC** or  9**. As 2** increases from Oo 
to 9O0, a decreases from zero indefinitely. In this 
way, we have found an a-A#'-curve that runs 
from n =- m to (I = m , and t h a t  contains the 
point (Y = 0, A" 0, thus tlic unloaded state. Bnt  
this ciirvc does not reprcseiit all possible distort- 
ions (not even s l l ~ s e r . a j - h x i  matter 1. of fact, we n-.-%iG investigate cases 
If  we ww also take values of 2. between 45' an\ 
90°& find another complete branch of the  

a;nci-ll- //"' 

/' 
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a-A”-eurve that does not contain the point 
a = 0, A” = 0, but is completely restricted t o  
values of a > - 22. In  the same wa.y, we can 
find other branches of the a - ,‘,’’-curve hy taking 
into consideration rases 1 1 6  and I I L ,  and, so on. 
These higlier and unstable modes arc, liorwrer! of 
no impo1tance for our purpose. We can confine 
ourselves to the first two branches. 

For other values of @, i. e. for the ring, loade@ 
by two pairs of forces, similar considerations hold. 
As a matter of fact, we calculated the e- A”’- 
curve for p = 90°, 80°, 70°, 6 5 O ,  60°, 55’, ’50‘ 
and 45’ (figs. 10 and 11). A comparison of those 
curves learns that the branches of the ,a - A”-enr.ve 
approach caeh other ivitli decreasing p. For @ =  
W ,  represeiit,ing the ring loaded hp t>To equal 
pairs of forces, the two hranehes meet each other. 
This means that, in this case, a increasing from 
zero, reaches a critical value (a = 6,1250, eorrcs- 
ponding v i th  A”(0) = A ” ( T / ~ )  =0,05712), where 
the a - A”-curve divides into three hranehes. This 
plienomenon is closely related to huckling. We 
can compare it, for illstance! \vith the case of a 
straight rod, loaded at  its ends by two compres- 
sire forces P,  niid a t  its middle hy a lateral force 
i.P. If we plot; for an a,i.hitrary value of I,, a 
graph of the la.tera1 deflection of the middle of 
the rod over the load, this curve will also consist 
of t x o  separate hranenes (fig. 12) .  For a special 

Ao ( 0 )  =hoo-p (TD), 
Ap ( ~ 1 2 )  ‘A~o-p (01, 

“ F  

1 (8.1) 

= 1 ; 
1.10; 1.20; 1.25; and 1.30. The results are  plotted 
in fig. 13. We see that the curves for p=1.25 
have a n  unstable region, where a decreases if A(0) 
increases. For p > 1.25 the curve is completely 
stable, whereas for  p c 1.25 the euri’e is partly 
indifferent in that there is a region where a con- 
siderable increase in deflection is not associated 
with a sensible increase of the load. 

- - aoo-F . tg  /3. 

We have carried out the calculations for  

2.0 
XCO, 

1.5 

1.0 

a5 

0 

Fig. 13 

I n  fig. 13 are a.lso plotted some experimental 
results. There is a quditatively guod agrecmmt,. 

A s  to the applicability of springs of this type, 
we must take into account the fact, thnt the load 
that can be carried by these springs is rather 

Fig. 1Z small. On the other hand, the construction is 
estremely simple, sa. that they niiglit be applied 
in instruments d i i c l i  have to combine large dis- 
plaeemcnts Kith a constant force. 

value of Y (here v = O O ) ,  tlie branches intersect 
each other, corresponding to  the ihuckling pheno- 
menon. 

8 The distortion of semi-oval rings 

From the data in figs. 10 and 11 it is now only 
a simple step t o  the load-deflection characteristics 
of semi-oval rings. As we have already indicated 
in the introduction. i t  is only necessary to read 
from the galidis for A”(~p2) in fie. 11 at  the 
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3 S o m ~ a c ,  H., Dic Krcisringsfcdcr, Ing. :i~cI>.: 13, 3S5- 
3% (1$143). 

t,he length of the major axis of the oval)? the cor- 
responding value of a, and from fig. 10 t,he corres- 
ponding values of A’(0). Furthermore, A’(0) can 
he found a s  h ” ( x / 2 )  in fig. 11 for p=90” for 
t,hat negatir-e mlue of 0,  for which At‘(0) = 1 - p. 

For values of p < 4 5 O ,  \ye have only to turn 
the ring oyer 90°, and we find: Completed: Sept. 1946. 
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Evaluation of the Theory on the Post-buckling Behaviour of 
Stiffened, Flat, Rectangular Plates Subjected to 

Shear- and Normal Loads 

by 

Ir W. K. G. F'LOOR and T. J. BURGERHOUT. 

. .  Summary. . .  

The'theory ilovcloped in N.L.L.-Report S. 295 has not 5mn prcscnted in sud a firm that it could bc applied in rz 
convenient s a y  to the majority of practical problms. Tho mmcrieal evduation p i v m  covered only the apeeial case of pure 
dmilear load mtiug. upon thc cumbjnation of plate and stiffencn. 

Ad&tionel numerical cs,leul8.tians were therefore carried out, the results of which hwe been pr-ted in the form of 
a set of diagrams. 

Rome 1~umcdc,21 sxsmplrs 81% giveit of the determination of Olce ai.ctage stromes. and 'strains' or t.hc iquind stiffcnrir 
cross wtions of spmified stiffond plates subjmted t o  q i i f i e d  compressive and shear loads. 

The case of reIlat,ively large eompressiro load, acting in the plane of the plate in the lateral dimtion aauM not fully 
be covered because the arslmed w-aveform of the buckles in the plat0 proved to be inadequate in thi3 range. 

Proposals are made for a number of ahditional investigations intended to  inom% the mange of applications nnrl thc 
usefuh~ess of the pl-eamt diagrams. 

contehts. 

3 Introduction. 
1.1 Statem,cnt of the problem. 
1.2 Theoretical investigations. 
1.3 Experimental investi,gations. 
1.4 Numerical evaluation of the theory. 

2.1 T!he form of the ,diagram and the para- 
meters of the problem. 

2.2 Range of the investigation. 
2.3 Ilerivation of the cauations. 

2 Method of evaluation. 

7 References. 
5 Appendices (A t o . E  inel.). 
6 Tables 

20 Figures. 

1 Introduction. 

1.1 Sta.tement of the problem. 

Stiffened, flat or nearly flat  plates, loaded dxwe 
the buokling load by shear- and noma1 stresses, 
constitute important components in metal aircraft 

. .  

2.4 Methob of solution. construction. 
Thin webs of spars in wings and tailplanes a,re 

loaded mainly in pure'shear provided the caps 
carrying the bending moments are relatively heavy. 

The skin of wings and tailplanes is. normally 
loaded in . tcnsion or compression in  a spanwise 
direction doe to bending of the construction, It 
m w  also be loaded in shear due to  torsion. kaused 

3 Numerical results. 
, .3.1 Discussio;i of the dia,grams. 

3.2 Application of the diagrams. 
3.2.1. Introduction. 
3.2.2 Numerical examples. 

4 . Des'irability of additional investieations. - 
4.1 Range of 'the diagrams. 
4.2 The state of stress. 
4.3 ' The parameters of the waveform. 
4.4 The range a s l .  
4.5 The assumed waveform. 
4.6 Flexi~ble stiffeners. 

5.1 The theoretical basis of the diagrams. 
, .  5.2 The form of the diagrams. 

5.3. TheIrange of the diagrams. 
5.4 Proposals for additional investigations. 

.' 5 Condusions. . .  

6 '  Notations. 

by 'the aerodynamical loads on the ailerons, flaps 
and rudders or due to landing gear reactions and 
d,ynamicaI loads caused by the accelerations of 
masses such as propulsion units during landing. 
I n  stressed .skin wings and tailplanes where' the 
skin is reinforced by relatively closely spaced 
stiffeners running in a '  spanwise direction where- 
as the ribs o r  bulkheads are widely spaced', large 
normal stresses are acting in a bongitudinal direc- 
tion.upon the panels in which bhe skin is divided 
by. the stiffeners and ribs. 

I n  some constmctions, however, the. ribs are 
closely . .  and the stiffeners widely spaced and. in 
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certain two-spa.r wings, there arc 110 stiffeners a t  
a11 attached t,o the akin bctwwn the spars. The 
pa.ncls, in which the skin is divided by the rib 
caps, are subjected to large normal strains in their 
lateral direction. Wlicii the strain is compressive, 
they do not develop large compressive loads be- 
muse of sevcre 'huekliiig of the phte which has 
mainly the character of Euler bnehling, the 'plate 
hchaving as a. .\vide column.' From a standpoint of 
structural weight efficiency these coiutructioils 
must i n  general be considered inferior t o  those of 
the first-mentioned type. 

In certain constructions such as fuselage bulk- 
ned plate is loaded simultaneously by 

longitudirial and lateral stresses as well as in shear. 
In the constructions mentioned #he plate has 

such a smalfl ratio 'between thickness and width 
that pronoiinced buckling occurs at small loads. 
The buckles cause a marked reduction in shearing 
rigidity of the construction besides producing extra 
compressive loads in both the. longttudinal and 
lateral stiffeners. ' In certain types of construction 
t,liey will also load the stiffeners in bending. This 
applies a:o. to spa caps which can be coilsidered 
as stiffcners of the spiir shear ivveb., Fin 
buckles may cause docal buckling of tlhe sti eners, 
which are loaded in compression. 

It is of primary importance for  the aircraft 
industry to obtain data about the behaviour of 
stiffened flat plates after huekling has occurred, 
when they are loaded by any eombinat,ion of shear 
st,resses and longitudinal and lateral normal stresses 
to ,he expected in ,practice. 

The theory developed by WAGXER (ref. 1) is 
valid for the limiting case when the 'bending st 
iicss of the pln,t.a may be neglected altogether. This 
means, that the buckling stress is negligible as 
compared with t,hc, applied stress. For practicad 

tructions the theory usually gives a consena- 
!Jut reasonable a,pproximation of the shearing 
its. The ca,lculated stiffener loads, however, 

are 'nearly always extremely conservative. The 
need for weight efficiency tlierefon: prohi'hits the 
kliplication of this ,theory. 

'The theory developed by Kmmr and ~~~E 
(rcf. 21, &e5 8n approximative solution of the 
liinhlcm. It is based upon an assumption for the 
for& 'of. the buckles which is reasonnblc only for 
mall,  and moderate ratios between the applied 

'in' or stress and the strain or stress a t  which 
ihe plate .begills to buckle. The plate is assumed 
to "))e , infinitely long and the results will in 
gmeral be conservative for  small len8gtli to width 
ratios. Thc evalua.tioii deals olvly with construc- 
tions . .. , ,loaded by combinations of shear loads and 
longitiidinal normal loads. 

The theory d~eveloped by K o m  (ref. 3 )  is 
based tipon an assumption for the form of the 
huckles which is reasomble for all ratios of ap- 
plied strain or stress to #buckling straiii or  stress, 
altlio@ this theory is intended in the first place 
$or .large, ratios: , I t  is in accordance with WAG~T:R'S 
t1ieol:j::for Gery langc.rkios. For smaill ratios, the 

i %  

1.2 Theoi-eticnl investigations. 

s .10 

agreement with ICKonnr a.nd UARGUERRE.'S theory is 
good. The plate is assumed to be infinitely long. 
Apmt from the fact that i t  is therefore in general 
somewhat conservative for small lengt,h to widtli 
ratios, it, must bc considered the 'hest, solution of 
the prublern hitherto availamble. It is also applicable 
to combina,tioiu; 01 shear stresses and longitudinal 
and lateral normal stresses. T<he evaluation can be 
extcuded, if. required, so as t o  obtain information 
about t,he .internal strcss distri'bution i n  a ro i l -  
struction. 

The waveform of the buckles ,assumed by 1 1 , ~ s ~ ~  
(ref. 4) is valid for moderate ratios of. stress or 
strain to buckling strcss or  strain. I t  is intended 
For stiffelred plates having length l o  width ratios 
not greatly exeeedirLg unity, e. g. not larger than 
two, as frequently encountered in practical air- 
craft constructions. For panels having much larger 
length to width .<atins the assumed waveform of the 
huekles is inapp1ica.blc a,nd i t  mill1 yicld uneoiiser- 
vativc results. This theory deals only with con- 
structions l o a d d  in shear. It contains ,both as- 
sumptions 011 tlie stresses and on the deformations. 
Two garametcrs are introduced which ea.ri lie 
chosen so as to bring the results in accordancc 
\\-ith those obtained by WAGXER for infinite ratios 
of stress or strain to buckling stress or strain. In 
the evaluation these parameters are, hovevcr, 
chosen in accordance with the behaviour of the 
plate a t  or slightly ahove tlie buckling load. It 
is not indicated how they should be chosen or. 
determined for large hut not very large ratios 
hetwecn the s t r m  or  strain a,nd the ,buckling 
stress or strain. An eventual iniproveniciit in this 
respect would probably render the noiv relatively 
simple method. of evaluation too cumhersome fo r  
practical applieatioi~s. Besides, the improvement 
can he expected to he relatively small in all prac- 
t,ical cases. 

Ref. 5 contains a number of diagrams based 
upon the theory from ref. .  4, enabling a rapid 
caleulaaion of the stress distribution and tlie rigi- 
dity of stiffened flat  rectangular plates loaded in 
pure shear. 

It, should bc considered a definite adranta,ge of 
the theoiy from ref. 4 and the diagrams froni 
ref. 5 that several problems ;of internal 'load 
dist,ributioii have also ,been treated, viz. 'kending 
of the st,iffeners in the plane of the phte ,  shear 
loads, ,bending and twisting moments i n  tlie st,if- 
feners caused by buckling of the plate, average 
web s t res~es and web bending stresses. 

In tmo publica,tions by LEVY and others (rels. 
6 and 7 )  a saliition is given for square plates 
and rect,an,guhr plates having a length. t o  width 
ratio of 2.5. All edges are assumed t o  be simply 
supported, and to remain straight. The stiffeners 
;ittaohhecl to the edges are  interconnected 1.y hinges 
in tlie corners o f .  the pmels. The constructions 
are loa.ded, only in  shear. An approximative solu- 
tion is obta,ined for low stress or straiii'to buckling 
stress or  strain ratios. assuming a waveform de- 
scribed by a relatively large number of products 
of periodic functioiu of the coordinates . in  the 
plane of the plate. A very good accuracy can be 
obtained in this way but the m o u n t  of numer- 
ical n-ork involved is considerable. The results 



are biluahle as a' c3hcck o n  tlic theories assuming 
simpler waveforms, such as ref. 3. 

The theory developed by B E F ~ N N  (ref. 5) 
proceeds. along the same lines as the theory from 
ref. 2. Actiialrly, i t  assumes the same waveiorm 
as fa,r as the infinitely long plate is conccr?icd. 
In  addition, square. plates having different edge 
conditions have been invest,igated assuming a x'ave- 
fonn &scribed liy no more than threc products oC 
periodic functions of the coordinates in the plane 
of the plate. In  one casc the influence of initial 
buckles of a similar shape as tlie buckles occurring 
in flat pla,tcs a t  thc critied load has been investig- 
ated. The theory considers only constructions 
loaded in shear. It gives useful information ahout 
ahc stresses in the budded plate. The results arc 
reliable only for small m d  . moderat.e ratios of 
stress or strain to buckling stress or s h i n .  

Recapitulating it can he stated that Komm's 
theory (ref, 3) is tlic only theory ivablable hitherto 
which ma.y be expected to yield reliable results f o r  
stiffened pil+tes loaded by eomhinations 'of shear 
load and longitudinal a,nd lateral normal loads a t  
a r b i h r y  ratios of st,ress or  strain to buckling 
stress or strain. 

1.3 Eiperintental inuestigntions. 

The'tests ,by LAIIDE and WAG~TZ (ref. 9) cover- 
ed the case of tlic relatively long, plate ,having 
clamped edges and loaded in shear. The latcral 
odges &e rigid, the longitudind edges were at- 
tached to heavy strips. These strips did not +rend 
but they couild he compressed so as to simulate 
the shortening of the stiffeners in an actual con- 
struction as il coilseqiimce of the loads exerted by 
the buckled plate. The results can thus 'hc applied 
also when tlie stiffeners are relatively heavy and 
a small longitudinal compressive load is acting upon 
the constriiction in addition to a shear load. I n  
general, hoivever, they are applicable only to the 
ease of pure shear. 

The condition of damped longitudinal edges is 
scldom, approatlied in practical .constructions. I t  
is therefore incvit;hle when applying the diagrams 
from ref. 9 to introduce some correction to com- 
pensate for the difference in edge conditions. 

Tests on tliiii-weh beams having heavy spar caps 
and a reasonably large num'ber of clwcly spaced 
vertiml stiffcners were summarized and discussed 
by Kum (ref. 10). The beams were loaded in 
bending and shear, the bending load being carricd 
by the caps. Thc webs were thus loaded in shear 
combined with a sinal1 amount oE bending. 

The tests by Lmw (ref. 11) were carried out, 
by means of a corlstruction resembling the one 
described in ref. 9: T,he plates to-be tested were 
however, in part of the experkents attached to  the 
heavy strips acting as longitudinal stiffcneis in 
such a, m y  as to simulate bhe edge conditions 
existing in actual construct,ions; The pliltes mere 
loaded only in shear. 

The tests by Lmm and, S u q m  (ref. 12) con- 
stitute an extension of "the . investigation from 
ref. 10. Althou,gli these tests were conducted mainly 
with the aim of obtaining information 011 thc 

ultimate loads curried by thin-web beams and 
stiffened plates, valuable results were also obtain- 
ed .for the behaviour in tlie clastic range. 

The tests by vu DER N m  and others (refs. 13 
and 14) were primarily intended to investiga.te 
'the hehaviour in the elastic range of thin-web 
hca.ms subjected to combinations of a shear load 
and a compressive load acting in the direction of 
the spar caps. The panels .of the web werd thus 
loaded simultaneously in shear and in compression 
in the difection of the spar caps, wihich can be 
considered as.  the. lateral stiffeners, the uprights 
acting as longitudinal stiffeners. A comparison is 
nigde in ref. 14 Iictmeen results obtained in the 
cxperiments and results derived from the theory 
presented in ref. 3. 

Although scattcr in the exherinicntal results is 
large, they seem, in ,general, to confilm the theory. 
Similar conclusions are drawn in ref. 15, giving 
a summary of tlie results from refs. 13 and 14. 
I n  ref. 16 an improved evwluation of some test 
results from refs. 13 and 14 was ,given. This Icd 
to a closer accordance between' theoretical and ex- 
perimentad ,results. The conclusions drawn in this 
respect can' thus he maintained. 

1.4 A'uniericnl ei:alulction of the theory. 

Considering the fact that the scatter in the test 
results is lar,ge and the accordance with theoretical 
results rcasonable it seemed worthwile to casry out, 
a numerical evaluation of the theory from ref. 3. 
The results should lie presented in su& a way Chat 
they can easily 'be applied to practical problems. 
It is cvidcnt that they are valid on81y in the elastic 
range. For the calcuhtion of the ultimate load n 
construction will sustain it is advised to apply a 
method of a d y s i s  developed in refs. 10 to 12, 
incl. iind discussed in ref. 19. The aircraft in- 
dustry showed much interest in the construction 
of diagrams representing the results of the theory 
Irom ref. 3. The Nctherlands Aircraft Develop- 
mcnt Board therefore charged the National Aerc- 
nantic;rl Research Iiistitnte with the numerical 
evaluation of the theory and the construction of 
diagrams f o r  stiffened flat plates. under combined 
shear load and longitudinal ad lateral compses- 
sive loads. The f o r m  of the diagrams and the 
mnge of the investigation sliould be ehoscn in 
accordance with the requirements of the aircraft, 
industry. 

The method after which the eva.lua.tioris were 
carried out is given in see. 2 together'with a dis- 
cussion on the way to rcprescnt the.results in the 
form of diagrams. 

The diagrams a.re presented in .see. 3. The 
ranlge covered 'and the method of application to  
yractkal problems are ailso discussed. 

I n  sec. 4 arc discussed the desirability of an 
extension of 'the investigation so as to  cover the 
local stresses in the meh, etc. and a study on the 
reliability of the method of ca81culation of the dia- 
grams as far m eombina,tions of small shear and 
large lateral compression are concerned. The eon- 
elusions which can be drawn from the investigation 
are summarized in see. 5. 

' I  
~ 

I 
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2 . Method of evaluation. 

2.1 2'11~. forw of the dingrnvis (ind the par(bmmeteys 

,\?hen: an infinitely long, €lat :plate of thickness 71 

and width b having ,hinged edges is loaded in pure 
loiigitudinal compression, it buckles at ii stress a* 

zind.sirain E* ,given by 

' '  , " = ~ ~ " = r r Z ~ : h Z / 3 ( 1 - ~ Z ) b 2 .  (2.1) 

.of .. the problem. 
. I  

111 clic following, dl stresses wi'll be rnade non- 
dimcnsioiia.1 by division by v* a.nd all strains by 
divisidu #by E * ,  

In  accordance with the opinion expressed by the 
ajrcraft, industry it n-as decided,. to  represent the 
results of the, calculations .in a series of diagrams 
each valid for a constant shearing stress ratio, 
T/u*.  They shonld contain cuyves of constant longi- 
tadiaal and lateral noma1 stress. ratios, aJn* and 
v2/a* respoctively, and cumes of constant stiffness 
ratios, T/yG. The ,Iongitudi~~ul and lateral cam- 
pressivc strain ratios, s , / ~ *  and E * / E * ,  should be 
chosen as cooidinates. It should be ':well nnder- 
stwd tliat in a buckled plate T, a1 &id az repre- 
seiit avemgc values of the stresses taken over the 
plat,e as a whole. Likewise, y,  c1 and E %  represent 
the deformations of the plate as a whole. 

The diagTams thus represent the relations be- 
tween q / E * ,  e J 2 ,  u,/a", a?/." and r IyG for 
specified values .of ./a". 

Calculitions have been based upon the theory 
from ref.' 3, notably waveform no. 1.. This a- 
siim'ption for. the form of the 'buckles is intended 
for the case of hinged edges. It suffers from Uhe 
deficiency that the nodal lines are assumed strai,ght 
over the t o t d  width of the plate and ,do not ortho- 
gonally intersect the dges. '  The error introdnced 
t d l  in gcneratl he small, the huekling load heing 
overestimated 'liy no more than 6 %. Large errom 
can be- espectecl only if the angles hetween the 
cdges and the noda81 ,lines become too small, mhich 
may occur at large e2/e* combined with small 
~ ; I e * ~ a n d  T/V*. Leaxeng this case out of eonsider- 
;ition, . the nnconservative error is proba,hly ap- 
pruximately compensated by. two causes. 

The edges of the plate in an actual construction 
will alwa.ys he restmined a,gainst rotation to some 
cstent hy the stiffeners t o  w,hich they are attached. 
This will rdsult in a slight underestimation of the 
hhckling stress and the load carrying capacity:' A 

ilar effect can be expected from the fact that 
+e u'al plates d l  always have a finite length. 
The assiimed waveform is therefore' believed to 
yield rcisonablbly ' accurate results, 

The form, of the buckles is described by an 'cs- 
piession: periodic in the longitudinal coordinate z, 
containing four parameters, viz. the maximum 
anrplitude f; the half-wave length L,  t,he cotangent 
of',the angle between the ncdad lines and the 1 o n ~ -  
t,u$ina'l edges 111,' and 'the ratio u a indicated in 
fig. 2.1. ,A cross sect,ion of the huckled plate 
parahlel to  the nodal lines.'shows a central part, 
$~jd, <(l - a ) b  v w ,  where the amplitude is 
;omtarit a,nd ,tu:o edge parts, adjacent to the edges 
of tjhe phite, ,vide 0.5 ah .i1(- eaih. Here the 

I. : 

amplitude is given hy a cosine function, vanishing 
at the edges, and .having .zero slope and the eor- 
rec.t. amplitude a t  the transition points to the ce11- 
tral part. 

Adequate assiimptions containing the parameters 
f ,  L, IIZ and, a wcre a'lso made for the displace' 
mcnts I L  and fl in the X- and 1'-directions respcct- 
ively OC an-arbitrar\- point ( 2 , ~ )  of the .median 
plme of the .plate. 

r 4  

L 

SECTION A - 4  

., I 

SECTION 8 -  B 

Pig. 2.1. Thc nxsumwl wvnvdoinr of thc liuekles i n  thc plat?. 

In  ref. 3 four equations have heen given diicli 
represent the relation ,between the Sow parameters 
I, L,  n i  and a on one hand and the stresses' a > ,  
0% and T on the other h a d .  These cquatiohs were 
obtained from the oondition that the paramcteix 
should be chosen so t is to render the clastic energy 
stored in the plate' a mininiim with respect to 
arbitrary small va.riations of the parameters. 
. Choosing three out of the sewn qumtit,ies, the 

remiliningfour can he calcuilated. Ref. 3 a81so gives 
three relations hetween c L ,  E * ,  y and the seven 
quant,ities mentioned ,before. All data required for 
the construction of the diagrams..caii tiins be oh- 
tained by calcalation. 

2.2 zfirnge of the investigation. 

In  view of the' fact that, fairly high compressive 
strains may occur in the  longitudinal o r  lateral 
stiffenem,. i t  was aimed a t  investigating the ranges 
- 100 < q/c* < 250 and - 100 < EJE*  < 250.1) 

High, tensile strains are not 'interesting, bemure 
huekling will not occur. It is not to  ,be .expected 
.that large strains ?vi11 simdtaneously oceiir i n  t,he 
longitudinal 'and lateral stiffeners. It was thus 
Iielieved snfficient to restrict the intestigatioii in 
t,liese cases roughly to the range ; ; / E * ,  + E,/~*<.,250: 
This could be achieved in most, cases in' a con- 

ij A psiti&, value if ' r , t e * . u r  s 2 / e *  eorrerpmls tu.  :! 

A p&it&c "due of c,/o*.os v 2 i e *  eorrisponds t o  a 

, .., . 

. .  

c m p v c s s i v P  stmi,, E ,  or :'*: 
tensile ZUtlBSS 6 ,  or 02. . ) . ,  
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veiiit.rit wa.y by limit,ing the range of the diagram 
.l)y some ciirrc of constant r /yC:  

Calculations were carried . out for, in total, 11 
diagrams, eaah for  a constant, ratio' ,/a". The 
smallest ~ / a *  was 0, thc largest 50, the interval 
k i n g  divided in steps of 5 .  ' . 

."  The ranges of aJ&*; aJa* and r/yG covered, 
fallowed of 'conrse 'from the choice of q/i*, a2/c" 

aind i/8. ' . , ' 

'They em he read from'figs. 2.2 to 2.4, inel; 
The ' range wherc a I 1 was not 'investigated. 

This iiifei3 th'at thd'diagrams ire limited to the 
l e f t  hy a curve e.= 1 riinning roughly in tlie 
direction of t,he positive E,/e*-a.xis. For 710' 5 
d l  negative vnlues of  c, /e*  are thris excluded. The 
rcstrict,ion becomes less serious as .  ./a" increases. 
For T/V* > 30 thc '  rangc e , / . *  > -100- can he 
praeticallp . fa l ly '  covered. It is found ,that 
k J c *  = 0, E J E *  = 250 falls outside' ' the range 

The' ra.tige of the investigation was limited ti? 
approprta,tely chosen curves of constant aJa*. 

Compressive stresses in the laternd (,or U-) direction 
have not been consi&red. In aetuad practice such 
stresses my arise hut it, is espected that they will 
never +xcccd the Euler hiidding stress. This means 
that for  infinitely'long strips 02/a* 2 - 0.25. For 
pl;ites o,f finite length. aJa* may 'be somewhat less 
bhan - 0.25. ' It does-not seem advisa,hIc,',ho~\,cver, 
to appljr the theory in the range of negative aJa* 
(i. e. laterad compressive stress) hccause it, does not 
yidd the Enler buckling' stress. I n  fact, t,he as- 
snmcd wavcform, ( A . l )  and (A.2),  for the biickles 
in the"p1ate is not,adequate in t,his range. A prin- 

' -The -dia,brams for v/a" < 15 are limited in tlie 
direction of positive z2/e* by the'curve wJa* = 0. 
This. infers t h t  EJE*  < 10 for ~ / a *  = 0. The i-e- 
striction hccomes less serious is l/a* increases. ' 

2.3 .Der.iuntio?r of t h e .  equations: ' ' 

wiveform no. I ,  from ref. 3, which is illu 
together with the . clloice. of. the coordinate 
in fig. 2.7. IXsplaecmcnts of an arbitmry' point 
(z,~)'. of the median plane of the platc in the 
X- and Y-directions .arc called u and 9, respect- 
ively. 'The displacemen$ in the Zdireetion, normal 
!o the ,plane of the ,plate prior to bucklingl is 
callcd tu., .:'It. is assumed that, any. st,raight,. I ino 
running in .tile 2-direction prior ' t o  bueklinf will 
yemain straight, and pcrpcndieular to the median 
plane of thc plate during 'huckling. 

.The lo~~gitndinal  , edges of the .infinitely, long 
plate remain straight and ,parallel during buckling. 
In the !longitudinal or X-direction the mean eom- 
pressive st,rain amounts to,eI and the mean tensile 
stress is or .  I n ,  the ..laterad or .Y-dircetion thc 
mean compressive strain amounts to E* and the 
mean tensile strcss is a2. ..The plate carries a mean 
shear stress T and 'is snbjected to  a mean #hear- 
ing strain y .  nctailed informat,ion on the wave- 
form equations and the expression. for the clastic 
merg)., are g i w i  in Appcndix A. These equations 

1 for TI - *  < 20: 

erent waveform should he, assumed. 

., .. 

. .  . . . ,  , 

The evaluation ,has been based upori the assumed 

contain the 'four waveform parameters f ,  L,  nt 
a n d n  (c.f. fig. 2.1). 

Thc solut,iwi of the'probleni.of.'th$ hehaviour of 
a 'buckled. plate consists-in finding values for t,he 
elastic energy stored in the plate that are statio- 
nary with fespect to small variations .of thc,fmm 
of the buckles, the cdgcs 'being held~ in ,fired 
positions. Introducing assumptions for thc. form ' . 
of the buckles containing a limited number, 01 
parameters, ,such as ( A I )  'and (A.2) ,  the hest 
;i.pproxiniation for the clastic enei-gy is obtained. 
by finding values for this energy (or for  ? ' a f te r  
(A.4) )  t,hat arc  sta,tionary with respect to small 
hut otherwise a.hitrary variations of the para- 
meters. The four equations following ' f rom this 
procedurc are given in Appendix B. . . . .  

.The'set a€ 7 equations (A.5) and (B.5) to (B.8) 
incl. contain the 10 .quantities (a,/."), (W,/O*); 

( r /a" ) ,  (&,/E"), (e,/&"): ( y / ~ ' ) ,  ( F / s * ) , ,  D ,  7 ; ~  
and ' .a. 

Threc of these quantities being choseii, the  others 
(:.an he solved from'the eqn a t' ,ions. 

'It should he pointed out that, for physicad Tea- 
sot!s, Fie*, ' i n  and D will never become negative, 
whilc 0 5 a 5 1. As has already hcen discusscd 
(see. 2.1,), vi, shoiidd IiotL'hc too ,111rgc. It, does not 
seem advisable to  iisc the .present, theory for vahes  
of 111 ftir in cxeess of 2. .. 

, .  . 

2.4 jtetkbds of so lu . t io~ .  

equations (A.5) and (B.5) to (B.8) incl. that  the 
solutions obtained hy t,he methods d8iscpsse'd here- 
after represent stable conditioiis of equilihrium of 
t'he buckled .plate. In  .refs. .17 arid 18 .a. metho? 
of creluation is proposed by means of wliich n.checlt 
on the .stability of the .buckled plate,'is casily ab- 
tained. This ,method was not, .used in tlle fresciit, 

Should ,more tha.n one solut,ioii he iound' for 
wliicli the cquilibrium of tlie hnokled plate. is stable 
vith.respect to small variations of '.the - form of the 
hnekles, then the soltuion. for. whie,h the clastic 
energy stored in the plate is lowest lias to :be eon- 
sidcrcd as the correct one ... There lids becn found 
no cridenee, liowcvcr, that snch aniliiguities 'occur 
fop tlie .problem considcretl. 

I n  ref. 3 it was proposed to spccify a. number 
of sets of values for thc parameters D, 111 and OL. 

The ratios alax, rJa*, ../a", &", + / E *  and y / e *  
as wcll as' F/E* ran  t,heri he solved, easily. from the 
set of seven linear canations. (A.5) .and ( 0 . 5 )  to  

. .  
It '  was assumed in evalnating the 

investigation. I 

. .  . , . .  
(B.8) incl. . .. , /  . 

This method of evaluation proved to bc cxtremcly 
cnnimhersome because of the threefold int,ernolation 
(viz. towards D ,  nt and a) when used to c k r u c t  
diagrams of the type proposed in 8ec. 2.1. 111 
certain regions of these diagrams a small rariat,ion 
of one of the pnrametcrs causes rclqt,irely largc 
variations in some of the other qiiantities. The 
method provcd to he very useful, Iiowever,. f o r  
tihtabning it' first approximation in the methods of 
solntion discussed hereafter, .. , . 

Tn the first w t h o d .  of. soZict'ioiL suceesfrdly Lised.' 
sets of vadues of vI/n*, a,/oY and a.!vi>re specifier.1: 
liccuiise the final, dia,grams should contain iiirvcs 
oE eoristant -,/aa and .a,/af., Besides, .it was, he- 
lievcd t,hat, curves of constant m woiild he con: 



S 14 

venient in the final eva,luation. At any'rate, the 
curve a = l  has to be determined which sepat- 
ates the diagrams in a range where a S 1 and a 
range a E 1. 

Values for ni' and D were estimated either by 
considering results obtained &s proposed in ref. 3 
(see ahove) or by extrripolation. ImI,roved valnes 
for m and D were ohtained by an iteration pro- 

'cess, after whioh the other parameters can be 
calculated. 

The details of this method of solution are dis- 
cussed i n  ApRcndix c. 

This method failed for large ratim .,/E" hecause 
of the fact that the curves of constant a on one 
hand and those of constant aJa* an& aJa* on 
the other hmd  in the final:dia,grams intersected 
each other at small .angles. Small deviations in 
the ,assumed ratios a, uJo* and a.Ja* caused there- 
fore large changes in L J E *  and EJE" .  No reason- 
able convergence of the calculation procedure could 
be .obtained unless. the first apgroxima,tiorls for 111 

and D mere nearl?, equal to  the correct vabnes. 
With the second method of s o h t i o n  the diffi- 

culties encountered when applying the first method 
of solution in the range' of large eJz' were avoid- 
ed as described hereafter'). 

Setwof values of u J 8 ,  a,/a" and ./a" were 
assumed corresponding to the intersections of the 
curves of conrtant aJo* md aJa* in the finad 
diagrams of constant ./a" proposed in see. 2.1. 

Values for.  WL and a were estimated either 'by 
considering results obtained with the first method 
or by extrapolation. Zmproved values for m and a, 
were ohtained hy a,n iteration process.' The detai'ls, 
of this method a.re described i'n Appendix 11. 

The second .method requires more numerical cal- 
culations than the first, one but has the .important 
advantage of requiring no interpolations in the 
construction of the final diagrams of the type 
proposed in seo. 2.1. . 
' .It '  was fonnd that the. second ,method did not 

converge unless the first . approximations of m 
and o. were sery close to the correct 'values in the 
range o f '  hrge negative e , / 2  where the first 
met,hod proved to be convenicnt. Both met,liods 
were tiins applied in constructing the final dia- 
grams. 

For the special case .r/a'=O a diagram was 
also constructed with the aim of cnahling the inter- 
polation towards T / U *  i n .  t,he range 0 < ~ / 8  < 5 .  

The method of sohition for this special.case is 
fully descri'bed in Appendix E. 

3 Numerical results. 

3.1. Discicssion of the diagrams. 

As a rcsult of calculations carried ont after t,he 
methods ,discnssed in see. 2.4 the diagrams figs. 
3.1 t o  3.11 incl. have. been constructed. According 
to the proposal from see. 2.1, they are valid for 
,a constant ratio T/a*  and contain curves of con- 
sta.nt a,/a", oJof and T / y G  corresponding to the 
coordinates e,/c* a.nd' E,/.". F0r.a genera,l survey 

*) A ,  similar mothod ',had heen r ~ ~ O m 8 n d e d  by thr 
Fokkcr aeroplane company. 

of the range covered refercnce may be made to 
figs. 2.2 to 2.4, incl. 

All diagrams a.re limited in the direction of 
iicgative'e;/e* by a curve of eonstant aJa* and 
in the 'direction of positive E , / E *  by a curve of 
constant aJa*. 

I n  the direction of positive E,/." fig. 3.1 is 
hounded hy the curve ./yG = 0, 'but it seems ad- 
visable not to use this dia,gram for o%/~* < 0 for 
Olie'reasons mentioned in see. 2.2. The other dia- 
grilmr are, 'therefore, bonnded partly (in general 
for smdl E , / E * )  :by curves of constant a2/ob 2 0  
and partly (for .large . , / e * )  by .curves of can- 
stant 7lyG, Iiecause these coincided reasonahly 
well with the limit proposed in see. 2.2, viz. 

The rapid divergence of the curves of con- 
stant a2/o* fo r  decreasing n?/o." in the range 
o,/ux < 10 is verr pronounced in figs. 3.2 to 3.5 
and gives rise to some dol!bt as to the'reliability 
of the assumed waveform of the buokles in the 
plate, (A.1) and (A.2) a,nd hence the accuracy of 
the results in this range of loads and strains. 

For 712 > 10 the emve oJu*=,O falls f a r  
outside the range of the diagrams. 

I n  the direction of nega,tive € , / e x  all diagrams 
are 'bounded liy the curve a = l ,  which for nega- 
t,ive eZ /e t  practically coincides with the buckling 
crirve Pl,*=O or ~ / y G = l .  

It is observed that, as soon as e,/.' exceeds a cer- 
tain value,, the curves a = 1 and PI&* = 0 diverge 
to '  such an extent that they must he represented 
as separate cuives in the diagrams. When EZ/er  
increases ahove thcse values %he curves P / P =  0 
will graduitlly hcnd aw;ig in the direction of nega- 
tivc E , / P * : '  The curves a S I will bend relatively 
sharply in the direction of positive e , / 2  and then 
gradnallg in tlie direction of positive eJi', as 
sho~vn in fi,gs. 3.1 to 3.5 incl. The remaining dia- 
grams (do not extend to such large ratios of nega- 
tive el/e* tha,t this' p a r t  of tlie curve. h = l  is 
shown. I n  figs. 3.8 to 3.11 incl. even the first 
I)endin,g of the curve in the ,direction of posit,ive 
c 2 / c *  is harcly visible. These diagrams can, if so 
required, he extended in the direation of negative 
q/s* without serious difficulties (see. 2.2). 

In  see. 2.1 it was stated that large errors could 
eventually be expected if m would he large. Near 
the part of the curve c=1 running roughly 
parallel to the pasitive axis of E,/.", figs. 3.1 to 
3.5 incl. where ~ J u "  is smal.1, it is found that 
m > 2. ' This should he considered as a second in- 
dication that in this range and for decreasing 
E J F !  and increasing e2jB1 an assumption for the 
waveform of the buckles in the plate should be' 
introdkced havin,g nodal lines which intersect the 
longitudinal edges of thc plate perpendicularly. 
As such, waveform nr.. 2, developed in .ref. 3, 
sliould ,lie mentioned. A different type of wave- 
form having the required cha,racteristics was pro- 
posed 'by M ~ l ~ m  (ref,. 17). 

3:2 , Applicntion .of the diqycnis. 
3.2.1 Introduction. : 

Seveid types of problems can easily 'be solved 
by applying the dia.gra,ms figs.. 3.1 to  3.11 incl. 

'' 

+ .J.* = 250. 
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1 specified valae of TIS*. ?/yG, o,/u* and 02/o* are 
i j  discussed. hereafter (see. 3.2.2). also easily rcad. For r/o*=O, 40, 45 and 50 the 

/ angiislar panels considered are n,  b and 71, respect- vestigated. . In this respect it is remarked that 
ively. T,he edges remain straight and parallel. i t  seems rather unlikely ,that a com'hination of 
The panels are reini'orced hy longitudinal and Q/-* = - 100 and T/S* as 1arKe ils 40.  will ever 

This will bc evident f i a m  some numerical exmples 

, The Icngtli, width and t,hickness of the rect- point of intersection fell outside the range in- 

l:i,teml stiffeners along the edges ha.ving total cross 
sect~ioils Ab and A, respectively as shown in fig. 
3.12. The longitudinad reinforcing ratio thin is 
Adbh. and t,he lateral reinforcing ratio ' Adah. 
W i c n  tlvo adjacent, panels hare a common stiffener, 
h a l f  the cross section of this .stiffener should be 
nttrihutcd to each of the pa,ne$s. 

- 
0 . 5  A d  0.5 A a  

. ~m,ulhip niid dimmions of ' a st i fhied p a d .  

Tlrc const.riiction is loaded in tcnsion hy 
forces (d ' - tA , , )u<,  in the lateral (or T) and 
( h h  + Ah),, in the longitudiniil (or X-) direction. 
The shear ,loads d~ and d h .  a,re carried hy the 
plate because the stiffeners are interconnected hy 
hingcs. It 'follows from conditions. of equilibrium 
that 

(1+A,,/nh)o0/u* == o , / 8  - ( A d d ! . ) & ~ / e * ,  (3.1) 

(1+A~/h7t.)ou'u* = uJo* - ( A b / b h . ) c , / E * ,  (3.2) 

t,he minns sign hcing cayed hy the fact tha t  posi- 
t,ive U'S are tensile stresses arid positive E ' S  are 
cthmliressive strains. 

3.2.2 Nunierical eznmplea 

The inflncnce of the shearing stress upon the 
stresses am1 strailis in eonstructions of the type 
rcprrsnnted in fig. 3.12 is investigated. I n  the 
first cxamplc the constrnction is specified hy the 
stiffening ratios AJnh = 0.5 and Aa/bk = 1. The 
loading is specified hy the ratios uJo* = 0 and 
ns/oX=-lOO. In this, t is ~ 0 1 ~ 1  as in ' the second, 
ex;imple t,he stiffening ratios and the external 
loads are given arid t,he prohlem is to  determine 
t,he stresses and strains. A constmt external eom- 
pressive load in the longit~udinal direction is here 
acting upon t,lie constrnction. In each of the dia- 
gra,ms figs. 3.1 to 3.71 incl. (3.1) represents a 
ciirve .,/E" = 2 RJO* roiigh1~ jiarallel to  the E ~ / E * -  

axis and (3.2) a cnrve s , / z "=ZOOl+  o,/u* roughly 
pahallel to t,lie e,/e*-nsis. The construction of these 
ciiiws is cnsily carried out. 

T,he coordinates of t,lie point of interscction of 
t,liese two c n r m  represent, E , / E *  and .,/e' for thc 

occnr in practice. 

Fig. 3.13. Results f o r  t h c  first cremplc. 
.I jn i , ,=o.s;  A a l b i , = l ;  g , , i n * = o ;  ~ a j g * = - i n ~ .  

The nnmerieal resnlts a re  reliresented in tahlc 
3.1 aiid fig, 3.13. I t  is olrserred that T / ~ G  in- , 
.creases ivith increasing ~ /u* .  This infers that the 
tiinkwnt nro&dus of rigidit,y is larger than the 
secant modulus of rigidity, d T / G d y  > ./Gy, which 
also follo\vs from the. foimpila 

{ .I - [ d  (./Gy) i d  ( T / u * )  1) [ (TJGY) / (;/us) I '1 X 

This at, first sight rather pecurlia,r ,hekaviour of 
the constrnction is caiised <by t,lie +act that  the 
;ungle y between t,hc direction of the buckles in 
t,lie plate a.nd the X-axis (fig. 2.1), heing nearly 
90° a t  'small r / 8 ,  decreases with increasing 
~ / o *  and ultimatelv ar)oroafihes to a l h i t  'P,, 

'L. 

. I  

. .. I 
X d r / G d y  = 7JGy. (3.3) 1 

" .. 
of ahollt 45'. 

I t  is readily 01)serred from ref. 1 or ref. 13, 
Anncndix l ( a l  that T/VG for a fully dcveloned . .  _ I  . 
dkgonal tension field tends to i m a k i m i y  a i  'p 

approaches 'pi,, . Similar. results conld thus Re cx- 
pected for t:he partia,lly developed' diagoml tension 
i'ields eo~isiilered in this report. 

When the const,ruction is loadd '  in pure shear 
( v , ~  = 0)  it is found that d i / G d y  < 7/Gy2 
heeause r / yG decreilses with' increasing T / u * .  

I n  the second example the coiistriiction is spe- 
cified by A,,/a7&=4 and, Aa/bh=0.25. The load- 
ing is'specified oa,/u*=-100 and ub/u*=O. 

h constant, external compressive load in t,he lateral 
direction is thns aet,ipg upon the construction. In 
figs. 3.1 to 3.11 incl. ciwves E>/E* = 4  ul/ue, rough- 
ly paralilel. t o  tile aJe*-axis, and Z?E* = 125 + 
0.25 c2/u*, rou,ghly pa.ralle1 to  the z,/e*daxis, ae- 
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cordin&, to (3.1) and :(3.2). are drawn m'd 
~ J e " , : , / d ,  i2(u* and T ; / G ~  are read at the point 
of: intersection of these curves. No results are 
obtained for r/a* < 10 because the diagrams do 
not extend to a,/a* < 0. For ./a" > 40 an extra- 
polation had to ,be carried out. It is, however, 
unlikely that combinations of so large T/U* and 
-aJa* will ever occur in actual constructions. 
The numerical resdta are represented in:fable 3.2 

. ,' 
and,'fig. 3.14. . . . .. 

. .  

Fig. 3.14. Results.for tho Jecond exmple. 
Aa/yh z= 4; A,/bh,=  0.25; 8 = --100; a,/ 8 c 0. 

. . .  . 
\ h e n  the strain in .the stiffeners is specified 

the cross section of the stiffeners can be deter- 
mined by means'of figs. 3.1 to  3.11 ind.  This 
will be demonstrated by two additional examples. 
I n  the third example the construction is specified 
by" AJoh = 0.5, the loadin,! . by ~ J v "  = 0 and 
( 1 ' + & / b k ) ~ ~ / ~ * = - 4 0 0  .(I. e. a .given exterm1 
longitudinal compression) an& the compressive 
strain in t,he longitudinal stiffeners, 'whose' cm,s 
section Aa has to be'dctomnined, by e,/z"=lOO. 

Aceording to '(3.1), curves ~ , / 2 = 2  u,Ja' are 
dkawn in figs. 3.1 to 3.11 incl., running roughly 
parallel to the E,/c*-axis. At the intersection with 
.,/e* = 100, e J P ,  U,/G', .,/2 and ./Cy are read. 
The externd' longitudinal iload acting upon the 
construction being specified by- (1 I +  Aa/bh)ab/o" 
and .the longitudinal . compressive strain of the 
iianel as a whole by ; ; /e*,  Adbh, and hence the 
longitudinal stiffener crass section, fol1,ows from 
(3.2): 'The-  numerical, results are presented'..in 
table 3.3 an&fig. 3.15. 

 in the fourth example the . construction is 
sp,mified by .Ao/bk=0.5, the loading 'by (1 + 
A,/ah)&/v* =+400 '(i, e. a given external lateral 
compression) and UL/U* = 0 ntid' 'the . c q x e s s i v c  

strain in, the lateral stisfenex, whose cross section 
A. has to be determined, by e,/.' = 100. 

According to (3.2), curves c , J 2  = 2 u,/a* arc 
drawn in figs. 3.1 to 3.11 incl., running roughly 

I Fig. 3.15. Bcsults for tbe third cxmplc 
A,/ah= 0.5; s1 {E* = 100; ea/** = 0 ;  

(1 + A , / b h )  ga/o*=-400. 

parallel t o  'the E,/t'-axis. At the intersection with 
~ J E *  = 100, E , / E * ,  u,/u*, uJa* and ./Gy are read. 
Finally AJah i s  calculated from (3.1), 

No results, are obtained for b/u* < 10 'because 
the diagrams figs. 3.1 to 3.11 incl. do not extend 

The numerical results are presented in table 3.4 
to  aJa* <'O. 

and fig. 3.16. 
, /  C , / C  . .  , 

a,p- 
. - w o -  

20 ' 3 0  LO 50 

Fig. 3.16. Results for the fourth esample. 

7 / 0 .  
0 ' I D  

. ,  . 

B a / b b r 0 . 5 ;  c&*=100; (1 + A n / & )  r , / Z  3 - 4 0 0 ;  
.,,,iV*=n. . ' 

i 

/ .- 
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4' Desirability -of additional investigations: 

4.1 Knnge  of the  dingva%s. 

It is observed f r m  tab. 3.2 and' 3.4 or figs. 3.14 
and 3.16 that the diagrams figs. 3.1 and 3.2 do 
not yield a solution for the problems considered 
in see. 3.2, second and fourth. example. A n  
extension of the range, of these diagrams in 
the direction of negative UJV" or  positive EJE*  

is thus required when the diagrams should he 
applied to constructions subjected to large lateral 
compression loads in addition to  small shearing 
loads. 'Such eases owur ,in the upper skin of aero- 
plane wings provided vith c l ~ e l y  spaced, ribs and 
widely spaced stiffening elements in .the spanwise 
direction. Such an extension must he based upon 
assumptions for the waveform of 'the huokles in  
the plate different from' those used hitherto, as 
discussed in see. 3:l. 

It seems unlikely that 'large' tmsile strains in 
either the longitudinal or the lateral direction will 
lie comhined in actjual' eases with shear strains and 
compressive strains of such ma.gnitude that buck- 
ling occurs. .Hence, extension of the diagrams figs. 
3.1 to: 3.11 .incl. in these directions is not eon- 
sidered to 'he of much practical d u e .  fixtension 
of fi,gs. .3.6 to,3:11 incl. in the direction of ncga- 
t,ive c ~ , / c *  to include the eu1l.e u = l ,  or to  
e , / & *  =- 100, will soon lead to TIL > 2, even for 
small .,/e" and is theiefore of no practical signi- 
fieance. . .  

It would be convenient, to adk3 diagrams for inter- 
mediate values of T / U *  in the rahge T / U *  < 10. 

4.2 The state of stress. . .  . 

The djagrams, f i e .  3.1 to 3.11 'incl. -are based 
upon the, theory of ref. 3. Htnce, they are valid 
only in so far  as the stresses in the material I n  
where exceed t,he proportionality.,limit. .It .is thus 
considered ,advisable ,to eonstnict additional dia- 
gmms  from urhich the largest strain occurring iii 
the construction can :be F a d  for specified ,,/E?, 

E,/&" +nd r/p". It is advisable to  present this 
effective strain E ,  by the nondimensional ratio 
E,/." and t,o calculate it after the hypothesis of  
I-IURER, VON Ilhm and H h c m  (refs. 13 to 15 inel.), 

Diagrams of the type eroposed will s'how ,whether 
t,he praportionality limit, is exceeded or not in a 
specified construction subjected to specified Boad- 
i%?. They will s h e  to yhich extent t&is limit is 
eventually exceeded, hut .  not over which part oE 
t,he volume of the plate. Hence, it, should not he 
expected that reliable estimation,s. could be made 
ahout the bchaviour of the construction when the 
proportionality limit is exceded in some parts of 

1.3 T'lic pqranieter.s ' of ' the .wauefbrm: 

When at least'one of the parameters in the er- 
pressions (A.1) and (A.2) .for the -waveform of 
the hqckles in the.plate is known, the others can 
easily (be calculated from the .equations (A.5).  It 
seems advisahle therefore to construct, diagrams 
from which one of t,he,,parameters can be read, 
once E , / c * ,  s 2 / c *  and T/V* have been determined. 

t,lie plate. . . ,  . .. 

. . ,  , .  

L 

S' 17 

1n.fonnation about the ma,ynitude .of the para:. 
meters may he required for aerodynamical inves- 
tigtLtions (surface. roughness of tvings)': .For dc- 
t;ril@ calculations about the distribution of stresses 
in ' the' plate, the ma,&nitdde of the pakmetcrs 
shobld also be known. I t  must, he kept'in mipd, 
horrever; that' such '.calculations may lead :to 
erroneous results due 'to the fact that the .assumed 
wwe-eEorm . ( A I )  "and ' ( 8 . 2 )  constitutes ,only' a 
rqugh approximation. of: ' pie actual waveform. 
Hence, the actu?l stress distribution may deviate 
to 'a  eonsiderahlc extent from, the calcnlated dis- 
trihutibn althoiiFh the elastic energies stored in  
t h e  plate are only slightlf different. . _  

I 
I 

.. ., 4.4 The mn,qe n~ 1. _ ,  . ,  
. .  , . .  . .  

TA.figs.'3.1 and 3.2 the rang$ a ~1 where (B.4) 
loses its significa,nce is quite small, when i t ,  is 
specified. that u2/ue 2 0. It seems advisa:bie, how- 

to 3.5 incl., as this may yield a valuable extension 
of these dia'grmns in the direction of the .negative 
e,lE*-axis. A similar extension of. figs. 3.6 to 3.11 
inel. is not eonsidered necessary, hecause in these 
diagrams - ~ , / 2  is sufficiently .!large .for = 1 
(see. 4.7). 

4.S The r h c m e d  ,w(iuefor?ii. . .  

.eyer, to  investigate the range a E 1, ' for  figs, 3.3 l 

I t  is evident from the second and fourth exam- 
ple discussed in see. 3.2.2 that in certain con- 
struct,ions compressive stresses in the lateral diree- 

. t,ion will occur in the plate (u,/o*.< O ) . .  It, was 
stiitcd~ already (see. 2.2) that, the presen,t assump- 
tihns ( A I )  ' and (A.2) are .considered unreliable 
!Then UJU* < 0 or TIL > 2. Extension of the in- 
vcstigatbn to this range using adequate assnmp- 

advised. It might prove to he difficult to find 
adequate waveform assumptions. 

I t ,also seems ad,visahle to investigate, a t  least in 
some representative cases, the influence. of the fact 
that the nodal lines of t,he buckles after (A.1) 
a id  (A.2) f+il to inteiscct the longitudinal edges 
perpendicularly,, e. g. ,by' investigating waveform 
assumption nr. 2 from ref. 3 in those ranges (sees. 
2.1 and 3.1) 'of the diagrams figs 3.1 to 3.11 inel. 
where nt > 2. It is expected that this procedure 
will .present no mathematical difficulties. 

4.6 F'lezible stiffeners. 
In  the theory of ref. 3 as well as in the present, 

eralua,tion it was assumed that the stiffeners (fig. 
3.12) rema,in. straight when the plate buckles. In  

.actual constructions it often occurs that a stiffener 
bends in the plane of .the &te as a Consequence 
of the loads exerted by the plate (u, or u,). As 
a rongh a.pproximation the flexihility effect of the 
longitudinal (or .lateral) stiffeners can be account- 
ed for in the calculations by introducing a suit- 
able . reduction of the cross-sectional area of the 
lateral (or ~Inngitiidinal) stiffeners (see ref. 5). It 
seems advisable, hiwever; to earry'out an invest,$- 
ation to coverthe ease of fdexihile stiffeners in a 
more 'adequate way. An investigation of this kind 

. mnnot he hased solely upon the theory of ref. 2 
Imt. \vi11 .require dditional theoretical work. 

tions for the wa,veforni of the buckles is thus . ' I 
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5 Conclusions. 

5.1 The theoretical bmis of the diaymnis. 

The dia,grms presented in figs. 3.1 to 3.11 inel. 
are based upon the theory,from ref. 3.' T,n. this 
theory ' i t  is assumed ' that  the plate a t  buckling 
develops-a waveform defined by (A.1) and (A.2) 
atid illlistrated schematieal'ly by fig. 2.1. 

It, is observed that this theory does not yield 
the Euler ,buckling load for glates loaded in 
the lateral direction, as should he expected 
(see. 2.2). € h c e ,  it is advised not to extend the 
diagram based upon the present theory to thc 
range u,/v" < 0, i. e. mean compressive stresses 
in  the lateral direction, 

The assumptions of straight nodal lines (fig. 2.1) 
and hin,ged support of the longitudinai edges are 
not in accordance with each other. It is thus ad- 
vised not to extend the dia,grams in the range 
1% > 2 (see. 3.1) unless a different waveform is 
assumed having nodal lines intersecting the edgcs 
perpcndicularly. 

, 

. .  

5.2 The form of t h e  dicrgranis. 

T,he method 01 reprcseiit,ing fhe results in figs. 
3.1 to 3.11 incl. was chosen after a discussion with 
rcprcscntatives of the a,ircraft industry (see. 2.1 j .  
The application of the diagram to some problems 
of stress calculations and design is shown by n 
nimher of niimeried examples (see. 3.2). The 
results are shown in tables 3.1 to 3.4 iiicl. and. 
figs. 3.13 to 3.16 incl. It was observed during the 
evaluation of the numericad examples that' the form 
of the diagrams was very convenient. 

5.3 The rnnge of the diagrmzs.  
. .  

' . T,he rmge covered was chosen as the result cf 
a .discussion with representatives of the aircraft 
industrp (see: 2.2). It w s  not possihle in all cases 
t,o c o ~ e r  the full range of parameters chosen, hq. 
cause the waveform assumed in the theory was 
found inedequafe when the avera,ge normal stress 
in the lateral direction acting upoii tfie plate is 
compressive (vJu" < 0).  . 

For T/v* < 10 (figs. 3.1 and 3.2) this leads t,o 
a. considcrable reduction of.' the range covered by 
the dia,gram in the direction of positive e ; / ~ * ,  i. e. 
compressive strain in the lateral direction. It is 
evident from t,he results ohtained in two numerical 
cxemples, tables 3.2 and 3.4 or figs. 3.14 and 3.16, 
tbat the diagrams are not applica,lrle to all con-' 
?tructions a,na loads for mhich they were intended. 

5.4 ~ropoi,(i~s f u r  [dditional investigations. 

A numhcr of proposals for  investigations intend- 
ed to improve the usefulness and the range of the 
diagrams are discussed in see. 4. Part of these 
proposals concerns a:dditional numerical evaluations 
nf the t,heory from ref. 3 (sees. 4.1 to 4.4 inel.). 
Some small extensions of the range covered by the 
diagranis are proposed, as well as the construction 

ol diagrams enahling the determination of tlie 
maximal effective strain in the plate.' It is also 
considered of interest . to  construct diagrams re- 
presenting the magnitude of one or more .para- 
meters of the assumed wa.vcfom of tlhe buckles. 

Finally, proposals are made concerning investig- 
ations towards the hehaviour of plates in lateral 
compression a.nd the influence of the fdexibility of 
stiffeners (sees. 4.5 and. 4.6). They will require 
additional theoretical work, Iieeaiise t.he present 
tlicorp (ref. 3) is inadequate for these purposes. 

6 Notations. 

(6 I length of the ,plate. ' 

I1 . width of the (infinitely l o w )  rectangular 
~ I 

plate (fig. 2 1). 
maximum ampditude of the buckles in the 
d a t e  (fie. 2.1). ' 

f 
. .~ 

71, thicknessof the plate. 
111 . cotangent of tlie angle bctwecn t,he nodal 

. lines of the buckles and the X-direction 
(fig. 2.1). 

16, u ,  i c  di3,placements of an arhitrary point 
(z,g, o )  of the median plane (z=O) of 
the plate in the X-, Y- and Z-directions, 
respectively, during bucklin,g (fig. 2.1). 

z, g, z .coordinates in the X-, Y- and Z-directions, 
respectively (fig. 2.1). 

A,,, A?, ' lateral and longitudinal stiffener cross 
sections (fig. 3.12). 
= bZ/L2. 
moanlus of elasticity. 
= #/4b2. 
half-wave dength. of 'the huekles in tlie 
plate (fig. 2.1). 
clastic energy stored in the buckled plate. 
IongitudinaL direction of the plate (fig. 
2.1): 
lateral dircction of the plate (fig. 2.1). 
direction normal to the phne  of the plate 
(fig. 2.1). 
ratio hetwecn.the width of the edgc zones 
a.nd the total uidth;b of the plate (fi'g. 
2.1). 
angle of shear of ' the  plate considered as 
a whole . . 

' compressive strains in the longitiidinal 
(X-) and lateral (Y-) directions OS the 
plate considered as a whole. 
critical oom,pressive strain for pure longi- 
tudinal compression; hinged edges, see 

.formula (2.1). 
= 2 EV/hv*'. . 
lateral contraction ra,tio. 
average tensile st.resses in the longitndinal 
(X-) and lateral (IT-) directions, respect,. 
ivel,., in the buckled plate. 
average tensile stresses in the lateral (J7-) 
and ,longitudinal (X-) directions, respect- 
ively, in the. construction consisting of 
plate and stiffeners ( f ig  3.12). 
= EEb,  critical compressive stress fo r  pure 
longitudinal compression, hinged edges, 
see formula (2; l ) .  
shear stress. 
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APP.ENDIX A. 

The assumed waveform and the elastic energy. 

It is assumed, t h a t  for 0 5 I ab/2,  
u =- el$,+ U,( l~ ) - (n f ' / l S  L).(l-  

U =  V,,(y) + (mnf2/16 L )  (1  - 
-cos2ny/ab) sinZn(z-my)/L, 

- cos 2 rrylab) sin 2 (z - n~y)/L + 
+(nP/l6ab)(sinZny/ab) cos2 ?i(+my)/L, 

. 

w = f ( s i n ~ y / a b )  sinli(x-niy)/L, 

wherc 

The expressions for 6, U,,  vo and V, have not. 
heen presented explicitly in ref. 3. They were first 
given in ref'. 15 for  a coordinate system having 
its origin a t  .the crest of a buakle, i. e. at  
: 1 : = m b / 2  i- L/2,  1~ =b/2 .  . . 

T,he expressions (A.1) a,nd (A.2) contain tho 
four parameters.for t,he form of the buckles in the 
plate mcnt,ioned. in see. 2.1, viz. f ,  L, m and a 

lIenotin,g by 'V the olast,ie energy stored in the 
Iiuckled plate and averaged over the surface of 
the plate and introducing the notations 

(fig. 2.1). I 

#/4 1;2 = p ,  bZ/LZ r 
= ~ , n z ~ h 2 / 3 ( 1 - ~ v 2 ) b Z = ~ f = E  ' i  (-4.3) 

\$here h. represents the thickness of the plate, it 
follows from ref. 3 that 

(A.4) 

In this cxprewioii the stress rat& u,/o*, adoa 
and ~ / m *  are, for specified strain ratios .,/e", 



S' 20 

.,/e" and y/P,  Eiiiietions of the parameters P, D, 
ni and a aeeordhg to 

UJU* - "udJ."= -6 , / e * +  ( ~ - A , u ) D P / E * ,  
. . _ - .  . 1 . .  

I .  r - "uJu" ti'u;/u"'= - E Z / E * +  

2(l+")S/b' =.yJ'e* + 
, . 

+ (1- A,a)m2DF/~ '+(A , ' /a )P~~' , '  ( ~ . 5 )  

, - 2 ( l -  A,a)niDP/e'. '~ 

. .  
, . I  

I '.' 
Finally, .i& wva~efoim 1 from ref. 3, assuming 
"'%0,3, ' ' 

I. 
. ,  

, .  I A ,  =A,  = A ,  == A,' = 0.5, A ,  
A,=O, A s = ' I / 8 ( 1 - ~ * )  ~ 0 . 1 3 7 3 6 ,  (A.6) 
4, = 0.5, A ,  = 6 ,  .A, = 1. 

0.625, 

. ,  
' . '  . . \  ~. 

. .  

{ wa7/aD)mi/8*) - ' 

- 111 (av/an&)/.(F/E*).)/ (2 - a),D. = 
1 . 8  -" 

~ , / o " ~ l ) ~ ( ~ / ~ ~ ) ~ ( ~ u ( 3 - 2 a ) / 4 ( 2 - ' ~ '  , (B.6) 
- a) ) ?$'/e*+ O:5(1 +.m2)D+, 

. + 1 / 2 a ( 2 - a ) = 0 , '  " .  1.. _ -  'I . .  . . .  

[ - a , / a ( ~ / ~ * ) ; +  2 D ( a 7 l a D ) , / ( P / P )  -- 
- a(ao/aa)m/(P,/E*))/z IJ <,'' 

. . ul/o*+nl* ... (u*/u*)-2?1t(du*)  + . ; I .  
,, ,',\ I ' 

1. ' 

(B.7) + (0 .3~U+0.0686813/a3D)F/~'+- 
+0.25 (3  -e) (l+aL*)*D+ . .  
+ ( I + 3 1 ; L ~ j / 2 a + 1 / 4 a 3 ~ = o ,  . . . 

. { a ? / a ( P i ~ X ) - - ( a v / a r , ) / ( ~ / & * ) }  . .  E 

.. , ', ' ' 

(B.8) 
' uzu*+ ( 0 . 2 1 ~ 7 2 5 / a 1 ) F / e *  - 

I - O , Z ~ U ( ~ - U ) ( ~ + I I ~ ' ) ~ D ' ~  
'+ 0.25/aZ = 0.' ', 

' 

. .  , .  . 
.. , . .  

. .  

AI'PEi\DIX .p. 
First method of solution. 

, .  

. .  . ,. . 

Iiisertiny co~~nhinatioiis of ni and D, T/U' was 
solved from (B.5) and ' / E *  from (B.8). Improved 
d u e s  for  ni and I )  were t,heri obtuined.from (B.6) 
and (K.7 )  .hy applying NEWTOX'S' method for  the 
cas,e of two' yaria,blcs,' This procedure .was repeated 
nntil the .diffemnces lietween successire approxi- 
mations W ~ P C  considered, pr'wt,ically negligible. It 
is conrwiient to write (B.6) and (B.7) in t h e  form 
@<(no, D) = 0, mhere i = 1 .  or 2. . 'The h-th ap- 
proximations '?n. 'and D,, ,will not' exactly satisfy 
these equations. An expression f.or ~ ~ ( ? % + A 1 1 1 ,  
D,&+AD) is obtained by expansion; Ani .and. AI) 
hcing small variations of vi,, and D,, , respect.ivcly. 

@i(m,+Ani,  D,;+iln)= , . . .  ' .  ' ' 

, ,  , . ~ - ,  

Hcnee, . .  

aai" 
D,&) +a/n - (Wh, D,,) -t 

~ V L  
= 

Ncglectiiik dl tdrnls ,co&iiiing higher powers of 
Am and AD the condition that @i(n t , ,+ l ,  . .  D,,+,)= . 0 
yields two linear equations ,,.;. . 

a* 
aI)," .+ (I),>+, - 11,) - ( ~ t " ,  u,,) + F~ ( ~ I I . ,  D,,) =: 0, 

(C.'l) . .  
, . . i = l a n d Z ,  

. . .  . ,  , . . . .  . , < . .  
f,roni .mhicli,.ni,+l ,and. D,,+, e m  elisily he solved. 

A numerical ex?miple of. the method of evalu- 
ation-is gimn .in table 2.1: In general, ni and D 
shonld he 'kstimated. to five figures and calcudated 
iieenrate to four figur4s in order to-avoid serious 
scatter in the calculated points through rr41id1 the 
c u n m  are drawn in the  diagrams .proposed in 
see. 2.1. 



. .  

s 
Beforc constructin'g these diagrams, interpola- 

t,ions towards ~ / a *  have to  he carried out. Several 
methock of interpolation' ham 'been used. I n  the 
fimt method for each value of a clioscn two dia- 
g r a m  were constructed, one of whioh represents 
7 / ~ *  as a function of .JE*, thc other representing 
?,/a* as a function of .,/E". From these diagrams, 
eonta,ining c u i ~ e s  a , / ~ "  = constant and a,/a" = 
constant, ~ the coordinates E J E *  and .,/e" of thc 
intcrsectiom between the curve a = constant and 
.tile curves u,/a" = constant an+ aJa" =constant 
in the diabT&ms proposed in see. 2.1 werc obtained. 

In the second method, for cach combination of 
a,/;* and OJO* il diaNgTdm was constructed contain- 
ing curves of .,/e", .,/e" and ./a" as functions of 01. 

From these diagrams the coordinntes E , / E *  and E , / = "  

oC thc interseetiom hetween the curves of constant 
a,/a' and a2/a" in t,hc final d iqrams proposed 
in see. 2.1 irere obtained hy putting ~ / a *  = con- 
stant. 

A third mcthod consisted of constructing dia- 
grams of ?/a" as a function of aJa" (or aJa') 
for constant ralues.of a and aJa" (or .,/a') from 
the diagrams determined aftcr the first .method. 
Finally, dia,grams were constructed representing 
uJa" (o r  ~ J o " )  as a funct,ion of E J E *  or e,/.* 
for constarit.riiliics of ~ / a *  and aJa" (or a,/a'). 

From these d,iag~~anm the coordinates EJC*  and 
,:Jt'' of the intersections of the curves of con- 

iind a,/a".in the final diagrams pro- 
c. 2.1 could'hc rcad. 

In the construction of the final diagrams the 
curves of constant a2/a* were determined after the 
first, method of 'interpolation. The curves of con- 
stant, aJa* were dctermincd partiably by the first 
met,hod of interpolation' and partially .by the third 
method, in order to  obtain a sufficient numher,of 
points to dra.w the curves. 

APPENDIX U. 

Second method of solution. 

l + o ~  specified combinations of m and a, D was 
solved from (B.5) and P/e" from (B.8). 

Improved values for m and a were then obtain- 
ed from (B.6) and (B.7) by writing these equa- 
tions in the form .ybi(m,a)=0, i = l  or 2 and 
trcating them in a similar way as described in 
Appendix C: for  the equations @ p i  (m, D )  = 0. 
.Hence, the iteration procedure consists in solving 
the set of two linear equations 

for  thc two unknowns wan+,-na, and' an+,-a, .  
In  this way, the ( i ~ + l ) - t h  approxiniations for nr 
;rnd a arc obtained. , 

; ,  

d iinmericd &ample of tlie method of evaluation 
is given in table 2.2. I n  general, m and a should 
hc estimated to five figures' an8 calculatcd accur- 
ate to four figurcs for tlie same re;;sons as  D 
and a in thc.first method. 

APPEhQ,IX E. 

The evaluation for =.O. 

Dividing equation (B.3) by i i iD and inserting 
.Ai fi,om (A.6) the cquation 

(.2(2--a)(o,/o*)+(2--a)(l+lrL*)D+ 
+ 3/a]  1IL - 2(2 - a)](  r / U Y ) . -  0 (E.1) 

is oht'aincd. Whcn ,/e* approaches zero, eit,her in 
or the finite .expression in square bmcliets will 
ailso approach zero. 

It was 
therefore assumed in the numerical evaluation that 
V L  = 0 for r/a* = 0. A further argument in favour 
of this clioice will he discussed at the end of this 
appendix. The diagram obtained in this way proved 
to hear a sinii1a.r oharacter as the diagrams for 
~ / a '  > 0. For  specified, sets of va.lucs a and D ,  
the corresponding F/c" was salved from .the equa- 
tion obtained by eliminating &,/at from (B.6). and 
(B.7). Finally, a,/?* was ea.lciilatcd from (B.6) 
or (B.7) aid a,/o" from (B.S); 

F o r  each value of a chosen two diagrams .were 
constructed, one representing E,/." .'and .,/e" ,IS 
functions of aJa' and the other reprcscnting these 
ratios as functions of a,/.". From tliese diagrams 
the coordinaaes el/&* and e , / 2  of. the-intersections 
between the cumcs a=constant and aJa* or 
a,/a" =constant in the final diakram of the type 
proposed in sec. 2.l'could, he read. 

I n  order to enahle the interpolation of r / yG for 
0 < ~ / a *  < 5 curves of constant .JUG were &o 
,drawn in the diagram fo r  r/a* = 0. In  this case, 
7,/yG should he considered as the limit of the ratio 
7, /yG when T/V* 'approaches zero. It follows from 
(A.5) that 

It seemed unlikely that m=O for 

r / yG = 2( l+u)  (+/a'),/( 2( l+v)  (.I.")'+ 
+,(2 -a)lrdW/e" ) , 

Inserting ./a" from (E.1) it follows that, for 
I / O *  + 0, 

r / y G  -+ 2( l+v)  [ (a,/a") + 
i 0.5 U +1.5/a(2%)]/( 2 (1+ v )  [ aJu" j + 
+0.5 D+1.5/~(2- ) ]  iO.5DPJz' ). (E.2) 

It is interesting to ~iote that the assumption that 
the expression in square hraokets'in ( E l )  would 

'he zero instead of iit would yield the result that 
./yG --f 0 for ./a* --f 0; as e m  he observed, by in- 

,. upection of the expression for r / yG. .  This must he 
considered physically impossible. .. . .  



r ,  _ - -  
I 

11 j .mn ,i 5 J r/a* 1 F/E* ' 1  * , ~ ~ ~ ~ n , ~ x )  

___ 

1 1.382 2.41 20.825 ~ 3.29:18 -2,9017 

' 2  1.4>6 2.7386 23.0.56 l(i.Gl0 1.8375 

3 1.4441 2.6508 '2'2.603 13.195 ' 0.13084 

.4 1.44% . 2!:6437 22.575 12.953 0.00043414 

s 22 

Q 2 ( m P b , i r , ) '  mi++-m9c D,+,-- , ,  

- 1.4551 0.074016 0.3286% -< 

1.1357 - 0.011879 - 0.087830 

0.084278 - 0.0006345i -0.0071416 

0.00072237 - - 
I 

TAICLE 2.1. 

E.xamlile of the nmnerieal evaluation after the first method of solution. 

I 

a,/a" = 10 aJa* = 5 T / 2  = 25 i 
'. 7 ' 1 an . . I  ?n,, 1 j i/i* i T a m , m n ) '  j $;.(e,,, vi,) j a,+,-n, I nilicl-mm, 

1 

1 , 
1 0.62 :' 1.94. ' '2.5752 37.133 - 12.879 - 7.8229 0.037283 ' - 0,070772 L 

I 
. .  

, .  

2 0.65728 1.8692 2.2907 53.062 3.0243 1.9242 - 0.0040384 0.012956 

3 0.65326 1.8822 2.8959 50.446 0.093353 0.059599 - 0.0001 1747 0.00040G95 

4 0.65314 1.8826 2.8936 50.370 0.0032400 0,0039543 - - 

, 

. .  ' ,  

. .  

1. .' I 

'.. , . 
. ,  

. .  . 

' - T / O *  ' E , / E *  e,/." J u,/a* . u,/a" r/Gy.. . Remarks , .  ________ 
< , ,  . .  

.O 173 .6 - 27 3 : 0.12 ext,rapolation 

10 176 . ,. 24 -24 1 2 '  0.18 
.I5 . 178 33 - 22 16.5 0.21 
20 ' 181 ' 42 ' .-19 21 0.23 , 
25 ' 183 52 -17 26 ' 0.245 
30 157 60.5' -13 30.5 .0.26 

~ 35 190 69 . -10 34.5 0.275 

174 13 - 26 . 86.3 ', , .0.E> - .  
3 

\ 

I .  . . .  
,. 

40 194 78 - 6  39 0.281; . extrapolation 4.: . .  
45 198 85 ' - 2  423  0.29s extrapolation. 
50 2w2 94. 2 47 0.30 ext,rspolation' 

Adah = 0.5 ; Aa/bh= I ; an/a" = 0; oa/a* = - 100. 



- 
- 
20 
30 
40 5 

- 
12 3 
126 
1265 

4." 

4 
10.5 
19 
28 
36 
44 
52 
58 
65 
73 
80 

a,/." 
_________- - 

- 18 
- 17.5 
- 14.5 
- 12 
- 8.5 

3 - 
0 
4 
8.5 

13.5 
18.5 

0.34 
0.355 
0.37 
0.38 
0.39 

4 
4.04 
4.085 
4.135 
4.1 85 

H 23 

-.\GlJP: 3.2. 

Xutlierical results fo r  the second exaiiiple. 

Remarks __ __ 
110 results 
no  rcsults 

- 
- 

5 

10 
12.3 
14.5 
17 
19.5 
22 
24.5 

'r I . . )  

< O  
< O  
0 
3 
6 

1 0 3  
15 

- 
0.205 
0.24 

30 
:3,5 
40 
45 
50 

0.30 
18.5 1 0.31 68 129.5 

79 
88 132 

24 
28 

98 I i33 33 1 0.34 

TAELIC 3.3. 

Niiineriml results for th!: third example. 
~ 

r/a* 

0 
!T 

10 
15 
20 
25 
30 
35 
40 
45 
50 

.,/." 
- - 

2 
5 
9.5 

14 
18 
22 
26 
29 
32.5 
36.5 
40 

3.82 
3.825 
3.855 

0.16 
0.195 
0.24 
0.27 1 3.88 
0.30 I i:"," 
0.325 

~ 

A,,/uh = 0.5 ; ~ J E "  = 100 ; o,/# = 0 ; (1 + Aa/bh)oa/a* = - 400. 

TARI'E 3.4. 

Numerical iesnlts fo r  t he  four th  example. 

AJuh TI% 

0.25 
0.28 
0.31 
0.335 
0.355 
0.375 
0.39 
0.40 
0.41 

a,/." 
- - 

0.5 
3.5 
7 

I1 
15 
1 9  
24 
28.5 
33 

aJa* 

F 
10 
13 
16 
19 
21.6 
25 
28 
30.5 

4.005 
4.03 
4.07 
4.11 
4.15 
4.19 
4.24 
4.285 
4.33 

25 
30 
35 
40 

' .  45 
50 

32 
38 
43 
50 

61 ! 
56 

Aalbk = 0.5 ; ~ , / e *  = 100 ; (1 + A,/dc) ad2 = - 400 ; ab/." = 0. 
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An  analysis of the pitching motion of an aeroplane due to sideslip 

by 

Ir A. J. DIARX and Ilrs J. BUHRiiIAS 

Summary. 

Tho pupx .e  of t h b  report is to  establish B criterion far thc wp&.hility of the pitching bchnviaur of 811 aeroplane 
due t,o sideslip. A computation motliod to  determine the diaturhod motion folloni?g (L suddw ruddcr deflection or failure 
of an na)mmetricnlly.plaeed engine from da ta  ohtained by means of model tests in thc windtunnel or f rom tlwcoretically 
ealoulatod data is developed. This method is applied to t t io  a i rcmEtfor  which also fliglut-tsts results were available. Tha 
aggreememt betwan tl~oory md cnperimeat appears t o  he fairly good. On aeraunt of tlw lnsultx an ;Ipproprinte qu i r ememt  
f a r  satisfactory pitching heliaviour of an aeroplane in yaw is suggested. 
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1 Introduction. - 

11)  to establish a criterion.hy which the pitching 
hchaviour .due to sideslip of the acroplanc 
can be a.ppreciat,ed. . 

It is clear that the calculation of the motion of 
an acroplane with six degrees of freedom is a 
rather laborious and uiicerta.in procedure. So 
meaiis had to ,be found to simplify the calculations 
and to  obtain a method, which is sufficicntly 
accurate and which enables the designer to make 
n check on the dynamic behaviour in sideslip in a 
reasonable time. 

2 Method of analysis. 

2.1 Equations of motion 

The six equations which must bc satisfied 
throughout the niotion of the aeroplane can be 
written (for symbols see par. 6) 

m ( 1 ~  - cr + wq) = L-- mg sin 0 

m (6 - wp + t u )  = Y f ,wg cos 0 sin $ 

n ~ ( w - ~ u q + v p ) = 2 + s i g c o s O c o s *  

~ 1 ,  - E;. - ( B  - c) qr - 

114 - (C - A )  p r  + E p 2  - ErZ = df 

One of the difficulties in predicting the flying 
qualitics of an acroplane in the design stage is 
to determine the dynamic pitching hehaviour, when 

although windtunnel tests ihave shown pitching 
moment dne to sideslip which are small enou,gh 
t,o meet the wellknown relcrant rcauiremcnt of 

thc aeroplane is sideslipped. It ,may occur that, , (2.1) 

I =I, 

ref. 1, the dynamic longitudinal response to a ! 
C r - E ~ ~ - ( A - l ? ) p q + f i . : q r = N  , vuddrr-kick is verv violcnt. ~~ ~ ~~ 

Thcreforc an analysis of the pitching motion 
dlle to a snddcn yawing mot,ion was carried out 
daring the ycar 1948 with the ohject: 

a )  to establish a method for calculating the pitch- 
inx response to a sudden rudder deflect,ion or 

yherc a dot denotes a differmitiation with respect 
to timc. 

The equations arc referred to uxes which are 
fixed in the aerophne. The origin 0 lies on the 
ccnt,re of zra.vitv of the acroulane; OX lies in thc 

to-an mginc failure, based on data partially 
ohtained from static model tests in the wind- 
tunnel and partially ealciilatcd on a theore- 
tical base; 

planc of s immeky in thc direction of the velocity 
in steady symmetrical flight. The positive direc- 
tions of O X ,  resp. OY and 02 are forward, resp. 
to starboard and downward. 



. 
I 

i‘ 2 i 1 of the acroplane it cannot be expected that the 
pitching moment will ra ry  proportionally to the 
sideslip velocity; i t  is therefore hetter to write 
M ( v )  instead of M V V .  I 

If further, according to the usual pract,ice, un- 
important derivatives such as X, ,  Z , , ,  etc. are  
omitted the equations (2.2) take the form 

I 

\ I l l  ( u  + U T )  =Y,v + Y,y + Yo 

2.2 Simpl i fy ing  assumptions. 

I n  order to facilitate the computation of the 
motion it is assumed that the pitching motion as 
a result of a sudden rudder deflection or engine 
failure is only affected by the yawing motion and 
iiot by the rollirig motion. This assumption is sup- 
ported by results of.  flight tests, which showed 
that the character of the pitching motion follow- 
ing a rudder deflection is not influenced ,by a 
considerable change in rolling stability (rolling 
moment due to sideslip). So the rolling motion 
can he eliminated from the problem by putting 
p z I ,  = yi = O and omitting the fourth equation 
(2.1).  ’ I n  other words it is assumed that any 
rolling moment occurring during the manoeuvre 
is cancelled by an appropriate aileron deflection. 

On account of the short time in which the 
manoeuvre is performed it is further assumed 
t,hat the component u of the resultant velocity 
remains unchanged. As has been found in flight 
tests this assumption holds with sufficient accur- 
acy; as a result also the first equation (2.1) can 
he deleted. 

Finally i t  is supposed that the inertia axes of 
the aeroplane coincide with the chosen axes OX, 
OY and O Z ;  so the product of inertia E can be 
put  zero: 

Thus the equations of motions can lie written: 

??L (U + U T )  = Y  
na (W - uy) = z + m g  cos B 

[ L a )  i 
I . .  

C r  ’ = N  

2.3 Euuluution of the  uerodynumic forces an,d 

The aerodynamic forces X, Y, 2 and the aero- 
dynamic moments L, N, N are considered to be 
dependent on the linear and angular velocity 
components u, V, w., p ,  y and T and, with one 
single eseeption (Mi), independent of their deri- 
vatives with respect to time. So it  is assumed that 
the aerodynamic forces depend solely upon the 
instantaneous motion of the aeroplane and not 
upon the rate at which the motion is changing 
since it seems unlikely that instationary effects 
will influence the manoeuvre considered in this 
report. 

The aerodynamic force X for instance can he 
represented by the linearized expression: 

moments. 

X = X, + x,,u + X”V ,+ X,W + x p p  -I 
+ X,y + X,r 

where X o  = force in the direction of the X-axis in 
steady symmetrical flight and Xu a.s.0. are partial 
derivatives. 

I n  many problems in aeromechanics the so-called 
“cross-derivatii,es” (X,, X,, Y ,  etc.), consisting 
of a “symmetric” and an “asymmetric” symbol, 
are put  zero.’ In this investigation, however, an 
exception is made for 111. whiah is of primary in- 
terest to the problem. I n  view of the symmetry 

I 111 ( w - u q )  =Z,w + 1nacos ( 8 ,  + AB) 
+ z> 

(2.3) 
- Y  

Bi = I l r ( w )  + J L W  +.Al,lW + 
+ K,y + M,Ap + lu, 

C 1. = N,I: + N,r + N,Y + No 

where A p  denotes the difference bctnwn the in- 
sttintaneous elevator angle and P o ,  the elevator 
angle in steady flight. 

Takiiie into account that in steady symmetrical ’ 
flight 

= O  

No = O  

and putting cos B = 1 we ohtain 

nL (w + ur) = Y,u + Y,y 

111 (W - u s )  = Z,w 

Biz =Jf (v )  + ill& + M;iJ + 
i Mqy + M,Ap 

= N,u + N,r i N,y C; 

The equations in this form will he used for  a 
numerical analysis of the problem. 

If at a given moment t=t ,  the value of the 
velocity components v, w, y and r are known, (2.5) 
allow the determination of the values of these 
components a t  the moment t = t ,  + At provided all 
constants and the time histories of p and 7 are  
known. By means of this step-by-step integration 
it is possible to oalculate the manoeuvre resnlting 
from given control deflections. 

2.4 Nunaericul application. 

When applying the above-described procedure 
in a special ease the quantities 4’” , Y , ,  Z, , M(v), 
M,, M p ,  iV, and N, can be found from model 
tests in the windtunnel. The mais 111 and t h e  
moments of inertia B and C can be estimated 
with a sufficient degree of accuracy. Only If;, 
JL, and N, must be. calculated on a theoretical 
base. 

To this end the following well-known approxima- 
tive formulae are used 

(2.6) 



v 

For the contrihution of the wing in the damp- 
ing momsnt in yaw ref. 2 can he consulted. 

3 Comparison of theoretical and experimental 
results. 

The iLhove-deserihed computation met,hod \vas 
applied t o  a light single-engined aeroplane for  
which also flight test results were available. 

I n  order to investigate the pitching Iiehsvionr o l  
the aeroplane dne to sideslip in flight, a sudden 
rudder deflection was effected and the  resulting 
motion was recorded by means of an antomatic 
oliserver. The time history of the rudder angle 
doring a left and right “rudder kiek” is given 
in  fig. 1 .  The pilot was instructed to  keep the 

3 

The main results are plotted in the figures 2-5 
as time histories of the sideslip angle T, the angle 
of pitch B and the lat.eral and ,normal components 
of t,he acceleration n, and ( 1 , .  The airspeed varied 
only a few iiiph during the manoeuvre. As may 

.’I 
a* 
2g I 

__ THEORY 
I I I I 

1 in 4ec 
0 1.0 ’ 2 0  3 0  4.0 5 0  

Fig. 3. Sornisl m d  littcral aoecleratian during left rudder 
kick (singlc-ci~gitwl aerc~pluw). 

FLIGHT T E S T S  I 1 , 

t in 5ec 

Fig. 4. hiiglcs of sideslip :d pitch during right rudder 
kick (single-ciigiined auroplanc). 

Fig. 1. ltuddmor aiigle during right and left ivddcr kick 
(sin&-engined aeropiaue). 

clwator angle LIS constant as possible but did not 
succeed folly in doing so. 

z’ 

__ THEORY 

0 1.0 2.0 3.0 4.0 . 5.0 

Angles of s i d d i p  and pitch during left  mddsr 
1. Ln- 

Fig. 2. 
kick (ringlo-engined aeroplane). 

29, I I I I 1 

.19- 

0 i 
dl 

.m 

‘ 0  

-19 

0 10 2 0  30 40 5 0  
1 in 5% 

Normal a i d  Itxtcra.1 acceleration during right rudder Fig. 5. 
kiek (single-engined acrophe) .  

lie seen from tile figures the violent response of 
the aeroplane is unacceptahle. Especially the large 
changes in angle of pitch and normal acceleration 
;ire oharacterist,ie feat,urcs of the behaviour of the 
aeroplane. 



\' 4 

milrle~ kick (twin-mgined ~eroplane). 
> .  

1. 

e" 
0 

The computation of the measured quantities 
according to the method outlined in par. 2 \vas 
based on the measnred time history of the rudder 
deflection. The assumption of constant airspeed 
seems to bo tenable in view of the small variations 
in airspeed being measured. The data required 
were partly taken from unpublished results of 
model tests in the windtunnnel and partly derived 
from flight tests; the remainder was calculated 
aceording to the. formulae of par. 2.4. A survey 
of these datn- is given in table 1. The small 
cliangos in elevator angle Ap recorded during, the 
manoeuvre were introduced into the equations. 
The time interval in the step-by-step integration 
procedure wils taken as 0.1 see. 

The results of the calculations together ' with 
those of the flight tests .are given in the figures 
2-5. The agreement between the two sets of cnrves 
appears to he fairly good. In both cnses the theo- 
retical angle of sideslip is somewhat in excess of 
the' experimental value especially when this angle 
is large. It is clear that a perfect agreement can- 
not he expected a t  those very large sideslip angles 
because it is unlikely that the assumed linearity 
hold? in this region. 

The experimental and theoretical values of the 
angle of pitch and the normal acceleration ace in 
good agreement. So it can be concluded that the 
theoretical analysis gives a snfficiently. accurate 
pictnre of the behaviour of the aeroplane. 

Ainother check on the computation method was 
made for a twin-engined aeroplane, which, as 
was proved by flight tests, showed a. satisfactory 
pitching behaviour in sideslip. In fig. 6 and 7 
the results of such a "rudder #kick" test together 
wit.h the theoretical results arc presented. The 
character of t,he manoeuvre following the rndder 
deflection is much less violent than for the first- 

dz 

29 

r g  

0 

-FL IGHT T E S T 5  __ THEORY -20 ~ 

" , - ' x  ~ .. 2 

TABIJE 1 

Data of the single-engined aeroplulie. 

.(.I' = 42 m/sec; p = 0.11 kgn-' see') 

nt = 114.5 kgm-'sec* 
- II = 1SO kgmse? 

C = 426 kgmsec? 
Yo =- 16.1 kgm-'see 
Y,= 3.25 kg/degr 
Zu = - 197 k,m-'sec e 

If,&> =- 39.2 kgsec * 
If; =- 5.43 kgsec' 
41, =-G78 kgm seclrad 
if18 =- 55.6 ~kgmlilegr 
A'" = 17.4 kgsec 
N ,  =-930.  kgm seclrad 
N .  =- 16.2 kgm/deg Q 

/ 

N ( u )  = - 7.05 kgm when 0 < 1: < 4.16 m/see 
-20.0 N t 53.9 ,, ,, 4.16 < 1: < 10.4 ,, 

7.05 L: - 221 ' ?, ,, 10.4 < u < 14.6 i, 
-228.4 II + 259.5 ,, > 3  1: > 14.6 ,, 

I '  

nc,nntirc values. 

flight tests; all otheis am cs t imbed.  
Thc quantities marked * are deriwd from model tcsts; X,, and Yt, are found from 

. .  . .  
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i 
I. 

TIL E 575 kgn-'sec2 111, =- 216 kgsec 
N = 2600 kgmsecZ Mi =- 35.6 kgsec2 
C E 5275 kgmsec2 lllcJ =- 8040 kgm sec/rad 
Yv =- 87.0 k,p-'sec M p  '=- 319 kgm/degr 

Z, =- 727 k,m-'sec, N, =-3237 kgm sec/rad 
Y y  = 1'7.1 kg/degr N ,  = 285 kgsec 

N,, =- 139 kgm/degr 

> V ( V )  = -26.0 c kgm whe~i 0 < < 2.96 m/sec 
,, 2.96 < 0 < 22.1 ,, - - -98.2 w + 213 ,, 

I I 1 

4 Recommended requirement for the pitching 

The Trioleiice of the manoeuvre followi'ng a sud- 
den rudder deflection c a n  hest be appreciated by 
nieaiis of the resulting normal acceleration. The 
additional normal acceleration (over 1 g) during 
the manoeuvre of the single-engined aeroplane 
appeared to be about - 0.8 g (see fig. 3 and 51, 
whioli must be considered to be unacceptable. The 
twin-engined aeroplane showed only - 0.2 g (see 
fig. 7 )  corresponding with a satisfactory hhaviour.  

The relernnt requirement mentioned in ref. 1 
reads: "As measured in steady sideslip, the pitcli- 
ing moment due to sideslip should be such that, 
not more than lo elevator movemcnt is required 
to maintain longitudinal tr im at 110 percent of 
the minimum speed when the rudder is moved 5' 
right or left from its position for straight flight". 

This requirement was met by both aeroplanes 
and since one of the two showed an intolerable 
behaviour it secms desirable to introduce another 
requirement which covers the above-mentioned 
short-coming. The following proposal is " l e :  

"As a result of a sudden rudder deflection 
according to fig. 8 in symmetrical flight a t  
1.3 VmIn the normal acceleration should not 

motion due t o  sideslip. 
a dangerous inadvertant stall of the aeroplane. 
So it  looks desirable to require i n  the first  place 
that the sign of the pitching moment due to side- 

0 1.0 2.0 3.0 4C 
Linsec 

Fig. 8. Idooalized rudder kick (par. 4) 

slip shall always be negative (nose-down) and 
further tliat the above-mentioned decrease of 6 g 
in the normal acceleration shall not bc exceeded. 

M t e r  completing this study authors became 
aware of a similar tentative requirement mention- 
ed in ref. 3, which prescribes that the application 
of a rudder force of 50 Ibs should not produce a 
change in normal acceleration greater than 0.2 g 
ldien the elevator is left .free. 



'Althodgh there are u few numerical differences 
between the two proposals they have the same 
tendency. An essentia.1 difference, however, is the 
clcvator free term in thc latter. It is not im-. 
niediatelg clear whether. this condition makes the 
requiremeiit more or less severe but according to  
tlie experience ohtained i t  is lieliered the former 
will he the case.. I t  must bc noted that i t  is rather 

cult to apply the requirement of ref. 3 in the 
d e s i p  stage of an aerop1,ane. 

5 Conclusions. 

An analysis of tlie pitching motion of an aero. 
p l m e  due to  sideslip given in  this report showed 
that the dynamic response to a sudden rudder 
kick or, in tlie case of a mnltiengined aeroplane, 
to an engine failure can hc very violent although 
the well-known relevant requircment of ref. 1 is 
met. It is concluded that a supplementary require- 
ment as to the change in normal acceleration as 
the result of a suddcii rudder deflection should 
be added to the existing one. A description of an 
appropriate proposal is given i n  par. 4. 
In order to be ablc to predict the pitching 

l~cha.vionr in sideslip in thc design stage a com- 
putation nicthod is given whioh was applied to 
two aeroplanw d s o  tested in flight. The agree- 
mciit hctweeii the theoretical and experimental 
results is satisfactory. The computations can be 
carried out in a rery reasonable time. 

6 List of symbols. 

A moment of inertia ahout the X axis. 
u r ,  fly, N~ acceleration in tlie direction of the X ,  

Y ,  Z axis. 
13 moment of inertia about the Y axis, 
.b wing span. 
C moment of inertia about the Z axis., 
E .  product of inertia with respect to  X arid 

Z axis. 
F wing area. 
P,, area of horizontal tail. 
P,, area of vertical tail, 
G aeroplane weight. 
Q .  acceleration due to  gravity. 
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distance of centre of pressure of hori- 
zontal tail ,hehind aeroplane e. g. 
distaiicc of cciitre of prcpure of vertical 
tail behind aeroplane e. g. 
moment of aerodynamic forces ahout X, 
l', Z axis (posit,ive when starboard wing 
downward, nose upwa.rd, starboard wing 
rearward). 
mass of the aeroplane. 
anbalar x~elocity ahout X ,  Y, Z axis (sign 
nccording to  L,  'X, N ) .  
t,ime. 
linear velocity compoiients in tlie direc- 
t,ioil of the X ,  .Y, 2 axis (positive ~vlleii 
forward, to starboard, downward). 
resultant velocity. 
aerodynamic forces in the direction o f  
the X ,  I', Z axis (sign according to N, 
u,  t u ) .  
angle of incidence. 
elevator angle (positive when doir-nward), 
rudder angle (positive when to  port). 
angle of downwash. 
angle of pitch (positive when nose up).  
angle of bank (posit,ive when stwboard 
wing down), 
sideslip angle (positive vlien starboard 
wing leading). 
air density. 

Symlmls eoiisistiiig of a hig charaetcr and a small 
index such as I;, iV, a. s .  0. dcnote partial derivn- 
tires of I', N with respect to 0, 1'. 
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The Static Longitudinal Stability and Control of an Aeroplane 
as affected by the Compressibility of the Air 

. 

I h a  J. BUIIRllAN and Ir C. hf. XALKMAN 

Summary. 

A computation method is g i v m  f o r  the effect of the compressibility of the air on the static longitudinal stability 

Their aonlieabilitv is. liniitod t o  Mach numbcrs bclow tho critical Naoh number since the linear theory holds no 
and control eheraeteristies of an aeroplane. The dorivod farrnulao are based on the Prandtl rule. 

longer boy&; this limit. 
I n  order to illustrate the magnitude of the influence of the Xseb number on static and manoeuvre margins and 

trim changes the  results of B numerical spplioation of tho formulae are included in the report. I .. 
For a'morc detailcd summary of the conclusions see 8s. 5. 
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1 Introduction. 

T,here are two main causes for the change in 
the flying characteristics of an aeroplane when the 
speed increases to high subsonic values, the first 
of which is the distortion of the various parts of 
the aeroplane and the second the compressibility 
of the air. 

I n  ref. 1 GATIB and LVON. give an extension of 
the theory of longitudinal stability and control by 
abandoning the usual assumption of the speed in- 
dependence of the aerodynamic coefficients. Their 
theory is of a very general character and com- 
prises the two mentioned high speed effects as 
well as the slipstream effects at tow speeds. 

As it seems. desirable to gain an. insight in the 
separate effects a computation method for the 
influence of the air compressibility alone on the 
ntatic lon,gitndinal stability and control charac- 

teristics is given in this report. So the aeroplane 
will be considered to bo perfectly rigid. The rangc 
of speeds to  which the formulae derived are ap- 
plicable lics below the critical Mach number since 
the linearized theory on which the computations 
are based holds no longer bcyond this limit. 

2 Mach number effects on the 'aerodynamic 
coefficients of a three-dimensional aerofoil. 

I n  order to 'be able to predict the changes in 
t.he stability and control characteristics of an aero- 
plane occurring when speed is increased to hi,gh 
subsonic values i t  is necessary to know how the 
basic aerodynamic parameters of a three-dimension- 
al aerofoil are affected by Mach number. 

To this end a brief survey of the changes in 
the following parameters with Mach number will 
be given in this paragraph: 

Lift curve slope of wing or tailplane (a; al). 
Rate of increase .of lift with elevator or tab 
angle (a2; a%). 
Downwash angle behind aerofoil ( e ) .  

Rate of obange, of hinge moment with angle 
of'iucidence, elcvstor or tab a.nglc ( b 1 ;  a,; b 3 ) . .  
Wing pitching moment at zero lift (L~). 

I n  ref. 2 CO'TIIERT gives the following extension 
of the well&nown "rL rule: The field bf 
Ytreamlines of a compressible ilow around. an aero- 
foil (undisturbed flow in the direction of the 
X-axis of the aerofoil) can be com?iared with the 
field of streamlines in an incompressible flow: 
which is obtained by contracting the first one 
(aerofoil contours included) in a ratio 
in all directions normal to  that of the undisturb- 
ed flow. ' Then the non-dimensional pressures 
( ~ p / +  pu;) and perturbation velocities (Av,/u,) 
for the comprksible flow are 1/(1 -JP) times as 

. , .  

. 



large as in corresponding points of the inconkpres- -~ 
sihie flow. 

The annlication of this rule to the lift curve 
slope of a n  elliptic wing with aspect ratio h gives 

where according to ref. 1 small characters resp. 
capitah refer to the incompressible resp: eom- 
pressihle case. . ,  

For other than elliptic wing plan forms matters 
are more complicated'. In an inconipressible fluid 
the following formula can be given f,or the lift 
cnrve slope 

1 . .  . 
1 l f r '  -+ -  
a0 TA 

a= 

where T depends on, the plan form of the wing. 
It is shown in ref. 3 that for a compressi'ble 

fluid - 
, . .  . . .  .. . . . ,  

a, Th 

I n  this formula the value of .7  must he taken 
from the incompressible theory for a wing with 
a n  aspect ratio of A I/ 1 - JP. It w o d d  he pos- 
sible to express T in te r"  of Mach numher but  
this would result in a rather compilicated form. 
The computations in the next part of the report 
will therefore he confined to the case of bhe el'liptic 
lift distribution along the span of wing and tail 
surfaces which is 'believed to give a satisfactory 
impression of the trend of stability characteristics 
with increasing Mach number. Eventually further 
refinements can be made in special practical cases. 

Similar formulae hold for the effect of Mach 
numher on the rates of inereas@ of tail ,plane lift 
with elevator and tab angle. 

The relations t o  be used are (see see. 6 for  
notation) 

__ 

Another aerodynamic parameter k f w t i n g  the 
longitudinal stability of an aeroplane is the down- 
wash behind the wing. If  allowance is made for 
the rolling-up of the vortex-sheet and the distance 
between the rolled-up vortices is denoted by 2 s'. 
then the ,downwash angle E at  a point in the plane 
of symmetry at  a distance 1 hehind the aerofoil 
can ,he represented by (ref. 3)  

(2.3) 
F o r  an elliptic load grading (2.3) reduces to 

)'I. (2.4) 
8 Aa a2s= (1 - iIP) 

16 1% 

Again, it must be remmhered that when ap- 
plying formula (2.3) the value of s' can he taken 
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from the theory of incompressible flow for a wing 
of an aspect ratio A VI-W. 

Not very much i? known about the influence of 
Mach nainher on the hinge moment coefficients 
for controls on aerofoils of finite spm.  Use will 
he made of the formulae derived by YOUSG and 
OWEX in ref. 4, which redd 

and 

Since the formulae (2.6) and (2.7) are too com: 
plicated for the purpose of this report the follow- 
ing approximation is made. I n  the right hand 
sides of (2.6) and (2.7) the terms b,,ai; are' 
omitted, which implies only a rather small loss in 
accuracy in most cases, so that 

. .  
. .  

It must be noted that the coefficients h i  are 
related to the stick forces and tl;e stick free stahil- 
ity characteristics of the aeroplane, which even in 
the low speed case are muck more difficult to 
predict than the control deflections and the stick 
fixed stahilit,y characteristics. From this point of 
view the approximation (2.8) seems to  he suffi- 
ciently accurate. 

An important parimcter with respect to longi- 
tndind stability is the wing pitching moment a t  
zero lift (cnLo).  As a first approximation the fol- 
lowiig formula will be used (ref. 5) 

. . .  
f cnr,=-, , , t 

where f represents the maximum camber of the 
acrofoil section. 

.With the aid of the above-mentioned rule govern- 
ing compressihility effects it is casy to show. that 

For more accurate approximations ref. 6 call be 
consiilted. It is allowed to assume as a first ap- 
proximation that the positioii of the aerodynamic 
centre of the wing is not affected by eompressi- 
hilitj. below the critical Mach number si,nce this 
Iimition is given. by the derivative of pitching 
moment coefficient with respect to lift coefficient. 
As these coefficients are c h a n g d  in the same ratio 
hy comprcssihility t,he a. e. position remains un- 
changed. 
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3 Static longitudinal stability. 

\ 3.1 General. 

W h e n  the assimption that the aerodynamic para- 
mct,ers are independent of speed is no longer true, 
t,he theory of longitudinal stability takes a more 
complex form. In ref. I it i s  shown that the deri- 
vative dc,/dc, can be takeli as a measure of static 
longitiidinal stability. For t,he not too steep glides 
to 'be considered in this report c, is aspproximately 
erpa.1 to e,, . Than dc?,Jdc, passes into the usual 
dc,,,/dc, which now can be represented by 

I 
v 

Siiice in  a steady glide 

G = 4 pVZFc, = 4 pVzPCa (3.2) 
(3.1) can also bc writtc;i 

J n  low spccd theory only the first term on the 
right ha.nd side h a  to ,he taken. into account since 

\ the partial derivative a%/aM may then he assumed 
\ to  be zero. I n  the next sections ihe 'valiie OC 

ac,,,/aM will he computed for both the stick fixed 
;id thc st,iok free case. 

3.2 Stick fixed, 

The pitc1iin.g moment coefficient of an aero- 
plane ahont, the centre of gravity at a distance ht 
Iichind t,hc wing leading edge can lie given 1)y 
(see scc. 6 for notation) 

G M ' = C X ~  I- (h-hh,)Aa'+ G ~ ~ ~ ~ ~ -  

r 

- J 

Siiicc tlie t o td  lift eocfficicnt of the aeroplane I 

1 can he written 

e, =A&'+ c,, = Aa t 

(3.5) 

elimination of Aa and cCH from (3.4) and (3.5) 
yiclds ! 

ex.= cui '+ ( 7 L  - 7& + c,,,,,s - 

1 
- e A ,  (A - e o )  +:A,. + A& + 40' 

-. (3.6) 
' 1  - v  

1 + F" A ,  (x - e o )  

The fusehge contribution in the pitching mo- 
mciit c,,tur is assumed to be linearly dependent 
on the a.ngle of incidence and cdn thns be repre- 
scnterl .by e.:,ua (a t 8 )  in which expression S 
denotes thc anglc hetween the fuselage axis and 
t,lie zero lift line of the wing. 

Application of the extended PRANWL rule shows 
that the effect of compressibility on the fuselage 
moment is very small (ref. 5) ; so it will 11c negleet- 
ed in this report. 

It must he noticed that tlie a8pplication of for- 
mula (3.3) involves the appearance of a term con- 

taining the pa.rtia1 derivat,ive 

term c,,tu8 .contains N. In order to evaluate this 
derivative we differentiate (3.5). and obtain from 

im) a, , since the 

C" 

the following cxprcssioii lu r  (ac<,: 

From an estimation of the different terms in 
(3 .7)  it followed that an adeqnate approximation 
i s  given by 

.(3.8) ( A2a,,a + A,a,(c,-AAu) ) JI - 
Aa,,n, 1 l + . + ( x - z o ) A , l  1 m2 

From the formulae (3.3) and (3.F) a n  expression 
for the static margin stick fixed K , ,  defined as 
- dc,/de, can .now easily be found when the data 
of see. 2 are borne in mind. 

When moreover the elevator angle /3 is elimin- 
ated hy means of cM=O the formula reads 



The first bwo terms of (3.9) are originated with 
(ac,Jac,),, whereas the third term is connected 

The formula (3.9) being rather complicated its 
right hand side was evaluated for the particular 
case of a single-engined fighter in gliding flight, 
the data of which are given in table 1. A few 
results are given in fig. 1. 

with (acdal l i )~, .  

._. 
0 0 2  0' 0 6  O B , "  

Fig. 1. Nach number effeet on etstio margin 
atiek fixed. 

In  order. to show the trend of E, with Mach 
nuniber more 'clea.rly the curves in this and the 
following figures are given for Ma& numbers up 
to If= 0.8, although this value will be well above 
the, critical Mach number. 

It is seen that as distinct from the incompres- 
sible case altitude has an important effect on the 
changes of R, with h c h  nnmber. Tbese changes 
are smaller at high altitudes. Furthermore the 
plot reveals the influence of 6, the angle hctween 
tkie fuselage axis and the non-lift line of the wing, 
in the compressible case. It appears to be 'possible 
to  modify the stability changes with M by means 
of the wing setting relative to the fuselage. 

From the computatioris it was further concluded 
that the wing pitohing moment has a very 
important influence oh the changes of K ,  , In  the 

. ,  
. .  . . ,  
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example of fig. 1 a negative value of cm, (- 0.02) 
was assumed according to an average profile cam- 
ber. 'It would also be possible to effect ,positive 
changes in K,  'by appkication of a reversed wing 
camber. 

The large decrements in the static margin which 

according to (3.9) can occur do not always imply 
a deterioration of the longitudinal 'flying qualities. 
of the aeroplane. It is pointed out in ref. 1 that 
rather large negative static margins can he aceept- 
ed if only the manoeuvre maxins  remain positive. 
' I n  order to find the effect of compressibility on 
the trim eurbes, the ohange of the elevator angle 
with increasing Mach number and at constant lift 
coefficient must be computed. This can he done 
'by, using equation (3.6). Putting cM = 0 gives the 
following relation for the elevator angle in the 
compressible case 

whilst in the incompressible case 

1 1 
a,  

' - - 1 c,a, (y - e o )  + a,u + a#'/ (3.11) 

where a, denotes the angle of incidence in the 
incompressible case. The d i f f e r "  Aa = a  - a0 
can he approximated by equating bhe wing lift in 
hoth cases 

a q  = Aa 
from which by means of (2.1) and putting 
L'm = 1 - i w z  we find 

When taking for the downwash factor so the 
low speed value in bobh cases, which ?ccording to  
the computations involves only a slight error, sub- 
traction of (3.11) from (3.10) gives for the change 
in elevator angle to trim due to compressibility 
at constant lift cmfficient the following approxi- 
mative expression: 

(3.13) 

A numerical evaluation is given in fig. 2, where 
bhe trim changes due to  compressihility are plotted 
against Mach number. It is seen from the graph 
that these changes are rather small even for high 
values of lli and never exceed half a degree. 
AB can be seen from (3.13) immediately the 
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ciirves for different altitudes are parallel since 
the last term on the right hand sisdc contains M'c, 
which is a constant for a given altit,ude. 
An important parameter in (3.13) is e,, which 

is normally negative (in the example cmp = - 0.02). 
It has a predominant infhcnce on the trend of 
Ap with increasing 41. Thus in most CBSCS A p  
will become negative at high Mach numbers in- 
dicating a nose down pitching .moment due to 
compressibdity . 

Although 6 has also a rather important iu- 
fluenee on Ap (see fig. 2) it does not affect the 
trend of A p  with M in the same way as h0 since 
the factor M 2 / Y m  has a st,ronger influence 
than N*/2  (see (3.13)). 

It can he noted that according to (3.13) the 
expression for Ap at a given lift coefficient tends 
to zero for very low Mach numbers. For a 'given 
altitude, howeTrer, one part of Ap, i. e. the term 
containing JPc, in (3.13), does not disappear when 

11 

3.3 Stick free. 

hinge moment coefficient can he written 
If the elevator weight moment is neglected the 

GI, = B,a, + BJ3 + H#. (3.14) 

Eliminating p from (3.4) and (3.14) yields the 
stick free pitching moment coefficient 

c y  = CA,, + C',flrs(" + 6 )  + ( h  - ?Lo)&- 
- 

- V [c"A,(_q-"o)+ 1 
1+-(--.,)A, F H  1 

P A  

+ a,. + Z3F] (3.15) 

I n  a similar way to the stick fixed case a for- 
m d a  for the static margin stick free I!?" can be 
given with the aid of formula (3.3). 

The result is ' 

M decreases. So even a t  very lo\r Mach numhers 
a small compressibility effect is left as a result of 
the corresponding high lift coefficient. 

A s '  

O B 0 4  0 2  0.:' e; A i  m o w  m 

0 6 0 4  0.2 0 1  0 0 5  c. A7 5" 

0 5  0 2  0 1  0 0 5  C. AT 2 5 0 0  m 

!?&vator trim change due to eampresihility 

2 ,  , 

d, 
%. 2 .  

M a function of Ma& number. 

(3.16) 

Althoiigli formula. (3.9) for the stick fixed static 
ma.rgin resembles (3.16) very much there is one 
remarkahle difEerence hetween the two. T,he last 
term on the right hand side of (3.16) betwoen 
the square braokets is the only one which has no 
corresponding term in (3.9). It coutaim the tail- 
plane setting u. For paritive values of the ratio 
13,/n, increasing IT decreases K'". Since K', is a 
measiire for  the trimmer movement for steady 
flight at various speeds with zero stick force or 
the stick force required to change speed at con- 
stant trimmer setting, adjusting the incidence of 
the tail planc can improve the characteristics of 
t,he longitudinal control. In  ref. 7 filight tests with 
a Firefly &&I aircraft are described, the results 
of which can he considered as a confirmation of 
the abovementioned conclusion. It miut be re- 
membered, however, that aero-elastic deformations, 
which are neglected here can also ham affected 
the €light t e s t  results. 

I n  fic. 3 the effect of altitude on the variation ~~ ~~ 

of K'" with Mach number is given for  the same 
aeroplane as the one of see. 3.2. The curves show 
t,he same trend as those for the stick fixed static 
margin. Especially at, low altitudes rather large 
decreases of K'. can occiir. Again, it. was found 
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from the conipiitations t c , , ~ ~  has a dominant 
influence 011 the changes in K'n; small values of 
cn10 imply small changes in static margins. 

G 

0 

-010 

- 0 2 0  

0 30 

m 
Fig. 3. Effect of aititide on bhho variatioa of static 

margin stkk freo with Mach n d e r  6 = r = O " .  

The influmice of wing and tail setting (S  and U) 
in the compressible case are illustrated in fig. 4, 
from which it appears that the changes due to  S 

x [CM, + C'"'/,,. (a + 6 )  + ( K  - ICo) C"] - 
1 1 
4 A - 7 I ( - - e c ) , +  xlu 1 . (3.17) 

whereas iii the incompressible ease at the .same lift 
coefficient 

l'f -a*( - - :  P ,  - 1 ) , .  X 
a Eo 

- 
P 

( P ' t , )  = 
va8 

x ,  [C& + c'",/7Ls (a, + S I +  (It-  h,)c,l ,- 

Similar to (3.13) the change in elevator tab 
mgle doe to compressibility at  a given lift coeffi- 
cient can he derived by subtraction of (3.18) from 
(3.17) in the following approximative form 

H2 a, _ _  - 
2 b, 

and (r are of the same order for  the chosen ex- 
ampie. It miist he noted that these effects are 
ahsent in the incompressihle case. 

Fig. 4. Effict of wing mid tail sotting ( 6  and s) an 
. tho variation of l i t n  wnth~hlach mmbcr. 

;Similar to the stick fixed ease it can be said 
tha t '  rather large negative margins a t  high spceds 
are acceptable provided the manoeuvre margin 
stick free remains positive since the divergence 
associated with it becomes small at high speeds. 

The changes in trim tab atyle due to com- 
pressihility can be computed along the same lines 
as the elcvator trim changes in sec. 3.2. The trim 
tah angle at a given lift coefficient e, can tic 
found in the  eompressihle case from eqnat,ion (3.15) 
by putting ck=O 

(3.19) 

In order to illustrate tlle magnitude of A/," this 
quantity has been plotted against Maoh number 
in fig. 5 for four different altitudes. 

I I, 

-0' 1 I I I l 
Fig. 8. zffeet of altitude on e1lov:ttor tab &"e, 
&ue to compressibility as a fonotion of Mach number. 

0 0 2  0 6  0 6  o a  7.0" 

It iy seen that a change in altitude resdts in a 

appears not to  ,be large for the chosen example it 
is about twice 8s large as the elevator changes. 

The first term on the right handl side of (3.19) 
containing c,,, f o m  an important past of A T  and 
can be considered as a means of modifying the trim 

parallel displacement of the curves. Although Ap' I 



V 13 

tab angle changes a t  high speeds, The influences 
of wing and tail setting ( 6  and v )  are shown in 
fig. 6 from which it appears tha t  these are relat- 

The psition of tlie centre of gravity for  which 
the elevator action per g (stick travel resp. stick 
force) is zero, is known as the manoeuvre point 
(stick fixed r e q .  stick free), whilst the manoeuvre 

q- margins are defined as the ,distances of the 
manoeuvre points t o  t,he centre of gravity. 

T,he assumption that speed is constant during 
the manoeuvre simplifies the computation of the 
effect of compressibility on the manocnvrability 
characteristics considerahly since partial deriva- 
tives with respect to Mach number as appearing 
in the static stability theory do not occur. As a 
result of this the formiilae in the next two sections 
resemble those of the basic theory for a, good deal, 

4.2 St i ck  f ixed.  

The elevator mgle to trim in steady symmetric 
flight a t  a given speed (or c.) is determined 'by 
(see 3.6) 

. O B  

*a' 

r 0  2 

0 

Cue+ c'mtUs ( a +  S ) + ( h - J ~ , ) c o -  -0 2 
' 01, 0 0 2  0' oe 0 0  

Fig. 6. E f h t  of Lail 3xd wing sctting (T and a) 
on elcwtar tal, change due to emprnsibilit,y as 5 

1 
- c , A ,  (x - E . )  + A,u + A$ + A,,V 

--v - = 0. f"nl:tion of Mach number. 
r'" 1 

ivcly important. The contribution of U, which is 
determined. by the last term on the right hand 
side of (3.19), contains the factor bJb,,, vhieh I n  the steady pull-out with a nornial acceleration 
can vary between rather wide boundaries; normal- of (n'+ I) ,g at the sane speed and trimmer sett- 
1y it lies in the region 1 to - S .  ing the following relation describes the equilibrium 

It, is clear from the foregoing analysis that the of pitching moments 

1+- 8 7  A * ( T - e J  (4.1) 

cu + c'mf,,8 ( a + A n + S ) + ( h - - " ) ( C , + A c , ) -  
1 
A (c,+Ac,)A, ( - - E . )  ~ A ~ ( u + A n , , ) , ~ ~ ~ ( p + A D ) , + A ~ ~  

___ =o, (4.2) 
- 

I -V 
l + - A A , ( ~ - ~ . )  PH 

F 
changes in p' due to compressibility are ,dependent 
on many paramcters. It wodd carry too far to  
investigate the influence of each single parameter 
in this report. I n  general, however, it may be 
concluded. that the trend of Ap' with inereasiiig 
l\lach number lies i n  the pwitive ,direction corres- 
ponding to the decrease of the static margin 
found before. 

Finally it may be observed that similar to AD 
tlie expression for ~ p '  tends to  zero for lor$ i&ch 
numbers at a given lift coefficient bnt contailis 
a finit,e part for constant altitude. 

4 Manoeuvrability. 

4.S General. 
The criteria for the 'mnnoeuvmbility of tlie 

longitudinal motion commonly uses are the 
elevator actions necesssry to produce a given 
normal acceleration in a pull-out, i. e. the well- 
known stick travel and stick force per g. Since 
a circular motion in a vertical plane cannot be 
perfectly steady because of changes in the position 
of the aeroplane with respect to  the vertical, the 
manoeii~rability theory can only he an approxi- 
mate one, in wKich the assummptions are made that 
the dnration of the manoeuvre is so small, that the 
variations of speed and of the normal component 
01 gravity may be neglected. 

where Ac, = ncG . 
The increment in angle of incidence of the hori- 

zontal tail Aa, is due to the rotation of the aero- 
plane about its lateral axis aid can be equated to  

where p, denotes the relative density of tlie aero- 

plallc = - 
pE'1 ' 

must be relnemt~cred that 

111 

I n  order to  eliminate Aa from the equations it 

+A,(p+AP)+A3/3' . (4.3) 

Elimination of p and Acr from (4.1), (4.2) and 
(4.3) and omitting very small quantities results in 

from wliicli an expression for the manoenwe margin 
stick fixed Ifn, is casily derived 



H ,  = 71, - h = ? I , ,  - h 4- 
. .  1 1 

F" 1 

. . TALA( - - E . , - ) . -  c'",u.T 
ZA . (4.5) . A  + 

A 1 1  + A, (--..I d 
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An illwtration of the variation of li,, with &f 
is given in fig. 7 for the aircraft mendioned in 

H I T  

0 0. 2 01 "6 - 0.BM 
I 

Fig. 7. Manoeuvre amgigills stick fixml BJ n 
function of &la.& number. 

the preceding sections. Compared with the static 
margin the changes in I I ,  appear to  be rather 
small and even at '31 = 0.8 amount to no more than 
a few per cent of the mean aerodynamic chord. 
The quantitx p1 contains (r and so introduces an 
altitude effect on the manoeuvre margin; the 
margin decreases with increasing altitude. This 
effect increases slightly with Mach number. 

It may be observed, that the distance between 
the neutral and the manoeuvre point. e in  become 
~ e r y  large, the former travelling f a r  ahead of the 
latter. This situation does not necessary give rise 
to  a deterioration of the flying qua41ities since as 
said before a negative static mugin  combined with 
a positive manoeuvre margin can be quite aecept- 
able at high speeds. 

Further, it is also possible that the variation 
of the static margin is so small that the manoeuvre 
poilit comes in front of the neutral point, a situ- 
ation that does not occur a t  low speeds. This will 
be the ease, for instance, when the value of 
i s  only slightly negative or even positive. 

Although the varia.tions of H ,  with M in fig. 7 
correspond to one special aeroplane the curves 
have a much more general significance than those 
df the fi'gures concerning the static mapgins, be- 
cause the parameters in (4.5) which are responsible 
for the variation of H,, do not vary very much 
from one aeroplane to another. 

Finadly. the clevator movement per g, p s ,  is 
plotted against Maoh number for two different 
altipdcs in fig. 8 according tu  the following for- 
mula 

I n  order to illustrate the Mach number effect 
more clearly pg is also given for the case in which 
all , compressibility effects are neglected (dotted 
lines). I t  is s e n  that ll~elow the critical Mach 
nu'mber (say 0.7) the compressibility effect on Po 
is: small. 

4.3 Stick free. 

The effect'of Mach number on the manoeuvre 
margin stick free and the corresponding manoeuvre 
point can be Pound along similar lines as in the pre- 

-COMPRESSIBLE 

0 0 . 2  0.4 0.6 08, 

Fig. S. Effmt of Maoh numlw on olmrrtor 
xnglo per g. 

ceding section. Starting from trimmed flig'ht (stick 
force zero) at a given speed (or eo) the hinge 
moment coefl'icient cH in a pu1,lLout with a normal 
acceleration of (n'+ 1) g a t  the same speed and 
trimmer setting can be derived from the sajme 
equabionv as in par. 4.2 and 

Ac,, = A  ( - E ~ )  AaB, + - B,  + ApB,, (4.7) 

which follows from (3.14). 

1 A% 
2 111 

Similar to (4.4) it is found 

whereas the formula for the manoeuvre margin 
stick free reads 

N', = J L ' ~  - h = k, - h + 
1 1 

VAA, ( ~ - c . + - ) - d t n r , ,  

PH - 1 
A [I + - P A, (A -..)I 

_ -  
. (4.9) 2 111 + 

H, 

0.02 

0.0 2 
. .  

0 

0 0.2 0.4 0.6 o.s, 
FLg. 9. Manoeuvre margins stick fnec &9 a 

fnmtiou of Mach numbar. 



In fig. 9 lI'+,, is plotted against Xach number 
which show the same picture as H ,  in the pre- 
ceding section. The decrease in H:, at H = @ . 7  
amounts t o  ahout one per cent of the mean aero- 
dynamic chord. iLr distinct from the stick fixed 
case the parameters in (4.9) can vary much more- 
than those in (4.5) from one aeroplane to  the 
other, therefore the variation of WWL in fig. 9 is 
less rcpresentative than that of I€,,,. 

The stick force per g can he computed from 

(4.10) H, G 
T7Az E' 

x -- - F g t g l i ' , ,  , 

The. results for  the chosen. example are given 
i;i fig. 10,. which. shows a moderate reduction of 
the stick force per g nrith increasing Mach number. 

pg (kg) , * [ Y H  
0 

0 0.2 0.4 06 0.8 

Fig. 10. Effffat of Naoh tiumber on stick'force per g. . .  ~ 

5 Summary and conclusions. 

In this report the effect of the compressibility 
of the air on the static  longitudinal shhility end 
control of an aeroplane is investigated. Fomulae 
are derived from whioh the changes in Dhe sta- 
bility criteria (static margins stiuk fixed and free) 
with Mach number can be found. These changes 
appear to he dependent on altitude, 'being smaller 
a t  high altitudes. 

In general both static ma.rgiins decrease vith in- 
creasing Mach number and occasionally assume 
large negative values, which, however, need not 
give rise to  unacceptable flying qualities of the 
aeroplane. An important parameter in the relat- 
ions is c,, , the pitchin,g mament coefficient at 
zero wing lift, which has a ,dominant effect on 
t,he changes in the stability ma,rgins. To a lesser 
extent these changes are affected by the wing 
setting relative to  the fuselage. Especially cmn. 
can be considered as a means to modify the sta- 
bility changes due to  compressibility sinee the 
decrement in stalbility with increasing Mach 
number is reduced by deereasillg the vzlue of 
- cmo. 

The ohanges of elevator angle and elevator tab 
angle due to compressibility are rather small and 
for the example chosen in the repofi never ex- 
ceed one degree. According to the above-mentioned 
decrease of the static margins the elevator angle 
tends to negat,ive and the tab angle to positive 
values with increasing Maeh number indicating a 
nose-down pitching moment. 

The stick free stability appears to be affected 
also by the tail setting o.. Generally an increase 
of (r results in a decrement of the stick free static 
margin. As the changes of stick foree with speed 
at constant trimmer setting or the trimmer move- 

ments at various speeds with zero stiok foree are 
proportional to this ma&, adjusting tihe tail 
plane setting can be Considered as a meam to 
alter the control characteristics of the aeroplane at 
hi,gh speeds. 

The changes i n .  manoeuvrability due to com- 
p-ressihility are mostly considerably smaller than 
those of the static margins. I n  most cases a slight 
decrease of the manoeuvre margins (stick fixed 
and free) occurs with increasing Mach number. 
The distances between the neutral and the manoeu- 
vre points-generally increase,, the former travelling 
ahead of the latter. Nevertheless it is also possible 
that the manoeuvre points come in front of the 
iieut,ral points a t  high speeds for instance when c, ,  
is only slightly negative or even positive. A t  low 
speeds on the other ha.nd the manoeuvre margins 
are always greater than the static margins. 

Since no rapid -divergence from the equilibrium 
condition occiirs as long as the manoeuvre mangins 
remain'positive the effect of compressibility gener- 
ally -does not give rise to unacceptable flying 
qualities of the aeroplane a t  high speeds although 
the static margins can attain rather large negative 
values. 

6 List of symbols; ' . 

A 

~. 

of airoplane without tail a c, 
a, - __ - 

"r 
a, a, ,  a s ,  a, = low speed values of A, A , ,  A,, A, 
( l o ,  a,, , aEO, a30 = values of a, a, ,  u,, aa for aero- 

foils of infinite span. 

_ -  - -  
uI, a, = low speed values of A,, A, 

- b - wing span. 
b,  , b , ,  b,  = low speed d u e s  of B,  , B , ,  B , .  
b,, , b,, ; b,, = values of b,, b, ,  ha for  aerofoh 

of infinite span: 
C. = lift eoeffieient of complete aeropdane 

(positive when upward). 
%" = lift coefficient of horizontal tail sur- 

faces. ' 

C" 
(positive when tailheavy). 

C", = pitdhing, moment coef,ficient (pmitivc 
when tailheavy), 

c.v 
cm , em. = low speed value of c M ,  cue. 

= (elevator hinge ntoment)/t p VVgtg 

- - cumi,,s when wing lift is zem. 



c,,, lua = fuselage pitching moment coefficient. 

"- 
GI' : = coefficient of resultant aerodynamic 

$7 = wing. area; 
F,, ' = area of horizontal tail sndace. 
Fg ' = area of elevator. 
f ' 

G " = aeroplane weight. 
g ' 

h t . .  

force on complete aircraft. . 
. .  . . a  

, .  

= maximum wing ca,mber. 

; s' acceleration due to  gravity. 
' '='dist,ance of centre of 'gravity aft of 

leading ' edge of mean. aerodynamic 
chord 

= distance of aerodynamic centre of 'aero- 
plane withont tail aft of leadi.ng edge 
of mea.n'a.erodynamic chord: " 'L ' 

' = distance of'manoeuvre point stick fix- 
ed aft of leading edge of mean aero- 
dynamic chord. '= distance of manoeuvre point stiek'free 
aft of leading edge of mean aerdyna- 

h ,i ' 

h,,,t. 
. .  
h',t 

mic chord. . .  
h, - h. 

= h"- h. 
= static margin stick fixed. 
= static margin stick free. 
= distance of aerodynamic centre of tail 

aft of aerodynamic centre of aeroplane 
without tail. 

= Mach number. 
- aeroplane mass. 
= stickelevator gear ratio. ., 
= additional normal acceleration. 
= stick force per g. - - semi wing span. 
= semi span of rolled-up vortex-sheet 

' ' 

= mean aerodynamic chord. 
= elevator chord,. 
= forward speed. 
= tail volume ( 2 F d F t ) .  
= angle of incidence of zero lift line of 

- 

behind wing at horizontal tail,. 

aeroplane without tail. 
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I .  

a": 

P 
. .  ' . ward). . .  

= elevator tab angle (positive when : I  

' ',; downward),'. i ,  

P' 
/% '= elemtor.'movement per g. . .  

6 . = wing setting relative to fuselage (posi: 

E c... & downwmli-.anele at tail.. 

1 ' = angle. of :incidence of horizontal tail- 
'I : . '[ plane'.:, ~ ' ,.:. , 

= elevator '-angle (positive when :down.: c 
. , ,  

?. 

. ,  

tive when.fuselage nwe high). : 

x 
A+:. 
PI 

= aspect ratio of ning. 
= aspect ratio of horizontaa tailplane. 
= rclative density of aeroplane (mlpF1).  

tail..cctting relatiye to, zero lift lin,e of 
aeroplane without tail ,(positive in tail 
heavy sense). 

p .  , . , z air.density. . A  

,: . . 
, .  
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