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A. Board and Organization,

By order of the Minister of Transport and “Waterstaat”, the Minister of War and of the
Navy, the Minister of Overseas Territories, the Minister of Education, Arts and Sciences, the
Minister of Eeonomie Affairs and the Minister of the Interior on 29th Mareh 1954, the Statutes
of the Institute have been drawn up in a modified version.

Under these statutes the Minister of Finance has appointed Mr, O, W. Vos as a member of
the Board of the Institute. In the course of the year the Royal Netherlands Aireraft Factorics
Fokker and the Aviolanda Aireraft Company, Ine. joined the lnstitute as participants and were,
therefore, entitled to appoint a member of the Board.

On 31 Decembher 1954 the Board consisted of the following members:

Prof. Dr. Ir. H. J. van der Maas, President, Technical University, Delft
Ministry of Edueation, Arts and Sciences.

J. W. ¥ Backer, Viee-President Dir, Gen. Dept. of Civil Aviation.
Ministyy of Pransport and “Waterstaat”.
Dr. L. Neher : former Postmaster General.
Prof, Tr. D. Dresden President National Couneil for Industrial
‘ ' Research T.N. O,
Maj. Gen. J. A, Bach Drirector of Ovdnance and Supplies,
' ‘ . Royal Duteh Air Foree.
Commander J. Lugtenburg Divector Air Materiel Division,
Royal Duteh Navy,
Dr. J. W, de Stoppelaar : Divector of Meonomic Affairs,
Minlstry of Overseas Territories.
Drs. I P Jongsma Direetor for Finaneial Participations,
Ministry of Eeonomie Affairs.
Mr. O, W, Vos Dep. Director tor Fihaneial ].’nl-fici_pa.tions,
Ministry of Finanee,
PoA van de Velde Director Aviolanda Aiveratt Company Ine.
T, M. ¢ van Meerten Chief Tesigner and Ass. Manager,
Royal Netherlands Aireraft Factories Fokker.
C. Wiidooge Iiead Teechn. Sales Dept., '
_ : Royal Dhiteh Aivlines, K. I, M.,
~Prof. De. W, J. D, van Dijek Scient. Advisor Royal Duteh Shell, for the

Royal Duteh Aeronautical Assoeiation.

The exeeutive committee consisted of president and viee-president, Mr. G. C. Klapwiik
continued to he Secretary-treasurer of the Institute. .

The Advisory Scientific Committee nnderwent no changes sinee 1953. Prof. Dr. A, van der Neut
and Prof. Dr. R. Timman were Scientific Advisors to the Laboratory appointed by the Board.
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The completion of the new transonic aud supersonie windtunnels took much time,

With the Assoeciation Internationale des Constructeurs de Matériel Aéronautique (AICMA)
agreement could be attained about a contract concernimg part-time use of the transonic tunnel
by the AICMA.

Much work was involved in the organisation of the.4th General Assembly of the NATO-
Advisory Group for Aecronautical Research and Development (AGARD), which took place in
The Hague. 1. R. IL. Prince Bernhard has been found willing to open this meeting. The President
of the Board has been appointed member of the Executive Committee of AGARD.

B. The Laboratory,
1 General.

1.1 Steff.
The management consisted of:
Prof. Dr: C. Zwikker Director
Ir, A. Boelen Dep. Director
Section Aerodynamies (A): . Ir. J. F. Heugeveld
1r. J. A. Landstra
Section Combustion (C): e, A J. Marx

Drs. 'W. J, Basting

Section Flutter and
Theoretical Aerodynamies (F): De, Ir. A, I van de Vooren

Seetion Helicopters: Ir. A, J. Marx
[e. T, R. Lueassen

Section Materials and Structures (8 and A): De Ti B J. Plantema

Section Flying Models (O): - Ir. A, J. Marx

Ir. O, Y. Fokkinga
Section light Testing (V) : Ir. A. J. Marx

Tr. T, van Qosterom
Windtunnel Construction Buveau: T, J. Boel
Documentation and Library: Dra, G. Scherpenﬁulisen Rom
Administration s, J. de Koning.

The staff of the laboratory has been extended to H5 scientists (engineers, mathematielans and
physicists), 29 graduates of Technieal Colleges, 96 technicians, 34 eclerical staff and 19 other
employees, 234 in total. 8 members of the staff, among whom 4 engineers, were In military service.

1.2 Windtunnels end equipment.

The Pilottunnel has been delivered at the end of the year. During tests with empily test-
section (14 > 183 £t?) an airspeed coraparable with Ma == 1 could be reached. Sfraingauge
balances and schlieren system were not yet ready.

The construction of the High-Speed Tunnel eould begin in the cowrse of the year,

The design of the Supersonic Tunnel is being studied further. A visit of AGARD-specialists
in July gave the oceasion to discuss the plans with American experts. As a result an inter-
mittant, blow down type of tununel was preferred to the oviginally designed continuous tunnel.

A linear analog-computer, comprising 18 function units and 36 scaling units, -has been ordered.
A study has been made of digital computers of Puteh design.

A 6-tons Schenk horizontal resonanee-machine with slow mechanieal drive has been put into
use for fatigue testing,

A rotating test-stand for the testing of helicopter ram-jets has been nstalled and was in
_operation during the year, ' :

1.3 Research contracis,

The greater part of the research was contracted by the Netherlands Aireraft Development
Board (NIV). It was related to. the development of prototypes on the one side, on the other
side to more fundamental research and future development.
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A diversity of contraets were given by the Royal Duteh Air Foree and the Roval Duteh
Airlines K. L. M. Cooperation with the Department of Civil Aviation covered mainly study of Air
Regulations and assistance in the testing of aireraft.

A nmumber of small orders from industry, inelnding testing and calibration of apparatus and
windtunnel measurements on ship-models, ete. have heen carried out.

The cooperation in the Advisory Group for Aercnantical Research and Development (AGARD)
of the NATO resulted in a most important exchange of opinions with experts in the various fields,
The N.L. L. provided algso a contribution in the form of reports and papers on methods applied
and instruments developed at the N. L. L,

2 Aerodynamics Section.

" The larger part of the windtunnel-research was devoted to the development of prototypes
under contract with the N, L V. Because of a continuous lack of staff only little time could be
spent on pure research. The following subjects, however, were tackled:

Comparvison of windtunnel measurements with fiight tests.

Reasonable agreement was found in various aspeets (c.q. stick-fixed stability), but pertinent
differences were found in stick-free stahility, which will be Iuvestigated farther (A 1292),

The influence on the stability of the open ov closed wheel-well with extended landing-geur
has been investigated (V 1741).

Tununelwall influence.

The tunnelwall influence on three-dimensional flow arvound an aerofeil with a very high lift-
coefficient has bheen analyzed asswming a certain cireulation-distribution along the span.

Experiments have been made on a swept wing with fuselage, in the configurations high-wing,
mid-wing and low-wing [A 1370),

Various subjects.
A new type of sting-mounting has heen designed and constructed, also a new angle-of-attack-
meter and control-surface deﬂectmn indicator.

Ifor the construction of models a copying-lathe ma,c,hme has been ordered. New applications
of plasties in the constiuetion, mounting and modifying of models have been found.

3  Flutier and theoretical Aerodynamics Section.

Boundary layer theory.

The three-dimensional boundary layer about a flat, yawed ellipsoid under zero angle of
incidence was caleulated along 5 different streamlines up to the line of separation (F.165). The
differential equations governing the displacement thicknesses referred to the velocity profiles. in
the direction of the local potential flow and perpendieular to it, were numerically solved, partly
at the NLL Computing Office and partly at the Mathematical Centre, where the ARRA electronic
caleulating machine was used. A paper referring to this investigation has been contribuied to the
memorial book “50 Jahre GleIIZSChlchtiOIHChLU’l”

- Load distribution of wings in s'teady flow,

The generalized Prandt]l equation, derived in report ¥.121, was used to caleulate the load

“distribution for a-twisted swept wing of aspeet ratio 6 at two angles of incidence (report ¥ 156).

1t may be concluded that for aspeet ratios lavger than 6 this method will be more accurate than
that of Weissinger, hut for aspect ratios smaller than 6 the reverse holds. Comparison was made
by aid of Mul‘rhopp s wethod using two chordwise pivotal points

The increase in induced drag due to a perturbation in the spanwise load distribution has
been investigated. A series-of diagrams -permitting a rapid determination of this increase by aid
of a number of sehematized cases has heen dgsugned (I, 154).

Transonic flow,

By extension of the method of the integral equations, eriginating from Oswatitsch and l_f{ull-
strand, general integral equations for profiles at iucidence or at zero ineidence have heen derwfed,
which ave valid both in the low transonic (M, < 1) and in the high transonic (M, </ 1) region
(F.163).

A study was made of slender-body and sfender-wing theory (. 170).

Oseillating aerofoils.

The nerodynamie ecoefficients for an oscillating wing-flap system in two-dimensional subsonic
flow have been interpolated with respect to the ratio of wing to flap chord (F. 155).




VIII

A method has been presented (F.157), which gives an asymptotic solution of the boundary
value problem -corresponding to -the oscillating aerofoil ‘in two-dimensional -subsonic flow. The
solution is asymptotic in the parameter, which occurs in ‘the wave eguation and  which is large
if either the frequency is high or 'if the Mach number approaches 1. The methoed yields an
exact solution for the aerodynamie forces at M =1 and it is hoped to obtain -useful approximations
in a certain’ range of Mach numbers helow M =1,

The strip theory for the calenlation of the aerodynamic .forces on an osmllatmg swept’ wing
of large aspeet ratio was extended to the case of C()mpresmble subsonic flow (I7, 159). This
leads to a generalization of Possio’s equation.

Aeroelasticity; Flutter,

The influence of the chord ratios between wing, flap and tab upon binary flap-tab flutter
has heen investigated (F.166). The results were bzou«rht in the form of general ecriteria for the
stability against ﬂutter of such systems.

Mathematical methods -for the caleulation -of the divergence speed, aileron reversal speed and
of the aileron effectiveness have bheen presented under very general assumptions in report 1. 160,

1 Muaterials and structures Section,
Theoretical structures work.

The stress and deflection analysis of swept wings was continuned by applying the previously
developed approximate methods to an infinitely long swept box heam and by extending the work
for infinite and semi-infinite clamped root hox beams in order to improve the aceuracy of the results.
Also vibrations of swept box beams were analyzed.

A theory of plastic flow for anisotropic hardening in plastic deformation of an initially iso-
tropie material was published (Report S.410).

An exploratory investigation of the Heal tensioned-skin method of eonstruction was started.

A report on minimizing a quadratic funetion with additional conditions was eompleted
(Report S.437). .

Static testing of structural components.

Plastie buckling tests were carried out on plates and square seamless tubes.

The report on the shear tests of webs with lightening holes, also containing a comparison
with vecent Swedish tests, was completed (Report 5.446). Likewise, a report on the second
series of tests to determine the effective width of 24 S-T flat plates in the plastic range was
issued (Report 8.438) and a summary on both test-series was prepared for publication.

A third test series with other aluminium alloys is being carried out.

Compression tests on open-section thin-walled stiffeners and a compression test on a stiffened
panel to determine its fixity coefficient in the 160-tons compression machine (Report 5.442) were
evaluated m final form, . -

Matigue,

Varions investigations running at the heginuing of the year were completed, viz those con-
cerning fatigue of bonded spar booms (Report M. 1936), effect of tolerance of pin-hele joints on
their fatigue strength (Report M. 1946), comparison.of various types of riveted joints in repeated
tensile loading (Report M. 1943). New investigations were started to determine the practically
important part of the fatigne (Goodwman) diagmm of riveted joints and lugs, and the fatigue
strength of redux- bonded simple lap joints in 75 S8-T -elad sheet loaded in repeated tension
(Report M.1969). '

The eumulative- damage research on simple notuhed and unnotched 24 ST - alelad strips is
nearing its completion and similar tests with riveted joints were started.

Dynamie ealibrations of various fatigue machines were earried ont.

Adhesives and plasties.

An investigation concerning the strength of adhesive-bonded joinrts at low temperatures was
carried out (Report M. 1973).

The tests to determine the mechantcal properties of glassfiber polyester laminates were con-
tinwed. Some preliminary fests were made with foamed-in-place araldite.

Miscellaneous work

Some expérience has now Dbeen gained In unltrasomic testing to determine material defeets,
c¢racks in machine components etc.

Rapid-loading tests were made on simple frame structures.
- 7+ Model analysis by means of plastic and elecirical models of struetural components is being
studied. .
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Structural and material problems caused by aerodynamic heating in high-speed flight are
the subject of preliminary studies, .

5 Flight testing Section.

Stability and Control

In the course of an investigation of the dynamie behaviour of an aeroplane by means of
response measurements, frequency response curves were caleulated based on data from steady
flight. Some orientating flight-tests by means of transient response technigues gave satisfactory
results.

The influence of elastic deformmations on the stability and its method of analysis were studied.-
A numerica] analysis for a hypothetical aeroplane with slender swept wings has been carvied ont,

" For the calculation of the liftdistribution a well-known approximation has been chosen, wh1eh"
gave good agreement with an exact method developed hy the flutter section.

Performanece Redunetion Methods.

A gtudy has been performed of the measuring technique and performanece reduction to standard
conditions of the take-off groundrun for aervoplanes with constant-speed propellers as well as
with jet propulsion (V.1711). A survey has been given of the hasic principles of pertormance
testing in take-off and landing; as a contribution to the AGARD Flight Test- Manual.

Flight tests.

The flight-testing of prototypes took up most of the time,

In connection with the “Triton” aceident flight tesis have been carried out in order to
compare true and indicated values of heights, airspeed and rate-of-climb during take-off and
initial elimb, to check position-error correction data and the influence of sideslip on pitot-static
pressures for a Lockheed Super-Constellation.

Next to the fore-mentioned response measniements with the Siebel laboratory aeroplane,
measurements were made of the influence on stability and drag of open or closed nacelle during
extension of landing gear. Comparative measurements on stickforce per g in tuns and symmetrical
climbs have heen made.

A guantitative appreciation of the 1)etf0u1mmc and eontrol of two newly-built sailplanes has
been given.

Ingtrumentation.

For the AGARD Flight Test Manual a complete list of instruments used at the N. L. 1. for
flight tests, with a short survey of their charaeteristics, has been drafied and will be kept up.

VELI‘IOHS new instruments have been developed, mel an acevrate attitude-gyro and a vecording
control-position indieator.

6 Helicopter Section.

A study hag heen made of amendments to be incorporated in the draft airworthiness.
requirements for helicopters in case of application of tip-ramjets.

A roter with tip-ramjets has heen tested extensively on the rofating test-stand.

Performance, stability and control of ramjet-helicopters are heing studied.

A report hag been delivered on ground-regsonance effeets and its theoretical background.

-1

Free-flying models.

A series of RM-10 models were launched and measurements were made in a very simplified way.

Determination of the drageoefficient for Mach numbers of 0.9—1.5 yielded a satisfactory
agreement with the values mentioned in literature.

An clectronically timed flashlight was developed as an alternative to the synchromzed
shutters of the hallistic eameras used in these tests.

8 Combustion Section.

The relation between airspeed, fuel consumption and thrust of a speecific iype of ramjets has
been measured. An orientdting investigation has been made into the nature of the eombustion and
the pressure distribution within the ramjet.
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Documentation and Publications.

Catalogue of Aerodynamic Measurements (CAM).

A questionnaire has been sent to subsecribers to obtain information on their experiences with
the card system. As a result some of the participating institutes made an extensive investigation
into the probability of retrieval with this system. At a combined meeting of the AGARD Wind-
tannel Panel and Documentation Committee these results have been discussed,

The system has been adapted to Hollerith-cards also.

Central Aeronautical Abstracting Serviece (C.L.D)).
The by-laws of the Supervisory Committee have heen altered to hring thém into line with

present praectice.

and FID,

The resulting change of name has been approved of.

‘The General Assembly of AGARD in The Hague vesulted in fruitinl diseussions of the mermbers
of the AGARD-Documentat}on Committee with Dutch ohservers and representatives of NIDER

Publications.

f
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A. 1328
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Fo154
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Landstra, J. A,
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Zaat, J. A,

Zaat, J. A.
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Van de Vooren, A. 1,

De Kock, A. C.

Van de Voorén, A.'1,

Eeckhaus, W.

LIfE, J.
Bosschaart, A, C. A.

Van de Vooren, A, L

Eckhaus, W.

Eekhaus, W.
De Jager, E. M.

Hartman, A.

Hartman, A.

‘Behijve, J.

Hariman, A.

Hartman, A.

Siehel (Symmetrical gliding flight). Comparison of Flight-Test
Results and Windtunnel Measurements (in Duteh).

Investigation of Tunnelwall Infiuence on the IIaIi-Model of a
Swept Wing (in Dutch).

Caleulation of the Temperature Field for Incompressible Laminar
Boundary layer Flow with and without Pressure Gradient.

An Approiimate Method for the Calculation of Turbulent Boun-
dary-layers in Compressible Twodimensional and Rotationally-
Symmetrical Threedimensional Flows (in Dutch).

The Aerodynamic Forées and Moments on an Oscillating Aerofoil
with Control-Surface hetween Two Parallel Walls.

On the Theory of the Oscillating Wing in Two-Dimensional Sub-
sonie Flow.

Manual for Users of the N. L, L, Card Ca.talogue..
Strip Theory for Oscillating Swept Wings on Ineompressible Flow.

Influence of Compressibﬂity on the Flutterspeed of a Family of
Rectangular Cantilever Wings with Aileron.

On the Theory of Osm‘alatmw Airfoils of Finite Span in Subsonie
Flow.

The Induced Drag due to Disturbances in the Lift Di_stpibution.

Tables of the Aerodynamic Aileron-Coefficients for an Oscillating
Wing-Aileron System in a Subsonic, Compressible Flow,

Informative Investigation to check the Cumulative Damage
Hypthesis 3, %: 1 on Riveted Single Lap Joints. 1953 (in Duteh).
Some Tests to Determine the Influence of some IFFactors on the

Scatter in Endurance Tests on Extruded 24 ST and Rolled 24 8T
Alelad.

The Fatigne Strength of Riveted Lap Joints and Pin Hole Joints,

Comparative Investigation at Fluetuating Tension (R=0) on
Dural Lugs of Different Design.

The: Peeling Tests of Redux Bonded Light Alloy Sheet. II. 1854,
{In Dutch.) . .
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Van de Vooren, A. L.

Timman, R.

Van Oosterom, 7T.
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The BEffees of Varions IMits on the Fatigue Strength of Pin IHole

Joints.

The Possibilities of Internal briction Measurements for Material
Testing, in Particular for Fatigume Testing, 1954, (In Duteh,)

A TPheory of Plastic ¥low for Anisotropic Hardening im Plastic

© Deformation of an Initially Isotropic Material.

.- Investigation on the Strength of 24-S-T Alelad Riveted and Bolted
Lap Joiuts at Rapid Applied Loads.

On the Buckling of Rods and Plates in the Plastic Region. 11,

1954, (In Duteh.)

The Effective Rolling Radius of Pneunmatie-Tyred Wheels.

Note on Minimizing a Quadratie Function with Additional Linear
Conditions by Matrix Methods, with Applieation to Stress Analysis.

The Experimental Determination of the Effective Width of ¥lat
Plates in' the Flastie and the Plastic Range. Part II. 1954, {In
Duteh.)

Metkod for Determining the Lag Correction for Pitot-Static
Systems in Non-Steady Flight,

Report of Flight Tests with the Alreraft PLI-NLL, type Siebel
204 D-1. Determination of Longitudinal Stability and Control
Characteristies in liding Flight with both Alrserews Teathered.
1953, {In Duteh.)

The Measurcment and Fvaluation of the fhroundrun of Landplanes.-

The Influence of Transonic Alvspeeds on Static Longitudinal
Stability and Control of Aireraft. .

Methods for Determining Stick TForces per g. Comparison of
Stick Forees per g in Symmetrieal turning Flight of a Siebel
204 D-1 Alreraft.

Helicopter Ground Resonance in Theory and Kxperiment.

Yist of Journals. Classified at N.T. L., 1953,
Mechanisations in Research. Polytechnieal Weekly Magazine,

On the Numerical Solution of Partial Differential Equations of the
Klliptie Type Part. 1. Appl. Sei. Res. Seetion B Vol 4, 1954, p. 161,

Resistahee thermometers.

Linearized Theory of the Oscillating Airfoil in Compressible Sub-
sonie Flow. J. Aero. Sei. Vol. 21, nr. 4, April 1954, p. 230

Report on Subject Classification Systems, AGARD. May 1954

Measurements of Aerodynamic Forces on Oscillating Aerofoils.
AGARD May 1954

Structural Problems Arising from Heating of Supersonic Aireraft.
De Ingenieur, no. 31. 1954, Luchtv, Tech, 5.

Practical Difficulties Encountered in Establishing the N.L. L.
Card Catalogue of Aerodynamie Measurements. NIDER-AGARD
Meeting 30-4-1954.

Methods and Results of Non-Stationary Airfoil Theory., AGARD
Mei 1954, .

Performance Testing of Sailplanes. OSTIV 31 Jnly 1954
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REPORT F. 141

A One-Parameter Method for the Calculation of Laminar
Compressible Boundary-Layer Flow with a Pressure Gradient

J. A, ZAAT.

Summary.

Based on the momentum equation of vox Kanman and the integrated heat eguation suppositions are made for the
analysis of the velocity and temperaturé profiles in laminar compressible boundary layer flow. The method is set up by
means of the asymptotic behaviour of the boundary layer profiles and takes iuto aceount as many boundary conditions aut
the wall as possible, In connection with these houndary conditions the flow with and without heat transfer at the wall is

dealt with,

Contents.

1 Introduction.

2 Symbols,

2 Basic equations for the analysis of the laminar
ecompressible boundary layers.

4 The asymptotie behaviour of the solutions of

the boundary layer equations.

Approximative funetions for the velocity and

temperature profiles of the laminar compres-

sible boutidary layer tlow with pertaining

boundary conditions.

6 Caleulation of the velocity and temperature
profiles of the laminar compressible houndary
layer without heat transfer at the wall for the
Prandtl number ¢ =1.

7 Calculation of the wveloeity and temperature
profiles of the laminar eompressible houndary
layer flow without heat transfer at the wall
for a Prandtl number o= 1,

8 Calenlation of the veloeity and temperatnre
profiles of the laminar compressible boundary
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1 Introduction.

Contrary to the incompressible laminar houndary
layer tlow where the veloedty field is independent
of the temperature field, there appears o be a
mutual influence of wvelocity and temperature
boundary layers for compressible flow. This is
cansed by the faet that it is not allowed to neglect
frietion and compression heat at large veloeities,
and that the physical values (c. g. viscosity coetfi-

.¢ient) appearing in the analysis, thave to be con-

sidered not as constants, but as functions of the
temperature as a result of the large differences
in temperature. The analysis, of course, hecomes
more complicated by this mutual intluence of velo-
city and temperature field, In general it appears
to he impossible to obtain exaet solutions of the
houndatry layer eguations.

Henee, it is the more important te dispose of
metheds, whieh guarantee a sufficiently accurate
approximation of the solutions of the boundary
layer equations,

Jiike the method for incompressible boundary
layer flow deseribed in report B, 127 (ref. 1) a
similar method is developed for compuressible flow,
which uses the principle of Pomamusey and
ScHLcHTING with the ald of the momentum ‘equa-
tion of von Kirmadx and the integrated heat equa-
tion, .

This method is based on the asymptotie hehaviour
of the solutions of the boundary layer equations
at the outer cdge of the houndary layer flow so
that all houndary conditions at the outer edge arc
satigfied automatically.

In choosing the number of houndary conditions
which is taken into account, a compromise must be
found beiween the accuracy of the approximation
at the one side and the required computational
work ai the other side.

The two cases of flow with and without heat
transfer at the wall will be dealt in this report.




Application of the method to rotationally sym-
metric flow gives no difficulty.

2 Symbols,

E, coordinates along and perpendicular
to the wall,

4 veloeity at the outer edge of the
boundary layer.

U, veloeity of undisturbed flow.

U, U : velocity components within the

boundary layer.
T absolute temperature,
p density..
M abgolute coefficient of viscosity,

kinematic coefficient of viseosity.

shear stress.

coeffictent of heat conduction.
==Cp—Cp gas constant.

Cp specifie heat at eonstant pressure,

specific heat at constant volume.

k=cy/es  (k=1405 for air).
o= %’i— Prandtl number.
Ty + C ( 'FY = T+ 3T,
Y= s re -
T+C ‘7, 4
8= LA R
B T '
¢ speed of sound.
c¥ critical speed of sound.
U
M= - local Mach number,
3 houndary layer thickness.
8
H = ?1- form parameter.
52
= f dy displacement thickness,
) P “U
3
= ) dy momentum thickness.
g P “U
3
5, == — f £ uU (1 — i’? )dy loss of enthalpy thick-
g P u ness. ,
3
o
5, — f L ( ou/ U) dy dissipation function,
6 e 8}]/32
3
2
3, = f _gf% (1—~ g )dJ kinetie energy fune-
g P tiom,
Rey, = Reynolds number.
Vu
18,2 8,2 8.2 .
== —2—, § = v, , Oy = UL Integration
Vu v TV o guantities.
_ . . 3 ) \
=7 dlmensmnless' vgloclty.
Vi . . :
1 =7 dimensionless temperature.
u
£, c coordinates,

F 2

a, aG,Q=£ funetions of .
%
b fo ‘ coefficients (funetions of z).
po: Go - to - . ; s
AP vy quantities introduced in section 6,

P, 49,4, 4, Q, P quantities introduced in section 8.
T
g{zy=—2X (%) heat transfer at the wall,

w

Subseripts

» and T denoting outer flow.

w denoting the wall.

Y, & &, denoting derivatives to =z, ¥, £, &,
t,n denoting tangential, normal direction.

3 Basic equations for the analysis of the laminar
compressible boundary layers.

The laminar compressible boundary layer flow
can he deseribed by the following equations:

(i) The equation of motion

ptt ug ot Uy == pu DU (paty)y . (31)

This equation is a result of simplifying the Navies-
SToKES equation according to the usual houndary
layer generalizations. It governs the equilibrium
betwesn the inertia forece (left-hand term), the
pressure {first term of right-hand side) and the
frietional force (second term of right-hand side)
acting on an element of fluid in the boundary
laver flow.

(it) The eguation of eontinnity

(pu).'+ (pv)y =20 (3.2)
denotes the conservation of mass of the element.

(iii) The energy equation
pep(u Tt v 1) =— pe U, +
+ (AT + payt (3.3)
gives the variation of the heat eontent of the ele-
ment per unit time (left-hand side) caused hy the
compression. energy (first ferm right-hand side),

the heat conduetion or convection (second term)
and the frietional energy {third term).

{iv) The equation of state for the ideal gas
p = RyT. (34)

(v) The formula of SUTHERLAND, vielding an ap-
proximate relation ‘between viscosity and temper-

ature
m w T C )
=TT o (- (8.9)

In the case of air C will have the value 110°K
(ref. 2.3). In general, the formula of SUTHERLAND
can be used up to the hypersonie range, excluding
very low temperatures.

To simplify the ealeulations the linear relation

e ) () e




tor the distribution —— across the boundary layer

(in y-direetion) wiH}L be introduced besides the
relation (3.6},
In formula (36} T
T + a7y
- a; xg ’
factor «, for the outer temperature 7T, and a
weighting factor «, for the wall temperature T .
For T==T (3.6) satisfies the formula of Surmnzr-
LAND. For o, =0 (3.6) changes into a formula

7 is an average temperattre

{11

thus introdueing a weighting

w Tt C I/__T;‘;(ﬂ)
Tt € Ty VT
which has been used by several authors (ref. 4, 5,
6 and 7).
For «, =0 (3.6) changes into
. po T
My o Tu ’

a particular form of the usnal relation between
temperature and viscosity

A ( T )"
M Tu ’
(ref. 3, 9, 10, 11). At first sight one might ehoose
— . — T.+ T
for P the arithmetic average value T:—EQ—“’—,

since this makes within the boundary layer the
maximum deviations in positive and negative direc-
tion from the formula of SUrHERLAND ahout equally
large,

However, the caleulations of drag tor flow along
a heat-insulated flat plate at a Praxpry number
o =1 show that the value

T,+ 37T
4

in formula (3.6) leads to about the same results
as the formula of SurHErLAND., For laminar com-
pressible houndary layers without heat transfer at
the wall the viscosity-relation of SUPHERLAND can
be applied also within the boundary layer at a
PraxDTL number ¢==1 without making the com-
putations too laborious (Sec 5). This application
has the advantage that it yields more accurate data
which can he used in determining T in (3.6).
From the calenlations for flow along a flat plate
it is evident that the relation (3.7) must be pre-
Ty -; T and

the value T==1T,, so that the relation (3.7) will
also he applied to further ealeulations.

- In the calenlation the specific heat is assumed
to be constant. The same holds for the number
of Praxprr, introduced in the caleulation

= (3.7)

ferred to the arithmetic average T =

HEp
A

The solutions of the above-mentioned equations,

whieh deseribe the temperature field and the velo-

city tield of the laminar boundary layer in com-

F3

pressible flow, have to satisfy the following bound-
ary conditions.
For

{3.8)

pe=w=—=0; 00— =—;
oy Fao

for a wall with preseribed temperature T = Ty

y==0;

. T
for a eompletely heat-insulated wall gy— =10

_QE o*u - B“u

:Su = N == — 3,9
Y w=U R Y 0 (3.9)
oT T T

- ‘:Tu~ _ = = ... ==
y=28r 1 3y 3 e 0 (3.10)

8. is the thickness of the veloeity boundary layer
{in y-direetion) and 8y the thickness of the tem-
perature boundary -layer. In general &, and 8
will ‘be unequal. :

It the shoek waves will he left out of consider-

ation, then the relation
=k T, — Pl e E(cy—co) Ty —
— h“g_l e, (3.11)
or

holds for adiabatic flow and, hence, for the flow
outside the boundary layer (the subseript O denotes
the undisturbed econdition).

From the energy equation the relation

U2

— -+ (T e — T'5) :—:O (3.12)

follows for the outer flow, Hence, in connection

with eguation {3.11)
U‘2

—=M*(k—1). ©(3.13)
Cp?u .
Furthermore
Ty Tweplk—1) Tw
_— e == ] —_ 2
Tu C.Z 170 (1 + % ( v 1)111 )

(3.14)

From the definition of the speed of sound
dp

=¢* and with the aid of the equation of

dpe
Brwrovrir Udl = — ict’,p = G the relat-
fu pu
ion
. L P (3.15)
=T )
follows.

As the pressurc across the boundary layer can
be assumed to be constant, it follows from the
ideal gas equation that

o _ T 316
= (3.16)
From the relations for adiabastic flow outSIde the
-bounda,ry Ia,} er ¢t = kp and ¢2==1¢, —k—_;—l U
Pu

follows o e



_1 . 1 oo P z
e e e .
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The right-hand side of equation (3.17) holds only if no shock wave is present If this oceurs, the
ensuing entropy variaiion will have to be taken into account.

The desenptlon of the laminar houndary layer flow in the compressible flow ficld will be carried out
with the aid of the momentum equation of von Kirman, the integrated heat equatmn and as far
as necessary of the Kinetic energy eQuatlon of WIEGHARDT.

Integration of the equation of motion in y-direetion gives with the aid of the eguation of ecntinuity
the momentum equation

ds, U, o e [puyle A [au/rf] po e
s + 3, 7 [H +2—M*] = P Rl i e = Re;, AR {3.18)
where H — 3 ,
82
k)
8, = f ( _.r %) dy the displacement thickness (3.19)
pu :
b
' H]
8, — f e (l—i) dy the momentum-loss thickness (3.20)
- 5 puU S 7
and
Rey — U0 US: (3.21)
2 My Vu
the BEyxoLDs number with relation to the momentum-loss thiekness.
Substituting § =8, Re;_ and taking into aceount the following velations
P“z . U T Hu 3 ,I'u ) Tu Tu
= E—1 — == — : = z
Pu U 11 ( ) P“ P»u (2 ,u + C 1111. 18 Tu (322)
and ’
By By +(‘°"‘ ”“‘+U”)e Bt pey + 11— (1— Bh—1)} 0] 2% g
= e )=, ey, 1—{1—8k—1); 7 7
The ﬁmmentum equation (3.18} changes into
d . U, | /U T, [ ou/U
a8 2+ 3— {1+ p(k—1)) M2] =2 —_( Lo (2w (303
dx U [ +3—{ A D} 2 BJ/SA)W Yop (63;/82 )w ( )

The integrated heat equation will be obtained by multiplying the equation of continuity with ¢, 7' and
adding this to the energy equation (3.3)), which gives

L (eppuT), + (eppvT)y = — pu w UU T (M) un,?
and then integrating this equation to ¥ between y—= 0 and y = 8. This gives together with the equation
of continuity (3.2)
s 5 3 S 3
-d d . .
T copTdy — T = eppridyy = — | puut UUdy —(ATy) e + | pwidy. : {3.24)
g .‘ B 6 &
72
In connection with the adiabatic relation for the undisturbed flow (3.12), % + ¢, Ty = const., equa-
tion (3.24) changes into
. 5 ,

L [ =Tty =—v0. [ wlu—p)dy—No(Tu+ | 2 dy (325)
& 0 i
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Introducing the -enthalpy-loss thickness
)
) T
8, == — Pi.l’ ( b
: (/ e ), (3.26)
the dissipation funetion
3
o ou/U \2
8, = ﬂ—( ) .
t U/ P a?f/ﬁz oy (3 27)
and the Praxpri number o= f:\i"—, the equation (3.25) changes into
d 1 Pao ml? 8
i (pu U Tud,) = — o Uzi_rf_.,ﬁ,h,agpT (T w + ';p s—}_ (3.28)
With the aid of relation (3.13), by substituting the REvNoLps number
RG; == ﬁg—b‘i
3 Mg
and differentiating in the following way
1 d 7 pul/8, o T, d Rey - Uz d Bey
- ) = x x)J s (p 1)t ap A
wdy de ( o # “) ( B + T. R653+ -dz B+ 10 1) U M RBJS-%— dx
equation . (3.28) changes into
d:RGa U,t fw 1 (Ty)w 84
3__ . I 7 R — {k—1Mr = =
. Blk—1} 7 M*Re;, + e T {(k—13M 5 0. (3.29}
Substituting
_ _ PuU832
81 ] 83 Rﬁa‘? = T -
and its differential quotient
af, pu, iy U ) ds, dd, d Rey
— = — It — 0, + 2" Rey = —— b 2
d (pu )0t By Resy = g e 1 S —5
or
g hon BN sy i LB 1))
3 dx —_da; 953 [ ‘—{ ﬁfg{**" )} ]Fﬂl—%_d:f}— i’[l—‘{ — Bk — )} ]T‘L:_

into eq. (3.29) the integrated energy equation becomes

1‘!
a.__
a8 U 2 T 5,8,
Ly 22 [1— e — 1)) M2 B “)—k—mfzf-*iz. 3.30
. 7 L {1+ 8(k—1)} ]+0 ” 778 w 2( ) 5.7 0 (3)

/The kinetic energy equation of WIRGHARDT.
2

Multiplying the ecquation of continuity hy %: and the eqguation of motion by u and adding these

together, the result is
2

. u* u |
(P“ ,_2#) + (p’b‘ ?)J: pats UU: + w(pay)y.
T 1

Integration to y between 0 and § gives
d 3 d 3
d i 2 1z 7 '
EE/ p1b%d-ym—§%]p1ady=Ulfm fpuudy— / oyt dy
0 it

h 0
or (3.31)
8 3

3
2 2
“;5 [ pu(g —_%.) dy + U, f u(pu_p)dyzf sy dy.

4 0 0
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Introdueing the kinetic energy function

b1
_ ol ( o ) _ 2.39)
ab_uf ol 1 i dy , {3.32)
and substituting
Rey = pull8,
M
changes eguation (3.31) into _
dRB;s 5 o 83 Iz U@ B 8,1
5, H+~—ij—ﬁ(k~1)ﬂ G e, =2 P (3.34)
Multiplying with 2§, and substituting _
: W1/ 8,2
8,=8, Rey o P8 (3.35)
P .
changes equation (3.34) into
a9, U: [r 8, } 8,5,
ar T P ey — T B =1 45 (3.36)

A relation between the kinetic and heat energy can be obtained by adding the equation of motion
(3.1) muitiplied by « to the energy equation (3.3) -

¢ [ ul Y 9 [t 0 ° (1&2 )t ( 1 2 BT)
B NG 1 Ay 9 L ' =7 + Il - -~ -~ . .
ple B:c(z +c.o’1)+pv BU(Z +cpi') ayi”’ay ) + - l)qpay (.u 3 (3.37)

By integrating over ¥ from O up to 8§ and applying the cquation of continuity the relation
; _

TT2 2
e [ [‘g* — 5t Te— cﬂ’] dy =L (1,)., (3.38)
0

is obtained. In comnection with (3.13), (3.26) and (3.32), (3.38) can be transformed into the equation

i) --1

pull. T w5, — s, )| =1 (1), (3.39)

If no heat transfer to the wall takes place, (g—il) =0, then (3.39) changers into
) Y T

PuU T, ( R;l

M5, — 83) == constant =0, (3.40)
The eonstant value of the right hand side vanishes since the left- hand side of (3.40) heeomes equal
to zero in the stagnation point. In that case the relation
| 8y = ﬂi {(k-—1)8,, (3.42)
exists and the energy equa,tion of WIEGHARDT changes into
Uz

d 0,05+ {(2—B) (h—1) —1) M) == 2332 (3.42)

For a Praworr. number =1 and in the case that no heat transfer to the wall oceurs, (g—;—) =0,
| w
the caleulations of the boundary layer can be simplified, because the solution
u2

3 + ¢, 1" = constang

satisfies the differential equation (8.37). The adiabatic flow condition still exists in thig case within
the boundary layer, so that for ¢ =1 the following temperature-velocity relations holds

=0, (3.43)
Y 'w

T —1 u? oT
T, 1+ 2 M (1——5—')&)1' c=1 and(a )




T

When for flow along a flat plate without pressure gradient a constant wall temperature is preseribed,
then the relation

u? w [ U2 . .
'2— -+ GI,T:‘CPTw + -—_U— ["2—~ + G,,(Tu—— fw)] , (344)

satisfies (3.37) for o=1, as follows immediately by aid of [3.1).
* In both cases only the equation of motion or the momenium ecquation of voy Karmay is neeessary
for the solution of the houndary layer flow.

~ A

4 The asymptotic behaviour of the solutions of the boundary layer equations.

The equation of continuity (3.2) yields the cxistenee of a stream function ¢ {z,y), for which the
veloeity components in the boundary layer satisfy the following relations

oy
oy
pU=—- vl . {4.2)
When introducing a new parameter

= [ p(s)ds
6
which {s connected with the undigturbed (low velocity outside the houndary layer, the quantities ¢ and ¢
ean he considered as new independent variables. Then

I Y 0 N
dc o aap oy MU T My
ER ?

oy oy b ey
Henee, the equations (3.1) and (3.3) hecome

o pu g, QU A4 p B '
Uy — = "0 —+ 4y L. 43
]u_ G p dyp oy (‘u pe aﬁb) 9
or pu .. &U 8 (p aT p [ A )2

Wl ———=— 2 —+ | w2~ pw ) . 44
ey dp p v de 0 ( oy ) - (3¢ ' (44

The relation (3.12) for the adiabatie flow condition outside the boundary layer yields

oT, ol aT, |
" o= =0, 4.5
Cp % + U % 0 3 (4.5)
This changes equations (4.3} and {44) into

i (1(’;2 UQ) Pu aU2 a ( o a . . ] ) '

Uv——— . =(2_1|U o —(p—~ (WU 4.6)
de (P ) oy oy e B9 ( ) (
T~ Ty Py ay* a (p 0T —Tu) p o 3(u-—T)\?
g N T ) _ g D e N i b I € Y
el S =31 P)Ud? b (P 2 )+ Pu( - IR
For the determination of the asymptotic behaviour at the outer edge of the houndary layer the quantities
A =T,—T
(4.8)
Ap=U-—u

will be introduced. As AT and Au will he assumed to be small, their squares or produects will be negleet-
ed. In relation with (3.16), (3.6) and (4.8) one has

Concerning the order of magnitude the following relations exist
¢ ==0(1) » §==0(8), pu~0(8?), A= Ly = 0(8?).

After neglecting all terms of second and higher order in § the boundary layer equations (4 6) and (4.7)
change into




Yo

paull  bAul AT dUe

S il —— =0, (410

Y Mu a!}!Z arp + 1}5 Iru ng y ( )

¢ AT At AT AU o g

:— Y aipz Cp a? % Tu dﬁp ( )

where U and p, are functions of ¢ only. After
substitution of

Cy=V v ¥ e =4 (4.12)

where ¥ and ¢ are of order 0(1), the ecquations
{410) and (411) beeome

grAau EAuU AT dir?
_ — =10, {410
U a qu afj % Tu d¢ ? ( “')
i 2 '
oA T oAT 1 AT dU —0. (411a)

a¥2 g | 2¢, T, 4dp

In order to consider the asymptotic behaviour
T T %
i el : havi i e

of T and U , 1. ¢, the behaviour o T and i
for large values of ¥. the following transformation
are introduced:

=8V and g—¢,=25%¢ (4.12a)
where § rofers to the houndary layer thickness
and ¢ =y, denotes a fixed value.

T . .
“ and U being regular funetions of g, the

H

following TAYLOR expansions cxist

Tw . T
)= o+ 56— (55 )
+ i% (6,) + 325 6(1) .

V() =Ulg) + (§— ?‘)( U)_ +

S=2

+ = U(4,) + 578 0(1).

(¢) and U{g) may he

considered as eanstants The differential equations
(410a) and (4.11a) become after substitution of
eq. (4.12)

Hence near ¢g=~0 ‘

2
) Bis_u o BAJL 0 (4.13)
sw? GX
AT A .
1 9 — _-Tl =0, {4.14)

s 3¥ g
The pertaining hounday conditions are

AT =au=10 for ¥ == oo (4.15)

AT =T, -T, Au—=U for ¥ =20,

F3

The equations (4.13) and (4.14) with the houndary
conditions (4.15) are satisfied by the solutions

2 F_,
M—U—u= — U [ da  (416)
Vo o it
AT =T, — T =
2 N
= = (Tu—T) f de, (4.17)
i N
¥

where e=—

23

The asymptotic behaviour of the velocity profile
at the outer edge of the velocity boundary layer
will then he given by

U 2 i —a?

ro_q_ %fe da, 4.18)

A (
where = _____,_________"p )

2V v (o — 1)

taking into account (4.12) and (4.12a).

The asymptotie behavieur of the temperature
profile at the outer edge of the temperatuore boun-
dary layer will be given hy

T 2 ( Tw fhaz
Tu __1——‘——1/;_ 1——}—') (4 da.

For larger values of y is

(2.19)

u
[plbdy
v _ 8 1
I/‘P_‘PL ]/'?‘_‘h

s
) ¢

sothat for the - as well as for the y-eoordinates

the same asymptotic behaviour holds,
From the equations {4.18) and (4.19) follows

—
changes

that the asymptotic hehaviour of

into that of —; by substituting ¢ =ty Ve

T '_Tw

Hence the velocity and temperature profiles
show the same asymptotic behaviour at the outer
edge of the houndary layer apart from a stress

tactor V0. As a consequence the temperature
boundary layer will in general have to be thicker
for PraxprL number ¢ < 1 and thinner for PravprL
numbers o > 1 than the velocity houndary layers,
which agrees with the experiments.
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b Approximative functions for the velocity aﬁd temperature profiles of the laminar compressible
boundary layer flow with pertaining boundary condifions. '

When introducing hesides the dimensionless veloeities and temperatures

U - T
i 3 =1, {51)
the new coordinates .
di= = dy; == dy, | (5.2)
where ¢ = — ED—QQD and e, a, are functions of z, then the veloeity and temperature profiles can he

deseribed approxlmdtely by the following functions

oL

Rl (et bed o+ .00 F —f / o dy (5.4)
, £
- %
t—1— (1 —t) [ao F Do, + Cofet A Ve W / e dn} . (5.5)
. g K
The houndary conditions at the outer edge of the veloeity and temperature houndary layers change into
— Bﬂ Bzu
= =1 =.,=0
¢ b o atz
{5.6)
ot 0%t
f,=o0 t=1 - = =..=0
¢ €, aguz
As these houndary conditions are satisfied by the functions (5.4) and (5.5), the coefficients a, b, ¢,
[ fa, which are funections of z, can he determined hy the houndary conditions at the wall. These

houndary eonditions, which follow irom the differential equations (3.1), (3.2) and (3.3) in relation with
(3.8) for y=0, are ‘

Tw

w=0; uy=—
Ty

3 (e yly=— pulils; {pty)py==0

2(pt)y Upy— (pttJay Uy == (pr Uy )pyy; ..
T

c.
T= —_— = u; —l 2=—0: 5.7
Tw or (By )w 0; - (uTy)y + wa? = 0; _ (6.7)

[}
Cplpuly Lo =— pu /U + ?ﬂ (e Ty)gy + () ys
Cpl {ptt) gy T2+ 2{pu)y Top — (p)ny T)y] = — puthy, UU, -+ % (5T) gy + (prty® o

After substitution of {5.2), (5.3), (3.6) and (3.13) the first four boundary conditions at the wall for
the cquation of motion and the equation of cnergy change into

— thw . - U;r 1 tm - 1 tgﬂ -

o —— 1t - = —__ —_ 5.8
W ug = v e T v (5.8}
b= to; By, = (b Ju; by + GQZ(kH_UMZEg: : (5.9)
- = t,a- - U_g- 1 Uf
wgiigg -+ 26— DM T g b D Tty =0 (5.10)
In the separation point, (s ty)pmy==0 the following relation holds

- 3 i _ 3 stz N\ (uaé—:)
Uy = = U + — AL Ury— 7ﬁ = . (511)

333 Lo e T ( tw) % e

For the caleulation of the houndary layer without heat transfer at the wall, henee for (tg, Yu=20, an-

other boundary condition can be taken into account without difficulty. The fifth boundary eondltlon at
- the wall, which follows from the energy equation (3.3), yields the relation
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Cp(p) oy Te =— pu sty Uz + —G_c—? (W Ty) o T (i)

or

U, .
(wzg)z UL' tzoguguié():(l. (5.12)

0{]4

This last relation ean be simplifi&d by means of (6.10) to

gy e, =1 Pty (5.18)
Starting from (5.4) and (5.5) one has for £=£=10
w=1—a—3 V'=f 1=a,+3 Vrf,
ug=f—"b by, = (1 —tu) (fo—by)
nge 2(a — c) L b= (L) 2(8,—ep) (5.14)
Uge=2(3b—1) Fagkoto= (1~ £)2(3 0y — £, ‘
Uuggze = 12(2 ¢ —a) bttty = (1 — 1) 12(2 6o — a,). ‘

In relation with (5.14) the houndary conditions at the wall change into
l—a—4 Vaf=0
¢
f b= Twbw
’ apiwl/
Usbu

vyye®

2(—¢) =~

35— f) :é 1;"” (o — bo) (a — ©) | (5.15)

l=a,+3 Vay,
(tﬁo)w: (1—tw) (fo—by)
(1~ tw) (@ — €,) + ¢ Q1 k— VM(f—B)2 =0

Us (ffb)(a-*c)-fﬂ 1 —1— Ue

(tw) : : Uz s
2= o T

(f—byle—e) —— 30, —fo) (1 — ) =0.

In the separation point the following relation holds .
: {2e—al(o—cy={3b—1 )= (b.16)
When no heat transfer at the wall oceurs, then
(tg,) =0 and f,=15,

and the relation :
10(a— )b, =(f—b) (2 c,—a,) (5.17)
follows from (4.13).
The quantities 8,, 8, 8, 8, and 8, appearing in the differential equations of section 3. become, ex-
pressed in the new variables £ and £,
3 &

b [ (1= Y= [ (1= E)ay= L fa—mas- L [ oo
g ' # 4 “ g % g
3 ' 5
82:([—;—1;]_(1«%_)(11 zofﬂu—u)d =_i_ fu(1~u)d§
g — @
4] 0

e (0w . f—z
8“.’! v (aJ/a)d”—“Sﬁn R

3
8; __f puU )a’,y_ﬂf———(1——1;,2 dJ_"T{ u(l——u2
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With the aid of the cquations (54) and (5.5) the quantities 8,, 8,, 8,, §,, 8, can be expressed into the
coefficients @, b, ... f, ... [, (sce appendix)

ad, =3 Vre+ie)++ 0 +H—3V 7ol —t) (e, +3c) —301—t) (b, + 1)  (518)

ws,—3 V7 [aﬂ;c_ﬁ : l—/gb 3!;2 zﬁ(lﬂ—Q) (2 + bf) —Kﬁac +
+§[b+f_—a-b—32r— af—ébc——(%—-&)cf] (5.19)
asazz %/_zl/:’r (@ + § b+ 5+ fo—fb—~dac) + af —4fe + 3 be (5.20)
b, == a8, "+ 2ll//w—? [w" + 4atc F hab® + Lac? + (5—15—?—%) (abf — % of?) +4b% +
+ (?’—K—?’-a—l)bc}’+ s c"] + 23"/—2:1)9 tg V2 (@f + 4 acf + L0 —bf* + 5 off — ) + dab +
4 § abo — L acf + 4t 1;3_-g-b?f+1§bcﬂ 2f+~3—7r—(bf2+fd )+ a(af* 4 of*) +

+ 4l re+30) +§(b+f}—l/-g_[az+ 1024 Fer+ (V2 —1)(f2 + bf) + $ac] —
— (ac + 3 be — 3§ ¢f) -471’- (af + 4 cf). (5.21)

The quantity 8, appears to assume a very complicated form. For e, a good approximation can be
obtained, when introducing for u the function

—y2

=1 ot kot ke bt [y (5.22)
N :

The coefficients p,, qo, 7o, 8, and &, are determined from the value of the funetion and its first three
derivatives at the wall and from the constantness of the values a8,. Along the wall the following relat-
ions hoeld :

w=1—p,—% Vrt,=1—a—4 Vrr=0

1 — 1 .
u£=a— 1L£0ﬂ—6(t0——q0) ={—b
1 2
gy = “E.,s[, o (o —70) =2(a—c¢) (5.23)

—_ 1 2
Uggg = Ensoso —(3¢,—3s,— ) =2 (3b—1).
1f @8, remains unchanged, one has

STV 3 E 04 NI =4V 700+ b1+ 4@+ s+ L), (5.24)

By means of (5.22) and (5.5) o8, can be approximated by

an oo

at= [ wt—1de=0 [ @1 —1dg,=
= ;
—ate—1) [ 1=t 6% —t, [ an] [t bty + etit)e W 4, | | ac,,
o & . %
or
P A (0 F O A(b ) + A0 A D)0+ A (e—0)0F+ A,Bb—f) 0, (525)

where
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Agy = — 018172 ¢, — 0.18523 b, — 0.20959 ¢, — 0.07082 f,
4,y = — 010253 a, - 0.10451 b, — 0.11825 ¢, — 0.03995 f,

A, = + 0.37549 q, + 0.40285 b, -+ 048333 ¢, + 0.142187, (5.26)
A, = 016994 a, -+ 0.06515 b, + 0.01350 ¢, + 0.10133 7,

A, = 006580 e, + 0.03238 b, + 0.01270 ¢, + 0.03594 f,

A, = 0.00749 a, + 0.00433 b, + 0.00225 ¢, + 0.00383f, .

Previous to entering into details of the general method to approximate the velocity and temperature
profiles in laminar compressible boundary layer [low, the particular ease of no heai transfer at the
wall with a PraxprL number ¢=—=1 will be dealt with.

6 Caleulation of the veloeity and temperatur.e profiles of -the laminar compressible boundary layer
without heat transfer at the wall for the Prandtl number ¢-—=1,

: o |
When no heat transfer at the wall oceurs (% =0 tor y—_—U) and the PraxpTL number is o—=1,

the simple temperature-veloeity relation (3.43) exists
E—1 —
t—=1-+ Tﬂﬂ(l—qﬁ). (6.1)
Without making the computational work too laboricus, the temperature-viscosity relation of

SUTHERLAND
lu' Tu _Jr_ C . IIT )3.,’._.

LS LI (B 6.2
e T+0o\NT, (6.2)
ean be used in this ease for the deseription of the laminar houndary layer flow.
. The houndary conditions at the wall
w=0; =" (), =— puUls; (ptty)sy="0 (6.3)
ehange into _ .
E—'OE . thw ‘7 q1u+(j t—]h’a" - U_-,-_
TR T et + O BT T S
(6.4}
, : 2 1 Ty ) e

by means of (6.1), (62) and (52).
In the separation point ug==0 and therefore, also wugg: =—0. With the.aid of (5.14), (6.) and
(6.2}, eq. {6.4) yields the relations , )
Tw by + C ' =Yy -
peell T, O
to—1 C—toTs
te O tols

a-l-%l/;f:.l; f—b= (6.5)

U, t10+C

Yy ‘ _
vad T, FQ be i 2Bb—N=

2{(a—¢) =—

(f —b)". (6.8)

Ag in the separation point ¢==3}¢, it may be assumed, like in the method of Tmman (ref. 12) that
for the accelerated flow ¢ is equal to 0, while for dccelerated flow ¢ will be taken cqual to 4 e
The aceelerated and decclerated flow are then deseribed by separate solutions whieh join in the point
ﬁ,:ﬁ:O(UEZU). .

In connection with the relation {(6.1) «8, changes into : : "

ad, = [ (t—w)ydg = [(1*2;)(15 + / (t—1)dé = [(1-—E)d$+k’;1 M f (1 —w)de=
I h & 0 ¢
’ n’b—‘l — } h—1
=(1+ 5 ) VRt o + 106+ N1+ S M, (6.7)

ad, is calculated with formula {5.19). The momentum equation of voN KirMan can be written by means
of (6.1) and (6.2) in the following form: e
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d9 U, we  ad, — T.+ C
9 —— — 2] =9 8 7z =9 —* .~ V't —
ot 0 (20 + 3 (1 Bl — 1)} 1] QM T g 7 +0Vt by (f —b), (6.8)
where
Coplid? U r o s Ty
#= s - v“az (“82) ' JG—"‘A_'__ gvu + 0 - - ) (6'9)
Agsuming
te  CH &I TutC y—
f—b=Ay; mm—ﬁu ﬁ_w»rm"]/tw——h; (6-10)
eqs. (6.5) and (6.6} yield the relations
: 1
f=4a,+ mf\13
. o A3
b=4A,+ i Ay
a=1-—1% l/;(iiA +-—L1\3) | (6.11)
. ] 1 4:p] 1
2{a—e)=— U“'z e
vurt ¥y
T = Ny
paeelf

For the accelerated flow is e=0, for the decclerated flow ¢ =4 ¢. By numerieal integration of the
momentum equation of vox Kawmdy (6.8) and applying formula (6.1), the whole temperature and veloeity
field of the compressible laminar bhoundary layer cun be ealculated.

In the stugnation point the momentum equation of voy Kiarmax (3.18) yields after multiplication by

8 - ‘ :
Rey, = %, the relation 2 @(al, + 2a8,) =10 if the conditions 1,,(0) =1, p,(0) = w , y, (0} =1 are
Vy
taken into account.
Like for incompressible flow this is satisfied by the usable value @ =-— 041502 (vef. 12), sothat the

initial value of A, in the stagnation point hecomes A, = 1.06445.
Replacement of the formula of SUTHERLAND hy thc temperature-viseosity relation (3.6}, leads to the
{ollowing relations:

2 Tw U.'L' tw
23 b — 1—— M —_ == ; , — _— - - 6.12
f [/-;.— ( (L) ? f b ‘U'.wOIUY H 2(” C) Vuag v E ( )
{6 U -
; = 2] =2 yad, uz=2 yad,(f- - b). N CREY

With the help of a simple example the influenee of the variouns temperature-viscosity relations will
be investigated. For that purpose flow along a flat plate will he considercd without pressure gradient
for a Macn number #f =2.5 and with a preseribed temperature T, of the undisturbed flow.

For flow along a flat plate without pressure gradient is U, =10 and, therefore, e=c¢=0. The linear
temperature-viseosity relation (3.6) leads with {6.12) and (6.13) to t:he I‘elﬂthllb

ff3b_——:, I/Vum l/g},(f_h) __l/ 3V 7 ab, ad,
%Pu l/Uw [/31/7

(6.14)

— ab,y
The temperature-viscosity relation of SuTHERLAND gives for a ==c¢ =0 from {6,11) and (6.8) the relations

3
f.__———_,b_f——i\ AFH6p A, — =p, =0
-

™

Lt Vol a32 T Ux - V———*-——ﬁ
= —E o A y,ad, . 6.15
al/ : l/zAlYl,%PuU2 . 2 Ayy,ad, ( )
When earrying out the calculations with the values k=14, M=25, (=110°K, with preseribed

temperatures T, =220° K and 7T,=330°K, the pertaining quantities of the boundary layer are given
in table 1 for various temperature-viscosity relations across the houndary layer.
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The pertaining velocity profiles are given by the
equation

J=1_z)ge“f*_ffe"”’dq (6.16)
;

where

fi-z—l w1 _?ﬁ)] dt.

In fig. 1 the wvelocity and temperature profiles

T =7y
IR TR
I %=t SUTHERLAND
x fsTw
e DAL TP B
4 TaoH
v ABBROXIMATED 10
(7.26).{727)AND (726}
U
LATR i v/'/
1o T el
WRG=5
8 hing =R
s I]I | _’4/'? 2
= =220 K_AZAR
4 = L (o]
find 1}
pu s A M=) -~
T =
2 i —— I
sy
o — y
? 0z o 06 o8 10
U
; e
Y u¥
10 e In 6
. 35 )i {
8 ié‘%\ T, =330°K <
N I R “ 5
N S
¢ = | 0
L 7,5220°K
2 o
o
10 14 1.8 2.2 26 30
T
Fig. 1.

The velocity and tempecrature profiles of the boundary

layer flow along the heat-insulated flat plate for r =1,

M=25, T, 6 =220° and 330°K and various temperature
N

viscosity relations
pe T € \T, T, )

_ I +¢ ( T T
(The thermoemeter problem).

ol

are drawn for M —=2.5 for various cases mentioned
in table ¥. The standardized velocity and tem-

peratuve profiles and

* i a r to be in
ey (4131 ' ~
U T, PP

dependent of the preseribed temperature of the un-
disturbed flow for the temperature-viseosity relation
2

Hu Vi

layer).. For the other ahove-mentioned tempera-
" ture-viscosity relations the standardized velocity

(in y-direction within the boundary

F 15

U T
'—iT and ET“
over, dependent upon the Mach number and &lse
slightly upon the undisturbed flow temperature,

In fig. 2 the calculated drag coefficient
72

— i
Cp l/ 11’6 = Tw l/

3 pulV Py
flat plate are plotied for various temperature-vis.
T, + T, .
_ 2 ’
T=17T) as a function of Maeh number for T,=
220° and 330° K and ¢==1,
o 1

oy A
peurs to remain unchanged. For the other tem-
peraturc-viseosity relations ¢, V' Re is dependent
not only upon the Mach number bhut also upon the
temperatare, 7

Figure 2 contains also some results taken from
other authors {ref. 8, 9, 10, 11) who used the basic
# ( T )" Th
—= . These
. M Tu 4
curves appear to he independent of the outer flow
femperature for a constant value of n.

Introducing, as in ref. 4, 5, 6 and 7, the tem-
perature-viscosity relation as a linear relation
I
. T,’
way that the SurHrRLAND formula is satisfied at the

T, +C T .
—_—= l/ -—T—w , it 18
T.+C T
seen that this corresponds to T'= 1T for flow along

a flat plate. The drag cocfficients ¢p 1" Re appear
t0 be also in this ease dependent upon the outer
flow temperature (see fig. 2),

it appears from the form of the various drag
curves in fig. 2, that weighting factors o, and e
can be added to T, and Tw, such that for
T — o, Tu + e, T

a + a,

tained with formula (3.6) and with the formula
of SUTHERLAND,

A good approximation will he ohtained already,

if in formula (3.6) T will be chosen as

T+ 3T
=ttt

The relation (6.17) will be used as long as no
better approximation is available for ecompressible
laminar houndary layer caleulations with and with-
out heat transfer at the wall,

and temperature profiles are, more-

of the heat-insulated

cosity relations (T=T,; T="Tw; T=

¥lor

the drag coetficient ¢, V" Re ap-

temperature-viscosity relation

where ¢ is determined in such a

wall, which means that c=

the same drag curves are ob-

T (6.17)

7 Calculation of the velocity and temperature
profiles of the laminar compressible boundary
layer flow without heat transfer at the wall
for a Prandtl number o-£1.

If the Praxprn number o differs from 1, the
temperature and wveloeity distributions within the
boundary layer will no longer satisfy the adiabatic
flow condition (6.1). The houndary layer quanti-
ties will he approximated in this case as follows.
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of the heat insulated flat plate for various temperaturc-viscosity relations. (The thermometer problem).
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The boundary ‘conditions. at the .wall . (5.10) and (5.17) yield the following relations. R
5 . . ' S -
f=3b=—={1—a) 7.1
| Z L 1)
o .
fo=by= = (1—ay) R - - (12)
9 — ¢} 2o (7.83)
vaya. \ “
(to— 1) {@y — ¢,) = 495—'&92(}»-!_ DM —a)r - (7.4)
m .
(tw)x ) o Lr; 8 1 (1 _— “‘0) (tw—— 1) Ur
~E 2k =M — = : =0 :
to 2Dy [ g 9 (a—c)(1—a) U ,(7 5-)_
Tt 4 ‘ ‘ . R
= e (1 —1). - S P : 7.6
el 3V x (7.6)
Qlat—c){l—a,) =1 —a)(2c¢c,—a,). : - S -1
In the sepm'at:ioh point one has by means of eq. (5.16) and 7, =0 ‘ _ _
R c=4tu=1/2 _ o . o (1.8)

L i

The peltamlnu’ boundary layers for the aceelerated and’ dﬁ,celelated ﬂow can be deserlbed by qepardte

solutions just as with the method of Tonoax (]9} When choosing for the solution of the accelerated flow

(Uz > 0) the relation ¢ =0 and for the solution of the duelemted tlow (¥, < 0) the relation c=4e,
then hoth solutions join in U,==0 f(n ¢c—=rna =1} : C
In connection with

i

Ve _ M1
i M 14 k—le
eq. (7.5) chanﬂres 1nt0 :
" TneTe 1+ 2_ M 1 e

The velocity f1cld and the temperature field of the compresmhle lammar boundalv 1a}er flow Wlthout
heat transfer at the walllcan be” described by means of the energy equation of WIBGH&RDT )

a9, . Us . sa T
e T 9]“)+{(2“B)(7~._1)~1}M] 4 R G 1)

where by aid.of eq. (7.3) 4, is cqual to ; .
[ U 9(& =)y
ST (ad) e Y

C Vus Vet fw . Uz

and by aid of the relation (3.41)

f, =

asaﬁig—(k—“l)asn.'. ' ‘ L (712)

The differential equation (7.10) depends not only on the known veloeity distribution and temperature

distribution of the outer flow but alse on the quantities ¢ and {, It is,” therefore, necessary to

compute the solution by means of an iteragive method. For the PraxpTL number ¢ =1 the.following
refation exists according to section 6 ’ ' '
t=—1+ ——2—— ML —u?).

With o541 the relation -

fy="1+ 'k‘gl‘aﬁl/?' ST Co (7.’13)

wﬂl be aswmed to hold for the first iterationstep. The dltfeluma.l equa,tlon (7 10) can_ then be txans-"

formed with the aid of (1. 11} and ()91) ‘into a dlffercntlal equation for “e” with # as 1ndependent

3), ' (.
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variable, This equation is numerically solved and yields the relation ¢ =a(z). In the stagnation point
(U =0) the value o will be obtained from the relation

3“’" () ¥ =0 for te=y=1, (7.14)
which follows from (7.10) for U=0. -
“(74), (1.7) and (7.12) yield for f,=1+ k—1 g M* the relations
16 «o , Qe—e)" 2c¢,—a, 7
e —— — —_A —— e 15
W—o=ge TRt e S, (1.15)
ad, — ad, (7.16)
_ tw—1 q
Hence
ST OﬁM; U__il_-l__i__ s by =fo= 2_ ﬂi (717
1+ A, 1+ A, Ve 144,

From (7.16) © ecan be calenlated as a function of
a=a(z) with the ald of (5.21), (525), (5.26)
and (7.17). The pcrtaining valwes a, and ¢, are
then also known,

The derivative f., follows from (7.2) with the
aid of (7.15) and the ensuing values ¢, and .
Numerical integration of {,_ yields the second ap-
proximation of t,, which again can be written in
the form -
k—1

2

fo=1++ g{z)y M2
where g(z) is a known function.

This process has to be repeated as long as t,
does not vary anymore. Usually two steps mll he
sutficient to obtain a good approximation.

Remarks.

1. Ag the momentum equation of vox Kiramax
depends not enly upon the quantities ¢ and
tw, but also upon Q, while the kinetic energy
equation of WingHARDT depends only upon iy
and a, it is preferable to use for the caleulation
of the boundary layer with pressure gradient
and without heat transfer at the wall the equa-
tion of WIEGHARDT.

2. When besides the energy equation of Wig- -

HARDT also the momentum equation of voN
Kiarman is used, it is possible to caleulate the
funetion relation hetween the coefficients o

. and ¢, However, the computational work will
probably become too lahorious to instify the
improved aceuracy.

3. As it may be expected that for a given Pranprn
mumber the funetion @ will not vary tos mueh,
it will be advisable to perform the ealeulation
of @ from formula (7.16) as follows. One
chooges as a starting value the value =0, +
AQ, where Q, is the value of Q pertaining to
flow along a flat plate. After neglecting all

terms of higher than the first order in AQ, .

AQ can be solved at onee as a funetion of a
from (7.16). By means of an iteration process
it -is possible to ea,lculate the function Q very
quickly.

4. The equation of WmcHArDT can be solved in a
simple way by writing it in the following form

(\2 G)}'(S 2[5+

+{(@2—p }(k—l)#l}ME]-f--} b, | dz

- (7.18)

Starting from the value t=a(0) at the stag-
nation point z=ux,=0, the pertaining values
of the right-hand side of (7.18) can be calcu-
lated in a point, where 2, is small, by aid of
two estimated- values ¢ =a,, and e =a,,. The
left-hand side yields then the eorresponding
values ¢, and o,,. Plotting the wvalues o
against @, the value o=4«,, lying on the bi-
sector can he assumed as a new approximate
value hy vectilinear interpolation {see fig. 3).

a

. 1\3’/

w92 %3
Pig, 3.

This gives the pertaining value of o’,,. This
process can be repeated until e, will not vary any-
more, Usually two steps are sufficient to obtain
a good approximation,
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Particular case. ' . TABLE 2,

For flow along a flat plate the boundary con- |
ditions (7.1) through (7.8) yield the following ‘ fo—1 !
relations (using the fact that the wall temperatuve - Q , F—1 Ve
is constant) : ] 5 M2

ty=1; ¢y=; fi=0b,=0; a=¢=0; =
fo=3b— 2 (7.19) 0.6 107817 0.78937 0.7746
Vion 0.7 1.03421 0.84737 0.8367

- 16 . , twle 4 0.8 0.99784 0.90152 0.8944
B LY 7 0.9 0.96704 . | 085255 0.9487
The relation (7.12) changes into . 1.0 0'940%6 1.00102 - 1.0000

ob 9 1 1.1 0.91720 1.04731 1.0488
. & p— 2 5 846: 1.2 2247
1 = 82 e (7.21) | 1.5 0.84636 1.21608 1.2247

in connection with (7.20) and yields the equation oo
0.132916 Q* -+ 0.617150 0* — from which it is seen that approximately

— 0.243204 02 = 0.402226 1 . (7.22)
o

=l vw (7.28)
In table 2 the pertaining values of Q@ and: k—1 e
te—1 : . : 2
T_q  are given tor various values of the
2
2 M Integration of the differential equation of Wira-
Praxorn number, ’ ‘ HarDT (7.10) yields the relation

1 8, 1 vul — Vol
Zzl/TsE _{;5_1/ o~ 2.29297 V”[/U . (7.24)

In connection with (5.18), (5.19), (7.19) and (7.20). one has
U /‘— IJT [ iz _
3, ~ =0.6641"7; 3, —=1725(1+ § (k—1)ee¥ V5 (7.25)
C Vy vy

To xl —
WI/ = 0656 1y,

The velocity and temperature profiles can be deseribed by the equations

E:J_bge'gz_f] e dy (7.26)

t=1— (1= t,) (a, + cb2)e 5" (7.27)
where

, (/_U—__l'/

Y vu.'IJ'_ua

_ll/
Tz

To verify how far these profiles agree with the profiles ealeulated in seetion 6, for a PraNDTL number
a=1, it is safficient (in conneetion with the same linear factor I/"y appearing in both methods of
analysis), if one compares ouly the profiles for y=1. For e=1, M=25 and y=1 the veloeity and
temperature profiles (7.26) and (7.27) appear to coineide with the profiles caleulated in section 6
(see fig. 1). ’ i

Use of the momentum equation of vox KArMAN instead of the etiergy cquation of WIReHARDT, yields
after integration the relation ‘

% '
v nj 1de, —
vl P

— , . £
vf; Q [,E(, 4+ (tpy—1) z (e, + 3¢,) U] e dn — -023— £, e_s‘f” ) (’?’.28)

t

1 U l/ 8 1 —
il = —_— =2.27005 7, . 7.29)
al/vuil? . 3]/71'?&82 ' S IS - (

..
and hence
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o S Te — temperature as well as from a .wall temperature
;P:U_zl/ v = 0.660 VY- (7.30) variable in z-direetion. The approximate method
; deserihed below will use, besides the momentum
equation of vox Kirmax and the integrated heat
cquation, eiwht boundary eonditions at the wall, viz,

T .
For =1 and £ — ¥ (—_) the solutions appear
M Tu

to bhe identieal with the solutions obtained in the first four boundary conditions ensuing from
seation 6. the equation of motion and the tirst four houndary
Application of the energy equation of WrgG- conditions ensuing from the heat energy equation.
HARDT as well as the momentum equation of vox These eight boundary conditions yielding the relat-
Karmin yields the relation ions in (H.15) contain hesides the coefficients o,
_ . fo of the standardized veloeity and tempera-

gy(] —a) 1 —2 8, as, . ture profiles (5.4) and (5.5) and the.given guanti-

3V'= ad; b ties tw, (tw)s, U, Us, M, o and k= %: 1.4 also

This is satisfied by the values ¢« = ¢ =— 0.046255.

it}
v N Hiaa N m *
From (7.24) it follows that the nunknown quantities @, «, rw and (fg ). . These

unknown guantjties and the six coefficients a, b,

- 1 ; — f, @, b,, f, ean he ecaleulated from the eight
I/ vl =2 [/ ad,t  al 23668011/ v boundary conditions and the two differential equa- -

- tions (3. 23) and (3.30). The shear stress, the heat
transfer at the wall and the tempemture and

and henee

Tw Uz 0664V T veloeity profiles of the houndary layer are then
1 pl? ve | v Jknown. . _
This value agrees for y==1 with the exact value In the separation point the relation (5.16) holds
caleulated by Brastus (ref. 8) for constant mate- 2c—a)in—e) = (3b—1)= {8.1)
rial quantities, '
In fig. 2 the drag coefficients ¢p V'Ee, — Assuming that the relation (8.1) will hold for the
77 whole decelerated flow, one can deseribe the acceler-
Tw U$ . .
3 oull ——of the heat insulated flat plate are ated and deeelerated flow hy two separate solutions.
2 Pu Vi ) When for the accelerated Ilow ¢=0 and for the
g[)'lottegg Sg’ gung?mml%3%£ IIELACHd nfum-bcr i(())l’} “T= 1, decelerated flow ¢ = p(x)e, both selutions will 10111
== s Lu= and 1or o=WU1, fu= for ce=a=0in U,=0.
220° K. Here formula (7.30) is used. The drag ]“Tlth ¢ =pa, (8.1) can he written in the follow-
coefficients appear to be dependent on the Macuw - ine form

number and to a less extent also on the tempera-
ture of the undisturbed flow and the Prawpru Bb—fr=Cp—11—pa*= 4 qaz (8.2)
number. T ;

8 Calculation of the velocity and "temperature Henee, the relations (5.15) change into

profiles of the laminar compressible boundary
layer flow with heat fransfer at the wall and
prescribed wall temperature,

2 2
c=pa; 3?)_f=i7: qa; f= l—//t(‘]._a}
ks ks

o g = — 1=ty (fo—b)(1—mu
When dealing with the compressible laminar I ;_q Q ” ¢ P
boundary layer tflow with heat transfer at the wall 9
one ¢an start from a prescribed constant wall . fo= 17_: (1—ea,) (8.3)
T
- al2? k—1 2 2. . Twlw
Ll S MA(f —b)*; f—b—m
Ut a
2(1 —pla= —=2, (tt)w—(lﬁ‘tﬂ)(fu'_"bn) (8.3)
| o | 1
(f—b)(l—p) )e +2(k—1)M® U — b))+ — 3 U —{3b,— ) {1 —tp) =0,
tw U o OQ°
Assuming : '
) 2 2 q tw 4 o F—1
D f—b=a—A; fi—b,=5—=A,; =@; —— Mr=P
N ]/71' )f" v l/'n' 0 1‘—1) 1—tw Q ™ ].*—tm 2
the relations (8.3) can be simplitied to
{tzk—g—j\— 5 o, = PO% Az Tt 2__
2+q apel/ V
I _
L 2 g+3A 2 B 2—34A Ut
= 2 T f = f (1 —PQAY; 2L —p) “— S 8.4
= 2+q:fo ]/W( ) 2(1—p) Fy vy’ | (84)
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2 g+ {(l—g) A 2 _ _
pom o ATV Ay 2 poraz_qQ);
[/,.,. 2+ 4 ’ ’/71' (
2 -3 A i 2
= *—“——f;AUZQ H t w:ﬁg (l_tw),
o — ) Aa (fu)e - y [ZE o Doy (2P .
e e — O] —- —2PatA? 3@ =={} .
—h Sl nl@(l—p) A (2 17 30Q) 7 =0 (8.5)

For the accclerated flow is p=0.
For the deeelerated flow is p=£0

4 __3
(2 p—lJ (1_71)):‘—(13 or T /3 ~—~———]. 2 =
%) W
32

When the temperature distribution along the wall 1y, is preseribed and the veloeity distribution NN

of the outer flow is known (this ean bhe deseribed hy the local Macu number) the quuntitic?;
necessary for the deseription of the compressible laminar boundary layer “flow ean he caleulated by
numerical integration with the aid of the momentum equation of vox Karman (3.23), the integrated heat
equation (3.30) and the relations (8.4) and (8.5),

With the momeutum equation of vov Kirmin

a1,
2 T

6 (2H +3— {1+ Bk—1)} M} =2 yuad, (8.6)

and the integrated heat equation

a8, . U, 2 8,

ey 11— M= 2 Y e 1y S
T 77 9, [ 1— {1+ g{k—1)}M?] — -5 ty ady + 2E—1M 5,2 (8.7)
the following equations can he established : '
i . 1 . . . . .
E—tlmcs of. (8.6) —-ﬁ-a—tlmes e, (B.7) gives in eonnection with
1
' 75,2 [{ad,)? [
92#‘:_5‘%:‘“7 %(aﬁz)z?.(lﬁp)a
1 u x 1
Us.? Uiad,)® (4 .
elz_%:ﬁ(%‘é)_:—ﬁ L (a3)*2 (1—p)a
d 6 U t 9 2 5 1 2k—1)M 18, J -
el e R e Mgl 2 WAL s ), (s,
g PRl et g e e - 5 a822! (). *(8.8)
This equation has the solution
fﬂ'(x)da: .
4 ¢
@ =0 (e | (8.9)
1 1
The differential equation
dg] U;r fu, }fu 2 Y 5,8
-—— — = = L o 20— 1A 2 —=s(x 8.10
in + 4, (,U + . + M] iy tg, a8y + 2(k—1)H e s(x) ( )
follows from {(8.7) in eonneetion with (3.22).
This equation has the following solution
Z
1 [
S ] 5() U pugratlc. (8.11)
Upapu(2)

With the aid of (8.9) and (8.11) the computational process ean be simplified in the following way.
If for the points x,=0, x,, 2, ..., Tn_1 the pertaining values

Goy Quy o Aot Doy @y oo iy Ay, Ny e Nl , (8.12)

have been caleulated, then for z, the quantities g,, and Q,, ean he estimated with the aid of a differ-
ence scheme. The pertaining value A, can be caleulated from (8.5). Using the values (8:12) as well

as U}_ze values for ¢, , Q, and A,,, the quantities 7 {w,} and ¢, (x,) can he obtained in first approxi-
: 1




mation hy ald of (8.9) and (811). The second
approximation g,, follows from #(z,) and A,,.
The second approximation @,, follows from 8,(x,),
Ap, and gu,. Finally cq. (85) yields the second
approximation A,,. when using g., and .. This
process will be repeated until A, , g, and Q, vary
no longer, _

Apart from the neighbourhood of the stagnation
point and ncar the point where U,=0, it is to
be expected that this process will converge very
quickly sothat in general two steps will be suffi-
cient to obtain the accuracy required, Near the
stagnation point and near the point where U, =0
(the funetion p shows a discontinuity when passing
from aceelerated {low to decelerated flow) it is
useful to start from a system of two values ¢y,
Ry 5 Gnygs Ony, and to caleulate with (8.5) the per-
taining values A, and A, . %)

Afterwards the values gy, @ny, and gpy,, Oy, can
be ealeulated from ¢ and 9, with the above-men-
tioned method.

2 g4y

{8.14)

varies eontinuously from accelerated to deceler-

ated flow.
For the aceelerated flow (814) takes in the point
+=10 the value

2
(tg)w= lj/t;ﬂ Gitw

and for the decelerated flow the value

2 d
t:-—'__—:ﬂ———tw.
(tgo)o l/'rr 1—-p_

Equalizing these two values yields the relation

fin,
/s
7
finga
n
Py N2
Fig, 4.

When plotting the caleulated values @,, and g,
as funections of Q, and g, resp., the points Qp,
and gg, lying on the bisector can be ohtained recti-
linear interpolation and be assumed as new ap-
proximated valunes. With the aid of these values
0, and g, the pertaining value A, can be eal-
culated from (8.5). This iteration process has to
be repeated until ¢, and ¢, will not vary anymere.

As the relation
. ( .
+ P—Tf) -
& G
32 4

Cp—1{1—p) =%q2

q2

or

(8.13)

is ambiguous, it is necessary to make an additionai
assumption in order to fix the initial values p
and ¢ in the point U,=0 for the decelerated flow
unambiguously. The assumption made is that the
function of heat transfer

¥) Near tho stagnation point it is advisible to chooese
the values n and @, aswellas ¢y, Ard gy 2t both sides
of the values n, and ¢, obtained for the stagnation point.
When passing- U =0 it is important to pay attention to
the relation (8.15).

fin

e _ _
15 =
and in relation with (8.13)
qn2
//
Gnzy "3
/
qu//l
/
Y )
v
s
/ -
e
M Ay Snya Fny
Fig. 5.
T
o
I =T
-o2 G'I EE 0=0.72
=1 =0
.Y T ——
-08
1.0 [— L——L—-‘__
2
-2 |ty L,
—-1.4 40
q] - bt
S | |
L - 30
[«f3Ks /(U:o'f’a
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7
o] { N
L o
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Fig. 6.

a .

The values of ¢ , ¢ and 5 at the stagnation point plotted
. 1w

as funections of n for laminar compressible boundary layer

flow with heat transfer at the wall, for ¢ = .72 and » = 1.0.
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— g +1 q
'n' t
pe= g q= g (835)
Lgrie SRS
T T

which fixes unambiguously the initial values p and
q at the beginning (U,-=0) of the decelerated
flow. At this point A = ¢,

The functions Q@ and A are eontinuous at the
point U, =0, while the functions p and g are dis-
eontinuous in that peint. The same method of
caleulation will be applied at the beginning of
the decelerated flow as near the stagnation point.
 Sinee £==0 and Q@ =4§ (from (85}) at the
stugnation point, cq. (8.4) yiclds

dy =10, fo==3b,= ‘zr_’ﬂ,z_z_—i/\_
r 2+aq
2
fo= o (1),
Von
2 tw 1
b=r——=(1l—a—A =——_ (816
l/fr( )qlﬂtw 3. Q )

F 23

The momentum equation of vox KarMin and the
integrated heat cquation change in’ the stagnation
point into

aab,(H+2)+ ~}:A tw =0 (8.17)
ki
1

— (1 — L)
ol

2
3l %

thad, ==

(8.18)

For the Praxorn numbers ¢ == 0.72 and ¢ ==1 the
: a . .
values of tw, ¢ and — at the stagnation point are

. w
plotted as functions of @ in fig, 6, sothat the initial
values can be taken from the diagram. For other
values of o, @ and g can he caleulated, after estim-
ation, by iteration from the equations (8.17) and
{8.18).

9 The flow along a flat plate without pressure gradient with constant and variable wall temperature.

For flow along a flat plate U,=0. This changes the relations (

84) and (85) derived in scetion 8

into
. 16 v h—1
A=% a=c=0;f=3b=—"=; 0,—= 4% QPP =—"— — = Meqr
* f Ze At 9r 1—t, 2
2 , 2 - tu
ot (1—it); b :—_(1_.::.* 9); 9.1)
v V'n' 0 0 [2gm 0 4 1—t, (
{tu)e ( tw 3 uyyat
32 T e [ — a0 .
o ot~ (220, 3 ql_tw) LSy (9.2)
Twlw 4 2
7 = = (t._ )w= '—‘=Qq _i-'w. 93)
a‘f‘-u:U 3l/7r- !_n ]/11' (
The momentum equation of vox Karman (3.18) -
&zaszj_(i):iz ii avuy
di ds \« i 3l U
vields the relation
132 8 1 ow /
) = | vda (94)
(a:) sl = ad, U Y

The integrated heat cquation (3.28) can be written for flow along a flat plate without pressure

gradient in the following form:

@__ Wy @
dz = o @ b
In connection with (9.4) is
B _ 4 (ah) 1
de dr \ «a T a

which changes {9.5) into

avy

Tl (9.5)

(h— 1) 2o
ab,”

2




d 7 l/ v sV s ( 2 v L8, 06
dx (a ’ (-’{ Y ) 8 {/ g V= o ¢ o ad)? )
j yd.)”)
with the .solution

& i N . Y el
aSSI/] Y(zxz__ qt i ”(A—1)112 8, 2, [/ /ydf (9.7)
b : i

]

yd./()

For the case that no heat transfer takes p]ace one has ¢=10 which simpliiies the solution (%.7) into

sV , as, 8,
O (h—1H o

av,

(9.8)

T ad, =

Using again the result that the cigentemperature for a flat plate without leat transfer is constant, it
follows from (9.2) that ¢, =1 and irom (9.1) that

16 L—]

oY 22
5.5 M2,

fo—1=

This approximuation ig lesy aceurate than that from section 7, as in section 7 one more houndary eon-
dition is taken into account.

For a prescribed constant wall temperature f, = const. there exists a solution ¢ =<const., Q == const.

The equations (9.7) and (9.2) then change into

3 as, 51/_ ad, 8 -

y—— — — 1 = :
ol 9 o gty (& M Y {9.9)
booe o (1) + 2o Bl g (9.10)

The =759 (1—tw 2w 0 2 o -

In the general cagse of a variable wall temperature, (9.2) changes in connection with (9.4) into
o
: [ 'y(l:ﬂ
1 32 E—1 8 o

o= ——| 2(1 —tu) + — Q% ME— fro) o 9.11
4t 3Q * On 2 9 l/ T ad, (el ¥ ( )

The calculations of the boundary layer can be earried out according to the method deseribed in
seetion 8,

To simplify the computational work the cquations (9.11) and (9.7) are written in the following form.
Assuming

= [ydvc ;=4 {1 —ty)

=
5, = Z?fw v k;l le/ =— z‘i/# 5 (Buw)e V'm
and
y = [ Yt (9.12)
l/[ vdﬂ‘f
one has .
R % L0 et (9.13)

“l/ f y de




F
‘ ) a ad
te—1 4 olte—1) Vi :

/
T e 1A 02

4 y{tw—1)

8,

.t
ab,

(9.14)

The following quantities appear during the eomputation

b, == 0280430 ;
Tn (9.14) is

8,
ab,?

— 0598413, b= 14,

3. ' ; .
P_— o= — 0126962 0311955 Q + (0.004446 — 0.012181 P)0 + (0.028238 P — 0102475 Ky +
W .
! + (0.010397 P 4 0.262546 E)* + 0.031941 R® (9.15)
wlere ) .
P 4 o E—1 (te)r
= M = X —
! r 1— lfw . 2 ! 7 1— 'Ew Y
The following temperature-viscosity relation will he used in the caleulation
I whert L0 { 10 tw)”‘
=Y ey Where y = o ———  ——— | .
’ T O by
oo . 143k, q 1
4
In the starting point © =0 the eyuations (9.11) and (9.7) change into
1 [ 32 E—1 }
e — 2 L — bty + - 2 2 v \
Qle= oo 20— t0) + o= 00 S (9.16)
: , 3l = §, &
as, = o & g sV (h—1yar2 202 S (9.17)
o 4 ad,’

-

Irom these equations the values @ =, and (q t.),
cant be caleulated. Near the starting point z=20
one has

y=2Vy(gte), Vs, (9.18)

The general solution of the houndary layer cqua-
tions (9.13) and (9.14) is found as follows. Afier
having caleulated for the points of cqual intervals
z, =10, x,, &y, ... £a_t the pertaining values ,,

. Q,_¢, it 18 possible to ecaleulate in the point
& =%, for the value Q;Q,,u {cstimated by means

of a difference scheme) the pertaining value

dax
from (9.13) and with that also the value y (hy

dy ). The relation (9.14)

integration of the curve

viclds with the obtained value y==1(zs) the cor-
rected value Q:Q,l_1 in the point z=ux,. After
dy
dx
with the aid ot 1=Q, and the value @ ecan he
corrected by means of (9.14). This process has to
he repeated until the value @ ==, does not vary
anymore within the houndaries of the preseribed
aceuraey.
In general this process will eonverge very quick-
If Az iy sulfieiently small, the relation

this the values

and y can be caleulated again

1y,

holds within the houndaries of the preserihed ae-
curacy. By aid of this relation the initial scheme
for the solution of the diff, eq. ean be obtained
i a simple way.

For that purpose

Ay _ VY (gye)
dx 'z

is plotted in a graph hetween the points x=10
and z=uz,.

Starting from the value Q, =@, In the point
]
dx
¥ = @, ean he corrected with the aid of the value @
obtained from (9.14), By fairing again the eurve

t=ux,, the value (tormula 9.13) in the point

di . . .
Ej_j—fr‘om the point Az until £ =g, the pertaining

value y = y{®,) can he determined {e.q. by means
of a planimeter). This process has te he repeated
until the value & will not vary anymore within
the houndaries of the preseribed aecuracy. The
initial scheme will he more aceurate if the initial
intervals are chosen smaller, A betier fairing of

1 . .
the curve &Y can he obtained if the caleulation

)
dx
is earried out for more points within the interval
< Ax,m; > .

The calenlation has heen earried out for flow
along a flat plate with the variable wall temper-
ature

fe—1=05(1--42) (9.19)
and the quantities

T,=220°K, ¢ =110°K, ¢ =10.72, M =123.

is the dimensionless length of the piate.

&
c=7

Expressing all results in terms of ¢, one obtains




Caleulated valiies for flow along a flat plate without pressure gradient and with variable wall-temperature.

TABLE 3.

To—15T, (1——5 ) =15Tu(l—30)

¢ R Vm P R S, 8, % S, V;r;‘ . gg y

0 0.93808 0 + (.61971 0 50 @ 0 — @ Q0
0.05 0.94258 0.21683 0.66996 + 0.05824 + 1.34037 0.39911 0.06763 — 0.42150 — 0.05615
0.1 0.94711 0.30701 0.72907 0.12645 0.87406 0.28322 0.09575 — 0.18397 —0.07049
0.2 0.95626 0.43523 0.88530 0.30562 0.51267 0.20172 013574 - [ + 0.03536 — 0.07685
D3 0.96553 0.53434 112675 0.58066 0.33128 0.16590 0.16665 0.16594 — 0.06685
04 0.97489 0.61849 1.54928 ©1.05943 0.21017 0.14471 0.19290 0.26343 — 0.04547
0.5 0.98431 0.69318 2.47884 2.10884 0.11833 0.13037 0.21619 0.34366 — 0.01522
0.6 0.99373 0.76118 + 6.19711 + 6.29696 + 0.04352 0.11986 0.23740 0.41332 + 002253
0.7 1.00312 0.82416 ~ 12.3942 — 14.6259 — 0.02029 011174 0.25704 0.47569 0.06690
0.8 1.01239 0.88319 — 309856 . | — 4.16055 — 0.07642 0.10524 0.27546 0.53291 0.11740
0.9 1.02144 0.93899 — 1.770680 © | — 2.66358 —0.12691 0.09987 0.29286 0.58591 0.17328
1.0 1.03016 0.99212 — 1.23942 — 2.06383 — 0.17306 0.09533 0.30943 + 0.63571 + 0.23428

1 A Te - Uz gy ()

¢ Q qtyw o > {tt)e i [/‘;; tty b fa AT, V' Re,
0 1.298 — 0.13764 2.2082 — 0.20159 0.31957 + 0.46404 | + 020139 | + 0.60477 ®
0.05 1.283 — 0.09696 2.2108 — 0.14036 0.32072 0.49005 0.27193 0.57542 + 0.15133
0.1 1.261 — 0.05964 22135 — 0.08484 0.32187 0.51508 0.34755 0754717 +-0.06746
0.2 1.229 + 0.01609 2.2188 + 0.02231 7032421 0.59394 052194 0.43819 — 0.01356
0.3 1.204 0.09183 2.2242 0.12473 0.32656 0.72558 0.76320 0.30965 - 0.06671
0.4 1.183 0.16712 2.2296 0.22307 0.32892 0.96351 1.1565 + 0.04118 —0.11144
05 1.165 0.24202 2.2350 0.31812 " 0.33130 1.4950 1.9864 — 0.55855 — 0.15360
0.6 1.149 0.31660 2.2405 0.41051 0,33365 + 3.6367 + 5.2351 — 29752 — 0.19605
0.7 1.135 (.39082 2.2459 0.50044 0.33599 —T7.0939 . | —10.884 +-9.1330 - —0.24071
0.8 1,122 0.46490 2.2513 0.58853 0.33828 —-1.7834 — 28010 3.0843 — 028046 _ _
0.9 1.110 0.53862 2.2566 0.67450 0.34051 — 096926 | — 1.6322 2.2221 - ——0.34411
1.0 1.099 0.61223 2.2620 -+ 0.758%4 0.34259 — 066482 — 1.1573 + 1.8785 — 0,40721

9% q
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In table 3 the caleulated values of v, V'm, P, R,
8, 8, §, are given for {==0, 0.05, 0.1, 0.2 ..., 1.0,
For ¢=0 (9.16) and (9.17) yield the values
Q=1.29800 (g tw), = — 1.13764.

Near 4 ==0 the relation

dy

¢

0.13331
Vo
holds.

It is assumed that thig relation holds until the

point £=0.01. The values

7&?’
caleulated according to the above-deseribed method
with the aid of (9.12), (9.13) and (9.14), Aifter

that also the quantities a,, by, f,, -ll/ ~
o

| i
Ux
and —— I/ are ealenlated from (9.1), (9.3)
PuU Vu .
and (9.4) (sec table 3).

4, @ and q ¢, are

(t;fo)w

dy
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Fig. 7.
The boundary layer quantities ?: AL and 0

rlotted as funections of ¥ for flow along a flat pla,tc
with the variable wall temperature Tw =& 74 (l —+7

(=2).

In fig. 7 iy» and y are

and 8 the guantities £, dé

plotted as funetions of £.
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Fig. 8.
The dimensionless quantity for the heat transfer at the wall
taq,
ATV Bs,

and the quantity y for flow along a flat plate with the
variable wall temperature T, =157, (1— ).

The velocity and itemperature profiles are des-
¢ribed by the functions

" 2 g2 2 * L2
u=1-— __fgT e dy (9.20)
31/11' l/,,. Ef
=1+ (to— 1) (G e PR b0 8 4 f, [ dy)
' . £ -
{9.21}
where
£,
o i
y:_i / td&o‘
[+

i)

They are plotted for the points li =40, 0.1, 0.3,
0.4, 2/3, 0.8 and 1.0 in figure 9 and 10. Fig. 10
contains also the field of isotherms f= constant

plotted against ¥ l/——

For the partieular point == 2/3 is t,=1. By
transition to the lmit, {9.14) yields with » =
0.05153 the pertaining value 0 =1.1393,

Hence in connection with {9.11) the value
g 1,02 = 041705 is obtained and according to (9.1)
{tw—1)a, = 017875, (tw— 1)f,=--020170 and
(tu.‘ —_ 1 ) bg p=— 0.26889.

The veloeity profiles show a point of inflexion
(see fig. 9) at the frontside of the plate, where
the wall temperature is maximal. This indieates
the unstable charaeter ¢f the houndary flow in that




region. Together with the decreasing of the wall
temperature backwards along the plate, the hound-
ary layver flow becomes obviously ever more stable

- agreeing with the fact that the point of inflexion
disappears.
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The wvelogity distribution within the houndary layer flow
along a flat plate with the variable wall temperatuve
Po=15T,(1—FE), tor M =13;0 = 0.72; T, = 220°K,
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Fig. 10,

The tempersture distribution in the houndary layer flow
along a flat plate with variable wall tempoerature

3
T,=41,0-40)
and the pertaining field of isotherms for
U =13, ¢=072 7, = 220°K.
The heat transter at the wall can be caleulated
by means of the formula
aT

()’1(7((’75)'—:"‘-)L (Fy— .
Y

Ir 28

In dimensionless form this formula changes into

| A
AT | e, ol 7 m tow
(see lig, 8).

Fig. 8 shows that heat will he transferred from
the wall fo the outer flow until the point ¢ = 0.179,
heyond that point heat transfer takes place in the
opposite direction. The heat transfer from the
outer” flow to the wall takes place before the cigen-
temperature of the wall is reached, whieh will
happen in the point { = 0.284, according to for-

LR —
miila. (i,(,—l)/‘Tl— M2=|"q.

10 Application of the method to a rotationally
symmetric cage,

The houndary layer ealeulations {(veloeity and
temperature distributions) for a rotationally-sym-
metrie body ean he reduced to ealeulations for a
two-dimensional profile by means of a simple trans-
formation, deserthed by MascLER (ref. 14).

When s is the are length of the meridian section
of the hody of revolution, r, the distance of a
poittt of the surtaec to the axis of symmetry, such
that the contour is given by r —=r,(5), n» the length
of the perpendienlar of a point of the fluid to the
wall, LI the unit of length, » and y the are lengths
along and perpendicular to the two-dimensional
image plane, then the following transformation has
to he carried out in order te obtain two-dimen-
sional flow.

o= ’ LN 1s

7 « }(Fr,-ﬂ) = p(s,n)
0’ 4
Tz, yy =T(s,n)
=, B 7) = pls, 1)
(10.1)
'IE- (57 3) - IJ: ¥ (S: ??.) ;(;, ;) = p{s, ).

The laminar boundary layer flow of the bhody
ol revolution is determined by the pressure distri-
bution p(s} and the contour r,{s). It is obtained
by caleulating firstly the two-dimensional houndary*
layer with the pressure distribution and the are
length

o .

p(x) ==p(s) E:fii_('ids (10.2)

. 12
i
and transforming afterwards the obtained results
hy means of (10.1) in three-dimensional quantities.
When the free flow along the body of revolution
is known, the free flow for the two-dimensional
¢ase is also known and the houndary layer eal-
culations can be ecarried out.




Introdueing the dimensionless quantities

re® = —'— Ite rot = 1 T
PuUz fJ-uD2
5, 1 - 8,
31%-":__;1’6 81“: —— fte
& i
. — By o
3¢ = 2 Re §,% == —= Re
5 x
where
s - E
Re = 2 e~ l/ i
Yy Ty
yields the following relations
T 8 s 1 (s) (10.3)
T 5,* §

/. ro2(s)ds

il

where 7., 7., are shear stresses at the wall,

the displacement thicknesses and 8§, , 6 the momen-
tum loss thicknesses of the rotahonallv symmetrie
bhoundary layer flow and the boundary layer fum

of the two-dimensional image.

The potential flow along a body of revelution can
be ealenlated for supersonie flow hy means of the
method of characteristics of Praxpri and Busg-
smany (ref. 13) or the methods of Tounmmx and

Scuiiver (retf, 15 and 16),
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APPENDIX.
The caleulation of some integrals.
Putting )
[eVdy==a e ¥ =3,
gives
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; lve
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Tables of Aefodynamic Coefficients for an Oscillating Wing._Flap
| System in a Subsonic Compressible Flow.

Summary.

this report comtainsg the mumerical results for the aerodynamic coefficlents of an oscillating wing-flap system, where
the flap hinge axis coincides with the flap nose. The complete set of 9 complex eoefficients is given for the Mack numbers
g=0.35, 0.3, 0.6, 0.7, 0.8. The ratio of flap to wing chord is 0.1, 0.2, 0.3, Exuct calculations have been made for 9 or
10 values of the reduced frequeney @ in case of the wing coefficicnts and for 7 or 8 w-values in case of the flap coeffi-
cientz. Interpolated values are presented fore =€ (0.02), 0.90 if 2 =0.8 and for w =0 (0.02), 1 for all other g-values.

Contents,

1 Introductiorn.
2  Basie resulis.

Wing coefficients.
Flap coctficients,

Table 1.
Tables 2, 3, 4.
3 Interpolated results.

Wing eoefficients,

Flap coefficients for +—=0.1.

Flap eoefficients for » = 0.2.
Flap eoctficients for r=0.3.

Tables 5/10.
Tables 11/16.
Tables 17/22.
Tahles 23/28.

This investigution has been performed by order
of the Netherlands Aireralt Development Board
(N.L.V.).

1 Introduction.

The rumerical results presented in this report
have heen ohtained by aid of an analytical method
originally developed by Tmman in his thesis and
deseribed in fnll detail in N.IL.I.-Report F.54 hy
TmiMan and vay pE Voorey., The numerical com-
putations of the basic points of which the resuits
are presented in tables 1 through 4 have been
carried out at the Mathematical Centre under the
direction of vax WIINGAARDEN and with the assist-
ance first of ScHFEX and later of BercHuis, The
interpolated resulis of tables 5 through 28 have
been caleulated for the greater part at the N.L.L.
under the direction of BureErmour and Wourers
by Miss Gravestemy and Miss Pon and f(n* a small
part at the Mathematical Centre.

The interpolation has been carried out in view
of flutter ealeulations to he made for tapered wings.
Tn such case it is usual praetiee at the N.1.1. to
introduce Tayior expansions for the acrodynamic
coefficients toward the reduced frequency. When
using the CGarzrgiy method, the generalized aere-
dynamic forees assume the form

b
vzemf m;22 ke L dy (1.1)
0

where nip == pl* denotes the mass of air in the
surrounding eylinder and &I the amphitude of trans-
lation at the elastic axis. The integration is over
the span. Similar expressions are obtained in eon-
neetion with the other cocfficients,

Let now I, be the semi-chord in the reference
seetion and o, a value of the reduced frequeney
in that section. Then

[4 L
© g
is constant along the span,
For the aerodynamie coefficients the following
expansions are used:

kalo) =ho{ap) +
dk, d*kq
do (an + ‘&(‘”—_“‘n) dmz

-+ (‘”—‘"o)

{wg) + oot

The ealeulation of the expression {1.1) then can
be separated into the caleulation of, for instance,
3 terms, viz.



b

2
v lnz ka(wn)f myz2dy,
Wy g
di !
1.2 e
" (wy) | my2tE dy,
wy ;
; b
27, .
30217 —d*—'L (o) j mgzié* dy,
duw? ;
w — I—1
where §= 220 — L.
g @y la
J

F 34

The advantage of this method is that .all inte-
erals become independent of the reduced freguency.

. dk, a2k,
The values of the derivatives 3o and Tt
ave easily obtained from the tables 5 through 28
by aid of the formulae
3‘% M) =25 { kalw, + 0.02) — ko0, — 0.02} ],
w .

ks
= (o0) = 2500 { haloy + 0.02) —

=2 ko lwy) + Falw,— 0.02) ).

Completed May 1954







TA

Table of a,erotiyna,mic coefficients for an oscillating .wi

m kal ka” ,rnaf maﬂ kb’

B8=1035 0.12536 —0.03780 — 0.20708 0.02805 0.10310 —1.68001
0.25071 — 0.04504 — 0.35479 0.05835 0.17531 —1.47348

0.37607 —0.00721 — 0.48870 0.08358 0.23923 — 1.38307

(.50143 + 0.07066 — 0.62280 0.10669 0.30135 — 1.34873

0.62679 0.18513 — 0.76311 0.13000 0.36391 — 1.34751

0.75214 0.33416 — 091357 0.15526 0.42783 — 1.36988

1.00286 0,73149 — 1.25889 0.21672 0.56101 — 1.47202

1.25357 1.25435 — 1.68831 0.30040 0.70093 — 1.64720

1.88036 2.98984 — 3.30837 0.66249 1.04848 -—2.44851

3.25929 5.65269 — 10.76088 2.26230 0.94136 — 5.56393

B =050 0.150 — 0.05383 — 0.24597 0.04232 0.12124 — 1.68214
0.300 — 0.05380 — 0.41753 0.08578 0.20097 — 1.47756

0.450 + 0.00624 . — 0.58574 (.12756 0.27335 — 1.42920

0.600 0.11518 — 0.76998 0.17467 0.34475 — 1.45797

0.750 0.26531 — 0.98147 0.23215 0.41567 -— 1.54078

0.900 0.44865 — 122993 0.30397 0.48419 — L67055

1.125 0.76270 — 1.69025 0.44459 0.57369 —1.94698

1.650 1.40780 — 3.20087 0.91373 + 0.61429 — 2.8b365

3.000 1.59994 — 6.54061 1.45510 —0.56677 — 3.76865

B ==0.60 0.10657 — 0.04943 — 0.19575 0.03421 0.09633 | -——1.86936
0.21333 — 0.07629 — 0.32752 (.07321 0.15689 -— 160844

0.32000 — 0.06854 — 0.44809 0.11022 0.20770 — 1.51052

0.42667 — 0.03375 — 057275 0.14944 0.25486 — 149181

0.53333 + 0.02225 — 0.70847 0.19407 0.29938 -— 152246

0.64000 0.09424 — 0.85986 0.24636 0.34027 -—1.58989

0.80000 (.22008 — 112305 0.34174 (.38986 — 1.74h58

0.96000 0.34792 — 1.43253 0.45668 0.41609 — 1.94892

117333 0.48458 -— 1.90226 0.62640 . 0.39739 — 2.24764

1.70667 0.60559 — 3.05676 0.92567 4 0.08932 — 271678

3.20000 - 1.39471 — 6.71096 0.66588 — 047911 -— 276302

B =070 0,10929 — 0.06374 — 0.20732 0.04436 0.10039 — 1.54140
0.21857 — 0.09728 — 0.34027 0.09261 0.15628 — 1.64938

0.36429 — 0.05030 — 050905 0.15803 0.21277 — 1.55542

0.54643 —0.03728 — 0.74653 0.25654 0.26037 — 162288

0.65571 + 0.00165 — 0.90813 0.32502 0.27047 — 171004

0.80143 0.04668 — 113308 0.41820 0.25499 — 1.83952

0.94714 0.07896 — 137216 0.49782 0.20710 — 1.946567

1.16571 0.12721 — 169741 0.56441 + 0.10281 — 202057

1.74857 0.49529 — 2.64753 0.54909 — 0.06614 — 2.06328

B =080 0.1125 — 0.08660 — 0.21965 0.06102 0.10194 —2.01344
0.2260 — 0.12970 — 0.35128 0.12165 0.14414 — 168292

0.3375 -—(.14245 — 047812 0.18204 0.16501 -—1.59870

0.4950 — 0.14150 — 0.66100 - 0.26228 0.15755 — 159763

0.5850 — 0.13596 — 0.76387 0.29605 0.13686 —1.60182

0.7200 —0.11381 — 0.91241 0.32198 0.10109 — 1.58923

0.9000 — 0.04437 — 1.12005 0.33094 0.07604 — 1.57545

1.0800 =+ 0.04905 — 1.37509 0.35439 + 0.07442 — 1.62762

1.8000 - 0.31751 — 2.51642 0.43858 —-0.09528 — 1.83661




1.
ithout control surface in a subsonic compressible flow.

Lo my’ iy

0.19841 (0.83864 | —0.23938
- 0.00434 0.736569 | —0.28036
- 0.22000 0690563 | —0.30712
- (0.44226 0.68462 | —0,33724
SN p—

120041 | 077549 | — 051389 .

170144 | 086627 | —0.63481 K =mplute™ (Aka + Bks)
263852 | 116267 | — 104038 M —rpfirte™ (Amq + Brng)
— 2.67570 174483 | — 2.33709

X aerodynamie foree, positive downward,

0.23763 0.83270 | —0.30022 '
- 0.02165 0.72370 | —0.36423 | ,, moment about mid-chord point, positive tailheavy.
— 0.28722 0.69241 | — 0.42089
- 0.53672 0.69439 | — 0.49342 po  air density (in undisturbed state).
—0.76941 071295 | — 0.58283
_0.08266 | 073908 | —0.68912 | 7  semi-chord.
— 1.25161 077776 | — 0.87868
— 1.46749 0.77221 | —1.40931 v speed of flight,

0.03345 0.36345 | —2.24191 . o

B Mach number, v/c

036713 | 0.92205 | — 0.34021
©0.20071 0.77758 | — 0.40274 v frequency of the vibration.
- 0.00648 071360 | —0.45219
= 0.17577 0.68429 | —0.51160 o reduced frequeney, vl/v
— (1.34110 0.67083 | — 0.58383
048751 | 0.66319 | —0.66899 | ¢ time,

0.66495 0.64819 | — 081726

0.77844 061444 | ~-0.98228 | Al amplitude of transiation in mid-chord peint, positive downward.
— 0.81.037 0.52431 | —1.20300
— 0.44410 0.15748 | —1.55086 | B amplitude of rotation, positive if trailing edge downward,
- 0.04326 0.14946 | — 1.658445

kS, k., real and imaginary part of Kk, etc.

0.48289 (0.94266 | —0.43431

0.28887 (0.76434 | — 0.50798
+ 0.03511 0.65995 | — 0.60981 AWl data contained in the table should he aceurate within a few units
L 0.19215 0.56929 | —0,78017 of the last digit.

- (0.27259 0501567 | —0.89374
— 0.31322 0.38165 | —1.03431
L — 0.29046 023596 | —1.13722
- (.2118G | + 002337 | — 1.19746
— 0.21709 | — 0.16975 | —1,12835

066787 | 093719 | — 0.59020

043232 0.69110 | —0.67578

0.25706 0.53640 | —0,77H44

0.12830 0.31465 | — 0.90164

0.09553 0.18194 | —0.93528
+ 0056702 | + 001664 | —0.92375

— 0,02672 | —0,09456 | — 0.86194
—0.11982 | —0.11059 | — 0.84291
— 008111 | —0.20169 | — 0.97367










Table of aerodynamic coefficients for an oscillating win

P

TA

© ke k" e me” o' " ny'
I

B=0.35 0 —0.84509 0 + 0.05556 0 0 0 — 0.00234
012536 — 0.65388 0.15852 —0.04159 | — 0.09192 0.00002 —0.00023 | — 6.00183

0.25071 — 0.55949 0.15062 —0.09101 | —0.09911 0.00017 —0.00040 | -——0.00152

0.37607 —0.51137 0.12812 —0.117568 | — 0.09839 0.00049 — 0.00056 | — 0.00126

0.50143 —(0.48473 0.10652 —0.13373 | —0.09774 0.00096 —0.00072 | —0.00100

0.62679 —0.46940 0.08800 — 014462 | —0.09832 0.00159 — 0.0008% | — 0.00072

0.75214 — 0.46069 0.072h1 -—0.15262 | — 0.10008 0.00237 — 000108 | —0.00041

1.00286 — 0.45447 | 0.04928 — 016435 | —0.10639 0.00444 —0.00156 | 4 0.00032

B =050 0 —0.91410 0 + 0.06010 0 0 0 —0.002b4
0.15 — 0.64459 0.19958 —0.07994 | —0.11410 0.00004 —0.00028 | — 000184

0.3 —0.53841 0,18379 —0.13999 | —0.11524 0.00631 — 000049 1+ — (.00149

045 — 049080 | 0.16329 — 0171585 | —0.11161 0.00083 — 0.00071 | —0.00121

0.6 — 0.46593 0.14992 —(.19262 | -—0.10938 0.00160 — 0.00096 | — 0.00092

0.75 — 0.45103 0.14365 —0.20933 | — 0.10830 0.00262 —0.00127 | —0.00062

0.9 —0.44012 0.14342 | —0.22424 | — 0.10748 0.00389 —(0.00168 | —0.00034

1.125 — (.423589 0.15176 — 0.24523 | — 0.10502 0.00629 — 0.00258 | + 0.00001

B =060 0 —0.98955 0 -+ 0.06506 0 0 0 — 0.00274
0.10667 — 0.71879 0.23408 —0.07681 | —0.12732 0.00001 —0.00022 | — 0.00209

0.21333 — 058977 0.23677 —0.14868 | —0.13186 G.00014 — 0.0003% | — 0.0017%

0.32 -—0.52336 0.22335 — 019134 | —0.12502 0.60041 — 000065 | — 0.00155

0.42667 — 0.48358 021294 —0.21974 | —0.11699 (.00081 — 000073 | —0.00187

0.53333 — 0.45509 0.20770 — 024176 | —0.10882 0.00136 — (.00094 | — 0.00120

064 — 043370 0.20697 —0.26032 | —0.10007 0.06204 — 000119 | —0.00105

08 — 0.40228 (:21148 —0.28381 | —0.08457 0.00331 — 0.00169 | — Q.00090

" 0.96 — 0.36757 0.21774 —0.30224 | —0.66504 0.00486 —0.00240 | — 0.00085

117333 —0.31346 0.21848 —0.31639 | —0.03330 0.00724 — 000377 | — 0.00096

B=0.70 0 — 1.10851 0 + 0.07288 0 0 0 — 0.00308
0.10929 —0.73556 0.29229 — 012682 | — 0.15284 0.00001 —0.00024 | —0.00223

0.21857 — 0.57539 0.29435 — 022160 | — 0.14482 0.00018 —0.00043 | —0.00190

0.36429 — 0.47408 0.27785 — 028768 | —0.11266 | _0.00066 — 000070 | — 0.00166

0.54643 — 0.39290 0.26941 —0.33477 | —0.06316 0.00165 —0.00115 | —0.00151

0.665671 —1.34831 0.26452 —0.34942 } —0.02870 0.00244 — 000153 | —0,0015H3

0.80143 — 0.28996 0,24883 — 035166  + 0.01937 0.00368 — 000221 | —0.00166

094714 — 0.23901 0.21771 —0.33419 | + 0.06219 0.00507 — 0.00309 | —0.0018¢&

1.16571. — 0.19503 0.14962 — 028311 0.10071 0.00734 —0.00476 | — 0.00211

g=080 0 — 131940 0 + 0.08674 0 0 0 — 0.00366
0.1125 — 0;72595 0.39872 —0.24003 | — 018730 0.00002 —0.00028 | — 0.00247

0.225 — 0.532026 0.37259 — 036216 | —0.12208 0.00026 — 0.00052 | —(0.0021¢

0.3375 — 0.40548 0.34238 — 041409 : — 0.03760 0.00069 —0.00079 | —0.0021C

0.495 — 0.29169 0.28780 — 0.40561 + 0.08224 0.00159 —0.00133 | —0.0022%

0.585 — 0.24837 0.24459 — 0.36545 £.132356 0.00223 —0.00173 | —0.0024

0.72 —0.22134 0.17679 — 0.28556 0.16120 0.00331 — 000248 | —0.0027C

0.9 —0.23772 0.12153 —0.20540 (3.12798 0.00501 — 0.00365 | — 0.0029:




2,
eron system (r==0.1) in a subsonic compressible flow,
' n, ne''
0 — 0.00601 0
0.00065 | — 0.00581 [ — 0.00021
0.00172 | —0.00571 | — 0.00058
- 0.00283 | —0.00566 | — 0.00098
- 0.00385 | —0.00664 | — 0.00137 Definition coefficients:
- 0.00508 | —0.00562 | — 0.00176
| 0.00622 | —0.00561 | — 0.00214 K == np,v2e™ (Ak, + Bk + Cky) - /
~0.00857 ) —0.00561 | —0.002%1 M o= mplvte™ (A, + By +Cmo)
— 24,2, 19
0 —0.00650 0 N prol Ve (A'ﬂa + Bﬂb + Cﬂc)
- 0.00092 1 —0.00623 ) —0.00030 K acrodynamic force of wing + aileron, positive downward.
— 0.00236 — 0.00615 | — D.00080
— 0-00§83 — 0'006]? — 0.00130 M aerodynamic moment of wing + aileron about mid-chord peint,
— 0.00[)33 —_— 0.0061:) —_— 0001 { 9 pOSitiVe t-ailhea;vy.
— 0.00688 | — (0.00618 | — 000228 '
- 0.00848 | —0.00622 | —0.00274 N aerodynamic moment of aileron about hinge axis (= nose), positive
--0.01092 | —0.00629 | — 0.00344 tailhavy.,
0 — 0.00704 0 po  air density (in unndisturbed state),
— 0.00057 | —0.00678 | — 0.00017 ; i-chord
L 0.00167 | — 0.00668 | — 0.00055 seml-chora.
- 0.00281 | -—0.00667 | — 0.00094 .
: § of flight.
| 0.00396 | —0.00667 | —-000132 | ¢ Speed of fig
—0.00514 | —0.00670 | ~—0.00163 £ Mach number, v/c
L 0.00635 | —0.00675 | —0.00204 T
—0.00820 | —0.00681 | —0.00255 v frequency of the vibration.
—0.01004 | —0.00689% | — 0.00305
—0.01233 | —0.00696 [ — 0.00372 o  reduced frequeney, vl/v
0 0.00788 0 v ratio between aileron chord and total chord.
— 0.00068 .| — 0.00755 | — 0.00020 ¢ time.
—0.00195 | —0.00748 | — 0.00064
—0.00378 | —0.00751 | — 0.00121 Al amplitude of translation in mid-chord point, positive downward.
— 0.00608 | —0.00761 | — 0.00186 ‘ )
—0.00747 | —0.00769 | —0.0022]1 B amplitude of wing rotation, positive if trailing edge is downward.
—0,00925 | —0.00774 | — 0.00269
001085 | —0.00778 | — 0.00321 ¢ amplitude of aileron rotation, positive if trailing edge is downward.
. 0.01291 | —0.00785 | — 0.00414
kS, &, veal and imaginary part of k., ete.
0 000038 | 0 :
—0,00091 | —0.00893 | —0.00026 All data contained in the table should be aceurate within a few units
—0,00259 ; —0.00893 | — 0.00079 of the last digit.
— (,00427 | —0.00904 | — 0.00123
—0.00659 | —0.00915 [ —0.00177 ‘
—0.0078% | —0.00916 | — 0.00210
—0.00948 | —0.00916 | — 0.00271
—0.01156 } — 0.00924 | — 0.00376










Table of aerodynamic coefficients for an oscillating wi

T

® kcf k c” mcl mc” naf na” J ,nbr
T
B=10.35 0 —1.17388 0 + 0.15199 0 j 0 0 —0.01358
0.12536 | —0.91297 0.19450 | + 0.01964 | —0.13136 | 0.00007 | —0.00133 | — 0.01061
0.25071 | —0.78637 0.16296 | —0.04614 | —0.14780 | 0.00092 |.—0.00231 | — 0.00888
0.87607 | — 0.72308 011245 | —0.08034 | —0.15417 | 0.00266 | —0.00322 | — 0.00756
050143 | — 0.68919 0.06340 | —0.10009 | —0.16109 | 0.00525 | —0.00416 | — 0.00627
0.62679 | —0.67082 | +0.01843 | —0.11248 | —0.17000 | 0.00871 | —0.00517 | -— 0,00489
0.75214 | —0.66178 | -—0.02265 | -—0.12070 | — 0.18089 | 0.01304 | -—0.00631 | — 0.00339
100286 | — 066089 | —0.09518 | —0Q.13054 | —0.20755 | 0.02441 | —0.00915 | —0.00001
B==050 | 0 — 1.26974 0 + 0.16440 0 0 0 — 0,01468
0.15 —-0.90334 0.24476 | —0.02582 | —0.16578 | 0.00018 | —0.00161 | —0.01071
03 -~ 076430 0.19812 | — 0.10488 | —0.17933 | 0.00166 | —0.00283 | -—0,00886.
0.45 — 0.70658 0.14644 | —0.14490 | —0.18807 | 0.00450 | —0.004i1 | —0.00747
0.6 -~ 0.68191 0.10509 | —0.17071 | —0.20014 | 0.00871 | —0.00560 | —0.00619
0.75 —0.67338 007430 | —0.19108 | —021525 | 001431 | —0.00749 | —0.00498
0.9 — 0.67346 0.05335 | —0.20980 | —0.23233 | 0.02133 | —0.00997 | —0.00395
1.125 — 0.67958 0.03909 | —0.23892 | —0.25898 = 003442 | —0.01541 | —0.00304
B=1060 | 0 —1.37454 0 + 0.17797 0 0 0 ’ —0.01590
0.10667 | -—1.00597 0.29841 | —0.01526 | —0.18338 | 0.00001 | —0.00129 | —0.01211
0.21333 | — 0.83551 0.28301 | —0.11249 | —0.20078 | 0.00071 | —0.00225 | -—0.01035
0.32 — 0.75206 0.24748 | — 016727 | --0.20431 | 0.00218 | —-0.00321 | ——0.00927
042667 | —- 0.70658 021742 | —0.20458 | —0.20768 | 0.00440 | —0.00426 | — 0.00847
053333 | — 0.67957 0.19578 | ——0.23423 | —0.21212 | 0.00736 | —0.00550 | -—0.00783
0.64 — 0.66178 018222 | — 026059 | —0.21698 | 0.01108 | —0.00702 | — 0.00741
08 — 0.64111 0.17471 | —0.29800 | --0.22263 | 0.01802 | —0.01008 | — 0.00729
0.96 — 0.61786 0.17823 | —0.33434 | —0.22319 | 0.02641 | —0.01444 | —0.00798
1.17333 | — 057117 0.19047 | —0.37858 | —0.21300 | 0.03917 | —0.02283 | — 0.01014
g=070 | ¢ — 153979 0 4+ 0.19937 0 0 0 —0.01781
010929 | — 1.02974 0.38328 | —0.07450 | —0.22748 | 0.00002 | —0.00141 | —0.01293
0.21857 | — 0.82444 0.35948 | —0.19994 | —0.23139 | 0.00092 | —0.00250 )} —0.01119
0.36420 | —0.70298 0.31773 | ——0.29161 | -—0.21685 | 000350 | —0.00410 | — 0.01017
0.54643 | — 0.61825 0.29363 | ——0.36910 | —0.18960 | 0.00886 | —0.00686 | — 0.01016
0.65571 | —0.57309 0.28747 | —0.40492 | —0.16533 | 001311 | —0.00920 { —-0.01090
0.80143- | —0.50821 027632 | ——043791 | —0.12286 | 001970 | --0.01340 | —0.01277
0.94714 | — 0.44021 0.24976 | —0.44924 | —0.07423 | 0.02695 | —0.01892 | —0.01526
116571 | — 0.35636 017148 | —0.42562 | —0.01100 | 0.03844 | —0.02929 | —0.01868
g=080 | O —1.83272 0 + 0.23730 0 0 0 —0.02120
161125 —1.02975 0.51868 | —0.20837 | -—0.28527 | 0.00008 | —0.00161 | —0.01436
0.225 - 0.76584 0.46939 | —0.38050 | —0.23361 | 0.00132 | —0.00299 | —0.01296
0.3375 — 0.62644 0.42561 | —-0.47214 | —0.15676 | 000362 | —0.00467 | —0.01305
0.495 — 048374 0.36409 | — 051612 | ——0.02671 | 0.00835 | —0.00799 | —0.01506
0.585 — 0.41958 0.31487 | —0.49731 | + 0.04277 | 0.01161 | —0.01053 | —0.01694
0.72 , —.0.36088 0.22362 | — 0.43597 0.10888 | 001702 | —0.01513 | — 0.01996
0.9 — 0.36070 0.11472 | — 0.31688 010739 | 0.02524 | —0.02271 | —0.02347




i3

leron system (r==0.2) In a subsonic éompressible flow.

”

”

e n Te
it —{.02509 0
- 0.00347 | —0.02346 | — 0.00161
— 0.00936 | — 0.02265 | — 0.00459
— 0.01547 | —0.02219 | — 0.00768
—-0.02164 | —0.02187 | — 0.01075 Definition coefficients:
— 0.02787 | ~—0.02161 | — 0.01381
—0.03419 | —0.02136 | — 0.01686 K = rplvte™ (Ak, + Bky + Ck,)
—0.04718 | —0.02087 | — 0.02293 . o
M =mpl2v?e"™ (Am, + Bmy -+Cm,)
0 — 002714 | 0 N =npliv2e™ (Ang + By + Cny)
000492 | —0.02498 | —0.00230 | . enami £ ¢ vine & ail N
[ 0.01283 | — 0.02426 | — 0.00627 aerodynamic force of wing + aileron, positive downward.
— 0.02094 | —0.02401 | — 0.01023 . . . . .
L 002095 | — 002305 | —oo1a1r | ai:.’gyia‘g,lfh moment of wing -+ aileron about mid-chord point,
L 0.03781 | — 0.02401 | —0.01792 postiive 1atiheavy.
004662 | —0.02414 | — 002165 o . . L .
|_ 006015 | — 002445 | — 002709 N a.e@J namie moment of aileron about hinge axis (= nosej, positive
tailhavy.
0 — (.02938 0 po air density (in undisturbed state).
— 0.00297 | — 0.02720 | — 0.00128 )
—0.00899 | —0.02651 | —0.00429 | ¢  semichord.
— 0.01525 | —0.02627 | —0.00735 .
— 002163 | —0.02628 | —0.01033 | v sbeed of flight.
—0.02813 | —0.02644 | —0.01322
—003479 | —0.02670 | —0.01601 A Mach number, v/¢
—0.04495 | —0.02719 | —0.02001 v frequeney of the vibration.
— 005505 | —0.02771 | — 0.02376 .
—0.06755 | -—0.02821 | —0.02843 o reduced frequency, vl/v
0 —0.03291 0 v ratio between aileron chord and total chord.
—0,00349 | —0.03024 | — 0.00149 P
—0.01067 | —0.02960 | — 0.00560 1me.
: gggg;; : gggggg : gggiﬁ Al amplitude of translation in mid-chord point, positive downward,
—0.04070 | —0.03122 ) —0.01711 B amplitude of wing rotation, positive if trailing edge is downward.
—0.05029 | —0.03184 | —0.02038
—0.05881 | —0.03216 | —0.02855 € amplitude of aileron rotation, positive if irailing edge is downward.
—0.06942 | —0.03223 | — 0.02873
kS, k¢, real and imaginary part of k., ete.
0 —0.03917 0 p '
—0.00465 | —0.03550 | —0.00194 All data contained in the table should he accurate within a few units
—0,01382 | —0.03b45 | —0.00609 of the last dicit
—0.02300 | ~0.03628 | ~ 0.00954 g1t
— 003540 | —0.03749 | —0.01329
—0.04183 | — 0.03786 | —0.01521
—0.05034 | —0.03805 | —0.01842
—0.06060 | —0.03871 | — 0.02359
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Table of aerodynamic coefficients for an oscillating wi

r

"
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@ ke kS m, M, C g g
£=0.35 0 —1.41072 0 + 0.26935 0 0 0
0.12536 — 1.10247 0.20299 0.11347 | — 0.15888 0.00013 | —0.00376
0.25071 — 0.95503 0.14051 0.03821 | —0.182098 0.00238 | —0.00652
0.37607 — 0.88205 | + 0.05669 | + 0.0008% | — 0.19604 0.00700 | —0.00910
0.50143 — 084304 | —0.02528.| —0.01834 | — 0.21024 0.01394 | —0.01177
0.62679 —-0.82205 | —0.10269 | —0.,02053 | —0.22721 2002319 | —0.01467
0.75214 —0.81193 | — 017603 | —0.03469 | ——0.24686 0.0347% | —0.01792
1.00286 —0.81230 | —0.31355 | —0.03553 | —0.29307 0.06527 | —0.02610
8=10.50 0 — 1.52593 0 4 0.29135 0 0] 0 )
0.15 —1.09464 0.25827 | + 0.06798 | —0.20313 0.00041 | — 0.00455
0.3 —0.93624 0.16944 | —0.02081 | —0.22891 0.00431 | —0.00801 | —0.02554
0.45 — 0.87452 0.07888 | —0.06281 | — 0.25096 0.01187 | —0.01165 | —0.02234
0.6 —0.85327 | + 0.00050 | —0.08746 | —0.27859 0.02309 | —0.01596 | — 0.01970
0.75 — 085359 | --0.06534 | —0.10529 | — 031170 0.03802 | — 002143 | —0.01758
0.9 — 086731 | —0.11910 | —0.12118 | — 0.34918 0.05670 | — 0.02869 | — 0.01626
1125 —0.90296 | —0.17617 | —0.14726 | —0.41083 0.09145 | —0.04456 | — 001659
B=1060 it — 1.65186 0 <4 0.31534 0 Q 0 —0.04494.
0.10667 — 1.21755 0.32660 | + 0.08795 | —0.22415 | —0.00004 | —0.00364 | — 0.03427
0.21333 —1.02213 0.28490 | —0.02341 | — 025415 | + 0.00179 ;| —0.00636 | — 0.02952
0.32 —0.93093 0.22147 | —0.08418 ( —(.26987 0.00566 | —0.00908 | —0.02694
0.42667 — (.88587 0.16546 | — 0.12444 | — 0.28707 0.01153 | —0.01211 | —0.02532
0.53333 —0.86453 0.12040 | —0.15611 | —0.30731 1 0.01938 | — 001570 | — 0.02440
0.64 — (.85639 0.08624 | — 018472 | —0.32973 0.02621 | —0.02015 | —0.02424
0.8 —.85583 0.05446 | — 0.22797 | ——0.36446 0.04752 | —0.02915 | — 0.02586
0.96 — (.85658 0.04392 | —0.27514 | — 0.39582 0.06949 | —0.04199 | — 0.03017
1.17333 —0.84309 0.05376 | —0.34250 | — 0.423R0 0.10237 | —0.06653 | -—0.0399%4
B =070 0 — 1.85046 0 + 0.35331 -0 t] 0 — 0.05034
0.10929 — 1.25074 0.42392 | + 0.03112 | — 028162 ; — 0.00002 | —0.00397 | — 0.03658
0.21857 -— 1.01876 0.37196 | —0.11278 | —0.30331 | + 0.00229 | — 0.00706 | — 0.03201
0.36429 —.89334 0.29671 | —0.21802 | — 0.31487 0.00906 | — 0.01166 | — 0.03016
0.54643 — 0.82270 0.24619  —0.31509 | — 0.32559 0.02307 | - 0.01974 | —0.03216
0.65571 —.78898 0.23401 | —0.36850 | — (.32389 0.03409 | —0.02667 | — 0.03586
0.80143 —0.73532 0.22603 | —0.43260 | — 0.30577 0.05091 | —0.03910 | — 0.04365
0.94714 — 0.66649 0.21065 | —0.48036 | —0.26971 0.06893 | —0.05533 | —0.05350
1.16571 —0.55390 0.14366 | — 050633 | — 0.20019 0.09640 | — 008557 | ~— 0.06774
B =10.80 0 — 2.20249 0 + 0.42053 0 0 0 — 0.05901
0.1125 — 1.26172 058058 | —0.10379 | —0.36426 0.00009 | —0.00454 | — 0.04059
0.225 —{(.96898 0.50308 | —0.30773 | — 0.34078 0.00325 | — 000844 | —0.03735
0.3375 — 0.82540 0.44331 | — 043049 | — 0.29256 0.00917 | —0.01330 | —0.03892
0495 —0.67893 0.37983 | — 0.53301 [ —0.18696 0.02107 | — 002309 | — 0.04728
0.585 — (.60462 0.33409 | — 054970 | —0,11474 0.02004 | — 003058 | — 0.05440
0.72 — 0.51665 023725 | — 0517564 | — 0.02180 0.04177 | —0.04412 | —0.06582
0.9 —0.48031 008675 | —0.41466 | + 0.02476 0.06012 | -—0.06609 | — 007877




K =a=plv2e™ (Ak, + Bk, + Cke)
M =mpl2v%e™ (Am, + Bm; + Cm.)
N =mpJv%™ (An, + Buy + Cny)

aerodynamic foree of wing + aileron, posifive downward.

aerodynamic moment of wing + aileron about mid-chord point,

aerodynamic moment of aileron about hinge axis (= nose), positive

’

Al amplitude of translation in mid-chord point, positive downward,

amplitude of wing rotation, positive if trailing edge is downward.

amplitude of aileron rotation, positive if trailing edge is downward.

All data contained in the table should he aceurate within a few units

4,
eron gystem {r=-0.3) in a subsonic compressible flow.
" ny ne”
.
0 — 0.05905 0
- 0.00890 | —0.05355 | — 0.00528
0.02468 | —0.05070 | —0.01518
- 0.04107 | — 0.04891 | — 0.02540
- 005762 | — 004746 | — 0.03564 Definition coefficients:
- 0.07434 | —0.04609 | — 0.045886
- 0.09130 | — 004469 | — 0.05609
- 0.12622 | —0.04164 | — 0.07668
0 — 0.06387 0
~0.01269 | —0.05657 | —0.00755 K
|- 0.03385 | —0.05390 | — 0.02069
- 0.05560 | —0.05269 | —0.03391 M
~ 007786 | —0.05204 | —0.04701 positive tailhea
010081 | —0.05171 | — 0.06002 i
—~0.12442 | ——0.05164 | — 0.07295 N
~ 0.16062 | —0.05201 | — 0.09205 tailhavy.
0 = 0.06914 0 p, air density (in undisturbed state).
—0.00737 | —0.06208 | — 0.00414 .
| 0.02346 | —0.05931 | — 001410 | !  scmi-chord.
—0.04021 | —0.05830 | — 0.02426 .
005725 | — 005811 | —0034ge | ¢ Speed of dlight.
—~{0.07464 | — 0.05841 - 0.04410 B Mach number, v/c
~0.09240 | —0.05908 | — 0.05370
~0.11945 | —0.06063 | — 0.06761 v frequency of the vibration.
~0.14613 | —0.06260 | — 008074 ‘
— 017867 | —0.06526 | — 0.09682 o« reduced frequency, vli/v
0 —0.07T74G 0 r  ratic between aileron chord- aﬁd total chord.
—0.00861 | —0.06837 | — 0.00474 ¢t time,
—0.02774 + —0.06606 | —0.01639 § -
—~0.06396 | —0.06644 | — 0.03141
—-0.08740 | —0.06929 | — 0.04854
-0.10724 | —0.07160 | —0.05778 B
—0.13198 | —0.07462 | — 0.06884
-0.15334 | —0.07680 | - 0.078%90 ¢
-0.17864 | -—0,07816 | — 0.09407
kS, &, real and imaginary part of k., ete.
0 —0.09219 0
-0.01138 | —0.07963 | — 0.00610
-0.03568 | —0.07919 | —0.01999 of the last digit.
-0.05980 | —0.08200 | — 0.03184
-0.09167 | —0.08711 | — 0.04468
-0.10756 | — 0.08933 | — 0.05065
-0.12765 ) —0.09108 | — D.D5966 '
015037 | —0.09313 | — 0.07388
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TABLE 5,

Wing ecefficients tor §=0,

m kS ko e m,” k! . k" i my’ my”’

0 0 0 0 0 —2.0 0 + 1.0 0

0.02 —0.0026 | —0.0385 { 4 0.0015 | + 0.0193 | — 1.9290 | + 0.1112 0.9645 | — 0.0756
0.04 — 0.0077 | — 0.0741 0.0046 0.0371 | —1.85380 0.1549 0.9292 | —-0.1175
0.06 —0.0135 | —=0.1071 0.0086 0.0535 | — 1.7926 0.1717 0.8968 | — 0.1458
0.08 —0.0193 { —0.1877 4.0128 0.0688 | — 1.7337 0.1720 0.8677 | — 0.1660
0.10 — 0.0245 | —0.1664 0.6172 0.0832 | — 1.6811 0.1614 0.8418 | — 0.1807
0.12 —0.0288 | — 0.1935 0.0216 0.0068 | — 1.6348 0.1434 0.8189 | —0.1917
0.14 —0.0322 | —-0.2198 0.0259 0.1097 | — 1.5926 0.1201 0.7988 { — 0.2001
0.16 —0.0344 | —0.2441 0.0300 0.1220 | — 1.5556 0.0931 0.7810 | — (0.2065
0.18 —0.0355 | —0.2679 0.0340 0.1339 | — 1.5225 0.0634 0.7653 | —0.2117
0.20 —0.0355 | —0.2910 0.0377 0.1455 | —1.492% | + 0.0317 0.7514 | — 0.2159
0.22 —0.0342 ) —0.3135 0.0413 01558 | —1.4663 | — 0.0013 0.7892 | — 0.2194
0.24 —0.0318 | —0.3355 0.0447 0.1678 | —-1.4425 | —0.0353 0.7284 | — 0.2223
0.26 —0.0282 | —0.3570 0.0479 01785 | — 1.4200 | — p.0701 0.7189 | — 0.2250
0.28 —0.0235 | —0.3781 0.0509 01891 | —1.4014 | 01054 0.7105 | —0.2274
0.30 — 00176 | —0.3090 0.0538 0.1995 | —~1.8837 | — 0.1409 0.7081 | —0.2296
0.32 —0.0106 | ——0.4196 0.0565 0.2008 | —1.3677 | — 01766 0.6966 | -—0.2317
0.34 — 0.0026 | —0.4399 0.0591 0.2200 | —1.3530 | -— 02124 0.6909 | — 0.2338
0.36 + 0.0066 | — 0.4601 0.0615 (.2301 | —-1.3396 | — 0.2483 0.6860 | — 0.2358
(.38 0.0168 | — (0.4801 0.0638 0.2401 | — 1.3273 | —— 02842 0.6817 | —~0.2379
0.40 0.0280 | — 0.5000 0.0660 02500 | —1.3160 | — 0.3200 0.6780 | — 0.2400
042 0.0403 | — 0.5197 0.0681 02599 | —~1.3055 | -~ 0.3558 0.6748 | — 0.2421
0.44 0.0535 | — 0.5394 0.0700 0.2697 | —1.2959 | — (0.3914 0.6722 | — 0.2443
0.46 0.0678 | - 0.5590 0.0719 02795 | —1.2871 | — 0.4269 0.6700 | —0.2465
.48 0.0831 | — 0.5785 0.0737 0.2899 | — 12788 | — (.4623 0.6682 | — 0.2488
0.50 0.0993 | — 0.5979 0.0754 0.2990 | — 19712 —0.4976 0.6669 | — 0.2512
0.52 01165 | —0.6173 0.0770 0.3087 | —1.2641 | — 0.5327 0.6659 | — 0.2537
0.54 0.1346 | — 0.6367 0.0785 0.3183 | —1.2575 | — 05676 06652 | — 0.2562
0.56 0.1537 | — 0.6560 0.0799 0.3280 | — 1.2514 | — 0.6025 0.6649 | — 0.2588
0.58 01737 | — 0.6753 0.0813 03377 | —1.2456 | — 0.6372 0.6649 | — 0.2614
0.60 01947 | — 0.6946 0.0827 03473 | —1.2402 | —£ 0.6717 0.6652 | —0.2641
0.62 .2165 | -—0.7138 0.0840 (3569 | ——1.2352 | —0.7061 0.6657 | —0.2669
.64 (0.2393 | —0.7330 0.0852 03665 | —1.2306 1 — 07404 0.6660 | — 0.2693
0.66 . 02630 | —0.7523 0.0863 03761 | — 1.2261 | — 0.7746 0.6675 | — 02727
0.68 0.2875 | ——-6.7715 0.0874 0.3857 | —1.2219 | — 0.80886 0.6638 | — 0.2757
0.70 0.3130 | — 0.7907 0.0885 (.3953 { — 12180 | —-0,8425 0.6703 | — 0.27858
0.72 0.3394 | — 0.8099 0.0895 04049 | —-1.2143 | — 0.8763 G.6720 | -—0.2819
0.74 0.3666 | — 0.8241 0.0905 04145 | — 12108 | —0.91060 0.6789 | — 0.2850
0.76 0.3947 | — 0.2482 0.0914 04241 | .~ 12075 | — 0.9435 0.6760 | ——0.2882
0.78 04237 | —0.8674 00923 04337 | 12044 | — 0.9770 0.6783 | — 0.2915
0.80 0.4586 | — 0.8866 0.0932 04433 | —12015 | —1.01083 0.6808 | — 0.2949
0.82 0.4843 | —-0.9058 @  0.0940 0.4529 | 11987 | -—1.0436 0.6834 | — 0.2982
0.84 05159 | — 0.9250 0.0948 0.4625 | —1.1961 | —1.0767 0.6862 | —0.3016
0.86 0.5484 | —0.9442 0.0056 0.4721 | —1.1936 | ——1.1098 0.6892 | — 0.3051
0.88 05817 | — 0.9635 0.0964 0.4817 | ——1.1912 | —1.1427 0.6924 | — 0.3086
0.90 0.6159 | — 0.9827 0.0971 0.4913 | —1.1889 | 11756 0.6957 | — 0.3122
0.92 0.6509 | —1.0019 0.0978 0.5010 | -—1.1868 | —1.2084 0.6092 | —0.3158
0.94 0.6868 | -—1.0211 0.0985 0.5106 | —1.1847 | —1.2412 0.7028 | —0.3194
0.96 0.7235 | —1.0404 0.0891 0.5202 | —1.1828 | --1.2738 0.7066 | — 0.3231
0.98 0.7611 | —1.0596 0.0997 0.5298 | —1.1809 | —1.3064 07105 | —0.3268
1.00 0.7995 | —1.0789 0.1003 0.5395 | — 11792 | —1.3390 0.7146 | — 0.3305
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TABLE 6.
Wing coefficients for 8 =0.35.
© k' k" mg' my” kv hp” ny' my”

0 0 0 0 0 — 2,135 0 + 1.068 0

0.02 —0.0031 | —0.0409 | 4 00018 | + 0.0204 | —2.048 + 0.143 1.029 — 0.098
0.04 — 00101 | —0.0782 0.0057 00391 | —1.960 0.203 0983 | —0am
0.06 — 00172 | — (1122 0.0166 0.0560 | ~-1.881 (.231 0.940 | — 0185
0.08 — (0.0244 | —0.1435 0.0158 0.0716 | —1.810 0.234 0.902 | — 0207
0.10 —0.0311 | — 01727 0.0212 £.0861 | — 1,748 0.224 0870 | —0.224
0.12 —0.0365 | —{.2000 0.0266 0.0995 | —1.693 0.205 0.543 — 0,237
0.14 —0.0408 | —0.2260 0.0319 0.1124 | — 1,646 0.179 0.820 | —0.247
0.16 —0.0440 | — 0.2508 0.0370 0.1246 | —1.605 0.151 0800 | - 0.855
0.18 —0.0464 | —0.2748 1 - 0.0420 61364 | —1.568 £.121 0.782 — 0.262
0.20 —0.0476 | —0.2980 0.0468 01478 | —1.637 0.090 0.766 | -— 0268
0.22 — 00477 | —.0.3208 0.0514 01589 | — 1.5095 0.0530 07534 | — 02733
0.24 —0.0463 | — 0.3431 .0559 0.1696 | —1.4353 | - 0.0235 0.7420 | — 0.2780
0.26 — 0.0436 | — 0.3649 0.0603 0.1802 | —1.4639 | —0.0124 0.,7323 | — 02822
0.28 — (.0398 | —0,3866 0.0645 0.1906 | —1.4452 | —0.0484 0.7235 | — 0.2863
0.30 — 0.0350 | — 0.4081 0.0686 0.2009 | —1.4288 | —(0.0842 0.7159 | ——0.2005
0.32 ——0.0292 | — 04203 0.0727 02111 | —1.4144 1 - 012199 07092 1 — 0.2948
.34 —0.0223 | — 04500 0.0767 0.2211 | —1.4018 | —0.15565 07024 | — 02993
(.36 —0.0144 | — 04717 0.0805 02312 1-— 13908 | —0.1913 (.6986 | —0.2026
0.38 — 0.0054 | — 04929 (10843 02412 | — 1.3814 | — 0.2270 0.6948 | — 0.3080
0.40 + 0.0047 | —0.5141 0.0850 02511 | —1.3733 | — 0.2628 0.6917 | — 0.3126
0.42 0.0168 | — 0.5353 0.0918 (2610 | —1,3663 | — 0.2985 0.6893 | —0.3170
0.44 0.0278 | — 0.5566 0.0955 0.2710 | - 1.3606 | — (3341 0.6873 | —0.3218
0.46 0,0408 | — 05780 0.0991 0.2808 | —1.3557 | —0.3695 0.6869 | — 0.3266
0.48 0.0648 | — 0.5996 0.1028 0.2907 | —1.3519 | — 0.4048 0.6851 | — (0.3315
0.50 0.0696 | —0.6213 0.1064 0.3007 | —1.3489 | —0.4398 0.6848 | — 0.3369
0.52 0.0854 | — 0.6431 0.1101 03105 | — 1.3469 | — 04747 0.6848 | —0.3422
054 0.1021 | —0.6651 0.1138 0.3206 | —1.3455 | —0.65095 0.6853 | — 0.3477
0.56 01198 | —0.6873 0.1175 0.3304 | —1.3448 | — 0.5443 0.6861 | —0.3533
0.58 (,1383 | —0.7097 0.1212 03404 | —1.3448 | — 0.5789 0.6874 | —0.3591
0.60 01577 | —0.7324 (01249 03505 | —1.3457 | —0.6134 0.6890 | — 0.3650
0.62 0.1781 | —0.7553 | - 0.1287. 0.3605 | —1.83470 | — 0.6478 0.6909 | — (.3709
0.64 01993 1 — 09785 | . 0.1325 0.3706 | —1.3489 | —0.6820 069531 | —- 03771
0.66 0.2213 | —0.8019 0.1364 0.3807 | —1.3514 | —0.7160 0.6957 | — (.3835
0.68 0.2443 | — 0.82567 0.1403 03908 | —1.3645 | ——0,7501 0.6983 | —0.3900
0.70 0.2680 | — 0.8495 0.1444 0.4011 | —1.3580 | —0.7840 07015 | —0.3966
0.72 0.2928 | —0.8739 |: - 0.1485 04113 | —1.3623 | —0.8180 0.7049 | —0.4034
0,74 0.3183 [ —0.8985 0.1527 04215 | —1.3669 | — 0.8517 0.7085 | —(.4103
0.76 0.3446 | —(.9234 0.1570 04319 | —1.3720 | —-0.8853 07124 | — (14174
0.78 0.3717 | —0.9488 0.1613 0.4423 | —1.3777 | — 09189 | - 0.7164 | — 0.4216
0.80 0.3998 | —0.9745 0.1657 0.4527 | —1.3838 | —0.9524 |- - 0.7208 | — 0.4321
0.82 £.4285 |.-—1.0006 0.1702 0.4632 | —1.3%04 | —0.9858 0.7253 | —0.4386
0.84 04582 | —1.0270 0.1749 04737 | —1.3975 | ——1.0192 0.7300 | — 04472
0.86 04887 | —1.0538 01797 0.4842 | —1.4060 | —1.0525 0.7349 | — 0.4550
0,88 0.5202 |-—1.0809 0,1844 0.4947 | —1.4127 | —1.0858 0.7401 | —0.4628
0.90 0.5524 (1 —1.1086 0.1892 05053 | —£1.4210 | ——1.1191 (.7455 | — (0:4709
0.92 (.5856 | — 1.1367 0.1943 0.5159 | —1.4298 | —1,1524 0.7511 | —0.4739
0.94 0.6195 | —1.1654 0.1994 0.5266 | —1.4392 | —1.1856 0.7568 | — 0.4873
0.96 0.6543 |—1.1945 0.2047 06374 | —1.4490 | —1.2190 0.7626 | —0.4957
0.98 0.6899 | —1.2242 0.2102 0.5483 | —1.4594 1---125623 0.7686 | — 0.5038
1.00 0.7259 | — 12544 0.2159 0.5597 | —1.4703 | — 1.2856 07747 | —().5122
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TABLE 7.

Wing coefficients for g==050.

. @ ko el m, "™ ’ Te! ‘ ky my "

0 0 0 0 0 —2.309 0 + 1155 0

0.02 — 0.0042 | —0.0439 { - 0.0024 | + 0.0218 | —2.196 | + 0.189 1104 | -—0.127
0.04 — 00124 | —— 00832 1" 0.0071 0.0414 | — 2.086 0.286 1042 | —0.192
0.06 —0.0218 | —0.1185 0.0129 0.0589 | -— 1.988 0.305 0.988 | — 0231
0.08 ——0.0311 | — 01508 0.0193 0.0747 | —1.901 0.314 0.943 | —0.258
0,10 —0.0395 | ~ 0.1801 0.0259 0.0892 | —1.826 0.306 0.905 | —0.277
0.12 —0.0464 | 02075 0.0326 01026 | —1.762 0.284 0.878 | —~0.992
0.14 —0.0518 | —0.2335 0.0391 0.1152 | —1.707 0.255 0.846 | — 0.304
0.16 — 00555 | — 02582 0.0454 01272 | —1.659 0.220 0.822 | —0.313
0.18 —0.0580 | —— 02821 0.0517 0.1386 | —1.619 0.184 0.801 | —0.321
0.20 —0.0597 | — 0.3055 0.0576 01496 | —1.585 0.149 0.783 | —0.321
0.22 —0.0607 | —0.3284 0.0635 0.1603 | — 1.5560 0.1157 0.7656 | — 0.3342
0.24 —0.0610 | - 0.3509 0.0691 0.1708 | ——1.5312 0.0833 0.7519 | — 0.3426
0.26 —0.0601 | — (.3732 0.0748 01810 | — 15108 0.0500 0.7405 | — 0.3506
0.28 —0.0577 | — 0.3954 0.0803 01911 | —1.4926 | + 0.0150 07311 | — 0.3577
0.30 —0.0538 | ——0.4175 0.0858 02010 | —1.4776 | — 0.0217 0.7287 | — 0.3642
0.32 —0.0487 | —0.4396 0.0913 0.2108 | -——1.4649 | — 0.0585 0.7174 | — 0.3707
0.34 —0.0427 | —- 04616 0.0967 0.2205 | —1.4543 | — 0.0949 0.7118 | —0.3775
0.36 —0.0859 | — 04837 | . 0.1022 0.2302 { — 14458 | —0.1306 0.7066 | — 0.3846
0.38 — 0.0280 | — 0.5059 0.1078 0.2398 | — 14391 | — 0.1660 6.7020 | —0.3922
0.40 —0.0194 | —- 05284 0.1133 02494 | —-1.4344 | —0.2010 0.6980 | — 0.4000
0.42 —0.0098 | — 0.5512 0.1180 02590 | — 1.4313 | — (.2356 0.6950 | — 0.4082
0.44 + 0.0007 | — 0.5741 0.1247 02686 | — 1.4295 | —0.2702 0.6931 | — 0.4166
0.46 0.0120 | ——D:5974 0.1305 0.2781 | — 14291 | —0.3042 0.6919 | — 0.4253
0.48 0.0242 | —0.6209 | 013637 02877, —1.4299°| —0.3382 | 06911 | —0.434]
0.50 0.0874 | — 0.6448 0.1424 0.2972 | —1.4319 | —0.3720 0.6907 | ~—0.4433
0.52 00514 | — 0.6690 0.1486 0.3067 | —1.4351 | — 0.4056 0.6907 | — 0.4527
0.54 0.0662 | — 0.6936 01548 0.3162 | —1.4393 | — 0.4398 0.6911 | —0.4624
0.56 0.0819 | —-0.7186 0.1612 0.3257 | — 14445 | —0.4719 0.6918 | —0.4725
0.58 0.0082 | — 0.7441 0.1679 0.3352 | —-1.4507 | —0.5045 0.6930 | — 0.4828
0.60 0.1152 | —0.7700 0.1747 03248 | —1.4580 | —0.5367 0.6944 | — 0.4934
0.62 0.1330 | —0.7965 0.1817 0.3543 | — 1.4661 | — 0.5688 0.6962 | — 0.5044
0.64 0.1515 | —0.8234 0.1888 03638 | ——1.4753 | —0.6005 0.6982 | — 0.5156
0.66 0.1707 | —0.8508 0.1962 0.3732 | —1.4853 | —0.6318 0.7004 | — 0.5272
0.68 0.1906 | — 0.8788 0.2037 0.3827 | —1.4961 | —0.6630 0.7030 | — 0.5390
0.70 02111 | — 0.9074 02115 | - 03922 | —1.5078 | — 0.6938 0.7056 | — 0.5512
0.72 0.2323 | —0.9365 02197 0.4016 | — 1.5204 | — 0.7243 0.7084 | — 0.5636
0.74 0.2542 | — 0.9663 0.2279 0.4110 | — 1.5337 | — 0.7545 0.7114 | — 0.5763
0.76 0.2766 | — (1.9968 0.2364 0.4203 | —1.5480 | — (.7842 0.7145 | — 0.58%4
0.78 02996 | — 1.0279 0.2453 ¢.4297 | — 15631 | — 0.8138 0.7178 | — 0.6028
080 1, #0.3232 | — 0.0507 0.2544 0.4389 | — 1.5790 | — 0.8429 07212 | — 0.6164
0.82 0.3473 | ——1.0922 0.2638 04481 | —1.5957 | — 0.8717 0.7246 | —0.6304
0.84 0.3720 | — 1.1254 0.2734 04572 | — 16132 | —0.9001 07282 | — 0.6446
0.86 0.3971 | —1.1594 0.2833 0.4663 | —1.6316 | — 0.9281 0.7318 | — 0.6592
0.88 0.4227 | —1.1943 0.2935 04753 | — 1.6507 | — 0.9556 0.7354 | — 0.6740
0.90 0.4487 | — 1.2300 0.3040 0.4842 | —1.6706 | — 0.9827 0.7391 | —0.6891
0.92 04750 | —1.2666 0.3148 0.4930 | —1.6914 | —1.0092 0.7427 | —0.7046
0.94 05016 | —1.3030 0.3259 05016 | —1.7130 | —1.0352 0.7464 | —0.7204
0.96 05286 | — 1.3420 0.3374 05101 | —1.7352 | — 1.0607 0.7500 | - 0.7364
0.98 0.5560 | — 1.3807 0.3491 05185 | — 17583 | —-1.0858 0.7536 | — 0.7528
1.00 05837 | —1.4199 0.3612 05267 | —1.7811 | —1.1104 0.7571 | — 0.7693
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TABLE §.
Wing coecfficients for =050

® kd ke l 1y l n,"” ‘ k' ' k" ' ey ‘ ny”
0 0 0 0 0 — 2.500 0 + 1.250 0
0.02. — 00053 | —0.0470 | + 0.0030 | + 0.0235 | —2.354 + 0.241 1176 | —0.154
0.04 — 00154 | — 0.0882 0.0087 0.0439 | —2.214 0.340 - 1.100 —{1.232
0.06 — 00266 | —0.1245 0.0158 6.0617 | —2.090 (0.382 1.035 —0.280
0.08 —0.0373 | —0.1569 0.0238 0.0775 | —1.985 0.289 “0.981 | —0.311.
©0.10 — 00467 | —(.1864 0.0316 0.0919 | —1.896 0.375 0.936 —0.333
0.12 — 0.0545 | —0.2138 (.0393 0.1050 | —1.821 (.349 0.896 — (.350
0.14 —0.0612 | —0.2397 0.0469 01172 | —1.759 0.320 0.863 —0.363
0.16 —0.0671 | —0.2646 0.0543 1287 | —1.708 0.291 0834 | —0.375
0.18 — 0.0719 | —0.2887- 0.0614 0.1396 | — 1.665 0.260 0.809 —- 0,386
0.20 -—0.0751 | —0.8122 0.0685 0.1501 | —1.629 0.226 0.78% | -—0.397
0.22 — 0.0767 | —0.3351 0.0755 0.1603 | — 1.5984 .1832 0.7723 | — 0.4056
0.24 —0.0770 | —0.3578 0.0825 0.1702 | —-1.5735 0.1506 0574 | ——0.4140
.26 —0.0763 | —0.3804 0.0894 01798 | — 1.5524 0.1138 07441 | —~ 049231
(.28 — 00748 | — 04029 (1.0963 0.1893 | — 1.,5352 0.0778 07321 | — 04325
(.30 — 00722 | — 04255 0.1032 0.1985 | — 15215 0.0421 0.7219 | — 04423
0.32: — 0.0685 | — 0.4481 0.1102 0.2077 | -—1.5105 | = 0.0065 0.7136 | — 00,4522
0.34 —0.0639 | —0.4709 01173 0.2168 | —1.5024 | — 0.0288 0.7065 | —-0.4624
0.36 — 0.0584 | — 06.4939 0.1245 0.9257 | —1.4964 | — 0.0636 0.7000 | — 04731
0.38 — 0.0519 | — 05172 0.1317 0.2345 | —1.4928 | __0.0980 0.6945 | — 04841
0.40 — 0.0447 | — 0.5407 0.1392 0.2434 | —1.4910 | —0.1317 (.6897 | — 0.4956
.42 — 0.0366 | — 0.7646 01469 02520 | —1.4913 | —0.1649 0.6856 | — 0.5075
0.44 —0.0279 | —0.5889 0.1547 02607 | — 14931 | —0.1973 (.6820 | — 0.5200
0.46 — 00183 | —0.6136 0.1627 02691 | — 14966 | . _ 02293 0.6790 | — (.5329
048 - | —0.0081 | — 063588 01709 02775 | —1.8018 | — 0.2607 0.6763 | — 0.5461
0.50 -+ 0.0028 | — 0.6645 0.1794 02858 | —1.5084 | — 02915 0.6740 | — 0.5599
0.52 0.0143 | — 0.6907 0.1881 0.2040 | —1.5164 | (3215 0.6720 | —0.5741
0.54 0.0264 | —0.7174 0.1971 03021 | —1.5256 | — 0.3509 0.6703 | —0.5889
0.56 0.0390 | —0.7447 (.2064 £.3100 | —1.5363 | — 0.3797 0.6686 | — 0.6040
- 0,68 0.0521 | —0.7726 0.2160 03178 | — 1.6481 | — 0.4077 0.6673 | —0.6196
0.60 0.0658 | — 0.8011 0.2257 0.3254 | —1.5610 | ——0.4350 0.6659 | — 0.6356
0,62 0.0799 | —0.8302 0.2359 03329 | — 15750 | —(0.4616 06646 | — 08521
0.64 0.0942 | —0.8599 ©(.24604 03403 | —1.58%% | — 04875 0.6632 | — (.6690
0.66 0.1093 | — 0.8903 0.2572 03474 | — 1.6060 | — 0.5127 0.6618 | — 0.6863
0.68 0.1245 | — 0.9214 0.2683 03543 | —1.6232 | — 0.5370 0.6604 | — 0.7039
0.70 0.1395 | —0.9532 0.2797 03609 | —1.6414 | - 0.5605 0.6588 | — 0.7220
0.72 0.1555 | — 0.9857 0.2915 0.3673 | —1.6604 | — 0.5832 0.6571 | —0.7404
0.74 0.1714 | — 1.0189 0.3035 03734 | —1.6806 | — (0.6050 (.6552 | —0.7591
0.76 0.1875 | — 1.0529 0.3160 0.3792 | —1.7014 ] - 0.6260 0.6531 | — 07782
0.78 0.2037 | —1.0876 0.3287 0.3847 | — 17221 | —0.6459 FO6508 | — 0.7976
0.80 02201 | — 11231 0.83417 03809 + — 17466 | —0.6650 06482 | —0.3173
082 02364 | —1.1593 03551 (0.3947 | —1.7689 | — 0.6830 06453 | —0.8372
0.84 0.2528 | —1.1962 0.3688 0.8991 | -—-1.7929 | —0.7000 0.6421 | -— 0.8574
0.86 02691 | — 1.2339 0.3828 (.4030 | — 1.8175 | —0.7159 0.6385 | — 0.8778
0.88 0.2852 | —'1.2722 0.3971 0.4066 | —1.8428 | —0.7307 0.6345 | — 0.8984
0.90- 03012 | —1.3113 04116 04097 | —1.8687 | —0.7444 0.6302 | —0.9192
0.92 03170 | —1.3511 0.4264 04123 | —1.89H0 | — 0.7569 0.6254 | — 0.9401
0.94 £.3326 | —1.3915 0.4414 0.4145 | —1.9218 | — 0.7683 0.6201 | —0.9612
0.96 03479 | —1.4325 0.4567 0.4161 | —1.9489 |\ ——0.7785 0.6144 | —0.9823
Q.98 03628 | — 14742 0.4722 04172 | —19764 | -—Q. 7874 0.6083 | — 1.0035
1.00 0.3773 | — 1.5164 _ 0.4878 04177 | —2.0042 | — 0.7950 0.6016 | — 1.0246
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TABLE 3.
Wing coefficients for g = 0.70.

w k. k! my' ity ky Ly ny' '

] 0o . 0 0 0 —2.801 0 + 1400 0
0.02 —0.0072 | —0.0516 | + 0.0044 | + 0.0257 | —2.582 4+ 0.334 1289 | —0.207
0.04 — 00199 | —0.0949 0.0123 0.0473 | —2.385 0.451 1.182 — 0307

. 0.06 —0.0339 | — 01321 0.0213 0.06556 | —2.223 0.500 1.095 | --0.365
0.08 —0.0470 | —0.1649 0.0306 0.0809 | —2.092 0.506 1.022 | — 0.400
0.10 —0.0588 | —0.1944 0.0401 0.0045 | —1.984 0.493 0.965 — (.426
0.12 — 0.0688 | — 00.2217 0.0493 0.1066 | — 1.897 0.467 0.917 — 0.441
0.14 — 00771 | — 0.2473 0.0583 0.1180 | — 1.825 0.433 0.878 | — G457
0.16 —0.0842 | —0.2719 0.0672 0.1286 | —1.766 0.398 0.841 — 0.469
0.18 —{.0901 | — 0.2956 0.0760 01386  —1.718 0,362 0.812 — 0482
0.20 —0.0945 | —0.3189 0.0546 0.1480 | —1.679 0.325 0785 | —0.497
0.22 —0.0975 | —0.3419 0.0932 01568 | —1.6473 0.2863 0.7623 | — 0.5088
0.24 — 0.0993 | —.0.3648 0.1018 0.1655 [ — 1.6216 0.2484 0.7434 | —0.5210
(.26 —(.1001 | —0.3875 0.1105 01739 ) —1.6010 0.2111 0.7266 | -—0.5337
0.28 —0.0999 | — 04104 0.1193 0.1819 | — 1.5850 0.1749 07113 | —0.5470

. (.30 —0.0889 | -— 04334 0.1282 1896 | — 1.5729 0.1402 0.6974 | — 0.5609
0.32 —0.0970 | — 0.4566 0.1373 01972 | —1.5642 0.1060 06847 | —0.5754
0.34 —0.0944 | — 04801 0.1465 02044 | — 1.5586 0.0732 0.6734 1 — (1.590H
0.36 — 00910 | ——0.5039 0.1560 02113 | — 1.56557 0.0415 0.6627 | — 0.6063
0.38 —0.0871 | — 0.5280 0.1657 02179 | —1.5553 | + 0.0112 06518 | ~-0.6228
(.40 —0.0826 | — 0.5526 0.1756 02245 | — 15571 | — 0.0180 0.6418 | — (.6398
0.42 —0.0775 | —0.5776 0.1858 02306 | —1.5610 | — 0.0461 0.6321 | — 0.6575
0.44 —0.0719 | —0.6030 0.1963 0.2364 | — 1.5668 | — 0.0730 0.6225 | — 0.6757
0.46 — 0.0659 | — 0.6289 0.2071 02417 | —1.5742 | —0.0984 0.6130 | — 0.6944
0.48 —0.0596 | — 0.6553 02181 02466 | —1.h833 | —0.1224 0.6034  — 0.7136
0.50 —0.0531 | — 0.6822 0.2293 02512 | —1.5938 | —0.1451 0.5935 | —0.7332
0.52 —0.0462 | _—_0.7096 0.2409 0.2554 | — 1.6055 | — 0.1665 0.5834 | —0.7532
0.54 —0.0393 | 07375 0.2527 02592 | —1.6185 | — 0.1864 05728 | —0.7736
0.56 —0.0324 | - 0.7659 0.2647 02626 [ — 1.6325 { — 0.2048 05618 | — 0.7941
0.58 —(0.0254 | —-0.7948 0.2770 02654 | — 1.6474 | —0.2217 0.5504 | —0.8149
0.60 —0.0183 | — 0.8242 0.2895 0.2675 | —1.6631 | ——0.2375 0.5383 1 — 0.8357
G.62 — 0.0111 | — 0.8540 .3021 09692 | —1.6795 | — 0.2515 0.5257 | —0.8b66
0.64 —0.0040 | —0.8842 0.3149 a7 | —1.6964 | —0.2643 05124 | —0.8775
0.66 + 0.0030 | —0.9148 0.3278 02706 | — L7138 | —0.2752 0.4985 | - 0.8982
0.68 0.0099 | 09457 0.3407 02703 | — 17315 | — 0.2849 0.4840 | — 0.9187
0.70 0.0166 | — 09770 0.3537 02695 | —1.7494 | —0.2932 0.4687 | -—0.9389
0.72 0.0230 | —1.0085 0.3667 0.2680 | — 1.7674 | — 0.29%9 0.4528 { — 0.9588
0.74 0.0292 | —1.0404 0.3795 0.2657 | —1.7855 | — 0.3052 04363 | —0.9782
0.76 0.0353 | —1.0724 0.3923 0.2627 | —1.8033 | — 0.3091 04191 | —0.9971
0.78 0.0410 | — 11046 0.4049 0.2582 | ~—1.8210 | — 03118 04013 | —1.0154
0.80 0.0465 | —1.1368 0.4173 0.2552 | —1.8383 | — 0.3133 0.3830 | —1.0331
0.82 0.0517 | —1.1691 0.4295 02506 | —1.8552 | — 0.3136 03641 | — 1.0506
0.84 0.0566 | —1.2014 0.4413 02451 | —1.8716 | —0.3125 03447 | — 1.0662
0.86 00613 | —1.2337 0.4528 02392 | —1.8873 | —0.3100 03249 | —1.0815
0.88 0.0656 | — 1.265% 0.4639 02328 | —1.8023 | — 03074 0.3048 | — 1.0959
0.90 0.0698 | -—1.2978 - 0.4745 02253 | —1.9165 | —0.3034 02844 | -—1.1004
0.92 0.0739 | —1.3296 0.4847 02183 | —1.9299 | — 0.2986 02639 | —1.1219
0.94 0.0777 | —1.3610 0.4945 02102 ; —1.9424 | — (0.2929 02433 | —1.1334
0.96 0.0814 | —1.3921° 0.5087 02015 | —1.9539 | —0.2863 0.2227 | —1.1438
0.98 0.0851 | — 14229 0.5124 01926 | —1.9643 | — 02794 (42020 { —1.1533
1.00 0.0883 | — 1.4533 0.5205 0.1836 | — 1.9738 | — 02719 01815 | —1.1617
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TABLE 10.
Wing coefficients for g=10.80.

o ’ ke ‘ k" \ me 1 mg"” \ Iy ey’ my My

0 0o 0 0 0 333 0 + 1.667 0

0.02 —0.0101 | —0.0594 | + 0.0058 | + 0.0297 | —2.98 + 0.54 1472 | —0335
0.04 —-0.0272 | —0.1057 0.0165 0.0520 | —2.67 0.69 1281 | — 0464
0.06 00454 | —0.1431 0.0287 0.0694 | 243 0.73 1140 | —0.525
0.08 00620 | —0.1748 0.0412 0.0835 | —2.94 073 1.045 | — 0557
0.10 —0.0784 | —0.2031 0.0536 0.0954 | —2.095 0.699 0974 | — 0.580
0.12 —0.0014 | —0.2292 0.0654 0.1057 | — 1.966 0.656 0916 | — 0.595
0,14 01020 | —0.2539 0.0767 01148 | —1.867 0.604 0,965 | — 0808
0.16 —.01107 | —02775 | . 0.0875 0.1230 | —1.795 ' 0.549 0815 | —0.623
0.18 021178 | — 0.3006 0.0980 0.1304 | —1.751 0.511 0.767 | —0.641
0.20 _ 01236 | — 0.3234 0.1085 0.1369 | —1.721 0.479 0.729 | —0.658
0.22 —0.1286 | - 0.3458 0.1191 0.1428 | —1.690 0.442 0702 | - 0.672
0.24 —0.1327 | -—0.3682 01297 | 01480 | —1.663 0.405 0.673 | —0.687
0.26 —0.1359 | —0.3906 01404 | 01527 | — 1,642 0.369 0.644 | —0.705
0.28 — 01384 | — 0.4130 0.1511 0.1569 | — 1.626 0.336 0618 | —0.723
0.30 — 01402 | —0.4356 0.1618 0.1604 | —1.613 0.305 0590 | — 0.742
0.32 —0.1415 | — 04582 0.1725 01632 | —1.604 0.278 0559 | —0.759
0.34 — 01425 | — 04810 0,1833 01652 | 1598 0.254 0.533 | —0778
0.36 —0,1432 | —0.5039 0.1941 0.1665 | — 1.595 0.931 0508 | —0.797
0.38 — 01435 | —0.5270 0.2049 0.1671 | — 1,593 0.210 0481 | —0.815
0.40 - 0.1435 | — 0.5502 0.2155 01671 | 15929 0.1912 0453 | --0R32
0.42 — 01434 | —05735 0.2259 0.1663 | — 1.5931 01746 I 04243 | —0.8483
0.44 — 01431 | —0.5968 0.2361 01649 1 —1.5938 | - 0.1601 0.5956 | — £.8642
0.46 01426 | — 0.6202 0.2459 0.1628 | — 1.5950 0.1472 0.3664 | —0.8790
0.48 — 01420 | —0.6435 0.2554 0.1600 | — 1.5965 01358 1 0.8369 | — 0.8925
0.50 — 01413 | ——0.6668 0.2645 0.1567 | — 1.5980 0.1259 0.3072 | —0.9044
0.52 —0.1404 | — 0.6899 0.2729 0.1528 | —1.5994 0.1172 02774 | — 0.9146
0.54 — 01393 | —0.7129 | 0.2807 0.1484 | — 1.6006 0.1095 0.2476 | — 0.9230
0.56 —0.1380 | —0.7357 0.2879 0.1435 | -~ 1.6014 0.1028 0.2182 | —-0.9297
0.58 — 01364 | —0.7583 0.2044 0.1383 | —1.6018 0.0967 0.1892 | — 0.9345
0.60 — 01345 | — 07807 0.3003 01329 | —1.6016 0.0912 0.1609 | —0.9375
0.62 —0.1323 | — 0.8029 0.3055 01274 | — 16007 0.0858 0.1335 | — 0.9387
0.64 — 01296 | — 0.8249 0.3099 01219 | —1.5992 0.0804 0.1072 | — 0.9382
0.66 01265 | —0.8468 0.3138 0.1164 | — 1.5971 0.0750 0.0821 | — 09363
0.68 — 01228 | —0.8687 0.3170 01111 | — 1.5945 0.0694 0.058¢ | — 0.9331
0.70 — 0.1186 | — 0.8905 0.3197 01060 | — 1.5918 0.0635 0.0362 | — 0.9288
0.72 — 01138 | —0.9124 0.3220 01011 | — 15892 0.0570 | + 0.0156 | — 0.9238
0.74 —-0.1082 | —0.9343 0.3238 0.0968 | —1.5864 0.0497 | —0.0030 | —0.9178
0.76 — 01021 | — 0.9564 0.3252 0.0928 | — 1.5887 0.0418 | —0.0200 | — 09114
0.78 —0.0954 | —0.9787 0.3263 0.0893 | — 1.5812 0.0334 | —0.0353 | — 0.9044
0.80 — 0.0881 | —1.0012 0.3272 0.0862 | — 1.5789 0.0244 | -— 0.0490 | — 0.8972
0.82 — 0.0803 | —1.0241 0.3280 0.0834 | -~ 15770 0.0150 | —0.0611 | — 0.8%98
0.84 —0.0720 | —1.0473 0.3286 0.0810 | —1.5757 | + 0.0051 | — 0.0715 | — 0.8826
0.86 —0.0632 | —1.0710 0.3293 0.0790 | — 15749 | —0.0052 | —0.0806 | —0.8752
0.88 — 0.0540 | — 1.0952 0.3300 0.0774 | —1.5747 | —0.0158 | — 0.0882 | — 0.8683
0.90 —0.0444 | —1.1201 0.3309 0.0760 | — 1.5755 | — 0.0267 | — 0.0946 | — 0.8619
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FLEQO'0— | 014000— | §9L000— €9000°0 BILOOO— | BGEODO 6E80'0 — LT — 0080°0 — Geer'0— 00T
893000 — | TLS00'0— | uLioD — $L000°0 9116070 — | 1880070 Ye80r0 — Leel'o— RIZO0 — SPEF0 — 86°0
£9200°0-— | LL4000— | 981000 — LF000°0 FLEO0'0 — |7 4950070 GE80'0— geel’0— 98800 — 94EF 0 — 960
Lgeaq g — Slu00' g — 0gL000 — (O$000°0 (KU S 6FL00°0 61800 — 6ECL0— 80200 — LOE¥ 0 — Y60
L6800°0— | L4000 | F0LOOO— | BE000°0 OTT00°0— | ¥EE00°0 9I80°0 — 1810 — OLIO0— GLEY 0 — 66°0
GFe000— | ELC000— | 889000— | “E000°0 BOLOGO— | 6I500°0 EL80°0 — 0Tl — L6100 — 16E¥'0— 06°0
65000 — FLG000 — cLY00°0 — 8100070 0L00°0— FOEGO0 01800 — G0gl'0— €000 — FOrF 0 — 88'0
PEC00 (0 — ¥is00'0— §49000— LL000°0 POLO00 — 066000 L0800 — 00el’0 — 690070 — LivP 0o — 98’0
BEEO0'0C — | Y4000 — o+ 0F900°0— 1 00000 - 01000 — | 9L3000 +080°0 — CeIT0— G000 — 0EFP 0 — ¥8'0
CEE000— | 914000 — | PEU000— | GOOO0'0— | 660000 | B9200°0 30800 — 63IT0— 0 B0 — 580
9[E00°0— | 9E%00°0— |- 80900°0 — 60000°6 — | 26000°0— | 8¥Z000 00800 — &8IT0— 480070 + G4¥P 0 — 080
DIBOO0— | L1000 — L6400°0— | GSI0000— | 460000— | €E200°0 66L0°0 — QLI — 0200°0 GLFO0— 8L0
Y0000 — K LIS00°0— | 414000— ! @ZO000-— | €6000°0— | &zZg000 L6L0°0 — 69100 — 901070 L6¥¥0— 910
661000 — 814000 — 64400°0 — 8c000°0 — L6000 0 — 012000 46L0°0 — COLI0— oFl00 BO4F Q0 — vL0
g6L00°0— | 61%000— | EPL000— | FE000'0— | 68000°0— | 86L00°0 FELOQ — PELL G 6.10°0 LELP0 — Lo
L3T00°0— 6140060 — LGE00°0 — 0F000 0 — 1800070 — 98 Smwcz..rfl FeLO0— FIro— 91200 P o — 0L'0
181000 — 0550070 — [[4%060— GH000°0 — 480000 CLEO00T ™ £6L0°0 — LEEL0— $4z0°0 FOGV0 — 8570
9LT000— | 0B%000— | <6000 — Le000°0— | EBOOO'G— | #9000 26100~ BEIT0— G600 G8GPO — 99°0 .
0LY00°0— § Tes00'0— | 6LF00°0-— | 9¢000°0-— 180000 — | £4100°0 GRLY0— SILT0— " TEE00 LO9+Q — ¥9°0
POTOO0— | GeUOD'0— | B9¥000-— | &900000-— | BLOODO— | EFL000 GoL00— Lo Qo — 0LE00 06970 90
8€100°G — GTE000 — 9FPo0° 0 — L9000°0 — 9L000°0 — EEL00°0 G6LO( — 96010 — 0L¥00 GUOY 0 — 090
¢S100°0 — £2U00°0 — 0EY00°0 — eLoo 0 — FLO000 — £L000 ceLO0 — ¥ROT0— 0¢P0°0 [BH' 0 — 8BGO
L0000 — 8eU000 — ¥Ivouo— L0000 — GLO0O0 — FELOOO L6200 — LLoE0— 06F0°0 BOLY 0 — 950
0F100°0 — Peu0'0— 86E000 — 280000 — 0LOOO0 — 010070 F6L0°Q-— Leor'o— TES00 BELY' O — ¥50
GETOO'0— | Y8%000— | T8L00'0O~— | L1BOOODO— | 89000°G— | L6000O S6L0°0 — GHOT'0 — £160°0 0LLY O — G40
62100°0 — SE000 — GOE0D0 — c6000°0 —~ 990000 — 63000°0 L6L00 — 92010 — G900 208’0 — 05°0
21000 — | 984000 — | 6¥S00°0— | 960000 — | ¥9000°G— L8000°0 86L0°0— 60070 — BLYG'0 64870 — 1)
LIT00°0— | L8900°0-— | GEEOG'O— | T0LOOD— Lo000'0 — | ELO000 L0800 — 06600 — [0L00 BLBF' 0 — 9%'0
TIT00'0— LGE000 — 918000 — S0100°0 — 640000 — 8930000 80800 — 0L600 — YRLOD 6L6F0—— At
S0100°0— Bze000 — 00E00'0 — 60100°0— LU0 ~— §4000°0 S080°0 — 6+60°0 — 88L0°0 9670 — eFo
66000°0— | 6TS00°0— | E£8T000-— 000 — | 480000 — | £5000°0 L0800 — 926070 — GE80°0 g0 — 0%'0
60000 — | 084900°0-— | L9200°0— | BLIO00— | S400000— | L¥0000 0180°G-— 1060°G — 9480°0 £9045°0 — 8E'0
L0000 — | OEYD0'D-— | TLE00°0-— | &l000— 150000 — | 1#000°0 1800 — 6L800 — 1260°0 6ILG 0 — 9¢’0
T8000°0— | TEG000— | #£800°0— | 98I000— | BFOOO'0— | 980000 G800 — EF30°0— 4960°0 08160 — 80
GLOD00 — GES00'0 — 8lc000— O8TO00 — 9F000°0 — 1£000°0 Lgog— 11800 — 80010 Wes0— 280
0L000°0 — &€4000— | BO2000— CEI00'0— FFOO0' 0 — 9z000°0 61800 — - CLIG0— 1¢0T°0 BIEC 0 — 0£'0
F9000°0— | PELO00— | YBIO00O— | 6EIO00— | EP000'0— | ET0000 LESD (O — 98100 — E60T 0 96E¢'0 — 8%0
BEO00'0— | Y€C00°0— | 69T00°0~— | GFI00°0— | 680000~ | S1000°0 15800 — €690°0 — EETT°0 ERFE0 — 920
ee000'0 — 984000 — Ee100°0 — L¥100°0 — LEOOG'0 — L0000 080 — 3900 — TLIT'O grew — ¥o 0
90000 -— | 8EGOO0— ¢ LELODO— | ESIO00— | PEOOOQ-— LT000°0 81800 — 6400 — GOEL0 £899°0 — 0
T#000°0 — 6EC00°0— LEI000 — <1000 — ¢e000°0 — 600000 1800 — LESO0 — SvA NI 86L4°0— 0c0
g000'0— L¥G00'0 — GOT00° 0 — 191000 — 6E000°0 — 90000°0 G800 — ELYO0— BUEI'0 92650 — 810
LAY Pe00 0 — 630000 — 997000 — LEoou 0 — FOO000 EBLOO — V00— BLET 0 6309°0 — 91’0
$2000°0— | ¥FE000— | FLO000— | TLIOOO— | FEO000— | €0000°0 GLL0— £8E0°0 — PLELD 86590 — 10
67000°G-— | OFL00°0-— | 6%0000-— | LLIOOO-— | T2000°G— 1§ 100000 + BPLOO — PEZ00 — 09210 2090 — o
¥10000 — 8FL000 — 40000 — 881000 — BLO00'0 — 0 OTL00 — GeI00— Vael'0 ¥O840 — oro
6000000 — | TEL00'0— | TE€OOO'0— | 6RIOOO— | SI000°0—— 0 9ca0'g— C00°0 — GEITO Ge890 — 800
S0000°0 — PeC00'0 — L0000 — 96100°0 — croooo — 0 GLE0'0 — 86000 + 0T 0 TLOLO— 90°0
100600 — | 284000 — | 2000000 — | FOZOOO-— | 8BOO00(G— 0 BOF0'0 — E8E0°0 BLRO'0 1PeL0— F0'0
00000 + | DOLON'0— 0 ele000 — 1 00000 — 0 G080 — 8LE0°0 £9¢0°0 + 18940 — a0
0 U0 — | 0 085000 — 0 0 0 0g40°0 + 0 91620 — 0
e S _ P Au e _ S Lol put e 2y @
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TABLE 12.

Flap coefficients for +=0.1 and g=10.35.

® k’c’ kc” ﬂlc’ ?ch" %ar [ 'nn” ‘ nb’ 'nb" ) ?Lﬂ’ nc"
0 — 0.8451 0 + 0.0556 Q 0 0 —0.00234 0 — 0.00601 0
0.02 —-0.8098 + 0.0710 0.0379 —0.0377 0 —0.00005 | — 000224 | —— 0.0000] — 000597 + 0.06002
0.04 —0.7739 0.1073 0.0198 — 0.0580 1) — 000000 | —0.00215 ' —0.00007 | —0.00593 | — 0.00001
0.06 —0.7406 *0.1304 + 0.003 —0.0715 0 —0.00013 | — 000207 | ——0.00017 | —0.00590 | — 0.00004
0.08 — 0.7105 0.1446 Q0124 — 00806 0 —0.00016 | — 0.00199 ) - 000031 | —0.00587 | — 0.00008
0.10 — 0.6835 0.1530 — 0.0262 — 0.0868 +0.00001 | --0.00019 | —0.00192 | —0.00045 | —0.00584 | -—0.00013
012 . — 0.6598 0.1577 — 0.0986 — 0.0911 000001 | ——0.00022 | —0.00185 | —0.00061 | —0.00582 | —0.00019
0.14 — 0.6388 0.1599 — 0.0494 - 0.0941 0.00002 | — 000025 [ —0.00179 | —-0.00077 | —0.00580 | — 0.00025
0.16 — 0.5202 0,1603 | ——0.0580 - 0.006] 000004 ) ——0.00028 | — 000174 | —0.00004 | —0.00578 | — 0.00031
0,18 —0.6040 0.1593 — 0.0674 — 0.0074 0,00006 | —0.00030 | —0.00169 | — 0.00111 —0.00576 | —0.00037
0.20 —0.5896 01576 — 0.0749 —-0.0983 0.0000% | —0.00038 | —0.00164 | —0.00128 | —0.00575 | — 0.00043
0.22 —0.5767 0.1552 — (.0818 — 0.0989 000012 | —0.00038 | —0.00159 | — 000145 | ——0.00573 | — 0.00049
0.24 05652 0.1523 — .0879 — 0099 0.00015 | —0.00038 | — 000154 | —0.00162 | —0.00572 | — 0.00055
10.26 —0.5547 0.1490 —0.0935 — 0.0992 0.00018 | — 000041 | —-0.00150 | -—~000179 | — 000571 | — 0.006061
0.28 — 05454 0.1456 — 0.0986 — 0.0992 0.00023 | — 000044 | — 0.00146 | —0.00197 | —0.00570 | — 0.00067
0.30 — 0.5370 0.1420 — 01032 - 0.0990 0.00028 | —-0.00047 | --0.00142 | — 000215 | — 000569 | — 0.00073
0.32 —0.5203 0.1385 -—0.1075 -~ 0.0988 0.00033 | --0.00050 | —0.00138 | —0.00233 | —0.00568 | — 0.00080
.0.54 —0.5224 0.1348 —0.1113 - 0.0986 0.00038 | — 000052 | —000134 | —0.00231 | —000568 | -——0.00087
0.36 05160 0.1311 — 1149 — 0.0985 000044 | —0.00055 | —0.00130 | —0.00269 | — 0.00567 | — 0.00093
0.38 —0.5103 01273 - 0.1182 — 0.0984 0.00050 | — 000057 | — 000126 | —0.00287 | ——0.00566 | — 0.00099
0.40 — 05051 0.1237 —-0.1213 — 0.0982 0.00057 | —0.00059 | —0.00122 | —0.00304 | —0.00566 | — 0.00105
042 —.0.5003 0.1201 - 0.1241 — 0.0981 0.00064 | — 000061 | ~—000118 | -—0.00322 | —0.00565 | --0.00112
0.44 — 0.4959 0.1167 ——0.1267 — (L0980 0.00071 | —0.00064 | —0.00114 | —0.00340 | -—0.00565 | —G.00118
0.46 —0.4920 0.1133 -—0.1292 — 0.0979 0.00079 | —0.00066 | —000109 | -— 000358 | — 000564 | —0.00124
0.48 — (.4884 0.1099 —0.1314 — 0.0978 000087 | — 000069 | —0.00105 | —0.00376 | —0.00564 | —0.00130
0.50 ——0.4851 0.1067 —0.1336 — 0.0977 0.00085 | —0.00072 | —000101 | —0.00394 | — 0.00564 | —0.00137
0.52 - 0.4820 0.1035 -—0.1358 - 0.0977 0.00104 | 000074 | — 000096 | —0.00412 | —0.00563 | —0.00143
0.54 — 0.4792 0.1005 — 0.1375 —0.0978 0.00114 | ——0.00077 | —000002 | 000430 | —0.00563 | — 0.00149
0.56 — 0.4766 0.0075 - (.1393 — 0.0978 0.00124 | —0.00080 { —0.00087 | —0.00448 | —0.00563 | — 0.00155
0.58 —0.4742 0.0945 ——{.1410 — 0.0979 000134 | — 000083 | —0.00083 | — 000466 | —0.00563 | — 0.00161
0.60 — 0.4720 0.0917 — 01426 | . — 0.0981 0.00145 | —0.00085 | — 0.00078 | —0.00484 | —0,00562 | —0.00168
0.62 — (0.4700 0.0889 — 0.1441 — 0.0983 600156 | — 000088 | —0.00074 | —0.00502 | — 0006562 | —0.00174
0.64 — 0.4682 (1.0862 ——0.1453 —- 0.0985 0.00167 | — 0.00091 — .00069 | — 000520 | -~ 000562 | ——0.00180
0.66 ——(.4666 0.0836 —0.1469 —0.0987 0.00179 | —0.00004 | — 000064 | — 000338 | — 000562 | —0.00186
0.68 — 0.4651 0.0811 — (.1483 — 10,0989 0.00191 —0.00097 | —0.00059 | — 000556 | —0.00562 | —0.00192
0.70 — 04637 0.0786 - (.1495 - 0.0992 0.00208 | —0.00100 | —0.00052 | — 000575 | —0.00562 | —0.00198
0.72 — (0.4624 0.0762 -~ (.1507 - 0.0995 0.00216 | -—-0.00103 | —0.00049 | —0.00593 | —0.00562 | — 0.00204
0.74 —0.4612 0.0739 — 01519 —-0.0998 000220 | —0.00106 | —0.00044 | — 000611 | —0.00562 | —0.00210
0.76 — 0.4602 0.0716 — 0.1530 —-0.1002 0.00243 | —0.00108 | —0.00039 | ——0.00629 | —0.00561 | —0.00216
0.78 — 04593 0.0694 — 01541 —0.1006 000258 1 — 000112 | —O0.00033 | —0.00648 | —0.00561 | —0.00222
0.80 — 0.4585 0.0673 —0.1552 —0.1010 0.00273 | —0.00115 | —0.00028 | —0.00667 | —0.00561 | —0.00229
0.82 —0.4578 0.0653 -—-0.1562 —- 01014 0.00288 | — 000118 | — 000022 | ——0.00686 | — 0.00561 — 0.00235
.84 — 04572 0.0633 - 0.1572 —0.1019 0.00304 |- —0.00122 | —0.00016 | —0.00704 | —0.00561 | —0.00241
_0.86 — 0.4566 0.0614 - 01582 —0.1024 0.00320 —0.00126 — 0.00011 —0.00723 — 0.00561 — 0.00247
0.88 — 0.4560 0.0595 —0.1591 -——0.1029 060336 | —0.00130 | —0.00005 | —0.00742 | —0.00561 | — 0.00253
0.90 — 04555 0.0577 — 0.1600 —01034 0.00352 | —0.00134 +0.00000 | —0.00761 | —0.00561 | — 0.00259
0.92 — 04551 0.0559 -—0.1609 — 0.1039 0.00369 | —0.00138 0.00007 | —0.00779 | — 0.00561 — 0.00265
0.94 — 0.4548 0.0543 — 01618 —0.1045 0.00387 | —0.00142 0.00013 | —0.00798 | —0.00561 | —0.00271
0.96 — 0.4546 0.0526 — 0.1626 — 0.1051 0.00405 | — 0.00146 0.00019 | —0.00817 | —0.00561 | -—0.00278
0.98 — 04545 0.0510 — 0.1634 -—0.1057 0.00423 | — 0.00150 0.00025 | —0.00836 | —0.00561 | -—0.00284
1.00 — 0.4545 0.0495 -—0.1641 ——0.1063 0.00441 | —0.00155 0.00032 | —0.0084 | — 0.00561 — 0.00290
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0 — L1085 (] - 0.0729 0 0 0 — 0.00308 4] — 0.00788 0
0.02 — 1.0246 A 01531 4 0.0300 — 0.0821 0 — 0.00006 — 0.060285 + 0.00009 — 000777 -+ 0.00005
0.04 - —0.9429 0.2170 — 0.0129 —0.1201 0 — (.00011 — 0.00267 — 0,00001 — 0.00770 -+ 0.00004
0.06 —0.8712 0.2558 — 0.0514 —0.1393 0 — 0.00015 — 0.00252 — 0.000186 — 0.00764 —0.00002
0.08 +— 0.8095 ) 0.2783 —0.0854 —{(.1483 0 —0.00019 .| — 000238 | —0.00036 —0.00760 — (L0008
0.10 — 0.7571 0.288% — (1146 — 0.1520 4 0.00001 — 0.00022 — 0.00227 — 0.00058 — 0.00756 — 0.00016
0.12 —0.7129 0.2952 — 0.1396 —0.1530 0.00003 — 0.00026 — 0.00219 — (LO0081. — 0.00754 — 0,00024
014 — 0.6757 0.2983 —0.1611 — 0.1527 0.00005 — 0.00029 — (.00212 — 000105 —0.00752 -—0.00033
G.16 — 0.6446 0.2989 —0.1794 —0.1518 0.00007 — (.06033 — 0.00205 — 0.00129 —0.00750 — 0,00042
018 — 0.6182 0.2978 — 0.1952 —0.1502 0.00010 — 0.00036 — 0.00200 —0.00153 —0.00749 ~— 000050
0.20 — 0.5950 0.2961 — 0.2064 — (.1477 - 0.00014 — 0.00040 — .00194 — 000177 —0.00748 — (L.OO058
0.22 —(1.5740 0.2943 — (.2224 — 01445 0.00019 —0.00044 — (.00190 — 0.00201 —0.00748 — 0.00066
0.24 —0.5552 0.2919 —0.2344 —0.1408 0.00023 — 0.00047 -— 0.00186 — 0.00225 —0.00748 —0.00074
0.26 —0.5385 0.2894 — (.2450 — 0.1367 0.00028 — (.00050 — {0.00182 — 0.00250 —0.00748 — 0.00082
0.28 —0.5236 0.2869 —0.2546 —0.1324 0.00034 — 0.00054 —.00178 — 0.00274 — 0.00748 — 0.00090
0.30 —0.5104 0.2844 —0.2634 —0.1279 0.00041 — 0.00058 —0.00175H —0.00299 . | —0.00749 — 0.60097
0.32 — 0.4981 0.2821 —0.2715 —0.1234 0.00048 —- 0.00061 — 0.00172 — 0.00324 — 0.00748 —0.00105
0.34 — 0.4869 0.2801 — 02791 —0.1186 0.00056 — 0.00066 — 0.00168 — (0.0G348 — 0.00750 —0.00112
0.36 — 04763 02782 —0.2863 — 01137 0.00065 —0.00070 — 0.00166 — 0.00373 —0.00751 —0.00120
0.38 — 0.4662 0.2765 —0.2931 —0.1087 0.00074 — (0.00074 — 0.00164 —0.00398 —0.00752 —0.00127
0.40 — 0.4565 0.2750 —0.2994 — 0.1036 0.00083 — 0.00078 — 0.00161 — 0.00423 —0.00753 |«~—0.00134
0.42 —0.4471 0.2738 — 0.3054 — (0.0984 0.00093 — .00083 -—0.00159 — 0.004438 —0.00754 — (.00142
0.44 —0.4380 0.2729 —0.3110 — 0.0932 0.00103 — 0.00087 — 0.00157 — 0.00474 — 0.00755 — 0.00149
0.46 — 04291 0.2721 — 00,3162 — 0.0878 0.00114 —0.00092 —0.00156 — 0.00495 — 0.00756 -—{.00156
0.48 — 04204 0.2714 —0.3210 — 00823 0.00125 — 0.00097 — 0.60154 — 0.00524 — 0.00757 —0.00163
.60 —0.4120 0.2708 —0,3255 — 0.0767 0.00136 — 0.00102 — 0.00153 — 0.00549 —0.00758 .| —0.00170
0.52 — 0.4038 0.2702 — 0.3297 — 0.0709 0.00148 — 0.00108 — 0.00152 — 000575 —0.00760 —0.00177
0.54 — 0.3955 0.2696 —0.3336 — 0.0650 0.00161 —0.00113 — 000151 — 0.00600 — 0.00761 —0.00184
g —0.3873 0.2690 —0.8371 — 0.0590 0.00174 — 0.,00119 — 0.00151 — 0.00625 — 0.00762 — 8.00190
. —0.3792 6.2683. — 0.3403 — 0.0529 0.00188 —0.00125 — 0.00151 — 3.00651 — 0.00764 — 0,00197
. —0.3710 0.2675 —(.3432 — 0.0466 0.00201 —0.00132 — (.00151 — 000676 . . —0.00760 — 0.00203
. — 0.3629 0.2666 — 0.8457 — (.0403 0.00216 — 0.06139 — 0.00152 —— 0.00702 — 0.00767 — 0.00210
. — 0.8547 0.2655 — 0.3479 —0.0338 0.00232 — 0.00147 — 0.00152 — 0.00727 — 0.00768 — 0.00218
0. — 0.3466 0.2642 — 0.34498 — .0273 0.00248 —-0.00155 — 0.00153 — 0.00752 — 0.00769 — 0.00222
0.68 —0.3334 (0.2628 —0.3512 — 0.0207 0.00263 — 0.00163 — 0.00154 — 00777 — 0.00770 — 0.00229
0.70 —0.3303 0.2611 —0.3523 —0.0141 0.00280 —0.00171 — 0.00156 — 0.00801 — 000771 — 0.00235
0,72 —(.3222 0.2591 — 0.3530 —0.0076 0.00297 — 0.00181 — 0.00157 —0.0082G — 0.00772 - 0.00242
G6.74 —0.3142 0.2569 —0.3532 -— 0,0008 0.00313 — 0.60190 — 000159 — 000850 —0.00772 — 0.00248
0.76 — 0.3062 0.2545 —0.3532 40,0058 0.00330 — 0.00200 — 0.00161 — 0.00874 —0.00773 — 0.00255
0.78 —(.2983 0.2519 — 0.3526 0.0124 0.00349 —0.00211 — 0.00163 — 0.00899 —-0.00774 — 0.00262
0.80 —0.2905 0.2490 —0.3517 0.0189 0.00366 | —0.00220 | ——0.00166 | —0.00923 | — 0.00774 | —0.00268
0.82 - —0.2829 0.2457 — 0.3505 0.0253 0.00385 — 0.00232 — 0.00168 — 0.00945 — 0.00774 — 0.00275
0.84 —0.2704 0.2423 — 0.3489 0.0315 (.00404 — 0.002453 — 000171 — 0.00967 — 0.00775 — 0.00282
0.86 —D.2681 (1.2382 — 0.3469 0.0376 0.00423 — 0.00254 —0.00174 —0.00989 —0.00776 —0.00289
0.88 —0.2610 (.2340 — 0.3445 - 0.0436 0.00442 — 0.00266 — 0.00177 —0.01011 — 000776 — 0.00286
0.90 — 0.2541 0.2295 —(.3418 0.0494 0.00462 — 0.00278 — 0.00181 — 0.01033 — 00777 — 0.00304
0.92 — 0.2475 0.2247 —(.3388 0.0550 (.00482 — 0.00291 — 0.00184 — 3.01055 —0.00778 — 000311
094 —0.2412 0.2197 —0.3355 0.0603 0.00502 —0.00304 — 0.00187 — 0.01077 ~— 000778 — 0.00318
0.96 — 02352 | 0.2143 — 0.3318 0.0654 0.00522 — (.00318 — (.00190 —0.01097 ~— 0.00779 — 0.00326
0.98 —0.2295 (.208% —0.3279 0.0703 0.00542 — (.00332 — 000193 —0.01116 —0.00779 — 0.00334
1.00 —0.2242 0.2028 — 0.3237 0.0750 0.00562 — 0.00346 — 000195 —0.01135 — 0.00780 — 0.00342
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TABLE 16.
Flap coefficienas for r =01 and 8 =080

w L k(‘,’ k{;” Tn-c’ 7nc" ?1(;’ nﬂ’! ] ﬂb’ nb” J ncf nc”
0 — 1.3194 0 -+ 0.0867 O 0 g : —0.00366 0 "— 000938 0
0.02 — 1.166 + 0.2471 + 0.0135 —0.1279 0 -— 0.00006 — 000331 -+ 0.00018 — 0.00926 + 0.00011
0.04 — 1034 0.3448 -— 0.0567 — 01777 0 — 0.00012 — 0.00303 4 0.00005 — 0.00916 -+ 0.00008
0.06 —0.925 0.3856 — 0.1180 — 0.1959 0 —1.00017 — 0.00282 - 0.00018 —0,00907 0
0.08 —0.835 (.3986 —0.1712 —0.1976 .0 — 0.00021 — 0.00266 — 0.00044 — 0.00900 -—0.00009
0.10 — 07588 {.3995 —0.2162 —0.1921 + 0.00001 — 0.00025 — 0.00253 — 0.00073 — 0.00896 — 0.00020
0.12 — 07074 0.3970 — .2h31 —{0.1838 0.00003 — 0.00030 —0.00244 — 0.00102 — 0.00892 — 0.00030
0.14 — 0.6618 0.3927 — 02833 —0.1736 0.00006 — 0.00035 = 0.00237 — 0.00132 — 0.00890 -— 0.00040
0.16 — 0.6215 0.5884 — 0.3073 —0.1628 0.00010 -— 0.00040 — 0.00231 — 0.00162 — 0.0089%0 — 0.00050
0.13 — 0.5850 0.3844 —0.3264 —0.1516 0.00014 — 0.00044 — 0.00226 — 0.00192 — 0.008%0 — 0.00059
0.20 — 05545 0.3799 — 0.3431 —0.1392 0.00019 — 0.00048 —0.00222 — 0.00222 — 0.00891 -—0.00068
0.22 — 0.5267 0.3743 — 03585 1 — 03256 0.00024 — .00052 —0.00219 — (,00252 — 0.00892 — 0.00077
0.24 — 0.5019 0.3681 —0.3723 —0.1112 0.00030 — 0.000506 — 0.00216 — 0.00281 — 0.00894 — 0.00086
0.26 — 04794 0.3625 —-0.3841 — 0.0966 0.00037 — {1.00080 — 0.00214 —0.00311 — 0.00896 — 0.00094
0.28 —0.4085 0.3573 — 0.3942 —0.0817 (.00044 —0.00065 |- —0.00212 — 0.00341 — 0.00898 — 0.00102
0.30 —0.4391 0.3524 — 0.4026 — 0.0666 0.00052 — 0.00069 — 0.00211 —0.00371 | — (.00%00 — 3.00109
0.32 — 0.4203 0.3472 ~— (.4084 —0.0512 0.00061 | — 0.00074 — 0.00210 —0.00401 | — 0.00902 — 0.00117
0.34 -—0.4033 0.3417 — 04147 — (.0356 0.00070 — 0.00080 — 0.00210 — 0.00431 — 0.00804 — (L00124
0.36 — 0.3867 0.3359 — 0.4184 —0.0198 0.00080 — 0.00086 — 0.00211 — 000460 | — 0.00906 — 0.00131
0.38 —0.3707 0.3301 — 0.4207 — 0.0039 0.00080 — 0.00092 — 000212 -— 0.00490 — 0.00908 — 0.00138
0.40 — 0.3554 0.3242 ~~ 04214 4+ 0.0118 6.00101 -— 0.00098 —0.00213 — (.00519 —0.00810 —0.60145
0.42 — 05407 0.3174 — 0.4207 0.0276 0.00112 — 000105 — 0.00215 — 0.00049 — 0.00811 — 0.00152
0.44 — 03267 0.3102 -~ 04185 0.0429 0.00124 — 0.00112 — 000217 — 0.005678 —0.00913 — 0.00159
0.46 —0.3133 0.3025 ~—0.4150 0.0577 0.00136 —0.00119 — 0.00220 — 0.00607 — 0.00914 —0.00166
0.48 — 0.3007 0.2943 —(.4101 0.0719 0.00149 — 0.00127 — 0.00223 — 0.00637 -— 0.00914 — 0.00172
0.50 — 0.2888 0.2806 ~—-0.4039 0.0855 0.00162 — 0.00135 —0.00226 — 0.00666 - 0.00915 —0.60179
0.52 — 02778 0.2765 ~—(.3965 0.0981 0.00176 — 0.00143 — 0.00230 —{(.00693 — 0.00915 — 0.00186
0.54 —0.2676 0.2671 — 0.3880 0.1098 0.00190 —0.00152 —0.00234 — 0.00720 — 0.00916 —0.00193
0.56 — 0.2585 0.2573 — (.3785 0.1205 0.00205 -—0.00161 — 0.00238 — 0.00747 — 0.00916 — 0.006200
0.58 — 0.2503 0.2472 ~— 0.3682 0.1300 0.00220 — 0.00170 — 0.00242 — 0.00774 —-0.00916 — 0.00208
0.60 — 0.2431 0.2370 — 0.3571 0.1384 0.00235 — 0.00180 — 0.00246 — 0.00800 — 0.00916 — 0.00216
0.62 — 0.2369 0.2267 — 0.345H 0.1404 0.00250 — 0.00190 | — 0.00251 — 0.00824 — (.004916 — 0.00224
0.64 — 02318 0.2162 —0.3335 0.1511 0.00265 — 0.00201 — 0.00255 — 0.00849 — 0.00916 — 0.00233
0.66 — 0.2278 0.2062 —0.3214 0.1555 0.00281 —0.002312 — 0.00259 | — 0.00874 — 0.00916 — 0.00242
0.68 — 0.2247 0.1962 — 0.3092 (.1580 0.00298 — 0.00223 — 0.00263 — 0.00809 — 0.00916 — 0.00251
0.70 —0.2226 (1.1863 — 0.2972 0.1605 0.00314 —0.00235 — 0.00267 — 0.00923 — 000918 — 0.00260
0.72 —0.2213 0.1768 — 0.2856 0.1612 0.00330 — 0.00247 —0.00270° | —0.00948 | —(0.00916 —0.G0271
0.74 —0.2209 0.1676 — 0.2744 0.1607 0.00348 — 0.00259 — 0.00273 —0.00971" | — 0.00916 —0.00282
0.76 —0.2213 0.1590 — 0.2638 0.1591 0.00365 — 0.00271 — 0.00276 —.0.00994 — 0.00917 — 1.00293
Q.78 —0.2223 9.1509 —0.2538 0.1565 0.00384 — 0.00283 — 0.00279 —Q.01017 — 0.00917 — 0.00304
0.80 — 0.2239 0.1436 -—0.2446 01531 0.00402 — 0.00295 -— 0.00282 — 0.01040 — 0.00918 —0.00315
0.82 — 0.2260 0.1375 — 0.2860 (0.1489 0.60421 — 0.00300 — 0.00254 — 0.01064 — 0.00919 — 0.00327
0.84 — 0.2285 0.1323 — 0.2281 0.1442 0.00441 —0.00323 "1 —0.00287 — 0.01087 — 0.00920 —0.00339
0.86 —0.2313 01279 — 0.2205 0.1390 0.00460 — 0.00336 — 0.00289 —0.01110 —0.00%921 — 0.00352
0.88 — 02344 0.1243 —0.2129 0.1335 0.00481 ~— 0.00350 — 0.00290 —0.01133 — 0.00922 — 0.00364
0.90 — 0.2377 0.1215 — 0.2004 0.1280 0.060501 — 0.00365 — 0.00292 — 0.01156 — 0,00924 —0.00376
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0¢1e00— ¥e810°0 — Yeero 0 — HHE000 9g8900°0 — 461600 L¥ar'o— £I80°0 — 9¢610— 86650 — 00°L
¥0126°0 — FERLOO — 9EIF0 0 — 9L100’0 PLIVOO — F0120'0 EESL0 — T980°0 — EUBT0— 81090 — 86°0
$2080°0 — ersI00 — EP0F0'0 — LETO00 c9900°0 — FIOZ00 gcsl o0 — 6480°0 — 08L1°0— 6509°0 — 960
¥1020°0 — cegLoa— 09680°0 — 6600070 619000 — LE6TOO Loel'o — 9¢80°0 — 90L1°0 — 09090 — 760
696100 — c9810°0 — {L8€0°0 — &3000°0 L8900°0— |- 1¥BI0D FOFT0— U800 — GEOTO— | €8090— G6'0
FEE10°G— ELBTO0 — E8LEQ0 — 920000 + 49000 — BELLOO I8¥1'0 — 04800 — LGeT'0— VOIS0 — 060
SLRIO0— O8EI00 — 469800 — 01000'0 — ETH00°) — 919100 B9¥L0— L¥BO'0 — G8FL0 — 92190 — 88°0
EEBLO0 — 888100 — 90980°0 — 4P000°0 — 009000 — $6C10°0 CSEFI0— £¥80°0 — 0¥1'0 — 6¥19°0 — 98°0
ABLIOO — L68T0'0 — 8ICE0°0 — 0B0GO'0 — 8BGO0 — STCI00 EFFL0 — 8E80°0 — 0CE1 0 — SLI90— 80
erLTO0 — SO610°0 — 6eFED0 — EITO00 — 9Le00’0 — SFF10°0 L& 10— €E80°0 — Pl — L6190 — G80
CLERLOO — £1610°0 — 1PEE0°0 — 91000 — FOLO0'G — H9ET00 0P 1’0 — LEBO0 — LLIT0— &Gy — 080
191070 ~ ¢e6l00— | BY2e00— 61000 — ceo0’0 — G6GI00 GOFI0— LZ80°0 = 66010 — B¥eH0— 8L0
90910'0 — 086100 — 91800 — 01500°¢ — 85000 — CEcIon BBET'0 — FI800— 18010 — GLeh'0o— aLro
089100 — BEGIO0— YLOED0 — &¥e00'0 — Lee00°0 — LGIT00 ©OLBETO — L080°0 — er60'0— |, B0E90-— F0
PEGTO0 — OFBI00— 986200 — ¢Let0o — GLeo00 — 06010°0 - 9LeT’n — G6GLOG— E980°0 — 0g89°0 — Lo
63v10°0 — £4610°00 — | -Lesa0’0— 08000 — £0400:0 — GZO10'0 99810 — 06L0°0 — ERLO0 — 09€5°0 — 040
eekl00— 196100 — 808500 — 1EE000— | 16F000— £9600°0 9seL'0 — JBLOD— G0LO0— 06890 — 89°0
LLETO0— 69610°G— 612200 — 6000 — BLFOOO — 2060070 LFEI0— 0 TL0— 0890°0 — cehd0— 950
GBETO0— QL6100 — 6G9C0°0 — ] 188000 — 99%00°0 — V8000 BEET'0 — 6400 — 8EC0'0 — 9GP0 — oD
985100 — 86100 — OveE’ 0 — STRO00 — FEr00'0 — 98L00°0 6eET 0 — P00 — .| 9500 — 16F9°0 — 9’0
0Fe10'0 — I66E0°0 — TSHe0'0 — #0060 —""| GFHGO'c— LEL00°0 0cE1'0 — FELO0 — BLE0D LeGoo— 090
61100 — 86610°0 — (96600 — L9P00°0 — BEFOO) — 819000 GLET O — OZLO'0 — 88600 — 99¢9°0 — 8¢°0
§riT0e— 00e0'0 — cLec0— 867000 — L1000 — Le9n0'0 FOET ) — G0LO0 — g€020°0 — 90990 — 98¢0
z0110°0 — £1080°0 — o8I0 0 — B1e000 — GOY000 — LLE000 LT — 88900 — LITO0~— 8¥99°0— ¥¢°0
9c010’0 — 080c0°0 — £6070°0 — EFE00°0 — 866000 — 085000 0BET°0 — 0L90°0 — TE€00°0 — £699°0 — a0
0101070 — 8¢0c0'0 — &00800.— L9600°0 — 08E00°0 — S8F00°0 £€881°0 — 0us00 — 96000 + I¥19°0— 0¢'0
P960G0 — CE0e0°0 — E1610°0— LBCO00 — 89800°0 — TFH00'0 LLET 0 — 6590'0 — 100 SGLY 0 — BP0
3T600°0 — &r0e00 — 8ERI0°0— F1900°0 — Gee000 — 0070070 tLero— 5H06°0 — ZEEOD 9rRY0 — 9%°0
GLBO00 — 0u0T0'0 — EELTO0 — LEQOD ) — EFE00'0 — EHEQO°0 COCT'0 — 18%0°0 — T220°0 ¥069°0 — ¥
Ge8000 — LT 0 — EVOT00 — d9500°0 — DEE000 — £¢E00°0 0981°0 — FEL0'0 — LTF#0°0 99690 — ]
6L2000— S9080°0 — OGN0 — £890000 — . SLE00'0— 882000 Gegr0— P00 — 10600 Lo — oF'0
EELOO0 — §LOZ00— EOFL0°0 — GOLOOO — “0g00°0 — PEZO0'0 0Gel’0 — g6F0°0 — 16200 £0LL0— 880
98900°0 — 1802070 — CLELO0 — LaL000 — E6E00°0 — EGEO0'0 Srel'0— Lep00 — e890°0 081L0— 98’0
O0F900°0 — 63060°0 — G810 — 6FLO00 — 08000 — E£6T00°D 0vcl’o— SIFH0— GLLOO €9EL0 — FE0
FOG00°G — 160500 — GBII0D — TLLOOO — L9200°0— 99T00°0 GEET0 — 9L80°0 — G980°0 ELELG— g0
SFC00°0 — 901200 — TOFEG O — E6L000 — Fe200'0 — 1FT00°0 6GGT 0 — 08800 — TG600 1$FL0— 080
05000 — ¢l1ed'o— LLO100 — ST800°0 — 0%E00'0 — LTT00°0 A AN 6LE0°0 — 8E0L°0 BEGL) — 8BGO0
95%00°0 — Cele0’0 — aeo00°0 — BEBOO'0 — L2z000 — 9600070 erero — eee0’0— FEIl'0 9910 — 9g'0
OTP06'0 — GEIg0ro — 880070 — 98000 — ele00'0 — L1000°0 90810 — 09100 — L0E1°0 €08L°0— ¥eo
FOE000— 9F1eQ’0— EFLOO0— 98800°0 — 661000 — D9000'0 ¥61106— 1600°0— 8710 L¥BL o — [
6TEQ00 — BETE0'0 — Geo00'0 — 16000 — SRT00°0— CPO00°0 08110 — FIOO0D — LEET0 FOT8 0 — 0%
GLTO00 — TLTE00 — LICOg0-— LE600°G — 0LT000 — ZENDOO GITro— TL00°0 + 06¥10 BLES0 — 8o
TEE00°0 — FRIGOO — 0870070 — FI600°0 — SCL00°0 — TE000°0 BEIT0— 9910°0 GLFTO P80 — 910
88TO0'D — B6LED0 — 968000 — ¥6600°0 — 681000 — ET000°0 9011’0 — ELECO BOGT O 13980 — FI'0
Y1000 — 912e0°0 — FLEOO0 — 6010’0 — Eel000— 900000 e901°0 — 6EDD ras )] H068°0 — GLo
LOT00'0 — Feeal0 — GEG000 — 65010'0 — 801000 — 1000070 + 0010 — 9240°0 0510 L6160 — 010
0L000°0 — FEE0'0 — 05100°0 — 96010°0 — #5000°0 — TO000'0 — £260°0 — 9L00°0 CFPL0 go¥6'0— 8G°0
LEOOO'D — eraeno— £6000°0 — 9CLEL00— 88000°0 — £0000°0 — eI80°0— E£F80°0 EEEL0 FE8E'D — 200
110000 — 660500 — e 0 — O8TIO0 — L¥000°0 — CO000°0— 1| SEDOO — 8010 801170 F020'T — ¥0'0
L0000°0 + GeEe00— £0000°0 + 966100 — 200070 — T0000'0 — Terd 0 — LEZT 0 I¥L00 + c0%0'T — &0o
0 0GEF00 — 0 2110’0 — 0 0 0 Per1ro + 0 9660°T — ]
Jlau . 19u T Hqu' ‘qzu" [ ”ﬂu ' Ipu 1431“’ ’DQ{L llﬂy o‘g:‘i ®
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9800 — 880200 — £0L70°0 — G0000°0 — 1600 ¢ — 9TFe0' 0 LT 0 — S0ET0— FF6OQ — 80990 — OOH
8EGE00 — g6080'0 — LeGH0'0 — FL000°0 — G8800°0 — TZ880°0 6¥0G 0 — 862l Q— (6800 — £099°0 — 36°0
067TE0°0 — 460000 — GOPFO0 — 90000 — 0980070 — 61Gc0°0 Le0e' 0 — GBET'0 — 96800 — 66690 — 960
orlen o — 660200 — A8EF0°0 — . 066000 — 9E8000 — travi N 0060 — 98eL 0 — 18L0°0— 964¢9°0 — 60
£6080°0 — 801800 — E35F0 0 — BLT00°0— GI800°0 — £8080°0 é861'0 — 6LGT 0 — 9ZLO0 — Peus 0 — 6’0
SYE0n — LOTe0’0 — SLIFOO— | 9FI000— S8LO00 — 6e610°0 09610 — GLel'o— 69900 — £6459°0 — 0670
966100 — Tte00— CLOFO'0 — FLI000-— “9L00’Q — 868100 8610 — PO 0 — 1900 — 26890 — 830
ZF61L0°0 — STI200 — TLESO 0 — 106000 — ovL00'0 — 67LT0°0 LI6T0— 9¢eT 0 — 86600 — 2690 — 980
668100 — 6LLE00 — 898200 — 9ea00 0 — 082000 — GO910°0 968T'0— s¥el0— FoFO'0 — P659°0 — $8°0
048100 — SeLa00— COLE0 O — ¢5c000 — 669000 — L1000 CLet o — O¥el 0 — GEF0'D — L6900 — e8'0
08100 — LeI0D — £9980°0— QL0000 — 8L900°0 — FE¥YTI00 GG8i'0— [EGL0— FLEOD — 20990 — 080
POLTOO0 — e1a0h — 192800 — FOCO00— 359000 — SIFIO0 CEST' 0 — [gar'g— eT80'0 — 20990 — 8L°0
COLI00 — GeT800 — 6SFE00 — 626000 — 8690070 — FEETO'0 18T 0 — ey o— 16800 — 91990 — 9.0
9GateD — 681800 — LCge0 0 — FCE000— RI900°0 — 64810°0 LeLT'0— 00810 — 88100 — G990 — PLO
809100 — svigo'o— 94ege0 0 — BLE000 — 665000 — CBITI0'D GLLTO— 88TL'0— CGlo0'0 — €890 — cLo
656100 — L¥1e00— GETE0'0 — cOF00°0 — 0BGOO(Q — SITIO0 9.1 — 9LIT 0 — 049000 — LPO5°0 — 0r'o
TG00 — TETE00 — FL080°0 — 9¥00'0 — 99000 — SFOTO0 FrLTO0— gorro— <0000 + 19990 — 89°0 -
COFI00— GGT300 — 846200 — Qer00'0 — e 0 — GLE00D IXIAN | 6F1T°0 — cL00'0 LL890— 99°0
EIFIO0 — 6GLE0'0 — 8GR0 — PLEOOD — Lego0 0 — TI600°0 OTLra— PELLI0— 68100 CEO90— F90
FOCT00— £91%00 — 8GLG00 — L6F00°0 — 0T<000 — 6F80G0°0 6910 — 61I1T0 — 20c0°0 G290 — c90
CTEIoD — 291200 — 849500 — 0%G00( — FO6F000 — 88LO00 6L9T°0 — GOIT0— LLEOO B8ELY'O— 090
292100 — TLTE00 — E6CE00— e¥co0'0 — BLEOOQ— TELO00 “FI9T0— FSOT'Q— L¥Eoo ¢8990 — 8%°0
816100 — GLIGD'0 — PeTeo 0 — Goco00 — cOr00) — GLI00°0 6F9T0 — Ca0T'0— 61¥0°0 1690 — 9470
691100 — 6L180°0 — GeeE0'0 — CRAG00 — 9FH00°0 — o000 geero — SyoT o — L6700 GeR9G— 570
1e1100— £3180°0 — L8ge0'0 — LOB000— 06F00°0 — LLY00°0 SEIT'0— 22010 — F9e0'0 16890 — o850
GLOTQ0— LBTE0'0 — BUTE0D — 62900°0 — STF00°0 — Gol000 01910 — 66600 — 6890°0 46890 — 050
ce0lo0— e6T1a0'0 — 660800 — 0€900°0 — 00¥00'0 — CLYOOO 86910 — 81600 — FLL0°0 9¢69°0 — 8F0
£L600°0 — L6180°0 — 09610°0— 0L900°0 — ¢8e000 — 0EFO00 98¢1'0 — 960’0 — [6L0°0 o869 0 — 9% 0
Gee00'0— o0ce00 — 198100 — 069000 — 0LECO0 — 8880070 GLerTo — 9760'0 — 6980°0 geoL'o— Y50
9L800°0 — 208800 — €9110°0— OrLO00— Cago0'o— S¥C00°0 FOGTO— PRE0°0 — L¥60°0 18010 — aF0
LE800°0 — Clea0'0— $99100 — 1€L00°0— 0Fe000 — TTE00°0 FEE10 — 8F80°0 — Lanta 6¥ILO— OF'0
8LL00°Q— {1ee00— 996100 — eLOD0 — CRs00°0 — FLE00°0 PPCT0— 01800 — 80TTO L1er'o— 20
8610070 — Feca0'0— BOF10°0 — §LLO00 — TTe00 0 — GER000 PEELO— [9L0°0 — 68LT0 2638L°0— 980
619000 — TEeeo — 0LETO0 — 6,000 — 966000 — LO200°0 FeeT' 0 — gaL0’0— TLZL0 FLELO— FEO
089000 — LEGRQ0 — L0 — PI800°0 — TRGOO0 — SLT00°0 FICL0 — ¥L90°0 — GuLl o FORL O — AN
08¢00°0 — ! FFaa0'0 — SLITO0— FER00°0 — L9g0Q'G — 0GTa0Q GOGT'0— 0890°0— FEFT O enGL’o— 080
188000 — ehuend’0— SLOTOO — 9GR00°0 — ¢Gg00'0 — ¥E100°0 S6¥1T0 — 0960°0— CIST 0 « LI 0— BE 0
e8¥00 0 — 09220°0 — TBGO00 — FLIODO — BEC00'0 — T0TO00 125349 P6F0°0 — ST - T08L°0— 92’0
FEF00°0 — 0LE20'0 — G8500°0 — 006000 — gae00— TRO000 Tyiro— 0GP0 — DLOT O 6E6L0 — ¥ 0
GRE00°0— 186600 — 68L00°0 — Fe600'0—- 80G00°0 — £9000°0 LGFL0— 68800 — eFLTO £608°0— G0
a48g00'0— TRTEEN 0 — £6900°0— 676000 — 861000 — Ly000°0 | 6EFL0 — 0se0’0 — 808T°0 CHz8’0— 0z'0
88¢00°0 — POEC00— | 862000 — LL6000 — 8LT000 — ‘BE0000 aFro— 05100 — GOBI'0 8EFS0 — 810
TPE00 0 — 818200 — | ¥0%00°0 — J00T0°0 — G9r00°0— 4 1800070 I8ET0— 18000 — I LLORQ— 9o
S6T00°0— e L , Gumﬂ....woo._o — LEOTO0 — LoD — o1000°0 6FET 0 — T600°0 -+ 866T°0 96680 — FLO
0G100°0 — TGEE0'0 — T FGE00°0— TLOTO0— 851000 — GO000'Q + g6a10— LEEO0 81610 60%6'0 — AN
LOTO0'0 — 128300 — |BFOFE000 — 601100 — 0IT00'0 — - 0 ogero— cO¥00 etel’0 18860 — aro
890000 — £682000— | T9100°0— 0STE0'0 — T6000°0 — 200000 — 8ETT0— 682070 ¢E8T0 96860 — 80°0
£8000°G — QITEO0— | 6RO0OC — LeTT00— TL000°0 — 2000000 — L0010 — L8LO0 CLOTD eDED'T — 900
FOO000— L¥ve0D— 6500000 — LYET10°0 — 00000 — a00000 — gI80°0 — LE0T0 00F1°0 09L0T — 00
AN SLFe00 — TT0000 + COETO0— 920000 — 100000 — 96600 — 9Lel'0 6£60°0 + Gael'l — 00
0 606800 — 0 SCETO'0 — 0 .0 0 ommﬁ..o -+ 0 . BELTE — 0
e 4 S Pt Ju P _ LU o U S o Sy @
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TABLE I9.7
Flap coefficients for + =10.2 and 8=0.50.

@ J kS kS me me” Tog’ [ 1"’ oy np” L TR L e’

0 —1.2697 0 4 0.1644 G ] 0 — 0,01468 0 —0.02714 0

0.02 — 1.2072 + (L1210 0.1328 —0.0671 — 0.00001 — 0.00028 —0.01398 =+ 0.00022 — 0.02675 -+ 0.00020
0.04 — 1.1446 01798 0.1010 —0.1027 — {.00003 — 0.00052 —0.01329 —0.00018 — 0.02637 -+ 0.00006
0.06 — 1.0876 0.2142 0.0717 —0.1259 -— (.000605 — 0.00075 — 0.01268 — 0.00081 — 0.02602 — (.00024
0.08 — 1.0369 0.2334 0.0452 — 0.1412 — 0.00003 — 0.00094 —0.01215 — 0.00161 — 002572 — 0.00063
0.10 — 0.9920 0.2428 0.0216 —0.1514 0 — 0.00115 — 0.01167 —0.00249 — 0.02547 — 0.00107
0.12 . ——0.9528 0.2462 4+ 0.0008 — 0.1586 4 0.00006 —(1.00134 — 0.01125 — 0.00344 — 0.02525 —0.00155
014 — 0.9187 0.2459 —0.0175 —0.1643 0.00013 — (.00152 — 0.01088 — 000442 — 0.02506 — 0.00205
0.16 —0.8889 0.2431 — 0.0336 — 01675 0.00023 -—0.00169 — 0.01055 —0.00543 — 0.02490 — 0.00256
0.18 — (.8632 0.23586 —0.0478 — 0.1704 0.00036 ~—0.00186 —0.0102¢6 — 0.00646 — 0.02476 — 0.00308
0.20 — 0,8407 0.2329 — (3.0602 — 0.1726 0.00053 -—0.00203 — (.00999 — 0.00750 —0.02464 ——0.00361
0.22 —0.8213 0.2266 -—0.0712 — 0.1745 0.00070 — 0.00219 — 0.00974 — 0.00866 — 0.02454 — 0.00414
0.24 — 0.8046 0.2199 — (.0808 — 0.1760 0.00080 —0.00235 — 0.00850 — (1L.00962 —0.02446 — 0.00467
0.26 —0.7896 0.2129 —0.0895 — 01768 0.00113 — 0.00251 —0.00928 —{.0106% — 0.02438 —0.00520
0.28 —0.7763 0.2056 —0.0974 — 01780 0.0013% — 000267 — 0.00907 —0.01176 —0.02432 — 0.00574
0.30 —0.7643 0.1981 — 0.1049 — 0.1793 0.06166 — 0.00283 —0.00886 —0.01283 —0.02426 —0.00627
.32 —0.7536 (.1807 — 01117 —0.1804 0.00196 — 0.00299 -—0.008686 -—0.01390 —0.02421 — 000680
.34 — (.7440 0.1834 —0.1178 — 01815 0.00229 — 000316 — (.00846 —0.01497 — 002417 — 000733
0.36 — 07354 0.1763 —0.1236 —0.1825 0.00263 —0.00332 — 0.00828 —0.016086 —0.02413 — 0.00786
0.38 —0.7278 . 0.1694 —0.1289 -—0.1836 0.00300 — 0.00349 — 0.00809 —0.01715 — 0.02409 —0.00839
0.40 —0.7208 0.1626 —0.1339 — 0,1848 0.00340 — 0.00367 - 0.00792 —0.01823 — 0.02406 — 0.00892
0.42 — 07147 0.1560 —0.1384 —0.1860 0.00382 — {.00384 —0.00773 — 001831 — (.02404 — 0.00945
0.44 —0.7082 0.1496 —0.1427 — 0.1873 0.00427 — 0.0040G2 — 0.00756 — 0.02040 — 0.02402 — 0.00997
0.46 — 0.7042 (0.1433 —0.1468 — (.1887 0.00474 — 0.00420 — 0.00738 —0.02149 — (0.02400 —0.01049
048 — 0.6997 0.1372 —0.1508 — 01901 0.00523 — 0.00438 — (0.00721 — 0.02258 —0.02399 -—0.01101
0.50 — 06958 0.1313 — 01545 —0.1916 0.00575 — 0.00456 — 000704 — 0.02367 — 0.02398 —0.01153
0.52 -—0.6923 0.1257 —0.1579 —0.1932 0.00629 — 0.00475 — (00687 -—0.02478 — 0.02397 —0.01206
0.54 — 0.6891 0.1202 —(.1614 —(0.1948 0.00686 — 0.00495 — 0.00670 — 0.02589 -— 0.02396 — 0.01256
0.56 — 0.6864 0.1150 —0.1646 — 01965 0.00745 —0.00516 | — 0.00653 -—0.02701 -—0.02396 —0.01308
0.58 — 0.6840 0.1099 — 01677 -— 01983 0.00807 — 0.00538 — 0.00636 —(.02813 — 0.02385 —0.01359
0.60 — 0.6819 0.1051 — 01707 —0.2001 0.00871 — 0.00560 — 0.00619 — 0.02925 —0.02395 —0.01411
0.62 — 0.6800 0.1004 —0.1737 — 0.2020 0.00938 — 0.00582 — 0.00602 —(.03038 — 0.02395 — 0.01462
0.64 —0.6784 0.0959 —0.1765 — 02039 | 0.01.006 —0.00604 | — 0.00585 — 0.03151 — 002390 ~—0.01513
0.66 — 06770 0.0916 —0.1793 —0.2058 0.01078 — 0.00627 -— 000569 — (.03264 — 002396, | —0.01564
0.68 — 0.6759 0.0875 —0.1819 —0.2078 0.01153 — 0.006651 — 0.00553 —0.03377 — 0.02397 -—0.01615
0.70 — 0.6750 0.0835 — (0.1846 — 0.2099 0,01229 — 0.00677 — 0.00537 —0.03492 — 0.02398 -—0.01665
0,72 — (.6742 0.0797 — 01872 — 0.2120 0.01308 — 0,00704 —0.00521 — 0.03607 - 0.02399 —0.01716
0.74 — 0.6736 0.0761 —0.1898 —0.2141 0.01390 — 0,00733 — 0.,00505 — 0.03723 — 0.02400 —0.01767
0.76 — 0.6732 0.0727" —0.1924 — 02163 0.01474 — 0.00762 —0,00490 — 0.03839 —0.02402 —{(.01817
0.78 — 06728 0.0694 ——(.1944 —0.2186 0.01560 — 0.00792 — 0.00475 —(.03956 — 0.02403 — 0.01867
.80 — 06726 0.0663 — 01975 — 02208 0.01649 — 000823 — 0.00461 — 004073 —3.0240% — (.01917
0.82 — 0.6726 0.0634 —0.1999 — 02231 0.01741 — 0.00856 — 0.00447 —0,04190 — 0.02406 — 0.01967
0.84 —0.6727 0.0606 —0.2025 —(.2253 0.01835 — 0.00890 — 0.00433 —0,04308 — 0.02408 — 0.02016
0.86 — 0.6726 0.0580 — 0.2049 — 0.2276 0.01532 — 0.00924 —- 0.00420 — 0.04426 —0.02410 — 0.02066
0.88 —0.6731 0.0556 — 02074 — 0.2300 0.02031. — 0.00960 —0.00407 — 0.04544 — 0.02412 —0,021186
(.90 — 0.6734 0,0534 ——0.2008 —0.2323 0.02133 — (.00987 — 0.00395 — 0.04662 — 0.02414 —0.02165
0.92 — 0.6738 0.0513 —0.2123 —0.2346 | 0.02237 — 0.01036 —0.00383 — 0.04781 —0.02416 —0.02214
0.94 -—0.6742 0.0494 —0.2147 —0.2370 0.02344 —0.01076 — 0.00372- | —-0.04900 — 0.02418 — (.02262
0.96 —0.6747 0.04786 — 02170 — 02394 0.02453 — 0.01118 -—0.00362 |, — 0.05020 — 0,02421 —0.02311
0.98 —0.6752 0.0460 — 02194 | — 02418 0.02565 —0.01162 — 0.00352~ |, — 0.05140 — 0,02423 —0.02360
1.00 — 0.6757 0.0446 —0,2218 ——{0.2442 0.02679 — 0.01208 —0.00342 - {7 — 0.05260 — 0.02426 —0.02409
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Flap coetficients for r=02 and g=10.60.

TABLE 20.

L4

"

o ke 124 me m” 7y’ g | 7y’ ny T g
0 —1.3745 0 + 0.1780 0 0 0 —0.01590 0 — 0.02938 0 .
0.02 —1.2938 ~+ 01534 0.1369 — 00844 | —000002 | -——000030 | —0.01500 | -+ 0.00036 | —0.02885 | -+ 0.00032
0.04 —1.2132 0.2254 10.0954 —0.1276 | —0.00004 | —0.00057 | — 001415 | —0.00003 | —0.02841 | + 0.00018
0.06 ~—1.1406 0.2651 0.0573 --01536 | —0.00005 | -—0.00080 | —0.01341 | —0.00074 | —0.02801 | —0.00017
0.08 —1.0770 0.2862 + 0.0233 — 0.1700 — 0.00005 -— 0.00102 — 0.01279 — 0.00162 —0.02767 ~—0.00061
0.10 —1.0223 0.2966 — 0.0063 -— 10,1806 —0.00001 -——0.00123 --0.01226 | — 0.00261 —0.02738 ~—0,00111
0.12 — 0.9758 0.3005 —0.0317 —0.1879 + 0.00006 —0.0G142 —0.01182 —- 0.60369 —0.02714 — 0.00164
0.14 —0.9365 0.3003 — 0.0536 — 0.1927 0.00015 — 0.00160 —0.01144 — U.00480 -— 0.02695 — (.00220
0.16 — 09034 0.2975 —0.0723 —0.1961 0.00027 — 0.00178 — 0.01109 — .00593 — (.02680 — 0.00276
0.18 — 0.8752 0.2930 — 0.0887 —0.1984 0.00042 | —0.00196 | —0.01078 | —0.00707 | —0.02667 | —0.00333
0.20 — (.8505 0.2873 — 0.1034 —0.2001 0.00059 —0.00213 —0.01051 -—0.00823 — 0.02656 — 0.00390
0.22 — {.8286 0.2808 —0.1168 — 02011 0.00078 — 0.00230 — 0.01027 -— 1,00939 - 0,02648 —0.00443
0.24 —0.8093 - 0,2740 -—{.1289 —0.2019 0.00101 -—0.00248 - 0.01005 — 0.01055 — 0.02642 — 0.00506
0.26 —0.7923 0.2673 —0.1397 — 0.2026 0.00127 —0.00266 . | —0.00885 —0.01171 — 0.02637 — 0.00564
0.28 — 07773 0.2607 —0.1496 — 0.2032 0.00155 — 0.00284 — 0.00965 —(.01288 — 0.02633 —0.00621
.30 —{.7641 0.2541 —(.1588 —0.2037 0.00186 — 0.00302 — 0.00946 —0.01406 -—0.02630 —0.00678
0.32 —0.7522 0.2476 —0.1673 —0.2043 000219 —-0.60321 —0.00928 .| —0.01525 — 0.02627 —0.00735
0.34 —0.7415 0.2414 — 0.1752 —0.2048 0.00255 -—(.00340 — 0.00911 — 0.01644 —0.02625 — (.00791
0.36 —0.7320 02354 | —0.1826 — 0.2053 0.00293 — 0.00359 —- 0.00895 —0.01763 — 0.02624 — 0.00847
0.38 —0.7234 0.2296 — 0.1895 —0.2060 0.00334 —0.00378 — 0.00880 — 0.01883 — 0.02625 —0.00503
0.40 — 07157 0.2242 — 0.1962 —0.2068 0.00377 — (0.00398 — 0.00866 — 0.02003 — 0.02626 —(.00959
0.42 — (.7088 0.2191 — 0.2026 — 0.2075 0.00423 — 0.00419 — 0.00852 — 0.02124 — 0.02627 —0.01014
0.44 —0.7025 0.2143 — 0.2086 —0.2082 0.00473 — 0.00440 — 0.00838 —0.02245 — 0.02629 —0.01069
0.46 — 0.6967 0.2098 —0.2144 — 0.2090 0.00525 —0.00462 — 0.00826 -—0.02366 — 0.02632 — 0.01124
0.48 —0.6915 0.2055 — 0.2200 -—0.2088 0.00579 — 0.00484 — 0.00814 — 0.02488 — 0.02635 — 0.01179
0.560 — (.6868 0.2016 -—0.2254 — 0.2106 0.00636 — 0.00508 — 0,00802 —0.02610 — 0.02638 —0.01233
0.52 — (.6824 0,1980 —0.2307 —0.2115 0.00696 — 0.00533 — 0.00790 — 0.02732 — 0.02642 — 0.01285
0.54 —0.6783 0.1946 —0.2339 —0.2124 0.00758 — 0.00558 —0.00780 — 0.02855 — 0.02646 —{.01339
0.56 — 0.6745 0.1916 — (.2409 — 02133 0.00823 — 0.00585 — 0.00770 - {0.02978 — 0.02600 —(.01392
0.58 —0.6710 0.1589 —0.240% —0.2143 0.00891 —0.00612 — 0.00761 — (.03102 —- 0.026565 —0.01445
0.60 — 0.6677 0.1864 — 0.2509 —(.2152 0.00961 -—0,00640 — 0.00753 — 0.03227 —0.02660 —0.01497 -
0.62 — 0.6647 0.1841 — 0.2558 —0.2161 0.01033 | -—0.00670 | —000747 | —0.03353 | -—-0.02665 | — 0.01549
0.64 —(1.6618 0.182; — 0.2606 — 0.2170 0.01108 —-0.00702 -~ 0.00741 —0.03479 —0.02670 — 0.01601
0.66 —- 0.6590 0.1804 —0.2654 —0.2178 0.01186 ) --0.00735 —0.00735 — (.03605 -—0.02675 | —0.01652
0.68 —-0.6564 0.1789 —0.2701 —0.2187 0.01267 -— 0.00769 -— 0.00730 — 0.03732 — 0.02681 —0.61703
0.70 2-.6538 - 0.1777 —0.2748 -— 02185 0.01350 | —0.00804 | —0.00727 | — 0.03859 | —0.02687 | --0.01754
0.72 —0.6512 0.1766 —0.2795 — 02202 001436 | —0.00841 | — 000725 | —0.03986 | —0.02693 | —0.01804
0.74 — 0.6487 0.1758 —0.2841 — {2209 0.01524 — 0.00880 — 0.00724 —0.04113 —0.02700 — 0.01854
0.76 — 0.6462 01752 — 0.2888 —0.2216 0.016814 — 0.00921 — 0.00724 — 0.04240 —0.02706 —0.01903.
0.78 —0.6437 0.1748 —0.2934 — 02221 001707 | —0.00964 | —000726 | —0.04368 | —0.02712 | —0.01952
0.80 —0.6411 0.1747 — 0.2980 — 10,2226 0.01802 — 0.01008 — 0.00729 — 0.04495 — 002719 — 8.02001
(.82 — 0.6385 0.1746 -—10.3026 —0.2230 - 0.01900 —0.01054 — 0.00733 — (.04622 —0.02726 —0.02049
(.84 —0.6359 0.1747 —0.3072 —0.2233 0.02000 —0.01103 — 0.00738 —0.04749 —-0.02733 — 0.02097
0.86 —0.6332 0.1750 — 03117 ~—(.2235 0.02102 — 0.01154 — 0.00745 — 0.04876 — 0.02740 — 002144
0.88 — 0.6303 017564 --0.3163 — 0.2237 0.02206 - 0.01207 —0.00753 — 0.05003 — 0.02746 —0.02190
0.90 —0.6274 0.1760 —0.3208 —0.2237 0.02312 — 0.01263 -—0,00762 — 0.05129 — 0.02753 — 0.02236 .
(4,92 — 0.6244 0.1766 — (.32564 -—0.2236 0.02420 —0.01321 — 0,00773 ~— 0.05255 — 0.G2759 — (.02282
0.94 —0.6212. 0.1773 |  —0.3299 —0.2235 0.02530 | —0.01381 | —0.00785 | —0.05380 | —0.02765 | —0.02329
0.96 —0.6179 0.1781 —0.3343 —0.2232 0.02641 | —001444 | —000798 | — 0055056 | —0.02771 | — 0.02376
G.98 ~— 06144 01791 —0.3387 — 02228 0.02754 — 0.01509 — 0.00812 ~— 0.05630 — 2777 —0.02422
1.00 —0.6108 0.1801 —0.3430 -—0.2223 0.02870 — 0.01578 — (.00828 — 0.65754 — 0.02782 — 0.02467
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TABLE 21.
Flap coefficients for r=—10.2 and §=0.7G.

kS kS me o . ' ne” ) ' ny” ng "

w He

0 — 1.5398 0 + 0.1994 0 0 0 — 001781 0 —0.03291 0

0.02 — 1.4239 + 0.2111 0.1402 —0.1151 — 0.00002 — 0.00033 - {01656 + 0.00070 —0.03220 + 0.00052
.04 —1.3116 0.3047 0.0815 — 06,1700 — (.00006 — 0.00062 — 0.01543 -+ 0.00025 — 0.03157 + 0.00035
0.06 —1.2134 C 03516 " + 0.0285 — 0.1999 — 0,00006 — 0.00087 —(0.01451 — 0.00062 —0.03107 — 0.060004
0.08 —1.1291 0.3733 —0.0179 — 0.2160 — 0.00006 — (0.00109 — 0.01377 —0.00171 — 0.03067 — 0.00060
0.10 —1.0583 0.3818 — 0.0579 — 0.2248 — 0.00001 — 0.00131 — 0.01317 — (.00291 — 0.03036 — 0G.00120
0.12 — 0.9996 0.3836 — 0.0920 —{).2298 + 0.00007 — 0.00152 — (.01269 — 0.00418 —0.03012 — 0.00183
0.14 — 09511 0.3814 — 01207 —0.2322 0.00019 — (0.001%2 — 0.01228 — 0.00546 — 0.02594 —0.00247
0.16 — 09112 0.3774 —0.1448 —0.2333 0.00033 —0.00192 —0.01193 |- — 0.00677 —0.02980 - | — 0.00311
0.18 —0.8779 0.3722 —0.1655 —0.2335 0.00051 -— (.00212 — 0.01165 — 0.00809 — 0.02970 -—0.00376
0.20 — 0.8488 0.3660 — 0.1840 — 0.2327 0.00071 — 0.00232 ~—0.01140 —0.00942 — (.02964 — 0.00440
0.22 — (0.8227 0.3590 —0.2010 —0.2313 0.00094 — 000252 — 0.03117 —0.01076 — 0.02960 — 0.00504
0.24 —(.7996 0.3518 —0.2166 —0.2293 0.00120 — 0.00271 -—0.,01097 — 0.01211 — (102958 — 0.00565
0.26 —- 07792 0.3449 —0.2310 —0.2274 0.00149 — 0,00291 — 0.01079 — 0.01345 —0.02957 — 0.00630
0.28 —0.7614 0.3387 —0.2442 — 0.2256 0.00182 —0.00313 —0.01064 — 0.01480¢ —0.02959 — 0.00682
0.30 —0.7455 0.3332 — 0.2565 — 0.2236 0.00217 — 0.00336 — 0.01050 — 0.01615 —0.02962 — 0.00753
0.32 —0.7311 0.3281 — 0.2681 —0.2217 0.00255 — 0.00358 —0.01038 —0.01751 — 0.02967 — 0.00814
0.34 —0.7179 0.3232 —0.2790 —0.219%6 0.0029¢ — 0.00381 — (.0102% — 0.01887 —0.02973 ~—0.00874
0.36 — 0.7055 0.3186 —0.2894 — 0.2173 0.00341 — 0.00405 — 0.01020 — 0.02022 — 0.02979 — 0.00933
0.38 —0.6940 0.3144 — 0.2993 —0.2149 0.00387 — 0.00429 ~—0.01013 — 0.02158 — 0.02986 —0.00991
0.40 — 0.6834 0.5108 — (.30849 —0.2124 0.00437 — 0.00454 — {0.01007 — 0.02295 — 0.02994 — 001048
0.42 — 0.6734 0.3072 — 0.3181 — 0.2098 0.00490 — 0.00482 — 0.01004 —0.02433 — 0.03002 —0.01105
0.44 — 0.6640 0.3042 —0.3269 —0.2071 0.00545 — 000511 —0.01001 —- 0.02573 — 0.03010 —0.01161
0.46 —0.6549 0.3015 —0.3355 —{3.2042 0.00603 —- 0.00540 -— 0.01000 —0.02712 — 0.03020 — 0.01218
0.48 — (.6461 0.2992 —0.3437 — 0.2011 0.00665 — 0.00571 — (0.01001 — 0.02850 — 0.03029 —0.01271
0.50 — 0.6375 0.2972 — 0.3517 —0.1979 0.00728 — 0.00603 — 0.01003 —0.02988 —0.03039 | — 0.01324
0.52 —0.6291 02954 — 0.3594 —0.19%44 0.00795 — 0.00637 — 0.010086 —0.03129 —0.03049 — 0.01376
0.54 — {.6209 0.2938 — {.3668 —0.1908 0.00864 —0.00672 —0.01013 — (.03268 — 0.03060 — 0.01428
0.56 — 0.6127 0.2924 —0.3740 -——0.1869 0.00936 —0.00710 —0.01022 — 0.03407 — 0.03070 —0.01479
0.58 — 0.6045 0.2913 —0.3809 — .1828 6.01010 — 0.00750 -—0.01032 — 0.03546 — 0.03082 —0.01529
0.60 — 0.5963 0.2904 — (.3876 — 0.1785H 0.01086 —0.00792 -—0.01045 — 0.03685 — 0.03093 — 0.01578
0.62 — 0.5881 0.2894 —0.3941 — 0.1740 0.01164 —0.00836 - 0.01060 —(.03824 — 0.03104 — 001626
0.64 —0.5797 0.2883 —0.4003 — 0.1692 0.01245 — 0.00882 — 001076 — 0.03962 —0.03114 —0,01674
(.66 —0.5718 . 0.2873 — .4062 — 0.1642 0.01328 — 0.00930 —0.0109%4 — 0.04099 —0.03124 —0.01721
0.68 —0.5627 0.2862 — 04117 — 01589 0.01414 —0.00981 -—0.01115 — 0.04237 —0.03134 — 0.01767
0.70 — 0.5540 0.2850 —0.4170 — (L1535 0.01502 —0.01034 ~——0.01137 —0.04372 —(.03143 — 001813
0.72 —0.5452 0.2837 —0.4220 — 0.1478 - 0.01591 — 0.01089 —-0.01161 — 0.04505 —0.03152 — 0.01858
0.74 —0.5363 | 0.2822 —0.4265 —0.1420 0.01682 — 0.01147 —0.01187 — 0.04636 — 0.03161 —0.01903
0.76 — 0.5273 0.2806 —0.4306 —{.1359 0.01774 —0.01207 -—0.01215 — 0.04766 — 0.03169 —0.01947
0.78 — 0.5181 0.27R87 — 04344 —-0.1297 0.01868 — 0.01270 —0.01244 —- 0.0489%4 —0.03176 —0.61991
0.80 —0.5089 0.2765 — 0.4377 —(.1233 0.01963 — 0.01335 — 0.01275 — 0.05020 —0,03183 — 0.02035
0.82 — 0.4994 0.2739 — 0.4406 —(.1168 0.02059 —0.01403 — 0.01306 — 0.05143 —0.0319¢ — 0.02079
0.84 —0.4902 0.2710 — (.4431 — 03103 0.02156 —0.01474 —0.01339 — 0.05265 —{.03196 — 0.02123
0.86 — 0.4808 0.2673 — 04452 —{0.1036 0.0225H4 —0.01547 —0.01373 — 0.06385 —0.03201 —0.02166
0.88 — 04714 0.2644 — (.4468 — 0.0969 0.02353 — 0.01622 —-0.01407 — 0.05502 — 0.03206 - 0.02209
0.90 — 0.4620 0.2606 — 0.4481 —0.0901 -+ 0.02453 — 0.01700 — 001443 -1 —0.03617 1 —0.03210 —0.02252
0.92 — 04527 0.2562 —0.4489 —(0.0833 0.02554 — 0.01780 — 0.01478 —0.05731 —(.03213 —0.02295
0.94 —0.4435 0.2515 — 0.4492 — 0.0764 0.02657 — 0.01862 —0.01513 — 0.05842 — 0.03215 — 0.02339
0.96 — 04344 0.2464 — 0.4492 — 0.0695 0.02761 — 0.01947 — 0.01548 — 0.05951 —0.03217 — (.02383
0.98 — (14254 0.2408 — 04487 - 0.0626 0.02866 — 0.02034 —0.01583 — 0.06058 — 0.03219 — 0.02428
1.00 — 0.4167 0.2349 — 0.4478 — 0.0557 0.02972 —0.02123 —0.01617 ~—0.06163 — 0.03220 — 0.02473
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0 — 1.8327 0 + 4.2373 0 0 -0 —0.02120 0 — 0.03917 0

0.02 —1.651 + 0.3330 0.1347% — 0.1800 — (0.00004 — 0.009385 - 0.,01913 + 0.00127 — 0.03801. -+ 0.00092
0.04 — 1,446 0.4617 -+ 0.0383 —0.2524 — 0.00007 — 0.00068 — 001748 4+ 0.00063 * - 0.03709 0.00066
0.06 —1.263 0.5114 —0.0453 — 0.2822 — 0.00010 — 0.,00096 — 0.01623 — 0.00076 — 0.03643 + ¢:000086
0.08 —1.141 0.5247 —0.1160 —0.2901. — 0.00006 —0.00122 — 001534 — 0.00207 — 0.03595 — 000066
0.10 —1.0645 0.5227 —0.1761 — .2882 4+ 0.00001 — 0.00146 — 0.01467 -— 0.00365 — 0.03564 — 0.00145
0.12 — 1.0090 0.5153 ~—0.2262 — 0.2828 0.00013 —0.60170 — 001420 —0.00525 — 0.03544 — 0.00223
0.14 — 0.9550 0.5063 —0.2676 — 02752 0.00028 —0.00194 —0,01330 — 0.00688 — 0.03534 —0.00301
.16 —0.9036 0.4976 —0.3010 —0.2669 0.00047 —0.00218 — 0.01351 — 0.00850 —0.03529 — 0.00376
0.18 — 0.8557 0.4894 —{.3284 — 0.2584 0.00069 — 0.00241 —0.01328 —(Q.01014 —0.03530 — 0.00451
(.2G —0.8123 0.4810 ~— 0.3526 — (.2484 0.00085 —0.00266 —0.01311 —0,01177 —0.03535 — 0.00622
0.22 —0.7744 04719 —0.3751 — 0.2368 0.00124 — 0.00293 —-0.01298 —0.01340 — 0.03543 — 0.00591
0.24 — 0.7420 04622 —0.3961 —0.2240 0.00157 —0.00318 — 0.01250 — 0.01504 — 0.03553 —0.00659
0.26 T —0.7138 0.4535 —0.4150 —0.2111 '0.00192 — 0.00346 — 0.01286 —0.01667 — 0.03566 — 0.00725
0.28 — 0.6887 0.4459 —0.4321 -—0.1978 0.00231 — 0.00375 —(.01286 —0.01831 -—0.03580 — 0.00787
0.30 — 06658 (1.4388 —0.4475 — 01842 0.00273 — 0.00406 —0.01289 —0.01995 — 0.03596 — 000847
0.32 — (.6444 04318 — 0.4613° — 01700 0.00319 —-0.00438 —0.01296 —0.02157 — 0.03613 — 0.00905
0.34 — 06239 0.4247 —0.4736 — 0.1549 0.00368 ~— 0.00471 —0.01307 —0.02320 — 0.03630 — 0.00961
0.36 — 0.6039 04175 — 0.4844 —0.1392 0.00419 -— 0.00506 —0.01321 — 0.02483 —0.03648 | — 0.01014
0.38 —0.5845 0.4101 — 0.4938 — 1231 0.00474 — 0.00543 ~—0.01339 — 0.02644 — 0.03665 —0.01065
0.40 — (.565H8 0.4026 —0.5013 — 0.1067 0.00531 — 0,00582 —0.01360 — 0.02804 —(1.03682 —0.01114
0.42 —0.5476 0.3951 —0.5074 — 0.0900 0.00591 —(.00624 — 001385 — 0.02963 — 0.03698 —0.01162
0.44 —0.52988 0.3874 —0.5120 — 00732 0.00653 — (.00667 —0.01414 —0.03120 —0.03713 —0.01208
0.46 —0.5128 0.3793 — 0.5149 —0.0562 0.00718 —0.00713 — 0.01445 — 0.03275 — 0.03727 — 0.01253
0.48 — 0.4959 0.3708 —0.5162 —0.0393 0.00784 — 0.00761 —0.01479 — 0.03427 —(.03740 —0.01297
0.50 — 04798 0.3617 —{.5159 —0.0226 0.00852 -—0,00812 — 0.01515 — 003577 — 0.08752 —0.01340
0.52 —0.4643 0.3518 — 0.5140 — 0.0063 0.00922 — 0.00865 — 0.0150h4 —0.03724 —0.03762 —0.01383
0.54 —0.4496 0.3412 — 05105 + 0.0095 0.00994 —0.00920 — 0.01596 —0.03869 — 003771 — 0.01425
0.56 — 0.4357 0.3300 — 0.5055 0.0247 0.01067 — 0.00978 — (.01639 — 0.04011 —0.03779 — 0.031467
(.58 — 0.4227 0.3181 —0.4991 0.0391 0.01142 —0.01038 — 0.01683 —0.04149 —0.038785 — 001510
0.60 — 04106 0.3056 — 04914 0.0527 0.01218 — 0.01100 —0.01728 — 0.04284 -—(.03790 — 0.01554
0.62 -—0.3956 0.2927 — (14825 0.0651 0.01296 —0.01164 — 001774 — 0.04416 -—0.03794 —0.01598
0.64 — 0.3896 0.27% — 04726 0.0763 0.01375 — 0.01230 — 0,01820 — 0.04545 —-(.03797 — 0.01644
0.66 — 0.3807 0.2658 — 0.4619 0.0864 0.014556 —0.01298 — Q01865 —(.04671 -—0.03799 — 001691
0.68 —0.3730 0.2019 — 0.4504 0.0852 0.01536 — 001368 — 0.01909 — 0.04795 — (.03801 —0.01740
0.70 — 0.3663 0.2378 —0.4383 0.1027 0.01618 — 0.01440 —0.01953 -—0.04916 — 0.03803 -—0.01790
0.72 — 0.3609 0.2236 — 0.4260 0.1089 0.01702 —0.01513 —0.01996 — 0.05034 — 0.03805 —0.01842
0.74 — 0.3566 0.2095 —0.4134 0.1138 0.01787 — 0.01588 — 0.02037 —0.05150 — 0.03807 —0.01896
0.76 —0.3534 0.1955 — 0.4009 0.1173 0.01873 —0.01665 —0.02077 -—0.06265 —0.03810 —0.01951
0.78 —0.3513 0.1818 —0.3833 0.1196 0.01961 —0.01744 — 0.02115 — 0.05379 — 0.03814 | . — 0.02008
0.80 —0.3503 0.1685 —0.3761. 0.1205 0.02051 —0.01825 —0.02152 — 0.05492 — (.03R19 — 0.02066
0.82 — (.3503 0.1558 — 0.3640 0.1202 0.02142 — 0.01908 — 0.02189% — 0.05604 ~— 0.03R825 —0.02125
0.54 — 0.3513 0.1439 — 0.3522 0.1186 0.02235 -—0.01993 — 0.02226 — 0.05716 —-0.03833 —0.02184
0.86 —0.3534 - 0.1330 — 0.3405 0.1159 0.02329 — 002082 —0.02264 — 0.0h829 —0.03843 —0.02243
0.88 —0.3565 0.1232 — 0.3287 0.1122 0.02426 —0.02175 — 0.02305 — 0.05944 — 0.03856 — 0.02302
0.90 —0.3607 - 0.1147" — 0.3169 0.1074 0.02524 —(.02271 —0.022347 — (.06060 —0.03871 —0.02359
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TABLE 23.
Flap coefficients for +=03 and g=0.
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0 -—1.3215 0 -+ 0.2523 a 0 0 — 0.03595 0 -— 0.05531 0

6.02 —1.2744 + 0.0839 0,2288 — 0.0503 — 0.00003 — 0.00069 — 0.03466 + 0.00022 — 0.05446 -+ 0.00024
0.04 —1.2270 0.1232 0.2052 — 0.0782 — 0.00007 — (.00133 —{.03336 — 0.00077 -—0.05360 — (L.00033
0.06 —1.1832 0.1444 0.1834 — 0.0971 — 0.00008 — 0.00192 —0.03213 — 0.00225 — 0.05279 — 0.00123
0.08 —1.1436 01546 01637 — 01105 — 0.00006 — 0.00247 —0.03101 — 0.00402 — 0.05205 — 0.00231
0.10 —1.1081 0.1575 0.1462 —0.120G3 -- G.00001 — 0.00299 — 0.02999 — 0.00699 —0.05138 -— 0.00353
012 — 1.0764 0.1554 0.1305 — B0,1276 0.00012 —0.00348 — 0.02904 — 0.00809 — 0.05076 — 0.00485
0.14 —1.0480 0.1497 0.1166 —0.1331 0.00029 -—0.00394 — (0.02817 — 0.01028 — 0.05020 — 0.00622
0.16 —1.0226 ¢.1415 0.1043 — 0.1373 0.00052 —0.00439 — 0.02736 — 0.01256 -— 0.04969 — 0.00764
0.18 —0.9999 0.1315 0.0933 — 0.1406 0.00080 — 0.00482 — 0.02661 — 0.01487 — 004921 —0.00910
0.20 — 0.9794 0.1201 0.0834 — 0.1432 G.00114 — 0.00523 — 0.02590 -—0.01722 — 0.04877 — (0.01058
0.22 —{(.9609 0.1078 0.0747 —0.1454 0.00154 — 0.005663 — 0.02522 — 0.01959 — 0.048356 — 0.01207
0.24 —0.9441 0.0948 0.0669 — 01472 0.00199 —-0.00603 — 0.02458 — 0.02198 -— 0.04795 — 0.01358
0.26 — (0.9289 0.0813 0.0597 -— (0.1487 0.00250 — 0.00642 — 0.02396 — 0.02439 “—0.04758 — 0.01509
0.25 — 0.9150 00675 0.0533 — 01501 0002307 — 000630 — 0.02336 -— 0.02630 — 004723 | —0.01661
0.30 — 0.9022 0.0534 0.0476 -—0.1514 0.00369 —0.00717 — (L2277 — 0.02922 — 0.04688 —0.01814
0.32 — 0.8905 0.0392 0.0424 —0.1526 0,00437 — 0.00754 —0.02219 —0.03164 — 0.04655 — 0.01967
0.34 — 0.8797 0.0249 0.0377 ~— 01538 0.00510 — 0.00791 — 0.02162 — 0.03406 — 0.04622 — 0.02120
0.36 — (.8696 + 0.0106 (0.0335 — (1550 0.00h88 — 0.00827 — 0.02105 — 0.03648 — 0.04590 — 0.02273
(.38 — 0.8603 — D.0037 0.0296 —{.1561 0.00672 — 0.00863 — 0.02048 —0.03891 — .04559 —0.02426
0.40 — 0.8516 — 0.0180 0.0261 ~—0.1572 0.00762 — (.00899 — 0.01991 — (0.04133 — 0.04528 — 0.02579
0.42 — (.8434 — (.0323 (1.0229 — 0.1784 D.0085HT —0.00934 — 0.01934 —0.04375 —-0.04497 -— 0.02732
0.44 — (1.8358 —{.0465 0.0200 — 0.1596 0.00957 — 0.00969 — 001877 — 0.04617 — 0.04466 — 0.02885
0.46 — (.8286 — 0.0606 0.0174 — 0.1609 0.01063 — (0L0106G5 — 0.018719 — 0.04859 —00.04435 —10,03038
(G.48 — (1.5218 —- 0.0747 0.0150 — 01622 a.01174 —0.01040 — 0.01760 — 005100 -——0.04404 -—0.03190
0.50 ~—0.8153 — 0.0856 0.0129 — 0.1635 (.01290 — 0.01075 —{.01700 — (0.05342 ——=0.04373 — 0.03343
0.52 — 0.8091 — 01025 0.0109 — (.16489 0.01412 —0.01110 — 0.01640 — 0.05583 —0.04341 -—0.03495
0.54 — {8033 —0.1163 0.0091 —0.1663 0.01539 —0.01144 —0.01579 — 0.05823 — 0.04310 — 0.03647
0.56 —0.7977 — 0.1295 0.0075 —0.1878 0.01671 — 001179 — (.01516 — 0.06064 — 0.04278 — 0.03799
0.58 —0.7923 —0.1435 0.0061 — 01693 0.01808 —0.01214 — (.01453 — 0.06304 — 0.04245 —0.03950
0.60 —0.7871 — 01570 0.0048 —- 01709 ¢.01951 -— 0.01249 -— (.(1388 — 0.06514 — 004212 —(0.04102
0.62 —0.7821 — 0.1705 0.0036 — (01725 0.02099 — 0.01283 —0.01322 — 0.06784 — 0.04179 — 0.04253
.64 —0.7773 —0.1838 0.0025 —0.1741. 002252 —0.01318 — 0.01254 — 0.07023 — 0.04146 — 0.04405
0.66 — 07726 —0.1970 0.0018 —0.1758 0.02410 — 0.01352 — (G.01186 — 0.07263 ——0.04111 — 0.04556
0.68 — 0.7680 —(.2102 0.6008 — 01776 N.02573 — 0.01387 — 0.01116 — 0.07502 — 0.04076 — 0.04707
0.70 —0.763H —0.2233 -+ 0.0001 — 01794 0.02711. —0.01421 — 0.01044 —0.07741 — 0.04041 — 0.04858
0.72 — {7592 — 10,2363 — 0.0005 -— 01812 0.02915 — 0.01456 — 000971 — 007979 — 0.04005 — 0.05008
(.74 — (.7530 — {.2492 — 0.0010 -—0.1830 0.03094 — 0.01490 — 0.00896 — 0.08217 —— 0.03968 ~— 0.05159
.76 - 0.7508 —0.2621 — 0.0015 —0.1849 0.03278 — 0.01525h — 0.00820 — {.0845¢ — (.63931 — 0.05309
0.78 —0.7467 —0.2748 — 0.0019 -— {1868 0.03467 — 001559 — 0.00743 — 0.08694 —{.03893 — {.05460
(.80 — [.7427 — 02875 — 0.0022 — 0.1888 0.03662 — 0.01594 — 0.00664 —0.08932 —0.03854 — 0,0561(
0.82 — 0.7388 — 0.3902 — 0.0024 —0.31908 0,03861 —0.01628 — (.60583 — 0.09169 —— {03815 — 0L.ORT60
0.84 —0.7349 — 0.3128 — 0.0025 — 1928 0.04065 — 0.01663 — 0.00501 —0.09406 —0.n3775 -—0.050910
(.86 —0.7310 —0.3253 — 0.0026 — 01948 0.04275 — 0.01697 — 0.00417 — 0.09644 —(.03734 — (.06060
0.88 — 07271 —.3378 — 0.0026 -—0,1969 0.04489 — 001732 — 0.00331 — 0.098R1 — 0.03R13 — 0.06209
.50 — 07233 = .3502 — 0.0026 — 01990 0.04709 —0.011766 —0.00244 —0.1018 — 0.02650 — 0.06359
0.92 — 0.7195 —0.3625 — 0.0025 -— 0.2012 0.04934 —0.01801 — 0.00155 — 0.10855 — 0.03607 — 0.068509 -
0.94 — 0.7T158 — 03748 — 0.0623 — (1.2034 005164 |- ——0.01835 -—0.00064 —0.105M — 0.03564 — (L.OGARSE
0.96 —0.7121 —0.3871 — 0.0021 — 02065 (.05299 — 0.01870 4+ 0.00028 — 010828 — 003519 — (0.06807
0.98 —0.7083 —0.3993 — 0.0018 — 0.2077 0.05639 — {.01905 C 000122 — 011064 — .N3474 — 0.08957
1.00 — (0.7046 —0.4114 — 0.0015 — 0.2100 0.05384 — 0.01939 + 0.00218 —0.11301 — (103428 — 0.07106
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TABLE 24.
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0 —1.1407 0 + 0.2694 0 0 0 — (.03838 0 — (.05905 0

0.02 —1.3526 + 0.1071 0.2402 — 0.0630 — (1L.00004 — 0.00073 — 0.03681 + 0.00044 — 0.05801 4 0.00044
0.04 —1.2942 0.1562 0.2108 —0.0974 — 0.00008 — 0.00140 — 0.03525 —0.00051 — 0.05698 — 0.00007
0.06 — 1.2405 0.1850 (.1836 — 01206 — 0.00009 — 0.00202 — 0.03381 — (.60205 —0.05603 — 0.00101
0.08 —1.1922 0.1997 0.1591 — 01367 -— 0.00008 — 0.00259 — 0.03252 —0.00391 —0.05517 — 0.00217
0.10 — 1.1495 0.2049 01375 —0.1484 — 0.00002 —0.00312 —0.03135 — (1L00602 — 0.05440 — 0.00348
0.12 — 11118 0.2041 0.1184 — 0.1570 —+-0.00010 — 0.00363 — 0.03030 — (0.00828 —0.05372 — 0.00490
0.14 — 1.O7RT 0.1993 0.1015 — (.1635 0.00028 — 0.00411 — (0.02936 — 0.01065 — (.05312 — 0.00638
0.16 - — 1.0497 0.1918 0.0866 — 0.1685 0.00052 — 0004567 —.02851 — 0.01310 — (.06258 — 0.00791
018 —1.0242 0.1824 0.0735 —0.1726 0.00082 — 0.00501 — 002772 — 0.01561 — 0.05209 — 0.00948
0.20 —1.0017 0.1716 0.0621 —0.1762 000118 — 0.00545 — 0.02699 —0.01815 — 0.05165 — 0.01107
0.22 — 0.9817 {.1598 (.0520 — 0.1792 0.00160 — 0.00588 — (0.02633 —0.02071 — 005125 — 0.0126R
0.24 — (1.9638 0.1474 0.0429 — 01817 0.00210 — 0.00630 —0.02572 — 0.02329 — 0.05088 — 0.01430
0.26 — 0.9477 0.1345 0.0346 —0.1840 0.00264 — 0.00671 — 0.02512 —(.02588 — 0.05054 —0.01692
0.28 —0.9333 0.1212 0.0272 —0.1861 0.00325 —0.00712 — 0.02454 —10.02849 — 0.05021 — 0.01755
0.30 —0.9204 0.1078 0.0206 — 0.1882 0.00392 — 0.00754 — (.02399 —{.03110 -—0.04990 — 0.01918
0.32 — 0.80980 0.0944 0.0147 —0.1903 0.00465 —0.00795 — 0.02346 — 0.03371 — 0.04961 —0.02081
.34 —0.8986 0.0809 0.0094 —0.1923 0.00544 — 0.00836 —0.02294 — (.03633 -—0.04934 —0.02245
0.36 — 0.8891 0.0674 0.0046 — (.1944 0.00628 — G,00877 — 0.02243 —(.03896 — 0.04909 — 0.02409
0.38 — .8805 0.0540 + 0.0002 — .1965 0.00719 — 0.00018 — (.02192 — 0.04159 — (.048R5 — 0.02572
0.40 —0.8727 0.0408 — (.0038 —0.,1986 0.00815 — (.00959 — (.02142 — (.04422 0.04R862 — 002735
0.42 — 0.8657 0.0276 — 0.0074 — 0.2008 0.00917 — (.01001 —0.02093 |. — 0.04686 -=20.04838 — 002899
0.44 — 0.8593 0.0145 —0.0107 — 0.2030 0.01025 — 0.01044 — 0.02044 — 0.04950 — 0.04815 -— 0.03062
046 — 0.8536 -+ 0.0015 —0.0136 — 0.2063 0.01139 —0.01087 — 0.0199%4 — 005215 — 0.04792 — 0.03226
0.48 — 0.8482 — 00115 .., -—0.0163 — 0.2077 (.01258 — 0.01130 — 0.01944 — 0.05479 — 0.04770 —0.03389
050 — 0.8434 — .0244 -~ 0.0187 —0.2101 0.01385 —0.01173 —(0.01894 — (L.05744 —0.04748 —0.03552
052 —0.8391 -—0.0371 - 0.0209 —0.2126 0.01517 —0.01217 ~— (101844 — 0.06009 — 0.04726 — 0.03715
0.54 — 0.8352 —- (0.0496 — 0.0229 —0.2152 0.01654 —0.01262 —(.01794 —(1.06274 — 0.04704 — 0.03879
0.56 — (.8316 ~— 0.0620 — 0.0247 —0.2179% 0.01797 — 0.01308 — (L.01744 — 0.06540 —0.04682 —0.04042
0.58 — 0.8284 — (0.0743 -—0.0263 — 0.2206 0.01946 —0.01354 — 0.01693 — (.06R07 — 0.04660 — 0.04206
0.60 — 0.8255 — (.0865 — 00278 —0.2234 0.02101 — 0.01402 —0.01641 — 0.07075 — 0.04638 — 0.04368
0.62 — (0.8229 — 0.0986 —0.0291 —0.2263 0.02262 —1).01451 — 0.01588 —(.07343 — 0.04616 — 0.04531
.64 — .8206 — 01106 — 0.0303 —0.2292 0.02429 — 0.01500 — 0.01535 —0.07612 -—0.04594 —0.04694
0.66 — 0.8186 — 0.1225 —0.0314 —0.2322 0.02603 — 0.01549 — 0.014R2 — 007881 — 0.04572 — 0.04857
0.68 —0.8167 —(.1343 — (.0323 — 0.2353 0.02783 — 0.01600 — 0.01428 —0.08151 —0.04550 — 0.05020
6.70 — 0.8151 —0.1460 — 0.0331 — (12384 0.02968 — 0.01652 —0.01374 — (.08422 — 0.04528 —0.05184
0.72 —0.8137 — 0.1576 —0.0338 — 0.2416 0.03159 — 0.01705 —0.01310 — (0.0RG93 — 0.04505 — 005347
0.74 -——0.8128 — (3.1891 —0.0344 — 0.2448 0.03356 — 0.01759 — N.M263 — 0.08965 — 0.04483 -—0.05510
0.76 —0.8116 — (L1805 — 0.0350 -—0.2482 0.03560 — (.01815 — 0M20s —(.09238 — 0.04460 —0.0D674
0.78 —0.8108 —(.1918 —0.0355 —{1.2516 0.03770 —0.01872 — (1L.07114R% — 0.09512 — 0.04437 -—0.05837
0.80 -— 0.8102 —0.2031 -—(.0359 — 0.2550 - 0.03986 —0.01931 —0.010M -— 0.09786 —0.04414 — 0.06001
0.82 — 0.8097 —0.2143 — (1L.0362 — 0.2585 0.04209 — 0.01992 — 0.01T023 —0.10062 — 0.04390 -—0.06164
0.84 — 0.8095 —0.8254 —0.0363 — (.2621 0.04438 — 0.02054 — 0.00975 — 010338 —0.04366 — 0.06328
0.86 — (0.8094 — 0.2364 -—0.0364 — 0.2657 0.04673 —0.02117 — 0.00916 — 0.10615 -— 004343 — (.06402
0.88 — 0.8095 — 02474 — {1.0365 —0.2694 0.04914 — 0.02182 — (L.0DRAT —0.10893 — 0.04319 — 0.06656
0.90 — (0.8097 —0.2583 — 0.0364 — 02731 0.05161 -—{.02248 — 0.00798 —0.11172 —(.042956 — 0.06820
0.92 — 08100 —0.2692 —0.0364 — 0.2769 0.05414 —0.02315 — 0.00738 — 0.11452 — 0.04270 — 0.06984
0.94 —0.8104 — 0.2800 —0.0363 — 02807 0.05673 — (1.02384 — {00678 — 011733 — 0.04245 —0.07149
.96 —0.3109 - 0.2907 —0.0361 —10.2846 (1.05938 — 0.02454 - 0.00617 —0.12015 — 0.04220 —0.07314
0.98 —0.8115 —0.3014 — 0.0359 — 02885 - 0.06209 —{0.02526 — .00556 — 012298 —0.04194 — 0.07479
1.00 —0.8122 — (3121 —0.0356 — 0.2925 0.06487 — 0.02599 — 0.00495 —0.12581 — 0.04168 -—0.07644

¥ A




-  TABLE 25.
Flap coefficients for =03 and g8=—0.50.

© ]ﬂ.«_-’ k.g” L mc’ mc” nﬂr [ nan n b’ Ny ” nc’ . nc"
G —=1.5259 0 + 0.2914 0 0 0 — 0.04151 o - - — 0.06387 6
(.02 — 14513 + 0.1389 0.2537 — 0.0805 — 0.00005 —0.00078 —0.03952 + 0.00077 — 0.06256 + 0.00073
0.04 —1.3769 0.203¢ 0.2158 — 0.1234 — 0.00011 — 0.00150 — (.03758 — 0.00014 — 0.06127 + 0.00025
0.06 —1.3098 .2394 0.1812 —(.1518 — (.00014 — 0.00215 — (.03584 — 0.00176 —0.06012 — 0.00073
0.08 — 1.2500 0.2575 0.1503 — 01708 — 0.00013 — 0.00274 — 0.03435 — 0.00388 — 0.05913 — 0.00202
0,10 —1.1978 0.2641 0.1229 —0.1838 — 0.00006 — 0.00328 —— (.03303 — 0.00622 —0.05827 — 0.00348
012 —1.1526 (0.2636 0.0987 —0.1932 + 0.06608 — 0.00380 — 0.03186 — 0.00872 —0.05751 — 0.00506
0.14 —1.1125 0.2587 0.0775 —0.2002 (.00029 — 0.00430 ——{.03086 —0.01134 — (.05686 — 0.00671
0.16 —1.0780 0.2510 00541 — 0.2057 0.00056 — 0.00479 ~—0.02996 — 0.01406 — 0.05630 — 0,00840
018 — 1.0484 0.2415 0.0428 — 0.2102 0.00089 — (L00527 — 0.02014 —(.01682 — 0.055681 — (.01013
0.20 — 1.0228 0.2307 0.0288 — 0.2141 0.00131 -— (1L00HT3 — 0.02842 —0.01961 —- 0.05538 —~— 001188
0.22 — 1.0006 0.2192 0.0164 —0.2175 0.00178 — 0.00619 — 0.02776 — 0.02242 — 0.05501 — 0.01363
0.24 ~—0.9815 0.2072 + 0.0056 — 0.2207 0.00230 — (.00663 — 0.02715 — 002526 — 0.05469 — 0.01539
0.26 — 0.9646 0.1948 — 0.0040 — 0.2235 0.00291 — 000708 | — 0.02658 — (.02812 — 0.05440 — 0.01715
0.28 — 0.9496 0.1822 —0.0127 —.2263 0.00358 -— 0.00754 — 0.02604 — 0.030%8 — 0.05414 —(.01882
0.30 — 0.9362 0.1694 — 0.0208 ——0.2289 0.00431 —— (00801 — 0.02554 — 0.03385 — 0.06390 — 0.02069
0.32 —(.9243 . 0.1567 —0.0281 — 0.2315 0.00511 — 0.00847 — 0.02506 = 0.03673 — 0.05369 — 0.02242
0.34 -—{.8137 |’ 0.1441 —0.0348 — 0.2343 0.00597 — 0.00894 — 0.02460 — 0.03961 ~—0.06350 — 0.02420
0.36 —0.9044 0.1318 — 0.0409 —(.2371 0.00689 — (.00942 — 0.02415 — 0.(4250 —- 0.056332 — 0.02599
0.38 — 0.8962 0.1197 — (.0464 —— 0.24G0 0.00789 ~— 0.00990 — 0.02373 — 0.04540 — 005316 — 0.02775
(.40 — (1.8651 0.1078 — 0.0515 " —0.2430 0.00895 ~—-{.01039 — 0.02332 — 0.04830 — 0.05301 — (L.02952
0.42 —{1.8828 (.0961 — 0.0563 — 00,2460 0.G1007 — 0.0108% — 0.02292 — 0.05122 — 0.056287 —0.03128
044 — 08771 0.0846 — 0.0607 — 0,2492 0.01126 — 0.01140 — 0.02253 — (.05414 — (.056275 — 0.03303
0.46 —- 0.8722 0.0732 — 0.0648 — (,2525 1.01251 —0.01193 — 0.02215 — 0.05707 —0.05264 — 0.03479
© 048 —0.8679 0.0621 — 0.0686 — 02559 0.013582 — 0.01246 — 0.02178 — 0.06001 — 0.05253 — .03654
0.50 — 0.8643 0.0612 —0.0721 — 0.2594 0.0152] — 0.01301 — 0.0214] — 0.06296 — (.05243 — 0.03829
0,52 —=(.8611 0.0406 — 0.0755 — 0.2630 0.01666 — 0.01357 — 0.02105 — 0.06592 — 0.06234 — (.04004
0.54 — 0.8585 0.0302 — 0.0787 — (12667 0.01817 —0.014314 | -— 0.02070 — 0.06589 — 0.05225 — 0.04178
0.56 — 0.8564 0.0201 — 0.0818 —(.2705 0.01975 —0.014738 | — 0.02036 — 0.07187 — 0.05218 — 0.04353
0.68 — 0.8546 0.0102 — 0.0847 — 0.2745 0.02139 — 0.01534 — 0.02003 ~—0.07486 ~—0.05211 — 0.04527
0.60 — 0.8533 + 0.0005 — 0.0875 —0.2786 0.02309 — 0.01596 — 0.01970 —0.07786 —-0,056204 — 0.04701
0.62 — 0.8524 — 0.0090 — 0.0902 — 0.2827 0.02487 -—0.01661 — 0.01937 — (1.08088 — 0.05198 — 0.04875
0.64 —0.8517 — 0.0182 — 0.0927 — (.2869 0.02672 -— 0.01728 — 0.01907 — 0.08391 —0.05193 — 0.05048
0.66 —{(1.8514 -—0.0273 — 0.0951 — 0.2912 0.02863 — 0.01798 — 0.01877 —{.08695 —0,05188 — 0.056222
0.68 -—(1.8514 —0.0361 — 0.0974 —(.2956 (.03060 — (.01870 — (0.01848 — (.09000 -—0.06183 — 0.05396
0.70 — 0.8517 — 0.0447 — 0.0997 — 0.3001 0.03264 — 0.01944 — 0.01821 — 0.09308 — 0.056179 — (.05568
0.72 — 0.8523 — (.0531 ~—0.1020 — 0.3047 0.03474 | — 0.02022 — 0.01794 — 0.09617 — 0.05175 — (0.05742
0.74 —0.8531 — (.0613 —0.1042 —0.3093 0.03691- | — 0.02102 —0.01770 | — 0.08927 —0.05172 — 0.05915
0.76 —- 0.8541 — 0.0693 — 0.1064 —0.3141 0.03915 — {L02185 — 0.01746 — 0.10237 — 0.05170 —= 0.06089
078 — 0.8554 — 00770 - ~—{.1085 — 0.3189 0.04146 —-0.02272 — 0.01724 — 0.10549 — 0.05168 — 0.06262
0.80 — (.8569 -— (.0846 —0.1106 —(.3238 0.04383 — (.02362 —0.01703 - 0.10862 — 0.05166 — (.06434
0.82 — 0.8586 —(.0919 —0.1127 —0.3288 0.04628 -— 0.02456 — 0.01684 — {11176 — 0,05165 — 0.06607
0.84 — 0.8605 — (.0990 -—(.1148 — (.3338 0.04878 ~— 0,02553 — 0.01667 —0.11491 —0.05164 — 0.06779
0.86 — 0.8626 — 0.1059 ~—0.1170 —0.3389 0.05136 -—0.02654 — 0.01652 —(0.131807 — 0.05164 — 0.06951
0,88 — (.8649 —{.1126 —0.1191 —{(1.3440 0.05399 — 002759 — 0.01638 — 012124 —0.06163 | — 0.07123
0.90 —0.8673 — 01191 — 10,1232 — 0.3452 0.0567D —10.02869 — 0.01627 — 0.12442 — 0.05164 —0.07285
0.92 — (1.8699 -— (1254 —0.1233 — 0.3545 0.05947 ~0.02983 — 0.01617 —0.12761 — 0.05165 — 0.07466
0.94 — 0.8727 — 01314 — 01254 — 0.3598 0.06231 — 0.03102 — (.01609 -— 0.13081 -—0.05167 — 0.07638
0.96 — 0.8756 —0.1372 — 01275 — 0.3651 0.06521 - 0,03226 — 0.01604 —0.13401 —0.05169 — 0.07809
0.98 — 0.8786 — 0.1428 — 0.1296 — 0.3705 0.06817 -—0.03355 — 0.01602 —0.13722 — 0.05172 — 0.07980
1.00 — 0.8818 —0.1482 — 01317 —0.3760 0.07119 —0.03488 | —0.01602 — 0.14048 — 0.05174 — 0.08150

9g |




F.58

888800 — gIes0o — 093510 — 891600 — ¢65¥0°0 — SPGLOO §a0¥'0— gLRE 0 — 0F0°0 36480 — 0ol
188800 — 98900 — LEGFT0 — 06080°0 — 16800 — ¥relo0 6680 — SISE 0 — 8EF00 79680 — 8670
g§LOBO'0 — 096800 — eIOFPT 0 — LT080°0 — 661F00 — 676900 G610 — 16280 — 8E¥0°0 Gous0 — 96°0
FI6L00 — FECD0'0 — S8eFI0 — 8P6E0°0 — FLOF0'0 — 269900 £368°0— 689¢°G — 00 L9880 — 60
FCLLOO — 60890°0 — 966810 — £88T0°0 — 9E8E0'0 — TL890°0 98880 — 8¢9¢0— P00 69680 — €60
86GL0°0 — E8190°0 — Ge9ET 0 — 668e¢00 — G99¢0°0 — 630900 8FeL'0— - L9650 — LSH00 89G80 — 060
8TPLOO — 391900 — | GBSETO — 99L20°0 — e0se0'0 — TI8S00 608€°0 — LOSE0— 8970°0 L9680 — 880
$9L0°0— | FEISO'G— L6610 — GTLE00 — 9peEen'0 — 3ESG00 6OLED — S¥Fe — &8¥0°0 99580 — 980
®860L00 — 01190°'0 — 139010 — LO9Z0'0— 961600 — TL250°0 65LE0 — 08e% 0 — 00800 POE80 — 80
(08690°0 — 950900 — 886510 — F3950°0 — cE0E00 — 6005070 L8980 — FEEC0 — 1G€0°0 19680 — G8'0
19,900 — £9090°0 — SFETT0 — 936600 — ¢lec0Q — BELFO0 GPoe0 — 6Le60— G¥E00 BG4S0 — 080
166900 — 0900 — LOOITO0— GGCe0'0 — ¥8LEOG — TOSF00 20980 — 6ege 0 — L’ 96980 — LD
02F90°0 — 020900 — 892110 — oS0 — 659200 — PACS LY 66580 — TLTE0— G090°0 $G680 — 9L'0
8Pc90'0 — 66650°0 — 6560T°0 — 96+c0°0 — 66400 — 8T0¥0°0 918€'0 — L6 — LE900 86680 — PLO
PLOSOO — 6L690'0 — 06%01T°0 — PLPGOO0— | FGEE00— 98L80°0 GLFE0 — £905°0— GL90°0 4880 —- ol'0
006600 — 09650°0 — CeE0T0 — 96%a0 0 — GIeG00 — 695800 BerE0 — 80080 — 9rL00 8ue80 — 0Lo
FaLC0'0 — eF6e0'0 — PI660°0 — GFFe00 — [1gel'o — 0FEE00 FREEG— Fe610 — 18200 G898°0 — 890
L¥EC00 — FT6C00 — LLGBO0 — TEFE00 — TLIE00 — LIg00 0FEE0 — T0610 — 01300 BGGE0— 9970
69850°0 — 806400 — 0+¢60°0 — Febe0 0 — gr0e0q — 126800 LG8 0 — 8810 — G980°0 FOGR0 — ¥9°0
THTGH0 — £68¢0°0 — €06L00 — TéFe00 — F6610'0 — EeLed’ F¥6ee0 — G6LT0— 8160°0 GLG8 0 — 290
gInsn’o — 6L3C0°0 — QLGBO0-— Te9e00— LEBIOO — 626800 I1e60— wL1T0— 8L60°0 L8980 — 09°0
GESF00 — L9BCOQ0 — LEEBO0 — eehe0’ 0 — EELTO0 — FPECO0 69160 — L8910 — TF0T0 L6GsH — BG'0
T 0 — 948800 — G06L0°0 — 96¥Fz0'0 — L9100 — 99T20() Le1e0 — 88910 — 50OTT°0 eres’o — 960
TLFRO0 — 98600 — FLELOQ — PEFEO0 — 965100 — S6610°0 98060 — 6L6T0 — 6L11°0 LE9S0 — 50
632F0°0 — LESG0'0 — SFEL00 — a0 0 — CeU1o0 — (8810°0 9%0€'0 — ¥es1o— PEeT'0 59980 — 50
901¥0°0 — 658500 — LI690°0 — 8CFe00 — 0SF10°0 — eL9100 s L00E0 — LOP1°G — SEETO $698°0 — 0¢0
8E680°0 — 8G860°0 — (06690°0 — 94%¢00 — IBETO0 — 124100 39650 — GOFT°0— 9TFT0 TE€L8°0— B0
68LE0°0 — 918600 — F9690°0 — 96%20°0 — 9IET00 — LLETHO 0g6¢0 — 6PET 0 — €0CT°0 PLLYO— 9% 0
eGegp’0— | GI880°0 — OF6C0°0 — 8T9E00 — BEE10°0 — OFel00 #6860 — 18T — €66T°0 €850 — %0
LAgen0 — 608500 — L1960°0 — ee0'0— | e8T100— OLTI0°0 86360 — eeel 00— L8IT0 61880 — v o
031800 ~— 808600 — 962C0°0 995200 — eETI00 — §8600°0 FE8E0 — GeTL0 — G8LT0 ¥FE80 — 0%'0
£6620°0 — 012600 — GL6FO0 — F6CE00— . | FLOLOD — ¢1300°0 coLE 0 — FROT0— LESL'0 21060 — 8&'0
G08G0'0 — FI8G0'0 — 969F0°0 — 6e9¢0'0— LIOTO0 — §9L00°0 09LE0 — 60010 — 2661°0 80160 — 980
a9z0'0 — 0%350°0 — FEEHO0 — 659500 — | 296000 — T9900°0 68L30— 86600 — a0TIan 686760 — FE0
95Fe0’0 — 0684500 — TZ0F0°0 — G69G0°0 — 806000 — 996000 66980 — ers0’0— S1eec0 606670 — 2e0
LEGE00 — EF8C0°0 — G0LEOD — FELEO0 — €a800°0 — BLFO0) 69960 — gFLOO — 1€ec0 QEPE'0 — 080
LF0G0°0 — BGRG(Q — 6586070 — LLLZO0— £0800°G — L6E000 07950 — 8%90°0 — 8FFe 0 6L66°0 — BE'G
9C3TH'0 — eLsglo — GLOCO0 — FG8G0°0 — GaLoOG — FeE00'0 o1960 — BEGH'0 — L9620 oFL6’0 — 9c0
goOTH'n — | 9685070 — G9LE00 — GLBZ00 — c0L00°0 — RGE000 18660 — LIF00 — L8980 85660 — ¥ 0
FLPTO0 — 186400 — 0eFet0 — eeee0 00— %5000 — 8610070 24560 — 186070 — 80850 eFI0T — ec 0
e’8n10 ) 6e680'0 — 661200 — S6650°0— 09000 — SPT00} 81550 — TEL00 — Le6e0 0680°T — 020
a60T00 — 086600 — 088100 — 990£0°0 — 896000 — 00T00°0 18¥e 0 — £800°0 + LEOEO GLI0'T— 810
7060000 — 9e090°0 — FEE10°0 — 91800 — £0%900°0 — 90000 98¥e 0 — 02600 FEIE0 1660°T — 91’0
STL000 — 260900 — G100 — 666800 — 8CF000 — TE€000°0 81880 — S Atht Gize0 GLET T — PO
gee000— g6190'0 — 666000 — 9¥EE0°0 — 1. 007000 — 8000070 + FOEE0 — 18300 09zE0 9281’1 — er'o
96200°0 — L8900 — 87900°0 — TLPEQ O — G000 — 60000°0 — F0%e 0 — £860°0 09280 OB’ T — 010
TATO00— | BEER00— £8200°0 — 8T96('0 — ! 8RG000— 810000 — 690670 — LGETQ agIE0 cO0E'T — 80°0
aFNNN0 — SPF90°0 — B¥100°0 — S6LE00 — BCa00°0 — 020000 — G810 — geLTo 68620 LPLET — 90°0
590000 + 986900 — S8000°0 + 000%0°0 — T9160°0 — 470000 — 9gST0 — GLIT0 TLGE0 009%' T — F00
RTVARVR LpLO00 — FoLO00 0Per00— 180000 — 900000 — PIOT0— G990 0LLTO + cees't — 00

0 ‘ PI690°0 — 0 F6FF00 — 0 . 0 0 FEIE0 + 0 61S9T — .0

t..u\? — \u\z.\ Eag . \asa \\eﬁ\ ' \U..& t.u:e \QS t.u.um noum ?

09°0=4¢ put gQ=41 10] SludTaLf300d derg
9% WYL




Flap eoefficients for r = 0.3 and 8—0.70,

TABLE 27.

o kcf ]Ec” mcf ’nlc” ,n'al ‘ nu” l 'n'b’ ﬂb” ,n_cl ncf’

0 — 1.8505 0 -+ 0.3533 0 0 0 — 0.06034 0 — 0.07746 0

0.02 — 17121 + 0.2447 0.2828 — 0.1387 — 0.00009 — 0.00093 — 0.04678 + 0.00220 — 0.07509 -+ 0.00182
0.04 — 1.5794 0.2194 0.2132 — 0.20566 — 0.00021 —0.00173 —0.04358 + 0.00120 — 0.07296 =+ 0.00129
0.06 — 14641 0.3 0.1511 —-(1.2429 — (0.00026 — 0.00244 — 0.04098 — 0.00104 — 0.07124 — 0.00006
0.08 — 1.3660 0.4193 0.0968 — 0.2642 —- 0.00024 — 0.00308 —0:03891 — 0:00390 — 0.06986 — 0.00182
0.10 — 1.2840 0.4245 (.0505 — 0.2772 — 0.00011 — 0.00369 — 0.03725 — 0.00708 — 0.06878 —0.00379
0.12 — 12160 0.4217 + 0.0111 — 0.2857 =+ 0.00008 — 0.00427 | —0.03590 | —0.01042 — 0.06795 — 0.00586
0.14 —1.1602 0.4147 — 0.0220 —0.2915 0.00036 — 0.00485 — 0.03479 —0.01387 —0.06732 --0.00799
0.16 —1.1148 0.4054 — 0.0497 — 0.29857 0.00073 | . — 0.00541 — 0.03389 —0.01736 — 0.06684 — 0.01013
0.18 — 10774 0.3949 — 0.0733 — 0.2993 0.00119 — 0.005697 — 0.08314 | — (.02088 — 0.06648 — 0.01227 .
0.20 — 1.0452 0.3834 — 0.0945 —0.3018 0.00172 — 0.00653 —0.08252 | —0.02443 — 0.06622 -— (0.01441
0.22 — 1.0169 0.3711 —0.1140 — 0.3035 0.00234 —0.00710 | —0.03199 — 0.02800 —-0.06605 — 0.01654
0.24 — 0.9920 0.3586 — 0.1318 —— (L3048 0.00303 — 0.00767 — 0.03153 —-(.03158 —0.06094 ; — 0.01866
0.26 — 0.9703 0.3467 — (1482 — 0.3064 0.00380 —— 0.00827 —0.03114 | —0.03516 — 0:06580 — 0.02076
0.28 —0.9515 0.3358 — 0.1633 — (.3079 0.00464 — 0.00888 — 0.03082 — 0.03875 — 0.06591 — 0.02285
0.30 —0.9349 0.3257 — 01774 — 0.3096 0.006556 — 0.00951 — 0.03058 — 0.04235 — 0.06597 —0.02491
0.32 — 0.9204 0.3162 -—{0.1906 —0.3114 0.00656 — 0.01015 —0.03039 — 0.04595 — 0.06608 — (L02696
0.34 —0.9074 0.3072 — 0.2032 —0.3130 0.00764 —0.01082 —0.03025. | — 0.04956 — 0.06623 — 0.02898
0.36 — 0.8957 0.2986 — (0.2154 — (0.3145 0.00880 | —0.01152. | — 0.03018 — 0.05319 — 0.06641 — 0.03098
0.38 — 0.8852 0.2905 —0.2272 —0.3160 0.01003 —0.01224 — 0.03016 — (.05684 — 0.06662 — 0:03296
0.40 —0.8756 02830 — 0.2386 ---0.3175 0.01134 —0.01299 — 0.03020 — 0.06049 — 0.06686 — 0:02492
0.42 — 0.8669 0.2762 — (1.2486 — .3180 0.01273 — 0.01377 —— 0.03030 —0.06414 | — 0.06712 — 0.63686
0.44 — 0.8588 02700 —0.2604 — 0.3204 0.01:418 — 0.01458 —- 0.03045 — 0.06780 — 0.06741 -— 0.03878
0.46 — 0.8512 02644 —0.2710 —0.3217 0.01570 — 0.01544 —0.03064 — 0.07148 — 0.06772 — 0.04066
0.48 — 0.8441 0.2593 — 0.2814 — 0.3229 0.01729 —0.01635 — 0.03089 — 0.07516 — 0.06806 -~ 0.04252
0.50 — 0.8374 0.254 -—0.2917 — 0.3240 0.01395 -—0.01732 — 0.03120 — 0.07885 — 0.065841 — 0.04436
0.52 — 0.8309. 0.2507 — 0.3018 — 0.3248 0.02068 — 0.01833 — 0.03157 — 0.08253 — 0.06877 — 0.04618
0.54 — 0.8247 0.2471 —0.3119 — 0.3254 0.02248 — 0.01939 — 0.03201 — 0.08621 — 0.06916 — 0.04797
0.56 — 0.8186 0.2440 —0.3219 — 0.3258 0.02434 | — 0.02050 — 0.03251 — 0.08939 — 0.06956 -— 0.04973
0.58 —0.8125 02413 —0.3318 — 0.3259 0.02627 | — 0.02167 — 0.03308 — 0.09355 — 0.06998 — 0.05147
0.60 — 0.8064 0.2390 —0.3416 — 0.3258 0.02826 —0.02290 | —0.03372 —0.09720 — 0.07040 -— 0.05318
0.62 — 0.8003 0.2371 —0.3514 — (.3254 0.03031 — 0.02419 — 0.03443 — 0.10083 — 0.07083 — (.05485
0.64 — 0.7940 0.2354 — (1.3610 — (0.3247 0.03240 — 0.02555 — 0.03521 — (.10443 — 0.07126 — 0.05650
0.66 — 0.7876 0.2339 — 0.3705 — 0.3236 0.03455 — 0.02698 — 0.03605 — 010800 — 0.07170 — 0.05812
0,68 — 0.7810 0.2325 — 0.3799 --10.3222 (.03675 — 0.02348 — 0.03695 —(0.11154 —0.07213 — 0.068972
0.70 —0.7742 (.2313 —0.3891 — 0.3205 (.03900 — 0.03004 — 0.03792 — 0.11504 — 0.07256 — 0.06128
0.72 — 0.7671 0.2302 — 0.3982 — 0.3184 0.04128 — 0.03168 — 0.03894 — (11849 —0.07299 — 0.06282
0.74 — (0.7597 0.2292 — 0.4070 — 03158 0.04360 | — 0.03339 — 0.04002 —.12189 — (0.07340 | — 0.06433
0.6 — 0.7521 0.2282 — 0.4156 — 0.3129 0.04595 —0.03518 —0.04115 —0.12523 —0.07381 -— 006582
0.78 —0.7442 0.2272 — 0.4240 — 0.3096 0.04333 —0.03703 — 0.04233 —0.12852 — 0.07421 — (.06729
0.80 — (L7369 - 0.2261 — .4320 — {.3060 0.05074 | - 0.03896 — (.04356 —0.13175 — (L.07T459 — 0.06874
0.82 —0.7274 0.2248 —0.4398 — 0.3020 0.06317 — 0.04096 — 0.04483 — 0.13491 — 0.07496 —0.07016
0.84 —0.7185 0.2233 — 0.4473 — 0.2977 .05562 — 0.04304 — 0.04613 — 0.13801 — 0.07531 — 0.07157
0.86 —0.7094 0.2216 — (.4543 — 0.2931 0.05808 — 0.04518 — 0.04746 -—0.14103 — 0.07564 — 0.07296
0.88 — 0.6999 0.2197 — 0.4610 — 0.2882 0.06056 — 0.04739 — 0.04882 —0.14398 — 0.07596 — 0.07434
0.90 — 0.6902 02174 — 04673 — 0.2830 0.06305 | — 0.04968 — 0.05020 — (.14686 — 0.07625 — 0.07571
0.92 — 0.6803 0.2147 — 0.4732 — 02775 0.06554 | — 0.05203 — 0.0515% | — 0.14966 — 0.07652 — 0.07707
0.94 — 0.6702 0.2116 — 0.4786 — 0.2718 0.06804 — 0.05445 — 0.05299 — 0.15238 —0.07677 —0.07842
0.96 — 0.6599 0.2081 — (0.4835 — 0.2659 0.07054 | —0.05693 — 0.05440 — 0.15503 — 0.07699 — 0.07976
0.98 — 0.6494 0.2044 — (0.4879 — (.2598 007304 | — 0.05948 — 0.05581 —0.15761 — 0.07719 — 008111
1.00 — 0.6388 0.2003 — 04919 | —0.2534 0.07555 | —0.06209 | —0.05721 —0.16011 — 0.07738 — 0.08246

29 d



TABLE 28,

Flap coefficients for r—0.3 and g=0.80.
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— 0AL147
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w ke me D om e g’ - Ny ny - ' g '’ - -
0 — 2.2025 0 ' + 0.4205 o0 - o 0 - — 0.05991 0 : —0.9219 0 -
0.02 — 1,925 + 0.3878 0.2952 —(.2173 — 0.00014- — (.00107 — 0.0540 + 0.0040- — 0.0883- -+ Q.0032:
0.04 —1.711 0.5314 0.181¢ — 0.3069' — {.00028 — 0.00196 —0.0493 -+ 0.0025- — 0.0851 0.0024 .
0.06 — 1.545 0.5853 0.0855 — (.3467 — 0.00033 —0.00273 — (.0459 — (.0008 — 0.0829 4 0.0005
0.08 — 1437 0.5956 -+ 0.0029 — {.3609 — 0:00025 —0.00343 — 0.0434 — 0.0048 — (.0812 — 0.0019
0.10 —1.3128 0.5882 — 0.0867 — (.3642 — 000008 —0.00412 — (0.0416 — 0.0088 — 0.0802 - — 0.0045
0.12 —1.2334 (.5748 — 01242 — (.3636 -+ 0.00022 — {(.00478 —0.0401 —{.0131 — 0.0793 — 0.0071-
014 — 1.1655 (.5599 — (,1721 — 0.3606 0.00060 — 0.00546 — 0.0392 — (0174 — 0.0790 — 0.00067
0.16 — 1.1074 0.5460 —0.2111 — 0.3574 0.00109 —0.00613 — 0.0385 - —0.0217 — 0.0787 —0.0122
0.8 —1.0578 0.5332 — 0.2437 — 0.3535 0.00164 — 0.00682 — D.0379 — 0.0260 — 0.0787 — 0.0146-
0.20 — 1.0147 0.5205 —0.2731 —0.3492 0.00231 — 0.00753 — 0.0376 —0.0303 —0.0788 — 0.0170
0.22 —0.9775 0.5065 —0.3010 —0.3426 0.00305 —0.00825 — {.0373 — 0.0347 —0.0791 —(0.0194
0.24 —0.9449 0.4929 — 03271 —(.33561 0.00389 — 0.00896 —0.0374 — (0.0390 —0.0794 — (.0217
0.26 — (.9160 0.4807 — 0.3512 —0.3272 0.00481 — 0.0097¢ — 0.0375 — 0.0433 — 0.0798 — 0.0238
0.28 -—1{.8399 0.4700 — 0.3736 —0.3193 0.00582 — (LO1060 — 0.0377 — 0.0475 —(.0804 — 0.0260
0.30 — 0.8660 0.4603 — 0.3946 — 0.3109 0.00691 —{.01149 — (L0380 — 0.0518 — 0.0809 — 0.0281
0.32 — 0.8438 04511 —0.4143 — 03015 (.00208 — 0.01242 — 00385 — 0.0561 —0.0814 — 0.0301
0.34 — (.8228 0.4422 — (0.4327 — 0.2912 0.00933 — 0.01342 — {.0390 — 0.0603 —0.0821 — (0.0321
0.36 . —(0.8028 (.4337 — 0.4500 — (1.2801 0.61065 — 0.01446 —0.0397 — 0.0646 — 0.0828* —0.0339
0.38 - —0.7834 0.4258 — 0.4661 —(1.2684 (01203 — 0.01552 — 0.0405 — 0.0688 —0.0834- — 0.0357
0.40 — 0.7645 0.4180 — 0.4810 — .25659 (.01348 — 0.01667 —0.0415 ; —0.0729 — 0.0841 — 0.0374-
0.42 —0.7460 0.4102 — 0.4946 —0.2425 0.01499 — 0.01787 — 0.0425 —0.0770 — ,0847 — 0.0391-
0.44 — 0.7278 0.4024 — 0.5069 — (12285 0.016565 — 0.01917 — 0.0436 —0.0810 — 0.0854 — (.0406
0.46 — 0.7098 0.3945 — 0.5177 —0.2138 0.01815 — 0.02063 —0.0449 — 0.0850 -—0.0861 — (0.0422°
0.48 — 0.6921 0.3862 — 0.5270 —{.1986 0.01980 — 0.02198 — 0.0462 - — (.088R% — 0.0867_ — 0.0436‘-
0.50 — (0.6746 0.3776 — 0.5348 — (.1830 0.02149 —(1.02348 — 0.0476 —0.0926 —0.0873 — (.0450-
0.562 — 0.6575 (.3684 — 0.5410 -—0.1672 0.02322 — 0.02505 —0.0491 — 0.0963 -— 0.0878 — 0.0464
0.54 — 0.6407 0.3586 — (0.54565 —0.1512 0.02498 — 0.02668 —0.0507 — 0.0999 —0.0883 — 0.0477
0.56 — 0.6244- (.3481 — 0.5484 —0.1351 0.02677 — 0.02837 — 00523 | —0.1034 — 0.0888 — (.0490
0.58 — 0.6085 0.3369 — 0.5496 —0.1189 0.02858 — (.03012 — (.0540 —.0.1067 — 0.0892 — {.0503
0.60 — 0.5932 0.3250 — 0.5492 — 0.1030 0.03042 —10,03195 ——{.0557 — 0.1100 — 0.0896 — (.0516
0.62 — 0.5785 0.3122 — 0.5473 —(0.0878 0.03227 — 0.03383 — .0574 — 01132’ — 0.0900 — 0.0529
0.64 — 0.5645 0.2986 — 0.5439 — 00731 0.03414 — 0.03575 — 0.0591 —0.1163, — 0.0903 — 0.0542
0.66 —0.5513 0.2843 - — 0.5391 — 0.0590 0.03603 — 0.03775 —0.0608 —0.1192 —0.0805 — (0.0555-
0.68 — 0.53R89 0.2692 — (1.6330 — 0.0457 (1.03793 — (03982 — 0.0625% —(3.1221 — 0.0907 — 0.056%
0.70 — 05273 0.2535 -— (.6258 — 0.0333 0.03984 —0.04193 — 0.0642 —0.1249 — 0.0909 — 0.0582
0.72 -~ 0.5167 0.2372 — 0.5175 — 0.0218 0.04177 — 0.04412 — 0.0658 — 01277 —0.0911 — 0.0597
0.74 — Q.5070 0.2204 — 0.5084 —0.0114 0.04371 | — 0.04635 —0.0674 —0.1303 —0.0912 — 0.0611
Q.76 — 0.4985 0.2032 — 04985 — 01,0021 0.04567 — 0.04864 — 0.069%0 - — 0.1329 — 0.0913 — 0.0626
0.78 — (14011 0.1859 — 0.4879 + 0.0060 0.04765 — 0.05099 — 0.0705 —0.1355 — 0.0915 — 0.0642
0.80 — 0.4850 0.1684 — 0.4768 0.0129 0.04865 — 0.05340 — 0.0720 —0.1380 — 0.0916 — D.0658"
0.82 — (.4804 0.1510 — 0.4653 0.0183 0.05167 — 0.06585 —0.073H — 0.1405 — (.0918° — 0.0674
0.54 — 04773 0.1340 — 0.4534 0.0223 0.05373 — 0.05835 — 0.0750 ~— (1.1430 — 0.0920 — 0.0690
0.86 —0.4761 0.1174 — (0.4410 0.0247 0.05582 — 0.06089 —0.0765 —0.1454 —0.0923 — 0.0707
0.88 — 04771 01016 — 0.4282 0.0256 0.05795 — 0.06348 —0.0781 —0.1479 — 0.0827 — 0.0723
0.90 — (4803 0.0868 0.0248 0.06012 — 0.06609 — 0.0798 — 01504 —0.0931 '——rD.0739
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Strip Theory for Oscillating Swept Wings in Incompressible Flow
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by
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Summary.

It iy shown that strip theory for a swept wing differs from that for a straight wing by the fact that a counsant
spanwise iutensity of the trailing vortices gives a contribution to the’ downwash in the case of a swept wing, but not
foy a straight wing. . This makes that tswo new terms should be added to the usual coefficients, the first of which

corresponds to the varying amplitude in bending or torsion of the wing while the sceond corresponds to taper.

These

additional forees vanish if the angle of sweep ¢ is 0° and are maximal if ¢=45°.

Numerical results for the new cocfficients are presented for w=—20, (0.1}, 1.0; 1.2

and 1.5, wherc w denotes the reduced

frequeney rveferred to semichord. In an appendix the case of & wing-flap system with constant chord ratio = is considered

and numerical results are presented for == 0.2.
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1 Introduction.

The aerodynamic forees used in flutter caleu-
lations for straight wings of not too small aspect
ratio are usually derived from a two-dimengional
approximation.

This approximation involves that the forces in
a0 certain chordwise section are assumed to he
equal to those forees which would arise if the
section considered were part of an infinite wing
_ with the same chord and oseillating with the same

amplitudes in translation and rotation as the true.

wing in that particular section.

The reason that the two-dimensional approxima-
tion has proved to be so fruitful for straight wings
is, besides its simplicity, the fact that a local linear

- variation in chord or deformation functions does

not medify the aerodynamic forees. The linear
variation in chord or deformation functions gives
rise to a congtant spanwise strength of the trailing
vortices and since these wvortices have cqual dis-
tance to the section considered, the downwash
remains the same and with it, the solution of the
integral equation.

ln the ease of a swept wing tvuo modmcahons
aTise

1 the acrodynamic forces must bhe multiplied by
the factor eos ¢, where. ¢ is the angle of
sweep,

the compensation for a loeal linear variation
in chord or deformation functions is laeking
due to the uncqual distance to the section con-
sidered of the vortices arisen at the same
momert.

90

In this report formulac and numerical results
for the aerodynamie forces arc presented, which
take these two modifieations into account. It is
expected that these results allow the same accuraey
for a swept wing as the two-dimensional approxi-
mation does in the case of a straight wing. An
important practical advantage is that also for a
swept wing the results only depend upon sectional
quantities. No solution of an integral equation for
the distribution of the civculation along the span
is required. The general result assumes the form
of the original two-dimensional apprommatlon for
a straight wing, multiplied by cos ¢, together with
three corTection terms, which are proportional to
the local wvariations in chord, "in ‘bending defor-
mation and in forsion deformation respectively and
of which the proportionality constants depend on
the reduced frequency o only. These constants are
given in numerical form as fuhetions of o. It is
shown that: the resuls like the two-dimensional ap-




proximation for siraight wings, may be used if the
reduced frequeney, referred to the semispan, is
larger than 1. TFor smaller values of the reduced
frequeney a correction, analogous to the RESsxrr
correction (ref. 5) for straight wings, should he
added.

"The method by which these results have been
derived, is the same that also has been applied in
the steady case for obtaining a generalization of
the PraNDTL equation for swept wings (vefs. 1, 2).
This method makes use of an asympiotic expansion
for the downwash, valid for large values of the
aspect ratio. The term independent of the aspeet
ratio gives rise to the two-dimensional approxima-
tion. For a straight wing there occurs no term
inversely proportional to the aspect ratio, but in
the case of a swept wing such term exists. Tt is
this term whieh is responsible for the corrections
mentioned above.

2 List of symbols,

[ gemi-gpan
l semi-chord
[1L0)} semi-ehord at root section
P pressure, positive downward
dl
$ —:;— Ey_’ eq. (6.10)
? ~ speed of the undisturbed flow
w downwash ‘
T coordinate in flow direction, positive in

direction of v _

2 goordinate in direction perpendicular to
2z and in the plane of the wing, positive
to starboard

T Yo x,9 coordinates of the point where the
downwash is eazleulated

k,, My, 1, aerodynamic derivatives in two-dimen-
sional flow, defined’ by eq. (6.7)

A4, A’ - wing and wake region in x,y-plane

A4 wing and wake region in X, ¥-plane

G degree of freedom (Al — translation, B =

rotation wing, ¢ ==relative rotation of

- flap)
K forece of wing section per unit span,
positive downward
M moment of wing section about mid-chord

point per unit span, positive if tailheavy

N moment of flap seetion about hinge point
per unit span, positive if tailheavy

P circulation funetion

XY coordinates defined by eq. (3.3)

X,Y  coordinates defined by eq. (5.18)

-2

Y vorticity vector

ye, ¥y - vorticity components when decomposed
. along =z and y-axes (see fig. 4.1)
e, vy vortieity ecomponents when decomposed
-along X- and Y-axes

g-- ~ angle of sweep, positive for sweepback
-. 1(0)

j b

p air density

T ratio of flap ehord to wing chord

¥ 60

v frequency of osecillation
1
o veduced frequency, S
v
[T (Y) circulation about profile in section ¥.

A superseript (2) denotes that the corresponding

symbol refers to two-dimensional flow for a straight
- t

wing,

A denotes the difference in a quantity due to strip
theory for a swept wing compared with strip theory
for a straight wing.

3 General principle,

. 3.1 -Starting from a general vortieity distribu-
tion on the wing and in the wake, the downwash
in an arbitrary point z,, ¥, of the wing is obtained
by aid of Bior and Savarr’s law, which may he
applied in incompressible flow, either steady or
unsteady. This formula reads

47 w(x,, 'yo) =
_ / (- Yo)ve — (T~ 1) vy
13

dxdy, (3.1)
Ad
where y, and v, are the vorticity eomponents in

x- and y-direetion and w the downwash., The z-axis
is parallel to the main stream and the y-axis per-

1 e ‘ {
.
{.Q)
Y
P
(e
_—Xm = f(y)

{(e); (o)
)
. /{ ) A
.\',
1
©) AL,
Xye {v) or Y=Y, (X).
K'
X
Fig. 3.2
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pendicular to it in the plane of the wing. r denotes r=f ( ¥ ) + X, (3.3)
the distance hetween the points x,, y, and =z, vy, i.e.: I\ ’ )
Y
r=VT{o—a)+ G-y, (32 y=-—
A and A’ denote the wing and the wake, respec- is introdunced, where s — _Z—(bgl with I{0) equal to
tively. ' . . . .

For most points of a wing of not too small aspect the semi-chord in the section ¥ =0 and b equal to
ratio the eoordinate y will be large with respect the semi-span. ¢ will be assumed small. 1t follows
to the coordinate z-—— &, where z, =f(y) is the from eq. {3.3) that for the wing region A in the
z-eoordinate of the mid-chord line, In order to X, Y-plane both coordinates X and Y vary between
express this faet mathematieally, the transfor- —1{0) 'and + I{0) and are in general of the same
mation order of magnitude (see figs. 3.1 and 3.2).

Considering a swept wing, the funetion f is given by

Y | Y :
s =71 (2) =Ly, (3.4)

where ¢ is the angle of sweep. Substitution of egs. (3.3) and (3.4) into eq. (3.1} leads to

.o HO) -
P Yy — (X — X+ (Y —T,) tan s}y,
b = | [ S T Yo e (P T S

TR

0 o
(¥ =) ye— { o(X —Xo)—(¥ + ¥,) tang } ,
v f (= X (Y 7 T,) tang P (Y Ty XY

(3.5)
—i{o) —t

It has been assumed that ¥, is positive; the first term of the right hand side gives the downwash due
to the right wing and the second term the downwash due to the left wing.

The right hand side of eq. (3.5} will now be expanded into a power series in s, where 2 and higher
powers of e will be negleeted. In order to obtain this expansion into a suitable form, use will be made
of some fundamental concepts.

32 The equation of continuity for the vortex field reads

dys , 0w __
B +.ay =0

Transforming to X, Y.coordinates, it is found' by aid of egs. (3.3) and (3.4) that for the right semi-
wing holds

.

I SR S
ax 68X By Pox T iy
Furthermore, when the vorticity veetor is decomposed into an oblique system. of axes (£, 7), where

the g-axis coincides with the mid-chord line of the wing and the f-axis with the z-axis (see fig. 8.3),
the components y¢ and y, are given by ‘

¢
Ye=ye— vy tang y, = eos"é- (3.6}
On the lefi semi-wing one has
Ty
vg=ve T ntaney, =0 (36)
Hence, the coutinuity equation hecomes
[ dy
e 4o =

x T =0 - 37

from which it follows that yg is of order e.

3.3 The vortex distribution in the wake satisfies the relation:
X1
—_ - —ivT ~
v(X,¥)=v{, Y)e , X >t (3.8)
if the wing performs an oscillation of frequency v which may be cither unstable (Im v < 0) or periodic

(Imv=10), The case of a damped oscillation (Jm v > 0) will not be considered sinee the initial disturb-
anee then plays an important role (ref. 3).
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.. The component yy(l Y) fo]lows from the eondition that the pressure at the trailing ‘edge is Zero.
‘Since

X
=) —i 7 | X, Dyax, L)

Iy

p(X,Y)
p’v

Where p(X,Y) denotes the pressure difference between upper and lower Slde of the wing (positive down-
ward), the condition of zero pressure at the trailing cdge yields

T n@Y) =—i_ 7 (1), 3 (3.10)

where the cireulation [~ (¥) is given by
- S !
m(Y) == [ 7 X, Y)dX. (3.11)
=1
_From the continuity equation (3.7) follows that

c0,7) = (2L

i
Both yg and y, are continuous in the point X =1

d ,
Yif(ls Y) E‘{[‘ - (3.12)

3.4 In ovder to reduee the double integrals in eq. (3.5) the funetions yz and y, will be expanded into
their Tavoor series towards the variable Y, viz

LY 4 o7 il (X, ¥, (TP X,
% (L Y)=r (X, Vo) + (¥ —Yo) =5 v (- It 81” (X, ¥,) + .
(3.13)
g Y—Y,)? 0y ,
WX, V)= (X, T+ (7 —¥) T x v+ TS0l Ty 4

The convergence of these series will he slower if ¥ or ¥, approaches one of the wing 1ips or the middle,
seetion of a swept wing, while the series lose their meaning for ¥ or Y, equal to 0 or o= #{0). Near the

‘fv
2Y
in Y. Hence, the resulis of the present theory will apply with less aceuraey in the regions near the tips
or the central seetion. The assumption of large aspect ratio involves that a large part of the wing lies
at some distance (e.g. more than a chord length) from these regions,

“tips yg and hecome infinitely large, while in the central seetion these funetions are discontinuous

4 Derivation of the integral equation.

41 After the preparatory work of the preceding section, the reduction of eq. (3.5) may be continued.
The first term of the right hand side of this cquation may be written as

‘ (0] 90‘ (17_ )‘yz_—s(X Y )yy
) f / [{ 5(X+X0)+( ‘-YO) tan ¢ }2+(Y Y )2} /s dXdY

¢ —i

By introduction of the expansions (3.13) the integration to ¥ may be performed. The term consider-
ed hecomes equal to

r , - @ an’_}( aﬂ a
. Z 1 ?
, i . X . If ] rO X
i . " ‘-:..,t/l o k3 ayn (X YO) I 8( Y) (Y ] ) I s X . (4-1)
w hé're-' i l
S (Y — )

I, = ; [{ e(X — X ) +(¥Y—%,) tang }2‘{"(17-‘”1’1,)2]‘1"2 d (4.2)

It follows by elementary integration. (reis. 1, 2) :tilat-

L—;__Y_o' Fo(X—X,) tan g n
I = CDQQ o (i)
T A =X P @ T T T =Y tang ) ¥ (Y=Y, TN
7 — (¥ ¥ tang + (X — X) " —-O(Fl)
T ( X (XX T (¥ — Vo) tang P + (¥ — V5% |, — N e/}’
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while [, turns out to be of order loge and /7, if n > 3 of order 1 in e. Since y¢ is of order ¢, the expres-
sion (4.1) may be replaced by

o o . . . . 3 .
| [y (¥ =X ) | I (26, X0) + 1, 20 (%) | (3, ¥, | ax, (4.3)

where the remainder R, (X, Y,) is of order ¢logs.
The function (4.3) is a funetion 'of g, denoted by F(e) and its behaviour for small values of = will

7
be investigated by determining F(0) and %ﬁ (0). This will be done for the various terms separately.
£ .
42 The term

— e [ (X=X, 3(XY,) dX. (4.4)
I
Substitution of the value for I, yiclds
— V¥ Y1
% “YC—O&T}—(L (X — X)) tang
. iU g 15
— / (X——‘Yp)[{E(X—Xo)‘l'(lr*YD) tantp}z + (yﬁyu)'z]l!g 5 yi(X, Y ) dX. (£.5)
if ¢ =0, this beeomes cqual to
2 'Yu(X Y o) .
P, /. X%, % (4.6)
. ) 17 '}.' )
singe 0< Y, <Y, and hence —[_?_Y‘i_l for Y=Y, and —1 for Y=0. The infinite integrals

in (4.5} and (4.6) arc convergent, since for large values of X, y, (X, Y,) iz given by eq. (3.8), where
Imv was assumed to be negative. ‘
-Performing formally the differventiation of (4.5) to ¢ under the integral sign, the result turns
out to bhe

*

(X —X)(¥Y—¥) . ho ,
/ [{F( ’_‘Yﬂ) _{_ (Y-__Ivo) tﬂﬂ@}a'f‘(Y——Iro)g]W’ 0 YH(XJ Xo)du . (4:7)

The integrand in (47) is a continuwous funetion of both variables X and =. Morcover, (4.7) converges
uniformly in ¢ for small values of ¢ since the absolute value of the integrand' is smaller than

A=t
i (X - X ) Ty |
X)y=—= S T I,
lu( ) (Y———Yo)z o }’V( Y YU) [
Since j 2(X)dX converges if Im v 15 negative, (4.7) is uniformly eonvergent in ¢ and the differen-

N
fiation of (4.5) to £ may he performed under the integral sign. (Compare ref. 4, Sec. 4.4).
Substitution of ¢=10 makes the expression (4.7} equal to zero. The second derivative to ¢ becomes
for ¢ =0 egual to

T X— XY eoste |1 )
SE TR R L (X, Y )X
PTTEE Ty 0

The region —1I to + { gives a finite contribution to this integral, while the contribution of the region
+ 1 to o is proportional to

» . _,X
Wl ¥ [ (X=X T ax =y, | B

i

v{l— X{]) p?

Vz

Substituting eq. (3.10) it is seenn that there appears a term, not explicitly dependent upon v and a term

inversely proportional to :}— Henee, when {(4.4) is replaced by {4.6) the error which is made consists

2

. . ) £ . vl
of terms of order ¢ or higher and of terms of order — or higher, where W= - s of the same
1]

v
order as —.
U
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33 The term o ' ;

jI {YE(Y, X,) — (X —X,) ay,, (X, 7,) }dX. (4.8)

-1

Substitution of the value for I1 leads to

x

/ (Y——Yu) tanq:-l‘e(X—Xo) },1? N Y)
__’; (XY —X)[[{ E(X—XU)"I' (Y —Y,) tan¢}2+(yky0)2] Pl . 'yg(‘ , Y,) —

(X — X, a“’ (X,Y.)

which, with the same reasoning as used in Seec. 4.2, is equal to

2 ye(X, ¥,) — (X — X,) a’“’ (X, ¥,)

— 2 sin p [ Sy aX.
e - Q i
Sinee
- 8}’1; .
/ Ty T Famay)
l{ X—.,Yn z—"'\[l __‘——_._FFBX L :0:
the final result is
‘ . Foye (XY
—2sing [ FT———XTdX’ (4.9)

' -1
2

L . . £
with an error again containing terms of order & and order — .
: L]

44 The remainder
e [ R(XY)ax

etlog e

containg terms of order =2log: and
o

45 Consider now the second term of the right hand side of eq.. (3.5). Sitee this term is due to
the left semi-wing, eq. (3.6a) must be applied which yields

’ [ (F—Y)yg— {e(X—X,) +2 ¥, tane} v
X —X)—(T+Y,) tang P (T Y7 %

dxdy. (4.10)

£
oy 2t

Since yy is of order  and since the nominator is always of order 1 (the theory is not valid in the region
2

. . . . . E
near the eentral section, where ¥ —¥, may approach zero), this term is cvidently of order & or -,
. @

exeept possibly for the part

0 =
' ] R v
— - . : X dY
2e Lo tan "_EEU[J ! (X —X)—(F + ¥y tanp P T (T = Ty 20
which containg a contribution of order ¢ cgual to
' Q
C 9.t f Yy ax dy.
e lotang (7 Y tamy + (T,

!(D)

The integration to X can be performed. However, it follows from eq. (3.9) that
v (pXY) i
_“T_{ YﬂdX_-‘g e + (X, Y) X_,

and sinee both the pressure and the vorticity vanish for X =0 , it js found that

X

f vy X = 0.

-t
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Hence the whole expression (4.10) consists of terms which are at least either small of order #* or of
2

E
order — .
w

4.6 Making use of the results of the preceding sections, it is seen that eq. (3.5) may be written as

2 (X, Y j-ya(x, V) : (ee 10gs)
: _— AL - E T o 2 3
drw(X,Y,) = cos?_-{ XX, dX —2sinp P e=5e dX + 0(etloge) + 0 .
or
, 1 [y X T csing [y (X,Y) (5210ge
NV me o | 0l gy TTF ) TR0 Mo log e . 11
w(X,, Yo el X — —— :{ T—g X+ e) + 0 ) (4.11)

Sinee y;=y, + yg sin¢ denotes the tangential ecomponent of the vorticity when this is decomposed
along the mid-chord line and perpendienlar to it, this equation may also be written as

w(X,, ¥,) =—

1 /*’ vl X, Y
2n | X—X,

AX + 0(e?) + 0 (Z—z) , (4.12)

although this form offers no advantage compared with (4.11) for further evaluation. This is due to the
fact that the solution must satisfy the Kurra condition, viz. (sec eq. (3.9))

]
wt, V) =—i [ (X, 7) d,
. i

where y, is not replaced by y:.

The second term of the right hand side of (4.11) is of order ¢ and hence disappears for & swept wing
of infinite span. It is seen that for this case the solution for y, is independent of the angle of sweep.
However, y, and the pressure then become proportional to cose. Henee, the result is obtained that for
a swept wing of infinite span all forces and moments are proportional to cosy. This is in agreement
with the wsnal method of decomposing the veloeity v into a eomponent + cos ¢ perpendicular to the wing
and a component v sin ¢ parallel to 4. The first component leads also to forces proportional to cose,
while the second component produces no reactions.- .

e21
The terms Oi order ¢*loge and og e in eq. (4.11) will be necglected. As far as the first term is
o
. 2 l
concerned, this involves that the aspeet ratio may not be too small. The negleet of terms of order Fge
W

involves the further limitation, that the reduced freguency neither may be small. In fact, it is known
that for the steady ease there exist additional terms of order ¢ eontaining spanwise integrations (sce ref. 2).

It may be concluded that these terms may only be neglected if o is larger than & Since o= -:i}— and

£ = (3? ) this means that, neblectm‘I the difference hetween I and 1(0) in these order cons1deratlons the

) . . v , .
reduced frequeney referred to the semi-span, viz. o should he larger than 1, for instance 3, in order

that the present theory may be applied. This limitation is the same for straight and for swept wings.
Finally, it may he added that the aspeet ratio corrections introduced by Remswer (ref. 5) for straight

. oo ¢ . . .
wings are of order == and hence vepresent for small » the dominant terms. Rmmsver finds his cor-

&
rection to become unimportant for larger w-values.

47 That eq. (4.12) stands for the true two-dimensional approximation can be shown in the follow-
ing way. .
n?Fhe vortex distribution in an allntrar} sectlon Y, of the wing is determined by the components
ve(X, ¥, and v, (X, ¥,). If it is assumed that these eomponents retain their same values also in all
other sections, namely for ~— o0 <y < w0, a two-dimensional flow is obtained. In this way the equation
of continuity is violated, since yg would vanish if y, is constant. This is, however, an effect of smaller
order (#2), as can be explained by remarking that the greatest contribution to the downwash at (X, ¥,)
is caused by the vortices Iying nearest to the point (X, ¥,). In this region the variation of v,
is unimportant save for its causing a ygz-compenent.
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If y¢ and v, are assumed independent of ¥, eq. (3.5) becomes by aid of eq. (3.6)

[ (Y —Y)y(X,¥,) —e(X —X,) cospy, (X, T) ,
4“"(“{“’1’“)—’3_.;{_[! XX T (T =Ty, P T (x—vq%m &

It has been shown in.See. 4.2 that if in the definition of F, the limits of integration 0 and i(0) arve
replaced hy any other limits, provided Y, lies between them, the error which is introduced is of order
e?. Hence, performing the integration to Y, one may write

Ao w(X, V) =« [ {TyelX,Y,) — (X —X,) cos ¢ Ly, (X, V) } 4X + 0(e2).

i

By substitution of the values for I, and I,, eq. (4.12) is again obtained.

The fact that yz now enters into the two-dimensional approximation, is duc to the unequal distance
of the components yg at both sides of the section considerved fo that section. This is the cffect mentioned
already in the introduetion. ’

4.8 A further point valuable to he mentioned is that, although the mid-chord line was used to define
the angle of sweepback, any other line of constant chord fraction might have been used sinee this also
introduces differences of order 2 —

Binee y¢ is of order ¢ and y, of order 1, the angle hetween the vector y and the mid-chord line is
also of order e This means that y, is equal to |y| with an crror of order % Since the angle between
all lines of constant chord fraction at the wing is small of order r one may take vy, along any
of these lines. ‘

Thus eq. (4.12) remains invariant within the relevant aceuracy for definitions of the angle of sweep-
baek referring to lines hetween the leading and the trailing edge of the wing. This invarianee does
not, of course, exist for the components ygz and y, . In partienlar, if' ¢ would eorrespond to the angle of
the trailing edge and hence y, would he parallel to the trailing edge, cq. (3.12) would simplify into
a [ (¥)

It seems, however, probable on physical grounds that the approximation will be best if ¢ is referred
to a line anywherc between the mid-chord line aund the quarter-chord line.

5 The solution of the integral equation,

The integral cquation (4.11) expressing the known downwash at the wing surface in terms of the
unknown vortex distribution at the wing and in its wake, contains the two unknown functions y, and
Yy These functions are related by the continuity equation for the vortex field

X
. a [ ; :
V(G ¥) = —e / WX, Y)dX, (5.1)

Sinee the solution p, of eq. {4.11) can be written as
Yy — (w® + Ayy) COS g,

where v, depotes the two-dimensional vortex distribution for a siraight wing, eq. (51) may be
replaced by

X
g _
v (K, Y)=-—ceos¢g g [ @ (X, VX 4+ 0(:2). (5.2)
2
-Neglecting again the term 0(¢%) means that vy (X,Y) bcecomes 2 known funetion. The problem then be-
comes to find a solution for Ay,, satisfying the Kurra condition and to determine the change in pres-
sure given by .
: X
Ap(X, ¥ .
J_—(—vi):—ﬁw(X, ) —i 2 [ Ay, (X, vyax. . (5.3)
P v
- .

By aid of egs. (3.8), (3.10) and (3.12), cq. (4.11) will now he written as




T 67

29 v o —WJ—Y
: . t4 — (X }-") T — iw /- e b
‘.‘1'71' IL(XD: Y o} _ CDS(p } aX + c08 ¢ ,r (YU)B ; A_Xr_——XU- X —
_jvi
; YE(Xy Y[)) R iw F [ #
— 2Zsing f Wdezslng.yE (L,Y,)e ! [ YTy adX (5.4}
“ 0 / — <

i i
Introducing

Yy =— ('Yucz) + Ayy) cos g,
T=(/T®+ A/ ) cos ¢, {5.5)
p == (p®+ Ap} cosg, .

where the two-dimensional guantities are determined by

DXV v Y e e 6T
'1 w EU(XG, 1") -—'—‘2 } WdX + .). ) "[)— l“ (‘)(YO)G i/ —‘m:dx\_ (5,6)
and subtracting eq, (5.6) from cq. (5.4), the result is
! F —iv;‘;
. ; A'YU(X.' Yn) iw /1 e ’ -
0= 2_':# X—XU f‘ (Yo}g i T:‘X,—n ax —

(X,Y,) v b

. 75 e . (w e- "
—‘-28111({1 7—~Y—' dX“—ZS].ll(P.YE (I, YD)B [m: dX. (5.7)

This equation can be solved in two different ways., Kither the sum of the second and fourth terms
will be put equal to —4rAaw(X,Y,) and the solution of the equation

X, Y,) +sine. v (X, 7))
¥_7X, o,

Ayy(
dzAw(X,¥,)=—2 t{ !

=1

(6.8)

well-known from the steady case, will be used or the sum of the third and fourth terms will be put equal
to —draw(X, Y,) and use will he made of the solution of the equation

!
lAYU(XJ :Yn) T i € i
= ‘Y.— —— o = = L -

! T—7, ax + 24 ” Al (Xy)e i{ XX, axX, (5.9)

drAaw(X,Y)=—2

whieh {8 known from the unsteady ecase,

The first method appears to lead to quicker results and will be presented hereunder, while the seecond
method has heen elaborated in Appendix 1. The first method has been used by Scrwarz (ref. 6) for
the straight wing of infinite span.

The solution of eq. (5.8) for which Ay,(I,Y) is finite, as it should be according to the Kurra con-
dition, is

| - . 2 l—X I+ X, ax -
A}'U(X, \.0) + sin P . YE (X, YO) :; l/T-ﬁ—_:Y— f XO, YU) l/l_ Y X OX (D]O)
g _t -

Substituting for —d = A w(X,, Y,) the second and fonrth term of eq. (5.7) the following dounble in-
tegral appears
_.irl )

I
N | ax
?é 1—X, [ X, ‘z”gxn_gx‘

t i

It has been shown by Samwakz that the order of integration may be interchanged. The integration to
X, can then be performed and according to eq. (A 2.7) the result is

FogT FENE
/ 7—X l/n——l @

B
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Ience, if the parameter ¥, is omitted, the solution (5.10) may be written as

14y - . - iw 1—X .
Ayy(X.)_ﬁ_? L?A/ —sing.yg {H ; e l/l+X y TI“'X I/n_ldqwsmgo.yi(l’).

(5.11)
Sinee
!
s = [ apdx
u?
integration of (53.11) leads by aid of the integral (A 24) to the result
_ f
— - Ve ! 2 . :
A = il A T —sing. ye (D) le‘“fgl/’”” _1%3 T dy—sing. /h()()dx.
. 1 EE s ntz R &
; 2
By using the integral (A 2.10) this becomes egyual to
[}
A= [i;—e’."’ § ’L']'fu(z)(w.) + I () t _ [} i'i-:TA [T—sing .y (D) t——-SiIlgoj re(X)dX
. 7] ?
: , 2
or
. ) -,
- il 21 g - 2ising e f
Af = e‘m—'*' ot i, (2)(m) + ]_[1(2) {(w) ’ S g . yx 1)y — J, 'L'ang)(m) + I, (2)([:,) 4 TE (X();lfé)

Finally, this is sobstituted into eq. (5.11), leading to

v

x -_4__.15 —_—
: . 2 sin p § 1 v n+1
sl =- TH, P (o) + H,D () g () — .i 7gl X}d‘Ya l/1+ X/ =x I/n_ld”—

— sing. y (). (6.13)

The pressure ditference follows by application of eq. (5.3). In the evalunation the following expression

0eers
_;Lﬂ N
2 l/q-l'l %dX]
r,wX 1;——1

L,
9 I—X [ e ¥ 7+ 1 ]
";?D/T—“F)?i p— [/g_zd"“ I/HX

It has been shown by Sowarz and, worcover, the derivation is presented m Appendix 2, that this
expression is equal to

g . —X
— i {1 H,® (o) + H® (o) } (—’2’- + sin~t —Xf) — D (w) l/ﬁ

The pressurc difference then turns ont fo be

!

Ap(X) sin ¢ 1 7 X
. ?ﬁys(l)_rl_"/ yEX)Xmzm( + sin- z)+
+- FH,® (o) =X, } ¥y 4 i v)dx| (5.14)
i, ® (o) + HD (0) T+ X f sing | vg(d) “T_,{ re (A f : .

In order to express the right hand side into two-dimensional quanmtles, use will be made of eq. (9.2).
Then

X X X X
ye (X) -i-i{_—/yE(X)dX:_seOSgo %f [y, Y)dXJri{)—f ] [ v ®(X, Y)aX | dX
2 2 el

e 2 [ .
————FCOS?—a—'Y-‘/‘ p( (X,Y)dX, (')15)

where the relation between p@® (X,Y) and 4™ (X,Y) is analogous to that hetween Ap and Ay, as
givenr hy eq. (5.3). ' '




In partieular
‘ i t R
v [ . dK@J ‘ .
Ty {1y +1 - j yE(X)dX— e 08¢ v {5.16)

-1

where K® is the two-dimensional force on the wing.
Introducing
. H,® (w)

P = e )+ e
' !
and using egs. (5.15) and (5.16), the pressure differcnces become finally

L € 8ill ¢ COS ¢ 1 X L 1—Pla) l/l_,X AR
Ap(X.T) = SEREEEE Z R e
X
+esin¢¢m¢%f PB(X, ¥)AX. (5.17)

s

{ !
In this formula, differentiation to ¥ must be performed at 4 constant value of X, i c. it gives the rate
of change in the direction parallel to the mid-chord line. By introdueing dimensionless coordinates

+ - ¥ ..y
XﬁTandlﬁl{)_.? . {(5.18)
one ohtains L
R S - |
oY Iy 'Y oX |
where s = _1_ ii—f—_ . - . ‘o
! dY

Differentiation to ¥ is performed by keeping X constmt, i.e. it gives the rate of change in the
direction of a constant fraction of the chord. :
BEyg. {5.17) now can hbhe written as

_ i . —Plo [
ap(X, Y)= _ Hnpe®y (T + hln_1X+ ) l/ 1 ai —_—t
z p) 1+ X b Ay
+ sin g cos p —- }—_J fpﬂ){x V)X — 1Xs p (X, ?)( , (5.19)
‘ [
where — <f<1 and — 1 ?\41.

6 Caleulation of force and moment,

6.1 If, in analogy to eqs. (5.5), the total force and moment per uniy span ave defined by

K= (K® + AK) cosy, , : (6.1)
M= (MD+ AM) cos o,

where M is the moment sbout the mid-chord point (with jvector in the direction of the positive Y-axis),
the quantities AK and AM are given by

‘n

AK_lf ApdX and a.M—Jﬁj ap. XX (6.2)
_.1 -
while
. 1 1 , :
E® =1 j p® dxX and MO =1 J p® X dX. (63)
f )
—1 -

Substituting eq. (5.17) into the formula for AK, the following reduetions can he made:




—

<]
-1
=

':r(l+ ]fp),

L

IR

|
j? s X4+ 1 F ‘”)[/

-1

/ j!xjpcw(x )X | a¥-- [iXepw( F)a¥ =

- 1

1 X

' ’ S - : e D g <2
L j p(X, DX | dX — 3o =L [ o — Ll QRPN S
¥ J ' ! ay 1 L &y 1 4y

Hence
_ 3 o 1P T2 M®
AI{(y):__IblngDCO.Sgo i - (l{Lﬂ " 1 dM__ E (6.4)
b e ay 1 ay

When caleulating AM, one has

T4 X4 i:‘i’ﬂl/l“f
2 ¥ 14+ X

1o

1

[

1

= 1 ‘ 1—F
- __9
dX—4n'(1 2 - ),

1
H,’ Y%*;?—l [pw(X Y)dX% axX — / IX2sp® (X, Y)dX =

o
h‘l

1 X
\ ) o L .
_d'_l /.% / X, Y)dX d§X2~%IC23=_—

dY 5 15
AR Kc23_l i g _{Sj(z):i' dE® 1 d’I_@
dv |2 2 [ 2 dy iz dy
where
» , :I'
I =] / @ X2 AX. (6.5)
-1
Henee ‘
AM(T) = leing cosg [(1 1o —P a® 2 d,[i?)}‘ (6.6)
4h g I dY

) F
Introducing dimensionless eoefficicnts by putting
K@ =g plv2e™ Gk, '
M@ =z p 22 6™ Gy, (6.7)

I =npt2eGi,,

where G denotes any degree of freedom (Al = translation, B = rotation, ete.); one may write

dRK® a4 ak
Ve “‘—u Gk)=rpl2e™{sGk, + k =+ osC ”)
ax ’ y k)= e ( Ay o
(6.8)
@ . "
dﬂi == g p [2w2e™ (2 s Gy + my —d—_{i + ws & dmg)
day dY de
@ . d
d{u =7 p Pr2e™ (33(}’59 R G dlg)
dY dY dw

- . . . Z
Important: Tt should be noted that if 2(Y) denotes the bending deformation, A 1s equal to T
It is now seen that the changes AK and AM arc partly due to the change of the amplitude along

the span (i(i) and partly to wing taper. Both effects make that the cireulation varies along the span.
7 : !

Consequently there will be written
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A ==p — et (k“z 3?: 3 ) S10 ¢ €OS @
(6.9)
3 .
AM —ap % 12t (m_u1 %_(;f: + my, Gs) Sin p COS p,
d
where again
di
L a (6.10)
I 4y
Hence
1 #_P

]l'.yl:ﬁ ? ffy'{_ 'nlg i

o i—p dlg " odmy,

}..g!_ﬁ—} o (?ﬂ +wdw)+(2??g+wdw)
(6.11)

"1
", =—1(1+ o 1= : P e, 24, %
L]
1y, 1—P dk ) d
mge"—-—ﬂ‘—‘i—“l-f-g - )(i.g+mwd_mﬂ)_~2(3% dz’){

The final coneiusion is, that in order to obtain the aerodynamic forces acting on a strip of a swept
wing, the original formulac (6.7) may he wsed provided the eoeffigient k, arve veplaced by

@ L1 dl

lsingeosy [ ) ;
_—— ]‘ —— g —— ———— CO8
( Y 1 4% ¢

(6.12)

with a similar medification for the coetficient g, .
For the degrees of freedom translation (A4) and rotation (B} of the whole wing,

the foliowing
coefficients should he substituted in the mght hand side of egs. [611) and in ey

(6.12)
Fo —e*—2P . iw

fig =P . fo

fy = —2P (1 + Lin) —in

my =P {1+ §iu)—% to+ Lo’

(6.13)

The coefficients i, and 4 are calenlated by aid of the expressions for the pressure difference given
in ref 7
Taking the pressure differences again positive in downward direetion, one has

; ; . . 6
Pa® = pr2%e™ A [2 Wt sin  —2 P eot u-zfl .

Using cqs. (6.5) and (6.7), while X = —eosd, it is found that
fa= 1 o' — P. iu. (6.14)
In the same way
P = pv’b‘e“"’B [— o’ in 8 cos § + 1o (cot —g —45in §) — 2P, {14 Lin) cot %} {6.15)

and i ﬁ~1’(1+ $ i)

Corresponding formulae for a flap hinging about
its leading edge and with a chord which is equal
to a constant fraction of the wing chord are pre-
sented in Appendix I1L .

6.2 A certain complication arises at the tip
geetion, where in the two-dimensional approxima-
tion the eireulation and the force ave suddenly

reduced to zero. Actually this reduetion is spread
over some distance inward from the tip, but the
difference hetween these two cases will bé neglect-
ed. Hence, in the formulae of Seetion 6 special
care must be taken of the tip section since other-
wise the vortices yg which are due to the decreasing

cireulation at the tip would bé neglected completely.
At the tip eq. (5.1} should he replaced by:




F2
ve (X, ¥) =2 [ %(X, V)X . 8( ¥ —10)), (6.16)
=

Lo L
where § { ¥ —1(0)} denotes the Dirac funetion, This means that at the tip seetion ¥ =1(0), v, is in-
finitely large in such a way that ’

1HO) + Al &
] ye(X, F)aY = [ (X, T)ax.
1oy = at 2 ' .

Moreover at the tip seetion the integral equation (4.12) should be replaeced by

SR .
w (X, 10)} =— ; f / ;X_%@i ix,
f 1 [}

sinee the vortices y: exist only inward, but not outward of the tip section.
Consequently, in the formulac (5.15) through (5.18), (6.4) and (6.6), the additional tip forces are
obtained by replacing the operator

by —36{¥--1}.

a d
-— "br 1 & Y—-l 0 or —=
5 D 38 { (0)} 5

'

Substituting eqs (6.7), the additional tip forec and momenti are

AK(1) = “m;;"s? glgp Gl + Glm, [ 8T —1),
Aﬂf(])z_lﬁ%“’ff?i {(1 +2 1;?) QB Rk, — 26, 5(F—1).

Hence, a concentrated aerodynamic foree of magnitude

Isin ¢ cos® ¢ G (1)

— . by~ mp L0 e (6.17)

as well ag a conecntrated acrodynamic moment of magnitude

. Isin p cos? G(1) ;
" ey My g p Bt e™ (6.18)
should be added at the tip section. _

Although the accuracy of the two-dimensional approximation decreases near the tip, it is eonsequent
to include the aerodynamic reactions {6.17) and (6.18). ¥4 may he cxpected, that their inclusion will
improve the approximation. .

7 - Resultg, of the preceding section. They are given in table 1

for a number of o-values and arc plotted in figs.
s 7T1—7.4. '
The coefticients ke . ke, ko, ko, Mo, M, M, 1t is seent that the real parts of the coefficients

and m_Have heen computed by aid of the formulac with subseript b hecome infinitely large if o ap-




Fig. 7.2, Coefficient %, as a function of « (b, =k 445",
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proaches zeto. This is due to the factor

in the formulae (6.11). For small values of o,
the P-funetion may be expanded- as

P=1+ ’iml(}gm + O(mz)

gl

and henee hecomes logarithmically infinite

. {2}

for 0. Since ky=—2 for w—> 0, the cocfficients
Jous Ko g, and my become also logarvithmically
infinite,

However, this does nobt mean that infinitely
large aerodynamic forces are cver introduced in
the ealeunlation. It should he remembered that the
present theory may only be applied if o is at least
cqual to e Since it will he clear from eq. (6.12)
that the new coefficients are multiplied by %,
that is by a faetor which iz of order e, it follows
that the additional aerodynamic forees arve deter-
mined by expressions of the type siﬁrb] for o > e
The real part of this force is plotted in fie. 7.5
for a series of e-values, from which it is scer: that
no infinitely large aerodynamic forees arise since
for w==¢ the force is given hy ehy =awks Which

F 75

general, of the same ovder of magnitnde. In this
transformation a small parameter £, denoting for
reetangular wings the inverse of the aspect ratio,
0eeuLs.

In the present theory all terms of order 2 loge

2 loge

and are neglected, which means that its

@

validity is restricted to wings of not too small
aspect ratio, which are oscillating at not too small
values of the reduced frequeney. For straight
wings there exists o term of order ¢ and the
usual two-dimensional aerodynamic forees are ob-
tained. For swept wings a term of order ¢ exists
and the resulting expression for the downwash,
which forms an integral equation for the vortex
distribution, is given by eq. (4.12).

It is to be noted that this integral equation
contains the spanwise coordinate as a paramcter
Y,. This same integral equation arises if the wing
would have infinite span and the vortex pattern
ot the section ¥, would be repeated in all scetions.
This pattern contains also a vortex component TE
in chordwise direetion, which would he absent in
the case of a real infinite wing. Henee, the ap-
proximation may be said to yield the correet strip
theory for a swept wing. The differcnce with a
stralght wing is that ye Dow eontrihutes to the

hecomes zero in the limit o Q. downwash.
EKp,
i I
016 €= 030~
MU [/-€2020
/ ~ £E=0.15
! \ \\ / £E=0.10
+008 H r N 4 £=0.05--
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Fig. 7.5, The real part of ¢k, as a function of w in the rogioh o > s,
1

8 Recapitulation,

By application of Bror and Savarr’s law the
downwash in an avbitrary point of the wing is
expressed in terms of the vortex distribution at
the wing and in the wake, The coordinates x and
Y are transformed hy aid of eqs. (3.3) into new
coordinates X and ¥ which at the wing are, in

The integral equation is solved by taking for +
L]

a known funetion; viz, the approximation given
by eq. (5.2), where y,® is obtained by aid of
strip theory for a straight wing, Using either the
solution of the integral cquation for the two-
dimeusional steady case or for the unsteady case,
the present equation can also he solved. The pres-




" F 76

sure distribution, ag well as the forees and moments 2, VooreN, A. I vaN DE, “The Generalization of Prandtl’s
then ean he caleulated, hquat:on for Yawed and Swept Wings”, NLL Repors

The final result is given by eq. (6.12). It is F.121 (1952).

seen that the sweep of the wing gives rise to two 3, VoOREN, A, 1. VAN DE, ©Generalization of the Dheo-
additional terms of which the first corresponds to dorﬁ‘eg Function $0 Stable Oscillations”. J. of the Aero.
the varying amplitude of the degree of freedom Se., Vol. 19, p. 209—211, March 1952.
congidered and the second is due to taper. The 4. Wiorraxer, E. T. and Wamson, G. N, “A Course of
effect of the add1t10nal ierms is maximum for 45° Modern Analysis”. Cambridge, At the University Press,
sweep. 1915. :
Numerical results for the new eoefficignts J’cg‘ 5. Rewssxer, E., “Bffect of Finite Span on the  Air-
and %k, are presented in table 1. load Distributions for Oscillating Wings”. Part T,
ot - . NACA Report No. 1184, 1947, '
Like the orthodox sirip theory for a straight por ! :
wing, the present theory should preferably be used 6. Sewwarz, L., “Berffhnmg der Drackverteilung einer
only if the rveduced frequency o is at least equal -harmomsa}} sich verformenden Tragfliche in ebener
\ : i ahr¢forse . 17, p. 379—¢
te &, whiech means that the reduced frequeney fg;%{nung Luftfahrtforschung, Vol. 17, p. A79—385,
. - . . vh
defined by aid of the semi-span (T) should he 7. Kisswer, H. G. and ScHWaRZ, L., “Der schwingende
1 e find . Fliigel mit aerodynamisch ausgeglichenem Ruder. Luift-
arger than 1, Otherwise finite span correetions falirtforschung, Vol. 17, p. 337—354, 1040,

(RrissxER) may become important.
8. HorsommEer, D. J.,, ‘“Systematic Representation of
Aerodynamic Cocfficients of an Osecillating Aerofoil in

9 List of references. Two-dimensional Incompressible Flow”. N.L.L. Report
. F.61 (1930).
1. Tramax, R. et LEMAIGRE, B, “La ligne portantc de )
forme arbitraire cousidérée ecomme cas limite d’une Y. MuysEHeLksHviol, K, L, “Bingular Integral Equations”
surface portante en fluide incompressible’”. N.L.L. (1546). Translated by J. B. M. Radok, Noordhoff,

Report F. 95 (1931). Groningen (1933).

APPENDIX 1.

Alternative method for solving the integral equation.

It is seen that eq. {8.9) is of the same type as cq. (5.6), which is'the integral equation for the
vortex distribution of an oscillating acrofoil in two-dimensional flow. The corresponding solution for
the pressure distribution is in the form, first presented by Horsommer {ref. 8), given by

. 1
@ (X 1 1 I+ X I+ X, i
) PE) ) :_? L {1 l/z+x [/ [ I/ran w(X,)dX, +
—i

0
8 X

) f\ (X, X”}w(XU)an] , (A1)

+2 (i +

where
r-xx+VeE_X Ve _X;
r_xx —VeE_XxVer—Xx;

When replacing p® by Ap and w by Aw, the solution corresponding to eq. (5.9) is obtained. Accord-
ing to egq. (5.7) Aw is equal to

A (X, X)) =13 log

m!v-—

sin ¢ ' ye(X) ;
Aw(Xn):fé—ﬂ— %, dX +'}’g(l X aX . (A12)
!

Substituting Aw(X,) inte the first term of the right hand side of eq. (A1.1), the order of
integration may be interchanged and by using egs. (A2.1) and (A 22), the result is

: _ . i . - - ’
I+ X, . sin ¢ e 1;+l -y
[ l/l__)[:, Aw(X)dX, = 5 /i- e (X)dX + Vg ‘(l)e ;[ (1——[/7]—_1) e dy

Using now eq. (A 210), one. obtains

{
{[/ﬂ—“zxw(xg)dx“=—~sm‘? H eax— [ Elivfinem ) +
-': Z—Xo

+ H,® (o) ] ve (D) { _ (A1.3)



¥

For the reduction of the second ferm of eq. (A 1.1) use will be made of the following relation for
A(\,XO) sec og. (A2.1)

o JTFR, s X
A(X"‘\'”)“l/l—X ?ﬁ{l/H\ x X g T Tz' (A14)

Substltutmn of the first term Jor A (X, X,) -and of the first term for Aw(XG} into the seeond term
of (A11);yiclds. ‘

X '
(L L A D el

The order of mteg-mtmn to X" and X, may again he interahnnrred, t.hns obtaining

i i
sin ¢ / v U( L+ X, jg [/th' dx’
R I—X, X" ——X I+X X, —X

. l Xm,'] dx”. (AL15)

. ! .
.3 - .

(“‘omlder now the integrations to X’ dnd X, It X wonld be equal to I, this wonld mean intearation

over the square. The dotted lines arve the lines where the integrand is singular and where a Canchy

xO
P .
Ve '
//

Xp-—— o — —— —— 7F5——-'—-‘

i o S ! s n

v
e
/ '
7
e
E/ f

-4

prineipal value must be taken.
partienlar difficulties and the result is aceording to eqs. (A 2.2) and (A 23):

E

A

X

It i seen that if the integration to X7 iy performed first, there are no

XI

!
fl/t+xo j [ 1—-X
/ I— X, X” X, 1+ X X,—X

dX ==

It the upper boundary of the integration to X’ is not [, but X, and it X is smaller than X7, the
order of integration may be interchanged since the pownt P is not contained in the region of inte-
gration. By partiul fraction and nse of eq. (A 2.1) it is seen that

: o o
j{ l/l‘-+ X, ’ X, —0
- I’—'Xo (A — X)) (X, —X) T

If, however, X is larger than X", one should write

L+X0 , f f T dx’
j{l/ ——X ’ TT v x—w

and thig is eqnal to —=2 Hence (A 1.5) becomes equal to
. . L X f Lo

T sinp f ve (X7) dX”.

-1
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The reduction of the double integrul is known as the Porvearé-BERTRAND theorem and can he found
in ref. 9.

1f the second term of Aw(X,) in eq. (A 1.2) is substituted into the second term of eq. (A 1.1), it iz seen
that X is always amaﬂei than X7 and therefore the ehange of the order of integration is allowed. The
result is

fred

sne o [ ot 11 = A P
211' Y? (I)G [ [ I/t_}_X’ ; f l/l_X X”"XO)(XD—X’) dl. (E-X f—
%lll(P K4 —i*l:v)(" XH + l X7 )
= 143 (l)ﬂ f e T X1 , f I/l+ G X” t ax".
{

Tinally, substitation of the remaining terms of eq. (A 1.4) into eq. (A 1.1} yields by applieation of
(A1.3)

!

T . X Siﬂ«',p il 7l jw § o @ } @ )‘I t
(? + sin-t T) : ] { ye (X)X — [u—? {IL,® (0) + ILD)] | 76 { -
Henee, it iz obtained that
' x
fA X, Xo)w(Xa)dX :H?smcp f yE(X”)dX"
ine e fos | EED| [ | A e
+ 7 Yz (be /e ' X _ 1 l-{-X’ X” X7 _ X' dX"” 4

I

+ (%+ Gin-t _);L) sin ¢ ’ j yE(X)th— [ﬂ______z_ o g [T, D (w) + I3 (0) ! } YE(E) l (A 16 |

. a . . . . .
Applieation of the operator —;—-}- >d to the first term of the right hand side yields

X

) . " gy |
— - sing ’YE(X}+z%jt y(Xmyaxr |,

which aecording to cq. (5.1D) is equal to
X

TE ¢
—_— & —_ X, V)dX. 19
3 o0 sin ¢ cos ¢ al,fp (X, ¥HdX (A1)

U
Application of the same operator to the second term yields
f

- Yy
Hlnzp 1— X f e ] H_X”‘i‘l
= "L axv
MO == | S o
¥ g it |
.V — X' e v X+ 1 . . ,]
[V e | ]

whieh is according to eq. (A 2.10) equal to

A X
S‘““’ myg (D™ [—m Vi, ®(0) + 1,2 (o)} ( '+ sin—" i);mgm(m) [/ (A18)

l I+ X

Finally,

vy 8 (T .-_1£)_-L(1 x-_lX) 1
(%»U_I_FX_)(Z-PNH AR U R Y R Vi o (42.9)

Using eqs. (A17), (A18) and (A19), one lhas
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! X

. a ’ - . a ) >
g(tl_{. X)jt A_(X,X(,)-w()(",)dAU:%—%suwcos?ﬁj PEX, Y)dX —
Sil’l;o “ fig s 1
— g my (Wi I, (o) z+ r +bmfe( + sin- —) !v;,(l) +
l .
_ : A
+‘°‘Z‘f 7 (X)dX l l/;zm X U 75 (X)dX — {*“% ?*ffo@>(u»)+ﬂf”(m> J ?z(”f-
]

By application of egs. (A 1.3) and (5.16), it follows that

Ap(X,Y) i & singeosp ET )I/ I/E-Fl A<D
v 27 v (o H—X oY

— M 3 + gin-! £ I ® -+
Tpv 2 A l/t2 Xz ¥
x -
& . g blll:p 1—X
—_— § i ——— (2 L ! sl
o+ Usumcnm,o BY:{ p¥ (X, YidX + !T(w) I/Z+X +
I4 X i sin sing i I—X
@ @ IR .
-+ I/I—H‘Y %ff (o) + H,® (o) t?z(i | BEERE: () e I, (w) 1/1+X
Isi - .
- E‘,T/';:i(P_X?gw Vi H O () + I1,® (u)) ye (D).
E ¥
Sinee — 4 I/;:“é Vi =13 I/—g—_i_—‘%—, this can he written as
Ap(&, Y) 1 eSingeosg , [—X K@
TS i Atk S L P QR e —a— —
[y 27 po !+ X Y
X
= smgpcow fr o, X ) oK®  csingeosg @ [ pEO(Y Y
R b + sin T ay -+ o v P, Y)idX +

—~1

f7(0) —11 1/%:—?(;‘”{”10@(@) + U, D) fy () +

s sin I— X B f
+ ':‘.-?"ip— Vﬁ e‘”.z[[od) (m) YE(L)

8N p

With

L =i H @)+ (L) — i, D ()
To) — 1 = —— =0 ! = e Y 9 ply) =11,
() TH,® ) + H,® () 1 T, @ () + 1,5 (w) PP () -1
the final result is
: 81 p Cof X —r — (D
Ap(X. V) . ESipeosy | o .'-‘— 1 l m)[/L X | ok
P Y) = — e 5 s I+ X ey
. o T
+ esinpcose AT @ (X, ¥)dX,
i

.whieh s identical to ed. (5 17).
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APPENDIX 2,

Some integrals.

{ . -
1°. By putting tau';%i:Z, one has
: . }
: ! i
s dy, tan % dz 1. z -+ tau;} ten
T = = vg ‘ -
i —=1
f COS fp-—eos [ sind % 2 cog? % sin ¢ s —tan -5
1) [ = a
sin bt
1 2 i
s log e g g
¥ sin - ¥ n ¢
2
Hence L
T ' ¢ N I+ ¢'
o1 0% ) 1 cos Cos
[ ISy [ g+ [ T gy I ),
. coz-: Yo COS - ;g vos Yy — COS sin ¢
- Substituling
. XX
U 50 - I- H 5 'r’ - l
¥ S
l-—-X d.X T X I —X,
= - AN, Y,
jL/3+X Y,—x g s 1+L/3+$.(’)
where A (X, X)) s given in app. 1.
In partieular, for X =1
ax . '
, = L —{<C X, <y
fb/¥+x X -x - ! <SS
sinee A vanishes if X ov. X, is cither" -1 or 1.
By replacing X by — X and X, by — X, in eq. (A2.2)
L/q+X (gt r i <X, <L
" : e b "
2% By putting tan ?__é, one 'hd!a
v¢ e
A, - 2 ——1
,—L == fay! gl/ ik tah — 1E > 1.
0 - cos iy, Ve—"1 . | a+1 z
Also
¢ L4 ¢ :
1+ cosy ] / dy, I/a-—l [/a—l
— " dyy= I, — (10— 13 G L PR | Wiﬂll“ll
Oj a + cosy, Yo p o — (i ) i et cosy, i a+1 7 e+ 1
o . . X
introducing again cos ¢ —— T 6= »g—

X
s _F il 9
=3 -+ sin 3

] I/ tan—! ”/’?_l
z+X q—x B n+l

I+ X
1—X

e

(A 2.1)

(A 2.2)

(42.3)

Lan —g( .

(A 2.4)
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In particulier if X-—=1{
!

/' I—X  dX l/;,_z o
——— —— — =g {1— {A25)
A I/z. TX 3-X ; S
amd by replacing X by ~-X and 5 by —y
i+ X dx ( I/ n+ 4 i L
— 1— : . A 26
jl/z_x T—x= it — (A26)
3" By partial fraction and by using egs. (A 2.3) and (A ?_6)
tfl/!-{—X dx _ jgl/wx IR S O
h—HEX—X,)  g—X, I—X 1,—_){ Y—x 7
. Sy o
““n—Xf.l/n——l' (A2.T)
4" Using Huuxe’s formula |
/ e~ WCE (1ol né dé = —Z— L D ()
0,4‘ -
one Linds by substititing 5 = 1§ Cosh § .
e
] v dv)_—-—zh'“( o), (A 2.8)
; [ _e:—,n'
e T
F Ry — U €3] . 2.(
z! |/‘)p2——£2 (17)—— 5 1[1 (m). (.E\ J)
Llence
x 7 v .
1 / I/” R dy=— =i 1D () + 1,2 () | (A 2.10)
I 'q——ﬁ 2
; _
5“. l.ct,
FX) - - 2 ’?“’ - A2l
F(Y) == J+X ] V?_X ,,._J,d"' (A 2.11)

R

LV o . X . . )
+ Then ¢ o ] INX)ydX iy, after ehange of order of integration, cqual to

U-siu-g wgs. (A24) and (A 2.10), this hecomes

I

] v — '
. ity
LA B [/’? Fldm g X [/ ~ tan l/
ST p—1 12

o v I X . ‘
_ 2 iv j e-—#;—"l 7 + 1 ! I-"__X (IJY ‘ d'q'
U q—11 I+X 5—X
[4 -1

n—l LFX ) g
g+ 1T=-X

- , X C i y—1 1+ X
o [, ®() + 1, () (2 sin T) + ‘;" f e tau—ll/Z—JrT.Tj d. -
. 1 .
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The last term iy reduced by partial integration and thus becumes

4 n—1 1% X, —iyH
-——;f tan l/———*n+1 l——Xdc

{

4 e'i';‘" 1 ' l/z+X 21 2,
T 1+nmz 1+ X v_-z Y (g D2
| g+l l—X 7]+.l
41 T x [ -igen 1 dy
= —x J ¢ I+ X -
i T +D+ (=0 —% V@t
\ 2 —L—v—” d
=ZVe_x) £ _ 1
7 Cog—Xx Vp—E

Since

l/gz Xz H—Xl/l—-X ntl (1 q_x)l/z_x nt+1
P LY "p—1 " g+l I+ X g—1

this may bhe replaced by

| —~F(X)—~g (=X f (iq——ﬁ’(‘()+111() (w)
Henee
r v 3 - ' 2 e ‘ ay
F{X) +1 7;{ F(X)dX = + dw i H,D(e) + 1,2 (o) } (2 + sin-t — . E+ Y ,
' (A212)
where #(X) is given by eq. (A211).
APPENDIX 8,
Forces and moments for a swept wing with flap.

In the case of a flap hinging about its leading edge the degree of freedom € = rotation of flap
relative to wing should be added and the moment N of the flap aboeut its hinge axis should be calen-
lated also. It will be assumed that the flap chord is a constant fraction of the whole chord.

The new coefficients kc], k":’ m and M are again defined hy eqs. (6.11). At the right hand side of
these cquations one should substitute?!)

rhe =—2P (3, + }i0®,) —iu®, + }° B, .
e — P(®, + Jivd,) — &, dio (b, — &) + o (B,—B,), (A8.1)
Mo =-— P (D, + in®,) — B, + b0 by + 02 Dy,

The formula for mi, has been caleulated by aid of the pressure distribution p.® as given in ref. 7.
Analogous to eq. (6.1), the flap moment ¥ is equal to

N = (N -+ AN) cos . {A32)
If the flap leading edge is at X ==X, =—cos, it follows that
‘1 .
AN =P j Ap. (X — X)dX. (A3.3)
X

1) Some of the ®-functions have been defined and given in numerieal form in ref. ¥, while the others are defived in
oq. (A 3.13).
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Substituting formula (5.19) into this expression, the following integrals will be used in the cvaluation

1 ' X,
. _ —_ J— —_— e = < ‘
f (%+ sin! X)X — X )dX = §r—aX, + L X + ( 2

!
}

[(X X)f_—.zfp@()( V)dx| aX — f (¥

X ) X
1 X 1
I‘;_ j U P (T Y)JX((J(}XZ XX —1s | pO(X, T).(X — X2 dX —
“* a X
1
—IsX fpw (X, V). (X —X,)dX =
X -
— . dK® — (dK®  dR®\ . 4 J® — . dR®
X)) et 3 A — T et X T
G—%)- 5 : iy ~ dr ) e ANy
_ S gm0 8K N® == (} X, + 11X KD 1 AP 5K g
2 l Chhay e 4y !
where
R =1 f PpOIX
= }
1
N® = 12f PO (X — X)X,
by
JO —=p / p® (X — X,)2dX.
"1—.1
Henee .
AN —: ]SIHPGOS? [‘ + Xz _(l_{_ ‘il_:ﬁlz) Siﬂ‘j-:)("lﬂ—
4 2
—_ Vi _F-: P;_]_. .147_4_1(1 ) 1Y, —
41_X 1 X+ Tty o 2+X sin—' X,
Ai(l‘-i- l?{) Vi % ;]z dE> 1 WP g oye |,
™ 2 dY 21 dY

Making use of the first equation (6.8) and of the forms
. N("') ﬂpzz e ”JG%

dJ(?b___ . M( a@ djg)
'—C—i?-—fﬂ'pl'v 3?ng+jgdi_+ de

and introducing in analogy to ecgs. (6.9) and (6.10)
3 . (‘
AN =mp _lb_ Uzem("ﬂlj-"yi_l- nngs) sinnpeosyp
it follows that . '

Mg = {f (X’l} +

) gk,,

X)X sp® (X, })dXﬁ

%) sint X, + %Yl V 1— X2,

1”‘_'_ e e . e T E———
[ l/ (XX IR = —lr—}aX, + G+ X sin X, - (1+3 %) V1 xs,

(A 34

(A 3.5)

(A 3.6)

(A 3.7)
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(lm

=0+ S E [ (o B) (50 %)~ X,

du

. . i
where \

4
The eocfiicients k., % and k; have been given in egs, (6.13) and (A 3.1), while the remaining eoeffi-

elenls are equal to

Ty =—DP . t0d, + § o P, :
=P (1 + Lio) By —dia®, —} of (B, — ),
TRe=—DP (O, + Ll ®,) &, — O, —It0d, + LD,
mii==  Pio®, + '8,

wiem P i) @ — i (B0 R 20,) Hut by,
o= P (@ bie @) By F B+ de @, F ol By

¢

(A 3.9)

] i
The coeltficichis ].-t,,l, kc:’ Me s Mo, Ny My Mo, Mo n'cl' and e, have bheen computed for a flap chord
. H .
which is 20 % of the wing chord, 1. e. X, =0.6 and r = 0.2, Results have heen presented in fable 2 and

in figs, A3.1 to A35,

Similarly to the eoncentrated forees acting at the tip seetion, which have heen considered in Sec. 6.2,

there exist also concentrated forees at the inmer end ¥, and the outer end ¥, of the flap.
The reactions at ¥ —=1Y, are given by the following expressions

1* & eoncentrated acrodynamic force of magnitude

Isingeos?p  C(Y,) ;
T— hc; 2u T p.l’v2 e™,

. i
¢ ‘

SR
- 2" a concentrated aerodynamic moment about the wing mid-chord point of magnitnde

N .

Lsin ¢ cos? ¢ C(Y.)
-— ——‘"—bm— ﬁtcl

wplz’u? 6“‘,

3" a coneentrated aerodynamic moment about the flap leading edge of magnitude

RS Isin g cos® ¢ C(Ys) -

- , 2,2
5 e pltvie

vt

{A3.10)

(A3.11)

(A312)

The reaetions at the inward end of the flap ¥; arc obtained from eqs (A 310), (A5.11) and (A 3.12)

hy changing the sign and replucing €(¥,) by C(¥;).
_‘I[’ Yu=1, the concentrated moment,

Sy
K §

(A 3.12) should .;be replaced by

o lsingcos?e G{1)
—E T Mg

‘n‘plﬁ p? 81”,

i

where the summation should he performed over the degrees of freedom A, B and C.
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Fig. A.3.2. Coefficient m, as & function of & ‘(m = m/ 4 im /).
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Fig. A.3.3. Coefficient n, #s a function of w (B =n/t+in").
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Fig. A, 35, Coefficient #, as o funetion of m (-?Ln: nt4in ).
Definitions of new &-functions.
B, {y) _—:%Si“ﬂ?’r
®,5(¢) == {sin’; cos g,
D) =1 {r—p)eosp T+ 55 sing (12 + cos®p + 2 cos’yp),
Fpulp) =—(r—¢) (1 —2cosp+ 2eos®p) + $sine (1 —2cose) (4—eose),
B, () = (m-—¢) (3 + cos?p) + L sinpeosy (13 + 2 cos?p), {A3.13)
Pe) =4 (r—¢) cos¢ + gl sing (8 + 9 cos®e — 2 cos'y),
B lp) =F(r—g)sing {1 —eosp) {1 —2co5¢) —F (1 —cosp)® {14 cose)(2—ecose),
Do) ==— (m—¢)?eosg (1 + cosg) —F(z—¢) sinp (1 + cosp)?(2 + eos o} —LsinZp (1 + cose) (2 + cos?y),

Dyylp) =3 (r—¢)%cos ¢ {1+ 2eos%) + 4 (r—-p) sing (1 + 7 cos®p + cos'y) + } sin®pcos ¢ (2 + coss).
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TADBLE 1.

Acrodynamic coefficients for swept wing.

’ L
Ny~ 70y

@ K, kg, Ky, ' Ky, ' I l by L, Ky, gy g, i, ¥y, ]n:,ﬂ ey, iy, } my,
’ I [
0 0 ) + w — 314159 0 0 l+ w — 314159 0 0 — w + L5T080 01 0 — w + 1.57080
0.1 - 030456 ) + 016238 |+ LT7R345 ) — 2.82280 ) 4 054101 | + 0.209200) A 075963 | — 2.13512 1 —0,15065 | — 052279 | — 131262 ) + 152680 | — 028027 | — 0.13844 | —0.32030 | + 1.09914
0.2 + 0.39212 | -+ 0.08067 | + 0.61330 | — 1.84752 | + 0.62162 | 4 0.04508 E—l— 0.16941 | - 0.90663 | — 0.20992 | — 0.11310 | — 0.68237 | + 0.98169 | — dl“)’.Ml') — 0.07947 | —0.02471 | + 047226
1 + 0.40228 1 + 0.01934 | -+ 0.28128 | — L.23154 | + 0.h9591 | 0.04225 ’+ 012834 | -— 036731 | — 021679 | — 0.10942 | — 0.49220 1 + 0.65505 | — (]|.3QTGB — 0.05652 | — 0.02346 | + 019992
0.4 - 0.39121 | — 0.01750 | + 016484 | — 0.86179 | + 055734 | — 0.08186 | 1+ 0.13679 | —0.08125 | — 0.20860 | — 0.11624 | — 0.42141 | + 045089 | — q.2795)‘2 ~— 005815 | — 0.05421 | + 0.06172
0.5 + 037553 | — 003880 | + 0.11640 1 — 0.62103 | + 0.52355 | — 0.09839 f—i— 0.13082 | 4+ 0.10321 { — 0.19419 | — 0.13004 | — 0.39163 | -+ 0.31112 | -— 025110 | — 0.07219 | — 0.08199 | — 0,02151.
0.6 + G.86020 | — 0.05113 | -+ 0.08122 | — 0.45227 | + 049663 | — 010385 | A+ 070445 | + 0.241658 | — 017644 | — 014807 | — 037818 | + 0.20820 | — 422280 ~— 0.09248 | — 0.10325 | — 0.07%44
.0.‘7 + 034608 | — 0.05791 | 4+ 0.07355 | — 0.32641 | + 047560 | — 0.10391 },-!- 0.05986 | + 0.35675 | — 015628 | — 016871, — 0.37191 | + 012758 | — q.19479 —0.11603 | —0.11915 | — 0.12453
0.8 4 033487 | — 006140 | + 005728 | — 022764 | 4 045913 [ — 0.10136 f 0.00055 | 4 045900 | — 0.13404 | — 0.19096 | — 0.36902 | 4 0.06124 | — q.] 6656 1~ 014129 | — 013110 | — 0.16250
09 + 032481 | — 0.06285 | + 0.03989 | — 014677 | + 0.44611 | — 0.08759 t—,0.0T‘J’H] -+ 055306 | — 0100974 | —0.21424 1 — 036780 | + 0.00447 | — Ul..'l 3761 | — 016745 | — 0.14024 | — 0.19628
1.0 + 0.31645 | — 0.06305 | + 0.02031 | — 007826 | + 043571 | — 0.09327 ]_ 0.16196 | + 0.64326 | — 0.08336 | — 0.23819 | — 0.36744 | — 0.04559 | — OI.] 0751 | —0.19411 | — 014737 | — 022748
1.2 + 0.30308 | — 0.06138 | — 0.02698 | + 0.03470 | + 0.42045 | — 0.08462 | +— 037124 |- + 0.81385 | — 0.02417 | — 028728 | —0.36780 | — 0.13248 | — Ol.()4287 ~—0.24788 | —0.15756 | — 0.2853H
15 + 0.28924 | — 0.05685 | — 0.11935 | + 016949 | + 0.40607 ; — 0.07299 | — 0.76717 | + 1.05792 | + 0.08145 | —0.36233 | — 0.36904 | — 0.24334 | + (1.06800 — 032856 | — 0.16688 | — 0.36646
TABLE 2.
{ Additional aerodynamic ecoefficients for flap of swept wing (»=—=0.2).
o k, ke, ' ke, ! ki ng, g g, g, i‘ ny, ‘ Ny ‘ M, L n g, ey ’ ¥ :,2 [ ng, ), tiy, ey gy
0 + w — 172731 + w — L7273 —w 0.86365 | —wo + 0.86365 |10 0 + o ! —0.01997 : + w — 0.01095 0 { 0 + — 008997 | + @ — 0.01088
0.1 127912 ) — 170475 1.02194 | —1.86171§ — 072019 ] 090062 | —0.23127 0.71524 1600174 {—0.00037 | -— 0.00284 —0.01747 — G.00049 | — 0.00948 | + GHOO316 , + 0.00015 | + 0.00684 | —O.G1251 | + 0.01758 | — 0.00679
0.2 (0.58090 | — 1.11370 0.60014 | — 0.69049 | — 0.34403 | 0.61201 | —0.01581 0.38811 | | 0.00224 | —0.00194 | -— 0.00870 | — 0.01197 © — 0.00401 | — 0.00577 |+ 0100372 | — 0.00163 0.00310 | — 0.00513 0.01565 | — 0.00153
0.3 0.37211 | — 076613 0.53440 | — 0.38327 | —0.22380 | 0.43871 |+ 0.01240 0.2483 0.00252 | —0.00324 | — 0.00991 i — 0.00975 —— 0.00479 | — 0.00381 l + 0100395 , — 0.0028Y 0.00219 | — 0.00179 0.01441 | + 0.00160
0.4 0.29550 | — 0.55446 0.52240 1 — 0.21564 | — Q17566 0.33224 0.01172 i 0.18244 {1 0.00292 | — 0.00433 [ — 0.01011 — 0.00915 — 0.00494 | — 0.00276 1 + 0100437 f — 0.00386 0.00035 ] 4 0.00019 0.01406 0.00398
0.5 026375 ) — 0.41045 051842 1 — 010615 | — 01533 0.26223 0.00683 0.14809 || 0.00353 | — 0.00529 | —0.01007 | — 0.00936 ' — 0,00490 | — 0.00217 | 4 0100505 | — 0.00472 | + 0.00027 0.00167 0.01372 0.00607
0.6 024845 | — 031764 051444 | — 002419 | — 014191 ] 0.21325 | -+ 0.00210 0.12884 i 0.00437 | — 000618 | —0.01001 } —0.01000 — 0.00483 | — 0.00182 ‘ +0 00597_ —0.00553 | —0.00106 0.00293 0.01338 0.00804
0.7 0.24254 | — 0.24470 050023 + 0.64315 ) — 013551 | 017714 | —0.00185 (L13765 |1 0.00544 1 —0.00704 | — 0.00998 | —0.01088 - — 0.00475 | — 000162 ] + 0100714 | — 0.00633 ;| — 0.00263 0.00408 0.01302 0.00593
0.8 0.238491 | — 0.1876n 0.50279 0.10191 | — 013468 1 004938 | —0.00511 011115 ‘ ; 0.00673 | —0.00787 | — 0.01000 | — 0.01 91 | 0.00468 | — 0.00150 | + 0100852 | — 0.00712 | — 0.00444, 0.00518 0.01264 0.01178
0.9 023673 | — 014122 0.49530 075525 | — 012923 | 012728 | —0.00788 010759 | 0.00824 | — 0.00869 | — 0.01007 | — (.01304 | — 0.0046F | — 0.00144 | + Q01012 | — G.00792 | — G.00647 0.00623 0.01223 0.01361
1.0 0.23512 | —0.10219 0.48692 0.20494 | — 012758 | 010917 | —0.01033 0.10597 j1 0.00997 | — 0.00950 | — 0.01018 | — 0.01422 | — 0.00456 | — 0.00142 | + 0101192 | —0.00871 | - 0.00873 0.00726 0.01180 0.01542
12 0.23219 | — 0,03873 0.46780 0.20721 | —0.12549 | 0,08093 | —0.,01472 010642 |1 0.01405 | —001112 | —0.01053 | — 0.01670 | — 0.00448 | — 0.00144 | + O{.O.l 614 1 —0.03033 | — 0.01384 0.00927 0.01085 0.01899
1.5 0.22660 { + 0.03513 043377 042512 1 — G.12358 | 0.05047 [ — 0.02090 0.11230 [ 0.02169 | —0.01354 | — 0.01131 | — 0.02057 { — (.00439 | — 000157 | - Q023495 | — 0.01278 | — 0.02345 0.01221 0.00918 0.02429
E _
kg =l 4k
oy =my o iwy
| ™
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C.CL, Class. D410

REPORT F. 155,

Tables of the Aerodynamic Aileron-Coefficients
for an Oscillating Wing-Aileron System in a Subsonic,
Compressible Flow

L. M. DE JAGER.

Summary.

This report prosents numerienl results for the werodynamic aileron ecoefficionts of an oscillating wing-ailoron systee,
where the aileron hinge axis coincides with the nose of the aileron. .

The complete set of the 5 complex coefficients is given for the Mach-mumbers ¢; 0.35; 0.50; 0.60; 0.70; 0.80; the
reduced frequency being equal to O (0.1 1.0 and the chord ratio equal to 0 (0.02) 0.1 (0.05) 0.3.

Contents,

1 Iatroduction.
2 List of Symbols.
Table 1 Comparison of interpolated values and
exaet values for 8 =0.
Tables 2—5, 7, 9 TInterpolated results.
Tahles 6, 8, 10 Basie results.

This investigation has been sponsored hy the
Netherlands Aireraft Development Board (N.IV.).

1 Introduction.

The purpose of this report is to furnish numer-
ieal data for the aileron coefficients k., mg, 1,, M
and n, for various values of the ratloc r of aileron
to total chord at b assigned values of the Mach-
number and 10 values of the reduced frequency o
(for the definitions, see Sec, 2),

In Nldrreport F, 151 numerical <ata have heun
presciited for the aerodynamie coefficients inelud-
ing data for the ailevon ecocificients with »==0.1;
0.2 and 0.3. These data were obtained by aid of
the theoretical work of Tiay and Vax o Voorex
and the numerical computations, performed at the
Mathematical Centre and the N.I.L.

The results for r==-0.1; 0.2 and 0.3 with 8 =0;
0.35; 0.50; 0.60; 0.70; 080 and o=0(0.1).1.0
have been used as a basic set for the interpolation
toward r; »=002.{0.02}. 01 and -==0.15; 025
Using the formulac of the NLL-report B, 54, k.,
Mg, Rg, M and mn. have Leen expanded for small
values of . The results are:

ke =7 %{a,+a, 7+, 22+ )
e =1 l’é(bo + b]‘r + szz =+ )
e = 2% (¢’ cyr F e, L)
iy :‘rg-]ﬁ(da“{‘ dl‘r + d2 7% 4+ ...)
e =712{¢, e, 7+ e, v+ ..,

where the coefficients «,, «,, b, ete. are rather
complicated functions of 8 and ». Only the coeffi-
cicat ¢, is given by a fairly simple expression viz.

o — 1
! E)

These expansions justify the interpolation of
kg Me Ty Ty
method of the central differences. Because the
derivatives are available for three values of r, the
secend difference in the interpolation procedure
must be kept eonstant. .

This interpolation procedure has heen: carried out
as a check for =0 and o==01; 0.7 and the
results appearved to be in cxeellent agreement (sco
table 1) with the exact values, caleulated by means
of the formulac given by Kissver and Scirwarz
(see “Lufttahrtforschung” 1940 Vol. 17). Hence
it secms certainly justified to wuse the ahove-
mentioned interpolation proeednre also for 8> 0.

The numerical computations have besn: performed
at the N.L.L. under the direction of Mr J. G.
Wourers,

R, .
and -—% by means cf the
T

2 List of Symbols,

K = np,lv2e™ (Ak, + By + Cky)

N = np, 2v2e™ (Am, + Bwy + Cme)

N = mp,l0%e™ (An,+ By + Cng)

K = aerodynamic foree of wing -+ aileron;
positive downward

M == aerodynamic moment of wing + aileron
abont mid-chord point, positive tailheavy

N = aerodynamic moment of alleron about hinge

axis (== nose), positive tailheavy
air density (in undisturbed state)

fi

Po



(T

I

F 40
semi-chord
speed of tlight
' ]
Mach-number, ”
‘frequency of vibration
. vl
redueed fregueney, -

ratio between aileron ehord and total chord |

il

amplitude of translation in midchord point,
positive downward

amplitude of wing rotation, positive if
trailing edge iy downward

amplitnde of aileron rotation, posilive if
trailing edge is downward '
real part of %

imaginary part of k. ecte

- Completed- July 1954,
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TABLE 2. Coeificients for »=10.02,

’

”

w e L kS e J- N’ , Ty i

B=10 0 — (0.3589 0 ) + 0.0046 0 0 0 — 0.00004 0 — 0.00022 0

01 — 0.2988 0.0606 — (0.0253 —10.0313 0 0 — 0.00003 ;| —0.00001 | — 0.00022 0

0.2 — 0.2615 0.0654 -— (.0440 — 0.0347 0 — 0.00001 | — 0.00003 | — 0.00002 | — 0.00022 0

0.3 — 0.2393 0.0610 —0.0551 | —0.0334 0 — 0.00001 | — 0.00002 | ——0.00004 | — 0.00022 | — 0.00001

04 — (.2249 0.054% —-0.0624 — 0.0313 0.000M — 0.00001 | — 000002 | — 0.00005 | —0.00022 | —0.00001

0.5 —0.2154 0.0439 — 00672 | —0.0293 000002 | —0.00001 | — 0.00002 | — 0.00007 ) —0.00021 | — 0.00001

0.6 — 0.2088 0.0434 —0.0706 — 00275 0.00002 — 000001 ;} —0.00001 | — 0.00008 | — 0.00021 | — 0.00001

o — 0.2035 0,0383 -—0.0732 —0.0261 0.00003 — 0.00002 | — 0.00001 | — 0.00010 | — 0.00021 | — 0.00001

0.8 —-10,1999 0.0339 — 0.0752 — 0,0247 0.00005 — (0.00002 0 —0.00011 | —0.00021 | —0.00002

0.9 — 0.,1970 0.0297 — 0.0766 | —0.0237 0.00006 | — 0.00002 | -~ 0.00001 | — 0.00013 | — 0.00021 | - 0.00002

1.0 — 01947 0.0261 —0.0778 | —0.0229 0.00007 | —0.00002 0.00001 | — 0.00014 | — 0.00022 | — (00002
£==035 0 —0.383 { + 0.0051 0 0 0 -— 0.00004 0 — 0.00023 0

0.1 -—10,3089 0.0750 —(.0324 | — 0.0383 0 0 — 000003 | — 0.00001 | — 0.00023 0

02 — 0.2652 0.0814 — (0.0552 — 0.0416 0 —0.00001 | — 0.00003 | — 0.00002 | — 0.00023 0

0.3 — 0.2404 0.0785 — 00686 — 0.0400 0.00001 — 0.00001 | — 0.00002 | —0.00004 | — 0.00023 | — 0.00001

04 —0.225) p.0742 —0.0773 — 0.0375 0.00001 ——0.00001 | — 0.00002 | — 0.00006 | —0.00023 | — 0.00001

0.5 —0.2151 0.0705 —0.0833 | —0.0351 0.00002 | —0.00001 | — 000002 | — 0.00007 | — 0:00023 | — 0.00001

06 - — 02081 0.0676 —0.0878 | —0.0332 0.00003 | —0.00001 | —0.00001 | -—0.00008 | — 0.00023 | — 0.00001

0.7 — 0.2033 0.0657 — 0.0913 — 0.0314 0.00004 — 0.00002 | —0.00001 | —0.00011 | — 0.00023 | -~ 0.00002

08 —.1997 0.0646 — 0.0944 — 0.0298 0.00005 — 0.00002 0 — 0.00012 | —0.00023 | — 0.00002

0.9 -—{0.1969 0.0644 — 0.0970 — 0.0285 0.00006 — 0.000G2 0 —0.00014 | — 0.00023 | — 0.00002

1.0 — 0.1951 0.0646 —0.0993 —0.0274 .G0008 — 000003 | + 0.00001 | —0.00016 | — (0.00023 | — 0.00002
£ =050 0 — 0.414b 0 -+ 0.00565 0 0 0 — 0.00004 -0 —_ 0.00b25 ¢

01 | —0.3209 $.0029 — D27 | — 0.0467 0 0 — 0.00004 | — 0.00001 | — G.00025 0

0.2 — 0.2679 0.1002 — 0.0712 — (.0486 )] — 0.00001 | —0.00003 | — 0.00003 } — 0.00025 0

0.3 — 0.239%4 0.0983 — 0.0873 | —-0.0454 0.00001 | -——0.00001 | ——0.00003 | — 0.00004 [ — 0.00025 | — 0.00001

0.4 — 0.2218 0.0958 — 0.098Q —-0.0409 0.00001 — (100001 | — 0.00002 { — 0.00006 | — 0.00025 | — 0.06001

(.5 -— 0.2097 0.0944 —0.1060 —0.0371 0.00002 — 0.00001 | —0.00002 | — 0.00008 | — 0.00025 | —0.00001

0.6 — 0.2007 0.0946 — {11124 —0.0333 0.00003 — 0.60002 | —0.00001 | —0.00010°) —0.00025 | — 0.00001

0.7 — 01933 0.0960 — 01176 — 0.0295 | 0.00004 — 0.00002 | —0.00000 | — 0.00012 | — 0.00025 { — Q.00002

0.8 — 01871 0.0984 —0.1224 -—(0.0255 0.00006 — 0.00002 0 — 0.00014 } — 0.00025 | — 0.00002

0.9 — 01802 0.1016 —{.1267 — 0.0215 0.00007 — 0.00003 0 —0.00015 | — 0.00025 | — 0.00002

1.0 — 01732 01055 —(,1308 —0.0175 0.00009 — 0.00003 0 — Q.00017 | —0.00025 | — 0.00003
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000070 — | LB0000 — | ST000°G— { TOOUG0 — | 000070 — 00000 FCOO'0— | TUETO0— L¥ET0 FSCTD — 80
00000 — | LZ0000— | 8T000°0— | TO0000 — | @0000°0 — GO000°0 0€T100 — 99FT0 — Teal{) TTLT0— Lo
c0000°0 — | L0000 — | TIOOQ0-— | 00000 — | GO0000 — 8000070 68200 — FOrLo — o110 PESTO— 90
TO000 0 — | Le000'0 — | 600000 — | GJ000°0 — | 000070 — 000070 G6E00 — 8¢ET0 — ELTITO 8L6T0— G0
TOOG0°0 — | 220000 — ) LOO00'0 — | &0000°0 — | 100000 — TG00 0 TOFOD — 08510 — 89110 8E1C0 — 0
100000 — | LE0000— | 00000 — | S0000°0— | TOOOD0 — T0000°0 6LFOO0 — LG0T 0 — SLITD 16860 — g0
0 L0000 — | TOOG0'0 — | €0000°0 — | TO000'0 — 0 gFe00 — F060°0 — F6LL0 8960 — g0
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TABLE 3.

Coetficients for » =0.04.

o kS kS’ g l e’ Ty l 1" ny’ ny' 7 e

B=0 0 —0.5058 0 + 0.0133 0 0 0 — 0.00022 0 - 0.00088 0
0.1 — 04213 0.0836 | — 00288 | —0.0445 | 0 —0.00002 | —0.00018 | —0.00005 | -— 0.00087 | — 0.00001
0.2 —0.3690 0.0888 ~— 00550 . —0.0497 | 000001 | —0.00003 | —0.00015 | — 0.00013 | —.00086 | — (.00002
0.3. —0.3379 0.0813 —0.0706 | ——0.0485 | 000003 | — 0.00004 | —0.00013 | ——0.00021 | — 0.00086 | — 0.00005
0.4 —0.3179 0.0713 — 00807 | — 00462 | 000005 | — 0.00006 | — 0.00011 | — 0.00029- { — 0.00085 | — 0.00006
0.5 -20.3044 0.0615 ~—0.0874 | —-0.0240 | 000009 | —0.00007 | —0.00009 | —0.00038 | — 0.00085 | — 0.00008
0.6 — 0.2950 0.0524 ~—0.0921 | —0.042 0.00014 | —0.00008 | —0.00006 | — 0.00046 | — 0.00085 | — 0.00010
0.7 — 0.2879 0.0439 ~—0.0856 | ——0.0406 | 000019 | —0.00008 | — 000003 | — 0.00054 | —0.00085 | — 0.00012
0.8 — 02827 0.0363 —0.0983 | —00393 | 000025 | —0.00010 0 — 0.00063 | —0.00085 | — 0.00014
0.9 ~—0.2786 0.0292 ~—0.1003 | —0.0385 | 000033 | —0.00011 | +0.00004 | — 000071 | —0.00085 | —0.00016
1.0 — 02753 0.0228 ~— 01019 | —0.0379 | 0.00041 | — Q00012 0.00008 | —0.00079 | — 0.00085 | —0.00018

8=035 0 —0.5400 0 + 0.0143 0 0 , 0 — 000023 0 — (.00094 0
0.1 —0.4357 0.1037 — 0038 | —00544 | O —0.00002 | —0.00019 | —0.00005 | —0.00093 | — 0.00001
0.2 — 03746 0.1113 — 00702 | -—0.0598 | 000001 |-~000003 | —0.00016 | — 0.00013 | —-0.00092 | — 0.00003
0.3 —0.3400- | 0.1057. | —0.088% | —0.0382 | 0.00003 | —0.00005 | —0.00014 | —0.00022 | — 0.00092 | — 0.00004
0.4 —0.3187 0.0982, — 01011 | —0.0556 | 0.00006 | — 0.00006 | —0.00012 | ——0.00031 | — 0.00092 | — 0.00007
05 ~-0.3049 | 0.0915 —0.1093 | — 00530 | 000010 § —0.00007 | —0.00000 | —0.00041 | — 0.00092 { — 0.00009
0.6 —0.2955 0.0861 — 01156 | —0.0511 0.00015 | — 0.00008 | — 0.00007 | —— G.00050 | — 0.06091 | — D.00011
0.7 —0.2891 0.0820 —0.1204 | —0.0494 | 000021 | -~0.00010 | —0.00004 | — 0.00059 | -—0.00092 | — 0.00013
0.8 — 0.2846 0.0790 —0.1246 | —0.0481 | 0.00028 1 —0.00011 | —0.00002 | —0.00069 | —0.00092 | — 0.00015
0.9 02812 0.0773 —0.1281 | —0.0471 0.00036 | —0.00013 | + 0.00002 | — 000078 | — 0.00092 | -—0.00017
1.0 —0.2792 0.0763 —0.1312 | —0.0465 | 0.00045 | — 0.00015 0.00005 | — 0.00088 | —0.00092 | —0.00019

B=0.50 0 — 0.5841 0 + 0.0154 0 0 0 — 000025 | . 0 —0.00101 0
o 0.1 — 04528 0.1288 —— 00522 | —00664 | O —0.00002 | —0.00020 | — 0.00005 | -——0.00100 | — 0.00001
02 ——0.3786 0.1374 —-0.0921 | —00701 | 000001 | —0.00003 | — 000017 [ — 0.00015 { —0.60100 | —0.00003
0.3 —0.3301 0.1333 — 01146 | —0.0666. | 000003 | —0.00005 | ——0.00015 | —0.00024 | — 0.00092 | — 0.00005
0.4 —0.3149 0.1283 — 01295 | — 00815 | 000007 | —0.00006 | —0.00013 | — 0.00034 | -—0.00099 | — 0.00007
0.5 - 0.2985 0.1250 — 01407 | ——0.0573 | 0.00011 | —0.00008 | —0.00010 | —-0.00045 | —0.00099 | — 0.00009
0.6 — 02867 0.1240 01496 | — 0.0531 0.00017 | ——0.00010 | —0.00008 | — 0.00055 | — 0.00100 | — 0.00012
0.7 —0.2773 0.1247 — (.1569 | —0.0450 | 0.00023 | —0.00012 | —0.00005 | —0.00065 | —0.00100 | — 0.00014
0.8 — 0.2695 0.1269 — 01638 | —0.0448 | 0.00031 | —0.00014 [ —0.00003 | —0.00076 | — 0.00100 | — 0.00016
0.9 —0.2612 0.1305 —0.1699 | —00406 | 000040 .| ——0.00016 | — 0.0000i | —0.00087 | — 0.00100 | — 0.00018
1.0 —0.2526 01351 — 01738 | —0.0363 | 0.00050 | —(.00020 | + 0.00001 { —0.000898 | — 600101 | — 0.0002]
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FE0000— | S¥FIO00— | 9600000 — | E&000°0 — | ZE000°0— £80G0°0 LEET'D BLLUO— G810 L6z — L0
GEO000 — | SVIOO'0— 1 €8000°0— | 120000~ | LE0000 — GE000°0 aLel’0 GEEE 0 — ceet’o ELET0— 90
PIOOO0—  SFIO00— | 690000 — | OZ000°0~— | 100070 — L1000°0 8960°0 T892°0 — UBBL0 FESLI0 w0
L0000 — ) 91000~ | ¥G000°0— | 020000~ | OT000G — 11000°0 e300+ 68880 — 68120 890%0 — ¥0
L0000°0 — | ¥FLO0'0—— | $E000°0 — | 0&000°0 — | 00000 — 400000 96100~ | 9980 — 18E€E0 6FOG0 — g0
00000 — | £PT00°0—— | £G000°0 — | 200070 — | ¢0000°0 — cUo00°0 01’0 — eELT0 — FUGE0 20¥8°0 — c0
G0000°0 — | 1000 | 800000~ | ¢E0000-— | ZOOOOD — 0 SELT0— | R0 — SF9%°0 9¢8y'0 — o
0 OFLO0°0 — 0 LE000°0 0 0 0 CEE00 0 1E¥8'0 — 0 08'0=4¢
GE€660°0 — | GZFOO'0-— | LIT00°0-— | ¥1000°0— | S£000°0 — 650000 LE6O0 9661°0 — ORET0 eoITo— | 0T
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Le000'0 — | GEL00°0 ~ | YB8000°0— | €T0000— | TE0GO0— | 8E0DO0 §LE0°0 0ELE 0 — £¥L10 19610 — 80
LI060°0— | RE100°0 — | IBOVOG— { £1000°0 — | $1600°0— 6G00G°G YeE00 g0 — CRTG LERBTO— L.
FLO00'0 — | GEL60'0— | 0LO00'0 — | €1000°0— | §1000°0 — Lz000°0 190070 -+ 60te’0 — ALY PETS0— 30
EL000°6 — | TZI000— | 1400070 — L0000~ | 0TO000 — FIOO0a 96100 — 0¥E80— YEEL0 0F¥FEG — g0
- 600000 — | TZT000— | ¥ROOO'0-— | €ID000 — | R0000°0— 600000 8EY00— | B0EE0— LFET'0 SLIE0— 0
L6000°0— | TEr00'n0— | T€000'0— | LI000'0~— | 4000070 — FOO000 G990°0 — { 98610 — 8361°0 CELE0— g0
FOOOOTO — | OBT000~— | ¢l000C— | 61000°G— | ¥G0600 — G060 G¥R00— 4 189170 — ¥10G°G LELE0 — G0
1000000 — | TG100°0— | 900000 — Ce000'0 — | 200000 — 0 EARCIUNY 41010 — 0281°0 Legv 0 — i
0 8ZI000— 0 160000 — 0 0 0 181000 + a 880L°0 ~— 0 0Lo=4¢
CE0000 — 1 OT00'0—— | L0L000— | YD00D0— | GRO000— Geboo'n | £900°0 + GEEE0 — L0 P61 — 01
0200070 — | 601000 — | 960000 | 9000070 — { (30000 — FFOOO'0 | €L00°0— | 90180 — 9891°0 99180 — 60
L0000 — | 60T60°0— | ¥ROOG'G— | L00DD0O— | LTOOO0— L0060 661070 — Fe0e ) — 6448170 Qgge’0 — 80
STO00°0 — | 201000 — © ZL000°0— | 860000 ¢ £10000 — GZ000 0 ) “18000— | £861°G— Gee10 G8re 0 — L0
L0000 — | 80100°0— | 190000 — { QIGO00-— | T1000°0 — 61000°C | &BFO0— [6sr'o— 865170 LE4E0 — 90
010000 | 801000 — | 6¥000°0—~ | Z1000°0— | G00000 — GLoo0n | EEe00— | 08L10— FLETO pitTol U 0
SO0GG0 = | BOLOO'0O— | 8E000°0 — | #1000°G — | 100000 — 100000 | 8T90'0-— | 1EOID - 81510 LH080 — o
90000°0 = ) 801000 | L&0000~ | 910000 — | 00000 00000 | TIL00— | BEFIO— 8051°0 LEEE0— €0
£0000°0 — | BOIOOC~— | 910000 — | 810000 — | +0000°0 — 00000 | L1800 — | £RI1°0— £¥81°0 86LL0 — 20
10000°0— | 80I00°0— | <0000°0— | L&0000 - | &0060°0— G | 0BL'O-— | 90L0°0— 0uet'o 6o+ 0 — 10
0 0r1o00— 0 _ LE0000 — a. D 0 LIT0°0 -+ 0 PEEO0 — 0 090=4¢
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TABLE 4 Cocfficients for = 0.06,

w - | kS k" L m me” e no” ny' " n n''

8=0 0 — 0.6174 r 0 + 0.0244 0 0 0 — 0.00081 0 — 0.00199 0
01 — 0.5145 0.0989 — 0.0269 — 0.0547 0 — 0.00005 | — 000051 | -—0.00013 | —0.00196 } — 0.00003
0.2 "~ 0.4510 0.1044 - 0.0587 | — 00617 GO0003 | — 0.00009 | —0.00043 | — 000034 | — 0.00194 | — 0.00009
03 —0.4132 0.0934 — 00775 | —0.0609 0.00007 | —0.00012 | — 0.00037 | — 0.00057 | -—0.00193 | — 0.00015
0.4 — 0.3890 0.0797 —0.0397 | —0.0587 0.00015 | —0.00015 + —0.00031 | — 0.00080 | —0.00192 | — 0.00021
05 — 03727 0.0660 —0.0977 | — 0.0367 0.00025 | —0.00018 | —0.00025 | — 0.00103 | — 0.00191 | — 6.00028
0.6 — 0.3611 0.0533 —0.1034 | —0.0551 000037 | —0.00021 { — 0.00017 | —0.00126 | — 0.00191 | — 0.00034
0.7 — 0.3525 0.0413 — 01076 |+ —0.0540 0.00052 | — 0.00024 | —0.00010 | — 0.00149 | —0.00190 | — 0.00041
0.8 — 0.3461 0.0304 —-01107 | —0.0531 0.00070 | —0.00027 | —0.00001 | —0.00171 | —0.00190 { —0.00047
0.9 . — 0.3410 0.0202 — 01131 | — 0.0528 0.000908 | —0.00030 | -F 0,00009 | — 000194 | —0.00189 | - 0.00053
1.0 — 0.3370 0.0107 — 01149 | — (.0528 0.00112 | — 0.00033 0.00020 | — 0.00217 | —0.00189 | — 0.00060

B =035 D — 0.6591 0 + 0.0262 0 0 0 -— 0.00065 0 — (100213 0
0.1 - — 0.5322 0.1242 —0.0380 | —0.0669 0 — 0.00005 | — 0.00053 | —0.00013 | — 0.00209 | — 0.00003
0.2 —0.4581 0.1315 —0.0765 | —0.0743 0.00003 | —0.00009 } — 0.00045 | — 0.00036 | — 0.00208 | —— 0.00009
0.3 --0.4163 0.1229 —0.0991 | —-0.0733 0.00008 | —0.00013 | — 0.00039 | — 0.00061 | — 0.00206 | — 0.00016
0.4 — 0.3907 0.1121 — 01137 | —0.0709 0.00016 | —0.00016 | — 0.00033 | — 0.00086 | — 0.00206 | ——0.00023
0.5 — (L3743 6.1022 —0.1237 .| — 0.0688 0.00027 | —0.00020 | -—0.00027 | —0.00111 | -—-0.00205 | ——0.00030
0.6 —0.3633 0.0939 | — 02311 | —-0.0673 0.00041 | —0.00023 | — 0.00020 | —0.00137 | — 0.00205 | —0.00037
07 — 0.3560 0.0872 —0.1369 | —0.0663 0.00057 | —0.00028 | —0.00013 | —0.00162 ) —0.00205 | — 0.00043
0.8 — 0.3510 0.0818 —0.1417 | — 0.0658 0.00077 | — 0.00031 | — 0.00005 | — 0.00188..] —0.00205 1 — 0.00050
0.9 — 0.3475 0.0779 — 01458 | —0.0657 0.00099 | —0.00036 | + 0.00003 ) —0.00215 | — 0.00205 | — 0.00056
1.0 — 0.3457 0.0750 —0.1495 | — 0.0660 0.00124 ; —6.00043 0.00013 | — 0.00241 | — 0.00206 | — 0.00063

B =10.50 0 --0.7130 0 + 0.0283 0 0 0 —0.00070 | .0 — 0.60230 0
0.1 — 0.5532 (.1546 —0.0540 | — 00817 | O — 0.00006 | ——0.00055 | —0.00014 | — 0.00026 | -—0.00003
0.2 — 0.4634 (.1630 —0.1024 | —0.0874 0.00003 | -—0.00010 | — 0.00047 | —0.00040 | —0.00224 | — 0.00011
0.3 — 0.4160 0.7562 —0.1296 | — 0.0843 0.00009 | —0.00014 | —0.00041 | — 0.00067 | — 0.00223 | — 0.00017
0.4 —0.3871 01484 —0.1476 | — 0.0795 0.00018 | —0.00018 | — 0.00035 | — 0.00094 | — (L00222 | -~ 0.00024
1.5 — 0.3680 0.1427 —0.1611 | — 0.0757 0.00031 | —0.00022 | —0.00029 { — 000122 ;| —0.00222 | — 0.00032
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TABLE 6.

Cocfticients for r=10.1.

" l k! ke’ J M ] me’” ' l .1 iy ny'" [ I Hg”
B==0 0 —0.7916 0 = 0.0520 0 0 T . D — 000220 ;| O — 0.00563 g
0.1 — 0.6604 01224 | —0.M35 | -——0.0710 0 — 000018 | — 0600183 | — 000045 | — 0.00548 | — 0.00014
02 - — 0.5798 0.1235 — G.0537 —(0.0813 0.0006085 — 0.00032 | —0.001536 | — 000121 — 0.00539 — 0.00041
0.3 — 0.5318 0.1051 — 0.077H — (.0819 0.00026 —0.00044 | — 0.00135 | — 0.00202 | —0.00533 | — 0.00070
0.4 —0.5011 0.0832 | —0,0926 ) -——0.0807 0.00053 — 000065 | — 000113 —0.00283 | --0.00529 | — 0.00099
0.5 —0.4303 0.0615 | —0.1026 | —0.0797 0.00089 — 0.00066 | -——0.00092 | — 000360 | —0.00525 | — 0.00129
0.6 — 04855 00410 | — 01095 | —0.0792 0.00133 — 000076 | —G.00067 | — 000446 | — 0.00522 | — 0.00158
0.7 — 0.4544 0.0216 — 01146 —0.0794 0.00186 — Q00087 | —0.00040 ! — 000527 | —0.09519 | —0.00187
0.8 — (.4459 +0.0035 | — 01183 | —0.0800 0.00248 — 0.00097 | —0.00009 | — 000608 | —0.00516 | — 0.00216
0.9 — 04391 { —00137 || —0.1210 | —0.0813 0.00319 — 000108 | 4+ 0.00027 | — 000688 + ——0.00513 | — 000245
1.0 — 04335 | — 00300 | 01230 | —0.0829 0.00398 — 0.00118 0.00062 | — 000768 | — 000510 y —0.00274
8 =0.35 g —0.840] - D + 0.0538 0 0 0 — 0,00234 ) — 0.00601 0
0.1 — 0.6835 01530 | —0.0262 | — (0.0868 0.00001 —0.00019 | —0.00192 | —0.00045 | —-0.00584 | — 000013
0.2 — 0.5896 01576 | — 00749} — 0.0983 0.00004 — 000033 | —0.00164 | —0.00128 | —— Q00575 | —— 000043
0.3 —0.5370 0.1420 | — 01032 | —0.0990 0.00028 — 000047 | —0.00142 | —G.0021H | — 0.00569 | —0.00073
0.4 -— 05051 0.1237 — {1213 -——(.0982 0.00057 — 000059 [ — 000122 | —0.00304 | —0.00566 | — Q.00103
0.5 — 0.4851 01067 | —0.1336 | —0.0977 0.00095 — 000072 1 —0.00101 1 — 000394 | — 000564 | —0.00137
06 — 0.4720 0.0917 — 0.1428 — {.0948} 0.00145 —0.00083 | ——0.00078 | — 000484 | — 0.00562 | ——0.0016%8
0.7 — 0.4637 00786 | —0.1495 | —0.0992 0.00203 — 000100 | —0.00054 | — 000575 1 ——0.00562 | — 000198
0.8 — 0.4585 00673 | —-0.1532 | —0.1010 0.00273 — 000115 | —0.00028 | —0.00667 | — 000561 | — 0.00229
0.9 — 0.4505H 0.0577 — 01600 — 0.1034 0.00362 — 0.00134 | 4 0.00001 | — 0.00761 — 000061 | —0.00259
1.0 — 04045 -0.0495 | — 0.1641 — 0.1063 0.00441 — 0.00155 0.00032 | — 000854 | —0.00561 | — 0.00290
B =10.50 0 — (.9141 [ + 0.0601 0 0 0 — 0.00254 0 — 0.00650 0
0.1 —0.7207 01915 { — 004486 | — 0.1063 0.00001 — 000020 | —0.00201 | —0.00048 | — 0.00630 | — 0.00014
0.2 — 0.5974 01872 | —0.1058 | 01163 0.00011 —0.00035 | —0.00171 | —0.00140 )| — 0.00620 | — 0.00047
0.3 —(0.5384 01838 | —0.1400 | —0.1152 0.00031 -~ 0.00049 | -—0.00149 { ——0.00236 | — 0.00615 | — 0.00080
0.4 — 0.5032 01694 | — 01626 | —0.1124 0.00064 —0.00064 | —0.00130"{ —0.00334 | —0.00613 | —0.00113
.0 — 0.4808 01578 | — 01793 | —0.1106 0.00107 —0.00070 | —0.00111 | —0.00433 | —0.00618 | —0.00146
0.6 — 0.4659 0.149% | —0.1926 | —0.1094 0.00160 —0.00086 | — 0.00092 | —0.00333 | —0.00615 | ——0.00179
0.7 — 0.45H4 G140 | -—02039 | — 01086 0.00225 — 000116 | —0.00072 | — 000636 | —0.00617 | — 0.00212
a8 —0.4474 01429 | — 02145 | —0.3080 0.00302 — 0.0014¢ | —0.00052 | -—0.00741 | — 000619 | — 0.00244
0.9 — 0.4401 0.1434 — 0.2243 —0.1075 0.00389 — 000168 | —0.00034 | —0,00848 | —0.00622 | —0.00274 |
1.0 — 0.4329 0.1461 | —0Q.2337 — 01070 .1 0.00487 — 000203 | —0.00017 | —0.00956 | — 0.00623 . — 0.00305
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TABULE 6 (continued),
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B=10.60 0 — 0.9896 0 + 0.0651 0 g - 0 — 0.00274 0 — 0.00704 0
0.1 —0.7310 0.2317 — 0,0701 —(0.1257 (0.00001 —0.00021 | —0.00211 | —0.0005) | —0.00679 | — G.00015
0.2 —0.6013 0.2382 01430 | —0.1324 0.00011 — 000037 { — 0.00180 1 —0.00153 | — 0.00669 | — 0.00050G
0.3 — 0.5332 (0.2258 — 01848 | —0,1265 0.00G35 — 060052 | — 0.00159 | — 0.00260 | — 0.00667 | — 0.000387
0.4 — (0.4920 0.2151 — 02134 | —0.1190 0.00069 —0.00068 | —0.00141 | — 0.00367 | — 0.00667 | —0.06122
0.5 — 0.4638 0.2088 ~—0.2353 | —0.1113 0.00118 — 0.00087 | —0.00125 | —0.00477 | — 0.00668 | — 0.00157
0.6 — 0.4417 0.2069 — 0.2536 — 01085 0.00178 —0.00109 | —0.00110 | ——0.005906 | — 0.00673 | —0.00191
0.7 — 0.4217 0.2082 — 0.2697 -—0.0947 (0.00247 —0,00136 | —0.00088 | — 0.00704 | — 000677 | — 0.00224
0.8 — 04023 0.2115 —0.2838 — {.0846 £.00332 —0.00169 | —0.66090 | ~-0.00820 | — 0.OU681 | — 0.DO255
0.5 —0.3817 02154 —0.2960 | —0.0729 0.00425 — (.00211 | ~0.00086 | —0.00835 | -—0.00686 | — (.00286
1.0 — 03576 0.2150 — 0.3059 — 0.0595 0.00529 —0,00262 | —0.00085 | —0.00047 | — 0.00691 | ——~0.00318

f=070 0 — 1.1085 0 + 0.0729 0 4] 0 -— 0.00308 1] — 0.00788 0
0.1 T 0.7571 0.2888 —0.1146 | —0.1520 0.00001 —0.00022 { —0.00227 | ~—0.00058 | ——0.00756 | — 0.00016
0.2 — 0.5950 0.2961 — 0.2094 —0.1477 0.00014 — 0.00040 | —0.00184 | —0.00177T | — 000748 | —0.000hH8
0.3 —0.5104 0.2844 —0.2634 — 01279 0.00041 ~— 0.00058 | —0.00175 { — (0.00299 | ——0.00749 | — 0.00097
0.4 — 04565 0.2750 — 02994 | —0.10386 0.00083 — 0.00078 | — .00161 | —0.00423 | —0.00753 | —0.00134
.5 —0.4120 0.2708 —0.3255 — 00787 £.00136 000102 | — 000153 | ——0.00549 | — 0.007TH8 | — 0.00170
0.6 — 03710 0.267H -—0.3432 )} — 00,0466 0.00201 ~ 000132 | —0.00151 | — G.00676 | — 0.00765 | —-0.00205
0.7 —(.3303 0.2611 — 0.3h23 —G.0141 0.00280 — 000171 | — 0.00156 | — 0.00801 | — 0.00771 | — 0.00235
0.8 — 0.2905 0.2490 — 03317 | + 0.0189 0.00366 —0.00220 { —0.00166 | —0.00923 | —0.00774  — 0,00268
0.9 — 02541 0.2295 — 0.3418 0.0494 0.00462 — 0002798 | —0.00181 | —0.01033 | — 000777 | — 0.00304
1.0 -—0.2242 0.2028 ~— {3237 0.0750 0.00562 —0.00346 | — 000195  —0.01135 | —0.00780 | — 0.00342

B =10.280 O —1.3194 0 .+ 00867 0 0 4] — 0.00366 -0 — 0.00938 0
0.1 — 0.7588 0.3998 —0.2162 —0.1921 4.00001 — 000025 | ——0.00253 | — 0.60073 | — 0.00896 | — 0.00020
0.2 — 0.554h 0.3799 —0.3431 —(.1392 0.00019 —0.00048 | —0.00222 | —0.00222 | —0.00891 | —0.00068
0.3 - — 0.4391 0.3524 — 04026 | — 0.0666 0.00052 — 0.00069 | —0.00211 | —0.00371 | — 0.00900 | — 0.00109
0.4 — 03554 0.3242 —0.4214 + 0.0118 0.00101 —0.00098 | —0.00213 | — 0.06519 | — 0.0091n | —0.00145
0.5 — 0.2888 0.2856 — (.4039 0.0855 0.00162 —0.00135 | —0.60226 | — 0.00666 | — 0.00815 | — G.00179
06 — 0.2431 02370 — 03571 . 0.1384 0.00235 — 000380 | —0.00245 | —0.00800 | -—0.00816 | ~ 0.00216
0.7 — 0.2226 0.1863 —0.2972 0.1605 0.00314 -— 000235 | —0.00267 | —0.00923 { — 0.00%16 | —0.00280
0.8 --0.2239 0.1436 — 0.24406 0.1531 0.00402 — 0.00295 ) —0.00282 | —0.01040 | — 0.00918 | —0.00315
0.9 — 0.2377 01215 —0.2054 01280 0.00501, —0.00365 | —0.00292 | —0.01156 | —0.00924 | — 0.00376
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TABLE 7. Coefficients for r=0.15.
o J kS kEJ” Mg J e’ N " Ty ny! n e
B=10 a — 0.9610 0 ] 0.0941 0 0 0 —0.00613 0 — 0.01294 0
0.1 — 0.8027 0.1400 | + 0.0150 | —0.0871 0 — 0.00051 | —0,60510 | —0.00119 | —0.01244 | — 0.00046
0.2 — 0.7061 01342 | —0.0329 | —0.1013 0.00023 — 0.00089 | —0.00437 | —0.00326 | —0.01213 | — 0.00136
0.3 — 01.6485 01053 | — 00612 | —0.1041 0.00075 — 000122 | 000379 | — 0.00546 | — 0.01192 | —0.00234
0.4 — 0.6116 0.0723 | —0.0780 | —0.1047 0.00143 —0.00153 | —0.00322 | —0.00769 | — 0.01176 | — 0.00332
0.5 —- 0.5864 00397 | —0.0905 | —0.1055 0.00241 ~—0.00183 | — 0.00265 | —0.00991 | —0.01162 | — 0.00430
0.6 — 0.5682 -+ 0.0085 | —0.0984 | —0.1070 0.00361 — 000212 | —0.00200 ) — 001212 | ——0.01149 t 000528
0.7 — 05543 } —0.0212 | — 01040 | . —0.1093 0.00506 — 000242 | ——0.00129 | —0.01432 | —0.01136 | —0.00626
0.8 —0.5433 | —0.0494 } —0,1079 | — 01123 0.00675 — 000271 | —0.00048 | —0.01652 | —0.01122 | —0.00723
0.9 —0.5342 -—0.0765 —0.1106 ~—10.1159 0,00868 —0.00301 | 4000041 | —001870 | —0Q.01108 y —0.00820 |
1.0 — 0.5264 — 01025 —0.1124 —0.1200 0.01083 — 0.00330 0.00138 | —0.02087 | —0.01095 | — 0.00916
B=035 0 — 1.0259 0 0.1005 0 0 0 — 0.00653 o . — 0.01381 0
0.1 —0.8314 0.1764 -+ 00019 | — 01066 0.00001 — 0.00053 | —0.00534 | —0.00121 | —0.01323 | —0.00045
0.2 — 0.7181 01746 | —0.0561 | —0.3230 0.00024 —0.00093 | —0.00457 | —0,00345 | —0.01291 | —0,00143
0.3 —- 0.6566 0.1488 | - 0089 | — 0.1266 0.00075 — 000129 | —0.00398 | —0.00583 | —0.01271 | — 0.00244
04 —0.6192 0.1199 + — 01303 | — 0.128) 0.00155 — 000164 | —0.00346 | —0.00825 | — 001259 ) —0.00352
0.5 — 0.5961 | 0.0927 | 01246 | -—-0.330% -} 0.00258 — 0.00200 { -—-0.00292 | —0.01069 | -——0.01250 | — 0.00457
0.6 . — 05815 0.0678 |7"=201346. | —0.1344 0.00392 —0.00237 | —0.00234 | ——0.01313 | —0.01243. | — 0.00560.
0.7 —0.5727 0.0451 | —— 01421 | —0.1389 0.00551 — 000279 | —0.00172 { —0.01561 | —0.01238 | -— 0.00663
0.8 — 0.5678 0.0246 | — 01481 | —0.1443 0.00740 — 0.00324 | -—0.00106 } —0.01811 | —0.01233 | — 0.00766
0.9 — {15659 + 00009 | —0.1529 | —0.1507 (.00954 — 000377 | —0.000357 | —0Q.02066 | — 0.01228 | — 0.00868
1.0 — 0.5662 - 0.0110 — 0.1569 — 0.1576 0.01199 —~0.00436 | + 0.00042 | — 0.02323 | —0.01224 | — 0.00970
B =050 0 — 1.1097 0 + 0.1086 0 D 0 — 0.00707 0 — 0.01494 0
0.1 — (18644 0.2223 — 0.0173 —0.1308 0.00001 — 0000560 | —0.00561 | —0.00127 | —0.01424 | — 0.00046
0.2 — 07300 0.2215 —0.0962 — 0.1466 0.00028 —0.00098 | —0.00479 | — 000375 | —0.01390 | —0.0015)
0.3 — 0.6619 0.1981 1" —0.1306 | —0.1491 0.00083 —0.00136 | —0.00421 ) —0.00638 | —0.01374 | —0.00267
0.4 — 0.6207 01739 | —0.1571 | — (L1502 0.00171 — 000177 | —0.00372 | —0.00904 | —0.01367 | —0.00379
0.5 — 0.5964 01532 | ——0.1763 | —0.1523 0.00287 —0.00219 | —0.00325 | —0.01173 | -——0.01365 | — 0.00490
0.6 —0.5815 01371 | —0.1916 | —0.1556 0.00433 — 0.00269 | ——0.00278 } —0.01447 | —0.01367 | —0.00599
0.7 — 0.5725 01248 | —0.2047 | — 01597 0.00609 —0.00324 | —0.00230 | — 001727 | —0.01370 | — 0.00707
0.8 - 0.5666 0.1162 | —0.2170 | —0.1644 0.00818 —0,003095 | —0.00185 | -—0.02014 | — 001375 | —0.00814
0.9 — 0.5629 01111 | --0.2286 | — 0.1694 0.01L056 —0.00474 | —0.00143 ). —0.02305 | —0.01382 | —0.00917
1.0 - {1.5598 01092 | —02395 | —0.1745 0.01325 — 000574 | — 000107 | —0.02599 | —0.01389 | —0.01019

o0 o



TABLE 7 (continued).

w k! & me my’ | T l Mg ' f ny'’ ne "

B =0.60 (U —1.2013 0 + 0.1176 0 0 a — 0.007651 0 — 001617 0
0.1 — 0.8905 0.2703 —0.0450 | —0.1556 0.00001 — 000059 | —0.0058¢ | —0.00134 | —0.01533 | — 0.00048
0.2 —0.7368 0.2701 — 01317 | — 0.1685 0.00030 —0.00108 | ~—0.00504 | — 0.00412 | — 001488 | — 0.00167
0.3 — (.6578 0.2481 — 01814 | —0.1668 0.00094 —0.00145 |.——0.00450 | — 000700 { — 001490 | — 0.00290
0.4 —{(.6118 0.2286 — 02152 | ——0.1640 0.00187 | — 0.00191 | ~ 0.00405 | ~~0.00894 | — 0.01480 | —— 0.00408
0.5 — 0.5823 0.2151 —0.2415 | —0.1613 0.060317 — 000245 | — 000368 | —0.01294 | —0.01495 | — .00524
0.6 — 0.5607 (.2075 — 0.2641 — 0.1589 0.00479 —0.00306 | —06.00335 | —0.0159% | —0.01506 | — 0.00636
0.7 — 0.5427 0.2047 — 0.2846-| — G.15338 0.00670 — 000385 | —0.00313 | —0.01911 [ — 0.01519 | ——0.00745
0.8 — (.H255 0.2058 —0.3038 —0.1512 0.00896 — 0.00479 | ~-0.00302 | — (02296 | —0.01532 | — 0.00848
0.9 — 0.5071 0.2092 —0.3216 | —0.1448 0.01149 — 0.00598 | ~—0.00305 | —0.02539 | 001547 | — 0.00947"
1.0 — 0.4853 0.2137 — 03379 | —0.1361 0.01429 — 000746 | ~—0.00320 | —0.02847 | — 001559 | —— 0.001047

B=07T0 0 — 1.3457 it + 0.1318 0 0 0 — 0.00858 0 — 0.061811 0
0.1 —(.9218 0.3431 — (.0947 —0.1913 0.00001 —0.00062 | —0.00633 | — 000151 | — 0.01704 | — 0.00062
0.2 —0.7322 0.3398 —0.2073 | —0.1923 0.60037 -——0.00112 | ——0.00545 | ~—~0.00473 | —0.01675 | — 0.00190
0.3 — 0.6360 0.3183 — 02719 | —0.1766 0.00109 — 0.00162 | —0.00497 | — 0.00805 | —0.01675 | — 0.00322
0.4 — 05762 0.3030 — 03171 | — 03575 0.00220 — 000218 | —0.00468 | — 0.01142 { — Q.01690 | — 0.00446
0.5 —(.5293 (0.2949 — 0.3522 —0.1351 0.00365 — 000287 | —0,00456 | ~—0.01485 | —0.01708 | — 0.00563
0.6 — 0.4864 0.2904 —0.3792 — 01085 | 0.00542 —0.00375 | — 0.00463 | — 0.01830 | —0.01730 { — 0.00671
0.7 — 0.4431 (0.2846 -—0.3983 | —0.0779 0.00752 — 000488 | —.00493 | —0.02171 | —0.01750 | — 000772
0.8 — (.3988 0.2740 — 04076 | .— 0.0444 0.00983 — 0.0062% | —0.00541 | —0.02497 | —0.01763 | — 0.00870
0.9 —{(1.3558 0.2555 — 04067 | —0.0108 0.01234 — 000799 | —0.00603 | — 002795 | —0.01772 | —0.00870
1.0 —0.3172 0.2280 —0.3960 1+ 0.0207 (0.01500 —.0.00996 | —0.G0666 | — 0.03071 | —0.01775 | — 0.01074

B =080 0 — 16007 0 o 4- 0.1568 0 "0 0 — 0.01020 0 — 0.02156 0-
.1 — 0.9239 04712 —0.2078 — 0.2432 0.00002 — 000070 | — 000705 | — Q.00189 | — 0.0200% | — 0.00064
0.2 — 0.6926 0.4408 — 03620 | —0.1944 0.00049 — 000130 | —G.00625 | — 0.00592 | — 001997 | — 0.00224
0.3 — 0.5576 04062 | — 04407 | —0.1228 0.00138 — 000194 | — 0.00605 | — 000998 | —0.02024 ) — 0.00361
04 —0.4632 0.3735 — 04766 | — 0.0413 0.00269 — 0.00277 | —0.00625 | — 001400 | —0.02058 | — 0.00475
0.5 —0.3847 0.3327 — 04733 + 0.0408 0.00431 —0.00384 | —0.00682 | — 0.01790 | —0.02082 | — G.00576
0.6 — (L3259 02786 —0.4346 0.10698 0.00821 — 000517 | — 000762 | — 002149 | —0.020982 | — 0.00B77
0.7 — 0.2936 0.2176 —0.3747 (.1434 0.00828 — 000676 | — 0.00848 | — 002474 | — (.02093 | —0.00793
0:8 — (.2875 0.1605 —0.3145 0.1474 0.01055 ~— 0.00854 | —0.00919 \ —0.02776 | —0.02099 | —0.00932
4.9 — 0.3010 0.1226 — 0.2635 0.1264 0.01307 —0.01061 | —0.00983 ( —0.03076 | —0.02122 | — 0.01082
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TABLE 8. Coefficients for +=102.
® 1 kS kS ' m, ' m.” n L e 1y’ ny”’ ne e
! | | ‘

B=0 a —1.0996 0 0.1424 0. 0 0 —0.1272 0- — (102350 0
0.1 — 0.9197 0.1505 + 0.0526- | — 01003 0.00001 | —0.00106 | — 0.01059 { —0.00235 | —0.02234 | —0.00107
0.2 -— 0.8104 0.1357 —0.0014 —0.1180 0.00045 —0.00185 1 —0.00911 | — 0.00655 | — 002158 } —0.00318
0.3 — 0.7451 0.0951 | —0.0330 | ——0Q.1229 0.00141 | —0.00254 | —0.00793 | —0.01100 | — 0.02106 { — 0.00648
0.4 -— 0.7032 00501 | —0.0524 | —-0.1255 0.00288 | —0.00318 | —0.00683 | — 0.01553 | — 0.02065 | — 0.00779
0.5 — 0.6741 + 0.0006 | —0.0650 | ——01283 0.00485 | —0.00880 | —0.00567 | —0.02008 | —0.02028 | —0.01010
0.6 —0.6627 | — Q023727 —0.0734 | —0.1320 000731 | —0.00442 | — (.00441  —0.02451 ) —0.01991 | — (.01240
0.7 —0.6360 | —(.07583 | —-0.0790 | —0.1366 0.01025 | —0.00503 | —0.00302 | -—— 0.02897 | —0.01953 | — 0.01469
0.8 — 06222 — 01177 — 0.0827 — 01420 0.01368 ~—0.00564 | — 0.00146 | —0.03341 | —0.01913 | — 0.01697
0.9 -—0.6104 -—0.1557 — 0.0850 —0.1481 0.01738 — 0.00625 ) + 0.00026 | — 0.03783 { —0.01871 | -—0.01924
1.0 —0.5998 | —0.1926 | —0.0863 | —0.15647 0.02195 | — 0.00686 0.00216 | — 0.04224 | ——0.01824 | —0.02150

A=10.35 0 —1.1739 0 0.1520 0 . 0 0 — 0.01358 0 — 002509 | 0
01 — 0.9631 0.1913 + 0.0:402 — 01230 0 ~—0.00110 | — 001109 | —0.00240 | —0.02371 | — 000107
0.2 — (1L.8265 01808 | — 01250 | — 0.1439 0.00047 —0.00193 | —0.00949 | —0.00693 | —0.02292 | — 0.00336
0.3 — 0.7565 01434 | —0.0620 | ——0.1505 0.00150 | —0.00267 | —0.00834 | — 0.01175 | -—0.02244 | — 0.00580
0.4 —0.7149 0.1027 —0.0848 | —0.1554 0.00311 | —0.00340 | —0.00731 | — 0.01665 | —0.02212 | — 0.00827
0.5 — 0.6895 0.063% 1 —0.0999 | ——0.1610 0.00522 | —0.00415 | — 0.00629 | — 0.02158 | —_ 002187 | -—0.01072
0.6 —0.6738 + 00277 | — 01102 | —0.1679 0.00789 | —0.00494 | —0.00520 | — (.02653 | — 0.02167 | — 0.01315
0.7 — 0.6647 | — 0.0060 — 01176 | —0.1761 0.01113 — 0.00580 | — 0.00402 | — 0.03105 | ——0.02147 | — 0.01559
08 — 06602 | —0.0374 | —0.1231 1 —0.1855 0.01494 | —0.00678 | — 0.00278 | ——0.03663 | —_0.02127 | — 0.01802
0.9 — 0.6593 | —0.0669 | —0.1272 -— 1.1960 0.01929 | —0.00788 | — 0.00146 | —0.04179 | -— 0.02107 | — 0.02045
1.0 —0.6608 | —0.0944 | —0.1303 —0.2072 0.02426 | —0.00911 | — L.O0005 | — Q04703 | — 0.02088 | — 0.02286

B =050 0 -—1.2697 0 01644 0 0’ 0 — 0.01468 o -] 002714 o -
0.1 —0.9920 (1.2428 + 0.0216 | —0.1514 0 — 000115 | — 0.01167 | —0.00249 } —0.02547 | — 0.00107
0.2 -— 0.840G7 0.2329 | —0.0602 | —0.1726 0.00053 | —0.00203 | —C.00999 | — 0.00750 { — 0.02464 | — 0.00361
0.3 — 0.7643 01981 | —0.1049 | —0.1793 0.00166 | — 0.00283 | — 0.00886 | — 0.01283 | — 0.02426 { — 0.00627
04 —0.7208 0.1626 —0.1339 | — 01848 0.00340 —0.00367 | —0.00792 | —0.01823 | —0.02406 | — 0.00892
0.5 — (.6958 01313 | — 01545 | -—0.1916 0.00575 | —0.00456 | —-0.00704 | — 0.02367 | — 0.02398 | — 0.01153
0.6 — 0.6819 01051 | — 01707 — (.2001 0.00871 1 — 0.00B60 | — 0.00619 | — 002825 | -—6.02395 | — 0.01411
0.7 — 0.6750 0.0835 | —0.1846 { —0.2009 0.01229 | —0.00677 y —0.00537 | —0.03492 | — 0.02398 | — 0.01665
0.8 — 0.6726 0.0663 | — 01976 | —0.2208 0.01649 | —0.00823 | — 000461 | — 0.04073 | — 0.024056 | — 0.01917
0.9 — 06732 0.053¢ | — 02098 | —0.2323 0.02133 | — 0.00997 | — 0.00395 | — 0.04662 | — 0.02414 | — 0.02165
1.0 — 0.6757 0.0446 | —0.2218 -— 02442 0.02679 | —0.61208 | —0.00342 | —0.05260 | — 0.02426 | — 0.02409




TABLE 8 (eontinued),

w ks k. ' n” } 1, e’ l Ty ny” e '

B =10.69 0 —1.3745 0 + 01780 0 | 0 0 ] — (L0O1590 0 — (.02938 )
0.1 — 1.0223 0.2966 —0.0063 { -——0.1806 | —0.00001 | —0.00123 | — 0.01226 | — 0.00261 | — 002738 | — 0.00111
02 — 0.8505 {1.2873 — 01034 —0.2001 | + 000058 | —0.00213 | —0.01051 | — 0.00823 | —0.02656 | — 0.00390
0.3 — 0.7641 0.2541 —0.1588 | — (.2037 0.00186 | —0.00302 | —0.00946 | — 0.01406 | — 0.02630 | -—0.00678.
0.4 —0.7157 0.2242 — 0.1952 —0.2068 0.00377 | — G.00398 | —0.00866 | —0.02003 | —0.02626 | — 0.00959
(4.5 — 0.6868 0.2016 — 022564 [ —0.2106 T 0.00636 | —0.00508 | — 0.00802 | — 0.02610 | — 0.02638 | — 0.01233
0.6 — 06677 0.1864 — 02500 | —0.2152 0.00961 | — 0.00640 | — 000753 | —0.03227 | — 0.02660 | — 0.01497
0.7 — 0.6538 0177 — 02748 | —0.2195 0.01350°| — 0.00804 | - 0.00727 | "~ .03859 | --0.02687 | ~-0.01754
0.8 ~—0.6411 0.1747 —0.2980 | — 0.2226 0.01802 | - 0.01008 | — 0.00729 | — 0.04495 | ——0.02719 | — 0.02001
0.9 — 0.6274 0.1760 -—0.3208 | —0.2237 0.02312 | — 0.01263 | — 0.00762 | — 0.05129 | —0.02753 | - 0.02236
1.0 — 0.6108 0.1801 — 03430 1 —0.2223 002870 | —0.01578 | — 0.00828 | —0.05754 | —(.02782 | — 0.02467

B =070 0 -—1.5398 0 “+ 0.1994 Q 0 0 — (.01781 ¢ — 0.03291 0
0.1 ~—1.0583 0.3518 -—0.0579% | —0.2248 | —0.00001 | —(Q.00131 | —0.01317 | — 0.00291 | —0.03036 ¢ — £.00120
0.2 — {1.8488 0.3660 — 01840 | —0.2327 | + 0.00071 | —0.00232 | — 001140 | — 0.00942 ; — 0.02964 | — 0.00440
0.3 ~— (1L.7455 0.3332 — 0.2565 | --0.2236 0.00217 | ——6.00836 | —0.01060 | —0.01615 | — Q.02962 | — 0.00753
0.4 — {.6834 0.3106 —(.3089 | —0.2124 0.00437 | — 0.00454 | —0.01007 | — 0.02295 | —0.02994 | — 0.01048
05 —0.6375 0.2972 — 03517 | — 01979 0.00728 | —0.00603 | —0.01003 | — 0.02988 | — 0.03039 | --0.01324
0.6 — 0.0963 0.2904 -—0.3876 | —0.1785 0.01086 | —0.00792 | —0.01045 | — 0.03685 + —0.03093 | — 001578
0.7 — 0.5540 0.2850 — 04170 | — 0.1535 0.01502 | —0.01034 | —~0.01137 | —0.04372 | — 0038143 | — 0.01813
0.8 -— 0.5089 0.2765 — (4377 | —0.1233 0.01963 | —0.01335 | — 0.01275 || — 0.05020 | — 0.03183 | — 0.02035
0.9 — 0.4620 1.2606 . ~- (0.4481 — 00901 0.02453 | — 0.01700 | — 0.01443 | — 005617 | — 0.03210 | — 0.02252
1.0 -— {04167 0.2349 — 04478 | -—0.0537 0.02972 | —0.02123 | —0.01617 | — 0.06163 | — 0.03220 | —0.02473

, | _

B==0.80 1] — 1.8327 0 + 0.2373 0 )] 0 — 0.02120 0 — 0.03917 0
0.1 — 1.0645 (G.5227 — (11761 —0.2882 0.00001 | — 0.00146 | —0.01467 | —0.00365 | — 0.03564 | — 0.00145
.2 —0.8123 0.4810 —0.3526 | —0.2484 0.00095 | —0.00266 | ——0.01311 | — 0.01177 | —0.03535 | — (L.0O0522
0.3 — 0.6658 (.4388 — 04475 ' — 01842 0.00273 | —0.00406 | —0.01289 | —0.01995 | — (.03556 -— 0.00847
0.4 _ 0.{)658 0.4026 — 05013 | —0.1067 0.00531 | —0.00582 | —-0.01360 { — 0.02804 | — 0.03682 | — 0.01114
0.5 — 04798 0.3617 -—0.5159 | —0.0226 0.00852 | —0.00812 | — 001515 | — 0.03577 | —0.03752 | — 0.01340
0.6 — (4106 0.3056 — 0.4914 + 0.0527 0.01218 | —(.01100 | — Q01728 | — 004284 | —0.03790 | — 0.01554
0.7 —0.3663 0.2378 — 0.4383 0.1027 LO1618 | — 0.01440 | —0,01953 ) — 004916 | — 0.G3803 | — 0.017%0
08 -— 0.3503 0.1685 —0.3761 0.1205 1.02051 ) — 0.01825 | —0.02152 { — 0.05492 | ——D.03819 | — 0.02066
0.9 — 0.3607 0.1147 — 0.316%9 0.1074 0.02624 | — 002271 | ——0.02347 | — 0.06060 | —0.03871 | — 0.02359
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TABLE 8. Coefficients for r=0.25,

’

*

r

’

”

w kS ko s Ha Ty ny Ty He
T . :
B—=20 0 — 1.2180 0 0.1955 0 0 0 —0.02249 0 — 0.03758 0
0.1 — 1.0200 0.1559 0.0968 | —0.1113 0.00002 | —0.00188 | — 0.01874 | — 0.00395 | —0.03528 , — 0.00206
0.2 — 0.9002 (.1305 (.0380 —(.1319 0.00075 | — 0.00327 | —0.01617 | —0.01118 } —0.03378 | — 0.00617
.3 — (0.8285 0.0773 + 0.0039 | —0.1387 0.00240 | —0.00449 | — 0.01414 | — 0.01888 | — 0.03272 | —0.01060
0.4 — 0.7821 + 0.0194 — 0.0167 — 0.1431 0.00453 | —0.00562 | —0.01229 | —0.02668 | — 0.03186 | — 0.01507
0.5 —0.7494 — 00378 — 0.0298 — 0.1478 0.00832 | — 0.00672 | — 0.01033 ! — 0.03443 | —0.03105 | — 0.01953
0.6 — 0.7248 — 0.0930 —0.0382 —0.1535 0.01257 | — 0.00782 | — (.00825 | —0.04216 | —0.03022 | — 0.02398
0.7 — 0.7049 — (.1464 —0.0436 —(.1603 001765 | — 0.00889 | —0.00594 | — 0.04985 | — 0.02936 | — 0.02841
0.8 —0.6879 | — 01978 | — 00467 | — 01679 0.02357 | ——0.00998 | — 0.00338 { — Q.05750 | —0.02842 | — 0.03281
0.9 —0.6727 | — 02477 | —0.0483 | —-0.1762 0.03029 | —0,01105 | —0.00055 } — 0.06512 | —0.02742 | — 0.03719
1.0 — 06585 1 ——0.2964 | —0.0486 | —0.1852 003783 | —0.01214 | + 0.00258 | —0.07272 | —0.02632 | — 0.04156
=035 0 —1.3002 0 0.2087 0 0 0 — (1.02403 0 — 0.04009 0
0.1 — 1.0576 0.2003 0.0860 | — 0.1368 | — 0.00002 | — 0.00195 | —0.01961 | —0.00402 | —0.03739 | —0.00206
0.2 — 0.91%4 0.1792 -+ 0.0151 — (.1616 + 000079 | — 0,00342 | — 001682 | — 0.01181 | — (0.03582 | — Q.00648
0.3 — 0.8433 01291 | —0.0245 | — 01711 0.00255 | —0.00471 1 — 001488 | —0.02013. | — 0.03485 | —0.01122
0.4 — 0.7984 0.0756 | —0.0484 | — 01789 0.00531 | —— 0.00601 | — 0.01316 | — 0.02857 | — 0.03416 | — 0.01599
0.5 — 07710 | -+ 00241 | —0.0638 | —0.1876 0.60896 | — 0.00734 | —0.01150 | — 0.03706 | — 0.03859 | — 0.02074
0.6 — 07543 | —0.0245 | — 00737 | — 01978 0.01354 1 — 0.00876 | — 0.00975 | — 0.04560 | — 0.03308 | — 0.02547
0.7 — 07448 | — 00705 | —0.0804 | -— 02007 0.01913 | — (.01029 | — 0.00787 | — 0.06426 | — 0.03256 { — 0.03022
0.8 — 07403 | —0.1142 | —0.0848 | —0.2229 0.02568 | — 0.01205 | — 0.00589 | — 0.068302 | —0.03204 | — 0.03496
0.9 — 07400 | — 01559 | —0.0875 | —0.2374 0.03319 | — 001401 | — 000332 | —0.07191 | —0.03149 | — 0.03970
1.0 2097423 | —0.1958 | ——0.0890 | — 0.2529 004176 | — 0.01620 | — 0.00164 | — 0.08098 | —0.03094 | — 0.0444%
B=10450 0 -—1.4064 0 0.2257 0 ¥ 0 — (1.02596 0 — (.04336 0
0.1 --1.1014 0.2562 + 0.0690 | ——0.1689 | —0.00003 | —0.00204 | — 0.02066 | — 0.00415 | — 0.04010 | — 0.00206
0.2 — 0.9370 0.2353 — 0.0197 — 0.1850 + 0.00087 | — 0.00359 | — 001773 | — 0.01276 | —-0.03545 | — 0.00696
0.3 — 0.8550 01878 | —0.0674 | — (L2059 0.00282 [ —0.00501 | — 0.01584 | —0.02194 | —0.03766 | —0.01211
04 — 0.8093 0.1398 | —0.0978 | —0.2159 0.00579 | - 0,00649 | — 001431 | —0.03124 | —0.03721 | — 0.01726
0.5 — 0.7843 0.0964 —0.1188 -—0.2276 0009582 | 000809 | — 001294 | — 0.04063 | — (L.03697 | — G.G2254
0.6 — 07718 0.0687 — 01350 —0.2415 0.01492 | — 0.00995 | — 0.01166 | — 0.05025 ;| — 0.036581 | — 0.02738
0.7 — 0.7676 + 0.0261 | —0.1486 | -— 02573 0.02108 | — 0.01206 | —0.01048 | —-0.06002 | — 0.03677 | — 0.03236
08 — Q76890 | —0.0006 | —0.1611 | —0.2746 0.02829 | — 0.01467 | — 0.00945 | — 0.07003 | —0.03680 | —0.03731
0.9 — (.7746 —-0.0243 —_ 0:1731 — 0.2931 0.03662 | —0.01781 | — 0.00862 | — 0.08018 | — 0.03688 | — 0.04223
1.0 — 07829 | —0.0422 | — 01849 | —— 03123 0.04601 | — 0.02161 | — 0.00808 | — 0.09049 | —0.03702 1 — 0.04707
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e kS ke (7 e 0, L n,"” " " ,” n,’
8 ==0.60 0 — 1.5225 0 .2444 0 ] 0 —0.02813 ] ~— 0.04694 0
0.1 -—1.1380 0.3145 + 0.0422 | —0.2020 [ — 0.00005 | — 0.00217 | —0.02171 | —0.00433 | —0.04302 | —0.00211
02 - — 0(.9500 0.2940 —0.0630 | —0.2279 | 4+ 0.00098 { —0.00376 | — 0.01867 | —0.01398 | — (0.04140 | — 0.00752
0.3 — 0.8583 0.2482 — 01222 | —0.2372 0,00314 | —0.00635 | — 0.01693 | — 0.02402 | — 0.04083 | —0.013090
0.4 — 0.8091 0.2066 —0.1619 | —0.2466 0.00644 | —0.00707 | —0.01570 | —0.03430 | — 0.04069 | — 0.01857
0.5 -—0.7819 0.1734 — 01927 | —0.2575 0.01085 | —0.00903 | — 0.01481 | — 0.04475 | — 0.04087 | — 0.02392
0.6 — 0.7664 0.1489 —(.2199 { —0.2699 0.01640 | —0.01141 | — 0.01426 | — (0.05537 { — 0.04122 | —0.02910
0.7 — 0.7577 0.1324 — 02459 | 02827 0.02310 { — 0.01436 | —0.01415 | —0.06624 | —0.04172 | — 0.03417
0.8 — 0.7510 0.1233 — 02718 | —0.2947 0.03081 | —0.01805 | — 0.01459 | — 0.07716 } — 0.04233 | — 0.03906
0.9 — {.7440 0.1207 — 02984 | —0.3049 0.03952 ) —0.02265 | ~— 0.01563 | — 0.08804 | — 0.04300 | — 0.04374
10 —0.7345 0.1223 —0.3206 | — 0.3124 0.04900 | —0.02836 | —0.01733 ) — 0.09873 | ——0.04364 | — 0.04827
B==070 0 — 1.7056 0 '+ 0.2737 0 0 0 -—0.03150 0 —0.06258 | O
0.1 —1.1773 0.4084 —0.0086 | —0.2534 | —0.00005 | —0.00232 | —0.02331 | — 0.00478 | — 0.04758 | —0.00227
0.2 — 0.9520 0.3796 — 01458 | —-0.2692 | + 0.00017 | —0.00410 | —0.02027 | — 001596 | — 0.(4614 | — 0.00846
0.3 — (.8443 0.3347 —0.2238 | —0.2682 0.00366 | —0.00585 | -— 0.01887 | —0.027563 | —0.04604 | — 0.01455
0.4 — 0. 7826 (.3030 —{(.2815 | — 0.2663 0.00740 | —0.00807 | —0.01838 | — 0.035922 | — 0.04662 | —0.02033
0.5 — 07398 0.2329 —0.3304 | — 02617 0.01236 | —0.01076 | —0.01867 | — 005111 | — 004751 | — 002574
. 0.6 — 0.7027 0.2725 — 03741 —0.2520 0.01846 | —0.01419 | — 0.01984 | —0.06304 | — 0.04860 | — 0.03076
- 0.7 — 0.6643 0.2666 — 04182 | — 0.2356 0.02548 | — 0.01858 | — 0.02198 | —~0.07474 | —0.04971 | — 0.03537
0.8 — 06212 0.2600 — 04454 | 02119 0.03326 | — 0.02404 | —0.02501 | —0.08569 [ — 0.05068 | — 0.03966
0.9 —0.5735 0.2476 — 0.4652 — 01822 0.04142 | —0.03065 | — 0.02860 | —0.09575 | —0.05140 | — 0.04373
1.0 — 0.5238 (.2265 — 04800 | — 0.1483 0.04996 | — 003830 | —0.03238 | — 010479 | — 0.05179 | ——~0.04778
B =10.80 0 — 2.0300 g + 0.3258 0 0 0 — 0.03750 0 — 0.06258 U]
0.1 — 13921 0.5606 — 01278 | —0.3284 | —0.00002 | —0.00258 | — 0.02598 | — 0.00597 | — Q.05565 } —— 0.00271
0.2 — 0.9189 0.5064 —0.3213 —0.3003 | 4+ 000156 | — 0.00468 | — 0.02337 | —0.01988 | —0.05499 | — (.01001
0.3 — 0.,7680 0.4559 — 0.4308 — 0.2477 0.00458 | —0.00720 | --0.02332 | — 0.03387 | — 0.05618 | — 0.01639
0.4 — 0.6659 0.4166 ~— 05017 | — 01794 0.00891 | — 0.01038 | — 0.02505 | ——0.04766 | — 0.05794 ; —0.02166
0.5 — {.5762 0.3761 —0.5358 | — (.0985 0.01427 | — 0.01455 | —0.02837 | — 0.06065 | — 0.05956 [ — (0.026G2
0.6 — 0.4993 0.3207 ~—0.5295 | — 00184 0.02029 | —0.01978 | — (.03284 | — 0.07240 | —0.06069 | — (,02996
a.7 — 00,4437 0.2494 — 0.4888 | '+ 0.0430 0.02679 | — 002593 | —0.03755 | — 0.08270 | — 0.06108 | — 0.03410
0.8 — 04155 0.1706 ~— 0.4301 0.0752 0.0337T1 | —0.03296 | —0.04183 ) —0.09192 | —0.06144 | — 0.03889
0.9 —-0.4199 0.1019 — (.3671 0.0732 004117 | —0.04096 | ——0.04611 | — Q10087 | —0.06239 | — 0.04395

0T
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TABLE 10, Cocfficients for r:_D.S.

I{‘c” l

14

14

’

nb" 'ﬂ'c,

o M m, T T, fy n¢
B=20 ] —1.3215 0 : 0.2523 0 ¢ it — 003595 | - 0 - — 0.05531 0
0.1 —1.1081 0.1575 01462 | — 0.1203 (.00001 | — 0.00299 | —0.02898 | — 0.00589 | — 0.05138 | — (.00353
0.2 — 0,979 0.1201 00834 | —0.1432 0.00114 | —0.00523 | — 0.02690 | —0.01722 | — 0.04877 | — 0.01058
0.3 — 0.9022 + 0.0534 | '+ 0.0476 —0.1514 0.00369 | — 0.00717 | — 002277 | —0.02922 | — 0.04688 | -~ 0.01814"
0.4 — 0.8516 —0.0180 | —0.0261 —0.1572 0.00762 1 —0.00899 | —0.01991 | —0.04133 | — 0.04528 | —0.02579
0.5 —0.8153 | — (.08R6 4+ 0.0129 | —0.1635 0.01290 | —0.01075 | —0.01700 | — 0.05342 ! —0.04373 | — 0.03343
0.6 —0.7871 —0.1570 | 4+ 0.0048 —0.1709 0.01951 [ —0.01249 | —0.01388 | — 0.06544 | — 0.04212 | _— (0.04102
0.7 —(1.7635 —0.2233 -+ 0.0001 —0.17% 0.02741 | — 0.01421 | — 0.01044 | — 007741 | — 0.04041 | ——0.04858
(.8 — (L7427 — 02875 —0.0022 — 0.1888 0.03662 | — 0.01594 | — 0.00664 | —0.08932 | —0.03854 | — 0.05610
0.9 — 0.7233 —0.3502 | —0.0026 —0.1990 004708 | —0.01766 | — 0.00244 1 010118 | — 0.03650 | — 0.06359
1.0 — 0.7046 — 04114 | — 00015 —0.2100 0.06884 | —0.01939 | + 0.00218 | —(.11301 | — 0.03428 | —{.07106
=035 0 — 1.1407 0 0.2694 Q 0 0 . — 0.03838 0 —- 0.05905 0
01 —1.1495 0.2049 201375 ) — 01484 | ——0.00002 | —0.00312 | —0.03135 | —0.00602 ¢ — 0.06440 | —0.00343
0.2 —1.0017 0.1716 0.0621 — 01762 | "+ 0.00118 | ——0.00545 | —0.02699 ) — 0.01815 | — (0.05165 | — 0.01107
0.3 —0.9204. .1078 -+ 0.0206 | — 01882 0.00392 | — 0.00754 1 —0.02399 | —0.03110 | — 0.04990 | — Q01918
0.4 — 0.8727 + 0.0408 | -—0.0038 -—0.1986 0.00815 | —0.00959 [ — 002142 | —0.04422 | — 0.04862 | — 0.02735
0.5 —— 08434 | —0.0244 —0.0187 | —0.2101 001885 | — 001173 | —0.01894 | —0.05744 | — (0.04748 | — (.035952
0.6 — 0.8255 —0.0865 | —0.0278 | — (02234 0.02101 | —0.01402 | —0.01641 | — 0.07075 | — 0.04638 | ——0.04368
0.7 — 0.8151 — 0.1460 —0.0331 — 0.2384 0.02968 | — 0.01652 | — 0.01374 { —0.08422 | —0.04528 1 — 0.05184
0.8 — 0.8102 — 02031 | —0.0359 —0.2550 0.03986 | —0.01931 | —0.01091 | —0.09786 | — 0.04414 | — 0.06001
0.9 — 0.B097 — (1.2583 —0.0364 [ —0.2731 0.05161 | — 0.02248 | —0.00798 | — 011172 | — 0.04295 | —— 0.06820
1.0 — 0.8122 — 03121 | —0.0356 — 02925 0.06487 | — 0.02509 | —0.00495 | — 012381 | —0.04168 | —0.07644
B =050 0 — 1.56259 1] 0.2914 0 0 0 —0.04151 0 — (0.00387 0
1 —1.1978 0.2641 01229 | — 01838 | — 0.00006 | — 0.00828 + — (03303 | —0.00622 | — 0.05827 | — 0.00348
0.2 — 1.0228 0.2307 + (L0258 — 02141 | + 000131 | —0.00673 | —0.02842 | —0.01961 | — 0.05538 | — 0.01188
0.3 —0.9362 0.1694 | ——0.0208 | —0.2289 0.00431 | — 0.00801 | —0.02554 | — 0.03385 | —0.05390 | —0.02069
0.4 — (1.8891 0.1078 — 0.0515 —0.2430 0.00895 | — 0.0103% | —0.02332 | — 0.04330 | — 0.06301 | — 0.02952
0.5 — 0.3643 0.0512 — 0.0721 — 0.2h94 0.01521 y —0.013001 | —0.02141 | —0.06296 | — (0.06243 | — 0.03829
0.6 —0.8533 -+ 0.0005 | — Q0875 — 02736 0.02309 | —0.01596 | —0.01970 | —0.07786 | —0.05204 | — 0.04701
0.7 — 0.851% — 00447 — 0.0997 — 0.3001 0,03264 | —0.01944 | — 001821 | —0.09308 | — G.05179 | — 0.05568
0.8 — 0.8569 — 0.0846 | —0.1106 — 0.3238 0.04383 | ——0.02362 | —0.01703 | —0.10862 | — (0L05166 | — 0.06434
0.9 — 0.8673 — 0119 — 01212 | —0.3492 . 0.05670 | — 0.02869 | —0.01627 | —0,12442 | —0.05164 | — 0.07295
1.0 —0.1482 —0.1317 — 0.3760 0.07119 | -— 003488 { —0.01602 | — 0.14043 | — 0.05174 | — 06.08150

— 0.8818
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REPORT F. 147,

Influence of Compressibility on the Flutter speed of a Family of
Rectangular Cantilever Wings with Aileron

J. IJFF, A, C. A. BOSSCHAART and A. L. VAN DE VOOREN.

Summary.

In this report diagrams are presented, showing for a family of rectangular wing-aileron systems the dimensionless
flutter speed as funetion of the ratip between flexural and torsional resonance fregueney,

The calenlations have been performed for Mach numbers 0, 0.5 and 0.7. The relative mass parameter, the positions of
the elastic and inertia axes, the aileron static balanee, tle control-cable stiffness and the structural damping have been varied

systematically.

For binary wing-aileron flutter the allowed static unbalance of the aileron has been ecaleulated,
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This investigation has heen performed by order
of the Netherlands Aiveraft Development Board
(NIV.D.

1 Introduetion.

This paper is to be considered as a continuation
of report F.118 (ref. 1), where the influence of
compressibility on the flutter speed of a family
of reetangular wings has heen investigated, In the
present report diagrams are presented showing the
inflmence of compressibility on the flutter speed
of the same family of rectangular wings, but this
time provided with an aileron on the outer half
of the span. For the greater part of the caleula-
tions the aileron has been assumed to be statically
halanced and freely rotating, but a few caleulations
have also been made for an unbalanced aileron
while some other caleulations were performed for
an aileron which was elastically restrained by the
control eables. The unhalanced aileren has beet in-
vestigated more completely for the cases of binary

ilutter, viz. wing bending-aileron and wing torsion-
alleron. ,

The aerodynamie forees, which were used, have
been obtained by aid of strip theory from the
resulis of the two-dimensional subsonie flow theory
for an oscillating aerofoil which has been published
in ref. 2, The present calculations were started he-
fore it had been recognized that these results were
subjeet to a small numerical error. This error does,
however, not greatly atfeet the flutter caleulations
as has been checked by the eomputation of a single
case with the improved numerieal results.

2 List of symbols,

b — semispan.

¢ — wing chord.

1 — semi-chord.

£1  — distance between midpeint of chord and

elastic axis (positive if clastie axis is
ahead).

ol — distance between elastic axis and inertia

axis {positive i elastic axis is akead).

ol — distance between aileron hinge axis and

aileron imertia axis.

v — ratio hetween aileron and wing-chord.
prpl — mass of wing with aileron per unit span.
prmpl? ~—- mass  of aileron with halance per unit .

span,

« - radius of gyration of wing with aileron

, about inertia axis.

kil — radius of gyration aileron with balance

about inertia axis.

2l — vertical movement of wing clastic axis

due to hending.

¢ -— torsional movement of wing gbout elastie

axis

v — alleron defleetion from horizontal level

{subseript 1 for deformation functions)
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v — frequency {rad/sec).

vg — uncoupled frequency of wing bending in
vacuum (rad/see),

vy -— uncoupled frequency of wing torsion

' about the elastic axis in wvaeuum
(rad/see).

v — uncoupled frequency of aileron deflection
in vacuum (rad/sec).

p — air density.

o — reduced freguency %l

b — structural damping factor.

3 Procedure.

‘The calculations have heen performed for a rec-
fangulayr wing, rigidly fixed at the root and fitted
with an aileron without aerodynamic balance and
extending over the outer half of the wing.

Bending and torsion have been determined by
one preseribed deformation funetion each, which
ig given in table 1. The displacement of the aileron
has been determined by the assumption that it is
torsionally rigid and hence makes an angle y with
its mean position which is the same for all seetions.
The bending of the aileron is such that wing and
aileron have the same displacements at the hinge
axis. :

In this way resulis are obtained which have the
physical meaning that for the ehosen value of the

2

reduced frequency o those values of the ratio

VT2

are determined for which the wing can perform a
harmonie oscillation,
Mathematically, it is possible that a negative

2
value of 3355— will he found, but it will bhe clear
v :

that no physical meaning can be aseribed to nega-

a
ve~

tive values of —-. In actnal wing construetions

ve

V32
the values of

will range from § to 1.

2

vy

If the aileron is elastically restrained by eontrol
cables the unknowns which are solved from the
>2 V2

“~ and — , where v,
vy Ve

denotes the natural frequeney of the ailerom in
vacuum. In this- case the flexural stiffness has
been neglected, but the deformation funetion for
the fundamental mode of wing bending has heen
retained, Although the negleet of the flexural
stiffness may give rise to small numerieal diffey-
ences, the qualitative influence of the control eahle
stiffness will be ohtained in this way (see also ref. 4
-where a comparison between the cases that the

flutter determinant ave

TABLE 1.

. Deformation Funetions.

spar station %—

wing bending 2

1/8 2/8

0.0169 | 0.0682
0.1450 | 0.3170
0 0

wing forsion ¢

o o T S T et}

aileron deflection

3./3 1/2 5/8 G/S T/s
01547 1 02732 | 04268 | 0.6039 | 0.7983
0.4890 | 0.6511 | 0.7921 | 0.5029 | 0.9745

[ S

0 0/1 1 1 1

In the case of elastic control eables it is assumed
that the econtrol column is fixed. In the section
y=3%) b aileron and wing are.then subjeet to equal
but opposite elastic moments which are proportional
to the relative deflection of the aileron with regard
to the wing in that section, ie. to y-—¢ (34 5.

The equations of motion have been solved by
aid of the Galerkin procedure. The weight funec-
tions have heen faken egual to the deformation

functions - (Rayleigh-Ritz analysis). In this way

the equation referring to the aileron expresses
the equilibrium . of moments about the aileron
hinge axis.

The {lutter determinant has heen solved for

several assumed values of the reduced frequency o .

2 II2

va®

. v ‘ rer s
with VLZ -and as unknown quantities if the
T

aileron is free to defleet.” vs and vy are the un-
coupled froquencies of the wing for bending and
torsion in vacuum. The non-dimensional flutter
speed then follows from the formula

2 v 1 l/v,f v
vrC a ve? ' sz ’

flexural stiffness has been retained and that it
has heen neglected, has heen made for ineompres-
sible flow). ]

The results of the calculations are presented in
diagrams where the non-dimensional flutter speed
2v

C has been plotted versus the ratio of natural fre-
v .

’ 2
. v . " .
guencies (i) or, in the case of elastic control
vy

v \2
cables, versus (—L) .
vr

The ‘divergence and aileron reversal speeds have
also been added in the diagrams. They were also
caleulated by aid of strip theory.

For the binary systems, where the influence of
statie balance of the aileron has heen investigated
no flutter- speeds were ealeulated. 1t has been
investigated which combinations of dimensionless
static moment and dimensionless moment of inertia
about the hinge axis make flutter impossible. Dia-
grams with these two gquantities as coordinates
show the boundaries between the stable and un-
stahle regions.
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4 Numerical data.

The caleulations bave heen performed for rec-
tangular wings whose values of the relative density
parameter {p} as well as the pesitions of the clastic
axis (H.A.) and the incrtian axis (LA.) are con-
stant along the span. The following 27 eombina-
tions have been investigated.

TABLE 11.

Values of parameters,

KA. 02 ¢ 03 e G4 ¢
1.A, 0.3 ¢ 04 e 0.5 ¢
i 5 15 30

The values of H.A. and TA. denote the back-
ward position of the axis™ with regard to the
leading edge,

The radius of gyration of the wing ineluding
the aileron, has heen assumed to he 0.3 ¢ for all

positions of the inertin axis. The aileron moment -

of inertia (about its Inertia axis) is determined
by wee*==0.06. The ratioc between aileren and
wing chord is given by »==0.2. The aileron is not
acrodynamieally balanced and has its hinge axis
at the nose. Three values of the Mach number,
viz. 0, 0.5 and 0.7 have heen considered. The air
density has heen taken equal to 34 kg m—* see?,
which iy stundard value at sea level.

For the caleulations referring to a wing with
[ree wileron, all 27 ecases have heen investigated.
The aileron has been assumed here to be statically
halanced. No structural damping was introduced.

Some special caleulations have heen made in
order to investigate the influences of structural
damping and aileron static unbalanee. These eal-
culations refer to the three ecases where =35,
15 and 30, while the position of the clastie axis
is at 0.3 ¢ and that of the inertia axis at 04 c.
For each of these three cases three caleulations
were made,” the parameters of which ave given in
fable IVI.

TABLE 1T

Values of parameters.

Ailleron non-dimensio-

hal static moment

Lty 0 0 0.04
Structural damping &l 0.G5 |

Sinee the damping has heen introdneed a3
hysteresis damping by multiplying all stiffnesses
by 1 + ¢h, the same amount of danmping exists for
wing hending and wing torsion, while the motion
of the aileron is not restrieted by any direct damp-
ing due to the lack of control eable stiffness.

In the case of the unbalaneed aileron, the aileron
moment of inertia ahout its hinge axis is determiu-
el by pele® + o) =05, while some minor ap-

proximations have becn introdueed, which are
mentloned in Appendix 1. ‘

The caleulations for a wing with an elastically
restroited aileron have been limited to the same
three cases for which the influences of struetural
damping and aileron unbalance were investigated,
viz, =25, 15, 30. E.A. at 03 ¢, LA. at 04 e

Structural damping was assumed zero, -while
the aileron was stutieally balanced. In order to
simplify the caleulations the flexural stiffness has
heen neglected, hut the fundamental wing bending
mode was still assumed to approximate the hending
deformation adequately.

For the bimary system wing bending-aileron the
9

. Cve \?
only paramecters wiieh veeur are (* and u (see
vg -

 Appendix 2). If the aileron is left free, (l’i—): 0.

Vg
The stability region (hut not the flutter speed)

- even hecomes independent of u. This case has been

caleulated.  Morcover, results are presented for
4 2
v .
(——c—) =3 and p=15,
v
For the hinary system wing forsion-cileron the

2
- . Ve ..
determining parameters are (4) , the position of
Vo o

the clastic axis as well as the moment of inertia
ahout the elastic axis, The ease which has heen
3 :

. . . Vo -

tnvestigated iy (—L) =0, V.A. =03 ¢. The value
vr

of the moment of inertin does rnot inlluence the

stability region if the aileron iy left tree.

5 Results,
D1 Cileulations far ternary systems.

The results of the flutter ecalenlations for the
wing with stadically balanced and elastioally wn-
restrained ailevonr have heen presented in figs 1
to 27 (structural damping zero). Tn these figures
2

the non-dimensionai fintter speed has been

vl

- - . . x . l'Bi" .
given as funetion of the ratio —~—-, while-the
vy~
numbers added to the ealenlated points refer to.
the reduced frequency w. .
Bt is seen from these diagrams that for Mach
2

numbers 0 and 0.5 the flutter speed is nearly

vyl
always hetween: 3.0 and 1.5, Apart from some
: Y
N . . . vy
ivregular behaviour jn the l'ange(*) hetween (0
vy .
and 1, this flutter speed is nearly independent of

- 2
(—Vi) and in partieular the corresponding curve
v .
has a horizontal asymptote. This.asymptote indi-
cates that the system will also be unstable if the.
{lexural stiffness is infinitely large and hence the
corresponding instahility consists: chiefly of wing
torsion-aileron futter,

While the influence of the Mach number is small

i M ;’\; L5, the resulis for M ==0.7 are different.
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For this Mach number the horizontal asymptote
hus disappeared, indicating that the system is not
Jiable to pure torsion-aileron flutter at higher
Mach numhbers. This has been confirmed by the
separate results which will he presented for this
hinary” svstem. -

It is seen that the wing torsion-aileron ingtability

a
. . . . vp \" .
disappears again at higher speeds if (-v—) is larger
N

2z
. v
than a certain value. For smaller values of (u) ,
v

ineluding the range 0 to 1, the instability does not

disappear hut is changed into a hending torsion
mode which agrees with that found for the wing
alone (ref. 1). This can bhe verified especially in
the case of large values of g, where the hending
tovaien flutter specd is rather high (for instance,
figs 6 and 9).
‘Bome interzetion hetween bending-torsion fintter
and torsion-agileron flutter oeeurs for values of
P
(%B) near 0.5 and is responsible for a sharp
.
Incal increase of the flutter speed near this value

2
. vp . . . .
of (—ﬁ) . This local inerease exists only for
Vv -

M=10 and 0.5.

Pure bending-aileron flutter does not exist for
statically balanced ailerons. This type of flutter
would make that the ceurve denoting the lower
flutter speed would have a eusp in the origin (see
figs 34, 36, 38).

g
While for small values of (E) , viz. near 0.1,
vy

g has little influence if M is equal to 0 or 0.5,
p becomes a more Wmportant parameter if i =071,
In this cage there is an inerease of {lutter speed
with p, which is similar to the influenee of u
found for the wing alene at all Mach numhers
(ret. 1).

The positions of the elastie and inertia axes
appear to be of minor importance in the present
investization, where the lower flutter speed is
chiefly. determined by the aileron. For the higher
flutter speeds results ave narrowly conneeted with
those of ref, 1.

It has been shown in Appendix 1, that if w0,
one of the points which are found in this type

: 2
9 . . vy
of diagrams, approaches the point (__,) =0,

vy
2y

vyl

== divergence speed, while the other poing ap-

/ 2
Ve Y
proaches (ﬁ) =0 and a value of the- speed

Wy
whieh is higher than the divergence speed (sce
eq. (A2.7)).

As shown in the figures (28) to (33}, the in-
fluence of the sfructural damping consists mainly
in a shrinking of the unstable region. It is seen
that for incompressible flow pure wing torsion-
aileron flutter disappears with less damping if
is Jarge than if u iz small

Results for the unbalanced aileron arve presented
m figs 34 to 39.- It is seen that pure wing torsion-
aileron flutter is also possible at M =07 if the

aileron i1s unbalanced. For M =0 there arises also
pure wing bending-aileron flutter as is seen by the
faet that the eurve hag a cusp at the origin.

These resilts are confirmed hy the ealeulations
for the binary cases, figs (43) 1o (45). It follows
that if the unbalanee of the ailéron would still
further be inereased, hending aileron flntter wonld
also beeome possible at M =07,

In the eases with clastically restrained aileron
the results arc presented in the figures (40) to
L) Y

v

(42) where the non-dimensional flutter speed
vyl

2
has been given as funetion of the ratio —:{—_, . The
"
curve has a horizontal asymptote whieh indicates
that wing bending-torsion flutter with vy =10 oc-
eur, if the aileron is restrained infinitely. This
agrees well with the results of ref, 1.

Morcover the potnts with vo==0 corvespond to
the points ve =0 of the foregoing ealenlations for
olastically unrestrained aileron.

The deep minimum in the earve has heon
eaused mainly hy torsion-aileron flatter and will
also exist it the hending stiffnesy would be in-
initely large, fthe influence of the Maeh number
congists of a flattening-out of this minimum while
the flutter speed inereases with inercasing Macl
numbher. :

This indicates again that torsion-aileron flutter
will disappear at high Mach numbers. The curves
for divergenee speed and aileron reversal speed
reler to M ==0, hut thoge tor M =05 and M = 0.7
eann he easily obtained by multipliention of the

speed by a faetor V1

5.2 Culeuwlutions for binary systems.

For the binary systems (figs 43 to 46) it has
heen investigated for a number of reduced fre-
quencies which combinations of the statie moment
pwere and the moment of inertia about the hinge
axis  pe{x2 4+ 7)) lead to harmonie oscillations.
For cach value of the reduced fregueney a conie
is obtained. The enwelope of these curves divides
the whole plane in a stahble and an unstable region.

Tt iz seen from fig. 43 and 44 that for wing
beniing-uileron flutter the allowed aileron static
unhalance is nearly independent of the aileron
moment of inertia provided the latter is larger
than a certain limit depending upon the stiffness
of the control cables. N )

“Below this himit the allowed static unbalance of
the aileron increases with deereasing moment of
inertia (sec fig. 45). This increase is even quicker
for M =0 than for M =07.

Henee, while in general =0 will limit the
allowed unbalanee, for small values of the aileron
moment of inertia the opposite may oceur. An
example of this possibility has been given hy
Winniavs (vef. 3),

1t has been shown in Appendix 2 that the conics
in the diagrams of tig. 44 —45 move parallel to
the g-axis if the ratio v/vs is changed. 1E this
ratio is inereased, the conies shift . toward larger
valies of the moment of inertia. )

e i i e e



The results are independent of g it the aileron
. . R Ve
is unrestrained but depend upon p for =10,
. v
This follows also from Appendix 2,
The results for the hinary system weng forsion-

. . . v .
aileron. are presented for —— =0 only (fig. 46).

Ve
Tn contrary with the wing bending-aileron ecasc the
allowed unbalance or required overbalance now
depends upon the moment of inertia. It iy a well-
known faet that in the ease of wing torsion-aileron
the mass coupling is only eliminated by over-
halancing the aileron and that this overbalance
must he larger if the aileron moment of inertia
hecomes larger (the produet of inertla of the
aileron with regard to the clastic axis and the
aileron hinge axis should vanish), In tig. 46 the
compressibility appears to be favourable, Ilow-
ever, tfor large values of vo/vy together with small
values of the aileron moment of inertin the eontra-
vy effect will veeur. This is in analogy to the
wing bending-atleron resulis.

6 .Conclusions.

1. The lowest flutter speed tor a wing with statie-
ally balanced atleron is nearly independent of
the Mach number if this remains smaller than
or equal to 05, For M =07 an inereasc in
flutter speed may occur. This is due to the
fact that at higher values of the Mach number
the aileron is less liable to- flutter.

2. Flafter at M =0.7 is mainly wing f{lutter,
while for M =0 and M = 0.5 the aileron plays
an important role unless the struetural damping
ig large.

3. Conecerning wing bending-aileron and  wing
torsion-aileron fluiter it has been found that
usnally 3 =0 requires a more forward position
of the aileron ecuter of gravity than # =0.7.
For large eontrol cabie stiffness and small
ailleron moment of incrtia this position shifts
especially for M =0 backward. This may resuli
in giving M =07 the more eritical conditions.
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APPENDIX 1.
The limiting case o — 0.

It will be investigated in this Appendix which
points of the enrves in figs 1—39 "arc obtained
it o approaches 0.

The CGalerkin equations assume the following
form :

1+ ik .
¢ (U, + 1L, -T2 I,) 4
g, + L)+ g (U, + L) =0

1+ 2

V2

i, (sz + Lz]) + .Qz(Uzz + Lzz ‘
-+ q.‘;(”z:; + I"z:{) ==0

L)+
(A1.1)

G (U + L)+ q(Uyy + L)+
+ . (U, + L) =0,

where the first equation refers to wing bending,
the second to wing torsion and the third cquation
to aileron rotation, In these equations the guanti-
ties U denote the inertia terms, L the acro-
dynamic terms and Fj the elastic terms. Sinee
the aileron is freely rotating, the clastic term E,,
has heen omitted. ¢,, ¢, and ¢, arc generalized
coordinates corresponding to wing hending, wing
torsion and aileron rotation respectively. The acro-
dynamic terms are given hy
b

"

1
Ly=— | kegdy
i1 .

U

b
1 -
Ly = —- [ {hoét+ b=k )z dy
i

i

Llu:_l'{j ez, yidy
o’ i

b

i 7 ‘
—5 [ (ko £ 4 mo—n, } 2, ¢ dy

L, =
o o
d
b
1 I .
L, — = [he &4 (me—ng + hy —k)E+
W .
d
+ pip — e — My T+ e } 2y
b
) 1 7 . ;
Ly, = / { ke &+ me—ne } oy, dy.
W

i)
. b
i .
L:;l = -7 Ha 2y 7y d’.'f
@y

]
Loy = = /{?lrff+7lb—?3c}¢1?1dy

o
i

eN| —

4
L“: 2 /fncyl'-’dy

g

|~

g
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where the aerodynamic coefficients ave defiued in
aceordance with Kiissver, but with the mid-chord
point as point of veterenee, & denotes the distanee
of the elastic axis ahead of the mid-chord axis.

Making use of the known formulac for the
derivatives and performing the limit o— 0, it is
found that

kS mu nu
iim 5 =—={ (hl m)
o e {1 oy (IJ
N *
i kS omy” 1 n,t —0 1
im — , —and — =0[—
w—p0 © @ w @
li.m Ey wm w' RS m( nt . ( 1 )
T2 Y T e Y 2
& () i) W i1} w i}
I L wu”  w” RS nt,”
m — e, —, ——
w34 wl wi H (JJ2 ! w_’ ? 0J2
: n, “Inw
and ; ==} ( .
[0} [}

1a this way the order of all acrodynamic terms
is known. In the evaluation of the determinant of
the system (A L1)

v2

vy®
A= and = -
vyl VR

are taken as unknowns, where vg and v are
defined by

.E]-1 = v,qun and Ezz = V7'2U22 .

Putting the complex flutter determinant equal
to 0, two real cquations are obtained. These equa-
tions cean he written .in the form

{ Vg2 +- (B —hB"xp } A +
+ {(C"— A0z + (A" —2RA™)} =0
' {(A1.2)
{ D" +(B" + hBNz } A +
+ {(C" + RCYx + (A" + 204 =10
where the coefficients 4”... 17 depend upon the

inertia and acrodynamic terms Uy, and L. It
can be shown that

. 1 . : o

i 470 () tim 47 o (L)
=0 “ w— @

lim B':o(i lim 1":0(5"[")
B — () w o — () . W

l Y

lim == ( n;’) lim €"=0 (l—)
w0 o P w”

lim Df:o(-h—i‘ﬂ) “Tim 1)”=0(1,).
W — () w e O w'

Iilimination of A from the two equations {ALZ)
vields.

azt + bxr +c=0 (A 13
where
a=0"10 — D" + (oD A+ 0D
b=A"Y — A'D -+ SR{ADY + A"D) —
( + h )( i!f("l BIC”)
e =— (14 2R [A'B" — A" ') +

+ h(A’B’ + A”B”).

Two eases must now he distingnished, viz. =0
and =20, It k=0, it follows thut

lim «=20 ( !n.u» ) . lim 0=0 (l?)

e [} w w20
and
J‘H [
lim ¢=0 ( T .
w—0 o’

Sinee in this case 4 a¢ iy small with regard to b2
the solufion of eq. (A1.3)

o —b=x |
2

may he simplitied for o — 0 to

b ( i ¢
Jc]f—_{) m) and By E=

=0 (mzhi(z)).
o

Onee x is known, A is determined by one of the
eyuations (A 1.2) and it follows that

ol T .
’\l [ — W'::O(w- [E18 u))
and
A’ 1
n=— gy =00%)

It is seen that both values of A approach 0 and
henee the curves from the figs 1 1o 39 ¢nd at both
sides at a point of the vertical axis. The ordinates
of these points are determined by

2 1 Vo
_— AL,
w s

vyl

{Ald)

which yield finite values,
It h=£0, it follows that

lim (Lzo(—lg), lim b=0(73';)

G ) W g

Hm ¢=90 ( Ih) .l

07 e 1} o

In this ease both roots are of order o and the

corresponding values of A are given by
rt, hA’ Y,

I\:__C“n‘-E-Z “_‘1_= RO — A’ A0 (),
: D'yr - ABy 2

Again the values assumed by A if w— 0 are 0,
while the ordinates are again given by tq. (A14).
After substitution of the values for A and z into
eq. (A14), the result turns out to be

and

— {(BC7(L+ hy+ Aoy = VRO L+ 2y —

AD7T Y 4 REATBCTD”

2=vﬁil/
VTC_—LU

ST (A15)
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This result is also valid for A=0. -

It is seen from the foregoing that only -A%, B,
¢ and D" appear in the final results for' o =0,
In order to find the numerical values of the hon-

5

dimensional speeds

IITC
o — 0, these guantities must he evaluated, g
It follows again from the expansion of the flutter:

determinant that £
3 ’ ] T ] T7 for .'t‘
lim A= -V, U,.S.. !
W —p O w”
. , 1 i .
lim B—— 3 U (828, — 8,78,.7)
w—0 @ :
. 1, . :
lim "= — = U,.(8,"8, — 8,785,
o 35 3y
@—30
- - .

which are approached. for

- <1, . .
o ]]III D :-? { b“"(b'w'b'%' —_ S%'b'w’) +
W} s
+ "821” (’8'13”8'32’ - Su"s‘ss‘) + 331"(812'823’ — Sm”szz") }
: ‘ (A1.6)
where
Sif = lim w?d; 1=1,2,3 i=23
H W -0
Ni"= lim wd;"” 1—1,2, 3¢
= [}
and

A=V + Ly, A" =Ly L, h=1,2,3.
The guamities 87 and 8,7 are fioite.
For h =10, one obtains

Uzz(i‘s“u::"A ‘11” — S1:—="‘531”)

Uzzsz'.:;’

vrt /gy Szz’S:i.-e’ - Sz:f’S:;z’

The Tast value is identieal to the divergence specd,

APPENDIX 2,
Wing bending-aileron system.

In the case of wing bending-ailevon flutter the
torsional stiffness is assumed infinite. Hence in
the flutter determinaat as derived from eq. (A 1.1
the eoefficient of K., must be taken zero and this
vieldy:

. 4 :2 | Vr:2 T PR.J
e RRTY: P = Undy, i
¥ Yy v

+ A4, — A4, =0 {(A2.1)

whore

A.U — UU -+ Lij - Ui}- + L'U’ + ".':L';.j-” =
= A;, + 1Ay,
As it 18 the intention to vary the unhalanee factor

uror the terms which are related to this factor will
he written in the form:

Ay =L+ por.a =L,/ + pu
Ay =L+ wor.a=1L,"+ pa
Ayt =L+ p (ke +a)b = Lytq. b=z

where @ aid & arc constants.

Now climinating the real value »? from the two
vead equations which are identical to (A 2.1} und
substituting {A.2.2) the result is:

t{pa)® + 2, (paye + u,mt +
+ 2ay(pa) + 2a,z + @y =0, (A23)

For a given value of pu, o is determined hy:

2v
( vrC )1 o I/Su”(szz's:u;’“ Sa:a’S:‘.z’) + Sm”(sl:;"gs:’ - Szz’sgs’) + S::f"(smlsz'::’ - 813’822’)

At the vertical tangent (pu = constant) the dis-
eriminant of (A 24) will be zero, hence:
(P (e, —ayy,) 2 (pa) (et 10y, — Uytlay) +
Ty ttyttyy) =10 (A2.5)
where:

(" = gty = 7 (U;sa“lnn

2
Ve

._l..

Vi

2
FULAL ) LA+ A7)~ 4,74, ).

. V{)z

- T

Myl — (5t = 1o I 2 (U.%An v ”
B

+ UHA:‘.:!”)-{ 1/.3( L‘H’ A:u” + L:n’Ai:;”)' X
(4,7 + A7) — A4, (L + Ly} b, (A26)

“232 — pyllyy, == D".] 12 ([jiiliAll"

v 2

<
e
vy

P

+ T-[;J.I‘Li:::i’,) { I/t}l (L-’m’A:n” + L:;;’A.".l”)z -
_"Au”A-:%:;”(AH”A:;::” Al.‘a”A:u" + ]413’11.".11)} .

Henee, the abseis p = g0, of the vertical tangent
of any conie is independent of the ratio ve/ve.

The shape of the conies is determined by the first
equation (A 2.6), this yields:

> 0 hyperholae
Vild,” + A,"M%— A, ”4,,” =0 parabolac
< 0 ellipses
As in the equation (A 23) the factors o and ¢
do not appear the conies are independent of the
lgeation of the elastic and inertia axes.
Moveover in the case »,=0 the wing mass den-
sily parameter will vanish.
Completed May 1954.

— () + oy, ) V{ (lrm(pa) Ty }E— iy, { @ (pa)2 4+ 2, (pa) + e, }.

r =

(A24)

(tsz
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Strip Theory -for Oscillating Swept Wings
in Compressible Subsonic Flow

W. ECKITAUS.

Summary,

By means of an asympiotic expansion, valid for high aspect ratio and a not too low frequency, a strip theory is
derived, which ean be expected to possess the same accuracy as the usual two-dimensional approximation for straight wings.
Tt is shown, thai accerding to this strip theory the pressure consists of the two-dimensional pressure, mulMiplied by a factor
eos @ (@ being the seetional angle of sweep) plus an additional pressure, which follows from an equation of the Possio
type, and which is only zero if g is zero, or if the wing is infivitely long. In the limiting case of incompressible flow
the theory is shown to lead to results identical with earlier results for that case. Methods of computing the pressure
disgribution from tho integral equation of he strip theory are indicated and discussed.

Contents.

1 Intreduetion.

2 List of symbols.

3 TFormulation of the problem.

4 Derivation of the approximate integral equa-

tion.

5 Some econsiderations on the approximate in-
tegral equation.
6 The case of incompressible flow.

7 On the solution of the approximate integral
equation.
8 References,

Appendix 1. Caleulation of the integrals I,.
1 Introduction.

The aerodynamic forees on an oscillating lifting
surface, the knowledge of which is necessary io
perform flutter caleulations are often derived by
means of a two-dimensional approximation. The
* great advantage of this approximation is the sim-
plicity of the results: the aerodynamic forees on
a spanwise wing station are a fonetion of the
geometry and the reduced frequency of this
station only. The accuraey of the approximation
is satisfactory for siraight wings of.large aspect
ratio, oseillating at a frequeney which is not too
low. In faet, it has been shown in ref, 1 that
the two-dimensional approximation follows from
the exact lifting surface equation by means of an
asymptotie expansion, when the terms neglected
are of the same order of magnitude, as the terms
neglected in the steady problem, when one uses
the wellknown Prandtl equation, again provided
that the fregueney of oscillation iy not too low.
However, the situation changes if the wing under
consideration is not straight. In ref., 2 van bE

VooreN and the author considered the case of
wings with simple sweep back in lnecompressible
flow. The strip theory, presented in that refer-
ence, was again obtained by means of an asymp-
totie expansion, where the terms omitted are of
the same order as in the case of the two-dimensional
approximation for straight wings. The aerodyna-
mic forees on a spanwise wing section, obtained
by this strip theory appear to consist of the two-
dimensional term -multiplied by the factor cos g
(where ¢ is the angle of sweep), and an additional
term, proportional to the variation of the deflec-
tion funetions and the chord in spanwise direetion.
The theory of ref. 2 makes it possible to perform
{lntter caleulations on swept wings with the same
accuracy and the same simplicity, as the usual
two-dimensional approximation in the ease of
straight wings.

In this report we shall eonsider the general case
of a lifting surface of arbitrary shape, oscillating
in compressible subsonie flow. We shall assume
the aspeet ratio and the frequeney of oscillation
not too small and derive a strip theory which,
for that general case, will again possess the same
aceuracy as the two-dimensional approximation in .
the case of a straight wing, and from which the
theory of ref. 2 will follow as a speeial case of
Mach number equal to zero.

Acknowledgment: The author wishes to acknows
ledge valuable discussions with dr. ir. A. [ vaw
DE VOOREN. :

2 List of symbols,

X X, coordinate in flight direction (posi-
tive backward)
Y, Y, coordinate in spanwise direction

(positive to starboard)
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z coordinate in the direction perpen-
dicular to the X-Y plane

w downwash (positive downward)

v velocity of flight

M Mach number

v cirenlar frequeney

P density of the air

b semi span

L) semi chord

" angle of sweep

£ the ratio of root chord to. wing

1(0) ‘

span — ,

P pressure jump on the airfoil (posi- " °
tive downward)

%i, =a redueed frequeney

p= V10

H,® Hankel fuction of second kind and
order v

sea(y) Odd Mathien funetion.

3 Formulation of the problem,

In the linearised theory the problem of a
harmonically oseillating airfoil in subsonic’ com-
pressible flow ecan be formulated as an integral
equation, whieh relates the wunknown pressure
distribution on the wing to the prescribed down-
wash. The derivation of this general equation will
not be given here, — it can be found, for instance,
in refs. 3 and 4.

The equation reads:

4 rw(x =
(Tor Yo U 20 ) et
where;

R= {2+ B (yo—y) + Bz}t (32)

x
Fig. 3.1

Integration over § denotes the integration over
the wing surface. The downwash w(z, y,) follows

from the given wing deflection-funetion 2zm (o4 #o)
if the eondition of tangential flow at the wing
surface is applied, viz.

02

W (o, Yo) == 1 2 (T4 yo) (3.3)

Our particnlar case is that of a wing of large
aspect ratio oscillating at a frequency which ig

i {C foys
)

Y
¥, (X)

{(o)

X
Fig. 3.2

not too low, and our problem to find an approxi-
mation of eq. {3.1) for that particular case.

The methed of investigation, in this report, is
inspired on the general method for treatment of
wings of large aspeet ratio, given by Toovman and

..-l-(.r—x) o '-—»——[;\ MR]
ff@(iﬂ,ﬂ)ﬂ H ;f % dudy (3.1)

Lemawre in ref. 5. By means of this method we
shall derive an approximate equation, equivalent
to eq. (3.1), together with an estimate of the order
of magnitude of the terms omitted. Before doing
so, however, we shall transform eq. 3.1 into a more
suitable form.

For a wing of large aspect ratio, for the most
part of the wing |y, — v | » Ixo—mi To express
this fact mathematically we introduee the coordi-
nate transformation

r=F (?Y) + X
(3.4)

|
|
=

Y
g =— .Z_(Q (3.5)

fly) is the eguation of the mid ehord line, ¢ is
a small parameter.

In the new ecoordinate system |X —X,| and
| Y —Y,| are in general of the same order of
magmtude (see fig. 3.1 and-3.2).

Substituting the transformatmn (3 4) into eq.
{3.1) we obtain:
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1oy 1o Ko X iﬂ__[a-{-M’(fo-(J M-

1 hd f f -1 1—: (Xp-—- X} ] dA
X, Y)=-——— lim X u 4XdY
$ (X, ¥) = = tim p(X, Vo e o

—H0) ~I(y) —x
(3.6)
where:
| B = {(ed e )P+ BUY e X2+ e2B72,2 1 A7)
and :
fo=r (L)
‘ (3.8)

r=r ()

The actual aireraft wings are always symmetrical about the line y =0, hence f(y)} ==f(— ), with a
possible discontinuity in its derivative at y =0. Furthermore, the curvature of f(y) is not-large, and
we assume therefore, that we can represent f(y) with sufficient aceuracy by the first two terms of its
expansion in a Taylor series to y, viz:

Fly) =7 {y,) + (r—w,)

df o '
7 ) (3.9)
if y and ¥, are both positive,

We also may write:

df (o) =tang¢

where » is the angle of sweep at the seetion y = y,.
Henee we find:
v for the right semi wing (¥ > 0), f,—f :':l (Y,—Y) tany

(3.10)
for the left semi wing (¥ <0}, f, —f—u (¥,+ Yj tane

Let now
w(X,, ¥,) =w(X,, ¥o) + (X, Y,) (3.11)

where w, and w, are the downwashes due to the right and the left semi wirg respectively. Substituting
eq. (3.10) into eq. (3.6) we obtain:

47w, (X,,¥,) = —

| 1 . 1oy Iy —-ii-(-\'u—.‘(, Xo- X 1v—‘1”2 ,\+M?1(Yu—}’)tanp —.lj'lﬂ' ] )
_———lim -— f f p(X,Y)e # [ e uf ¢ ¢ ) dXdY (3. 12)
PU om0 B2 S B/
~ia - ®
4WI(X|),:Y0) =
1 0 ) _él(Xn-.t} Xu:X ‘.l 12[,1{,‘”:1(?64.1/)(;&,, rp,_Ml R't] dx i
— 2 im f X, Tye © | e : » AL axay (313)
pl 20 azu < By ’
(y} -
where
R/={{ea+ (¥,—Y¥Y)tang]? 4+ g2(Y, — Y2 + 2822 )¢ (3.14)
Ry ={[eA+ (¥,'+ ¥) tan¢]® + p2(Y, — V) + %, ) , (3.15)

Eq. (3.11), with egs. (3.12), (3.13), (3.14) and (‘3]5) represents the final formulation of our
prablem; our goal will be to find an asymptotic expanmon for the right hand side of eq. (3.11), valid
for small . T

4 Derivation of the approximate integral equation,

Y, We assume that the section, in which the downwash will be caleulated lies on the right semi ng,
>0

For the unknown pressure distribution p(X,Y) we introduce the Taylor series expansion to ¥, viz.:

p(X, ¥)=p(X, )+ (¥ —¥,) g‘; (X,¥,)+ ...... on the right semi wing
(4.1)

(X, ¥)=p(X;Y,)—(¥ + :Lfo)-al;7 (X,¥,)+...... on the left semi wing
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Substituting eq. (4.1) into eq. {3.12) .and (3.13), we obtain after interchanging the order of integration:

Yo R
x —i= (X=X
4w (X, V) =— - Py P Te U LM dX
pl/ ayn
—i(¥p
TSN 7 Y s (4.2)
L (X, F) = f ¥ PP o xvge U e bdx
pU o o¥n
—i(vy
Where a,(" and a,(}) are the coefficients of the Taylor expansion (4.1) and:
Yy X=X v 1 m 1
2 i——=A+—{(¥Ys—¥) ta ~M — H! J—
L6 — Yim f e pale T e ’]wdmy
. 'z-o_)‘g Bzo i e ’ Rr
‘. ' (4.3)
3 ;X i%%[,\+»ﬂ’—=(}’o+}’)tan¢_M—1 R'] (Y + T,
L= lim f f e F £ § mﬂdl’
2g=—>0 E‘ By
) Y] -
The integrals ,{*} and.I,{) are investigated in appendix L
The resulls are:
i, | iea i
v My pE (v M LS (jz_) ;
L0 =i gy oo f e u, (U Blzm)mﬁto e (44)
“’Q—A’ LV q ﬂ[
4 i—-— JI 2
747 — o 8 1_‘Lf wigat | c2>(L_1 ,\') A g M l (L)
gt eSET oy J e ‘M H, T R Y -%-fLIAlHI 7 ﬂl"'lM) dr + 0 -
. (4.5)
where: '
M, =Mceosp 6
B=V1—17 (4.6)
Furthermore:
2
I(r)zo(i—) if vos 0
MY L (4.7)
I(r)yo( )+O(VT) if ver
2 .
Lo =0 (%) for n>2 - (4.8)
o . ‘
I,& =0 (f_) ' (4.9)
v

_ These vesults are derived under the assumption M 0. The validity of the theory in the limiting case
‘M =0 will he proved in section 5 of this report.

We must draw attention to the fact, that our expression for I,(*), given in eq. (4.4), becomes meaning-
less if X,—X > 0, because of a non-integrable singularity in the integrand for A =10. In that case a
different expression for I,{" must be used. However, in F ("), as it is given by eq. (4.4), we recog-
nise the kernel funetion of Possio’s equation, and hence, the different forms taken by that kernel fune-
tion for X, —X < 0 and X,— X > 0 are known to us. They are given, for instance, in ref, 11, From
the results of ref. 11 we can derive

it X, —X>0

) .;_ _ u .
[0} = {— U _] o w(U B [’\[)%‘7527

In the subsequent parts of this report we shall use for I,{(") the expression given by eq. {44) knowing
however, that we must replace it by a different expression, ¥ X, — X > 0,
Introducing the results of Appendix I into eq {4. 2) we obta,m
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. I ¥ Xo—X v 1
i ( Xy X) i— — 2
4 pUw(X,, Y, COS(p::—-’i%— gi[p(X,Yn)e b lae { f e uﬁ'xg’*Hl(z)(f}_ BI;I,H) |(\| t dX —
1 = ) ‘_m 1
X v 1
M, p _;—(A',,_X; f E [
__esmgpeos:pU X IT X, Y,)e 2 | UH{?)(U )+
)
+1,HH (U ﬁzlf\l)]d.htd)(ﬂ—g(sv) (4.10)
where:
2
g (e, v)_O( )lf v -0
and ' (4.11)

(e, v) :0(3—2) ¥ 0(%) i v a0

Eq- (410) is the final approximate integral equation of our theory. It can he expected to give a good
approximation of the problem for wings of high aspect ratio, osecillating at a frequency which is
not too low. :

5 BSome considerations on the approximate integral equation,

The first important property of eq. (4.10) is, that it does not contain the variable ¥ any more. The
pressure at a section ¥, is given by eq. (4.10) as a function of parameters of that seetion only., For this
reason we may call the present theory a strip theory. Considering the eq. (4.10) we see, that its right-
hand side consists of two terms, the first being of order 1, the second of order ¢ For straight wings,
=0, the second term vanishes, and we obtain the wellknown Possio cquation for two- d1mensmnal tlow.
For an infinitely long wing, ¢=0, the second term again vanishes, and we obtain a modified Possio
equation, in which, in eomparison with the two-dimensional equation, the Maeh number and the down-
wash are multiplied by the factor cosy. In the general ease, where neither ¢ nor ¢ is equal to zero, the
gecond term of the right hand side of the eq. (4.10) eontributes to the pressure distribution. It is
clear that this contribution will be of order e, and that it represents a first approximation to the finite-
span effeet of the swept wing. Let us represent the pressure, which follows from eq. (4.10) by the
following relation

p={p®+ Ap) cos¢ (5.1}
Ap is of orvder e, p@® follows from the Possio equation, in which the Mach number is multiplied hy

cos ¢, Vviz.
L (1yg) X

M :-uo-){) v M dr
‘ (X —— __lf @ f “B (2)( 1
0¥y ¥) =i CR ST e Ein )T

— iy
p'P (X, ¥,) can be assumed to be known, as it ean be evaluated by usual methods of solving the Possio
equation. In fact, p™ (X, ¥,) can directly be derived from the tabulated resuits of the Possio cquation,
by substituting for M the value of M cose. Substituting eq. (5.1) into eq. (4.10) and using cq. (5.2),
we obtain an integral equation for Ap, which we ean write in the form
]

e aX (52)

. : v ﬂfl —’—-(Xo—Xl’ f : ,G (2)( .
e !t d;‘ B
Lol (X V) =—i 5 22 | ap(X, To)e (2 Bzm) e (5.3)
! N e . M,
il Xe i— —=a
4pUw,(X,, Y,) —sSIrIqJ f GOS"” (X, ¥ e * j f g © BR [M,HD(”(—{] . )
—t -
A
_— (2 .
+ipsy By (+ Bz]ﬂ)ldk‘d?i (5.4)

' 2 g
Note, that instead of « g; we have written Ei[pay_ﬂﬁﬁ’;]__
assumption an error of order &% is imiroduced.
Eq. (5.3) is again an equation of the Possio-type. The preseribed downwash w, is known, as p™ ig
known, and can be evaluated. Hence, our problem reduces to the problem of solving an equation of
Possio-type.

In view of relation (5.1) by this

8lp™ cos ¢]
oY
some conclusions with respect to the behaviour of .the unknown pressure Ap. p® is a function of the

The prescribed downwash w, is a function of . By considering this factor we may draw

1A .
reduced frequency m:%, and of the wing-deflection funetion 2,. Hence we may write:
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olp@eose] pt® 1 dl
T S e T oar T
Ip@® dz, de |}
DAY &) I 4
e AT PP tan ¢ ek (5.9)

We may therefore expect, that the additional pres-
sure Ap will consist of three terms, vespectively
proportional to:

- _ !
a) The spanwise variation of the ehord %;
bh) The spanwise variation of the wing deflection
funetion e
T ody
¢) The spanwise variation of the sectional angle

d
of sweep —d:j .

It may be useful to point out, that w, (X, Y,)

can also be expressed in terms of generalized:

He<® funetions. The He® function of zero order
was introduced hy Scuwarz in ref. 12. This fune-
tion is defined by the relation:

X

He® (0, X) = [ o HE® (W) v,
4

If we now introduce the generalisation:
X

Ho,® (0, X) = [ o7 1, 1) a.
o

then it is easy to see that w,(X,, ¥,) is given by
a combination of He,® and He @ He, ™ was
tabulated by ScEwarz in ref. 12.

2w, (X, ¥ = [ 8p(X, Ve

i
2apliw, (X, ¥Y,) =-—esing f

Py

- Some remarks must be made on the order of

magnitude of terms omitted in the integral equa-

tion. We have seett that if M tends to zero this
2

£

order beecomes

However, our derivation was

valid under the assumption of M =£0, and in faet,
in ref. 2, where the strip theory for swept wings
in ineompressible flow was presented, the order of
magnitude of the terms omitted appeared to he
2loge

v

Let us consider the foliowing simple case:

[
dt ,
Bfm ﬁ-—l()g (0}‘{' I]I'*‘S)——*].Ob (M+E).

This integral is of order 1 if M40, but of order
loge if M=0.

This example shows us a possible origin of the
differences mentioned above. However, to prove
that the present theory is valid up to M =0, and
hence is in accordanee with the theory of ref. 2,
we shall derive from the present theory the limit-
ing case M=0 and compare the results with
results of ref. 2.

6 The case of incompressible flow.

According to the present theory, the pressure
distribution on a swept wing consists of two terms:

p@ cos ¢ and Ap cos ¢ (see eq. 5.1)- We shall
now consider Ap and the ecase M =0. From the
eq. (5.3) and (5.4) we obtain, after substituting
series expansions for the Hankel-funetions and
taking M =0: ‘ ‘

_v(X X XKo=& » d
i (X X) i A
U . g f e u ?f dX (61)
@ il (X_ Xy
i ( Xy L.
p® cosg) gt [f euaé)\iédl’ (6.2)

-2

Eq. (6.1) is the wellknown Birnbaum-equation. We shall now prove the cq. (6.1) together with w,
given by eq. (6.2) to be identical with the integral equation derived in ref. 2. In this reference the
problem was formulated in terms of vorticity distribution. Henece, we must introduce the vortieity dis-
tribution inte our integral eguation. Let the components of the vortieity in the X and ¥ direction be
given by yx and yy respectively, and let us define furthermore:

! ‘ vg=rvxr—7yr tan ¢

The equation of eontinuity of the vortexfield is then acecording to ref. 2.

dy dy -
% ¥
3 = . 6.3
sx T =0 (6:3)
while the relation between the pressure jump on the airfoil and the vortieity is
X
PX,Y) =—pU {47(X,¥) +i % yr(X, T)dX’ ). (6.4)
—iY)
Introducing eq. (6.4) into eqs. (6.1) and (6.2) we obtain:
LYo X v XouX
. =i (K-X) is A dA
2 mw (X, Y,) =— f {Ay(X, Y,) + z—ﬁfAyy(X’, Y,)dX’ ) e f e " Srax (85)

—1(¥p - — =
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ey
(2
27"wl(‘-)(m YO}:SSinﬁ" [ ;E[—}Ea_y—cfjs—ﬂ (Xn Yo) +
~ive A o
X e Xy~ X A
3 | _ 1_
+i%_.—a‘;’;*" f @ (X, Tydx e v fe fiidX (6.6)
¥y . —w

Let us first consider the eq, (6.5). Partial integration with respect to A yields:
2w, (Xo’ Yo) == -

[184)] X
. e 1 Ly e R gy
—-f { Avr(X, yo)+a_U-] Ayel X7, Y,)AX }i_X Lt f }4}( (6.7)
—{{¥p) — {3 —oc
or:
(¥ (X7 WYy X
A‘)IY v ’ rr
2wy (X,, V) = — de_ F[ U Ayel X!, ¥ )X ZTCTXU—_
~ ¥ ¥y . ~i{(¥y =Y} :
1¥p A= . ek
v . iThda iy e
“”’Ff Ayy(X,ln)!f e Tie “ ix —
—I(¥p —c
(1800} Xo~X v N i v Hoe )
i 1 —_ 09—
zr— f } f Ayl X’ Y)dY" ? f e e * dX. (6.8)
T <iEy S

The last term on the right-hand side of eq. (6.8) wili now @artially be integrated with respeet to X, viz.:
LV x ' P S

ﬁ(@--{?)zf }j Ay (X', ¥,)dX" j[ ‘v d* ST

=¥y —H¥p

l

T ¥y ’ ' (x N Xy— i ¥y T "
v o= U
=i Ayx (X', Y )dX" e f el = F
—'E(YO) -,
H.Yu) v o) Xo:— Py A dk {{Yp) s X ' dX
.V T _1U = l-‘_ ¢
i j Ave(X,Y,)e ! j Slax il f | f Ape(X, ¥ )X |5 - 69
— Y —ag I Vsy —=UH¥p
Substitution of eq. (6.9} into eq. (6.8) yieids:
I(¥p Y ¥ H Vo) v S Xo—t v A (L\ s
—i = (Ay— 7
2w, (X, ¥) == — f eI T SRS [ Ayp(X Y )dX . e U f eV == (6.10)
XX, U - . A
-I(¥p ~ ¥ -
Introduce now: .
1Yy .
arr) = [ an(x,¥ax (6.11)
U ¥g) ’
and furthermore ]
A=X,—1, (6.12)
Eq. {6.10) then becomes:
Y A (X, X)) R Ll g
[ A& T, ;v T : 613
2 7w, (X, ¥,) T X, dxX + 14 7 AT (Y )e e - (6.13)
vy H{¥a)
Consider now the eq. {6.6). Analogous to the eq. (5.1) we have:
yr= (yv® + Ay) cos¢
and henee from eq. (6.3) it follows:
By 3[yy™® cos p] -
: ~+ 0 (1) | (6.14)

X 2y
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Introducing eq. (6.14) into (6.6) we obtain:

|2
. Org U
2‘7Tw1(.X0, Yg) — —81N ¥ f 'a'i,— (X, Xo)e
2 - .

i
v

—1

U sin g f?’z (X, F) e

Partial integration of the first term on the right hand side of eg. (6.15) yields:

. " ‘ —i%(}(a—i)
20, (X, V) = —sin g |y, (1 F)o /

-

—i—v—(XJ-l) i—A
_YE (—"Z;Yo)e A f e v -%—l“}‘ Sincp fyg (X, YO)

—m

ig*da
H
-
A 2 dA
i (e e
v [ e —-ax. (6.15)
) v W
gt oda
Y
: X
d
Pl (6.16)

—i

Due to the singnlarity on the leading ed;qe of the airfoil, the term Yy (—1I, ¥,) is formally undetermined,

However, from the physical point of view, the pressure jump on the leading edge, and hence also the
vorticity, must be equal to zero. Making furthermore use of the relation (6.12) we obtain:

1
27,(X,, ¥,) =sing | f
-1

. l‘
A}’Y(XJ Yn)

dX '—V—AP(Y)i{Flfe
X X, —'7T 0/ :

v

_ igt [
-f-SlI].<,:'y5 (I, ¥le fe

Eq. (6.18) is identieal with the integral equation
given in section 6 of ref. 2. This equation is solved
in ref. 2 for the case of ¢ being eonstant along
the span (wing with a simple sweep).

7 On the solution of the approximate integral
. equation.

In section 5 we have shown, that according to
our strip theory the additional pressure, which
represents the effect of sectional sweep of the
wing, follows from an integral eguation of the
Possio-type. The prescribed downwash, however,
is given in an expression of somewhat complicated
form, including integrals over the chordwise pres-
sure distribution in two-dimensional flow.

It seems of great practical importance to solve
this equation, as one would obiain tabulated values
of the aerodynamic forces and moments, which
would make it possible to perform the flutier eal-
culations on wings of any shape in compressible
flow, with the same aceuracy and simplieity as in
the case of straight wing. There are two possible
ways of solution. In this report we shall only point
them out, without going into a detailed discussion,
To investigate these methods more closely and to
arrive to a final computational procedure is a
separate task which has as yet not heen performed.

The first method is, to solve the eq. (5.3) by
means of the usual procedure of numerical solution

)’E (X7 Yu)

' i%ef

_i-{;_-t dt
t =X,

LV
-ttt di
i—X,

(6.17)

Bq. (6.17), together with eq. (6.13) gives us finally the integral equation for incompressible flow, viz.:

, :
veing [ 1) 3254
1 0

~gt i

?:_K: G (618)

of the Possio equation. However, before doing so,
an extensive preparatory work must be performed
consisting of the evaluation and tabulation of
w, (X, ¥,) given by eq. (5.4), where nge must be
made of the known tabulated results for the pres-
gure distribution in two-dimensional flow.

The second method is based on the following
reasoning: We know the solution of the Possio
equation in the form of an infinite series in terins
of Mathieu-funetions. Tt is the solution of the two-

dimensional problem of an oseillating airfoil in

compressible flow given by Tomaw and vax b
VooreN in ref. 10 and it was shown in ref 11
that this solution indeed satisfies the Possio
equation. Hence, we obtain a solution of our
problem if we substitute w, given by eq. (54)
into the solution given in vef. 10, and put for M
the value M,=Meosp.  The only terms which
are a funetion of the downwash in Tnoax and
VAN DE VOOREN’s solution, are the coefficients @,
given by :

x Mz
2 TVE O
—_ 0,4) —
On wﬁof‘" }d,, 0,
—afiwsinv;w(i),q)i sew () dy (11)
where
X =1cosh £ cos 4. {71.2)




133

Hence, what we have to do, is to substitute the
values of w, from eq. {5.4) for w and M, for M

and evaluate the new @,.

When this is done, p

ean be computed using the same procedure which

O
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APPENDIX A,

Calculation of the integrals I,.

A.l. General considerations,

In ‘this appendix we shall investigate the integrals I,(D and I,(D, as defined by eq. (4.3), viz.

RO X-x v L (v ¢ - Laey
S Jiwle ] =y gy
Zo=—3e 0 azo Ym Rr
3 (A1)
Xo— v 1 '
- A+—(Y0+Y)lan§° ———R
e B[ T ECET ATIN
Tg == 0 azﬂ e B,
where : .
B = {[er + (Y, —T) tane]? + g (¥, — ¥)? + 2%, } (A2)
R/ = {[er + (Yo+ Y¥) tang]? + B2 (Y, — Y)® + 22,2 }# '
The order of integration will be interchanged by writing
Ag-X
2
In= lim —; [ K,dx (A3)
Zg=—0 azu‘ e .
where
alxy o A ¥y e - N ne _
K0y = f e”‘“[ : C r]—-——(Y;,Y”)“ 4y
0 (4
(A4)

o v 1[
tﬁ-ﬁTiH-
e -

- ¥i(x)

K, =

M2 M
T(V0+Y] tan"f’—}—.ﬁ;] (Y + Yg)ﬂ

77— AY.

The investigation will be performed under the a,ssumpt'lon M =0, Later we shall show the results to
be valid also in the lmiting ease M =:0, by comparing them with the known solution for ineompressible
flow (see seetion 6).
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A.2. Reduction of K,(1,
Introduce
M,=Mcosy, B, =VT1T—M? (A.B)

which represent the Mach-number and the S-value for the flow component perpendicular to the swept wing.
Introduce moreover

B.*
(Y,—Y) *—12—-4' edtan g =«

GOs%g
(A6)
A A+ B 2,2 =12
cos?p ©
where « denotes the new variable of integration,
It ean be shown by a suitable reduction that
' .2
Rﬂ:__“g’f (o + £28212) S (AT
~ 1 ,
while . -
2
. Y—Y,= cgsf (ehtan e — a) . | (A8)
. 1
Substituting this in eq. (A.4), one obtains
v o1 v My M =
sttty wpat (F ivg s (g ree = VETIET) (i
Kn(r) = enti e ! f e ' ! _— (Ag)
g,= . Ve + R
i
where the limits of integration are
. B
@y = (YU—II) —c?.l??—’ + Bktantp
{A1D)
a, —= Y JBI2 1 eA tan .
2 ° coste
Introduce again a new integration variable ¢ by _
a=gl8rt : ' (A.11)
which makes K,{) equal to _
- v e v My /M S
cos2tp 1mkf ‘U@ e, (Tf ”an?_]/m”) (A tan ¢ ~— Bri)n
K in=""'_T gng "} e LA , dt A2
n B, 2t £ SR ‘ . VET] ( )
where .
A (Y, —Y) Bt
e ,+ [} 1 1
. t Br tan ¢ e Br coste
Y 2
¢, =2 tan o+ = By (A.13)

ar e Breosis

- Let it first be assumed that 0 << Y, < ¥,. Then, for ¢ — 0, we have t, > -—cw and ¢,— + oo . The
integral in (A.12) will then be replaced by

Kl = Hp (") o= Ky (1) — Ky () (A.14)

where the limits of integration of K, ("), K,,(", and K, (") are —w and + o , — w and ¢, %,
and + o respectively. '

In order to reduce the first of these three integrals, the substitutions

f==sinh 9 : , (A.15)
M, B .
—~ tan¢=—-— sinh #
1 "‘P =ﬁ'1
1= —B— cosh 6 - - {A.16)
B1

will be made. (A.16) is allowed since
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Henee

l * ) : -
. Zn+1 (i = = T cosh (54} ! :
Ko (1) == g (“‘;“’) U f TR (X tan ¢ — Brsinh 9)» dS. (A7)

1

)

p - e T " ] e
JAs will be shown in See. A3, this iormula leads to Hankel funetions of the second kind. The eon-
vergence of the integral is aseertamed by the usual assumption Im vy < 0.
Consider now K,, (). Since the 1ntecrrat10n-var1able t assumes large values in the whole interval, one has
M, M
ttan —Vt”-!—l (—ltan —1)¢+0 H)
B f B F ) g
and . _ . L : ' '

Vt2+1=t+0(-%).

. "1 .
Neglecting for the moment the terms 0 (?), K., becomes egual to

-

ﬁ) tntd
. P

- Introducing rt as new variable, it is secn that
the parameter r disappears completely, both from
the integrand and from the limits of integration
{using (A.13) ). Henee, this approximation for
Ko, (™) becomes independent of + and also of g,
(sec (A.6)). This means that in this approxi-
mation no contribution is made toward I, (A.3).

Taking now into account the terms O(-t—), it

follows that K,,{") consists of terms proportional to

i —V—EA » iv 8rt f—2
eng WAT ket f e & di

Iy
from 0(f) in the exponential)

E==0,1,2n
.V W _ ! . -
ne1 W Ark f ew Brttk 3 gt
ig
from 0(f) in the denominator
whcrq. | |
M M,
B——"'_ ( tang-—1].
7T R A )

. 1 .
Since {,=0 (—), the expansion
. g/ ,

\

ivBre
e apetf 1 .1
(f, = — (-.———— ——— .
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valid for large ¢,, yields terms of order . .
¥

ete.

Similarly

iy Bre &2 8
f T dt yields terms of order~ —y ete.
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Since n is always at least equal to &; careful exa-
mination shows that K,; ("} contains terms of order

i A 3 —— A
2 £ 2
gte “BE . e ¥R ete.
v

The integration to A, to be performed aceording
to eq. (A3), makes that the error in I, due to

2
- the negleet of K, (" is order -~ (and-further
) v

3
terms % ete.). A similar reasoning shows that
v

neglect of A, (") causes an error of the same order.
It ¥, is longer than ¥,, hoth ¢, and ¢, become
+ o if g (. There is then no term similar to

2
K,,(" and the whole result is 0 ( ) This means

that the final integration to X, given by eq. (4.2},

is confined to the interval —I(¥) to L(Y).

A8 Calewlation of J;(0.

Tt has been shown in Sec. (A.2) that eq. (A3)
may be replaced by

Ho—X
I, = Hm

& f K0 d +0(":2)
w T aA —
= 0 3202 - ' v
(A.18)

Substituting $—~f0=+y into eq. (A.17) and
using - the t‘ormhla ~

=] "

f e._iz cosh Tcosh ny_d}/-—__—- _%:_e ¥ 2 Hn{2) (z)
.0 . ‘. , .
AR . , - (A19)

one ohtains .
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¥
i——iﬂ R
Eo=" 2% % po (L ﬁ,r)

1 B U B
v ' ‘ ~
3 ’ ‘
K=" ( o8y ) tan ¢ ¢ T } AH,® (_ M, r) M T (.l M‘z r)‘
’ C 8, v B:* v .81 (A 20)
; 5 i 2,2 M
@ e T2 _cgsi) uf Z(Aztr 2, BT ch)( . )+
K, ie( o e; an®y 5 ) v a
o o v M, M
+ 2 4arM, tan®y H @ ('lvf 6. r) ~— M, B, tan g H,™® (—% }91: r) %
It follows from the second equation (A.6) that
¥ (dr )2 e . dwr D
02,2 dz, / 02° ' dz? or
and henee- . .
3¢ B¢ 1 . 3 8. . 2,2 0° g2 @
=5 = — 1 .1 o = = . .
,,}En,.g 0z, cos’e A z_l,"‘l,q or coste ,ﬂ._rﬂo r2  or? " or {A.21)

If this equation is used, the operation lim

=30 08"
(A1B).)
The second term on the right hand side of eq. (A.21) will always lead to a eontmbutlon equal to 0
except possibly at the singular point A=={0. This means that if we assume -
2 b4
Iim L:B“:l AL 1 jl_
P —— 2, cos’y {A| r—|2| ar

should first be brought under the integralsign in eq.

(A.22)

the results- will be correct for X, — X < 0, but may be incorrect for X,— X > 0, viz. if the integral
resulting from the omitted term is divergent.

It appears that this complication only oceurs for the integral 7,(7), However, as is shown in See. §,
the true result for I,{ if X, — X > 0 is known and hence we wﬂl use for the moment ed. (A.22). I‘ma-
ly, the result for 7, (T) should be modified if X,— X > 0.

By aid of egs. (A 18), (A.20) and (A. 22), it is found that

g [ st 1 M
I1,0) = — ai —— f S T cm( it )
¢ ™ cosp J ¢ M '"}->|’\| a: H T B’ dA
. Xy—X i_”_)‘ 1 5 ﬂl u
G —— (Slnqo) f R ST SAH {2 f,.)_p?;rMH (2)(L 1 )‘ dr
g e 8, ’ | r=|a| FI (U B,° o U g¢ 4

I ("')"——1’1‘1 (C(’;S¢) j g‘.u;‘z 1 lim —-a—g( ,\Ztanz 1182 2 ),H (2)( ﬂ[l )+

1 ,A[ re=p|A| ¢ v ﬂl
. M ' i, ‘ :
+ 24rM, tan? H,® (% _E_li_r) — r:M B, tan ¢ H,® (Jﬁ )2 . €A.23)

Making use of the following relations, valid for any cylinder funetion,
20y (g) =n Cul2) —2Cpyy (2)

i (A.24)
20/ e) =—n0C(2) +20a_y (2)
eqs. (A.23) may be simplified to
Ch g 1 d o
M by , o
(") o= — ot f ufy? @Y M aa .
=i | o0 (U Bﬁl”)m ,
X-X ‘

Il(r):”v—Mﬁ%lif uﬂl ;MH@)(U ﬁzm) ﬁT'H’(Z)(Iﬁ %‘H(){dx (A.25)

—
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1,00 = mie ( T )Hw e (8 —2i X A)HO ax ] ) +

¥
+ = ﬁ”

m ltan2 _18_ + Mg, tan o ( H (2)("127 M; |A|)] dr

o

1t follows from eq. (A.18) that if we use these expressions f(n I, and 1,{7) an error of order £

is made. [Henee, the approximation goes wrong for v— 0 but holds for v — . We shall show now that
2

if £,(") is neglected completely, the error which is made is again of order — if v—» 0, while it is of
: 14

der it
ordey ~———-.
|
Putting
TiE M= (4.26)
it follows that

’ 2
L= Vne ffl di— ]ﬁ(f)dt‘ it XX <0
v
. (A.27)
2 ¥ .
[r) = i 2 Lcose j [fl(t)dt+ ffg(t)dti it X,—X >0
Y. [i] u
where
) ) 2
£t =e™* ’ (B + 24iM 2 H D (M,t) + M, t(tan%p-— f— + M. B8, tan o) H,® (M.t) i
. : ’ 2
fLt) =o' ‘ (8% — 2 33,%) H @ (M, 1)+ M,#{tan%p — -’84+ M6, tan o) H,® (3L,1) |
and .
7= Uﬁz [ X, —X ). (A29)
For v— 0 both cases yield
yoo
2
1,00 =i g—"—‘}ﬁ’i[ f.(t)dt.
v )81

U
2
The rcondition Imv < 0 makes that the integral converges and that I,(") =0 (s—) if v 0.
[T

For v — w , one has to eonsider the three integrals

’ " : T
/ @ ti:Ho(m (M. t)dt, f 2 :tirtHO(m(le)dt, f e Tity H (M t)dt
) u 0

Using the asymptotic expansion of the Hankel funection viz

o — M0

Vg’
it is scen that the first integral converges for T o, but the two other mtegrals diverge (Im v remains
small) like V7T or using eq. (A.1.28) like Vv Henee, I,(") is of order I/ﬁ if v 0.

A4 The Zeft semi-wing.

The left semi-wing shows the important mmpllflcatmn that the 1ntegrand never becomes singular since
Ry’ is always larger than 0.



Since
_a_-__,d’_R’: ._a_: 232 2 __6_
0z, dz, Oy Iy ok
and since I > 0, one has
9* £28% D

aeso O2¢ B Ry

The expression for I,(D, eq. (A.1), may then be written as
X, —X
F R X L RURAL

=
I =g RI aR; | By

dh dy

—n(X) —=
where
Be = (Y, + ¥)*tan?y + (¥, — ¥)7 } 4

Performing the differentiation to K and interehanging the order of integration, the result is

Xp-% v o [ .
i——A [ (yoty)tang - — R‘ M 1 1
) = . 4202 u ug? S + )" dy d.
5O =F f ¢ ;(}(;e 3 U, e B + e (o) dy dA
e —if1 . :

Conmider first the ingegration to Y. Due to the faet that
-MHY, - Y)tane-— MK/
: t
never vanishes, the integrand is highly oseillatory if £ is small. Without the factor
v .

SRR B S _ ‘
i“__Uﬁz e lez leﬂ 1

the integral would be of order £ . With this factor, the dominant term in the integral becomes of
. v
! 2
order 1, Performing also the integration to A, it follows that [,{) i3 again of order £ Tt is seen
-~

that this result holds also if — iy not sinaH, since the integral to ¥ then again is of order 1.
N . v

Completed : 14 Dee, 1954




C.OT.. Class. ¢516-4: 6084

REPORT M. 1936.

Static Tests and Fatigue Tests on Redux-bonded

Built-up and Solid Light-alloy Spar Booms

A, HARTMAN and 1. H. RONDEEREL,

Summary.

Three types of Redux-bonded spar booms were subjected to static tests and fatigue tests in eompression and/or
bending. For comparison, bending tests were also carried ont on solid machined hooms,

Angle-scetion booms wore muuufactured either by preforming the individual sheets before bonding or by bonding
in the flat condition followed by rubber press forming.’ Morc complicated seetions were bonded from preformed sheets.

The tosts results are given in fables and dmgrams and the conclusions are listed in section 4,
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This investigation has been performed by order
of the Netherlands Aireraft Development Board
(NIV).

1 Imtroduction.

The excellent experienee of the Royal Duteh
Airerafs Factories, Fokker, with honded light-
metal joints has led to the consideration of metal
bonding as a procedure to build up aireraft spar
booms. With this procedure hooms with the desired
change in seetion along the length of the hooms
can be realized in an easy manmer by decreasing
or increasing the number of glued metal sheets.
The expensive milling operation of solid hooms can
be omitted and this gives a substantial saving in
material and manufacturing expenses. Compared
with riveted booms an inereased strength can be
expected hecause the bonding of the metal sheets
over the whole area of contact prevents loeal
huekling. Therefore, technically and economically

the honded boom promises to offer fayourable
prospects compared with the solid milled boom and
hooms milt up with rivets or bolts.

The first static tests carried out by Fokker
(ref. 1) gave encouraging results and it was de-
cided to e‘{tend the investigation. In cooperation
between Fokker and NLI a test programme was
set up containing bhoth static and fatigue tests,
which was approved by the Structures Commitiee
of the Netherlands Aireraft Development Board.
The resalts of the investigation are given in this
report. !

2 Test pieces, test equipment and procedure.

TPest pwces

The bonded test picces can be divided in 3 types,
indieated in this report ss type A, type B and
type C. The dimensions of the fype 4 specimens

are given in fig. 1. The specimens were built up-

by Redux-‘bonding 2 to 6 preformed sheets of
26 8-T alelad, thickness 1.5 mm, the Redux-honding
being done after bending of the sheets to the cor-
rect anﬂ*le shape.

The type B spemmuﬂ were built up by Redux-
bonding 4 or 5 sheets of 24 8-T alelad. The char-
acteristic difference with the type A specimens is
that the sheets of the B-speeimens were bonded
in a flat condition, indicated schematically in
fig. 2a and were bent on the rubber press after
honding, as indicated schematically in fig. 2b.
With this procedure the forming (of two specimens
gimultaneously). on the rubber press has to be
executed on the heat-treated sheet, hecause heat-
treating of the sheet ma,teual after honding is im-
possible. TPrevention of cracking during forming
sets o limit to the plastie deformation to whlch
the outer -fihers may be exposed. Test snecimens
were chosen having a combination of overall thick-
ness and radius of curvature such that cracking




SECTION: A: B.

TYPE: Agy

SECTION °
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Fig. 1. Redux-bonded sparbgoms type A.

did just not occur (fig. 2¢). It is evideni that
from the fatigue point ol view such nearly critical
booms are the most interesting. Therefore, only
these spar booms were tested. The shape and di-
mengions ‘of the specimens type B are given in
fig. 2a to e

; o t
POSITION DURING BONDING /:;
i ' E\\ Li
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TYPE{Ly |ta[t3 |t4 |tg THEI.:IEEI;SS THITcT:é'ss
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87 MONOoO0L) — 3.4 [3e}
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B, |12[12]06{04|_ | 34 =
B; |12|06[06[04(04] 32 %0
8¢ 15{100slos] | 34 40

'

POSITION AFTER RUBBERPRESSING

ESTPIECES 2c

| " +

k1e)

A47

OVERALL DIMENSIONS

- Fig, 2. Redux-bonded sparbooms type B.

The composition of the specimens fype C is
apparent from fig. 3, which gives a survey of
the eross-sections of the specimens used in this in-
vestigation. Just like the specimens type A the
specimens type C have been bonded after the bend-
ing of the sheets. They are more complicated and
were built up of flat and curved 24 S-T alclad
sheets; the length of ‘each specimen was about
300 mm. ! .

All specimens type A—C were bonded at the
Royal Duteh Aircraft Factories, Fokker, aécording
to the standard Fokker procedure with Redux, the
wellknown metal adhesive of Acro Research Ltd
in England. :

AREA 148 em?2

. . 1

AREA B5em?
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TABLE 1.

Mechantcal properties of the materials used for the fabrication

of the different types of specimens.

Yiel 73 U.T.S. El i
Type of Type of Thickness € ddStness ) : Oir}:g;tmn.
. . \ 0,2 T o
specitnens |, Material m mm in kg /mm? in ka/mm? 1= 50 mm
L
. 40.9 46.4 9
A 26 8T 1.5 41.6 mean 46.7 9 mean
Alelad 40.3 46.7 9
405 40,4 46.7 464 9 9
39.7 459 9
39.6 45.9 9
C(B) : 24 8T 045 30.5 440 15
" Alelad 30.0 mean 44.6 mean 19 mean
2.0 323 ( 317 457 | 45.0 17 17
32.4 457 17
D Fliegw. 41 373 ) mean 52,2 ) mean 14 z mean
~ 3115.5 gl 387 } 380 514 § 518 12§13

The solid specimens were made in the workshop
of the NLILi. They were milled from a round bar
(Fliegwerkstoff 3115.5) as indicated in fig. 4a.
The dimensions of the specimens are given in
fig. 4h.

The mechanical properties of the alloys are given
m table 1,

41 mim

Fig, 4a. Position of
the specimen in
the bar.

Fig. 4b. Solid speecimen,

Test equipment.

The static compression tests were carried out
dependent on the magnitude of the load on dif-
ferent machines. The 150 tons Avery Compression
testing machine was used for the very high failing
loads of the specimens type €1, 02 and ¢ 3. This
machine is specially suitable for compression tests
on panels, stringers ete, hecavse of its large rigidi-
ty. For the remaining specimens type C and the
specimens type A and B, the 50 tons Amsler
fatigue testing machine was used as a static eom-
pression testing machine. The static bending tests
on the gpecimens:type A and B were earried out
ot the Amsler 2 and 10 tons Vibraphore with a

2 and 10 tons dynamometer. These 2 Amsler Vibra-
phores were also used for the compression and the
hending fatigue tests on the specimens type A
and B, The compression fatigue tests on the speci-
mens type C were carried out on the Amsler 50 tons
low frequency fatigue-testing machine. Fig, 5 gives
a photo of a speeimen type C in the Amsler 50 tons
machine during a compression test; fig. 6 gives a
photo of a specimen type B in the Amsler Vibra-
phore during a bending fest. .

Procedure.

The table next page gives a survey of the tests.

For the static compression tests both ends of the
speeimens were milled flat and parallel. Then
they were put in the machine between flat plates
and the load was gradually increased till eollapse
of the specimens. The maximum load was read and
particulars on the eollapse were observed.

For the static bending fests the specimens werce
supported on the arm of a special fork which was
mounted in the Amsler Vibraphore and gradually
loaded in the eentre with a die till collapse of the
specimens. The maximum load was noted. The
3 point bending test set-up is given in fig. 7.

The fluctuating compression tests sn the bonded
specimens type A and B were ecarrled out in
the Amsler Vibraphore at a frequency of ahout
6000/min with a minimum load of 500 kg and a
maximum load of 75 % of the static strength. The
tests were stopped when after 107 eycles no failure
had occurred. Because all the speeimens investig-
ated in this manner proved {o he undamaged after
the tests no other loads were tried. The fluctuating
compression tests on the bonded speeimens type C
were carried out in the Amsler 50 tons fatigue
testing machine at a frequeney of about 525/min.,
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Test

Static compression test to failure

Static 3 point bending test (fig. 7) ]
Fluctnating compressive load; max. load .75 %
static strength :

Ditto 68 % static strength

2 60 % » it
Fluctuating bending load 3 point bending test

Type of specimen

A B C D
honded honded bonded solid

yes ves yes no

" S, no . yes .

" o ves no

no no SN ”

n kS x £

ves ves no ves

a minimum load of approximately 1 or 2 fon and
a maximum load of 75 %, 68 % and 60:% of the
static strength. The tests were stopped after an
endurance of 5.10° cyeles or by failure of the
specimens.

From the heaviest speckmens of this type (Cp)
o flange plate of the boom loosened after a certain
number of load eycles had heen sustained, without
collapse ‘of the remaining part of the specimens,
Then the tests were continned at a lower load, eor-
responding to about the same maximum compres-
sive stress in the part left owver.

When the specimen did not fail after 5.10° cycles
the damage eaused hy the fatigue loading was de-
termined by a static compression test to failure.

The testing arrangément and the maehine used
for the static hending tests were also used for the
fluctuating bending tests. The SN curve at fluctu-
ating bending has been determined for the honded
specimens type A and B and the solid specimens

STRAINGAUGE

Bet-up for three polnt hending tests.

at a ratio of minimum to maximum load of 0.1
and a frequency of about 4000/minute for en-
duranees of 5.10% to 5.10" cyeles. The first tests
‘showed failure of some specimens by longitudinal
eracks under the die, eaused by bending outwards
of the flanges of the specimens, These troubles were
solved by fixing a steel clamp round the specimen
as indieated in fig. 8. The maximum tensile stress
in the bottom sheet was determined by means of
strain ganges. As shown in figs 7 and 8, a resist-
ance-wire strain gaunge, type Philips nr GM 4473,
wag stuck in lengthwise direction on the bottom
surface in the centre of the specimen on at least
2 specimens of cach type. By repeated measuring,
the load at which the strain in the outermost fibre
reached the value of 0.002 was exaetly determined
and for every specimen of this type the teusile
siress at this load was assumed to be 14 kg/mm?.
The stress at other loads was supposed to change
proportionnally.

|

I

T
__.__T!.tl..HH__—_

CLAMP

SPECIMEN

STRAINGAUGE

VIEW, A=A
Fig. 8 Clamping of centre ¢f speeimens,
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. . . . , Max. load Statie strength after
Bpecinen Load in kg Number of as % static Remarks the fatigue loading
LU R max eycles strength in kg
A2 — H970 1 — — —_
A2-2 1000 4500 10.380.000 appr. 79 % no failure —
A2—-3 1000 4500 10.000.000 . " . " 6010
AG—1 —_ 21100 1 — . —
A2 — 20800 1 — — —
A6—3 1060 12600 10.147.000 appr. 60 % no failure —_
AB—4 1000 | 15800 10.017.000 . 0% ” W . 20900
Bl1—1 — 5140 1 — — —
Bl1-—-2 — 5130 1 — — -
B1—3 200 34660 ’.14.031.000 appr. ™ % no faihire 5120
B4-—-1 — 4910 1 — —_ —
I34-—-2 _ Ho60o 1 — — —
B4--3 250 3700 10.707.000 appr. 75 % no failure 5040

3 Results.

3.1 Results of the stetic and fatigue tests in com-
pression on the Redur-bonded spar boowms fypes
A ond B.

The results of these tests are given in the iable.

AWl specimens tested proved to be undamaged
after 107 eyeles at a compression fatigue loading
of 75 % of the static strength. Therefore the in-
vestigation was limited to the testing of some re-
presentative speeimens of each type. For type A
these were the thinnest and the thickest specimens
and for type B specimens built up of 4 and 5 alelad
sheets.

At static loading all the specimens failed hy
huckling with no lossening of the honded joints.
The compressive stress at maximum load determin-
ed from the gross area and negleeting the adhesive
was for the A2, B1 and B4 specimens nearly
33 kg/mm? and for the more rigid A6 specimens
42,5 kg/mm?

3.2 Results of the stulic and fatigue tests in 3-point
bending on the Redux-bonded and solid spar
booms.

The results of the static bending tests on the
honded specimens type A and B of figs 1 and 2
and the solid specimens of fig. 4 arc given in
table 2. Inecluded in this table arve the mean values
of the load, at which the strain in the outermost
fibre was 0L002, and the section moduli ealeulated
from the measurements. The table shows that after
festing to failure no eracking of the sheet eounld
be detected and with the exception of one speecimen
no tearing of the adhesive cccurred. A}l B1—B 5
specimens, having the same overall dimensions, have
almost the same measured section modulus and the
same caleulated maximum hending stress in the
outermost fibre independent of the construetion,
The solid specimens, having a section modulus he-
tween those of the A 2 and A 3 specimens but closer

to the A3 than to the A2 specimen, withstood a
caleulated maximum hending stress in the outer-
most fibre between the values for the A2 and A3
speeimens and near to the A3 value. Thus, the
results fit the hypothesis that a honded gpar hoom
hehaves. in bending like a solid spar hoom of equal
section modulus.

The results of the fatigue bending tests on the
bonded specimens types A and B of figs 1 and 2
and the solid specimens of fig. 4 are given in
table 3 and in figures 9—13, In figs 9—11 the
endurance has been plotted as a funection of the
range of bending stress in the outermost fibre.
From fig. 9 it is obvious that on this hasis all
resnlts of the speecimens type A lie in the same
rather broad scatter band, independent of the
number of alclad sheets. Likewise, all the results
of the 5 types B-speeimens lie in one scatter band
{sec fig. 10}, somewhat narrower than that for the
A-specimens and with a slightly higher endurance
at low stresses. These small differences hetween
the specimens type A and B may he attributed
to small differences in hending fatigue strength
between the 26 S-T and 24 S-T alelad materials,
used respectively for the A and B specimens, and
to small differences in shape. On the whole the
results of the hending fatigue tests on the speci-
mens type A and B fit the hypothesis that a
bhonded spar bhoom hehaves like a solid spar boom
of the same section modulus, Apparently this
hypothesis is quite contradictory to the results of
the solid specimens type D given in fig. 11, This
tigure shows, plotted on a bending stress-endurance
hasis, a large superiority for the solid spar hooms
compared to the honded spar hooms. This superior-
ity of the hending fatigue strength of the solid
spar heom should, however, not he attributed to
the difference “solid” or “lhonded”, but to the
difference in material composition of the outside
of the specimens. The outside of the honded
gpeelmens is pure aluminium as the specimens
were built up of alelad sheets, the outside of the



T -~ TABLE 2.

. Results of statie bending tests.

J!P Mean ‘Value of P, Measured _Section_ Value of Owax 1N Kg/mm?

Type of in kgs modulus in mm® -

_ v ! Proox caleulated Remarks

specimen | “a | strain in outermost W Y Pl i ke MW

—l fibre 0.002 =1 s as M/

‘A2 { =120 mm 300 640 1450--1380 66 Buckling of the specimen, no cracking
A 3 “ 410 . 880 2250—2250 77 3 » i 3] 1
Ad 530 1130 3000—3100 81 . weon " i "
A 5 ” 630 1350 3950—4050 89 2 7 £ 5 r? 1
A6 " T30 1560 4750—4750 91 " o " . ,
13 ]_ " 230 495 960_970_] 0‘20 60 LX) » b2 1 » ) ’
B 2 ’,‘ 240 51 5 960‘*—1080———980 h9 +r J-,‘ ” I 2 2
13 3 ' ,; 230 495 ]O] 041080_1060 63 N bH] ” EE 2 1
B4 N 290 450 920-650* 1000990 64 " R " ’ 2
B 5 r 230 495 960 59 ” n n b rr B
solid " 360 770 1900‘_—1900 4 2] 2] 2 1> 2] B

* one glue line tomm.

9 K



TABLE 3.

Results of fatigue bending tests at R =01,

Type and Outline Load in kg Range En-
number of : of stress (duranee Remarks
specimen | specimen | testing min max | kgimm? | X 10-8
A2-—10 fig. 1 7 and 8 80 740 30.2 63 | craeking in the bottom sheet
A2—-11 o " GO 630 26.6 220 » » o 5 -
.A 2 — 12 I 1 50 530 224 384 bH H 2 b 4]
AZ2-—13 . Y 40 450 19.1 324 ” . " "
AA2— § " " 30 360 15.4 1761 ” v "
AZ— 5 " » 30 330 14.0 2873 test piece did not fail
A3—10 .. " 70 820 25.6 241 cracking in the hottom sheet
AS— 1 ) ; 30 650 | 212 149 w .
A3 — 3 ” . 50 650 205 a03 M noo ” 1
A3— 6§ ” » 50 550 171 1026 » woom "
A3— 7 » 1) 40 440 137 3711 ” 1] 1 2] 1)
A3 - 4 " , 46 440 137 1436 . . ) 3 h
A3— b " o 40 380 11.6 24295 test piece did not fail
Ad—11 " . 100 1000 23.8 360 cracking in the bottom sheet
A4.—10 " " 80 880 212 224 " v " .
Ad— 1 N " 20 800 19.0 350 ' - " .
Ad— 2 . " TG T00 16.7 371 ” TRNY ” "
Ad— 4 " N 60 660 | 15.9 887 5w e )
Ad4— H " " 60 630 15.1 832 ” v ” "
Ad— 3 ;. Iy 60 600 14.3 22545 " v s ’
Ad4— 6 - ' 60 530 13.7 22114 | test piece did not fail
AG- 1 " ’ 140 1420 285 100 | eracking in the bottom sheet
A 5 I 2 " 1 TUO ]OUO % 00 503 ) 1 11 ’ H
AS5— 3 " " 80 880 17.8 994 ) oo " "
Ab— 4 " " 70 770 15.8 4535 - oo " .
AS— 6 N . 70 740 | 14.9 1851 o
AG— 5 " " 70 T00 140 20431 - A " "
A6 — 13 » n* 140 - 1400 242 434 ) E 3 ] ]
A —12 Y " 100 1100 19.2 1406 " o » "
A6— 5 Y . 100 1100 19.2 807 " v » ”
A6 10 ” " 140 1000 .| 165 1999 » s m " »
A 6 - 13 12 r” TO 840 14'8 2[}47 bES L] b1 " N
AB —14 . " 70 720 12.5 23672 , v o i
Bl-— 2 | fig 2 N 50 510 | 28,0 147 e
Bl— 1 N N 60 490 | 262 281 w : :
Bl— 4 ., . 40 400 | 220 467 S e
B1— 5 " o 30 330 18,3 2424 " o o " ;
Bl1-— 7 " " 30 330 17.0 6969 " o . "
Bi1i—-6 N . 20 260 14.6 20108 o v s -
i; 2 _11 . " 50 54:5 292 84‘ £3) LH] » 2 ?
B2 10 " . 40 450 24.0 187 " - » "
]} 2 - 12 7 " 40 390 20.'— 554: IT) 1 1 b2 »
Ba_ ] ) ; 40 360 | 187 587 .. ,,
B2 — 2 " . 30 300 15.8 2888 , v " .
B2-—13 " . 20 265 14.5 6425 " v " "
B3—11 " . 50 545 304 132 ) non ; "
i33—10 N 40 450 25,0 160 . o ,
B3-—12 " 4G 390 21.3 339 Y o , .
B3 9 ) . 30 320 | 176 7085 w m m "
B3-13 ) . 20 265 14.9 3700 , s " »
B3 1 " " 20 250 14.0 13983 " - ' "
B4 11 ’ ! 50 545 | 818 a3 . . ,
B4—10 . " 40 450 26.0 234 ' na ” )
Bd—12 o " 40 390 2239 346 " v , .
}4_* 1 [ » 30 300 17.2 701 1 1 1 ” "
B4 — 2 Y . 20 260 - | 152 21552 " v , )
B4 3 N . 20 260 | 5.2 5667 e .
B5—10 . ' 40 450 25.0 256 o R " s
3hH— 3 . N 30 D40 18.9 3078 ” yo ” .
Bs— 1 ,, " 30 300 .| 164 8130 " po o ” "
Bs . 3 o - 20 v 270 15.2 27570 " PR T
D— 4 fig, 4 " 99 1040 370 368 | erack at the bottom
D — 2 - " 90 (580 34.6 879 7] It 3 T .
D — 7 " ” 40 950 33.D 21253 | test piece did not fail
D — 5 " . 90 910 31.9 9696 crack at the bottom
D — " Ny 90 910. | 319 [ 30982 | test piece did not fail
D — 3 " " © 80 840 29.6 33409 " ) wow
D — 1 1] 3 60 700 25.0 30663 " ” 28 ] 1
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Fig, 11, Results of fluctuating hending fatigue tests at
R—=10.1 on specimens type D
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solid gpecimens {8, an ALCu-Mg alloy, Fliegwerk-
stoff 31125, Thes unclad Al-Cu-Mg alloy has a
much larger fatizue strength than the clad alloy.
Ref. 2 gives for 24 8.T clad and unclad a fatigue
limit at fluctuating tension (E=10) of 15 and
28 kg/mm? vespectively at ah endurdnee of 107
gycles. The fatigue «imit at fluctuating hending
R=01 and n=10" eyeles in fig. 11, respectively
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Fig. 12, Results of fluctuating bending fatigue tests at
£ =101 on specimens type A.
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Fig, 13. Besults of fluctuating bending fatigue tests at
E = 0.1 on specimens type B.

14 and 30 keg/mm? for the honded and solid spar
hooms, shows a reasonable agrecment with the
above mentioned values for elad and unelad 24 S.-T.
The differences in endurance hetween the honded
and the solid spar booms at the same hending
stress may be explained by the difference in fatigue
strength between clad and uneclad Al-Cu-Mg alloy.
If a high corrosion resistance is not required, i
scems advisable to huild up honded spar booms of’
unclad material to increase the fatigue strength.
The figures 12 and 13 present the endurance of
the honded specimens type A and B as a percentage
of the ultimate static strength. The figures 9 and
10 showed that all bonded gpecimens had equal en-
duranee at equal range of stress in the outermost
fibre and table 2 showed that the ultimate static
strength caleulated as bending stress in the outer-
Bending Moment
Seetion modulus
depended on the seetion modulus. Consequmt]y
the points of the specimens type B in fig. 13 he
rather dispersed in one seatter band, whereas after
drawing one scatter band for the specimens type A
the points in fig. 12 of the specimens type A2

most flble by the simple formula

_with the lowest seetion modulus all lie on the right

side. The ondurance of the specimens type B
plotted in fig. 13 as a percentage of the static




strength is superior to the cndurance of the speci-
mens type A plotted on the same basis. In view
of the foregoing, this superiority has not heen
eaused by superjority in the method of manufae-
turing the specimens type B -— bending of the
gpeeimens after curing of the adhesive — but by
differences in section modulus and shape.

3.3 Results of the static and fatigue fests in com-
pression on the composite Redux-bonded spur
booms type C.

The results of the compression tests on the
honded specimicns type C (fig. 8) are given in
table 4. In this table the phenomena occurring
during the statlc and fatigue tests are likewise
assembled.

The mean static compresswe stress at fatlure of
the specimens is about 39 km/mm? cxcept for the
lightest speeimen C V where only a maximum stress
of 324 kg/mm? was reached?)., The material of
the booms was 24 8-T alelad, the mechanical pro-
perties are given-in table 1.

All speeimens tested statically without prior
fatigue loading .failed by buckling of the whole
specimen, only -from specimen C TV-1 one flange
plate with the skin loosened at the maximum load.

Fluetuating compressive loads of 60 % and 68 %
of the ultimate were endured 5.10° cycles by all
specimens type CIU to CV inel, with only minor
damage., Apart from some bladders in the skin
due to local loosening of the glue joint, and conse-

quently the forming of skin craeks, only in the

ease of specimen C II11-4 eracks in the web occurred.

Of specimen C 1I-2 with a maximum fluctuating
load of 75 % of the static load one flange plate
with the skin loosened during a weekend between
0.79 and 223 X 10° load cyecles, The maximum
load dropped to 28.7 fons, but the maximum com-
pressive stress was raised from 292 keg/mm?
(75 %) to 32,7 kg/mm? (84 %). Then the test
was stopped without loading the remainder of the
specimen to collapse.

With speeimen CITI-2 (75 4% ) after 74.000 load
cycles two small eracks in the web oecurred, and
the glue joint between web and stiffeners loosened
a little bit, Then after 82400 load reversals both
flange plates with the skin sprang loose abruptly
and the remainder of the specimen fell apart.

With specimen CIV-2 (75 %) the same prob-
ably happened overnight, after about 520000 load
cyeles,

On specimen CV-2 (75 %) the same happened
after 2.207,000 load reversals,

None of the heaviest speeimens (CI) endured
5 X 10° load cycles without severe damage. Between
0.83 and 1.61 X 10° eycles two flange plates with
the skin of specimen C I-2 loogened from the boom,
alsp two fragmenis rupiured from the web. The
maximum pualsating load was then relieved, until
the compressive stress in the remaining part of the
specimen again reached a value of 30.6 kg/mm?

'} This value probably is accidentally law, since higher

" stresses worc reached in static tests on prior- famgued gpeci-

mens (see table 4).

M9

{715 % of the static eompressive stress) and the
test was coutinued until 5 X 10° load eyecles were
reached,

Nearly the same happened with specimen CI1-3

(60 %) (sec table 4),

With specimen C 1-4 (68 %) firstly the skin with
ohe flange plate locsened (932.000 load eyeles),
then the second flange plate (989.000 load eycles)
and though some pieces of the web were loosened
the remaining specimen withsteod 5 X 10° load
reversals at a maximum compressive stress of 68 %
of the static stress.

A remarkable faet was that of all specimens,
after being subjected to the fatigue test, during
the final static test one or more flange plates
loosened at or quite near the maximum load; this
happened only once with the non-fatigued speeci-
mens {CIV-1). '

Figs 14 to 18 inel. show the specimens type C
after the tests.

The surface of'the loosened glued flanges of the
fatigued specimens all showed a network of small
pracks, which could easily be detected at a small
magnification. Sueh eracks did not oceur in the
glued surface of the statieally tested specimens.

Figs 19 and 20 show the difference between
these surfaces at a magnification of 50 X, The
cracks in the fatigued specimen can clearly be
detected, and are still more evident on fig. 21
(150 .

Figs 22" and 23 cach show two cross-sections of
claddmg layers of a fatigued specimen (150 X).

Fig. 22 is unetched, fig. 23 is etched. From
these figures it is evident that the eracks occur
in the eladding only and do not progress into the
24 8 crystallites.

The differcnces in the behaviour of the fatigued
specimens at the maximum static load and the only
statically tested specimens, viz. the abrupt loosening
of the gloe joint with the former, may be attributed
to the cra,eks in the cladding.

That cracking of the clad layer durmg the fatigue
loading does not require the presence of a glue
layer between the sheets is further proved by the
figures 24 and 25. Fig. 24 shows the external sur-
face of a sparboom type ' where no gluelayer is
present, which failed by statie loading; no eracks
are visible. Fig. 25 shows the same surface of a
fatigued specimen clearly indicating the presence
of cracks on the surface.

It may he of interest to carry out fatigue tests
on similar spar hooms manufactured of unelad
material.

4 Conclusions,

The methods of manufacturing of the bonded
spar hooms
a  Rubber pressing of the sheets hefore honding,
type A
h  Rubber pressing of the sheets after honding,
type B

had . no influence on the compression fatigue
strength,



The honded spar bhooms type A, fig. 1 and
type B, fig. 2 withstood a eompression load flue-
tuating bhetween 10 and 75 % of the ultimate statie
load for 107 cycles without deterioration in statie
strength.

All the honded spar booms type A and B
hehaved like solid spar booms of equal seetion
moduluos,

- The endurance of the bonded spar booms type A
and B in the 3 point bending tests was determined
by the range of bending stress in the outermost
fibre. Equal range of stress gave equal endurance.
The scatter in endurance was rather large.

The bending fatigue strength of the solid spar
hooms {type D — {fig, 4) proved to be muech supe-
rior to the fatigue strength of the bonded specimens
type A and B. This superiority was caused hy the
superiority in fatigue strength of unelad to clad
Al-Cu-Mg alloy.

With the exception of the specimens type C1
all composite spar hooms type C endured more
than 5 X 10° load reversals at compressive stresses
of 60% and 68 % of the ultimate static stress.
The specimens type C1 suffered severe damage
before 5 X 10° load cyecles were endured. The
damage consisted of complete loosening of one or
more flange plates from the specimen, or of rup-

M 10

turing of fragments from the web. The remaining
parts of the specimens endured nevertheless 5 X 10*
load cyeles at the same maximum eompressive stress.

None of the specimens type O sustained 5 X 106
load cyeles at a maximum fluetyating stress of
75 9% of the ultimate statiec stress.

The ultimate ecompressive static stress of all -
type C specimens after the fatigue tests ranged
from 93 to 110 % of the static stress of the speci-
mens which were only tested statically. The col-
lapse of the former specimens- during the final
static test was, however, quite different from that
of the latter. Of the fatigued specimens some glue
joints always loosened explosively at or near the
maximum ecompressive load. This different be-
haviour may be atiributed to small cracks formed
in the clad layer of the fatigued specimens.

It is recommended to carry out some supplement-
ary tests on similar specimens manufactured of un-
clad material. ' :
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Fig. 4. Test sct-up of the specimens type C
for compressive tatigue 1ests,

|
]

Fig. 6. Test set-up for specimens type A and B
for three point hending fatigue tests,




Fig. 15.

Specimens type CII after
the tests.

Fig. 14

Fig. 16,

Specimens type CL after
the ftosts.

Specimens type CTLL after
the tests.




Fig. 18,

Speeimens type CV after
the tests.

Specimens type C 1V after
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A Comparative Investlgatlon on the Inﬂuen(,e of Sheet Tlckness,
Type of Rivet and Number of Rivet' Rows on the Fatlgue

Strength at Fluctuating Tension of: Riveted Single Lap Joints:of
24 ST-Alclad Sheet and 17 S Rivets

by

' A, HARTMAN.

Summary,

Fatigue tests at fluctuating tension were earried out on riveted single lap joints of 24 8T alclad sheet and 17 8 rivets
to determine the influerec, of sheet thickness, type of rivet and number of rivet rows, The repuilts indieate that for the
type of specimen used a change of sheet thickness has no influence on the fatigue limit (calenlated as stress range in the
sheet, n==50.10%), but thar except for WACA rivets, at high loads thicknesses exeeeding 1 mm give a decrease in endurance
at the same stress amplitude. The type of rivet (snap rivet, countersunk V rivet, countersunk NACA rivet) too has no
influence on the fatigue limit, Lbut the NACA rivet is superior to. the 2 other types of rivets at relatively high loads,” In-

crease of the number of rivet rows from 2 to 3 at the same static strength of the joint has no influence on the 8-N eurve

of joints with 0.8 mm and 1.2 num sheots.
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This investigation has been performed by order
of the Netherlands Aircraft Development Board
(NIV).

1 Introduction.

In reference 1 results are given of a compara-

tive investigation earried out at the N.[.1. on the

fatigue strength at fluctuating tension on several
types of riveted lap joints. The tests showed :

1 snap and countérsunk riveted lap joints of
0.8 mm 24 ST alclad had the same load- enduran-
. ce curve,

2 plotted as a stress (in the sheet)-endutance
curve (scatter band) there was no significant
difference between the countersunk riveted lap
joints of 1.2 and 0.8 mm 24 ST alclad, though
the sheet in one type was sunk and in the other
dimpled.

The Fatigue Committee of the Netherlands Air-
eraft Development Board (N.IV.), when discussing
the results of these tests, eonsidered it desirable to
extend the scope of the investigation and to deter-
mine in more detail the inflience of the following
factors,on the faligue strength

1 the influence of the sheet thickness,

. 2 the influence of the method of filling up the

loles in the shect by the method of riveting
(type of rivet),

3 at the same static strengih the influence of the
rivet pattern {(number of rows).

The supplementary tests to achieve these aims,
the results of which are given in this report, eom-
prised fatigue tests at fluctuating iension on:

1 snap riveted lap joints with sheets of various

thicknesses, ,

. l! .
2 lap joints with siiap Tivets, countersunk V rivets
and eountersunk NACA rivets,
3 snap riveted lap joints with 2 and 3 rivet rows,




2 v Details of the test specimens and test proce-
dure.

21 Test specimens.

The 24 ST alelad material used for the manu-
facture of the riveted lap joints was supplied by
the Nederlandse Aluminiummaatschappij N.V. at
Utrecht. The works speeification gives as mecha-
nical properties of this alloy.

opa—- tensile yield strength > 27 kg/mm?,
typical value 30 kg/mm?.
op — tensile ultimate strength > 41 kg/mm?,
typical value 456 kg/mm?
— clongation {=2" > 12 %, typical value
18 %.

Tensile tests on test pieces cut at random from
~ riveted specimens with a sheet thickness of 1.6 mm
.- gave the following values

To9 — 325 — 319 — 326 — 321 mean
32.3 kg/mm?,

og = 45.5 — 450 — 453 — 44.8; mean
45.1 kg/mm?. :

The mechanical properties of the 0.8 and 1.2 mm
sheet materials given in ref. 1 are 36.9 and 381
ko/mm? respectively for the tensile yield strength
and 46.0 and 47.0 kg/mm? for the ultimate tensile
strength. All rivets were 17 S, riveted cold in
the solution heat treated temper.

The test pieces were single lap joints with 2 or
3.rows of rivets, The shape and dimensions of the
two types of specimens are given in fig. 1. To

3

GLUED DOUBLER

O C O O ©
o o O 0
160

- Fig. 1. Silapc and dimensions of the apeeimens,
prevent failure of the speecimen in the clamping
hiead of the testing machine all the specimens were
reinforced with a redux-bonded doubler as sche-
matically .drawn in fig. 1.

© 3 types of riveted joints were used in this in-
vestigation, schematically given in figs. 2a—2¢ inel.

fw 24 ~- type Ph — both sheets flat — snap
rivets,
tig. 2b — type V — front sheet sunk, rear sheet
b flat,
’ . die head is countersunk part of the
‘ “rivet.
fig. 2¢ .— type NACA — front sheet sunk, rear
sheet flat,
closing headlls countersunk part of
! the rivet. .
All specimens ‘were made at the Royal Fokker

An'craft Co according to common practice.

M 28

9.2 Test procedure.

The static tensile testing of the specimens was
carried out in an Amsler 20 tons universal testing
machine; the fatigue iesting in an Amsler Vibra-
phore of 10 tons. The clamping device used in

2a. SNAPRIVET - Py
-1.6mm L=08-16mm

t:-?.e ] l ’
e

@ 31mm

2h COUNTERSUNK-V
ty=l.2-1.6mm t,=12-1.6mm
i : 2

P

T

s

$asmm

2¢. COUNTERSUNK~ N.A.C.A.

L=t 2-1emm t.2=1.2—\.6mm

, ‘p 3.4mm
Fig. 2. Types of riveted joints.

the tests in ref. 1 was again used, both for the

statie and the fatigue tests. The 10 tons dynamo-

meter of the Vibraphore was used for tests with
“max. loads > 2 and the 2 tons dynamometer for

tests with max. loads < 2 tons. .

The Wihler curves (S-N curves) were determined
for fluctuating tension with a minimum load of
100 kg, The frequency of the load reversals was
about 8000/minute. If after about 50.10° load
reversals the test piece had not eracked the test
was stopped. Otherwise the end of the test was
the cracking of the specimen in the joint. By ad-
justing the switch-off relay always in the same way
it was achicved that the switching-off took place
at approximsately the same degree of crack form-
ation. Complete failure of the specimen would have
oecurred soon afterwards. Specimens which had
not failed in the fatigue festing, were loaded to
failure in the statie testing machine to determine
whether the fatigue loading had caused any de-
terioration of the static strength of the joint.

3 Results of the statie tests.

The results of the statie tests af'|<e given in table 1
and in fig. 3. The points in fig. 3 do not indicate

g ® NEW SEECIMEN ¢
Z % PRELOADED 50.10° REVERSALS,
=4 NO CRACKS VISIBLE AFTER
T FATIGUE LOADING
E
4 sooor
b
04000
o
[ L
o 3000
()]
w2000 |-
g
Z 1000
5
2 o
Nt e i [———— — —
SHEET mmOg 1.0 1.2 . 18 12 1.6 12 15 Q8 12
RIVET Fb v NACA Fb
— R BN
ROWS T2 3
Fig. 3. Results-of the static tests.




TABLE L. - — - -

Results of the static tension tests.
Test piece Sheet Load at .
: Type of rivet Eaccot‘ding thiekness failure Remarks
. to in mm in kg
Ph snap fig. 2a fig. 1a 0.8 3800 ref. 1 Type af failure [
2 ™ 23 LR n 1-0 4110 33 ] IH H
f:'\l 2 2} 1 * 1.0 3950 N 3 » 3
A o w »oon 1.0 4140 preloaded with 50. 10°
' load reversals 100—600 kg o b o
¥ 133 113 " . » 12 4150 7] 3 2] "
b » 1 ;9 : ? ” ]‘2 4220 tEd ¥ N b
' . o e >, . 1.2 4260 nreloaded with 50 . 10°
. load reversals 100—640 kg " , » "
”I LA > LR r 1 1'6 h 4000 - b3 b ry ”
" " p o h 1.6 4290 preloaded with 50 .10°
®od ' load reversals 100—860 kg v b N
V-countersunk , 2h v 1.2 4125 ref, 1 ” , " '
kR4 bEd » bl rr ]'6 3970 bR bl 1 b4l
LR 1 " ” \b - bR " ]'6 3980 . y b " 3
. " e . = T 1.6 3930 nreloaded with 50. 10°
. . load reversals 100—800 kg " , ’ "
NACA- . . 2(3 ’;'- . 1.2 434G . . 1 [ ” »
. . s e 5 12 4180 ‘preloaded with 50.10%
o . . load reversals 100—700 kg w b v
N 2] kR ” 1 7 1‘6 4200 n ) m” 1
LT 12 2] » p) 2 1.6 - 4320 preloaded with 50, 10¢
.= N load reversals 100—860 kg ” , ” .
Pb snap . 2a T, 1b 0.8 4380 w b N |
w5 N v o 08 4680 preloaded with 80 . 10°
: . load reversals 100—420 kg ’ , " ’
I 6w - 0.8 4140 preloaded with 50, 10°
load reversals 100—500 kaz s by P |
PPN - ” ) " ' 1.2 3710 L] 4 3 ”
” ’ » 1 » o om 1.2 4150 ' preloaded with 50,108
o load reversals 100—600 kg w b v om

‘Type of failure I.

Failure b}"-sh'earing of all rivets little distortion of rivet holes.

Type of failure. TI. Failure of the rivets distinet distortion of the rivet holes.

6% W



much variation in statie strength hetween the dif-
ferent types of joint. As all the joints failed by shear
of the rivets and *had the same number of rivets
of almost the same diameter this result is easily
understood. The average staiic strength of all speci-
mens is 4140 kg, which corresponds to an average
shear stress in the snap rivets of 34. kg/mm? and
in the V and NACA rivets of 29 kg/mm?. The
tensile stresses in .the sheets corresponding to the
average statie strength have also been computed
for comparison with the fatigue test results. Based
on the gross eross section of the sheet they arc
32.3, 25.9, 21.6 and 16.2 kg/mm? for 0.8, 1.0, 1.2
and 1.6 mm sheet respectively.

The situation of the points, indicated with crosses
in fig. 3, 5 times over and 3 times under the pomts
W hlch mdlcate the statie strength of a new speci-
men of the same type, proves that the statie strength
of a riveted lap joint is not influenced by fatigue
loading at low stresses if this fatigue loading has
not caused any visible cracking of the sheet.

4 Results of the fatigue tests.
41 Tests on specimeﬁs with snep rivets.

Table 2 gives the results of the fatigue tests with
fluetuating tension on 24 ST alelad single lap joints
riveted with 37 S snap rivets. In these tests the
thickness of the shect ranged from 0.8 to 1.6 mm.

THe results for the specimens with 2 rows of
rivets are plotted in figs. 4 and 5 in which also
are given the results of the former tests given in
. ref. 1. The stresses of fig. 4 are caleulated as stress
range in the gross section, in fig. 5 as nominal
stress range in the net section of the shect. The
situation of the points in these figures indicates
that an increase in the sheet thickness from 0.8

t0 1.6 mm had hardly any influence on the fatigue.

limit* (n = 50.10°) of the joint and a small de-
teriorating effect on the cndurance at relatively
high' loads. The deteriorating effect at high loads
was noticeable for sheet thicknesses exceeding 1 mm,
With some specimens it was aceompanied by a
change in type of failure, For joints with thin
sheet. the sheet was always. criticel but with thick

sheet at high loads (sce table 2) some rivet heads:’

bursted off, so.in this case the rivets became critical.
As the rivet heads bursted off and did not shear
off like in the static tesst, the tensile stress in the
tivet cansed by the mereased bending momentshof
the joints with thiek sheet may »ha,ve made the
rivets critical. On the other hand, the static stress
in the sheet at failure deercases-as the sheet thick-
ness increases and this may canse a lowering of
the 8 (stress in sheet) — N curve when the maxi-
mum fatigue load is neuring the ultimate static

strength (also see section 4.3). Whatever the cause -

may -he the results prove that for snap riveted lap
joints the shape of the S-N eurve below n=10°
approx, depends on the ratio between the maximum
load of the fatigue cycle and the statie strencvth
of the joint.

The plotted points in fig. 6, giving the results
of the tests on specimens w1th 2 and 3 rows of
rivets and about the same static strength, indiecate

M. 30

i
SHEET
‘g\ I ‘H | I i 0 &C * 08 mm
S8
£ 1 i [FEEE Jod & 10 mm
6 L6 4
- E - l | N &0 v :.zmm
- L] . mm
a E" T 1
| P i r 1.6_ MEAN STATIC STRENGTH
S PR < o - OF 16mm SPECIMENS
20| £ :
ST
2
\_/B .
n 3 NETEL t - i
a2 , 4 » SCATTERBAND
14 @ NIR| o -G8 SHEET
E o ) .l M
4 ] 2 _-.l
. o B
s c RIESE R I
w 2| E
g = |
S 2 4.88 2 4 68 2 468 2 4 &8
104 e S T T 10 107 108
ENDURANCE

Fig. 4. Results of fatigne tests with flmtuahng tension
on.24 ST alelad single lap joints riveted with 17 8
. snap rivets,

.

: LOAD 2 2)
1 ( NET GROSS SECTION) kg frm, @mun=1 1-0.5 kgfnm
20| 180 . SHEEY
zZn e o & 08 mm
2" 15 4 HEETL 2018 4 10mm
[ L.
18
§ ! 160_ *1.2mm
18 1604 ‘ * 1L6mm
<
U " _1B_ MEAN STATIC STRENGTH
B 14 1S CF 16mm SPECIMENS
T
02 4 3,
z .
10 o
] NEiR
We T 148N scAaTTERBAND OBmm
r
= \‘ SHEET
@ >4
BG K \J « =~
. |r ;“' "‘——-.__
w4 S i
Z, J it
o 2 ¢ BBl 2 <. 68} .2 468 ,2 468l,
104 105 10 [Ls} : 1
ENDURANCE

Tg. 5. Results of fatigue tests with fluetuating tension
on 24 8T alclad single lap joints riveted with 17 8
snap rivets.

.o
g ' SHEET THIGKNESS
0.8 1.2
\g\,ia mm  mm
X Q -
16
=4
21 X % -
9212 b X -
20) & : | I
g . E o .: x ]
\.,./B -
b4 Q yd |2
helo n L
£ 4 11
PR ) Y .
. Ll
5 £ r * "
w2 £ | 131
g |&
4 0
[ “10% 2 4 6!5105 2.4 6‘5105 2 4 65107 2 4 68105

ENDURANCE
THIT L

Fig..6." Results of fatigue tests with fluctuating tension

on 24 8T alelad single lap joints with 2 and 3 rows
of snap rivets.




M 3V

TABLE 2.

Doy

Results of fatigue tests with fluctuating tension on 94 ST alelad smgle lap ;|01nts r1veted w1th
17 8 snap rivets,

Sheet

X
]

Specimens . Str es% range | L
Thickness accaring Lioad—in kg trrplain J:egct ]undumncg ul.el‘}"ﬁ‘fl\’;
mm to fig. min.”  max. ke /mm? w102
0.8 1a 2a 100 1520 11.1 243 type of falhue I “refll |
1 ” b3 " 1340 9'7 .151 ” bl n II 1 l
” ” ” » 1340 9.7 169 - om0,
Lh bR bR b ]140 8] 4]0 N 7. 32 bR 2 .
3] ” ” 3 560 6.7 84 y » S 2] 33
ir n » ” 760 52 812 3] N1 » IT it
" " " " 580 3.8 9488 : I .
" " " " 460 2.8 H2518 “test p‘lGLB dld not fail ,,
10 ” " 200 2800 16.2 20 type nf fallure I
1y ”» L] 100 1900 11.3 150 ”? ” wo
- . , v 1900 11.3 429 F
svmtuhmg "ot rehy d1d
: not funetion well
’ " " " 1250 T2 493 type. of failure I ,
3y ] I 2] 900 5-0 ‘ 1858 2 3 1 1y '
» b ”» » 700 3.8 16674 11 2 N
[ 1’ " 43 620 3~2 9095 ‘An - 1. ‘ n
. " , . 600 3.1 50242 test piece did not fail
12 " " - 3100 15.6 29 type of failure T°A )
j1) 2 " ” 2500 125 43 nw g ot
3] ” 3] ” ]900 94 112 T i 3 '
" " s ” 1500 7.3 384 a o
” " " 1 -]‘100 5'2 876 [ " n Eh b
bRl iid ” m 90{) 4'2 2248 . n .l )2 ”
b3 R 7 1 700 81 5094
b » ,, . 640 2.8 b0884 test pzece did not fa:l
1.6 n " - 3100 11.7 20 " type of failure IB -
1"t it Ed 1 3100 ]]‘7 20 r 1 13
7 £ ” 1 2600 98 42 HER 1 to ‘I' A
134 "M 2] 2 2600 9-8 . 49 133 *r 1 J.r
" - ' . 1900 7.0 208 v W
1 ” 1 I ]400 51 4'96 . I3} » 3y IL
3 ” ” L 1100 ’ 3.9 1540 ’ 1 'y % s
' " " " 860 3.0 49469 test piece did not fail !
0.8 1b . . 2050 15.2 i type of failure T
2 " L] 2] 1650 121 1}.’;0 ‘N b2 3] 2]
" " " ’ 1250 9.0 259 o w o
1 1 bEs 1 1()00 T-O 62] 3 1 3 i
" ” " 1t 750 5-' I 1 ]GTO » 1 L bH
b ” b 1 600 3.9 15‘61 ML ¢ . b4
" " ” » SO0 3.1 50820 | ‘test picce. did not fail
”» — ” v 500 3.1 eiv13413 7§, type of failure T
” " " _ 420 2.5 78882 test piece did not fail
T2y Do 3000 15.1. 25 type of failure TA
” t ” 1 I 2400 ' ]2-0 - h3 n EH 13 T
b 13} " n 1850 91 . 166 1 1Al [E I )
M » » 1 1450 7.0 310 ] o 11 b
7 b1 1 * 1]00 5.2 958 1 ” Ton »n
2] ” i » 850 3.9 3052 2 [ 15 EL ‘.'.E‘
1" 3 i) " 850 39 ]802 R 1 ” 3t
. 4 ’ " 700 3.1 3271 Cme v "
’ ,, . " 600 2.6 49386 test piece did not fail
Type of failure I; f.atigue crack in the sheet at the side of the dichead.
T " moreover some rivet heads broken out. ' 1
T, ” some rivet heads bursted off. . h
o L, ™II, fatigue erack in the sheet at the side of the cIosmg head
. ; moreover some rivet heads brokeén out.
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that both for the joints with 0.8 and 1.2 mm sheet
the number of rivet rows had no influence on the
. endiurance at low or high loads. Neither was the
influence of the sheet thickness on the fatigue
strength of single lap snap riveted joints, mention-
ed in the preceding paragraph, dependent upon
the number of rivet rows.

The sttuation of the points in f1g 6 clearly shows
that the enduranee at the same range of siress,
both for the joints with 2 and 8 rivet rows, was
less for joints with 1.2 mm sheet than for joints
with 0.8 mm sheet. The fatigue limit (n-—=50.10¢)
was hardly influenced by the sheet thiekness.

4.2 Tests on specimens with countersunk V rivets,

The eountersunk V-riveted joint with a sunk -

front sheet cannot be used for thin sheets. There-
fore, the tests on this type of joint had to he
restricted to-sheet thicknesses of 1.2 and 1.6 mm.
The, results of the tests are given in table 3 and
are plotted in figs 7—9 inel. The stresses in
fig. 7 are calenlated as stress range in the gross
section and in figs 8 and 9 as stress range in the

net section of the sheet. Here too, like with the .

snap riveted, joint, larger, thmkne%s of the shect
at the same stress amplitude was accompanied by
8 deereage in endurance at high loads. The situ-
ation of the points even in some degree indicates
that the fatigue limit was unfavourably influenced

hy an inerease of sheet thickness from 1.2 to 1.6 mm.
As this resilt is' contradietory to the results for -

snap- or NACA Tiveted joints and the number of
test specimens is rather small, it will require further
tests before a definite conclusmn can be reached,

re

4.3 Tests on spécimens with countersunk NACA
rivets. :

The NACA rivets, like the V rivet, can be used '

only in relatively thick sheet. The tests, the results

of which are given' in table 3 and in the figs 7T—8 -

- inel,, were restricted to sheet thicknesses of 1.2
and 1.6 mm.. The stresses in fig. 7 are caleutated
as stress range in the -gross section and in figs. 8
and 9 as stress range in the net section of the sheet,

The situation of the points in the figures clearly
shows that the sheet thickness had no 1nf1uenee on

the endurance, neither at high nor at.low stress.

amplitude. Both for the joints with 1.6 and 1.2 mm

sheet the points lie in the scatter band for thin -

(0.8 mm) snap riveted joints of ref. 1. Probably
for NAICA riveted joints, even with thick sheets
of 1.6 mm the S-N curve is determined by the
stress concenfration in the sheet caused by the
rivets and the shape betwesn #=10* and n =107
is not influeneed by the ratio between the maximum
fatigue stress and the static strength of the jeint.

An NACA riveted specimen (see fig. 9) of 1.6 mm
sheet sustained a fluetnating tensile load egual to
the mean static strength 16000 times; in-this case
the fatigne strength is apparently not affeected
whether the rivets are loaded far below or near
to their static shearing strength., The hetter filling
up of the countersunk hole in the front sheet by
the NAACA method of riveting, by which the hole

~
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Fig. 7. Results of fatigue tests with fluetuating tension

on 24 ST alelad single lap joints riveted with 3 types -
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"TABLE 3.

Results of fatigue tests with fluetnating temsion on 24 ST alelad single lap Joints riveted with
17 8 eountersunk V or NACA rivets.

Sheet. Bpecimens N Stress range Endus
. oot —m—® n - Mduranee
thickness according N in plain sheet ‘Remarky
thm to fig. min. max. kg /mm? X103
12 1a Zb 100 1600 7.8 633 type-of failure I ref. 1
. ” " " 1400 6.8 1158 o N |
. . . " 1200 ha 1182 n b w
" " " " 1000 4.7 | 2346 e ' o
Y " . " 860 4.1 54979 test piece did not fail -
" N . . 900 4.1 55036 " O
,, " ; , 800 3.6 57961 b m m m w
" " . N 700 31 H8077 " w
16 y . . | 8100 11.7 21 type of failure I A
. " . 2600 9.8 49 T |
. ) . 1900 7.0 116 I
. . . . 1400 5.1 558 T
. . . ., 1100 3.9 1791 v e
. . . . 860 3.0 4643 v
" " " " 800 2.7 46985 test piece did not fail
1.2 - 2e " 3100 - 15.6 39 type-of failure T and 11 .
. . . . 2500 12,5 88 R 11
) " . 2360 11.8 . 79 I w
. . y ., 1800 8.9 - 318 o
" . . N 1500 7.3 611 o o
, y . . 1100 5.2 1813 w e
. , . 900 4.2 3188 e
. . . N T00 3.1 54091 test piece did not fail
1.6 . " . 4200 16.0 16 type of failure Il
o . . . 3800 14.5 85 ..o, IIA
., , . 3000 11.3 158 T A
. . ., . 2600 98 219 T |
” . " " 1900 7.0 549 n , AT
N ., , ., 1900 7.0 413 o
N N . . 1400 51 1837 o n m n
" o " " 1100 |- 39 L, 3817 . o .
» " . r - 860 3. 1rid 5217240 | test piece did not fail
JF T/.L - a B
g

Type of failure I,

1 1]
1 ]
3 1
L4 ”
512 }

TA;
IB;
IT;

fatigue crack in the sheet at the side of the diehead,

2y

nioreover some rivet heads broken out.

some rivet heéds hursted off,

fatigue crack in the sheet at the side of the elosing head.

II A; moreover some rivet heads broken out.
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is filled up by the closing head of the rivet, pos.

s1b1y prevents premature loosening or falllnrr of the
rivets at high fatigue loads.

4.4 Comparison of the resulls.

A comparison of the results shows that the

tatlgue limits of the joints, caleulated as stress . .

range in the sheets, were hardly influenced by the
type of rivets used, viz spap, countersunk V or
NACA rivets. For the types of specimens used,

sketched in figs 1 and 2, at.n==50.10° load revers-

als the mean  stress range caleulated as stress

in the net section ¢f thie sheet in all ecases was

3.8 kg/mm?® at a min, stress ranging from 0.5 to
1 kg/mm?, independent of sheet thiekness varia-
tions between 0.8 and 1.6 mm. Differences between
the various types of rivets appeared only at relat-
ively high loads (and sheet thicknesses >> 1 mm).
In these eircumstanees the NACA riveted lap joint
proved to ‘he superior to the snap and countersunk

V riveted lap joints and should be preferred in.
cases of a high ratio of stress amplitude to statie-

strength, The situation of the points in fig. 8§ in-
dicates that with 1.2 mm sheet the V riveted joint
is slightly superior to the snap riveted joint. In
thick sheet the countersunk V riveted joint has
no advantage over the snap riveted joint.

A change of the 2 row snap riveted joint sketch-
ed in fiz.:1a to the 3 row snap riveted joint of

about the same static strength of fig. b does not .

affect the fatigue strength.
In the technical literature mueh has heen publish-

ed on the behaviour of riveted lap joints under

fatigue loading. A comparison of the results given
in this report with resunlis given in the literature,
though desirable, is difficnlt to achieve. The di-
mensions of the specimens ,the loading cycle, the
rivet pattern, ete., used by the various investigators
differ considerably, which makes comparison of the
results a difficult problem. In due course a search

of the literature will he made to get a picture of

our knowledge on the fatigue strength of riveted
light-alloy lap “joints, The results of this study
will be reported in a separate paper.

& QConclusions.

The sheet thlckness rivet type and number of
rivet rows had no mgmﬁeant influenee on the

nltimate static strength of the joints, owing to the
equal mumber of rivets in each specimen and the
failuré of all specimens by shearing of the rivets.

The ultimate static strength of the riveted lap
joints was not influenced by fatigue loading at
low stresses if this. fatigue loading did not eause
any visible cracking of the sheet.

The fatigue limit of the lap joints was hardly
influenced by the type of rivet used, viz. snap-,
countersunk V or countersunk NACA rivet (fig.
2a—2¢) nor by the sheet thickness (0.8—1.6 mm)
and the number of rivet rows at the same static
strength (fig. la, 1b)., At n = 5H0.10° the mean
fatigue limit at fluctuating tension was 3.8 kg/mm?
caleulated as stress range in the net seetion of the
shect (min. stress 0.5—1 kg/mm?).

As regards fatigue strength both at sheet thick-
nesses of 0.8 and 1.2 mm and at high and low
endurances the 2 row snup riveted lap joini of
fig. 1a was equivalent to the 3 row snap riveted
lup joint of the same static strength of fig. 1h,

The NACA riveted lap joint of fig. 2¢ proved
to he superior to the snap- and countersunk V
riveted lup jeints of fig. 2a—b at loads above the
fatigue limit and a relatively high ratio between
the stress amplitude and the static strength. One
NACA riveted specimen withstood 16000 eycles
with a maximum fatigue load equal to the average
static shearing strength of the rivets.

Between n=10* and n=10" the 3-N eurve for
the NACA riveted joints, S caleulated as tensile
stress in the sheet, was not influenced by the sheet
thickness, i.e. by the ratlo bhetween the maximum
fatigue load and the statie strength, as it was with
the snap- and countersunk V riveted specimens,

The snap- and countersunk V riveted lap joints
of 1.6 mm shect were cquivalent. In the thinner
sheet of 1.2 mm the countersunk V riveted joint
showed somewhat higher fatigue strengths.
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Investlgatlon of the Post-Buckling Effective Strain DIStI‘lbllthl’l
in Stiffened, Flat, Rectangular Plates Subjected
to Shear and Normal Loads

W. K. G FLLOOR.

Summary,

In an earlier N.L.L.-Report (ref. 1) diagrams have been presented for the determination of the average siresses and
strains in stiffened, initially flat, rectangular plates that have developed buckles under the influence of external lorgitudinal
and lateral normal loads as well as shear loads, They are bused upon the theory from ref, 2 because this is considered
most reliable in gencral. This theory, and hence the diagrams, are strictly valid only when the stresses do not exceed the

proportionality limit anywhere in the plate.

The present report contuins a set of diagrams, by means of which the ]a:gest effective strain, :wcordmg to tlw 1IGEBER, -
voN MisEs snd HENGKY criteriom, ean be determined. These diagrams are also based wpon the theory from ref. 2. Their
practical application is domonst,ra,ted by some numerical examples. The effective strain at several stations in the plate
can he read from the diagrams. The largest effective strain may occcur at different stations, dependent upon the magni-
tude of the loads and the raiies between normal and shear loads.

In some cases the effective strain may have a maximum somewhere in the platc that exeoeds the largest strain read
from the diagrams. The differcnce between both strains, however, can only be a few percent of the strain.

In ref, 2 a waveform assumption for the buckles in the -plnte is also proposed that might give meore reliable results
when the angle between the general direction of the buekles and the longitudinal edges is small. The eorreetions that
would be required in the diagrams from rtef. 1 when choosing this waveform assufiption are shown by some numerical
exumples to be pI‘d.Ctl(!a]l\ negligible throughout the major parts of the ranges covered by the dingrams, and reasonably

small in the remaining parts of these ranges.
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1 Introduc{ioﬁ.

‘In a previous publication the relations hetween
the deformations and the stresses in stiffened flat
rectangular plates loaded above the bueckling load
hy shear stresses and normal stresses -have..been .
presented in the form of a number of diagraims -
{ref. 1). These diagrams are based upon Xorrer's
theory {réf. 2), because this theory is considered
to yield accurate results for all ratios of load to
huekling load from, unity to infinity. '

The theory from. ref. 2, and henee the diagrams
presented in ref. 1, are based upon the assumption
of purely elastic behaviour of the material of the
buckled plate. The stress distribution in a buekled
plate is a complicated funetion of the coordinates
in and normal o the plane of the plate. When for
arbitrary external loading the stresses are known
everywhere in the plate, the highest loads for which
the theory and diagrams remain valid can be deter-. .
mined from~the eondition that the highest loeal:#-~




stresses oceurring anywhere in the plate reach the
proportionality limit of the material.

The normal and shear stresses acting in the
longitudinal and lateral directions of the reect.
angular plate and presented in the diagrams from
ref. 1 are averages over the whole plate. It is
henee impossible to determine the elastic limit loads
from these diagrams without additional inform-
ation being available on the distribution of these
stresses throughout the plate, i. e. on their variation
in the longitudinal and lateral. directions as well
as in the directioh normal o the plane of the plate.

The stress or strain distribution throughout the
plate can be determined from the external deform-
ations of the plate as a whole (the edges remaining
straight and opposite edges parallel), the expres-
sions for the form of the buckles in the plate (i e.
for the displacements of an arbitrary point of the
plate in the longitudinal, lateral and normal diree-
tions) and the parameters in these expressions.

The straing are reduced to an effective strain
by means of the Hupmr, vox Mmsms and Hmwcky
criterion (ref. 3). The diagrams from ref. 1 can-

not be considered to yield reliable results onee the’

effective stress, i.e. the product of the effective
strain and the modulus of elasticity, exceeds the
‘uniaxial stress at the proportionality limit.

The details of the stress distribution depend to
a large extent upon the assumed waveform of the
buckles. The waveform assumed in ref. 2 yields
a good approximation of the elastic energy stored
in the buckled plate and also of the average stresses
presented in the diagrams from ref. 1. This does
not necessarily imply, however, that the details of
the stress distribution and the maximum stresses
are ohtained with equally good accuracy. It is con-
sidered that the maximum of the effective strain
anywhere in the buckled plate will nevertheless
provide a reasonable indieation for determining
whether the proportionality Hmit is . .exceeded, It
should also be remembered in this respect that the
proportionality limit itself is not usually known
with great precision. In addition the deviations in
the relations between stresses and strains averaged
over the whole plate that occur when the load
exceeds the proportionality limit load to a small
extent are relatively small.

It was stated in ref. 1 that it would be desir-
able to investigate whether the accuracy of the
diagrams in ref. 1 could be improved by assuming
a waveform in which the nodal lines orthogonally
intersect the longitudinal edges of the plate, such
as waveform asswmption no. 2 in ref. 2.

.. .The aireraft industry showed much interest in
the construction of a set of diagrams complement-
ing the diagrams already presented in ref. 1. The
new diagrams should econtain curves for constant
ratios of the effective strain to a eritical strain
deéfined in ref. 1. The coordinate system should
bhe the samé.as 'in the original diagrams to enable
a rapid determination of the effective strain.
.The Netherlands Airveraft Development Board
charged the National Aeronautical Research In-
" stitute with the construction of such diagrams and
a coneisé investigation of the improvements obtain-
able with "a more suitable assumed waveform.

S 2

Results .of the investization are presented in this
report, that should be read in conjunetion with
ref. 1.

Relations between the local strains in the plate
as functions of longitudinal, lateral and. normal
coordinates on one hand and the average straing
in the plate considered as a whele and the wave-
form parameters on the other hand are derived
in sec. 3 from the expressions representing the
assumed waveform., o

Problems encountered in finding those points of
a buckled plate where the effective strain is largest
are discussed in see, 4.

The numerical vesults are’ discussed in sec. 5
and presented in the form of a set of diagrams.
It will in general he neeessary to read the effective
strains at different points of the plate in order
to find the largest effective stress.

The application of the diagrams is demonstrated
by some numerical cxamples in sec. 6.

In see. 7 numerical results obtained by assuming
waveform no. 2 from ref. 2 are eompared with
results caleulated in the way described in ref. 1.

The conclusions that ean be drawn from the
investigations are presented in see, 8.

2 Symbols.
b width of the (infinitely long) plate
(fig. 3.1)
f maximum amplitude of the huckles in the

plate {fig. 3.1)
- thiekness of the plate

cotangent of the angle ¢ between the nodal
lines of the buekles -and the X-direction
(fig. 3.1)

displacements of an arbitrary point (z, y,
) of the median plane (z=0) of the
plate in the X-, Y- and Z-directions res-
peetively during buckling (fig. 31) |
coordinates in the X-, Y- and Z-directions
respectively (fig. 3.1)

= b2/L? _

modulus of elasticity

o 72f?/4b*

modulus of rigidity

half-wave length of the bueckles in the plate
(tig. 3.1)

longitudinal - direction of the plate (Tig.
3.1)

lateral direction of the plate (fig. 3.1)
direction normal to the plane of the plate
(fig. 3.1)

ratio between the width of the edge regions
and the total width of the plate (fig. 3.1)
angle of shear of the plate considered as
a whole (fig, 3.2)

local angle of shear, defined by (3.5)
compressive straing . in the longitudinal
(X.) and lateral (Y-) directions of the
plate considered as a whole (fig. 3.2)
cffective strain, defined by (4.1)

local tengile straing in the longitudinal
(X-) and lateral (Y-} directions respee-
tively, defined by (3.5)

uniaxial tensile strain at the proportion-
ality limit ’

h
m

x, Y. 2
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&*  critical compressive strain for pure longi-
tnudinal eompression, hinged edges, defined

S 3

in fig. 32. For convenience only a part of
length L from the infinitely long plate is con-

by (3.2) sidered,
3 =may/ab It is observed from fig. 3.1 that the buckled
35,5  speeial values of S (tig. 4.5), roots of plate ean be divided into three parts, viz. two
(D. 11) edge regions, wide ob/2 each, and a central region,
" lateral contraction ratio wide (1-—a)b, The amplitude of the buckles is
o,, 0, average tensile stresses in the longitudinal
(X-) and lateral (Y-) directions respec- o fbh(ﬂ L€ -
tively (fig. 32) - - LET 2o
T shear stress (fig. 3.2)
v =n(e—my)/L < of t
¢, ¢  special values of ¢ (fig. 4.3), roots of . M [ - 02
(D.9) Hhon
D == (1 —v*) %2, sec, 4.2 ‘ &
» ~ —— ’Y .-
3 Local strains in the buckled plate. b | o(teg)
3.1 The assumed woveform of the buckles. g UNLOADED © DJEXTERNAL  ¢] LOADED
In this investigation as well as in ref. 1 the Fig. 3.2

waveform no. 1 from ref. 2 was assumed The
mathematical expressions for the displacements u,
v and w of an arbitrary point {x,y) of the median
plane z=40 of the plate in the X-, Y- and Z-direc-
tions respectively are presented in Appendix A of
ref, 1. The X-, Y- and Z-direetions, the dimensions
of the infinitely long rectangular plate and the
main parameters of the assumed waveform of the
buckles, viz, the amplitude f, the half-wave length
L, the cotangent m of the angle ¢ between the nodal
lines and the longitudinal or X-direction and the
ratio « are shown in fig. 3.1.

P

SECTION A-A

SECTION B-B

Fig, 3.1

It is observed that the nodal lines are straight
and that they do not itterseet the longitudinal
edges of the plate orthogonally, exeept in the
special case r=0. This is not in accordance
with the assumption that the plate is hinged at
the longitudinal edges, but the error introduced in
this way is considered to be negligible unless m
is large, say m > 2 (ref. 1).

The edges remain stralght and parallel, The
average deformations £, ¢ and y of the'plate
considered as a whole and the eorresponding
average external strésses o,,, e, and - are shown

of course zerp at the edges and inereases towards
the central region according to a sine law. It
remains constant in the eenfral region. Finally,
w is a periodic funetion of z, bccause the plate
is Inflmtely long.

It iz observed from fig. 3.2 that «, and o, arve
positive as tensile stresses.whereas ¢, and e, are
positive as compressive st'tl'ains.

3.2 The local straims in the median plane of the
plate.

From the expressions for 1, v and w as funetions
of z and ¥, presenited in Appendlx A of ref. 1,

the tensile strains. err in the X- and & in the

Y-direction and the shear strain ys in the median

plane 2==0 of the plate are calculated accord-

ing to .
r;ﬂ:ua: + 05 wzz,
e ==y + 0.5 w2, (3.1)

Tm:%y + up b wawy,
where wu, stands for ou/dz, ete.

It is found convenicnt to reduce the strains by
dividing them by the eritical compressive strain

e* = 2h?/3 (1 — v2) b2 (3.2)

at which an infinitely long rectangular plate of
width b and thickness & buckles when it is loaded

in longitudinal eompression only and when the

edges are hmged and remain stralght and parallel.

The strains ep, s, and Yay ATE expressed in
terms of the average strains ¢,, ¢, and y and the
waveform paramefers by evaluating egqs. (3.1).
The results are presented in Appéndix A. Instead
of the parameters f and L indieated in fig. 3.1,
more convenient parameters were introduced. They
are defined by

F ==2f?/4b?,

D=b/L*, (84)




Tt is observed by comparing (A.3). aiid- (A.4)
that e, has a discontinuity at Y _ab/2' )
- In the centre region, ab/Q\y (1-—a/2)
the btrams are constant, but in the edge regions,
0 ab/ 2, the strd.ms £sr and g,y are dependent
on.

A 5 =xy/ab

and henee on y, whereas e, depends also upon
¢ === {zx—my)/L,
and henece upon bhoth z and w.

33 The bending strains.

For arbitrary values of —MZ\ z \h/Z the
tensile strains in the X- and Y- dlrectlons and the
shear strain are in general different from the
strains in the median plane {z=20) for the same
coordinates # and .

The differences are caused by the curvatures
assumed by the plate when it buekles.

These bending. strains are proportional to z be-
cause the theory is based upon the assumption that
straight lines normal to the median plane of the
unbuekled plate are transformed into straight lines
normal to the median plane of the -buckled plate
during buckling (ref. 2)

The tensile strains ez in the X- and s,,,, in the
Y-direction and the shear strain yx caused by
hending of the plate during buckling ean thus be
expressed as

Epp —— AW — (Zz/h ?z.t, .
sz_zwm‘u—— (22/?‘/)ij (3'4)
}’my:‘—z Way — 2z/h)7 wy .
The bending strains are extremal at the upper
face 2 =h/2 and at the lower face z=—=—"h/2 of
the plate.

The hending steains ez, ¢y and y'sy for 2=h/2
canl be cxpressed as functions of the eoordinates x
and y in the median plane of the plate and the
parameters for the waveform of the buckles. The
results of these caleulations are presenied in Ap-
I)Oﬂdl\ B.

It is observed by comparing (B.3) and (B.4)
that &, has a discontinuity at y=eb/2. This
‘was to be expected (ref. 2).

The bending straing are extremal for eosd =
=+ 1, i. e. at the nodal lines, at the edge y =0 and
for sing==+1, i e. at the crest lines, at y=—=
ab/2. In the central region they are extremal only
at the erest lines, but zero at the nodal lines. The
crest lines are running parallel to the nodal lines
at a distance L/2, measured in the X-direction
(flg 31)

34: The strains in the faces of the plate.

The tensﬂe straing e in the X- and e, in the -

Y-directions and the shear strain Yey at the point
(x,y,2) in the plate are defined by

I e = /e Tl e, ete. (3.5)

" At the upper face of the plate, z._h/2 they
can thus be expressed as

Sxx/-?* = Sz.a/ﬁ* + ?a'x/“'-* ? Et.e- (36)
and at the lower face 2=—Hh/2, as
 epefe® == barfe* — Furfe®, ete. (3.7)

4 Determination of the largest effective strain
in the plate.

4.1 The effective strain.

The effective strain e. after the HUBER, voN
MmisEs and IExosy criterion (ref. 3) is related
to the tensile strains ez in the X- and ey in the
Y-direction and to the shear strain vy, by  the
expression

(.1 — ) 2% 2 ={1 — v+ ) (ez T egy®) +
+ (— 1+4v — v¥) espeeny+0.75 (1 —v) 22 (4.1)

In the numerical cvaluation it is assumed that
v =103, in accordance with ref. 1.
Fquation (4.1) can then he written as

b= 0.8281(63,/&:“)2 —

= 079[ (E:c.r/ﬁ*)z_}_ (Ew/s*)z] +
0,11 (eea/e®) (el e®) +0.3675 (yay/e®). (42)

The guantity ® can be expressed as a funection
of the eocordinates z and ¥, or the angles ¢ and 3,

STATION
ne ¢ Y 2z/h
1 O o

2 0 Tme -
3 n/2 o -
4 m/2 mn/z o
4-5 mi2  — . 11

Fig. 4.1

the strains ¢, e, and y and the parameters of
the waveform of the buekles,

The results of this calculatlon are presented in
Appendlx C.

It is observed from (C.1) and {C. 4) that o,
and hence g/¢*, varies always with ¢. In the edge
regions, it varies also with 5.




42 The extreme of the effective strain.

For specified loading the values of the wave-
form parameters, i.e. of a, m, D and ¥/e* are
known from the investigation of ref. 1. The effee-
tive strain, and henee the quantity @ afier (4.2),
depinds either upon ¢ alone, viz. (C.4), or upon

S o

This expression is never negative since C; > 0,
i.e. @ is a minimum. TFor y===/2,
=B,—20C,.

gre/ay?

This 18 never positive, i.ce. @ is 4 maximum both
for 2¢/h==1 and for 2z/h=—1. The relations

¢ and 3, vie. (C717,

The coordinates © and y, or the more convenient
quantities ¢ and 3, defining the points of the
upper or lower faces of the plate where g, is ex-
tremal, should be solved from the cquations

8@ /0y =0,
o®/95 =0,

In the centre vegion, ob/2 ny < (1 —a/2)b, only
the firgt cquation remains,

(4.3)

Ee/E* ____I
a S
¢
Q nje
Eefe* *
Tk
/——-‘—’
b [y
¢
Ee/e* © __,Ti/;
/”/—_ *
M
=3
¢
2
8 *
¢fe =TT % ExTREMUM
- 2z/ha1
d._ & /* __—22/h-—1
* Jt{:
o] nje
Eefe* ]
e T *
5 ok
Ee/E* PR
fo
0 /2
Tig. 1.2

43 The centre region of the plate.

The investigation presents no difficaities as far

as the centre region eb/2 Ly £ (1 —a/2)b is con-
cerned. It follows from (ID.3) that & reaches ex-
tremal valnes for cosy =0, Le for y ==/2. The
case == — 7/2 need not he considered for reasons

of symmetry. When |B,[=2(,, (D.3) has also
a solution

siny = F B,/2 C,.
In this case, (D.7) yields
920/t =2 0, (1 — B2/4 C2).

Cantiy

tively represented in figs, 4.2¢ and 4.2¢.

When |B,|>2C,, (D.3) yields only the solu-
tion ¢ ==/2, and it follows from (1. 7) that

i e 3 —f Ale 1
hetweemr &/e*—and—y—for—these—eases—are—gualita

Yo/ = FH,—20,.

Henee, @ is a maximum for 22/h =1, i.e. at the
upper surface of the plate, and a minimum for

2z/h = —1, i. . at the lower surface, when B, > 0.
"~
€/t #
: o
o i
2
T 1 ¢
o b ¢ nf2
*
EQ/E H
b I—\)\/:D
2 I T_- —— i
, 1 i ¢
o} ¢ (ff Tt/z
#*
Ee/E. l
e N #* EXTREMUM
' ~ STt 2z/h=1
c |"'" | ——— 22 /a1
1
] L i $
o) ] ¢ Tt/z
Ee/E* ’L‘“—'—--—-—..._____
g‘. l
L ¢
o) n
2
tefEX e /
_’/
. |
| P
o ) n/2
Fig. 4.3

The reverse is true when B, < 0. The relations be-
tween e./e% and ¢ for these cases are gualitatively
represented in fig. 4.2¢ and 4.2f respectively.

In the numerical evaluation both eases 2z/h=1
and 2z/h =-—1 are investigated and the highest
value of @ is chosen for the caleculation of the
largest . in the centre region of the plate, because

neither the sigh nor the magnitude of B, is a
priori known. -

Throughout the range of the investigations e./z*
was always larger for 2z2/h —=—1, i. e. at the lower
face of the plate, than at 2z/h-—=1 (fig. 4.2¢,
4.2f).




- TABLE 4.1, Numerical results for some representative cases where 9 ==0.

- . : = 2z/h=1
) 'm #w' ‘#w; :1)

S R Ea o - 2o/ _ .Ee/E

SR E ] ey T, | :
: . % p =0 Y=y =w/2 $p==0 =1 ¥=/2:
20 —10 .90 ¢ (.15594 225.53 - 246.96 246.36 0.62428 248117 240,32 246.36
50 0 100 ) — 150.08 — 157.49 — 159.62 — 157.49
50 —5 - 60 -a 0.28825 248.65 277.56 273.29 0.54993 - 289.76 258.89 273.29
50 10 70 d — 122.48 — 130.63 — 136.15 — 130.63
30 — 20 - 50 - a 1.25235 233.96 255.54 252.83 0.59044 261.25 239.96 252.83
30 —20 - 100 e — 186.37 — 108.62 0.0072162 19518 198.92 198.62
30 —35 100 d — 116.78 — 117.91 — 11857 — 11791
30 0 60 d — 82.926 — 85.646 — -87.550 — 85.646
10 —25 100 ¢ — 174.15 — 182.55 0.015037 176.80 18256 182.65
10 — 15 20 a 0.28745 100.89 104.94 104.61 0.49953 111.31 101.18 104.01
10 — 35 100 ¢ 0.036055 27544 295.05 295.01 0.97361 280.10 280.05 295.01
10 — 35 10 b 0.23707 326.98 347.85 343.04 0.59889 362.57 314.36 343.04
TABLE 4.2. - Numerical results for some representative cases where ¢ ==/2.
: e 22/h=1 2z/h=—1

* * ® b -
<8 s g o/ . | oot

R < & o sin 9 — sin 2 —

% 3=0 S=35 S==/2 S5=10 5=3 S==/2

50 | —10 90 b 0.75484 246.36 19411 213.52 0.22133 246.36 201.62 164.22
50 -, 0 100 ¢ 0.81423 157.49 137.03 139.90 (.45670 157.49 163.35 156.84
50 | =5 60 @ 0.71647 -273.29 220.00 253.69 0.14768 273.29 276.29 203.94
50 10 70 e — 130.63 — 123.56 0.65012 130.63 138.25 137.60
30 | —20 50 .. w 0.74686 252.83 192.66 220.01 0.15505 252.83 256,23 164.47
30 [—20 100 b 0.81479 198,62 154.33 161.86 0.26148 198.62 203.87 159.77
30 |—5 100 e — - 117.91 — 110.27 .85032 117.91 121.08 120.98
30 0 60 d 0.86218 85.646 77758 78.198 0.78513 85,646 90.225 89.897
10 |— 25 100 b 0.84261 182.55 140.70 145.41 0.26415 182.55 187.40 145.16
10 | —15 20 a 0.71008 104.01 79.035 94.054 0.21577 104.01 106.67 72.90
10 |-—35 100 e 0.80851 205.01 218,20 230.26 0.18981 295.01 300.66 187.00
10 |—35 -1 10 a 0.76043 343.04 256.11 293.65 0.097344 343.04 345.15 165.20

0 |--2610] 6236 | - « 0.78594 1825 133.24 146.3 0.21639 182.5 186.97 121.6

¢ [—1933| 506 a 0.72044 124.1 91.165 110.4 0.16809 1241 126.40 69.01

0 |—10.55( 99.75- b — 105.5 — 104.6 — 105.5 — 106.3

0 [—5.86 | - 237 b 0.63249 18.89 13.987 18.89 (.36243 18.89 T 20.267 15.97

98



4.4 The edge regions of the plate.

It is observed by inspection that e./e* is an
extremum for either y =0, 3 =0 (station 1, fig.
41y ov ¢y ==/2, S ==/2 (station 4), (D.1) and
(D. 2) being satisfied. The condition for e./¢* to

— be—a maximuam-_obtained by substitution of either

87

e./e* reaches a maximum at ¢y =y and ¢ respee-
tively exceeding e./:* at y =0 (station 1, fig. 4.1)
or at ¢ ==/2 (station 3). Tt is observed from the
numerical examples presented in table 4.1 that the
differences are so small that it is considered allow-
able to regtrict the evaluation to ¢ =0 and ¢ = =/2.

At the nodal lines =0 (1—2 fie. 4.1) the

(D. 4y, (D.5) and (D.6) or (D.4)”, (D.5)”
and (D.8)" in (E.1) turns out to be so com-
plieated that no general eonclusions, such as were
obtained for the cdge region (sec. 4.3), can hbe
drawn from it. )

Numerieal evaluations lead to the conelusion that
for 5 ==/2 (2—4, fig. 4.1) &/e* varies with ¢,

EE/E* /’—"_f\\ l
e
' i
b !
I S
o 3 3 /s
gelt_'* /—-?-‘--..____\\ . ‘
\ T ¥ g EXTREMUM
c i * 2z/h=t
4 3 DI
o) 3 B /s
Ee/s* /’_.—-—--—?P—--..._ ._____‘l
| l
d "
o |0
o I3 o,
Eels* //""-——T_—"‘"—--..H_i
e ! l
- v
= oy
EF-'/E* © ‘_j___"_,___é

Fig. 4.5

i.e. in the longitudinal direction, as shown in fig.
4.2h, 42¢, 42d or 42f, Ti is evident that in this
case only ¢ ==/2 (station 4, fig. 4.1) needs to be
congidered.

At the edge 5 =0 (13, fig. 4.1) &./c* varies
with ¢, i. e. in the longitudinal direction, as shown
in fig. 4.3. In the cases of fig. 4.3¢ and 4.3e

largest z./e* oecurs nearly always at 5 =0 (sta-
tion 1, fig. 41). In two cases considered e./c*
varied with 5 according to fig. 44. The largest
e./e* proves to he always smaller than for ¢ = =/2,
S ==/2 (station 4), Hence, ¢y =0 need not he
eonsidered in the numerieal evaluation,

At the erest lines ¢ ==/2 (3—4, fig. 41) &/*
varies with 9 as shown in fig, 4.5. It is observed
from the numerieal resulis presented in table 4.2

that the difference between e./e* at $ =23 and at
S =0 (station 3, fig. 4.1) or $==/2 (station 4)
is not always negligible. It is nevertheless allow-
able to leave this case out of consideration in the
numeriecal evaluation because. e./s* is never found
to excead by more than 2.6 % the largest eo/e*
in any of the stations 1, 3 and 4 from fig. 4.1.
In the cases to which figs. 4.8d and 4.5¢, 4.54
or 45¢ or to which figs. 43¢ and 4.5 apply
eo/e® has a maximum at some station 0 < ¢ < =/2,
0< 5 < x/2. Tt is the largest z./¢* anywhere in

~ the plate, but it is expected to exceéd only slightly

the largest =./¢® in any of the stations indicated
in fig. 4.1, considered in the numerieal evaluation.

The caleulation of the largest e./e* is omitted
hecause it proves to be very ecumbersome. This is

. no serious objection especially when it is realized

that the details of the stress distribution through.
ount the bueckled plate are approximated in the
theory with probahly mueh less accuracy than the
clastic energy,

A more detailed discussion of the stresses in-
the cdge regions of the plate is presented in
Ayppendix E,

5 Numerical results.

51 Presentation of the resulls.

The results of the caleulations are presented in
the form of a set of diagrams, figs. 5.1 to 5.19 inel.
The coordinates are e,/e* and &,/¢*, as in the dia-
grams of ref. 1. The present diagrams cover the
same region of coordinates as those of ref, 1. They
contain a set of eurves of constant e./e*,

When ¢,/e* and e,/¢* are specified or have been
determined by means of the diagrams of ref. 1, -
the corresponding s./e* can thus be determined by
interpolation from the present diagrams., It will
in general be necessary to read e./e* at all stations
indicated in -fig. 4.1. Obviously, the largest e./e*

" obtained in this way should then be considered in

the computation of the largest effective strain
anywhere in the buckled plate.

The strain ¢* is determined from (3.2) and the
known dimensions of the construetion. The tensile
strain &, at the proportionality limit can be derived
from the ordinary uniaxial tensile stress-strain
diagram for the maditerial of the construection com-
sidered.




58

curves of the important ranges eould not be deter-
mined with great accuracy., The transition points
between the heavy and the thin lines are probably
well without these limiting curves,

Tt iz observed that in constructing the present
dizgrams four values of 7/Ee¥* only have been con-

- The theory from’ tef.’2, and herice the diagrams
from .ref. 1 and the _present diagrams, are strictly
valid only if eg = &y throughout the buckled plate.

For some of the stations shown in fig. 4.1,
sg/e' will exceed eofe* at all other stations only
in a restricted range of 81/5 and g,/¢* This is
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e;/e*) falls in the range of thin lines. The trans-
itions were in general so gradual that the limiting
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sidered instead of eleven, as in ref. 1. This was
considered justified in the firgt place hecause
numerical examples have shown that e./e* can be
ohtained with reasonable accuraey for intermediate
values of /E&* by interpolation.

In the second plaee, the diagrams for the effec-
tive strain cahnot be considered to be as aceurate
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as those for the average stresses presented in
ref. 1 (sec. 44). An eventual small refinement
obtainable by constructing diagrams for inter-
mediate values of r/Ee* would thus result in a
reduction of the relatively small interpolation
errors much smaller than the errors already pre-
sent as a consequence of the imperfect approxi-

and caleulatéd strain will increase only slowly

~ when e, exceeds g, to a slight extent.

5.2 The cenire region,

In the centre region, i.c. for ab/2<\y<\(1—
2/2)b, {fig. 3.1), the largest effective strain is
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mution of the details of the stress distribution
in actual constructions by the theory from ref. 1.

Finally, it will be difficult to determine &, with
great aceuracy. It is not to he expected however
that this will lead to large errors when e, exceeds
g, only slightly since the difference between actual

observed at the crest line (sec. 4.3) at the lower
tace of the plate, 22/h =—1. It is constant along
the line 4—5, or ¢ ==/2, in fig. 4.1.

The results are shown in figs. 5.1 to 5.4 incl. It
is observed that e./z* may be eritical in this case
only for small and moderate £,/&*.
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5.3 The edge regions,

In the edge regions, i.c. for O\<\y<\ab/2,
(fig. 8.1), the effective strain was determined at

several stations (sec. 4.4).

At the intersection of the nodal line and the
cdge of the plate, i.e. at-¢y =0, 3 =0 or station 1

results for this ease are shown in figs. 5.9 to 512
inel. It is ohserved that in this case e./* may
be eritieal for nearly all combinations of negative
e./e* and positive ¢,/e*,

At the transition point between the edge and
the centre regions on the erest line, just inside the
cdge region, i.e. at ¢ =«/2, 3===/2 or station 4
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in fig. 4.1, &/c* is largest at the lower lace of
the plate, i.e. for 2z/h=-—1. The results are
shown in figs. 55 to 5.8 inel. ‘Tt is observed that
in this case e./¢® may be critical for most com-
binations of &,/¢* and &,/¢* except for small g /¢*
and for large e,/e*.

At the intersection of the crest line and the
edge of the plate, e at y==/2, 3 =0 or sta-
tion 3 in fig. 4.1, £,/¢* is independent of z. The

in fig. 4.1, e./e* is either largest for 22/h =1 or
for 22/h=-—1, The results for 2z/h=1, i.e
the upper face of the plate, are shown in figs, 513
to 5.15 inel. Tt is observed that in this case e./e*
“may be critical for combinations of small e,/e*
and positive g,/e* and for eombinations of moderate
e./e* und large e,/e*. ‘
The results for 2z/h=-—1, i.c. the lower face
of the plate, are shown in figs. 516 to 519 inel,
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It is observed that ¢./* in this case may be eritical The stress distribution in an aetual construetion
only for small and moderate ¢,/c* and e,/e*. does not show such diseontinuities. Their presence
The differences between figs. 5.1 to 5.4 inel, and in the results obtained from theory demonstrates
tigs. 5.16 to 5.19 incl. are due to the discontinuity that the approximation of the actnal stress distri-
N gy at y=ab/2 (sec. 3.2). A comparison shows bution by means of theory is not in general very,

that they remain within reasonable limits, the aceurate.

general form of the eurve being nearly identical
in both cases.
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6 Numerical examples. by the diagrams because they are never eritical
L L throughout the range of the investigation (sec. 5.3).
_To demonstrate the practical application of the The results for the first example are presented
_dlagmms figs. 5.1 to 5.19 incl. the effective strain in table 6.1 and shown in fig. 6.1. The largest
is determined for the same constructions and loads effective strain oceurs at the intersections of the
_ nodal line and the edge at the lower face of the
Eefc® plate.
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considered as numerical examples in ref. 1. The The results for'the second example are presented
effective strain ratios s,/¢* are presenied as func- in table 6.2 and shown in fig. 6.2. The largest
tions of the shear ratio r/Ee* for cach of the effective strain oceurs in the edge region at the

stations shown in fig. 4.1 except those not covered intersection of the crest line and the transition
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TABLE 6.1.

Numerical results for the first example,

' ee /e
T/Es* El/s* 32‘/9*‘ statlon ') } .4—5 \ 1 3 4 4
2 2/h —1 l —1 — 1 1 -1
— _
0 173 6 103 200 187 r 165 2) 100
10 176 24 114 223 206 185 114
20 187 60.5 159 256 232 221 158
50 - 202 94 207 %) 303 2) 2612) 263 %) 206 %)
1) see fig. 4.1. %) extrapolated. 3) see sec. b.
. TABLE 6.2.
N_umerieal results for the second example.
eo/e*
7/ Ee* £r/e* e, /o™ station *) 45 1 3 4 4
B
’ I
0 — — — — —_ — —
10 20 125 .82 75 35%) 89 69
30 59 128.5 127 137 97 141 124
50 98 133 179 197 158 198 178
1) gee fig, 4.1, 2} extrapolated.
TABLE 6.3,
Numerieal results for the third example.
g/ 6™
7/ Ee® e,/ e* £l e¥ station *) 4-—5 1 1 l 3 4 4
2z/h —1 { —1 — 1 —1
0 100 4 64 119 115 103 2) 62
10 100 19 78 134 118 114 81
30 100 h2 123 166 137 147 123
50 100 80 169 189 161 182 169

1y see fig. 4.1,

) see sec. 6.
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TABLE 6.4,

Numerical results for the fourth example.

‘ g0/
r/Ee* e, /e* £2/2" station ) 45 1 3 4 4
2 z2/h ‘ —1 —1 ‘ — 1 —1
0 _ _ _ _ _ _
10 S12e 100 71 64 282 5 60
30 38 100 116 114 80 120 113
50 61 100 163 160 © 128 164 162
'y see fig. 4.1. ?) extrapolated.
TABLE 7.1,

+

Comparison between rvesults obtained for waveform assumptions no. 1 and no. 2 from ref. 2.

Example 1 2 3 4 5 6

o /Ee* = o, /Ee* 31.235 — 24522 — 19,323 — 34.889 41,406 7.7533
0y /Ee* =0,,/Ec* 12.608 40,495 0.69824 10.230 12.557 40212
W Ee* =r,/Es* 25.983 24397 4.8417 47736 30.102 14.007
s-ll‘/}e* | —24.035 22801 118.37 278.35 — 29,989 18,043
e,/ " — 22.629 22792 117.88 273.20 — 28.034 17.812
£,./c* 5.3018 6.0062 81.398 9.6251 24.294 62.386
£y, " 8.9797 5.0237 28.585 9.0392 31.301 66.747
a 0.80373 .25421 0.32283 0.21861 0.77747 0.70000
a, 0.95773 0.24754 0.32368 0.21880 0.93383 0.80248
m, 1.5788 0.43643 0.49654 - 018153 1.7943 1.57880
m, 1.4548 0.42441 0.45152 0.17125 1.6707 1.5259
D, 2.4480 23.357 11.966 26,508 2.1654 2.4480
D, 2.4062 23.129 12,061 26.516 2.0858 21618
¥ oje* 2.3339 9.4340 9.8496 9.9679 5.7794 15.454
P /e* 3.8466 9.4911 9.7292 9.9617 8.6382 18.819

oy, Oy, @ ete. means o, o,, « ete. for waveform no. 1.

Oyg, Ogp, @, efc. Means ¢, , o,, o ete. for waveform no.

2,




between the eentre and edge regions at the upper
face of the plate. At high leads it is nearly equal
to the effective strain at the intersection of the
nodal line and the edge at the lower face of the
plate.

The results for the third example are presented
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in table 6.3 and shown in fig. 6.3. The largest
effective strain oceurs at the intersection of the
nodal line and the edge at the lower face of the
plate.

The resultg for the fourth example are presented
‘in table 6.4 and shown in fig. 6.4, The largest
cffective strain oceurs in the edge region at the
intersection of the erest line and the transition
between the centre and edge regions at the upper
face of the plate. At high loads it is nearly equal
to- the effective strains at the same station and at
the interseetion between the nodal line and the
edge both at the lower face of the plate.

In the first and third examples the effective
strains at the intersection of the crest line and
the transition hetwéen the centre and edges regions
are practically identical in both regions. Small

differences are ohserved only when +/Ez* is small.
In the sécond and fourth examples the differences
are more pronounced, especially when «/E:* is
small. No results eould be obtained in these two
cases for v/Ee* == 0, and hence for 0 < +/E=* < 10,
the combinations of &,/c* and e,/e* falling outside
the range covered by figs. 5.1, 5.5, 5.9 and fig. 5.16.

It appears from all diagrams that the effective
straing for intermediate values of 7/E:* can he

dotermined with good aceuracy by interpolation.

The restriction of the numericgl evaluation to four
values of v/Ee* only (see. 51) is thus justified.
The effeetive strain at the proportionality limit;
£ =gy, i8 derived from the tensile stress-strain
eurve for the plate material (see, 5.1) and £* is
caleulated from (3.2). Pige 6.1 to 64 yield the
eorrespondmg r/Ee*, and “hence the shear stresd
The diagrams from ref, 1, fige, 5.1 to 5.19 inel.
a.nd hence also figs. 6.1 to 6.4 inel. cannot bhe ex-
pected to yield reliable results when 7 exceeds
(see. 1, 5.1).

7 Investigation of improved waveform assumpt-
ions for the buckles in the plate.

It was suggested in ref. 1 that more reliable
results would probably be obtained for combina-
tions of 7/Ee*, ,/¢* and &,;/¢* for which the angle
hetween the direction of the nodal lines in the
centre region of the plate and the X axis (fig. 3.1)
is much smaller than =/4, i.e. m > 2, by basing
the calenlation upon waveform assumption nr, 2
from ref, 2 instead of upon waveform assumption
nr. 1.

For waveform assumption nr. 2 the nodal lines
in the edge regions of the buckled plate intersect
the edges orthogonally, in accordance with the as-
sumption that the edges of the plate are hinged.

The nodal lines are eurved in the edge regions
and straight in the centre region of the plate,
Their eurvature changes discontinuously but their
slope continuously at the transitions betwecn the
centre and the edge regions.

Determination of e,/e* e,/e* and /Gy for
specified o,/Ee* o,/Ee®* and 7/Ee* and waveform
assumption nr. 2 would require lengthy ealenlations
and interpelations. Instead, the parameters «, m
and D for waveform assumption nr. 1 were deter-
mined for Specified Ules*_, trz/Ee" and r/E&*.

Substituting these values, e,=«, m,=m and
D, =D for the parameters in the adequate expres-
sions derived for waveform assumption nr. 2 yield-
ed a set of corresponding o,,/Ee*, ¢,,/Ee*, 7,/Ee¥,
£,/ c*, e,./e* and also F,/e*. The suffix 2 denotes
that this set constitutes a solution valid for wave-
form assumption nr, 2.

Finally, assuming o, =05, 0,,—=0,, 7,="1s,
the corresponding £,,/s* and e,/:* as well as «,
my, D, and F,/e* are determined from the theory
based upon’ waveform assumption nr. 1. The suf-
fix 1 denotes that this set constitutes a solution
valid for waveform assumption nr. 1.

The results of the calenlations are presented in
table 7.1. It is convenient to compare the results
for both waveform assumptions, as far as , and e,
are eoncerned, in the diagrams presented in ref. 1

|




for +/Ee* =25 (examples 1 and 2), 5 (examples
3 and 4), 30 (example 5) and 15 (example 6),
although the aetual values 7/Ke* are slightly dif-
ferent.

It is observed that the points (e,./c*, &,./e*)
and: (e,,/£*, e;3/e*) in the diagrams lie elose together
tor examples 2 and 3 and very close for example 4,

S 21

noted from table: 7. that the angle between the
XN.axis and the direetion of the nodal lines in the
centre region of the plate s slightly larger for
waveform nr, 2 than for waveform nr, 1. In those
cases where the differences hetween e,/s*, &,/c* for
hoth waveforms are most pronounced « is markedly
larger for waveform nr. 2 than for nr. 1. In the

2 100 40 m
Yo o | 3
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because m iz small,

Their distance is slightly 1arger but yet reason-

~ably small for examples 1, 5 and 6 where m is

large. " This is Shown in flg 71 for example 5,
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where the differences in sy/e* and &,/e* are most
pronounced,
The line connecting the points 1 and 2 in

thig figure represents the direction in which and
the distance over which the intersections of the
curves of constant: o;/Fe* and o,/E:* in the
neighbourhood of point 1 have to be displaced
when changing over from waveform nr. 1 to wave-
form nr. 2.

It can be concluded from the results gained for
these examples that the improvements obtainable
by hasing the diagrams from ref. 1 upon waveform
nr, 2 from ref. 2 instead of upon waveform nr. 1
are so small that it is fully justified to use the

diagrams in their present form in all praetical

applieations.

1t is interesting io note that for example 1 the
amplitude for waveform nr. 1 is only T8 % from
the amplitude for waveform 2. In the other exam-
ples the differences are smaller. In example 6 the
wavelength for waveform nr. 1 is %4 % from the
wavelength for waveform nr. 2. In the other
cxamples the differences are smaller, Tt is further

—-aIe
e

Temuining -cases, however,-the-differenees—in
very small.

8 Conclusions,
1 " The effective strain in the buckled plate.

For the buckled plate shown in fig. 3.1 and

londed and strained aeceording to fig. 3.2 the
effective strain has been determined at the stations
shown in fig. 41. The results of these caleulations
are presented in the form of the diagrams figs, 5.1
to 519 inel. These diagrams contain a set of curves
for which the ratio between the effective strain e.
atter the criterion of HuUBER, yoN MisEs and HiNcky
and the critieal strain «* defined by (3.2) is a
constant, The diagrams should be used in eon-
junetion with those published in ref, 1. Their
praetical application is demonstrated in see. 6,
tab. 6.1 to 6.4 inel. and figs. 6.1 to 6.4 incl.
" For the present diagrams, as for thoge from
ref. 1, waveform assumption nr. 1 from ref. 2,
defined in Appendix A of ref. 1, was chosen.
Lxpressions for the distributions of the local strains
{see. 3.2, 3.3 and 3.4) are presented in Appendix
A and B. '

The expression for the distribution of the
effective strain (sec. 4.1) throughont the plate -
is presented in Appendix C.

8.2 The mazimum of the effective strain,

It is proposed to consider as the maximum
effective strain for specified £,/¢*, &,/e* and +/Ee*
the largest effective strain e, obtained by reading
or interpolation of the appropriate diagrams from
figs. 5.1 to 519 inel. This infers that only the
eftective sirains at the stations shown in fig. 4.1
have heen eonsidered.

Numerieal evaluations have shown that for large
a,/E:* together with negative or, only for large
+/Ee¥, small positive o /Es* (ref. 1, figs. 2.2, 23
and 2.4) the effective strain will have a maximum
at some station in the parallelogram 1-2-3-4 from
fig. 4.1 that exceeds the largest effective strain
determined from the diagrams,

The conditions for an extremum of the effective
strain (see. 4.2) are derived in Appendix D, Ex-
elnding the stations 1 and 4 from fig. 4.1 for which
it is obvious that (D.1) and (D.2) are satisfied
the solution of these ecomplicated: equations for
and $ is rather lahorious (sec. 4.4). Along the
sides of the parallelogram either ¢ or 3 is a
constant and a solution of the one remaining
equation is readily ohtained. Results of sneh eal-
culations are shown qualitatively in figs. 4.2 to
4.5 inel. and numerical results are presented in
tables 4.1 and 4.2.

It is observed that the largest effective strain



anywhere along the sides of the parallelogram
never’ exceeds the largest strain in the corners,
i. e. according to figs. 5.1 to 5.19 inel, by more
than 2.6 % (see. 4.4). It ig to be expected that
the largest effeetive strain anywhere inside the
parallelogram will exceed the largest strain along
the sides only 10 a small extent.

In view of this and also in aceordance with the
fact that the stress distribution in the ‘buckled
plate is not approximated with the same degree
of aceuracy as the elastic energy {see. 5.1) it is
considered justified to _restrict the numerical
evaluation to those cases considered in the eon-
struetion of figs. 5.1 to 5.19 inecl

Another argument in favour of this simplifiea-
tion is that, for the determination whether the
diagramg from vef. 1 ean yet be applied, the effec-
tive strain should be compared with the tensile
strain at the proportionality limit, which is not
known with great accuracy. The deviations from
the diagrams as the proportionality limit is ex-
ceeded to a slight extent W111 also be rabhet' small
(sec. 51)

8.3 Improved ummfmm assumptwns for the |
buckled plate.

For some combinations of specified o/Ee*,
o,/ Be* and r/Ee* the strain ratios e /¢* and
£,/e* have bheen determined for both waveform
assumptions nr. 1 and nr. 2 from ref. 1 (sec. 7).
The second assumption is considered more ade-
quate than the first one in eomputing diagrams
of the type presented in ref. 1, beeause the nodal
lines of the buckles, according to this assumption,
interseet the Ionﬂltudmal edges of the plate per-
pendicularly,

Results of the ecaleulations are presented in
table 7.1. For the example in which the largest
differences were ohserved they are also shown in
fig. 7.1, Tt appears that the ecorrection of the
diagrams from ref. 1, required when substituting
waveform nr. 2 for nr. 1, consists in principle of
shifting the eurves of eonstant o,/F:* and o,/Ec*
over a small distance. The eorrection is prae-
tically negligible except in the neighbourhood of
the enrve e=1 for positive e,/e*, where m ap-
proaches or exceeds 2. Fven in these parts of the
diagrams the corrections remain velatively small.

The diagrams from ref. 1 cant thus be considered
sufficiently reliable throughout the full range
covered by them.
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APPENDIX: A

Expressions for the local. strains in the median
plane of the plate.

Substituting (A. 1) from ref. 1, (3.2) and (3.3)
in (3. 1) the followmg expressions- for, the tensile

straing es, and e, in the longitudinal . (X-) and
lateral (Y-) direetions respectively and the shear
strain yg in the median- plane (z=10) of the
plate are obtained, valid in the edge regions, i e.
for DL y Lab/2.

e :—ﬁel/f* + (1*00523)1)1?’/5 .

ﬁvy/‘“- 2’—52/5 + 14, + 1/2::_
— 05 val) + 05(2—a)m?D]F/c* +
+ vD(F/e*) cos™ —(1/a?) (F/=*)cos?y,

voul €* == 2(1 + v)1/Ee*

(A.1)

At the edge y = (0 these expressions can he simpli-
fied to the set

eor/ £¥ = — &, /%,

/et =—y /e + Yo, + Y, —
— (1/e®) cos®y -+ 0.5 (2 —a)
(v + m2y D] I/ ¥,

y_w/s' =2(1 + v)r/Ee*.

{A.2)

At the transition to the central region, y =eb/2,
they can be simplified to

a@/e* = - sl/ﬁ* + DF/e*,

:yy/‘:'*:_ez\n/gﬁ +{]/2u +1/2 a‘l’_ .
— (1/a?) cos?y — 0.5 vaD) + (A.3)
+ 05 (2 — o) m2D] F/s*,

Yol * = 2(1 F )7/ Ee®,

Substituting (A.2) from ref. 1, (3.2) and (3.3)
m (3. 1) the followmg expressions for the strains

erz, ey and yg in the median plane (2=0) of
the plate are obtdmed valid in the centre region,

i.e, for ab/2 {1—a/2)b

el €® == — ¢, /e* + DF/s*,

el £ = £,/ e* + (Vs ,— 0.5 vaD '+
4+ 05 (2 —a)mED]F/e*,

vale®* =2 (1 + v)r/Ec*.

(A.4)
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APPENDIX B.

Expressions for the local bending straing at the
upper face (z="5/2) of the buckled plate,

Substituting (A.1) from ref. 1, (3.2) and 3.3)
(S@“the—foﬁcrwmg—

strains e’ in the X- and &y in the Y-direetions

and the shear strain, v in the upper face of the
plate, 2==h/2, are obtained, valid in the edge

regions, i e. for 0 y<ab/2
feal * =D VB[ =v))F/c* sinysin 9,
il e = (m2D + 1/a®) V3T 5 F /%
' sin ¢ sin 2 +
+ (2m/a} V31— ) DF/c* ecos g eos 3, ) (B.1)

Yule* =—2mD V31 A)F/*
§in ¢ sin & —

— (2/a) VA=) DF/* cosyeos 5.

At the edge y==0 these expressions can be simpli-
fied to the set

ez’u/e" =0,
ol e = (2m/a) V 3(A — v )DF/c* cosy, ) (B.2)
Vel * = — (2/a) V 3L — %) DF/e* cos y.

At the transition to the central region, y =ab/2,

~ they can he simplified to

Fes/e* =D V30 ) F/e* sin y,

L_F /s"’— (sz -+ 1/(12) Vm
.sm ¥,

Yole* =—2mD V31 —+)F/c* siny.

(B.3)

Substituting (A.2) from ref. 1, (3.2) and (3.3)
in (3.4} the following expressions for the strains
oz, ey and v in the upper face (z=~5/2) of
the plate are obtdined valid in the eentre region,

i.e. for ab/2 Ly < (1 —a/2).

Zee/e* =DV ZA A F/a* siny, 2
dle* =mD V3(1— 2)F/:* siny, (B. 4)
Yole* =—2mD V3 2F/<* siny. s

S 23

APPENDIX C.
The expression for the effective strain.

Substituting (3.6) or (3.7), (A.1) and (B.1) in
(4.2) the following expression for @ == 0.8281 (e./e*)?

expressmrs_for-the—tensﬂe__ﬁ_ﬁmmd_fgmp edge_regions 0 oy L abf2.

&= (A,— A4, cos®y + A4, costy) =+

= (B, — B, cos®y) sin ¢ sin S+

+ Oy sin®y sin®3 == (Dy— D, cos®y) cos ¢ cos S+

+(E,'+ B, cos®y) cos®d = F, eos ¢ cos® -+

+ Goeostd + Hysiny eos ¢rsin S eos & =

== K sin ¢ 8in 9 eos?3. {C.1)
The upper signs are valid for the upper surface
of the plate, i e. for 2 2/h =1, and the lower signs

for the lower surface, i.e. for 2z/h—=—1.
The constants in (C.1) are defined as follows:

Ay =079 (6 + o)+ 011 apay +

+ 0.3675 a*,
A, = (0.1 @, +- 1.58 ay) ¢y,
A4, =079 ¢?,

B, =158 (td, + a,dy) +

+ 011 (edy + apd,) ~—0.735 ad,
B, =(011d, + 1.58d,)q,
Cy=0.79 (d-+dy?) + 0.11 dudy+- 0.3675 d?,
D= (011a; + 158 a) e, — 0 T35 e, _
D, =158 ey, (C.2)
B, =-—-1.58 (a.b, — ayby) +

+ 011 (azhy — aybay,
B, =079 (e, — 2 bye,) +

+ 011 by + 0.3675 7,
Fy==—— (0.11 by — 1.58 by} ey,
G’ =079 (b,° + b,*) — 0.11 .5y,

o= (0.11d, + 1.58 dy) ey, + 0.735d ¢, |

K = — 1.58 (b, — bydy) —

~ 0373 (batly — by,

A,, A, B,,C,, D, , G,and H, are never negative.
The constants in (C. 2) are cxpressed by

ty=-—¢,/e* + DF/e%®, ~ \

ty =-—ey/e®* + {15, + ¥ 2 — 0.5 vaD +
+ 05 {2 —a)m* D) F/c*,

¢ =2 (1+ v)r/Ee*,

b, = DF/<*,
by=vDF/e*,
oy = (L/a®) F/e*, (C.3)

dy=D V' 3{1 35 F/e*,
dy== (m2D -+ 1/a*)} 31— ) F/e*,
d =2mDV 31 =% F/e",
o= (2m/e)V 31— ) D F/e*,
& = (2‘/a)l//m.
In these formulas » = 0.3 should be substituted

(see.. 41); except for a;, and a, they are never
negative. .




Substituting (3.6) or (3.7), (A.4) and (B.4) in
{4.2), the following expression for ® is obtained,
valid in the ¢entre region ab/2<hy<\(l—a/2)b.

& =A, = B,sin ¢+ C,siny. (C.4)
" The upper sign’is valid for 2z/h==1, the lower
sign for 2z/h=—=—1.
The constants in (0. 4) are defined as follows:
A, =079 (a2 + @) + 011 a0, +
- 1036754
B, — 158 (agd, + ayd,) + 011 (ady +
+ ad.) — 0735 ed,
C, =079 (d? + &) + 0.11d.dy
T+ 0.8675 dz.

(C.5)

. The constants in (C.5) are expressed by (C.3)
and by

Uy o= g,/e* + Vi , — 0.5 vaD -+
+ 05 (2 — ) m=D)F/e,
dy=m2D V' 3 (1 ~— v )F/:*,

(C.6)

where »=03. In (C.6), a, may be negatwe or
positive, d,, is never negative.

APPENDIX D.

The extremum conditions for the effective strain.

Substituting (C. 1) in {4.3) the following eyua-
tions are obtained, from whieh the quantities ¢
and % should be solved for the edge regions
Q \/\% Y g ah/2. ‘

2(A,—2 A, cos® ) sin y cos ¢ =

+-{B, — B, cos®y+2B, siny)cos y-sin S+

+20, sin ¢ cos P $in®d £ -

= (D, — 3D, cog®y) singcos S —

-~ 2E sin ¢ eos ¢ cos’S F F, sin ¢ cos’ S+
© +H (eos*y — sin?y) ,siii YeosS =

=+ K, cos ¢ sin 9 cos?S = 0.

= (B,— B, cos?y) sin ¢ cos & +
+ 20, sin*y sin 3 cos 9 ¢
T {D, D, cos®) cos¢sin § —
—2(E, + E, cos*y) sin 3 cos § 3=
F 38, cos ¢ am S5 cogtY — 4G, sin S cos“S-}-
'+ H, sin ¢ cos ¥ (cos2Y — 511:123) =+
== K, sin § cos S (eos®Y — 2 sinZ3) =0,

(D.1)

(D.2)

S 24

The upper signs are valid at the upper face of,

the plage, viz. for 2z/h=1,'ar_1d the lower signs
ghould bhe ysed at the lower face, viz, for 2z/h = —1.

The constants in (D.1) and (D.2) are defmed
by (C.2).

Supstituting (C:4) in (4.8} the following equa-
tion is obtained, from which ¢ should be solved
for the centre region «b/2 \é y(\ (Y —a/2)h.

+Bocosy + 20, singeosy=0. (D.3)
The upper sign is valid for 22/h =1, the lower
sign for 22/h—-—1. The cohstants in (D.3) are

detined by (C.5).

The second derivatives of @ are required for the
determination whether @ is- a Mmaximum or a mini-
mum, For the edge regions they read

2@/ ey® = 24, {cos®y — sin%y) —
— 44, (cos?y — 3 sin’y} cos?y F .
F (B, +2B, sin*y — 5B, cos?y)sin ¢ sin S+
+20,{cos®y — sin?y) sin2d =
F (D, + 6D, sin%y—3D, cos®y)cos ¢ eos 5—
— 28, (eos®y —sin%y) cos?y = .
FF,cos¢cos® 3 —
— 20, sin ¢ cos ¢ sin 9 cos 3 ==
+ K, sin ¢ sin % cos?s,
2°0/0yaY = == (By+ 2B, sin?y —
— B, cos®y) cos yeos 3+
+4(C,+E,) sin ¢ cos ¢y sin 5 cos 3 =
= (D, — 3D, cos?¢) sin ¢y 5in 3 =
+ 3F, sin ¢ sin 9 cos®S +
+ M (eos®y — sin®y) (eossY - 8in9) =+
=+ K, co$ y (costd — 2 sin?3) cos 3. '

/0% == = (B, — B, cos®y) sin ¢y sin 9 -+
+ 20, sin®y (cos®y — sin®y) =
F (Dy— D, eos?y) cos ¢ cos 5 —
— 2(E,+E, cos?®y) (eos*I —sin®3)
38, cos ¢ (eos”d — 28in?d) cog & —
— 46, (cos®S — 3 sin®3) cos®S —
— 41, sin y cos ¢ sin S cos S ==
=+ K,sin ¢ (2sin®3 — T cos?3) sin 3,

(D. 4)

(D.6)
For the centre region the second derivative of
T reads _
22/92 = B, sin y+ 20, (cos’y —sin%p). (D.T)
For y =10, 3 =10, (D. 4), (D.5) and (I}, 6) read
respectively
22 /all!,z_,u_ ,
24, —44, .+_(D —31)1) ———2131 5 F,,

(D. &)’

30 /340 = = (B, —HBIH— H, = K,, (D.5Y
02/35 = . T
F(Dy—D,)—2(E+E,) +8F—46,. (D:6)

For 51/:‘#/2, S ===/2 they read respectively

P8 /3y = — 4, == (B, +2B,)—20,, (D.4)”
3®/0yoy = = D+ H,, (D. 5)”
2'9/09% = = B, — 20,+2E, = 2K, (D. 6)”

For $=10, (D.1) yields siny =0, i.e. ¢=0, or

— 44, cosdy = 3D, cos?p+2(4, —E;) cos ¢ F
F(D+Fy) =0 {D. 8)

(D.5)



For 3==/2, (D.1} yields cos¢y =0, i.e. y=
/2, or :

44, sin’y 2 3B, sin®y+2(4, — 24,+ ) sinyg =
"+ (B,—B,) =0. (D. %)

For ¢ =0, (). 2) yields sin 3==0, i.e. 3==0, or

8-25

ways smaller than for ¢ ==«/2 and 22/h==1 or
22/h=—1. In very few cases it is slightly larger
than @ for ¢ ==/2 and 2z/h=1 but smaller than
¢ for y==/2 and 2z/h=—1. It is observed
from (1.1} and (D.2) that ® is not exiremal for
¢ =0, 5 ==/2 unless B,=215, and D,= D, . These
conditions will not he fuifilled except perhaps for

— 4, cos’y = 3F, c0s®S —2(H,+FE,) cos S =
= (D, —D,) =0 (D.10)

For ¢y ==/2,-(D.2) yields cos3=0, iL.e. &=
11'/2, or :
4G, sin®S =3K, sinzd +2(C, — B, —2 G,) sin S+

+ (B,+K,) =0. (D. 11)

For y =x/2, (D.1) yields
0y == (=D, FF, cos?3 — H,sin 2} cos 3. (D. 12)
For 5 =0, (D.2) yields

9B/25 = (= B, =

F B, cos®y+H,cos y o= Ay) sin ¢, (D.13)

APPENDIX L.

The edge regions of the plate,

Tor the edge regions of the plate two solutions
of (D.1) and (D.2) are evident ‘at once, viz,

. =0 5=10
and .
;!1:77/2, S =x/2.

Fig. 41 gives a survey of the combinations of
¢ and 3,.considered in thé investigation. The con-
ditions that ¢ is a maximum are obtained by sub-
stituting (D.4)’, (D.5)’ and (D.6)" in the first
case and (D.4)", (D.5)" and (D.6)” in the second
case in

P gy Bes —B2ys > 0,
Py <0,

where @, denotes 2°¢/dy*, ete.

It is not possible to draw a general conclusion
from the complicated expressions obtained whether
¢ is a maximum or a minimum.

The cquations (D.1) and (D.2) ean be solved
by a method of successive approximations. The
method was not followed because it is rather
labhorious. (1313 can be expressed as an eighth
order equation for sinyg (or cosy) whose coeffi-
cients depend upon S. Similarly, (ID.2) can be
expressed as an ceighth order cquation in sin 2
(c0s 3), its coefficients depending upon y¢. Both
cquations have to be solved in cach step in the
computation procedure.

Numerical caleulations carried out for 3 ==/2
have shown that ® for ¢y=0 is practically al-

(E.1)

vory special—combinations—ofloads.

‘For 3===/2 the investigation hence leads to.
similar conclusions as for the centre region, as was
to he expeeted.

" Throughout the range eovered by the investiga-
tion ¢ is nearly always a minimum at the value
of ¢ that can be determined by solving (1D.9) and
the character of the relaiion between e./e* and ¢
is qualitatively represented by fig. 4.25, 4.2¢ or
4.2d, i. e, e,/c* is a maximum at ¢ =—=/2 both for
22/h ==1 and for 2z/h =—=-—1. This was even found
to be the ease when £,/s* is larger for ¢y = 0 than
for ¢ =m/2 and 22/h =1 (fig. 4.2d).

In one ease considered (D.9) yielded no solution
and the relationship between z./e* eould be repre-
sented qualitatively by fig, 4.2f, i e, e./e* is an
extremum only for y ==/2, It can thus be con-

“cluded that for § ==/2 the numerical cvaluations

canl be rvestrieted to ¢ ==/2, 22/h =1 and 2z2/h =
—1. _

An entirely different situation exists at the
edges, i.¢. for $=0. Here it was found from
numerieal ecalenlations that in some cases & is
larger for ¢ ==/2 than for y=0. The corres-
ponding difference in ¢./* was only in one case
slightly more -than 5.3 % but in most cases less
than 2 %. It is observed from (D.1) and (D.2)
that ® is an extremum for ¢ ==/2, S==0 only
when D,—=—F, and B,=—K,.

These conditions will not be fulfilled exeept per-
haps for very special combinations of loads. It is
thus to be expected that &, when it is larger for
¢ =7/2 than for ¢ =10, will reach its maximum
at some value of 0 <y < =/2. This may also
ocenr when @ is slightly smaller for ¢ —=/2 than
for ¢ =0. _

The values y =y and ¢ ==y for which ® reaches
an extremum for 22/h =1 and 2z/h = .— 1 respect-
ively are obtained by solving (I). 8). Substitution
in {€.1} yields the corresponding & The results
of sueh ealeulations for a number of representative
cases, including those where the differences between
& for y=rn/2 and ¢ = 0 are largest, are presented
in table 41. In the part of the total range of the
investigations falling outside the range covered by
the examples from table 4.1, the largest e./&* for

=0 is always found at 22/Ah=—1 and ¢ =0.
The relationship betwcen &/¢* and ¢ is shown
gualitatively in fig. 4.3. Tt is observed that e./e*
is always a maximum for ¢ = ¢ and 22/h=—=1. This
maximum is sometimes smaller (fig. 4.3a, 4.3},
sometimes larger (fig. 4.3¢) than the maximum for
$ =0 and 2z/h ==—1. For 2z/h==—1 and y==7,
£e/e* is a minimum except in the case of fig. 4.3e,
where it exceeds so/e* for ¢ =0 (which is a mini-
mum only in this case) and also z./s* for ¢y ==/2.

In the case of fig. 4.3¢, the difference between

ee/e* for 2u/h=1, y=¢ and ¢ =n/2 did not



1

exceed 1.6 % but the difference between e./e*

for 2z/h=1, y==y and e/e¥ for 2/h=—1,
¢ =0 wag entirely negligible.

In the case of fig. 4.3e, the difference between
ee/e* for 2z/h=-—1, y =y and y ==/2 was also
entirely negligible, For +/E:* =0, y =¢=u/2.

It is thus justified to restrict the numerical
evaluations for =0 to y =0 and y ==/2, both
for 2z/h =—1, 1. e. the lower surface of the plate.

In two cases investigated e./e* proved to be
slightly larger for ¢ =0, 3 ==/2 than for y =0,
3=0, hoth for 2z/h=1 and 2z/h=-—1, Al
though e./e* for S==/2 was largest in these
cases at ¢y — /2, it was considered of some interest
to investigate the hehaviour of e./e* at the nodal
ling ¢ ==0.

To this purpese, $ was solved from (D.10) and
substituted in (C.1).

The relation between e./e*
represented in fig, 4.4,

For 2z/h =—1, the maximum of &./e* did not
exceed the minimum at $ =40 by more than 3 %,
hut it remained markedly smaller than the largest
ee/e® at y=n/2, 3 ==/2. Hence, the case ;,r;_O
S e=x/2 need to be considered in the numerieal
evaluations.

In-several cases the numerical evaluation shows
that for ¢ ==u/2, i.e. at the crest lines, &/¢* is
larger for 3 =10 than for 3 =«/2 and 22/h—=1
or 2z/h=—1, For a number of representative
cases the values 3=235 and 5=239 for which @
reaches an extremum for 2z/h =1 and 2z/h=—1
regpectively were solved from (D,11) and sub-
stituted in {C.1}. The results of this investigation
are presented in table 42 In the part of the

and 5 is qualitatively
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total range of the evaluations falling outside the -

range covered by the examples from table 4.2, the
largest eo/e* for ¢ ==/2 is always found at
S —=n/2,

The relations between e./e*
tively represented in fig. 4.5.

Kxeluding the ease of fie. 4.5f, in which &./&*
is largest at 5 ==%/2, 2z/h=— -1, it is observed
that e./e* is always a’ minimum for 2z2/h =1,

and 3 are qualita-

3 =3 and for 22/h=—1, 3 ==n/2. Ii is always

a maximum for 2e/h= —1, $=-3 and, excluding
the case of fig. 4.5e¢, also for 2z/h=1, 5>==/2.
The difference between e.fe* for 2e/h=—1 at

$=73 and at 3 =0 never cxceeded 38 % in the
cases fig, 4.5a, 4.5b and 4.5c except in the last
example from table 42 where this difference was
7.3 %. The difference between eo/e* for 2z2/h=
—1rat 9 =5 and at & =«/2 never cxceeded 0.5 %
in the eases of fig. 4.5d and 4.be.

It is observed however that e./e* for 2z/h=
—1 is larger in several cases at y=0, 3=0.
Tn those eases in which e./e* 15 largest for 22/h =
— 1. and & =3 the differences hetween this maxi-
muam and s./e* for 22/h=—1 and ¢y =0, 3 =0
or y=7/2, 3 =20 or, eventually, y =7/2, 3=1/2,
never exceeded 2.6 %.

This diffevence is considered sutficiently small
to justify the restrietion of the numerical evalua-
tion for y =n/2 to the cases 3=0 and $=m=/2.

1t follows from a closer examination of tables
41 and 4.2 and figs. 43 and 4.5 that in those
cases in which the variation of e./¢* along the
edges (3 -=0) and the crest lines (y ==/2) can
be represented qualitatively by figs. 4.3d and 4.5¢
or 4.5d or 4.Be respectively or by fig. 4.3¢ and
fig. 4.5b respeotwely ee/s* will have a maximum
exceeding the maximum at 2z/h=—1, ¢ =n/2

and 3 =23. The reason is that, except perhaps for
very special combinations of loads, 8{e./e*)/dy 3£ 0,

as can be verified by substituting $ =239 from

tahle 4.2 in (D.12) with the lower signs. It is
to be expected however that the difference be-
tween the absolute maximum and the maximum at
y=m/2 $=23 will be practically negligible. It is
henee considered justified to restriet the numerieal
cvaluation to ¢ =0, 3=0, y=n/2, 3=0 and
Yy =mn/2, §=m=/2, especially when it is considered
that the details of the stress distribution in an
actnal construetion are not appro‘nmdted in the
theory with an equal degree of acenracy as the
elastic energy (sec, 1}, -




C.C.T.. Class. C 470-3: G 7065-8: C 7083

REPORT 8. 445.

The Effective Width in the Plastic Range of Flat

Plates under Compression

by

M. BOTMAN and J, F. BESSELING.

Summary.,

The ecffeetive width in the plastie range of 24 5-T elad and unelad flatr plates was experimentally determined.
A testing apparatus for flat-end tests was used, the longitudinal cdges of the bays of the specimens (length to width
ratio of bays: 4.67) heing supported by knife-cdges. Amplitude and wave-length measnroments were taken with a mirror
device. In the first series of 18 specimens with a thickoess of 1.5 mm the necessary number of bays was established and

fer_ hetween (12 and 0.8,

Fa
were used. The results show a pood aprecment of the effeetive widths in the plastic range with the theoretical results
of Korrgr (ref. 3) for the effective width in the elastic range. No marked difference between clad and unelad plates
could bhe observed.
An important result of the experiments is the faet that the maximum load of fiat plates under compression ean be
calenlated with very good aceuracy from the siresg-strain velation of the matorial of the plates and the theoretical curve

in the second series of 14 plates different thicknesses, covering the range of the ratio

for the cffective width in the elastie range.
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This investigation, which has heen performed by
order "of the Netherlands Aireraft Development
Board (N.I1.V.), is reported in full in the N.IL.L.-
Reports 8. 414 and 8. 438 (refs. 1 and 2). These
reports are reproduced here in condensed form.

1 Introduction.

For the calenlation of the allowable load in
plate-stringer structures knowledge is required
about the effective width of the plate under eom-
pressive loads exeeeding the buckling loads. The
effective width ) of a plate under axial compres-
sion 15 defined as the width of a plate with the
same thickness and the same specifie shortening

'} henceforth to he denoted as c.w.




as the original plate, carrying the same load in
the unbuckled condition as the original plate in
the huckled condition,

Satisfactory approximate solutions for the e w.
have been derived for cases in which in no single
point of the plate the elastic limit-of the material
is exceeded., However, the caleulation of the ulti-
mate load of the structure will in many cases only
be possible when the e.w. is also known in the
plastic range. No theoretical studies about the
magnitude of the e.w, in the plastic range being
available, an experimental investigation eoncerning
* this problem was considered to be of importance.

To restrict the scope of the research only panels
with rectangular bays and with simply supported
longitudinal edges will be considered. These con-
ditions are realised or form a somewhat cohser-
vative approximation in the majority of stiffened
shell structures, eonsisting of plates stiffened in
twa directions by groups of stringers. The length
of a bay of the panel is usually a multiple of
the width, The longitudinal stiffeners bordering
the bay carry part of the compressive load; be-
sides this, one of their main funetions is to sta-
bilise the plate, i e displacements of the edges
of the plate perpendicular to the plane of the
plate are prevented. Ience, buckling of the plate
will only oceur hetwesn suceessive stringers, and
in adjacent bays of the panel the buckles will
develop in opposite direetions, It follows from the
foregoing that the stiffeners and the plate hardly
exert any force on each other in the direction
perpendicular to the plate, and that the edges of
the plate will remain straight in the plane of the
plate. Thus for loads snfficiently below the load
at which general instability of the whole panel

occurs and the load at which local buckling of the-

stiffeners takes place, it can he supposed that the
edges of the bays, which are sufficiently remote
from the edge bays and from the. loaded ecdges,
remain eompletely straight.

The torsional rigidity of the stringers will have
some effect on the edge support of the plates.
However, in the cases where open-gection stiffeners
are used the torsional rigidity is very small and
the edges of the hay of the plate can be regarded
as simply supported. The tests in this report only
refer to specimens with simply supported edges.

In the present report the N.I.L.-Reports 8. 414
and 8.438 (refs. 1 and 2) are reproduced in eon-
densed form. All particulars not mentioned here
ean be found in these reports.

The results of the experiments will be compared
with the theoretical results for the elastic range
~derived in ref. 3, The results of the tests described
in ref. 4, which were execuied at Bristol Aero-
plane Co. Ltd., will also he considered.

2 List of symbols,

4 - = (ub + 2d}h. Cross sectional area of a spe-
cimer.

A, Cross sectional arca of a stiffener.

E Modulus of elasticity. .

K, Secant modulus of elasticity.

FE, Tangent modulus of elasticity. -

J,  Stress invariant (see ref. 25).
_ e
K
in ref. 4.

L  Half wave length in x-direction.

P Compressive load.

P Buckling load.

W  Amplitude of wave form.

e  Length of a bay.

b Width of a bay.

by Effective width of a bay.

b’ Effective width of a hay in view of the com-

pressive stiffness (see section 4.2 and the

appendix).

Width of outer edges.

Thickness.

Positive integers.

Number of bays of a specimen,

Radius of knife-edge.

Total play at knife-edge.

Transverse displacement.

Coordinate in longitudinal direction.

Coordinate in lateral direction.

Specitic shortening in xz-direction. .

Specific shortening at which buekling oceurs.

Specific shortening at which the elastic limit

of the material is exceeded. ‘

¢ Slope in y-direction of the wave form at the

longitudinal ‘edges. :

v Poisson’s ratio.

T Average compressive stress.

o, Buckling stress.

Fe =K. e..

o,, Compressive stress at which in the material
0.2 per cent permanent strain oecurs.

b2
(T) . Buckling stress coefficient used

B
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3. Mechanical and geomeiric properties affec-
ting the effective width.

31 Dimensions of specimens.

For given edge conditions and a eertain length-
width ratio of a bay the e. w. in the elastic region

is eompletely determined by the ratio L and the

£ .
number of half waves in the longitudinal direction.
The relation between the e. w. and — in the elastie

€
range for different supports of the unloaded longi-
tudinal edges and for hays with an infinite length
was derived in ref. 3. The wavelength is in this

case a continuous funetion D{I/ fer_ decreasing
. . £
at inereasing e. . _

For o certain finite length of the bay, however,
only & finite number of half waves can occur.
Thus the wavelength eannot change continually,
but the number of half waves will inerease with
one or two, cach time the wave form becomes un-
stable at higher loads. The part of the accumulated

‘energy in the plate, which exeeeds the energy in

the plate in the next wave form, will come free
at the transition as a bang, if this part of the
energy is large enough. The caleulation of the
influence of this ahrupt change. in wavelength on




the magnitude of the e w. by means of the
theory of ref. 3, showed that this influenee can

be neglected for length-width ratios —;)l }5.

The huckling load of a long, simply-supported
plate under axial eompression is determined by
e thickiiegs to—width—ratio—of—the—plate. The

which give approximately hinged-edge conditions.
The supports used in refs. 4, 6, 12 and 13 ap-
proximate elamped conditions. In some eases.these
supports can only be used at frec ends of the
specimen. When the specimen consists of more
bays all longitudinal edges must have the same
method of support. The applieation of knife-edges

choice of thiy ratio depends on the range of

values of &, for which the e. w. must be determined.
The thickness of the plate may of course vary
across the plate only within very small tolerances.
This is one of the reasons why the use of plates
with a thickness of less than 1 mm eannot be re-
commended., Another reason lies in the fact that
relatively large initial eccentricities inherent to
‘thin plates have a large influence on the results.
Furthermore, it will be diffieult to prevent the
oceurrence of local huckling at the edges.

3.2 Longitudinal edges. -

As in the bays of a stiffened shell, the longi-
tudinal edges of the specimenr must be supported
against displacements perpendieunlar to the plane
of the plate. In actual construetions this is always
done by means of stiffeners. The presence of stif-
feners on the test specimens would, however, in-
troduce the ditficulty that the load measured on
the compression machine acts on both the plate and
the stitfeners. Thus the load acting on the plate
can only be determined by subtracting the load
in the stiffeners from the total measured load or
by extensive strain measurements in the plate. The
first method presupposes knowledge of the load in
the stiffeners, whieh can he obtained by measure-
ment or caleulation. The accuracy with which the
load in the stiffeners will be found is, however,
not large owing to hending deformation caused by
initial eceentricities of the stiffeners and the nearly
always occurring inhomogencity of the material.
With heavy stringers, where initial eecentricities
are relatively unimportant, the load in the panel
must be determined as the difference hetween two
large values, which will also affect the aceuraey.

The determination of the load in the plate by
strain measurements requires a large number of
test points, e.g. in the tests deseribed in ref. 5
about 600 measurements were made per specimen
(see also refs, 6 and 7)., An accurute determination
of the stress distribution becomes nearly impossible
a8 soon as somewhere in the plate plastic defor-
mation OCCurs,

Specimens without longitudinal stiffeners form
the most attractive solution, because the load in
the plate ean be measured direetly, The edges of
the specimen are to he supported against displace-
ments perpendieular to the plane of the plate,
Difficulties arising from this method are the possi-
bility of play between the support and the plate,
and frietion. Very little play in the supports will
have a negligible effect on the e, w,, but with large
play or with local interruptions of the supports
loeal buekling of the plate ean occur. On the
other hand friction will be larger when the play
hetween the support and the plate decrcases.

In refs. 4, 8, 9, 10, and 11 supports are used,

(ref. 10} for these specimens is regarded to be
a very attraective method, hecause of the simplicity

and the expected low friction with small amounts’

of play. Single knife-edges can of course be used
only to represent hinged-edge eonditions.

When the edges are unable to twist freely in.

planes perpendicular to the direetion of the load,
the edge is not simply supported, but more or less
clamped and the buckling load of the plate will
then be higher. According to the theoretieal results

of ref. 3 the e.w. as a funetion of —= will in the
£

clastic range remain the same. For a certain value
of ¢, however, the e. w. will be larger than in the
case of simply supported longitudinal edges.

3.3 Loaded edges,

The loaded edges must be as straight as pos-
sible and they must be parallel fo cach other. These
requirements hold especially during the tests and
therefore the compression machine must come up
to certain requirements as well

The usual universal tesiing machines are as a
rule not stiff enough, which results in the use of
anxiliary eonstructions, In the tests of refs. 8,
12, 13, 14 and 15 special methods were used to
locate the compressive load on the specimen, In
the ease of refs. 9, 10, 16 and 17 special rigs
were made to ensure parallel displacements of the
loaded edges.

The 160-tons Avery compression testing machine,
present at the N.L.IL., possesses qualities, making
auxiliary construetions superfluous. The loading
platens have a satisfactory flatness and stiffness
and the whole machine is very rigid. The lower
platen ean be adjusted in planes under different
angles with the upper platen, but it is more prac-
tical to finish the loaded edges sufficiently flat
and parallel,

It is ditficult to obtain the correct end con-
straint at the loaded edges. Attempts to realise
perfeetly hinged loaded edges may be regarded
as unsuceesfull, In this case the edge corresponds
with a nodal line of the wave form occurring after
exceeding the buckling load, hecanse no relative
displacements and no moments are present in points
of a nodal line. The slope of the buckled plate
normal to the loaded edge will not be constant
along  the edge. This is the reason why construe-
tions like those used in refs. 8, 10, 13 and 15 are
not satisfactory.

Clamped loaded edges can in general be obtained
with less difficulty, but in these cases the lateral
expansion at the cdges is also completely pre-
vented, which is not the ease in aetyal skin-stringer
panels. The loaded edges of the specimens des-
eribed in refs. 4, 6, 12 and 16 were imbedded in
some material like Wood’s metal. This method is,



however, reported to he unsatisfactory, beeause
temperature effects eaused appreciable distortion
in the plate and the edges did not remain straight
after the load exceeded the buckling load due to
yielding of the Wood’s metal. In.another method
used in refs. 6, 18 and 19, the loaded cdges were
clamped between steel strips. In all these methods
the shortening of the plate cannot be determined
simply from the relative displacement of the load-
ing platens, but a ecorrection must be introduced
for the end strips and the clamps.

This latter correction is not necessary with the
results of so called flat-end tests, in which the
compression load acts directly on the edge of the
specimen. These edges must then he perfectly
straight and parallel and the loading platens of
the testing machine must satisfy the same require-
ments, especially during loading. An advantage
of this method lies in its simplicity. Furthermore,

-the friction between the edge and the platen
generates the only forees preventing the free
lateral expansion at the loaded edges. :

It is well known that friction at the loaded
edges can have appreeiable influence on the relation’
between the load and the deformation. The friction
hampers the lateral expansion of the plate in the
neighbourhood of these edges. In refs. 14, 20, 21
and 22 tests are described on several specimens,
mostly solid and hollow eylinders made of dif-
ferent materials. The resulis show that especially
for length-width ratios less than 1, differences of
at least 20 % in the forece oeceur at large deior-
mations. With small deformations the differences
can be several percents. Probably the force still
is appreciably too large for length-width ratios of
about 2. According to ref. 23 the influence of
friction can be reduced considerably when suitable
lubrication is provided.

It is recommended to use specimens with length-
width ratios in excess of 1. In view of the most
convenient length-width ratio for a bay of a panel,
which according to seetion 3.1 should be at least
5, the number. of adjacent bays may be equal to
or less than this value.

Strain measurements on a specimen in order to
obtain an impression about the amount of frietion
are recommended.

Prevention of the lateral expansion owing to
the support at the loaded edge or to the friction
between the edge and the platen of the compres-
ston machine may be regarded as transverse stif-
fening (sec section 5.4),

3.4 fransverse stiffening.

In the unbuckled state compressive stresses in
the plate in axial direction cause lateral expansion
following froin Porsson’s ratio. If paratiel dis-
placement of the longitudinal edges is prevented
due to the presenee of transverse stiffeners, com-
pressive stresses will also appear in the lateral
direetion. The plate is how heing compressed in
two mutually perpendicular directions, resulting
in a decrease of the huckling load. This decrease
amounts to maximum 30 % and 15.5 % for simply
supported and clamped edges respectively, but for

830

A . :
values of a"l <1 the deecrease is smaller than

15 % and 8 9% respectively.

 According to ref. 24 the postbuekling stiffness
of the plate is larger for panels with transverse
stiffeners, e. g. for slender hays the post-huckling
stiffness appears to be about 24 % larger for
A,

ah
plained by the fact that the transverse stiffeners
carry most ‘of the compressive stress, which in
plates without transverse stiffeners is carried only
by the plate at the nodal lines (see fig. 3.1).
Henee the compressive stresses in the plate along
the nodal line are smaller than in the case of
plates without stiffeners and this counteracts the
proceeding of buekling, resulting in larger post-

A,
== 1 -than for P 0. This ean be ex-

buckling stiffness,
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Fig. 3.1. Distribution of normal stresses after buckling
at the simply supported longitudinal edges,
which are kept straight.
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~ Fig. 3.2, The influence of transverse stiffening on the

shape of the load-deformation curve of a plate.

In fig. 3.2 the load-deformation curves of plates
with and without transverse stiffeners are com-
pared. It ean he seen that although the buckling
load is lower for plates with transverse stiffeners,
the larger post-buckling stiffness tends to reduce
the differences in the e.w.

The influence of the transverse stiffening, re-
presented by the (if necessary fietive) ratio 'Ef,
must in general be known in experiments in order
to obtain reproducible results.

'The bending rigidity of the longitudinal stif-
feners in the plane 'of 'the plate is another im-
portant factor. When the edges remain- straight,
iie. when they have an infinite stifiness against



—_platf_wﬂ]_l;@_am)reclably smaller.

bending in the plane of the plate, -tensile and
compressive stresses will aet on the plate in the
bnekled state as shown in fig. 3.1. For edges
with a finite stiffness these stresses will decrease.
This does not influence the magnitude of the
buekling load, but the stiffness of the buekled
For panels

“but the value of the stress invariant J, {eriterion

of Von Mmises — ref, 25), which is a measure for
the distortion energy in an elementary part of a
body. IHenee, fig, 3.3 has little value for the deter-
mination of the point in which plastic deformation
starts, for plates with simply supported longltu-
dinal edges.

without transverse stiffening the decrease in stifi-
ness can bhe, according to ref. 24, about 19 %. For
panels with transverse Stlffemncv the deecrcase is
somewhat less.

The aim of the experiments will always be the
determination of the e w, of a bay of the plate
with straight edges. Thus a correction on the
results of the tests may be necessary allowing for
the bending stiffness of the longitudinal edges.
One can obtain almost perfectly  straight edges
when the test specimen consists of several equal
adjacent bays.
unnecessary.

3.5 Transttion from elastic to plastic range.

The state of stress in a buckled plate is not
homogeneous and the stress distribution for arbi-
trary loads in excess of the buckling load is not
known exaetly. Therefore it is in general not pos-
sihie to determine the point on the plate where
and the load at which in that point the elastie
limit of the material is exceeded.
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Fig. 3.3. The relation between l/

{from ref. 5).

The problem whether the clastic limit in the

‘plate is exceeded, is treated in ref. 5. In fig. 3.3
the results are represented, showing the relation,
determined from experiments, between the ratio
of the maximum value of the axial stress and the

f . . Ep
compregsive stress in the stringers, and =
14
The experiments, however, were conduncted on spe-
cimens with elamped longitudinal edges. Further-
more not the maximum value of a principal stress

determines whether the elastic limit is reached,

In that case eorrections may be

FromTref—26—it—ean—be—coneluded,—that cal.

culations, from which the load can be aceurately
predieted, at which in a point of the plate the
elastic limit of the material will be reached, are
not practicable.
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Fig. 3.4. Location of points A and B for which the
magnhitude of J, was determined.
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In order to get at least an impression whether
the clastie limit first will be reached in the center
of the plate or at the longitundinal edges, in ref, 1
the valne of J, of a point on the longitudinal axis
of the plate was compared with the value of J,
of a point on the edge. A plate was considered
without transverse stiffening and with simply sup-
ported edges, whick remained straight. Approxi-
mate stress distributions were used, following from
the displacement functions assumed in ref. 3. The
points A and B (fiz. 3.4) were chosen hecause
of some advantages in the calenlations, the point A
being positioned on the longitudinal edge, and the
point B being the point on the centerline of the
plate with the largest bending stress. The result
af the caleulation is shown in fig. 3.5, giving the

Eer

value of as a funetion of

Sy

(Be)?
It can be concluded from fig. 3.5, tha,t the

clastic limit is more probably rcached first near

the edge the larger z/e is when this oceurs.



Furthermore the shape of the curve for point B
as compared with the eurve for point A suggests
strongly, that for stresses little in excess of the
buekling stress, the eritical point will lie in the
ccnter of the plate.

It can be expeeted that the influence of plasti-
city on the e w. will depend on the. position of
the eritical point, in which the first plastic de-
formation occurs. With thin plates (e, small)
this point will probably lie on the edge and with
thick plates in the center of the plate.

4 - Test programme and equipment.

4.1 Loading arrangement.

The 150-tons Avery compression testing machine
comes up to the reguirements specified in seetion
3.3. The combination of flat-end tests and longitu-
dinal edges of the bays of the speeimens supported
by knife-edges was considered to possess the most
advaniages. From the point of view of the sim-
plicity of the loading arrangement it was decided
to use only speeimens with bays of equal width.

L7 at which for the different
Ee

specimens the elastic limit will be exceeded, will
then be determined only by the thickness of the
plate. Beeause of the possibility of local buckling
ol the plate at the edges and the influence of
initial eceentrieities the thickness of the plate was
ehosen {6 he larger than 1 mm. The width of
the bays of 150 mm seemed to be suitable in view

The values of

Eer

of the valnes of to be attained. The

Ee

dimensions of the loading platens enable the use
of specimens consisting of up to 5 such bays. For
the length of the specimens 700 mm was taken,
being the most eeconomical length in connection
with the available commercial dimensions. Henee
the overall length-width ratio of the speeimen is
but little smaller than 1, and for the bays of the
specimen this ratio amounts to 4.67.

In figs. 41 and 42 the general arrangement

5.32

AXIS OF BOLT

of the test rig is shown, fig. 4.1 giving the half .

of the rig, which is rigidly connected to the
lower platen of the machine, and filg. 4.2 giving
the complete test rig. The conmeetion of the other
half of the rig to the lower platen is adjustable.
Each half of the rig carries 5 single knife-edges.
The load is applied to the plate via two eom-
pression strips, connected to the upper and lower
platens. These strips contain slots with a depth
of about 2 mm, in whieh the plates are fitted
with some lateral play. The width of the slots is
adapted to the thickness of the plates. Before the
tests the slots are filled with graphite grease in
order %o reduce the fristion as much as possible.

Bspeeially with thin plates it was considered
necessary to support the longitudinal edges of the
bays along the wheole length of the specimen. There-
fore in the upper compression strip a number of
transverse. grooves were made in which the top
ends of the knife-edges ean move {reely during
shortening ‘of the specimen. Because of un-

desirable local deformations of the unsupporied-
parts of the loaded edges near these grooves in
the first test, small bridge pleces were inserted
in the grooves in the subsequent tests (see fig, 4.3).

v

Fig. 4.4. Bolied connection of channel beams.

Another improvement in the test rig, introduced
after the first tests, concerns the rigidity of the
connection of both halves of the rig to the lower
platen. It appeared that both groups of knife-
edges were pushed apart when with irregular wave
forms the load was largely in excess of the buckling
load. Satisfaetory rigidity of hoth halves of the
test rig was obtained by the econstruetion shown
in fig. 4.4. In the g¢hannel beams supporting the
knife-cdges, smaller heams were inserted, which
were cotnected at the ends with bolts,

Fig. 4.5 shows different forms of knife-edges,
which were "used sucecessively. These changes in
the form of the knife-edges were introduced ih
order to rteduee the friction. The sliding picees
in form ¢ were made of perspex and red eopper
with a length ‘of 50 mm each and interspaced
about 2 mm. The disadvantage of this form was
the appreciably larger external radius of about
5 mm as compared with the radins of the initial
knife-edge of 1.5 mm. This iz not the case with
shape &, whieh was adopted for the ultimate tests.
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4.1,

Half of test rig with dial gaunge

in position a.

Fig. 4.7.

Pig. 4.2,

Reflector apparatus.

Complete test rig with dial gauge
in position b,
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Fig. 4.5. Different forms of knife edges,

Here the extremities of the knife-cdges are formed

by pieces of brass wire with a length of § em

and a diameter of 2 mm. These pieces are in-
serted with interspaces of 2 mm in a slot, machined
in the original knife-edge, and filled with graphite
grease.

4.2 The amount of play between plate and Enife-
edge supports.

In order to obtain simply supported longitudinal
edges of the specimen, some play must exist be-
tween the plate and the knife-edges. Otherwise
the edges will be clamped when heavy buckling
takes place. The necessary amount of play depends
on the shape of the knife-edges, the thickness of
the plate, and the greatest slope of the wave form

‘.

Fig. 4.6. The play at the knife edges.

at the longitudinal edges (see fig. 4.6). The trans-
verse expansion following from Pormsson’s ratio
will be neglected. The amount of play can be
caleulated from

1 _1), (4.1)

COS Pmax

s= (27 4 k) (

it the magnitude of gmax is known. In general it
will not he possible to prediet gma. with sufficient
ascuracy. Therefore the necessary amount of play
should be determined experimentally,

The influence of the play between the plate and
the longitudinal supports can be demonstrated as
follows.

It is supposed that the longitudinal edges of the
plate can take a form, given by

. HETX
w==0.5 s sin

(4.2}

This results in an extra speeific shortening of
the plate

or

n? w2t

@
1 1 dw \2
Ae—;gfi("aa?) o= g - 43

Now s ¢ %, thus Az is very small, Hence the

neeessary amount of play for a given thickness
of the plate (according to (4.1)), will in general
result in an extra specific shortening, which is
negligible compared with the shortenings in the

range of values of l/—eff were the elastic limit
£

is exceeded. For the determination of the e w,
in the plastie range Ae will, therefore, not be of
importance.

4.3 Measuring equipment,

The magnitude of the load is indicated direetly’
on the loading machine. The aceuracy in the load-
ing range to be eonsidered for these tests amounts
to about 15 ke. In order to avoid errors due to
friction in the machine the desired load must
always be approached from the side of smaller
loads.

The shortening of the specimen under loading
is derived from the displacement of the loading



platens with respect to each other, The displace-
ment is measured with two dial gauges rigidiy
connected to the upper platen (figs. 4.1 and 4.2)
on either side of the specimen. In the first tests
both dial ganges were mounted in position “a”,
but in the subsequent tesis both gauges were used
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Fig. 4.8, Principle of refleetor apparatus.
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Fig, 4.9, Geometry of the reflector apparatus.
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in position “6”. The aceuracy of the measurements
with the dial gauges is about 0.01 mm.

The amplitude of the waves, the wave length
and the wave form are determined on the longi-
tudinal axis of the center bay of the specimen
with devices especially developed for these tests
(see fig. 4.7). The prineciple is shown in fig. 4.8
Against one of the knife-cdge supports near the
conter of the specimen a system of small levers
is attached, on which small hollow-ground reflectors
are fitted. These retlectors throw a. sharp image
of a light source upon a screen. An adjustable
pin.at the end of each lever is in contact with
the plate of which the transverse displacements
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Fig. 4.10. Calenlated relation between measured
displacement & of the image on the screen and the
displacement w of the adjustable pin on the plate.

must be measured. The pressurc of a smali spring
against the lever causes the pin to remain in con-
fact with the plate. Fig. 4.9 gives the neeessary
dimensions for the caleulation of the displacements.
The displacement of the pin as a function of the
measured displacement of the image on the sereen
gan casily be dctermined. For the dimensions
chosen in the tests the result is given in fig. 4.10.
The cnlargement is about 58 times and the dis-
placements of the image on the screen ean be read
with an acenraey of about 2 mm.

Tu the preliminarvy tests some measurements with
electrical resistance strain-gauges were earried out,
mainly in order to determine the effect of frietion
at the loaded edges. To this end a Baldwin recorder




TABLE 4.1

Characteristie values of the specimens,

Spec Numhber Total Mean - B v - . . o
Group : of width | thickness 10022 [ 105 6, ==10°% | 10° ey ‘/ For l/ fer
no. curve kg/mm? E E Co.z ze
bays mm mm
_f .
B 51 5 765 1.56 B 1 7400 T 4860 - 2700 396 0.285 0.383
B 52 5 765 1.555 B 2 7425 4780 2900 395 0.287 0.368
B 53 5 765 1.525 B 3 7500 5290 3070 379 0.267 0.851
%j B 41 4 612 1.53 B 3 7500 5290 3070 389 0.268 0.353
2 B 31 3 459 1.58 B 1 7400 4860 2700 407 0.290 0.388
g B 32 - 3 459 156 B 2 7425 4780 2900 399 0.289 0.370
£ B 33 3 459 1.565 B 2 7495 4780 2900 399 0.289 0.370
R B 21 2 306 1.58 B 1 7400 4860 2700 407 0.289 (.388
E B 22 2 306 1.54 B 3 7500 5290 3070 386 0.270 0.354
B 11 1 153 157 B 1 7400 4860 2700 402 0.287 0.385
B 13 1 153 1.545 B 2 7425 4780 2900 389 0.285 0.366
B 15 1 153 1.56 B 3 7500 5290 3070 396 6274 0.359
A 31 3 459 1.24 A1 7260 4920 3100 250 0.225 0.284
A 32 3 459 1.25 A1 7260 4920 3100 254 0.227 0.286
A 33 3 459 1.24 A 1 7260 4920 3100 250 0.225 0.284
A 34 3 459 1.26 A1 7260 4920 3100 25% 0.229 0.289
% AC 31 3 459 1.20 AC 1 6950 4560 2880 234 0.227 . D285
}% AC 32 3 459 1.20 AC 1 6950 4560 2880 235 0.227 10.286
@ BC 31 3 459 1.515 BC 1 6815 4920 2760 373 0.275 0.368
B BC 32 3 456 1515 BCG 1 6815 4920 2760 373 0.275 0.368
B ¢ 31 3 459 2.05 c 1 7290 4830 2850 682 0.376 0.489
A ¢ 32 3 459 2.05 ¢ 1 7290 4830 2850 682 0.376 0.489
cC 31 3 459 2.035 cC 1 6800 5160 2940 674 0.362 0.479
cC 82 3 459 2.015 cC 1 6800 5160 2040 662 0.358 0.474
D 31 3 459 2.99 D1 7420 4360 2590 1460 - 0579 0.750
D 32 3 459 2.995 D 1 7420 4360 2590 1460 0.579 0.750

g8 8



was used, having an.aceuracy of about 10 p strain
at a gauge factor of 2.00.

Strain-gauge measurements were also condueted
on plate CC3 — 2 on the outer bays near the upper
loaded edge in order to determine the influence
of a possible non-parallelism of the loaded edges
‘on the stress distribution in the plate. The same
strain-gauge recorder was used.

4.4 Dimensions of spectmens.

The length and the width of the bays and the

possible number of bays were already established

in section 4.1, the length being 700 mm, the. width
of the bays 150 mm, and the number of bays 5.
Beyond the outer longitudinal supports small plate
strips are necessary, thus giving the specimens a
total width a small amount in excess of a multiple
of the width of a bay. These plate strips must
be taken as small as possible, otherwise appreciable
errors can be introduced in the cffective width.
The tests can he divided into two groups, the
firgt containing specimens with different numbers
of bays and the same thickness, and ‘the seeond
group consisting of specimens with the same number
of bays and different thicknesses. The first group
of tests (reported in ref. 1) was condueted to in-
vestigate the influence of the number of bays on
the magnitude of the effective width. The second
group {reported in wef. 2) covered a range of

values of V ew/e. and was arranged only after
the minimum number of bays was established from
the former tests. This number of bays appeared
to be three (see section 5.3).

The thicknesses of the specimens must he varied
in such a way that the desired range of values of
I/ e
retical value of s, for the ecase of the axially

compressed plate with simply supported longitu-
dinal edges, neglecting the influence of the finite

length of the bays, the value of l/
h l/

b
With v=0.32 and » =150 mm it follows from

(44) that

Table 4.1 contains the dimensions and some
characteristic values of ‘the specimens. It can be

Ecr

will be eovered. With the known theo-

Ecr
bhecomes

g¢

,zr2

31— . 20

l/sw =

£Ee

(44)

Ve

Eer

—0.0128 (4.5)

Ee

seen that the value of [,/ <~ for the specimens

£e
of the first group ranges from 0.35 —0.39. For
the speeimens of the second group the range

of values of [/

and 0.75.

Egr

covered, lies hetween 0.28
£e

f‘Or Eer < Eg .,
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4.5 Material of specintens.

The material of the specimens will be either
uneclad or clad 24 8-T or T S-T.

The shape of the iransition curve from the
clastic to the plastic range in the ¢ —¢ graph Is
important in view of the influence of the plastieity
on the e. w. Thercfore it might be advantageous
to compare the behaviour of specimens made from
two materials which have a pronounced difference

in this respect. This is the case with 24 8-T and

75 8-T. In fig. 411 two examples are given of
eurves for pure compression, the curve for 75 §-T
being derived from rvef. 27. The eurvature in the
graph for 24 §-T is smaller than for 75 S-T; with -

Fy.z

the latter material the value of is smaller

de
than with the former. It can he expected there-
fore, that the transition from the elastic to the
plastic region in the specimens will be most pro-
nounced with 75 S-T.

The difference hetween unclad and elad sheet
will also he a peint of investigation. In clad sheet
the basis material and the cladding material have
about the samec modulus of elasticity, but the
elastic limit o, of the hasis material is about 2—
2.5 times the elastic limit of the eladding material.

The influence of the difference in the moduli
of hoth materials on the buckling stress of a
specimen was investigated in ref. 2, and this
influence proved to be negligibly small. The in-
fluence of the difference in the elastie limits of
bhoth materials can be estimated in the same way.
Consider the case that the buckling stress exeeeds
the eclastic limit o., . It is now assumed that

during buckling the ratio of the bending stress in
the cladding and the maximum bending stress of
the basis material is equal te the ratio e / Fepanie ?

and if for the ratio of these stresses the minimum

value is taken, then the difference in the

1
2.3
huckling stress appears to be maximum 16 %.
Hence the buekling stress of clad sheet can he up
to 16 % smaller than the buekling stress of unclad
sheet of the same thickness, if at the buckling stress

. the elastie limit of the cladding is exceeded.

In the first group of tests all specimens were
made of unclad 24 S-T sheet. Most of the speei-
mens of the second group were also made of
24 S-T, but for comparison some specimens were
made of clad 24 S-T sheet. It is intended to in-
vestigate the behaviour of specimens made of
75 S-T sheet material in future tests.

The stress-strain curves for the material of each
specimen in pure compression were determined

. with the solid-guide fixture described in ref. 28.

These eurves arc plotted in fig, 4.12. The points
on the stress-strain curves for the material of the
cladded specimens at which the elastic limit of the
eladding material is exceeded, could not be deter-
mined with good aceuracy. These points lie for
all curves at approximately =7 .10-* The de-
crease in slope of the curves heyond these points
was too small to be drawn.

The first letter of the indication of the speci-
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mens refers to the nominal thickness of the plate:
A=1 mm, B=15 mm, C=2 mm, D=3 mm,
When the letter C is added, the specimen is made
of clad sheet material. The first figure stands for
the number of bays and the last figure for the
number of the specimen, all tests exeept one being
executed at least in duplicate.

5  Tests.
51 Description of tests.

The test programme has been divided into two
groups, the first group referring to the preliminary
tests, with which the possibilities of the test arran-
gement and the number of bays of the specimeng
were determined, and the second group referring
to the definitive tests {see also sections 4.4 and
4.5). The tests from both groups will be described
successively.

511 Preliminary tests.

Aceording fo table 4.1 the value of l/ cor

Eg -

for these specimens ranges from 0.35 to 0.39. On
aceount of the results of seetion 3.5 it can be
expeeted that the elastie limit firgt will be ex-
ceeded at the longitudinal edges of the bays. In
view of the possibility of local buckling at- the
edges, the thickness ehosen will, therefore, be un-
favourable for the determination of the e.w. In
the plastic range. Tor the appreciation of the
loading arrangement, however, this can be regard-
ed as an advantage.

In general all specimens showed, hefore buckling,
irregular waves with a very small amplitude, pos-
sibly because of the play at the knife-edge sup-
ports. For load in excess of the buckling load the
waves were generally regular. In most of the tests,
the huekle amplitudes at top and bottom of the
test speeimen were approximately equal up to the
maximum load, indicating that frietion between
the plate and the knife-edges was small. Buckling
always cecurred suddenly, but only with specimen
B 3-3 this was attended with bangs. With all
specimens, cxcept those econsisting of one bay,
sudden changes in wave form oceurred at high
loads in excess of the buckling lsad. This jump
to smailler wave lengths was also often accompanied
by bangs. With long delayed changes in wave
length, as with specimen B 5-2, the bang was very
loud and the change in wave length was attended
with a sudden drop in the load. With the sliding
pieces on the knife-edges . (fig. 4.5-¢) applied in
the later tests, a more gradual transition to a
smaller wavelength was obtained, resulting in less
heavy bangs.

In some tests irregular waves appeared in ad-
jacent bays of the speeimen, These waves, pointing
to the same side in adajeent bays, exerted large
forces on the knife-edges and ecaused permanent
deformation of the loading frame.

Figs, 5.1—b5.3 inel. show the permanent defor-
mation of some of the speeimens after unloading.
It is seen that in genecral the permanent defor-
mations were most severe near the upper loaded
edge of the test specimen,

5-38

51.2 Definitive lests.

Tt was decided to use in the definitive tests
speelmens with three hays only. Thus the parts
at the outer bays of the frame supporting the
knife-edges were not required any more. These
parts were used, therefore, for a direet conneetion
of hoth halves of the frame with belts, making
the extra construetion shown in fig. 4.4 super-
fluous. A more rigid frame was obtained in
this way, .

Before the tests the knife-edges were straighten-
ed again. TFor the knife-cdges the construetion
shown in fig, 4.5-d was used. These knife-edges
performed more satisfactorily. Large loads on the
knife-edges and local huekling in the plates at the
cdges eould, however, not be prevented completely.
Permanent huckles after unloading were in general
present over a larger part of the plate length
than in the preliminary tests and during the tests |
the same phenomena were cbserved, C

In figs. 5.4—5.8 incl. photographs of some spe- ™
cimens -after the fests arc shown, Some points, ..
in which local buckling oceurred, are encireled and »+ }
buckles pointing towards the same side are indi-
cated with crosses.

5.2 FEvaluation of test resulis. )

By representing the relation between the average":;‘:_- o
stress o in a bay and the speeifie shortening = .+
in the way developed in ref. 3, the results of the R
tests ,ean bhe compared with the results of the
theory for the clastic range.

The ¢.w. by is defined by the expressions for
the load P in a bay.

P="¢.bh=gupe.bm.h. (5.1)
Henee

(5.2)

) Fodee

" The edge stress ouwwe can be caleulated from the
speeifie shortening of the plate

ﬂ'edge:Eg.E, (5.3)

while thé average stress ¢ follows from P with
. b

(5.1). Thus the ratio ——bﬂh— can be ealeulated from

the measured P —e¢ curve. The result will be

plotted against !/E—;L, instead of ¢, then being

comparable with the theoretieal result for the
clastic range from ref. 3.

The presenee of the small plate strips beyond
the outer longitudinal edges introduces an error
in the average stress, which ean he approximated by

- P P—2dh. o 24 c

AG’—“-I - wh - = Coage s (D4)
in which = represents the number of complete
hays, and d is the width of the edge strips. The
width d ean be chosen such, that this error ean
he negleeted.

=&
i
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Fig. 53. Permanent deformation of specimen B 3-2,

Permanent deformation of speeimen A 3-1,

Fig. 5.2, Permaunent deformation of specimen 1 5-2. Fig. 5.4,




Fig. 5.5 Peormanent deformation- of speeimen AC 32 Fig. 5.6. Permanent deformation of specimen 1C 3.2,

Fig. 5.8. Permanent deformation of specinten D 3-1.




" The edge stress is determined from the stress-
strain curve of the material at the specific shorten-
ing of the edges. This stress does not oceur in
reality, for the state of stress near the longitudinal
edges i not uniaxial. ‘

The average specifiec shortening of the plate
follows from the measured displacement of the
loaded edges with respeet to each other, divided
by the plate length. When friction is present be-
tween the knife-cdges and the plate, the load in
lower sections of the plate will be smaller than
in upper seetions. However, with sufficiently low
friction this difference can be regarded as negli-
gible, and thus the specific shortening at the edges
will be egnal to the average specific shortening
of the specimen.

* The theoretical value of the buckling strain e
will be caleulated from the wellknown formula
(see ref, 3)

S 1S S

Strietly, this formula holds good only when no
transverse stiffening is present, when all edges of
the plate are simply supported, when the elastic
Himit of the material is not exceeded, -and for
a=mnb in which # vepresents an integer. For the
chosen length-width ratio of the bays =467
the departure from formula (5.5) is, however, very
small, even when the loaded edges are not simply
supported but clamped.
The theoretical buekling stress follows from
(5.9) with ‘
gor =X . ger . (5.6)

Like (55) this formula holds good only in the
clastic range of the material.

An experimental buckling load ecan be derived
from the amplitude measurements. For loads in
excess. of the buekling load the only parameter
governing the behaviour of the plate is the ratio

I Beeause the load in the plate must be in-

dependent from the sign of W, the load in the
plate can be expressed hy

2
PP, [1 +a, (%) +
‘ 4
+ «a, (Lﬁ) + ] for P > P, (5.7)

For loads in small excess of the buckling load
the graph showing the relation between £ and

1o\ 2
(%) will bie substantially linear and the inter-

section with the load axis will give the experi-
mental buckling load. Instead of P the average
stress ¢ ean be plotted, thus giving directly the
cxperimental buckling stress,

h-m :
The relation between - and l/ e in the
£

plastic range may be dependent of the value of

l/sw and of the general form of the stress-

Ee

strain  curve of the material, For values of

= g
e £ 7 .
l/ “ larger than I/ “. the experimental

4 Le

results must correspond with the theoretical eurve
for the elastie range shown in fig. 5.9.

"bm bm
b b
1‘0[— 1
o8
Q6 ——
AL

B I B
A= >

/F/ B J‘

02 —

o 02 04 O6 08 10
Cer
3

Fig. 0.9. Theoretieal curve for the effective width
in the clastic range (form ref. 3).

The theoretical curve for the e.w. b, in the
elastie range is also given in fig. 5.9. The e w.
be' in view of the ecompressive stiffness of the
plate is defined in the clastic range by

daf
de

=B . by L (58)

For readers not familiar with the effective width
by’ a more detailed deseription of this quantity
is given in Appendix A,

The relation between b, and b,, can he derived
by differentiation of (5.1).

ar ( dveage i dh,,
d*e— —h de ()m -+ Tedge TE—) =

) b,

=Eia(bm+a~€r), (5.9)
Hguating (5.8) and (5.9) gives

bu
b’ N Dy + dﬁT 5.10
ST T a (5:10)

These equations hold, however, only for the
clastic range.
In the plastic range equation (5.9) becomes
ar dby )
cde de
' E, dbm)

=1 lm —_
i‘l(J -+ EtE e

:k(,‘t.bm+E8.g

(6.11)
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Defining now b.’ by replacing E in eq. (5.8) by
the tangent modulus E,, equation (5.10) becomes.

b
d—.
bm,’ bm Es b
b p t E,© T de (5.12)

bﬂl’
The relation between 5 and ¢ or £
e
b, ; \
be caleulated from the %_l/em eurve with
B

formula (5.10) or (5.12). Since this caleulation
requires a differentiation of the empirical eurve
for bn/b and of the stress-strain curve of the
material, the aceurasey of bn'/b may not be ex-
pected to be high.,

The ultimate results of the tests w1ll he given
in graphs showing the relation between the ratios
b b’ or
—b"i and ?"' and the ratio L These graphs

€
are applieable only for the specific material, and

the values of [/8" used in the tests.
Ee

£, - .
l/ 2. will appear i these graphs as a para-

Ee
metger,

Thus

Beeause it is diffieult to determine the

. E
value of ¢ with good aceuraey, the ratio l/&—

Tp.2
has also been given for each specimen (see table
4.1) as a charaeteristic parameter,

Tt would not be very useful to contmue the
tests above a certain value of the strain, because
in eompressed panels the strain will also be re-
stricted to the maximum sirain at which the stif-
feners fail. For this maximum value of the strain
9000 p 'strain was chosen, this being the strain at
which ¢,, will be reached in 75 S-T (see fig. 4.11).
The stress e,, in 24 S-T will then be exceeded
considerably, and this strain will certainly not he
reached in panels with stiffeners and plate made

of 24 S-T. The tests on specimens of 24 S-T will,
however, be continued up to a strain of %000 g,
in view of constructions in which the stiffeners are
made of 75 8-T and the plates of 24 8.T,

5.3 Results of measurements.

The results of the wave form measurements for
gsome of the specimens are shown in figs, 510—
513 incl. The results of the amplitude ahd de-
formation measurements for some of the speci-
mens are given in figs, 5.14, 5.15, and 5.16. The
strain gauge measurements will be dealt with in
gection 5.4,

On eloser inspection of the wave-form measure-
ments it appears that large differences in the wave
length and the location of the nodes can oceur in
different specimens for loads in small excess of

" the buekling load. From ref. 29 it is known that

with clamped edges the transition from m to
m 4+ 1 balf waves -will take place at a length-
width ratio of

% =V mim +2) . (5.13)

In the present tests %:4.6? (see section 4.1).

Thus for loads in small excess of the buekling
load 4 half waves should be present, hecause

| 4 4(4 + 2) =4.90. In the experiments,.however,
pearly always 5 half waves appeared.

With simply supported loaded edges the trans-
ition from 4 to 5 hall waves takes place at
o
b
cluded, that the loaded edges in the flat-end tests
were not completely clamped, hecause the theore-
tical wave form was not fully realised. Some ir-
regular differences in wave length oceurred along
the length of the bay. The magnitude of the slope
of the waves next to the loaded edges does suggest,
however, that at least for loads far in excess of

=447, From this it can, however, not be con-
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Wave-form measurements for specimen B3-2,
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the buckling load the loaded edges were not com-
pletely elamped.

For specimens B 3-1, B5-1, B3-3 and B5-2 of
the preliminary tests and for all specimens of the
definitive tests the experimental buckling stress

- 2
was determined from the ¢ — (l;;—) graphs. These

graphs proved to be straight lines in nearly all
cases. In general the experimental buckling stres-
ses were somewhat higher than the theoretical
values dorived from formulas (5.5) and (5.6).
Execept in the cases of specimens B 3-3, A 3-2, and
AC 3-1, this difference was always less than 10 %.
Probably the cause will lie mainly in the small

number of values of for small loads, and in

L
the inaceuracy with which the wave length has
heen determined. Some measuring results at low
loads were omitted from the graphs, because they
were regarded as unreliable.

The relation between the average stress and the
shortening of the specimen does not equal the
stress-strain rclation of the material for loads
below the buckling load {see also the results of
the gtrain gange tests diseussed in section 5.4.3).
The prebuckling stiffness of the plate was smaller
than the theoretical stiffness of a completely flat
plate. Part of this deerease in stiffness is caused
by the play at the knife-edge supports. Irregulari-
ties in the stress-strain eurves in the neighbourhood
of the origin are also caused by the fact that the
loaded edges are not perfectly parallel. Hence

hefore the ¢— ¢ eurves were used for the evalu-
ation of the e w, some corrections had to be
introduced. These corrections will be discussed in
scetton 5.4,

A sudden change in wave-form will appear in

the ¢ — ¢ curve as a diseontinuity (see fig. 5.14).
These changes did not sccur with specimens con-
gisting of one bay, probably because no stresses
were present along the longitudinal edges in the
lateral direetion. .

The area of the plate strips beyond the outer
longitudinal supports was such, that the difference
between the .average stress across the whole speei-
men and the average stress after eorrection for the
load in the plate strips (see section 4.3} could he
neglected. For example, for plate B3-2 at the

maximum load this difference amounts to A e=
042 kg/mm?, according to (5.4).

The measurements in the range of loads in
excess of the maximum load appeared in the
preliminary tests to be irregular, and they were,
except in the case of specimen B 3-2, regarded as
unrcliable, In the definitive tests the measure-
ments in this range were morve satisfactory, pro-
bably because of less frietion at the edges.

From the corrected ¢ — ¢ curves and the stress-

. - . . b”l
strain relations of the material the ratie 5 Was

caleulated for a number of values of —=~ . The

£
experimentally determined value of =, was used
when available, exeept for the specimens A 3-2,

A 34, and AC3-1, for which the experimental
values were regarded as unreliable. The results
of these caleulations are shown together with the

. bm . .
theoretical curves for —b"f- in the elastic range
(from ref. 3) in figs. 517—5.23 inel.

. ) b,
From the obtained relation between — and

b

?

b
the ratio ——
£ b

mula (5.12). These eurves are also given in the
figs. 5.18--5.23 incl, together with the theoretical

bu’

b

the parameter I/

tigures for cach eurve of

fer was caleulated with for-

eurve for in the elastic range. The value of

E . .
“ has bheen given in the

Eg
’

bm
7 these curves ap-
pearing to be dependent on this parameter.

The curves in figs. 5.18—5.23 inel. differ from
those given in ref. 2. In that report the curves

m’
b
gave erroncous results in the plastic range. These
errors were corrected here,

The differences between the experimental results

for ~2 were caleulated with formula (5.10), which

b

of in the figs. 5.17—5.23 inel, and the theore-

tieal eurves from ref. 3, appear to be small for
the plastie range when the specimens had 3 or
more bays. The differences are generally larger
in the elastic range, which can he easily explained
by supposing that the correction of the ¢ — e curves
for stresses in excess of the buekling stress is not
exactly true. This holds especially for stresses in
small excess of the huckling stress. A small change
in ¢ will then cause a large change in the e w.

The deviation of the experimental results for
b’

A from the theoretical curve in the elastie range is

Egr

E

sometimes econsiderable. For values of [/

smaller than !/

bﬂl,

b

Eer

this is not surprising, he-
£e

canse the curve must have an interseetion

. 3 . - . . .
with the —Z axis in this region, as will bhe
&

explained in section 5.5. Thus the experimental
r

results for in this region cannot be compared

b
. L b’ . .
with the -theoretical curve for — in the clastic

larger than l/&
Eg

show the irregularities in the

Ecr

range. For values of l/
£

’

bm

the results for

bﬂlr . T . .
results for N these irregularities heing especially

in this region more prominent than in the remain-
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Fig. 5.17. Comparizon of the rtesults for the effeéctive width from the preliminary tests with the theoretical
curve for the effective width in the elastic range.
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Trig. 5.18. Comparison of the results for the effective width
for the specimens A 3-1 to A 3-4 inel. with the theometieal
curve for the effective width in the elastic range.
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Fig. 5.20. Comparisen of the results for the effective width
for the specimens BC3-1 and BC 3-2 with the theorctical -
curve for the effcctive width in the clastic range.
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Fig. 5.19. Comparison of the results for the effeetive width
for the specimens: AC 3-1 and AC3-2 with the theoretical
curve for the effective width in the elastic range.
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for the effective width in the elastie range.
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, Do . th surin sul ‘ i . T
ing part of the —bm— curve, HErrors in the results of ¢ measuring results can be considerable. The
inaceuracy of l/e” will bhe abont twice the

, .
will also be introduced due to the numerical

€
inaceuracy of e,,. When the experimental values
approximation of the differentiation in (5.12).
The influence of the aeeuracy of the buckling of I/
stress, and with that of the bueckling strain, on

£ . .
-~ for a certain specimen appear to de-
E

b

b
centage from the theoretical values of I/m,

10 C — €
L ‘ /b/l the reason for this difference may lie in a wrong
cC 31 / value of e.. It was doubtful whether the edge
[d
()

viate for all values of with a constant per-

bm
B

1ol

"
0 cc,3-2 ‘ conditions for the determination of the buckling
08 THEOR CURVE FROM REF.3 stress ‘of a plate which is simply supported on
/ 4 edges, were satisfied in the tests. Thus the

—179 theorstical buckling stress cannot be regarded as
[ ‘ completely reliable, and therefore the cxperiment-

ZAH - ally derived buckling stress was used as much as
' possible for the evaluation of the results. Never-
- — theless with some specimens, of which the accuracy
T/M of the experimental buckling stress appeared to
9 * - be good (e.d. D 3-2), this tendency of the experi-

ol . } o
mental values of [/ " to deviate from the

€

o

Byoly

04

%o
c+\\
o

+02 //

// ) theoretical valucs of l/EE with a constant per-
£

49 centage, was still ohserved. Hence, it is probable
I O* : that the experimental bueckling stress was some-

what in error. For specimen D 3-2, for example,
o +02 04 os o8 10 o, was found to be about 2 % larger than ec ,, .

fEer ~
£

If the values of |/i for specimen D 3-2 in

Fig. 5.22. Comparison of the results for the effective width €
for the specimens CC3-1 and OC3-2 with the theorctical fig. 523 had been taken about 4 9% smaller, the
seurve for the offective width in the elastic range. experimental result would have been closer to the-
theoretical curve. It seemed, however, to be more
correct not to work towards this goal :
The agreement of the results from the prelimi-
nary tests with the theoretical curve for the elastie
range proves to he good especially for the speci-
‘|g gg:; /k mens with 5 and 3 bays, The influence of the
, Ve numher of bays is shown clearly. The exception
TREOR CURVE FROM REF 3 / of specimen B 4-1 in this respect will be due to
1

bm, b
b,
1

‘ cr|a’.‘

o)

o8

{ ¢ the unfavourable cirecumstances in which the test
was carried out. From the small difference between
the results of speecimens with 3 and 5 bays the
eonclusion was drawn, that for the specimens of
_L‘ the definitive tests 3 bays were sufficient.

T
b K
04— o /L// 54  Cousiderations and secondary measuicnients

3
/ // L jﬁ & 9 _ concerning the behaviour of the specimens.

06

5.41 Friction at laded edges.

+02

/ In order to determine the influence of the frie-
+ tion at the loaded edges of the specimens, and

. whether this frietion eonld be reduced sufficiently
) J by means of lubrication with graphite grease, a

o 02 04 o6 08 1o number of strain-gauge tests were conducted on
' specimen B 5-1. On hboth sides of the plate 4
. . € resistance wireé strain-gauges were glued in lateral
Fig. 523, Comparizon of the results for the effective width dl,l,‘eetmn ‘011 4 St{.itmns of the ,eel.lter 11qe of the
for the specimens 1) 3-1 and Ir3-2 with the theorotical curve middle bay (see fig. 5.24). Opposite strain-gauges
for the effective width in the elastic range, were connected in series, hence the average strain
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in the lateral direction was measured only. The load, hecause otherwise irregularities in the strain
strain gauge pairs 1-—4 incl. were connected sue- would appear, which would mostly be determined
cessively to the indicator by means of the cirenit by the local wave form. Furthermore the strains
shown in fig. 5.24. in the lateral direction are very small. Therefore,

" and hecause of the limited accuracy of the measu-
ring equipment, but a rough picture of the magni-

lLOAD ) tude of the strains can be obtained.

o The results of some measurements are presented

B5—1  WOT T “20 ' in fig. 525. The increase of the lateral strain,
ACTIVE GAUGES  DUMMIES indicated with Agy,, is shown as a function of the

strain in the longitudinal direetion z.. Measure-
ments were started at e, =100.10-% strain. The

® deerease of frietion after lubrieation of one or

both of the loaded edges ean be seen clearly. The

350 straight lines drawn in the figures vepresent the

9 ‘ relition between Ag, and & in the case that the
120.120 @] gpecimen vemains flat and that no transverse
S R 1.2 AND 3 ARE CONNECTIONS stiffening is present. The measuring results for

wiTH BALDWIN INDICATOR Specimcns with both loaded edgES luhricated
lic sufficiently eclose to this line to  regard

Fig. 5.24. Positi f strai i - . . s .
& osition of strain gages on specimen B 5-1 the influence of friction as unimportant. Thus

and the cireuit used in the tests.
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Fig. 5.25. Results of strain gauge meaguremcnts on specimen B35-1,

Strains were measured with and without lubri- For a move accuraie determination of the in-
cation of the loaded edges and with lubrication fluence of the friction at the loaded edges on the
of the upper loaded edge only. stress distribution in the plate four pairs of strain

The range in which measurements can be earried gauges are not sufficient.

out, is restricted to loads lower than the huckling
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542 Puarallelism of loaded edges.

The ¢ — & curves of the specimens showed in the
neighhourhood of the origin a departure of the
expected straight line (see fig. 5.26). This depar-
ture appeéars to he caused by irregularities in the
compressive stresses on the loaded edges.

£

/|

|

l

!

g' 9

Fig, 526, The departure from the straight line of the

r—e curve near the origin.

Suppose that the upper loaded edge is not
parallel to the upper loading platen of the ma-
chine, In the heginning of the test the plate will
now be unloaded over the width o (fig. 5.27). If
it is assumed that the distribution of the stress
and strain along the loaded edge is linear, as shown
in fig. 527, the relation ean be derived between

———

Fig, 5.27, Assumed stress distribution at low loads.

the strain ¢ (for y =) and the average stress ¢

for 'the region 0 < o << ¢/, in which o Tepresents
the average stress oceurring when g==0.

For values of ¢ > ¢’ the average stress will in-
erease linearly with ¢ (see fig. 5.26).

c=E(s—s¢,). (5.14)

At a distance y (@ < y < b) the stress is

Y—4a } .
o'y:u'.}j_a‘ , .(5.15)
and the strain
y—=n
€y=.€ . ;ﬂ@ (5.16)
Now the average stress is
_ b
o=40.— ¢, (5.17)

From e, =¢,. £ and the formulas (5.15), (5.16),
and (5.17) it follows that '

b '
| g==2 - e (5.18)
giving for e« =0"
i
s’:2—‘—. C(5.19)
According to (5.14)
.
g — g, = 7
hence
;r
2y ==y - (5.20)

The relation represented by (5.18) corresponds
with the curve of fig, 5.26. With this the depar-

ture from the straight line of the o — ¢ curve in
the neighbourhood of the origin has been explained.
For an exact deseription of the hehaviour of the

plate a correction of the o—e curve must be
carried out. Instead of the strain ¢ the value
(e —e,) must be taken as the ordinate of the
figures. Therefore the point (¢==0,e =¢,) must
be chosen as a new origin. This correction has
already been carried out in the figures.

The occurrence of an uneven stress distribution
across the width of the plate for small loads was

e10*
j l
7 . ,/
DAVERAGE STRAIN ACROSS ,/
THE WHOLE SPECIMEN L
S , (o 4
/,/
N rd
P
5 cee A < i %
rd
A Ferexp

o - 1000 2000  3000.. 4000 5000

PIN kg

Fig. 5.28. Results of strain gauge measurements on
: specimen CC3-2. -




the measured ¢ — & curve.

-8-50.

experimentally- demonstrated with strain-gauge
measurements on specimen CC 3-2, The position
of the gauges 1, 2, 3, and 4 in axial direction on
the center line of the two outer bays of the speci-
men, and 50 mm helow the upper loaded edge, is
shown in fig. 5.28, which also contains the results
of the measurements. )
Curves A and B, representing the average strain
in the left and right gauges, show clearly that
hoth sides of the plate are not equally loaded.

~ The curve C, giving the average value of A and B,

is in general parallel to the curve c—=E ¢ and
The nearly constant

difference between the eurve § and the ¢ — ¢ eurve
has probably been caused by =zero-drift of the
gauges, which could not be determined, because
the specimen was not unloaded before the buckling
load was reached. In general strain gauges give
no accurate indications at low loads. Hence the
curves must be regarded more as gualitative

- results,

5.4.3 Influence of play at knife-edge supports.

The diagram representing the relation between

the average compressive stress ¢ and the average
strain ¢ of the specimens, showed that for loads
smaller than the buckling load the strain e is

larg Strain-gauge measure-

ments on specimen B 3.1 showed, however, an ac-
curate aceordance hetween the average strain and

he value — .
tevaueE

side of the plate, were attached at a point of the
center line of the middle bay of the specimen (see
fig. 5.14). The results of the measurements are
presented in fig. 5.14. Tt follows that the differ-

Two strain gauges, one on each

cnee between £ and ;,Tea.nnot he explained by

supposing that the decrease in stiffness has been
caused by initial eceentricities in the same way
as this oceurs with normal plate buckling. For,
in that case the loeal strain in a point on the

center line of the bay should be smaller than —- E )

wave length of the buckling form. Now approxi-
mately
: Wr=053s. (5.22)

This ean only he approximately true, hecause Wp
will not he constant, but will.be a funection of ¥

" in consequence of the normal forces exeried by

and the compressive stress at the edges of the bay

gshould be larger than in the middle.

The difference hetween e and %—can partly be

explained by supposing that Fuler-buekling oceurs
in the complete specimen. This is possible because
of the play hetween the knife-edge supports, In
the following this phenomenon will be investigated,

In the case of Euler-buckling of the plate the

displacement w of a point of the plate normal to
the plane of the plate can be represented hy

w=Ws cos —g‘i (5.21)

B

in which Wy is the amplitude and Ly is the half

" specimen B 4-1).

the knife-cdges on the plate,
The buekling stress of the plate is

= B (R )2
R T Y6 ) (‘K i
JTE it is supposed that Ly can change gontinually

when the Ioad on the specimen changes, than Lp
will always take such a value that os equals the

average stress ¢ in the plate, at least before local
bhuekling of the plate starts.

Thus
Ly= —_ 5.24
B ‘) l/3(1—v2) l/ ( )

With A=—=15 mm and »=0.32 this hecomes

Ly 1436 I/ E oom
o

The average shortening of the specimen in the
case of Luler-buekling follows from

(5.23)

(5.25)

- Lp
LA L(iﬂf_‘)ﬂ e
TE YL T
or with (5.13)
c  mW 5
8= o + _ZL—%_ (5.26)
Substitution of (5.22) and (H.25) gives
(627

This relation between e and ¢ has been repre-
sented in fig, 5.29, together with the experimental
o —e curve for specimen B 3-1, and the stress-
strain curve for the material of this speecimen.
Tig. 5. 29 shows clearly that the difference between

relatively large plays are present. In fact the
largest play, which was necessary with knife-edge
form ¢ (fig. 4.5-¢), amounted to 0.74 mm, ae-
cording to (4.1), in which ¢—=20° was taken.

Thus the deviation of the oc— ¢ curve from the
stress-strain curve of the material eannet be ex-
plained completely with the actual plays. The
theoretical derivation of the influence of the play,
given here, is however approximative. Further-
more the play at the inner knife-edges can be
appreciably larger than the play at the outer
knife-edges, due to the deformation of the frames
supporting the knife-edges. This deformation was
observed after later iests (e g. after the test of
Therefore the above explanation
is thought to be sufficient.



It can he expected that the influence of the
play will decrease for loads in excess of the buck-
ling load, because in that case the shortening will
be large compared with the extra shortening due
f0 the play at the supports. It is necessary to

introduce a correction of the o-—e curves of the
specimens for loads just in execess of the buckling
load, in order to obtain satisfactory results also
for this range. This ecorrection is shown in all
o—¢ graphs.

For stresses lower than the buckling stress
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i
d—
bm | B b
_b_ + "E,t—a‘ s =0 (see 5]2),

.
. A - £ .
or after introducing l/ = instead of e as
- &

%l/ Eor

bm

_*a (5.28)
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Fig. 5.29. Deecrcasec of stiffness of a speeimen caused by

overall instability duc to the play between the knife-edge
supports and the plate.

ocr = F £, the experimentally derived eurve has

From

heen replaced by the straight line :;: .
the point ¢=uwy, £=—¢, a tangent has heen
drawn to the original eurve. This tangent forms
the corrected curve for the range of stresses in
cxcess of the buckling stress. From the point of
tangency onwards the original curve will be used.
Theoretically the influence of the play betweon
the knife-edges camnot be neglected completely
past the point of tangeney with the original curve.
Therefore the corrected curve will be somewhat
on the safe side in the neighbourhood of and
beyond this point,

3.5 Determination of mazimum load of specimens.

The maximum load in a panel will oecur when
dr
—ds—z() or according to (5.8) when b,"=0. This

condition ean he written as

From (528) it follows that the wvalue of

I/—_ for which i—— =0, is given by

b
9 _"m_ .

VEcr_ Et b
T E, _T_W_
) b /dL//E"
£

(5.29)

Henee the maximum load counld he computed
from {5.1) with the value of b, belonging to the

vhich U, =0. These values

value ol
1

Eer
of

depend on the material and the di-
[

mensions of the specimens, and they have not vet
heen determined theoretically. Thus this method
canr ohly be used when sufficlent experimental data
are available,
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vhich —=- b

vanished are plotted for the testb consldered in

In tig, 5.30 the values of

+ . . Eg
this report against the values of l/ " for each
Ee

. . - T
speeimen. The values of I/E” ¢ bl =
£
( \/b)
£ Imax.
o8 —[

} — |
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Fig. 4.30. The relation between the parameter (V

at whieh the maximum load is rcached

¢
and the parameter >
Ep

were determined from the~— - l/+ curves,

if necessary by cxtrapola‘rlon The values of

l/ — at which the maximum load was reached
£

in the actnal tests agree with the values of [/i':L
4
!

at which = 0. It must be realised that this

graph is valid only for the material used in the
tests {i.e. 24 8-T), T'or other materials the graph
may he different. . R

When the value of l/ﬂi at which the maxi-
&

. . , b
mum load is reached is known, the value of —2

at which the maximum load is reached ean he

Ecr

derived direetly from the theoretlcal —%— —_
E

enrve (fig. 5.9). For convenience the results of

tig. 5.30

c bm .
From this figure the value of 5 at which the

maximum load is reached can be read for each

Because of the relatively small

o £a
valile of l/ Al
Ee

number of test points on which the curve is based
the use of this figure ean, however, not yet be
recommended. Furthermore the results are appli-
cable only in constructions made of 24 S-T.

The maximum load could, of course, be deter-
mined by solving eq. (5.29) by trial and error,

(P rmax.

" Tﬁ_
CURVE VALID FOR 24-=ST ONLY
DERIVED FROM CURVE IN FIG. .30
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Fig. 531. The relation between the parameter (lﬂ)
- b Zmax

at which tle maximum load is reached

and the parameter l/ﬂ'

fe

but this method seems to be less accurate.

The excellent agreement hetween the results for
the ¢. w. in the plastie range and the theoretical
eurve for the elastic range offers an opportunity
to predict with good aceuraey from the latter and
the stress-strain eurve of the specific material the
maximum loads of plates. This can he done as
tollows,

At a point 4 in the ])ld&tm range of the stress-
strain eurve of the material the stress o1 and
the strain e, are determined. With the theoretical

buckling strain e, the ratio
€4

and from the theovetical euarve for the ¢, w. in the
. ba
elastic range (fig. 5.9) the ratio —;— can be found.

The average stress ;A in the plate at the strain
b

g4 can bhe derived from o4 =7

ing this caleulation of o, for some values of e4
in the neighhourhood of the expected maximum

gtrain the value ogax ¢an be determined.

This procedure has been carried out for all speci-
mens of thée definitive tests. The maximum load
apneared to lie in the region of 40 < 1T0* &, << 70

for all specimens. The value of ¢4 wag therefore
caleulated only for the values 10¢. £,'=40, 50,.60,

COy - By repeat-
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TABEL 6.1

Characteristic values of the specimens of ref. 4

. Mean
Edge | Spec. | Width . 10-E Toz , s Te ecrls Eop
support | no. ') in thlcil;ness Ihs/in? 106 5 10% g, == 10 ol 10% g, [I/Tn;_ l/‘:
1A | 2160 | 00618 | 1009 | 5680 4260 2960 0.721 0.833
24 | 2550 | 0.0637 | 1009 | 5680 4260 2250 | 0.630 0.727
3A | 2910 | 0.0647 © | 10.09 | 5680 4260 1790 | 0.561 0.648
4A | 3600 | 0.0656 | 1009 | 5680 4260 1200 0459 0.530
5A | 4290 | 00660 | 1009 | 5680 4260 854 | 0.388 - | 0448
6A | 5270 | 0.0659 | 10.09 | 5680 4260 564 0.315 0.364
TA | 6520 | 0.0652 | 1009 | 5680 4260 361 0.252 0.291
3 8A | 7.900 | 0.0634 | 1009 | 5680 4260 183 | 0179 0.207
< | 19A | 3730 | 00677 | 1009 | 5680 4260 1190 0.457 0.528
= 20A | 4460 | 0.0687 | 10.09 | 5680 4260 857 0.388 0.448
& 1B | 2240 | 00641 | 1082 | 5820 470 2050 | 0.712 0.812
2B | 2630 | 0.0658 | 10.82 | 5820 4470 2260 | 0.623. 0.711
3B 2880 | 0.0639 | 10.82 | 5820 4470 1780 | 0563 0.631
4B 3.630 | 0.0660 | 10.82 | 5820 4470 1195 0.453 0.517
5B 4350 | 0.0669 | 1082 | 5820 4470 854 0.383 0.437
6B 5550 | 0.0693 | 10.82 | 5820 4470 563 0.311 0.355
7B | 6.870 .| 0.0687 | 10.82 | 5820 4470 361 0.249 0.284
8B 8.010 | 00668 | 10.82 | 5820 4470 251 0.208 0,237
9A h) 0.0661 — — — — — — ‘ |
10A | 2.18 0.0624 | 10.09 | 5680 4260 5170 0.954 1.102
1A | 257 0.0643 | 10.09 | 5680 4260 3950 | 0.833 0.963 |
124 | 294 0.065¢ | 10.09 | 5680 4260 8130 | 0742 0.857 |
13A | 3645 | (.0663 | 10.09 | 5680 4260 2090 0.606 0.700
14A | 4335 | 0.0667 | 10.09 | 5680 4260 1490 | 0.512 0.591
15A | 5265 | 00659 | 10.09 | 5680 4260 999 0.418 0.482
16A | 6.388 | 0.0639 10.09 | 5680 4260 631 0.333 0.385
T 17TA | 7600 | 00633 | 10.09 | 5680 4260 438 0.278 0.321
2| 184 0 0.0665 — — — —~ — —

o F 21A | 3.086 | 0.0687 | 10.09 | 5630 4260 3130 | 0742 0.857
2 9B | 0. 0.0696 — — — — — —
2 10B 2207 | 00631 , 10.82 | 5820 4470 5160 0.942 1.074

1B | 2627 | 00657 | 1082 | 5820 4470 3950 0.824 0.940
12B 3.062 | 00674 | 10.82 | 5820 4470 3060 0.725 0.827
13B | 3590 | 0.0653  ( 10.82 | 5820 4470 2090 |  0.599 0.683
14B 4260 | 00656 | 10.82 | 5820 4470 1500 0.507 0.579
15B 5180 | 0.0647 | 10.82 | 5820 4470 935 0.411 0.469
16B 6.300 | 00630 | 10.82 | 5820 4470 631 0.329 0.376
17B 7320 | 00610 | 10.82 | 5820 4470 438 0274 0.313
18B 0 0.0655 — — — — — —
B1A 5 010605 | 1111 | '5810 4400 2840 0.699 0.803
Z B1B 5 0.10585 | 11.11 | 5810 4400 2830 0.697 0.802
=~ | B2A 5 0.083¢5 | 1111 | 5810 4400 1760 | 0.550 0.632
it B2B 5 0.08420 | 1111 | 5810 4400 1790 | 0.5% 0.637
& | B3A 5 0.06814 | 1111 | 5810 4400 1170 0.448 0.515
2 B3B 5 0.06865 | 1111 | 5810 4400 1190 | 0452 0.520
& B4A 5 0.04918 | 1111 | 5810 4400 610 0.324 0.372
B4B 5 005001 | 1111 | 5810 4400 631 0.329 0.379

) In the numbers of the ball- and roller-edged speeimens the letter A is given to clad pancls (D.VT.D. 5463 and the
letter B to unclad panels (D.T.D. 646), All stringer-edged panels are made froimn unclad material (D.T.D. 646).




and 70, The agreement with the measured maxi-
mum loads proved to he very good., The error in
the calculated value, averaged over all specimens,
wag smaller than == 2.2 9% of the measured value.
The largest errovs (smaller than -= 5 %) appear-
ed with the specimens BC3-2, C3-1, C3-2, and
12 3-2, these heing the specimens with the largest
thickness of the plate.

6  Results of ref. 4.

6.1 Description of fests,

The experiments deseribed in vef. 4 agree with
the present tests to a large extent. There are,
however, some signifieant differences,

The Speclmens consisted of Dnly ong bay W1th
a length of 35 in. and a-varying width between
the longitudina.l supports of 35—120 times the
plate thickness. All plates had the same thick-
ness, nominally 16 s.w.g., and were made of eclad
(D.T.D. 546) or uneclad (D.T.D. 646) material.
The specimens with stiffeners, however, all had
the same width (3 in.), and varying thicknesses
{from 12—18 s.w.g.).

Three different longitudinal edge supports were
used: rows of steel balls in vee-grooved hlocks,
intended to imitate hinged-edge conditions, rows
of steel rollers in reeessed blocks, intended to
imitate clamped-edge conditions, and a single Z-
section stringer on one side of the specimen at
hoth edges.

Flat-end tests were earried out in the ease of
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the load-strain eurves due to friction were neees-

osary.

the hinged-edged and the elamped-edged conditions, -

the loaded edges of the stiffened specimens were
cast in Wood’s metal.

The plate load and mean strain were measured.
The shape of the skin buckles was determined with
a dial indicator. The indicator was arranged to
he free to slide laterally on a eross-frame, which
wag itself free to slide vertically on edge runners
attached to the edge support rig. The weight of
the eross-frame and indicator was balanced by lead
weights. Amplitudes were meagured at the nodes
of grid lines, which were marked on the plates
symmetrically about the eenter and extending over
a length of 3 times the width, In some cases
araplitudes were measured over the whole length
of the panel

Table 6.1 contains some dimensions and charae-
teristic values of the specimens. The huckling
strain e, has heen ealeulated for ideal simply
supported and elamped longitudinal edges. Tt can
E:r for the speci-

[
mens are in general smaller than 1, as was the
case with the present tests.

he seen that the values of

6.2 Results of tests.

The influence of frietion at the supports of the
longitudinal edges was determined in separate tests
for each type of support. In the ball-edged panels
the {frietion proved to be negligible, contrary io
the roller-edged panels for which corrections of

'Hf 2
) —P
curves were determined and from these an experi-
mental value of the huekling stress was established.
A sccond experimental value of the buckling stress
was determined from the load-strain eurve, taking
the value of the strain at which a sudden reduetion
in slope occurs.

The experimental buckling stresses were compar-
ed with the theoretical value. For the hall-edged
panels ‘a fair agreement appeared between both
experimental values and the theoretical value,
except in the case of the clad speecimens which
buckled at loads in excess of the yield load of
the ctadding. In these cases the experimental
values were about 15 9% smaller than the expert-
mental values for similar unelad panels. This
agrees very well with the results deseribed in
Section 4.5.

For the roller-edged panels the experimental
values appeared to be smaller than the theoretical
value, the elamping effect of the roller supports
heing too small. Here again clad panels exhibit
experimental values smaller than the experimental
values for unelad panels. The experimental bhuck-
ling stresses of the stringer-edeed panels showed
a good mutual agreement for plates with large
thicknesses, but the agreement was not good for
plates with small thicknesses. The elamping effect
of the stringers approximated ideal clamping better
in panels with smaller thicknesses,

In the tests the clastic limit of the material was
not exceeded very far, the results being given only
for strains up to 5.10-. The elastic limit in the
material is reached at a strain of about 4.10-3.

The resunlts are presented in the form of load-

From the measured buckling shape (

strain eurves, from which ¢ — . curves, and
do
do’ﬁ-ﬂi:@ . .
panel £ in the eldstic region. These curves are
already eorrected for the friction cceurring at the
longitudinal support.

The results of some specimens are used here
for the evaluation of the e.w. as a funetion of

Ecr
e

from the amplitude measurements was chosen.

— Teawe CUrves were deduced, using the

. For &, the experimental value derived

[
The ratio 3

and (5.3) for some values of £ from the o — oease
curves given in the original reports on which ref. 4

is based, and shown in figs. 6.1-—6.4 inel.
, :

was ealeulated with formulas (5.2)

The ratio bg” could be derived from the given
do ) i fi
ao — veage curves, and is also shown in figs.
U edie o

6.1 —6.4 incl. Substituting ' (5.2) in (5..10) a_.nd

taking ouage=FE ¢, we find for the elastic region

do

d T edge )

b’
L=

(6.
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_ This equation holds also for the plastic region,

whieh can be shown by substituting (5.2} in (5.12) _

i Tedge

T,

and taking oege = £s. ¢ and

d
In ref. 4 the vahie of —— hasg been caleu-

da edge
lated using the panel E in the elastic region. Hence
. bw' . .
this ratio does not represent l;" in the plastic

region. For aceurate results in the plastic region

the valyes of derived in ref. 4 must be

T adga
+

. . . K
multiplied with the faetor =
t
same value of . This faetor is always larger than

helonging to the

one, hence was nnderestimated in  the

! d T odze

plastic region.
The maximum load in the panel will be found

at the value of [/iclgiven by (5.29), for which
£

b’ =0. This value of [/—EC—T- will be too large
€

when the plasticity of the material is not taken
into account. Mence the intersection of the

b’ . & . .
—?'"— enrves with the & _axis must he dis-
E

placed to lower values of l/s” .
£

’

bm . - ' -
The - eurves shown in figs. 6.1-—6.4 inel. are

not corrected for the effect of plastieity, because
sufficient stress-strain curves for the material of
the specimens were not available for all specimens,

Hince the curves for in .figs. 6.1—6.4 incl.

b

b
[

show too small values of e in the plastie region.

. Eer . b
The values of [/—1 for which the —?m— eurves
Eg )
are valid, are given in figs. 6.1—6.4 inel.
r
m

in the
b

Because of the error in the curve for

Eer

plastic region the values of for which

£
by'==0 are not plotted in fig. 5.30. Comparison

of these values of [/ﬁciderived from figs. 61—
£

6.4 inel. with the results of the present tests in

ae = Eop
fig. 5.30 shows, however, that the valnes of l/in

£
cfrom ref. 4 are too large, which was expected.

6.3 Discussion of resulfs.

The tests with ball- and roller edge supports
did not imitate hinged-edge and clamped-edge
conditions. They were, however, representative of
slight and heavy edge fixation, In the first case

the plate material outside the supports had an
important influence on the results and in the
second cage the flexibility of the rollers caused the

difference with the clamped-edge conditions. The -

results had to be eorrected for initial errors due
to friction and contact deformation.

The departure of the results for l;l in figs.

6.1 ~6.4 incl. from the theoretical curve iz in
general larger than in the present tests. This can
be caused by the fact that the specimens consist
of but one bay, and by the Iriction at the supports.

According to the results of the present tests
the e.w. of a specimen with one bay will he
smaller than the e.w. of a specimen with more
bays (e.g. compare the results for the specimens
B51 and B1-1 in fig. 5.17).

Probably the large departure from the theore-
tical curve in the case of the hinged-edged con-
dition will mainly be due to this effect. In the
tests with the roller cdge supports, however, this
effect will be mueh smaller, but now the friction
at the supports will play a more important role,

Suppose that the frietion has not bheen taken
into account. Then the measured load at a certain
average strain of the whole specimen will he too

m

large and this resulis in a foo large ratio 5

Therefore, when the test resulis are not corrected
sufficiently {or not at all) for initial errors due
to ‘friction the resulting effective width will be
too large,

. . . b
The agreement of the measuring results for _bi’

shown in figs. 6.1—6.4 inel., with the theoretical
eurves is, in view of the possible errors mentioned
ahove, quite fair. It is clear that in some cases
the departure of the test points from the theore-
tical eurves will he smaller when a more suitable
value of e, 38 used. Obviously in these eases the
experimental buckling strain e, was wrong (see

“section 5.3).

No warked difference in the results for elad
and unelad specimens and for hinged-edged and
clamped-edge conditions could bhe found.

7 Conclusions,

7.1 The test arrangement, designed for the pre-
liminary tests and wsed with little modifications
in the definitive tests, proved to be satisfactory
for the proposed test programme. The longitudinal
supports carried out as knife-edges required care-
ful attention, beeause the amount of play hetween
the knife-cdges and the panel had to be fixed
hetween narrow limits. Too much play will give
rise to local buckling near the supports. Further-
more the possibility exists that the plate does not
remain plane at low loads. Too little play, how-
ever, will cause frietion along the knife-edges,
resutting in large errors in the results. Neverthe-
less errors in the results eould not be avoided.
They were compensaied by suitable corrections.
The frames carrying the knife-edge supports
were not rigid enough, which appeared especially
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after some tests in which irregular wave forms
caused large forces in the supports.

1t has been shown that the fact, that the loaded
edges of the specimens ave not eaxetly parallel,
has some influence on the stress distribution in
the plate. This influence is Important only in the
neighbourhood of the origin of the load-deforma-
tion eurve. A correction for this error at low loads
was introduced,

7.2 A value for the buckling siress could be deter-
mined experimentally from ihe amplitude measure-
ments, In some cases, however, this value was not
aceurate beeause the number of amplitude measure-
ments in the neighbourhood of the buckling stress
was too small. It can be recommended, therefore,
to take in future tests more amplitude measure-
ments at loads in small excess of the buckling load.
Irregularities in the wave form occurred at loads
in gmall execess of the buekling load,

7.3 From the preliminary tests it can be con-
cluded, that the seatter in the results of similar
speeimens is very low, and that the difference in
effective width hetween corresponding specimens
with three or more bays is negligible. There ap-
peared, however, a marked difference with speci-
mens having less than three bays. Hoence the
definitive tests could be conducted on speecimens
with three bays.

~ covered in the pre-
Eg

liminary tests the theoretical effeetive width in
the elastic region can be used safely in the plastic
region.

For the range of

7.4 The specimens of the definitive tests, all eon-

Eﬁ
Ee
between 0284 and 0.750. The difference between
the effective width in the plastic rvegion and the
theovetical effective width in the elastic region

appeared to be small for all values of the para-

sisting of three bays, eovered the range of

meter

Eg
theoretical value for the effective width in the
clastic region can be used safely throughout this

Eer
range of I/— .
Ee

width in view of the compressive stiffness showed

in the elastic range (thus for values of l/

The results for the effective

Eer

£

Ecr

larger than the value of the parameter
Ee

for each speeimen) a larger difference with the
corresponding theoretical curve, but it must be
realised that these points are derived by ecalcula-
tion from the measuring points for the efiective
width, so that these points confain all errors
present in the original points plus the errors due
to the not exact caleculation. The wvalues of the
effective width in view of the compressive stiffness
or

in the plastie range (l/; < l/ £
€ Ee

) appear-

edge conditions at the longitudinal supports.

ed-not to be comparable with the curve for the
elastic range these curves being in the plastic

Eer

range dependent of the parameler . of the

Ee
shape of the stress-strain curve of the material in
the plastic region, and of the dimensions of the
specimerr. These eurves are therefore valid only
for the material and ihe shape of the specimens
investigated.

It can be concluded from the tests that the
presence of cladding does not influence the effee-
tive width in the plastie region,

It is possible that the agreement between the
effective widths in-the plastie and elastic regions
would not be so good for materials having a dif-
ferent form of stress-strain eurve. It is therefore
recommended to extend these fests to speeimens
made of materialy like 75 8-T and 28 or 38,

75 A point of further research is formed by the
All
present tests were condueted on speelmens with
simply supported edges. Tests on specimens with
tully elamped edges will, however, be difficult to
realise, as is shown' in ref. 4. Furthermore, the
results of ref. 4 zive no indication that the e w,
for ¢pecimens wiht elamped edees will be different
from the e w. for specinens with simply support-
cd edges at the same value of ¢/e.; this agrees
with the theorstical results of ref. 3.

7.6 The excellent agreement between the results
for the effective width in the plastic range and
the theoretical curve for the elastic range makes
it possible to predict with good aceuraey the maxi-
mum load of plates under compression from the
stress-strain relation of the material and the theo-
retical eurve of the effective width in the elastic
range. For all specimens of the definitive tests the
maximum load was ealeulated and the error in the
caleulated value as compared with the measured
maximum load, averaged over all specimens ap-
peared to be smaller than =+ 2.2 9 of the measured
value.

8
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APPENDIX.

Calculation of the ultimate compression load with
respect to general instability of a panel with
stringers in the direction of the load.

A panel, loaded in compression and consisting
of a plate with stringers in the direction of the

Joad, will ultimately collapse by local failure of

the stringers or by general instability, In most
cases general instability will occur after the buck-
ling stress of the plate has been exceeded. For
panels with relatively heavy stringers the critical
load may even lie beyond the elasticity limit. The
load, at which general instability will oeeur, can
be eomputed from the formule

=B

Rc‘t‘ == ]ﬂ _12— 5 (Al)
where %k is determined by the clamping conditions
of the loaded edges and where B represents the
hending stiffness of the eross-section. In case the
elasticity limit has been exceeded the bending stiff-
ness has to be caleulated for increasing compres-
sion strain over the whole cross-section {Shanley-
effect). The bending stiffness is delined by

SM = Bsw". (A2)

Consider o cross-sectional element of a panel
(fig. A.1). Let 2z be the fransverse coordinate
with reference to the neutral axis in hending.
Then SM 18 given hy

SM =] B802zd8. (A.3)
sf '

If 3¢ denotes the inerement of specific shortening
due to hending and if the subseript I refers to
one hay of the plate and the subseript 2 to the
adjacent stringer, then

ap :
B =t bey 2 ~|—Ei,f 5e 2 dS
g
or
“ap
aM=( ettt B, IZ)SM”. (A.4)

Thus for the bending stiffness of one cross-sectional
element is found

dP
B: 121'2'+ Eg!Iz. (A5)
£
Now \
' P, =0, hbm, (A.6)

where o, iz the stress in the plate at the stiffener
attachment line.

It follows
ap, do db'm)
=1 1
- ,L( b oy
or
ar, B, dbm) .
de _hE‘*(b*”Jrth“" %/ A
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In terms of e w. the stiffness of the plate can be

expressed by PN L S, 6 (A.12)
2 Bkt A8 T EL B, R B b '
de _ h o’ (4. 8) As b’ may be <0, z, may be > e,
where ‘ . Further for I, can be written
v d% L=8,#+8, (e—=2,)2 (A.13)
=Ry T, ) (A.9) it { represents the radius of inertia of the stringer
b b By de erossg-section ‘
Now (A.5) can be written as follows In each particular case the value of P, has to
, be determined hy gra}phlca,l means. Hor some
B=Eyhbn'2*+ E,, 1,. (A 10) values of &, corresponding with definite values of
In case the materials of the stringers and of the
plate have an identieal compressive stress-strain P
curve, formula (A 10) assumes the simple form
., B=E,rP, (A.11)
in which 7’ is the moment of inertia of one cross- rb————-— —_——
sectional element about the neutral axis in hend- .
ing, including the contribution of the plate by
means of the e.w. b,/, defined by (A.9). l
by' ' . . \
—{;’— may have a negative value in the plastie :
range, as K, will soon become much smaller |
than F,.
The determination of the neutral axis in bending |
can easily be given in terms of the e.w. b,’. Let l
the distance from the center of gravity of the ’
. l j |
- A , L
__;..L.:-_.__.._!._.__' zﬂf”;l;—'# _ ' _..__._'I;-_*._ . £ ) £
I temt ] ' K ‘ cr
L b | Fig. A 2. Uraphieal determination of P .
| L 7
Fig. Al. Geometry of ore cross-sectional element of panel. P, P, is computed from (A.1) and {A10). The
: intersection of the P—: curve and the P,—¢
stringer cross-section to the plate be denoted by e curve gives the value ol the critical load and the
(tig, A.1), then it follows critical specific shortening (fig. A.2).
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