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XEPORT F 184 

A Simplified Method for the Calculation of Three-Dimensional 
Laminar Boundary Layers 

by 

J. A. ZAAT. 

Summary. 

H y  aid of the assumption that the boundary layer veloeitics in tho direction pcrpendicular to the lwnl free flow arc 
anall comptare,l with those in tho direction parallel to  this flow, i t  is possible t,o approximate the momentum oquations fo r  
thrre-dimensional laminar boundaF layers by two total differential equations of the first order. The boundary layer qua= 
tities in the d i red im bf the Id free flow me calculated by neglecting the houndary layer cross flow but taking into 
z e o u n t  the three-dimensionnl oharaeter of the potential flow. This only requixa the evaluation of a n  integral. Thercnfter, 
the crow flow is calculated by using the results for  the main flow, whioh lcnds t o  &I, integral equation. 

l lhe simplified method has been applied to  the flow about a pawed ellipsoid at zero incidence. The rewltr agreo very 
well with thnsc obtained from tho complete momentum cquations. 

This investigation has been performed under con- 
tract with the Netherlands Aircraft Development 
Board. (N. I. V.). g, 11, z Cartesian coordinates. 

Contents. 'p: 9 strcamline coordinates. 

List of symbols. 

f ,  7, 5 
Q velocity potential. 
l j ,  V ,  1V velocity components of the potential flow 

orthogonal, curvilinear coordinates. 
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_ _ _  in the €, 7, <-system. 
U. V .  11' velocity components of the potential flow 

in the 2, y, z-system. 
velocity components of the bonndary layer 
flow in the <, 7 ,  <-systeem. 
see eq. (2.2). 
pressure. 
a i r  density. 
kinematic coefficient of viscosity. 
square of the potential flow velocity. 
see See. 5. 
displacement thicknesses, see cq. (2.9). 
momentum thicknesses, see eq. (2.9). 
parameter for profile in flow direction. 
parameter for profile in direction perpen- 
dicular to free flow. 
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r ( s )  

u 

radius of the axially symmetric 11dy ill 

the section s. 
I + z,* + Z"*. 



az a i  
az a!, z,=-,  z , , - ,  Z = B ( Z , U )  is cquation of the 

hodv ~ * -  
6 a a a a s  
62 as ax 611 a y  

v x  are dif- + Zr-, - = - + z -=_ 

fereutiations mhere 'y or z are kept con- 
stant, hut z is coiisidered as function of 
3: and 1 ~ .  

1 Introduction. 

In a series of reports (refs. 1-4) a method 
for the calculation of three-dimensional laminar 
lioundary layers has heen described and applied 
to the case of a three-axial ellipsoid a t  zero in- 
cidence. This method, which was hased upon the 
complete momentum equations for t,he boundary 
layer in t,he directions parallel and perpendicular 
to tfie local potential flow, required extensive cal- 
culations since the basic cquations consisted of a 
set of two partial differential equations with two 
unknown functions. These functions represented 
t,he parameters which gave t,he required freedom 
in the prescribed boundary layer profiles i n  the 
two directions mentioned above: 

i~lification c 111 the mesent renort a I the 
method is -presented.- It is assimed that in the 
iiiomeritum equation for the main flow the cross 
flow terms are small and may be neglected. There 
remains a tot,al differeiitial equation which call be 
solved in the form of a simple integral and which 
yields a result similar to the well-known formulae 
of T i w ~ ~ m  (ref. 5) and Tnuczwmnowp (ref. 6 ) .  
With its solution, the. houndary layer in the direc- 
tion of the potential flow is known. 

I n  the momentum equation for the cross flow 
t,lie result ditained for the boundary layer profile 
i n  the direction of the main flow is substituted. 
The remaining total differential equation can then 
lie solved with the aid of a relatively simple 
iiumericul procedure. 

The simplified theory is applied to the case of 
t,he ellipsoid at  zero angle of incidence, which has 
heen investigated before. It appears that the dif- 
ferences in results betmeen the Simplified and the 
former, more accurate, method are quite small. 

The general formulae of the present theory have 
Iiuen simplified further for the special Cases of the 
yawed infinite cylinder, two-dimensional Slow and 
axially symmetric flow. 

1. 

2 The momentum equations in streamline coordinates. 
. .  

Tlic equations for the Iioundary layer flow about a bod>- 

z = z ( + ,  y) (2.1) 
gi\-t:n in  Cartesian coordinates z, g, x ,  will he determined. A set of orthogonal, cirvilincai coordinates 

7, < of ~diieli ( and 0 a re  on the surface of the body and < along the outward normal of the body 
vi11 ha used. I n  these coordinates the liue element assumes the form 

dsZ=lt,,2@M2 + h,2dV2 + h,'dt2 (2.2) 
wlicrc 11,  and 7 1 ,  nil1 lie coisidcred as functions of [ and 7 only (which means that the radius of cuma- 
tnrc is large compared with thc boundary layer thickness), while h, will be taken equal t o  1. 

Th i  equations of motion for the lioundary layer can he written in the following form (see ref. 2 )  

whcre ZL, W ,  w are the boundary layer velocity compoucrits in (, 7 and [ directions, p the pressure, p* the 
air dmsity and Y the kinematic coefficient of viscosity. 

The equation of continuity is 
. .  

(2.4) 

The pressurc~ can be eliminated from eqs. (2.3) by aid of the free stream equations. Using the 
continuity equation for eliminating w and integrating with respect to [, the momentum equations are 
ohtained, as has been performed by T a m -  in ref. 2. 

A simplification of the result (also given in ref. 2) is obtained when streamline coordinates are used. 
Assuming that there exists no vorticity component normal to the surface, a surface. potential y and 
a surface streamfunction $ may be introduced by 

dv = li 71 & + V h,d7 = v7J2 S Vz ds, = I/ r. ds, , 

d$ = 1/aV 71,dt - U I&) = vp?. ds, . 
(2.5) 
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The meaning of the symbol p will he explained in See. 5. Li and V are the free stream velocity com- 
ponents of the potential Ilow in E and 7 direction. and as, are the lengths of line-elements parallel 
an& perpendicular to the streamline. The complete line element heeomes equal to , 

Tliis expression heeomes identical to (2.2) if @ and dv are taken equal to 4 and d$ respectively, while 

1 and h,= __ 1 h -- 
I - V F :  VpT (2.7) 

In the system of streamline coordinates one has V=O. 
The momentum equations have heen derived in Appendix A and take the following form 

The displacement, and momentum thicknesses are givcn by S, = A? I/, a.nd 9j, = O j i  v; 
where 

mil 

(2.10) 

The coordinate I lias heeii transformed into 2 by aid of eq. (2.10) in order to he able to write the 
hot indam layer profiles in a normalised form.. vz is proportional to the hoiindary layer thickness. 

3 The boundary layer profiles. 

In  aceoi3dance with rei‘. 3. the boundary layer profiles are 
given by 

w,ere 

The functions f ,  a and 71 are represented in fig. 1. 
For  ?= 0 they satisfy the conditions 

f = a = 7% =I” = h” = p” = n”’ = h’l’ = p”’ = 0 

Fig. 1. The boundary Inyer profiles 
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The I~oundary layer thickness for the cross flow ( t c ? )  is a factor f2 larger than for the main flow ( 1 6 , ) .  

"By aid of 'the hoinidary conditions at  the body it. can he shown .(A~)pendix A )  that 

(3.3) 

N = 0 if A > 0 (accelerated .Flow), N = '1 if A < 0 (retarded floT7). (3.4) 
. .  

The shear st.rcss in flow direction a t  the body, , riinishes for A =- 1. The point where 
. .  

A = - 1 will he taken as the point, of kiminar separation. 
When the potential flow is assumed to  he known the momentnm equations (2,s) are a set of 

differential equations for the quant,ities I I  and ,Q, detcrmining the houndary layer thicknesses in the two 
divections. 

4 Simplification .of the momentum equations. 
c ., 

An accurate solnt,ion of the momentum equations (2.8) has heen given in ref. 3 for the case of a 
y a m d  ellipsoid a t  zero angle, of incidence. This same ease will now he solved by aid of certain simpli- 
Sicitions to hc made in. the equations (2.8). The fnndamcntal assumption of the present report is that 
t,lic cross flow If., is small of order 6 with regard to the main flow 1 6 , .  It 'then follows that 

O,, = 0(1), O,, =o(S), O,, = O ( P ) ,  Ax = 0(1), A, = O(8). 
. .. . .  . .. . 

The cross flow tc, vanishes both for t-+ 0 and for r+ m . Hence,. the values of 16% hetweon these 
limit,s must indeed become rather Idrge.hefore the orders o f .  magnitude' for O,, etc. as given ahove, no 
longer hold. Perhapa for swept wings at large angles of incidence, the .assumption would heeome less 
accurate. I t  is intended to perform n separate investigation concerning this point, hut in  the present, 
ease, i. e. the ellipsoid under zero angle of attack, the results yield a very satisfact,or] confirmation of 
tliis:'assumption. It may he added, that the possihility of this assumption is an essential advantage of 
the use of streamline coordinates. 

' 

a - a  
PF a, Sinec t,here is: in general, no difference in order of niignitudc het,ween the operators -- and v 

qqdicd t,o any flow quantity, the equat,ions (2.8) may he approximated by 

After multiplieation with Z T O,, I/, and using (3 .3) ,  the first, of these eqnations r:in he hi.onght in 
the form 

- (4.2) a !r0 4 ' ,  
p - (-Or:) =-@,,(2 + A + N ) - 2  , \ O , , A , .  a, 3 1/77 

. .  
l 'hc  right hand side of this equation, 

. .  
H ( A )  = &O1,(2 + A + h') -2 AB,,A, 

3 I. 77 

as well as O , ,  have been plotted in fig. 2 for the interval - 1 < I\ < 1, which contains a11 prevailing 
mliics of A .  It, follow from fiy. 2 that the approximations, 

H ( A )  =0.436-2a2A, 8,,=c~=O.293 
T 

give rcuonalile :leeuracy. Inserting this in eq. : (4.2) and'multiplying witli .-..Zit: ohtains p d  ' ., 

(4.3) 
0.436 T 

T 
o d  ' ., 

give rcuonalile :leeuracy. Inserting this in eq. : (4.2) and'multiplying witli .-..Zit: ohtains 

(4.3) 

Tnserting the value of a and integrating, the result is 
Q 

11==5.08- P I c ~ ( Q ~ ) ' +  (4.4) TZ 
Qpo 

T*II 
P 

~... . 
where -Q; is a n y  balne o f -~ i  and 5.08 c"(Q")  denotes the value of - for Q = , Q o  
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J h .  (4.4) contains the final resnlt detcrmining the proiierties of tlic li1nindaly layer in tlre direction 
~ ~~ . .  . -  . 

of .tile main. flow. 
Consider now t,hc cqnation for the cross flow, that is the second equation (4.1). 3Xultil)lyiiig wit,h 

I / o a n d  using cq. (3.3) lirings this equation in the form 

ai 

ae 

(15 

.\ , 
a4 

a3 

02 

' . .01 

0 
10 08  06  0.4 .0.2 0 -02 -04 -06 -ae -10 

Fig. 1'. ,[(A) mil 0,, BS functions uf n. 
X 0 calcuhterl f rom the givca buroidary layer profiles. 
- iqqmximatcd. ' 

A 

(4.5) 
', 

P ( R )  
0.24 

. .0.20 

q m 1  ;rn1 
0.16 0004 aom 

0.l2 0003 0012 

008 0002 aoo8 

004 

0 0  
o a5 IO 1 5 .  20 25 30 15 40 n 

Fig. 3. The furietiorrs p (a), q(n) and r (n).  
__ c;tleolated f r o m  tho given bauidary layer profiles. 
Q x A npproxitnatc values. . . 

. .  
'rliis eqlruition J ields after integration the Pollowing relation 

Eq. . .  (4.6) is 811 equation fbr n . B,, may Iic eqwesscrl u s  fanetion of R , ,  viz. '. 
m - 

B,, =- /. u,u,d%=-n% [ p ( n ) +  n q ( R ) +  "(I!) 1. (4.7) 

be caleulated by aid of the  giroi hounda'ry layer profiles (3.1). 
However, they liecome very complicated functions o f  I!. A s:atisEwetory approximation is given 11)- the 
cximssions (fig. 3)  

(l. 
The Jhictions p ( c > ) )  q ( Q ) ,  r (n)  can 

q(n)  = - o.noio6 + 0.00756 R - o.noz70 RZ 
~ ( n )  = - 0.00593 + 0.0~148 R - 0 . 0 0 ~  Q Z  

for 0.25 <.R a . 5  

' .  (4.8) 
I p ( R )  =- 0.00522 + 0.01705 R + 0.01800Rz 

R 
0.03894 - 0.0040.5 I! - 0.02494 - 

(4.9) 
Tlic frnictions o ( , )  and n(rp) arc now to  be ealcnlated from the equations (4.4) and (4.6) respectively. 

Iii order to  i)crform bliis, it is necessary to determitic a t  first, the fnnction p as well as c o ( y o )  and 
c , ( y o ) .  

y \  
r(C1) = 

A% = 0.752253 - 0.066987 A - 0.255544 k'. 

I t  will he ;is.ruiiied througliorrt th8t the potential flow aJmnt the body is known. 



5 The function p. 

This function is determined by the equation of 
continuity (2.4) applied to the potential flow. 
Replacing d t  and dv by dp and d+ respectively, 
using eqs. (2.7) for 1, and h, and remarking that 
U = vq since V = 0, one obtains 

where II‘ is the component of the potential flow 
’ directed normal to the body (W=0 at the sur- 

face of the body 6 = 0 ) .  It is secn from (5.1) 
that the dependence of p upon + is undetermined. 
I n  fact, p may be multiplied with any function 
of $. This only changes the $-scale as is seen from 
eq. (2.5) mhcre d+ has bean defined. 

Eq. (5.1) can be reduced to 

(5.2) 

It will he assumed that the potential flow at the 
body surface is givcn by the velocity components 
U and v in 2- and y-directions. Taking this into 
wxount, it is preferable to reduce eq. (5.2) to a 
form containing ii and V instead of 157. I n  AD 
pendis B it is shown, that such a form is 

- 

8 where g = 1 + ze2 + zyz. The symbol - denotes sx 
differentiation to z, with y constant, but z COII- 
sidered as function of z and y (eq. 2.1). Hence 

I \  

The differcntiation in the left hand side of eq. 
(5.3) should he performed along a streamline 
(+ constant). According to Appendix B, one has 

a - - S  - 8  
a, 6 X  W 

T - = U - - +  v--. (5.4) 

The function p is to  be calculated front eq. (5.3) 

The corresponding $-coordinates follow from eq. 
follows from the’ condition of tan- (2.1), while 

gential flow as. 

w==uz ,+  vz,. (6.2) 
In  the integrals o c c n r h g  in (4.4) and (4.6) the 

integration element may be replaced hy =dx or 

2’ 
= a!/. 
V 

further complication in (4.6) is the factor ill, 
which is also determined by the potential flow i ~ s  

‘is semi from ecl. (3.3). The difficulty is the dif- 
ferentiation to +. However, it is also shown i t1  

.ippendix B that 

T 
U 

Finally, thcre remains the determinatiun of the 
integration constants c, and c,. For a body of 
small thickness therc will be near the leading edge 
(c&ator) a streamline, separating the flow passing 
along t,he one side from that passing along the 
other side of the hody. For sake of convenience 
this dividing line will he called henceforth equator, 
also if the hods is a t  incidence. The streamlines 
have in the stagnation point a contact of verb- 
high order with the eqnator (fig. 4 and ref. 1). 
The caleulation of u and n’along the eqnator and 
along streamlines in the immediate vicinity of the 
eq!iator occnrs hy an iteration procedure (ref. 3) ,  
using eqs. (4.3) and (4.5) in the form 

6 Calc@ation of the thickness parameters (r 

and n. 

The integration in eqs. (4.4) and (4.6) are to  
be performed along a streamline. Along a stream- 
line the relations 

as av az as .+ -=-=-=L-- - 
V V T - T ’  - 

U 
Fig. 4. The projections on tho 5, y-plane of 

(6.1) (i) potential flow strenmliiica 
where T = @ + P + F  

mist. The projection of the streamline upon t,he (ii) streamlines along the hody - - - - 
z, ?/-plane is obtained by integration of (iii) separstioe line - ._ ._ ._ 

The iteration is based upon the physical con- 
sideration that v and n cannot change rapidly 



dong that part of the equator, where t,he flow is 
mxelerated. Therefore: init.ia1 values for o and R 

are obtained from cqs. (6 .5 )  hy neglecting - 

By numerical differentiation of the 

values of o and n, a first approximation is obtain- 
a, BR ' ed for  - and -. The latter values are sub- a, & 

stituted in eq. (6.5) and new values for 0 and R 
are  calculated. This is repeated until the values 
no  longer change'). 

Only for a streamline along wliicli the flow is 
moving away from the equator, larger values of 

a. 
a? 

an 
and ap. 

aO an 
am am - and - ;ire 1)ossible. 
- 7  - r  

The iteration procedure has the advantage that 
the values of D and n in the stagnation point itself 
:ire not required. These values can only be deter- 
mined after difficult limiting transitions. 

For calculating the flow along the point of the 
streamline, that is not near the cqiiator, eqs. (4.4) 
and (4.6) arc used, where now c(,(tpo) and c , ( ~ ~ )  
are  known. Eq. (4.4) offers no difficulties. Xq. 
(3 .6 )  is solved as follows. 

Let the values of 0 be known up to  a certain 
value f k - 4  = n ( p i - ,  ). The problem is then to 
Find R i .  The value R ;  has to satisfy the relation 

r 1 d Q  

.9,,(n,)=Y"~-l 

?:dp 

P Qo wherc Y = c, (ad --e K 
i i n d  I dciiutes the integr;ind, also occnrring in 
cii. (4.6). 

F o r  t,he numerical calculation the interval has 
t o  he tiakeir so small that  the trapezoidal rule for 
integrat.ion inap he applied. If now for f i t  the 
guess R ;  is made, so that $ 1 ;  = Ri + an, then 

- - 

or 

r \  L l ie  cquadion allows the determination of 
AR and hence, the improvement of the gnessed 
value C . 

It appears in the calculation that near the higli- 
est point of each streamline R hecomes infinitely 
large. Sirice dZ1 shoald remain finite, it follows 
from eqs. .(4,7) and (48) that If ranishes a t  least 

Hence as 5. 

if n + m .  

The point where 3f = O  is determined by the 

condition - = O .  The cross flow vanishes to- 

gether with the gradient of the veiocitp vector in 
t,he direction perpendicalar to thc streamlines. 

13cyond the point whcre 31 = 0, - changes sign. 

Iliis makes tliat the sign of cL(pl) i i i  cq. (4 .6)  
sl~ould slso tic ehanged. 

Eq. (4.4) is the most important equation for  
t,lie calculation of three dimensional flows. This 
cquation gields the d n e  of O, detci,mining the 
houndary layer thickness as well as  t,he point of 
laminar scparat,ion where N 1 ,\ = 4 UT? = - 1. 
13q. (1.6) serves f o r  the calculation of the cross 
flow. 

Finally, it may be mentioned that the criterion 
for laminar separation )\=-I is not exact. The 
xeparation line is, in fact, t,be mvelope of the 
st,reamlines, infinitely close to the body. Since this 
1:lrrelope will, in general, not be perpendicular to 
t,he streamlines of t,he potential flow, there will 
remain a eomponcnt of the shear stress in the 
ilirection of the potential flax- streamlines. This 
component, howe?er, is small and changes rapidly 
near sepiiration. IIcnee, the criterion i\ == - 1 
yields a good opjiroximation for separation. 

7 The boundary layer flow about a three-axial 
ellipsoid. 

In two former reports (ref. 3, 4) a solution has 
liecti givcn for the boundary layer flow nhout t,he 
el lipsoid 

a i i  
84, 

a 7' 
84, 

r 7  , 

a=3Z, b=Z,  c=0.152 

which WHS placed in a flow, which a t  infinity had 
t,he direction (- 1, - 1,O).  

Fire st,reamlines of the potent,ial flow near the 
hodp have been calculated. Their pvoject,ions on 
t,lie s! ?)-plane are shown in fig. 4. 

Results for the dimanfiionless values vT 
atid R ( U ,  = speed of undisturbed Plow) obtained 
in ref. 3 hy aid of the complete diffcrent,ial equa- 
tions (2.8) arc shown in figs, 5 and 6 as drawn 
lines for  the fiye streamlines. The approximate 
solutions ohtained from eqs. (&4) and (4.6) have 
;also been plotted in figs. 5 and 6 a8 separate points. 
It is seen that the agreement i n  highly satisfactory. 
In comparing the results for, n (fig. 6 ) ,  it should 
/ I C  Irept in mind t,liat in the present, calculation 
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a better approximation for O,, has been used, viz. 
eys.'(4.7) and (4.8). Therefore has also been 
calculated with the approximate method of this 
rcpoi+ bot using the former approximation for Os1. 
This result is also shown in fig. 6, which is seen 
to agree slightly better with the drawn lines then 

? 

3 

' *  

?. -1 .2 . I  0 .! 
t'ig. ti. n (rntiu of boundlary layer tllicknesses of m o m  flow 

w i d  main flaw) ax fuuetian of z/l along the equator 
and dong thc atrermlinas. 

- enleulxtcd liy aid of tlw ,:ompleto monientuni rquntions 
(2.5). 

x 
0 odedated from (4.F) with B weording to refs. 3 and 4. 

ewleul&ted from (4.6) with B :iceording to (4.1); 

i,hc restilt olitained with the improved expression 

The houndaiy layer profiles for the central 
shaml ine  are given figs. 7 a.nd 8. They are 
~:nlenlated from eqs. (3.1) with thc valnes obtained 
for 1 1 ,  iV, ,If, (T and R. It is seen that separation 
oc~urs for x/L c - 0.780, since for  this value of 

s/Z (4) vanishes . The cross flow vanishes 

for valnes oE s/l near zero. It is seen from fig. 8 
that, t,he cross flow obtained by the approximate 
met,liod is slightly la.rger than that  obtained by 
the more exact method, although the differencc 
ma.y' hc due to the different approximation for O?,. 

Fig. 9 shows the displacement thickness in 
dlimeiisionles8 form along the aeqnatov and the 
st,reamlines. 

for Ozr.  

au 
a t  . r=ll 

x 
as frznetion of - 
0 Points of separation 

1 '  



The direction of the streamliiics' in tlic lmindary 
litrer ileal' the hody is girm by 

These streamlines as \vel1 as the line of separation 
have iilso lieen drawn in fig. 4: . 

8 Some speiial cases. 

8:' T h e  flow i d h o t ~ t  a ynwed, infinite cylilzder. 
In  the case of a yawed infinite cylinder, the 

y-axis will hc taken in the direction of the axis 
of t,lie cylinder. All ouantities then are indeDcli- 
d m t  of y. 

The function p is calculated from eqs. (5.3) and 
(5.4). The differential equation for p hecomes 

with the solntion 

, 
where A is an nrhitraG constant. 

Since 
r r = r / . + F +  r V 2  and W=U.!= 

(See eq. (6.2)) 
oiic  ma^ write also 

_ .  A 
T - V 2  P= 

'(htsidci,ing now cq. (4.4)> the integration ele- 
iiiciit. d v  may he rcplaced, mlici: using eq. (&I),  by 

T 
V T - V  

d, = - as, 

w\.licrc ds = Vdx '  + de2 is tlie line e~emcnt in a 
section !I =constant. Taking for vpo the velocity 
in a point, of the stagnation line, it follows t,hat 

I 2'2 
5 . 0 8 ~ , ( ~ ~ )  = (2) =O,  

P w, ." - 
since = m (2' - Vz 0) along the stagnation 
line. 

Ihiicc. eq. (4.4) becomes 

xrhcvc s = 0 is at >lie stagnation point. The value 
of D for s d 0  docs not vanish as follows when 
1 - 7  is cxpanddd near s = O .  

In  order to  calculate the cross floiv, eqs. (6.3) 
;ind (6.4) are nsed. They yield 

I 1  

a - - s  T V , - = V -  
ah 62 

Substituting the values for  p and 11 into cq. 
(as), the  result is 

9 

8:2 Two-dinie?t.sionnl fh'. ' 

For two-dimensional flow one has 
- - -  v 0, 1' = uz t 1 ~ 2  = u2 

i t i d  cr4. (8.1) hecomes 

> \ h i .  iiitrodnction of 

where 11 = 0.293, e([. (8.3) can he Inwight in the 
Form 

x 

B z =  0.436 / / - s i  ( U%s (8.4) 
1; 

\rliich is idcnt,ieal to TA\VAr+" equation (re(. 5 ) .  

S.3 Aziirl-s!/mn&~~ic 'flow. 

The potential flow i n  tlie direction of tlic axis 
of an axially symmetric hody depends only upon 
the coordinate s, dong a streamline. The func- 
tion p could again he calculated from cq. (5.3), 
hnt it is much simpler to consider eq. (2.6). 
Taking t,he azimuth angle + in a circnlar section 
perpendicular to the axis as streamfunctiori it  
ifollo~vs that 

(S .5)  

H -  comparison of eqs. (2.6) and (8.5) i t  is s e w  

1w = dS,Z + V ( S J  d+* = - + 1-2 d+Z. 
112 (b, ) 

that 
1 

rLIJ' p =  -. 

IGq. (4.4) then hecomes. 
I). 

irhich is similar to ' a resnlt of TRIJCliF~BRolYl' 

h e  to the symmet,ry, t,here exists no cross flow 
(ref. 6) .  

in this case. 

9 Conclusions. 

The main equation in the siniplified metliod for 
tlie calculation of three-dimension;il laminar boun- 
ilal?; layers is cy. (4.4) 

0 

P T 
U = 5 . 0 s F  ] co(po) '+  i' 7 a.4 1. (4.4) 

PO 

.. 



This eqnation dethrmines the boundary la)-er 
t,liickness 1,'; in the direction of the local free 
I'low. The displacement and momentum thicknesses 
are proportional to v ,  see eqs. (2.9), with the 
proportionality factors depending upon the pre- 
scribed boundary .layer profiles. 

I n  cq. (4.4) 2' is the square of the potential flow 
velocity and .  is a function depending upon the 

hody surface (see See. 5). This function introduces 
generally thc three-dimensional character of the 
flow. As seen from eq. (5.2) p depends on a W / d [ .  
Assuming in a point of, the surface a system of 
Cartesitin coordinate axes (, v, ( falling along the 

and $ directions aud the direction of the hody 
normal, one has for three-dimensional flow 

I 

I 

I divergence 11f the poteutial flow velocity along the 

I 

a i v  au av 
ay  . a( a, 

For two-dimensional flow the term aV/d, 
vanishes and cq. (4.4) may bo replaced hy eq. 
(8.3). Hence, eq. (8.3) will also yield an approxi- 
mate vesult fo r  the three-dimensional houndary 
layer provided aV/d, is small. This occurs for the 
ellipsoid at  zero incidence if the flow not too near 
t,o the equator is considered. Along the equator, 
however, dV/d?  is large (although V = 0 )  and 
here, eq. (4.4) should be used, resulting in a value 
of o which is much smaller than it would be for 
two-dimensional flow. Due to the cross flow the 
streamlines in the boundary layer are not parallel 
to t,liose o€ the potential flow (see fig. 4). The 
Imnndary layer streamlines deviate from the poten- 

I 

i ,  

t.ial .flow streamlines towards the side of thc center 
11f curvat,urc of the latter streamlines. 

The envelope of the houndary hye r  streamlines 
near the hody surface is the line of separation. 
Separation occurs in the region of decelerated flow. 
Approximately, separat,ion takes place if the shear 
stress i n  the local direction of free flow vanishes, 
that is if N = A = - l .  Howerer, exactly, the 
shear stress perpendicular to the separation-line 
should vanish and since this line is not perpen- 
dicular to the free flow streamlines, the criterion 
i\ = - 1 is indeed a.n approximate criterion for 
scparation. The difference ,however, will usually 
hc negligible. 
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. '  
APPENDIX A. 

Derivation of the momentum equations in  streamline coordinates 

1. Int,rodncing st,reamline coordinates into the equations of motion (2.3) hp putting 

1 1 
f = p, 7 = $, h, = --, h2 = 

these ciinations become li T i  1' D 

The corresponding equations for the free stream are ohtained by taking ?c = TI, w = V = 0 and omit- 
ting all derivatives of U and V t o  i. Hence, they w e  

(A. 2 )  
au ($1 
- au - a (F) 

'' a, us-=- 
a,. '~ 

~. 
, !  

, , I  

UZV, -=--uv, a$ a$ 
* 
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Elimination of the prcssnrc from (A. I )  and (A. 3 )  yields 

The momentum equations are now obtained by an  integration over 5 from 0 to ;o 

A s  Iircliminary steps it is remarked that 

a IC' - 1'0110~~-s from the eontinnity equation (2.4) as 
a7 

Perfoiming IIOW the integration of (A.3) over 5, the result is 

After introduction of the expressions given in (2.Y) thew equations become 

These equations appear to be equivalent to the cqnation (3.8) given in the main text. 

2. The boundary conditions a t  the body ( i = O j  i~t'c I L = w = O .  Also all derivatives of u and ZI with 
respect to y and $ vanish. 

a 10 w = O  and i~~cord ing  to (2.4) also -= 0. 

From (A. 3) it follows that for s= 0 
at 

au - _=_  
3 a, 

a i i  
a, 

It follows from (3.1) and the boundary condition 8'' = 1, f" = 7 ~ "  = 0 that A = 4 (T - . 
fi'rom (h .4 )  for i = O :  

or, with (3.1) 
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By differentiation, from (A.3) with respect to 6 it follows 

The following boundary conditions contain derivatives of unknown functions as is seen by differen- 
tiating (A.3)  once' more with respect to p and putting p=O. Hence these cannot be taken into 
account without greatly complicating the calculations. 

', 

i '  API'EN1)IX B. 

The differential equation for the  function p. 

1. As has been mentioned in Sec. 5 the function p is to bc calculated from the equation of continuity. 
t t +  Let I , ,  I ~ ,  i, be unit vectors in the directions of the cartesian coordinate axes x,y, 2. A vector 

dong the hody surface can then be decomposed as 

-+ -+ -+ 
p1 and p2 are unit vectors which are tangent to  the body surface. pL1 lies in a plane y = constant and 

(1% in a plane x = constant. The vectors 
+. -+ + 

and ~ 1 %  make an  angle a, determined by 
! 

When 3.d ̂v denote the velocity components in the z and y 
directions. it is clear tbat pic and p , v  are the velocity components 

-+ + 
in the dircc.tioris of t,he vectors and pLn. Ppr a. small volume with 

sides p,pLdz, pap& and fi& the mnss excess entering in the direction 

of the side p1p& (see sketch "a") is given by 

-+ 

. *  

I /  where pv is the density. For the mass entering in the other directions, 
similar expressions are obtained and the equation of continiiity becomes 

S S S - (&F)  +-(Viv) +-((v;w)=o. v - x  

' SKETCH " 0 "  6 X  611 8 5  

Hence 

- (B. 1) an' 
a i  

Furthermore 
a ax 8 au s 

a? a, ST a? ag 
- = - - + -  - 

and, according to  eq. (6.2), one has along a streamline . a  

Nonce 
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which is identical to eq. (5.4). Using eq. (B. Z ) ,  eq. (B. 1) becomes 

Sul)stit,nting this in cq. (5.2), the result is easily s e n  to hc identical to  cq. (5.3). 

2 .  An al tc lnat ix  met l id  is as follows 

mhcrc use is mtrde of cq. (6.2) for -=w. a, 
a8 

The line clement along the hody surface is seeii from sketch “a” to 11: 

ds2 = pIZds2 + p 2 ’ d p  + 2 p,p,  cos a dz ay 
or 

d s 2  = ( 1  + z,*)ds* + 2 &Z, ds dy + ( ‘ 1  + %2)d!/. 

O n  t,lie ot,lier hand, also 
1 1 

ds2 = - ( (dpZ + -&p) ) . 
T P 

With 

f$= ( U ( 1  + 2,Z) + vz&}dd3: + { u2*2, + t;(l + %>) ) diJ 

II’ =ri. + 7 9  + It.. =u. (I + Z“‘) + F(1 + 2”’) + 2 u v 2,z, 

-d*=V 1 V ; d - W g d ? J .  

and 
-- 

it follows that (B. 4) and (B. 5) are in agreement, provided 

v, 
IIeiice 

Since two ways in which __ ’** can lie formed, niiist be ideiitic:tl, one finds sxsy 

which is sem to  yield eq. ( 5 . 3 ) ,  if (B.2) is used 
I t  follows from eqs. (B. 3) and (B. 6) that 

Finally, 

which leads to 

The last equation is identical to  eq. (6.3). 
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X”, Yo 
AZ 

R 

,. 
coordinates made dimensionless.,by aid of 2, 
see sec. 2. 
x-< and 21-7, respectively. 
amplitude of translation of mid-chord point 
(positive downward). 
iimplit,nde of rot.at,ion (positive if trailing 
edge is more downward than leading edge). 
lift-curve slope for complete wing. 
position of center of pressure of complete 
wing aft of leeding edge. 
kernel in eq. (2.1). 
force, defined by cq. (6,1), positive down- 
ward. 
moment about mid-chord axis, defined by 
eq. (6,1), positive if it tends to increase 
the angle of attack. 
Mach number. 
moment about axis which lies E Z  aft of mid- 
chord axis. 
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forward speed. 
aspect ratio. m. 
distance of pitching axis a f t  of mid-chord 
axis. 
angular chordwise coordinate, c'q. (3.1). 
angular spanwise coordinate, eq. (3.2). 
5 a id  y eoordiuates of an arbitrary point 
of the wing. 
a i r  density. 
frequency of oscillation. 

Subscripts 12 and 1' denote the cases of rotation 
and translation rcspeetivdy. 

Superscripts ( O ) ,  (1), (2) and (3 )  denote Oth, 
Ist, 2nd o r  3rd approximation. 

1 Introduction. 

It is normal practice to perform stability cal- 
culations for airplanes on the basis of quasi-steady 
airfoil theory. Only for the  downwash a t  the 
horizontal tailplane due to the \ring, a time-lag 
is sometimes introduced, which expresses the fact 
that this downwash was generated a t  t,lie wing a 
little sooner. 

'A few years ago it was remarked by bh.m 
(ref. I) and S~IW (ref. 2 )  that oscillations of 
a twu-dimensional airfoil about a pitching axis 
may become unstable for low values of the reduced 
frequency if thc axis lies in a certain region ahead 
of the quarter chord axis and  if the moment of 
inertia ahout this axis is sufficiently large. This 
instability follows from exact unsteady theory hut 
is not revealed by quasi-steady t,heory: ILuNYAN 
(ref. 3) has shown that this instability occurs in 
a much larger rmge of reduced frequencies, pitch- 
ing axes and moments of inertia, if compressibilit,y 
is taken into account. In the case of snaking, wherc 
a vertical tailplane is oscillating about the air- 
plane's top axis, the reduced frequency, axis of 
rotation and moment of inertia about this axis are 
within or near the ran,ge, where RUXYAS obtains 
instability. This makes it opportune to consider 
the qiiestion whether it is allowed to calculate 
snaking of airplanes, especially a t  high subsonic 
Mach numbers, by aid of quasi-steady theory. 

Par t  I of the investigation performed under 
cout,ract AF 61(514)-879 is concerned with the 
extension of RUNYAN'S two-dimensional result4 t o  
three-dimensional flow. Part 11, about the results 
of -\vhich :kill be ,reported in a sequel paper, deals 
with the practical ' consequences of a decreased 
damping due to the unsteady effect upon the 
snaking motion of an airplane with rudder fixed. 

I n  the past there were some investigations of 
the effect of finite span unsteady airfoil theory 
on stability calculations. VAN DE V m m  and YFE 
(ref, 4) introduced a reduced value for the lift 
curve slope, .while BIRD, FISHEX and HUBI~~UU) 
(ref. 5) applied the method of BIOT and B O " N  
as well as that of Rm"i fo r  calculating finite 
span corrections. Although these methods arc valid 
as, approximations for large aspect-ratio wings, they 
were used for aspect-ratio 2. Moreover, the inves- 
tigations of refs. 4 and 5 were restricted to incom- 

pressible flow. Asmm and eo-authors (ref. 6) also 
applied REISSEK'S method for introducing finite 
span effects and also confined their investigation 
mainly t,o incompressible flow. Finally., GOZ~AXQ, 
HAGER and LUKE (ref. 7 )  calculated oscillatory 
forces from indicia1 functions by aid of DUHMEL'S 
integral. The indicia1 functions were modified for 
both finite span and compressibility. 

I n  view of the results of refs. 5 and 6; it seems 
Fairly certain that the difference hetween unsteady 
and quasi-steady incompresishlc theory is much 
less important for finite span configurations than 
for  t,he two-dimensional case. Hcnce, unsteady 
efl'ects for the snaking problem will he relatively 
unimportant for ineompressihle flow. This can 
also he made plausible , ~ J Y  considering the vortex 
pattern hchind a slowly oscillating wing.. For the 
case of snaking the wing should he identified 
with the vertical tailplane. The vortices near A 
(sketch a)  with axes parnllel to the wing span 

Sketch a 

are responsible for t,be posible instability in the 
t,wo-dimensional case. I n  order to estimate in the 
t,hree-dimcnsional cnse their influence as compared 
with the influence of the tip vortices, the distances 
of both vortices to t,he wing arc compared. I n  
sketch a .  the pitching wing is a t  the position of 
maximum angle of incidence. The "starting" 
vortices a t  A were formed one quarter of a period 
before and hcnce the distance from it to the wing 
is of the order of 7 U / 2 ~ ,  where U = airspeed and 
Y = frequency of oscillation (rad/sec). The dist- 
ance of the tip vortices to the wing is of the 
order b, where b .= semispan. Bence, the ratio 
of the two distances is as 

d J / 2 v :  b = = :  ZkAIl 

where k = v l /U reduced frequency, 1 = semi- 
chord and AR .= b/l  (aspect-ratio). Since it 
follom from two-dimcnsional unsteady theory that 
instability may occur for k smaller than 0.04 it 
is clear that for all usual values of AR, the dist- 
ance of the starting rortices is much larger than 
that of-  the tip vortices. This means that the ' 
change in the pressure distribution of the win,g, 
due to the umteady effect will 'be small for the 
low values of k,  which are of importance in 
stability calculations. 

It is seen that k X AR is the"relevant para- 
meter, if the wing planform is'left out of account. 
For twodimensional flow this parameter assnmm 
the value a whatever the value of k ;  for stability 
considerations in  three-dimensional flow it has a 
small value unless AR becomes excessively large. 

For compressible flow the picture is different. 
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I t  is stated in ref. 7 that the unsteady effects 
on the snaking motion are generally significant 
at Jf = 0.7. .The reasoning given ahove for incom- 
pressible flow is quantitatively modified since for 
t,he two-dimcnsionol case instability may occur for 
values of k &.high os 0.1 [at N = 0 . 7 ) ;  moreover, 
there is the more fundamental modification of the 
finite speed of propagation of disturbances. What 
consequences this modification has, is somewhat 
difficult. to assess. I n  any case it is known tha t  
in the transoiiie region the range of !+values where 
the flow may he considered as quasi-steady bccomes 
very small for large aspect ratio wings. This 
suggests that nlso for high subsonic Mach numbers 
the differences bct,wecn quasi-steady and UnSteddy 
theory will heeome of increasing importance. 

For these reasons it was considered desirable to 
investigate the influence of finite span effects on 
a slowly oscillating airfoil placed in a subsonic 
flow. The approximate theory which has to  he 
used for this purpose is not based upon t,he as- 
sumption of large aspect ratio like BIOT and 
BOHNIX~X'S and 12~m.w~~'~  theories, but upon that 

of low frequency. The new theory uses as a starting 
1 oint the integral equation between doxnwash w 
and pressure p at the wing, viz. 

wliere 'the kernel K has been given for sub- 
sonic compressible flow by WATKmS, R m r m  and 
\VOOIS'PON (ref. 8). These authors have also given 
the expansion of K toivwds the -reduced frequen- 
cy A. Since the expansion of w towards k is also 
known, it is possible to dhtain by an iterative 
procedure of lifting surface theow the eorrespond- 
in8  expansion for the pressure p .  

In  the present report lift and moment are  eal- 
culated for rectangular wings of aspect ratios 4, 
8 and 16 at JI = 0.7, performing a translation or a 
pitching rotation. Results are also presented for 
Jf = 0.9 and wings of different aspect ratio. By 
identifying a semi-vving with the vertical tailplane, 
the results can he applied for snaking calculations. 
In the case of M=0.7  the aspect ratio of the 
tAl.ilplane then takes the values 2, 4 and 8. 

2 Description of the iteration process. 

The fundamental integral equation between downwash tu (positive in downward direction) and pres- 
sure p (positive in upward direction) can he written in the form 

The system of coordinates is fixed to the wing (sketch b). All coordinates are made dimensionless 
by aid of a reference length 1. 

r.3 

U (AIRSPEED) 

WING 

I 

Sketch b 

In  ref. 8 an expansion of the kernel K ( z - t ,  y - q )  towards the redneed frequency k = d / U ,  up  to 
and includinz k5. has heen civcn. The first terms of this expansion, which are relevant for tire present 
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The convergence of the series (2.2) becomes slower for increasing values of go.  This means that the 
range of li-values for  which (2.2), neglecting terms of order ICs, can be used beeomes smaller with 
increasing aspect ratio, I n  the two-dimensional case it is known that the expansion of the kernel 
is different. In fact, it then contains a term k log k which is the term giving rise to the pitching 
instahility. 

The pressure distribution will be considered for the cases of translation and rotation about the mid- 
chord axis. By linear superposition the pressure distribntion for rotation about any spanwise axis can 
then he obtained. 

The downwash is given by ( z  is dimensionless) 

For translation one has 
$=A eiVf  

and hence wT = i v 1 A eivf  = i A U k e'"' where the suffix T denotes translation. 
For rotation 

z=Bz& 
and hence w n = U B ( l  + ikz)e"'. 

Fmm t,he dpfinitinn piven above. it is clear that a translation is uositive in downward direction, while -~ ~ ~~~~~ ~~~~ ~~. ~~ ~. ~ 

a rotation is positive if the trailing edge is more downward than tbe leading edge, 
For hot11 t,ranslation and  rotation the downwash can be written in the form 

w = (,to) + kw(0)e"" 
with 

Introducing eqs. (2.2) and (2.4) into (2.1) yields 

.. ' (w(o)  + kwm)e i~f  = __ l/ ( IC(o)+ kK('J+ k210gk-K(2)i- k Z K ( 3 ) } p ( 5 . , 7 ) d t d 7  (2.6) 4 7rpu 
wing 

&nee, the pressure distribution can be written as 

p = (p (Qj  + k p ( 0  f kZ log k ,  pC2) + k2pCS))ei'f (2.7) 

Inserting (2.7) into (2.6) and equating corresponding powers of k ,  the original integral equation is 
separated into the four following equations 

(2.8) 

o =  (K(3)pVJ) + K(*)p ( l )  + K(O>pGO @adrl 
w10g 

The equations of this set can be solved consecutively by a numerical procedure. The first equation 
involves the calculation of t h e  pressure distribution p(o'(& q )  by application of steady state lifting surface 
theory. After having determined p(Q) ,  the first term of the right hand side of the second equation (2.8) 
is calculated and the resulting equation can be used for solving p(".  This is again performed by steady 
state lifting surface theory, since p(') occurs in combination with the same kernel X@). Similarly, the 
third and fourth equation yield pC2) and pC3' respectively. 

It is seen that by this procedure the solution of the unsteady lifting surface problem is reduced to 
the  solution^ of a series of steady lifting surface problems. 

Physically, the terms in a certain equation which can be evaluated by aid of the solutions of previ?us 
equations represent a downwash due t o  unsteady wake vortices. I n  quasi-steady theory, the pressure 
distribution would be given by 
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(2.9) 

(2.10) 

By inspection of the expressions for w and K ,  i t  follows immediately that p'O) and pC2) are real. p'" 
is pure imaginary and p @ )  is coniplcx. Hence, for the damping p"' and the imaginary part of p @ )  are 
of importance. Since it may he expected that the contributions of k'llogk p(*) and the real par t  of 
k2p(*) to the total real part of the pressure are only small in comparison with  for the low values 
of k concerned, these will not be calculated. They would only lead to a minor change in the frequency 
of ascillation, hut do not affect the stability of the system directly. The imaginary part of p(3)  will 
he evaluated since this is a damping component which, moreover, might furnish an appreciable correction 
to the damping kpc'). 

Hence, the real part of the aerodynamic forces will be approximated by p@) and the imaginary part 
by In t ( kp ( ' )  + kPpCa)). This means that the third equation (2.8) may be left out of account, while the 
fourth equation may be simplified. 

Since the numerical solution will be performed fo r  a series of rectangular airfoils, the final set of 
integral equations to be solved is 

3 Results for the steady state pressure ditribution. 

The method which is followed for the solution of the 'first equation (2.11) is the one which has been 
described 'by the first author in ref. 9 and which is presented in detail in Appcndix A for  the present 
case. The chordwise pressure distribution is prescribed in the  form, eq. (A.5) 

(3.1) 1 3 2  
pc0, ( b  7) = 7 D l ( O ) ( 1 )  cot - + - { go@) (1)  -g,'')(?)) sin 9, 2 n  

where .t = - cos 9 is the chordwise coordinate. 
The lift per unit span appears to become equal to Iga'O) (I), while the moment per unit span about 

the mid-chord axis hecomes equal to 1 12g$a) ( I ) ,  positive tailheavy. 
The functions p ,  g,, and gl am provided in the case of translation with a suffix T and in 6hc case 

of rotation with a suffix II. From the first equation of (2.11) and (2.5) follows immediately, that  
D T ( ' ~ ( & V )  and hence @,(~) and g f$ ( l )  equal zero; tllerefore the first integral equation of (%SI) 
nee& only to be solved for the case of rotation:' 

The assumption (3.1) allows the approximate evaluation of the chordwise integrals. By multiplyiilg 
the equation with two suitable weight functions (functions of 2) and integrating, two simdtaneous in- 
tegral equations for gs(q)  and Q ~ ( ~ )  are obtained. The integrations to 2 are approximated in a similar 
way as the integrations to  f ,  viz. by aid of 2 chordwise pivotal paints (Appendix A. 2 ) .  
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. The integral equations are transformed into a set of linear algebraic equations by a procedure which 
is an extension of ~ ~ I U L ~ ~ O P P ' S  method (Appendix A 3) .  Thig leads to the set of equations (A.28) for 
the unknowns gf$ and si::. These denote the values of the functions gtk ( 9 )  and @k ( 9 )  in the sections 

(3.2) 
77 V7T m - I  
2 m f l '  v = O , l ,  ... __ v = s e o s y , ,  where pv=----- 2 

For the present ealeulations nz has bcen taken equal to  15. 
I t  follows from eqs. ( A . 2 8 )  that if p s  is kept constant, the values of p g t ' , ( v )  and pg:'k (7) and 

also those of g&:L(?)/s and  gi0!,(9)/s remain invariant, which is in agreement with the PRAXVL- 
G ~ l h m ~  rule. 

Calculations have been performed for the following cases 

ps= 2.8566, correspoding to &f =0.7, s =  4 or to ,If =0.9, s =  6.563 
/IS= 5.7131, ,, ,, s= 8 ,, I, ,, s =13.106 
ps= 11.4263, ,, s=16 ,, ,, s = 26.20 

The rcsults are shown in fig. 1. 

Fig. 1. Distribution of lift and pitohing moment Fig. 2. Sectional lift cume s l o p  and seetianal position 
of the center of pressure aft of leading edge. in p u n v i s e  direction. 

The same results are also presented (fig. 2) in the form of sectional lift curve slope cis and sectional 
position e l  of the center of pressure a f t  of the leading edge. They are obtained from the relations 

An expression for the value of 0 at the tip is derived in Appendix C. 
The lift c u n ~  slope for the whole wing is equal to  

which can be evaluated by aid of the trapezoidal rule with the result that 
m--? 
I 

(3.3) 

(3.4) 

where ci: denotes the sectional l if t  curve slope in the section q = s ~ o s ~ ~ ,  see (3.2).  

aft of the leading edge, where 
The position of the center of pressure of the whole wing is in the middle section at a distance Et 
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(3.5) 

The values of pGt, and E are plotted in fig. 3 as functions of ps. For ps - t  m the two-dimensional 

Fig. 3. Lift eun'o slope ilnd position of eqter of pressure 
for total wing. 

valnes 2 n and 0.5 arc otitained, while for p s i  0 the curves have been drawn to the origins, in agree- 
ment with slender win.g theory. 

4 Results'for the aerodynamic damping at low frequency. 

The first approximation for t,he aerodynamic damping at  low frcr~uency , i s  given by the pressnre 
dist,riliution pc'). This is determined by the second of t he  eqnatioiis (2.11). When for p('? the 
substitution 

(4.1) 
1 3 2  
w 2 a  

p(')([,?)=-gn,"' ( v ) c o t - + i - (  go(') (7) -g~( ' ) t7 ) )s in .3  

is made, this equation can he solved in a similar way, as the f i rs t  equation (2.11). The second term of 
the left hand side in t,he second equation (2.11) is cvaloated tjy aid of the resiilts of Sec. 3. The 
detailed procedure is descrihed in Appendix B. 

a.nd g,(')", which denote the values of g0(I)(7) 
and g,( ' j (q) i n  the sect,ions 7 = S C O S ~ ~ ,  see eq. (3.2),  is given hy (B. 16) and (B. 17) .  It follows from 
these equations and from the expressions ( 2 . 5 ) ,  that in the  ease of translation the solutioii can be 
ivrittcii down immediately as 

The final set of algebraic eqnations determining 

This eorrespondencc is diie to the fact that a wing performing a harmonic t,ra.nslat,ion, has  a dynamic 
angle of incidence which is constant over the wing area. Since the wake effects, heing of order li2 for 
the case of translation, are neglected, the piessnre distrihut,ion will he proportional to that of the f la t  
plate at, eonst,ant angle of incidence. 

The solutions for the case of rotation are found by solving eq, (B. 16) and (B. 17). They are shown 
~ 

in figs. (4) and ( 5 ) .  
The second approximation for 'the aerodynamic damping is ohtained by solving also the third equation 

(2.11). The unknown function in this equation is Imp"), f o r  which a similar suhstitution as in (3.1) 
and (4.1) is made. Because ImK(3)(z -[ ,  y-7)  is independent of z-[ and y - 7  (see eq. 2.31, it 
follows that Imp(3)  is proportional to p'O). 
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5 Results for the aerodynamic damping from quasi-steady theory. 

Using quasi-steady theory the aerodynamic damping follows from the second equation (2.10) instead 
of the second equation (2.11). The quasi-steady values of gi!A and g$:& for the case of rotation are 
determined by eqs. (B. 16) and  (B. 17) yith the simplification that all terms of the left hand side of 
these equations are to be omitted with the exception "of the' term p U W i  in eq. (B. 16). For the case of 

.translation the quasi-steady values are identical to  the unsteady values, which are given by (4.2). 
The quasi-steady values for rotation have becn added to fig. 4, where they are shown by the 

dotted lines 

unsteady values s =  4 is identical to P s =  2.86 - 
s =  8 is identical to ps= 5.71 _ _ _  quari steady 
s = 16 is identics1 to O s  = 11.43 

Fig. 5. The unsteady values of the functions ggk and g\'k 
for M c  0.9. 

s =  6.55 is identical to p a =  2.86 
s=13.10 ,, ,, ,, 8 8 s  5.71 
8=2.8.20 ,, ,, ,, psc11.43 ' 

6 Transformation of results to the form of flutter derivatives, 

I n  K C " R ' s  notation, the flutter derivatives are defined by 

K =T p UzI e."'(k,A + kaB) 

l l i = n p ~ * P e ~ " ' ( % A  + maB) 

- 

- 

wherc and % denote the force and the moment about the mid-chord point per unit span due to 
harmonic motions of frequency Y .  K is positive in downward direction (like A )  and is positive if 
the moment tends to increase the angle of attack. The derivatives k , ,  l i b ,  m, and ma arc complex fune- 
tions of the reduced frequency k. They are separated into a real and an imaginary part by writing 

k. = kd + i k.", rete. ~ 

According to Sees. 3 and 4, the  force per unit span in downward direction is in the approximation 
used equal to - 

K = - 2 e"' { gbo) (7)  + ?i gh') (7)  + i k z l m  g t )  (7)  ) (6.2) 

Comparing the first eyuation (6.1) with (6.2), it follows that , 

(6.3) 



n1/ = 0, 

k*" m{l 
The values of pkb', pma', lim - and lim - are given in figs. 6, 7, Sa, Sb, 9s and 9b and in 

tables 1, 2, 3. Tbe cocfficients of kZ in kb" and mi' are proportional to pkd and pma', the proportionality 

and '"." __ are identical factor following from eq. (B. 18) and tahulated in table 8. The values __ 
, with pka' and pmd respectively. 

The results for the whole wing follow from the sectional values by formulae of the type (3.4). These 
overall values are dcnoted by IC,, &, Ma and &. They arc ta.bulated in tables 5 ,  6 and 7. The values 
of K b "  a.nd Hb" are given in the figs, 12 and 13 as functions of the reduced frequency parameter k. 
The t,wo-dimensional valnes have been added for comparison. 

k j 0  Ir. I.+D k 

pkd' 
k k 

Table 4 and figs. 10 and 11 give similar results for the quasi-steady appriximation. 

7 Unstable oscillations with one degree of freedom. 

The motion about an arbitrary pitching axis of the wing is determined by the equation .. - 
I , = M ,  

where I is the mass moment of inertia and .tf t,he aerodynamic moment both taken about the pitching 
axis. p is the angle of deflection. If it is assumed that 'p is of the type 

Q=,"e i" l  

it follows that 
- 

Y' I Q =- lll , 

Hence, a harmonic oscillation will occur if .Vp= 0 and < 0, since then a rcal value of Y will result. 
If ;1?.. > 0 and < 0, v becomes complex with a negative imaginary part, which means that the oscil- 
lation is unstable. The solntion is complicated hy the fact t ha t  M itself is a filnction of the reduced 
frequency k and that the value of k must he compatible with t,hose of Y and U ( k = v Z / U ) .  

Let it now be assumed that the pitching axis lies a t  a distance el aft  of the mid-chord axis. The 
motion then can be decomposed into a rotation R about the mid-chord axis and a translation - c B  of 
the mid-chord axis. The moment about the pitching axis is given by 

M E  ='If- eZK . 
Substituting eq. (6.1) as well as the value A =- E R  for the translational amplitude, the resalt is 

- - 

M e  =7r p u* t 2  N ci"i { . 4 l b - - E ( &  + 2x6) + eZK, ). 

&fb"-C('I fh" + Kb") f c'K," > 0 

(7.1) 

(7.2) 

The two conditions llf," > 0 and Ms' < 0 then become 

Mb' - E Ka' < O  



spanwise eookinste. 

a2 04 

k; 
Fig. 8a. The valuer of lim - &4 function of the 

k+o k 
spanwise coordinate for 24 = 0.7. , 

m" 

k+o k 
Fig. 9s. The values of lim 4 as function of the 

s p w i s o  eoora,nate for x = 0.7. 

24 

.i 

Fig. 7. The values of @m'b as function of the 
spanwise coordinate. 

k" 

li+o k 
Fig. Sb. The wlucs of lim b a s  function of the 

spannis coordinate for Us= 0.9 

. vi' 

k,+O k 
Fig. 9b. The values of lim d &s function of the 

spanwim coordinate for 24 = 0.9. 
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". 
- 9 0  

- 0 e  

i - 0 s  

-0 1 

-0.1 

0 
01  O A  0 6  oa",.!.c 

Fig. 10. Qussi.stendy approximation of p- 
against spanvise coordinate. 

k 

K; 

2. 

* 3  

Fig. 12. K" as fiirietivn af  tho rcduecd frequcney 
far  di'= 0.7 and A1 = 0.9. 

_ _ _  quasi-steady vdues. 

quasi-steady C U ~ Y C B  f o r  JI= 0.9 arc straight lincs f r o x  
thc origin to thc points 

k= 0.1 F , = - - O . 1 2  f o r  ps= 2.86 
id - 0.16 5.71 
id - 0.18 11.43 

- unsteady values. 

n," 
Fig. 11. Quasi-stmdy uppxinrhtion of p b  

k 
against spanwisa caordinnte. 

' Fig. 13. A['' as function of t b o  rcdueed f rqucncy  
f o r  ;V=O.7  and N =0.9. 
- unsteady values --- quasi-steady values 

Qunsi.stendy CUI'VCS for. 31 = 0.9 arc st,might linris f rom 
tho  origin t o  t lx  points 

= 0.1 ; I f '  = - O.03G for ps = 2.8F 
id - 0.026 5.11 
id - 0.017 11.43 

The last of these two conditions indicates that tlic pitching axis should lie in front of the center of 
pressure of the ivholc wing. Otherwise, the acrodynaniic moment, resulting from a deflection B will in. 
d i m  a still larger deflection. Instead OS an oscillat,ion, a divergtnce of the wing woiild occur. IIence, 
the most 'backward position of the pitching axis which is allowed is at a distance El aft  uE the leading 
edge, where E is given in fig. 3. 

When solving E from the first condition (7 .2) ,  tlic positions of the pitching axis arc olitaind for 
which unstable oscillations are possihle. Thcy are given in figs. 14 and 15 as functions of k with s 
and Af as para.meters. For Jf = 0.7 no instability is possil~le for ps = 5.71 and ps = 2.86; likewise for 
111 s 0.9 and ps= 2.86. 

It follows by interpolation t,hat, for M1n.7 unstable oscillations are only possible if s > 11.5 and 
for M=0.9 iP s > 6.9; see also fig. 16. 

Finally, figs. 17 and 18 show that the damping coefficient. I f s "  is quite different wbcthcr the cal- 
cula.tions have been made by unsteady or %y quasi-steady theory. It follows from these fignrcs that for  
forward positions of the axis of rotation the damping according t o  the nnsteady t,lieory is much smaller 
than according to quasi-steady theory. 

~ 



Fig. 14. Possible positions Df pitching axis tu cause 
‘unstable oseillations; Jf == 0.7, fls = 11.43. 

For ps = 5.71 and 2.86 t h e  oscillations are always stablo. 

Fig. lE, P m i b l e  positions of pitching axis to  a u ~ c  
unstabla motions, 0.9. 

For p s z  2.88 thc oseillatians are always stable. 
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Fig. le. Stability diagram; above the curve instability 
is possible. ~ 
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Fig, 17. The unvteady and quasibsteady values of the, 
damping moment far di= 0.7 and various positions 
of the pitching axis ( ‘ I  is distance a f t  of mid-chord). 

Fig. 18. The unsteady and quasi-stoady vulxes of the 
damping moment far M = 0 . 0  md varioue positions 
of the pitching sxis ( s t  is distance a f t  of mid-chord). 

Fig. 19. Tha function h (z,y; 5,  v).  



8 Conclusions. 

(i) A method has been presented which allows the calculation of the in-phase and out-of-phase eom- 
ponents of lift and moment distribution on rectangular wings in subsonic flow. The method 
could, in principle, be extended to wings of any planform. 

For compressible flow there is an important difference between the out-of-phase (damping) com- 
ponents calculated by aid of quasi-steady and by unsteady aerodynamic theory. I t  may be doubt- 
ful ' whether quasi-steady values are useful €or stability calculations if compressibility has to be 
taken into account. 

(iii) Oscillations about a pitching axis which is ahead of the quarterchord axis may become unstable 
according t o  unsteady theory. The range within which the pitching axis must lie in order that 
instability occurs, decreases with decreasing aspect ratio but increases with increasing Mach niunber. 

(iv) A41though the snaking motion for  usual airplanes will not become unstable on potential-tlieoretical 
grounds (even a t  Jf =0.9 the aspect ratio of the vertical tail-plane should cxceed 3.5 in order 
t h a t  this happens), a considerable reduction of the damping in comparison with the quasi-steady 
results occurs for large aspect ratios. For smaller aspect ratio this reduction decreases. This will 
bc shown in more details in a subsequent report. 

(ii) 

Rrcommendation for future research. 

It would be of interest to  investigate how the relation hetween aspect ratio and Mach number, for 
which unstable pitching oscillations are possible, continues into the transonic and supersonic ranges. 
This means the extension of fig. 16 toward higher Mach numbers. 
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APPENDIX A. 

Reduction of the integral equation far steady lifting surfaee theory. 

1 Reduction of the integral equation to two one-variable integral equations. 

According to eqs. (2.71) and (2.3) the integval equation for the steady pressure distribution p(0 )  due 
to the steady downwash do) can be written in the form 

where the integration should he taken in the sense of Hadamard. I n  order to  get rid of the improper 
integral. a partial integration with respect t o  7 is performed resulting in 

Since the integrations in chordwise direction will bc performed hy a numerical approximation method, 

We write 
it is logical t o  split off the singularity a t  t = z  in the integrand. 

The term containing the sinyiilarity at .C=z can lie integrated to  7 by writing: 

Hence the integral equation. hecomes 

The first term of the riglit hand side of this equation denotes the two-dimensional downwash, the 
second term denotes the part of the downwash already familiar from the Prandtl equation while the 
term wit11 K gives the correction to the Prandtl equation. 

Eq. (A. 4) is solved hy aid of the following assumption 

(A. 5 )  1 9 2  
p ( Q ( &  7) =;q, (Oj  ( 1 ) )  cot - + -( g,,(O) (7) -gl@)(q) ) s i n 3  

2 n  
whcrc [ = - cos 9. 

per unit span about the mid-ellord axis equal to ?12 Z*g,(") ( 7 ) .  positive tailheavy. 
It follows from (A. 5) that the lift per unit span is equal t o  Ig'Oj (7)  positive upward and the moment 

After suhstitution of ' (A .  5 )  into (A.  4), the first term of the riglit hand side of (A. 4) becomes 

where x = - cos 9, . 
In  the second term of the  riglit hand side of ( A . 4 )  the integration to  f is performed as follows 

the prime denoting differentiation to  the argument. 
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('A. 6) 

Since the chordwise distribution of the pressure has hcen represented ,by the two-term approximation 
( A .  5 ) ,  it is impossible to satisfy (A. 7)  for more than 2 values of 5. The best procedure, as suggested 
by LLX, ref. 10, is to  multiply (A,  7) with the weight functions 

tan- 3, and '2sin9, 
2 

and integrate to  z from -1 to + 1. This leads to  two integral equations for  the two unknown 
fnnctions go(") ( T )  and g,'o)(7). In  the case of trrrnslation to$)(%, I/) = O  and hence g$(q)  and g!,:i(7) 
equal zero. Tlicrefore the case of rotation needs only to  1lc considered, where w$) =BU and the 
cuuations become 

whcre 

x 1  
2 3 .  

= 1 1 J' K ( 2 ,  y,; E ,  7)  tan 2 sin9, cot - sin 3d>,d9 
T 2  2 '  2 . .  

0 0  

x * %  

2 2 3 .  
K0,(u ,  7 )  = ; J' K,(z,  v ; 7 )  sinz 9,d9, = 7 [ J' K ( z ,  1~ ; e, 7) sin*>, cot -sin 9d3E9,d3 2 

a G o  
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According to  (A .3 )  K ( x , y ; t , v )  is in fact a function of the form K ( s - [ , y - q )  which, moreover, 
is an odd function of 5 - f .  This means that 

K ( z , , ; t , 7 ) = - - ( ~ , 2 / ; s , ? )  and hence K , , ( y , q ) = O .  

Fnrthermore, if in the double integral for I&(!!, v), >,,=T-> and 9 = ~ - 3 ,  is substituted (and, 
what is the same, z replaced by - t  and t by -z) .  then the exprwion for K,,(y,?) transforms into 
that for K," (y ,q )  and hence K,,,(g,q) =K,o(y,-7)). 

Eqs. ( A . 8 )  then become 

The integrals without a &-function will he calculatell by aid of the standard MuLmoPP-procedure 
(ref. 11) ; the other integrals can be reduced as follows 

where the first integral can again he evaluated hy aid of MULTUOPP'S procedure while the second integral 
can be calcnlated 111 aid of the trapezoidal rule since the integrand is no longer singular. 

Putting 

(A. 11) 

1 .  The advantage of adding a factor 
upon p s ,  but not upon s separately. 

2 The chordwise integration of the f&ction K ( x ,  y; t, 7) and the calculation of the functions 

in the right hand sides of ( A . l l )  is that Lo and L, depend 

L ( Y > ~ )  and L i ( ~ t 7 ) J .  

The integrations occurring in' eqs. (A. 6) and (A. 9) are approximated by a method due to MULTHOPP 
(ref. 12), which has also been applied to the present case by VAN nE V m m  in ref. 9. For the in- 
tegration to [ (or >) the function K(z ,  2 / ;  & ?) is expanded into a F I o m  series of cos m3, viz. 
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If the nction K ( z ,  y ; [? ?) is giwn for two values ~ = <, ind [= & , it is possible to use a F b m '  
series consisting of two terms. With this approximation KO($ ,  y;  7 )  and K,(z ,  ?/; 7)  can be calculated 
according to cq. (A. 6) .  However, by a special choice of and & , it appears possible to use a three- 
term Fomm series, which is not completely determined, but of which the uncertainty has no influencc 
upon the values for K ,  and K , .  These values of and & (pivotal points) are, sec rcf. 9, table 8.1 

. .  
1 
5 
3 
5 

=- 0, - T = - 0.8090 

c2 = - cos - n = 0.3090 

and t,he expressions for If, and K ,  hccomc 

where qD, = 2.2733, qor = 0.8683, qrl = 0.4342, qI2 = 1.1367. 
For the calculation of Ko0 and K,, according .to (A.  9) ,  the same method is uscd, hut due to the 

difference of the factor tan 2 as compared ivitli cot -- 111 the intcgrnls (A. G), the pivotal points are 

diffeiait.  T h y  arc now (ref. 9, table 8.2) 

u 3 .  
2 2 

2 
5 2 , ~  - COS ,- T = - 0.3090 

4 '  
5 z, = - cos - li = 0.8090 

The rcsnlts for  I<,, and K,, arc 
I 

where p,, =0.8683 and p, ,=2.2733 (ref. 9, table 8.2). 
The function K ( z , ~ ; ( , ~ ) ,  which is a function of z-[ and p (y -7 )  only, is shonn in fig. 19. It 

may he expected that the representation by a short F b u ~ r m  series is better if p ( y - q )  is larger. F o r  
fl(y - q )  = 0 the functiou is discontinuous in 3: - f = 0. This will probably give the worst results far 
the integrated functions KO, and K,". To investigate the accuracy of the approximation, the values for 
I&(y,y)  and K>o(y,y)  are comparcd with the exact results. For the special case V = ~ J  the integrals 
in (A. 9) can be caleuletd exactly. The results are 

approximated 

8.36 

5.92 16 
- (=5 .33 )  3 

. , r  r Z K ,  (?/, ?/) . .. 
For v # y  the agreement may bc cxpccted to  improve. Since for wings of large aspect ratio u-7 

will be largc over the greater part of the wing, the approximation is thonght to be sufficiently accurate. 
Moreover, the term with K in (A.4)  is only the correction to the Prandtl equation. 

It follo~vs from (A.3)  that K(z,y;c ,  7) is an even function of y--. Hence, the same holds for 
I&,,($/, v )  and K,,(y, 7) .  Due to the term --p 1 y - '1  1 in (A.3) the functions K ,  K,, and K,, have a 
discontinuous tangent in q = y  when considered as functions of ' u - ~ .  The functiolLs L , ( y ,  q )  and 
L,(u, q) thcn have a discontinuity for 7 = 1 ~ ,  such that for  8 -+ 0 

L0(y;y+ S)=-LL,(y,y-S) and L , ( y , y +  S)=-LL.,(y,y-S). 
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3 Transformation of the one-variable integral equations to a set of linear algebraic equations. 

For the further reduction of q s .  (A. 12)  the standard AIULTIIOPI’ procedure (ref. 11) is used. 
Let 

For the functions g g k  and g$ the following F o u a m  series is introduced 

? / z s c o s $ a ;  - - s ~ ? / ~ s ,  ozy577. (A. 13) 

with 

The latter integral is approximated by applying the trapezoidal rule with a division of the integration 
interval in m + 1 equal parts. This gives 

m - i  
2 

m - l  

- 
2 sin A Q ~ ,  (A. 15) 2 

c -  
n_-- 

I m + l  
I 2 

I Substitution of (A. 15) into (A. 14) yields the well-known M“OPP formula 

I This formula is quite satisfactory since one can shoir. that 

I and hence the interpolation formula (A.17) yields exactly the right values D ~ . ~ ( S C D S Q )  in the points 
?/*E s cos Qn . 

Series of the type (A .17)  are now substituted for  the functions giPk(y) and gQk(g)  in the integral- 
equations (A .12) .  These equations can then be satisfied no longer for all values of ?/. They will be 
satisfied for the m spanwise pivotal points y.=seosp,, where pn is given by (A. 16) and n=0, 

na - 1 
I 1. ...... +- __ 2 ’  

In  (A .  12) two types of integrals appear, viz. 

The reduction of the  first integral has h e n  given hy ~IULTHOPI~ in ref. 11 and also by DE YOUNG and 
HARPER in ref. 13. The result for the pivotal point ?/=u, is 

where 

The prime at  the summation sign denotes that p = v  is excluded from the summation 
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For 5 symmetrical load distribution o m  has g" =g-'.  In this case a s .  (A.18) and (A.19) can 
be simplified as follows 

nz - 4  

(A. 20) 

where 

For the ca len l~ t ion  of  the second integral one writes 

where 

2 5  h sin hp, cos hp. (A. 22) 
f 1 6 ( + , )  = m + 1 

This summation can he performed in 5 similar may as the summations occurring in  h,, and h,, have 
been performed,by Xurmmrp (ref. 11). T,he resnlt is (see ref. 14) 

Tho integral is now reduced as Eolloir~s 

- 1 m - i  

=- 2 9" / L(SCOS$Dv, SCOSp)f,(Q)'&. 
m - 4  
2 

/A5-- 0 

For symmetrical load distributions this becomes 

where 

and 

In  the pivotnl poiiits Q~ thesc fiinctions Iwonie: 



34 

Writing now 
(I 

(A. 25)  
1 

G .  1, ", P --% - 1 ~ d s e o s , , ,  scosdf:('P)d"S, ~ 

0 '  I 

it is olitained finally that 
m - t  
2 
- + *  1 Li(Vv,7)lc'(7)dl)=2v c i , v , p , 9 P '  " '  (A. 2 6 )  
p=O . .  - B  

The coefficients are calculatcd by aid of the trapezoidal rule. This. leads to 

Returning now to eys. (A. 12) and applying them for  the pivotal points ?/ = y, , the integrals can he 
reduced by aid of eqs: (A. 20) and (A.26). Inserting, moreover, the values of Koo(y,y) and K l o ( y , g )  
as calculated in Appendix A. 2 ,  the result hecomes 

m-1  
if v = 0, i, ... __ 

It follows from these equations that if ps is kept constant, the va.lues of p g e R  and pg$:k will remain 
invariant, ~vliicli is in agreement wit11 the PRAYDTL-C~LAIJERT rule. 

2 '  

'. 

APPENDIX B. 

Reduction of the integral equation for the aerodynamic damping. 

1 Reduction of the integral equation'to two one-variable integral equations. 

The integral equnt.ion for  the pressure distribution p " )  which determines the aerodynamic damping 
for very low values of the reduced frequency k is, according to cq. (2.11) 

1 s  1 9  

1 / / I W z - t ,  Y - 7 ) P ( t , 7 ) d & =  __ / / X(Ol(z- e, Y - ? I ) P ( " ( ~ ,  7)dEdq. d')(z,g)-- 
4 7rpu 
1 

-t -8  (B. 1) 
4 npli  -< -*  

Thc second term on the left band side of this cquation will be evaluated hy aid of the results of 
Substituting for W'J the expression (2.3), this term becomes the previons sections. 

Improper integrals can he avoided by partial integration to of the first two terms.' This leads to 
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The following three terms will now be considered consecutively 

When the assumption (A. 5) is suhstitnted for p@)(.$, v), the integrations to  t can be performed. 

Since the integral equation ( B . l )  is solved ,by multiplicatiou with the weight functions tan 4 and 

2 siii Y o ,  wliere !z = - cos 9,  , followed by integration to .G bctrrecii the limits - 1 and + I ,  this opcr- 
ation will also he performed on each of the terms a ) ,  I ) )  and e ) .  

9 
2 

Substituting (A. 5 )  and performing the integration to ( yields 

i j 3 n 2 ( 0 ) ’ ( 7 ) - ~ o ~ 9 0 . ~ o ( o ) ’ ( ? )  
d7. 

Y-7 
- 8  

47rpu  

Y 
2 lloltiplication with tlic weight functions tan  2 and 2 sin 9, and integration to z yiclds 

Potting 
V(Z-<Y + PYV-7)‘ = J ( s ,  u ;  c, 7)  0 ,  ’ ( B . 3 )  

this integral beconics ideiitieal to the third term of the riglit hand side a€ cq. (A. 4) provided 

K ( z ,  y ;  t, q )  is replaced by i J ( s ,  y;  f ,  7 )  

IIence. it follows that the final contributions of this term to  the two one-variable integral equations 
are, in analogy to (A.8) ,  given hy 

where the relations lietween Joo(y ,  v), J 0 , ( g ,  7)  =.I,,(!), ?), J , , ( g ,  ?) and J ( z ,  IJ; < , 7 )  arc similar to 
those between the corresponding K-functions, see eq. (A .  9). Since J is always positive or zero, J,>(!/, 7) 
does not vanish. . .  

2 2  It is to be remarked, that J,,(IJ, q )  = ; izi p,J,(zi,u; 71 = 

l ) , i ~ * ~ *  J ( z i ,  v ;  &, 7)  whcrep,, = 1.1367 aiid plr = 0.4342 (rcf. 9, table 8.2). 
q Z 2  
n2 i r l  I , = ,  

= - 2 
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Direct application of the method of pivotal points for  the integration to ( leads to difficulties since 
the integrand becomes infinite for z=( and y = q .  Therefore the singularity a t  y zl) is isolated by 
writing 

Since the integrand of the first term remains finite, this term em he reduced by aid of the pivotal 
points method. Putting 

this term gives, in analogy to (A. S ) ,  the following contributions to the one-variahle integral equations 

Since for all points on the ving ~ S S ,  the integrand contains a logarithmic singularity for z = t .  
This can be isolated by writing 

Hence, (€3.8) may b e  replaced by 

I n  the first term of (B.9) the pivotal point method ran again be used since the integrand 
rema.ins finite, 

PUttillg 

Iog .{P(v+s )  + V ( 3 ; - $ ) 2 + P ~ ( y + s ) * ) ( - ~ ( y - ~ )  +1 / (3 : -$ )2~ fpZ(~ - ,~ )~ ]=1 ) (z ,? / ;~ ) ,  (B.lO) 

this term yields in analogy to (A.  8), the following eontrihutioiis t o  the one-variable integral eyuatioiis 

i 
4PPU 

i 
4PPU 

___  [%'o'(u) . PI&) + BI'OYY) , t Po&) --lo(?/) 1 I 

[UO'O'(Y) , P,,(Y) + cJ,[oJ(Y) ' PO,(U) --~Il(Y) 1 I 
and (B. 11) 

___ 
where the relations between P o o ( y ) ,  PI,(?/) =Pol(y), PI,(?/) and P ( z ,  y;  <) arc again similar to those 
betxeen the corresponding K-functioils. 

Substituting into the' second term of (B. 9)  the expression ( A . 5 )  for p'O'(&?/) .the following inte- 
grations to  9 appear 

/ c o t T l o g  9 ( ~ - ~ ) * ~ = - z 2 a o g 2 - 2 2 c e o s 9 ,  

- 1  



37 

sin 9 log (z-  t)s dc =--n log 2 + 6 v cos 2 9,, 
.( -1 i. 

which are derived in Appendix D. Hence 
1 

+A/ p'O'(t,y) l o g ( z - t ) % t =  
k P P U  -, 

(B. 13) i - ( ( 2 l o g 2 - ~ 0 ~ 2 > , ) ~ , ( ~ ~ ( ~ ) + ( 2 ~ 0 ~ 9 ~  + c0s29,)g,(~~(g) } .  
4@PU 

3 
2 Multiplication \Fith the weight functions tan 0 and 2 sin 9,, followed by integratioii to z from - 1 

to 1, yields as contribntions to the one-variable integral equations 

(B. 14) 

9 
Finally, the term tu(*) (2, y)  must also be multiplied with the w i g h t  functions tau -0 and 2 sin >,, 

followed liy integration to z from - 1 to  + 1. Considering first the case of rotation, according to (2.5) 
wn( ' ) ( (z , i )  is given by 

2 

tu$)(%, $/) =iB u z .  

 BO: and O. 

Hence, this term yields the following contributions to  the one-vapiable integral eyuations 

2 

Making use of (B.2), (B.4) ,  (B .7 ) ,  (B. l l ) ,  (B.IJ),  and (A.10) the two one-variable integral 
equations hccome 

The expressions valid for Q ,  R and 5' are as follows 
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npUZBi + 2 &,(u) + 2 R, (v ]  + 2 S',(U) = \ 

> (B.15.) 

) ,  
2 Tr&nsformation of the one-variable integral equ$tions to a set'of linear algebraic equations. 

The rcdiiction of the integral equations (B. 15") to  algelrraic eqiiations occiirs again by aid of the 
I\IUUTHoI'P procedure. Since the right hand sides of thesd'equations are identical with tliose of (A.  121, 
provided g(O) is replaced hy g"), the rcduction for these 'terms has already been performed in Appen- 
dix 113. In the present section t,he recliict,ion of thc terms &, R and 9 will be given. 

In agreement with eq. (A.20) ,  it follovjs that 

m--l - 

In  analogy with (A. 25); (A. 261 u~ id  (A. 27) certain integrals oecnrring in the expressions for Bo 
I .  and R, are evaluated as iollows " 

cos 
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3 The two-dimensional case. 

It follows from eqs. ( A B )  that for  S-Y Ca , 

1 
Since the function ill for large s is of order - and since g& artd gf; tire constant a.lorig the \%ring, 

Furtheimorc the function P is of order logs forlarge values of s. It follows from eqs. (A. 9) that 

S 
I , ,  

the summations containing If vanish. 

if P is independent-of x-and t - -  

P,, s P,, = P<,, = P,, = P and hence, also 0 (log s) 

As the remaining terms at the left hand side are of order 1, g:k 

The quantities '.R arid - vanish for s m . 

and g:; become also of order 
logs for s + m .  

g'l' p) 
I,R 

d 8 
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Hence, the integral equation becomes 
W - I  

2 
- 

' f  , 

WS 
(gio)a + 2 2 gf)" 1 l - - ? ) l a t ~ ( ~ J ( 5 , ~ ) d ~ d v .  

I .  
16(ni + 1) ,U  " = I  

. .  . .  
The left band side of this ciuation is independent of 5 and y. If the left hand side is replaced by 

UB, the equation is identical to the one which has been solved in Appendix A. Hence the solution of 
the prescnt' equation is for the case of rotation given :by 

I n,-I - 

with p ( 3 ) ( 5 , 7 )  =ng,(s)(<)cot 1 -+ > t ,  . 2  - (y,(3)(7) -p01(s'(v)'}sin3. 
2 a  

For the case of translation Ini g;tl.= l n i g t ) T =  0, because g t k  cquals zero. 
, .  

' I ,  ., . I ' ' ). , . ,  

, .  ",APPENDIX c., 
. ,  

The position of the sectional center of pressure at the tip. 
I 
I, 

. < I  I ,  
S I  

The sectional centei, of pressurc lies at a distance el af t  of the leadihg edgc, where according 
to eq. (3.3), e is given hy 

Since both go'@) and g,('Jl vanisb at the ti& the following limiting procedure must be performed 

g,'O) g1'O' =lim dS,'O)/d9 lim __ = E m  __ 
" 4 s  goco) ' P 4 0  00'" T+O dyo""/dv ' 

Using cq. (A. 17), this becomes equal to 
m - I  

P 
- 

81'0'" 5 hsin h9,, 
m - I  A = l  n=-- 
1 

According to ref. 14, one has . . 

vt sin (911 + 1)9,,- (VL + 1) sin my,, 
2(cos pn - 1) h=I 

n m 
With p - - - __ , eq. (A. 16), and vi being a11 odd numfier, one has 

' I -  2 ni  + 1 
"2 + 1 

-n+- 2 . .  
sin(t1i + I ) ~ , = O ,  cos (nt + I)?,,= (-1) . .  

111 t 1 - n + -  
2 

Hence, sin mqn sin (nt + 1)s. cos 9" - cos (m + 1) pn sin p,b = -(- 1 )  sin p,, 
m t l  

ni  + 1 - n t ~  sin?, m 

and 2 A sin,+,= __ 
cos p. - 1 (-1) 

?.=I 
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Thus 

2 sin 'pn 
cos qn - 1 

I: go (0'- (- 1)" 
m --I 

2 
11=-- 

For sjmmetric load distributions, the d u e s  of n and  - can be taken together. For n # 0 

sin p - sin (",, - sin?, - 2sinpn. - 2 ___ - - 
sin 'pn 

+- sin (",E 
C o s ~ " - l  C O S 9  - n  -1 cosp,-l  c o s ' p n + l  , c o s ' q n - l  ' 

while for  n = 0, sinul. =-I, 
cos ,(Pn - 1 

Eence 

APPENDIX D. 

Reduction of two integrals. 

+1 + 1  

9 
2 

Calculation of the integrals cotg - log (z-c)Zd{ and / sin 3 log ( ~ - < ) ~ d €  
--I -1 

Suhstitut,ing z = - cos 3, and t = - cos 9, the first integral hecomes 

sr r 

9 3 .  cotg - log (5- l ) z c i i .  = eotg - Sin> log (cos 3 - cos>,)*d> = (I + cos 9) log (cos 9 -cos 9 , ) Z d > .  
6 2 

-1 .it' 2 b 

Integration hp parts yields 

d9 = sin 9 
cos 3 - cos 9" 

9 

--I 0 

r 

r13 + /" - 'Os 23 d3. j >sin9  + 2xlOg (I + cos>,) + 2 
cos > - COS 9, cos 9 -cos 3" 

0 0 
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The first integral is calculated by integrating hy parts and nsing tho formula 

9 sin 3 
d> == - T log (1 + cos 3,) -IT 109 2 (D. 1) cos 9 -cos 9, and the result is 

(See also ref. 14) 

I The second integral is of the well-known GLhUrmT-forni and 
R I 

I - cos 29 
cos 9 - cos9,. a9 = - 2  7r cos 9,, . 

I 

I 
I 

0 

Tinally the total integral becomes 

9 log ( ~ - ( ) ' d [  = - 2 7  log 2 - Z T  C O S > ,  . 
-1 

The integral 

can be llandled in the same manner. 
Integrating by parts yields 

The first integral at  the right hand side has been already calculated and equals - 7r log (1 4- cos9,) - 

The second integral 
- T log 2 (D. 1). 

1 R 

d 9  sin 3 sin 2 3 
cos 3 - cos 9, 

cos 3 3 -cos .3 
cos 2 - cos 9, - y 2 /  ' __ a>=+ ?A /' 

d 6 

is again of the well-known GuumT-form and equals 

sin 3 3" -sin 9, = IT cos 2 9, XT sin>, 

Hence the total integral heaomes 

j' s ln9 log  . ( z - [ )*d<=-~ log2  + 1 / 2 ~ ~ 0 ~ 2 9 ~ .  

--2 



0 1 0.1951 1 0.3827 1 0.5556 0.7071 1 0.8315 

- 0.89894 - 0.72030 

0.57245 0.51122 0.42370 

0.44019 0.096917 - 0.075415 - 0.19451 

5.5769 4.0309 

- 1.1975 

- 10.104 - 7.0935 - 5.5539 

- 1.4877 

0.9239 

- 0.50404 

0.30607 

- 0.21787 

2.5645 

- 0.83458 

- 3.7917 

0,9808 

- 0.25949 

0.16105 

- 0.14007 

1.2351 

- 0.42846 

- 1.9139 

kb" 
lim - 

ma'' lim - 
h+U k 

k+O il. 

0.7 ] 0.9 

] 0.9 

0.7 

PJ&' 
Pn1( 

lim d' 
ir+o k 

nd' lim - 
k+.o k 

0 

- 1.7856 

0.89707 

9.8133 

53.519 

- 6.9372 

- 33.586 

0 I 0.1951 1 0.3827 0.56% 0.7071 1 0.8315 1 0.9239 1 0.9808 _______ 
0 < 111 < 1 - 1.5675 - 1.5516 - 1.5014 - 1.4090 - 1.2617 - 1.0457 - 0.75389 - 0.39575 

O < M < 1  0.79756 0.79092 0.77006 0.73215 0.67143 0.57826 0.43759 0.23933 

0.7 4.4290 4.2954 3.9039 3.2890 2.5156 ' 1.6923 0.95443 0.40202 
0.9 28.723 28.056 26.091 22.940 18.825 14.108 9.2237 4.5078 

0.7 - 4.2105 - 4.1299 - 3.9152 - 3.5615 - 3.0889 - 2.5027 - 1.7927 - 0.94083 1 0.9 - 20.800 - 20.438 - 19.341 -17.520 I -15.051 - 11.988 - 8.3903 1 - 4.3157 

1 

0.1951 

- 1.7801 

0.89$27 

9.6485 

52.763 

- 6.8598 

- 33.217 

0.9239 

- 1.0434 

0.57803 

3.1684 

20.575 

- 3.2582 

- 15.3s9 

0.36'27 

- 1.7509 

0.86092 

9.0936 

50.201 

- 6.5796 

- 31.881 

0.9808 I 
- 0.57079 

0.33762 

1.4451 

10.213 

- 1.7834 

- 8.2251 

0.5556 

- 1.6867 

0.85295 

8.1204 

45.589 

- 6.0785 

- 29.470 
____ 

k"0 lim - 
k+o k 

nib" 
lim - 

k+ii k 

0.7071 

- 1.,5711 
- - 

0.80410 

6.7462 

38.967 

- 5.3609 

- 25.952 

\ 0.7 

{ 0.9 

0.7 j 0.9 

0.S315 

- 1.3702 

0.72093 

5.0304 

30.435 

- 4.4251 

- 21.271 
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pzi/ ' 0 < .*l < 1 0 
f l  F b '  id - 0.97132 
p M a '  id 0 
p X b '  id f 0.53597 

. .  p K:' I id 0 
0.7 0 

0 
p M/' 0 < 31 < I 0 

0.7 . O  
0 

' 
Kb" 

0.02 . 0.04 0.06 1 0.08 1 0.10 

0 0 0 0 0 
- 0.97132 - 0.97132 - 0.97732 - 0.97132 - 0.97132 

0 0 0 0 0 + 0.53597 + 0.53597 + 0.53597 + 0.53597 + 0.53597 I 
- 0.019426 - 0.038853 - 0.0582i9 - 0.077706 - 0.097132 + 0.0014313 f 0.00053810 - 0.0026802 - 0.0082220 - 0.016089 

0.13034 0.25046 , 0.36035 0.46002 0.54948 
0.010719 0.021439 0.032158 0.042851 0.053597 

- 0.031851 - 0.062419 - 0.091704 - 0.11971 - 0.14643 
- 0.15551 - 0.30539 - 0.44962 - 0.58822 - 0.72117 

- - 

I 
I 

A1 b" 

0.02' 

O < H < C l  
id 
id 
id 
id 
0.7 

0 < '11 c: 1 
0.7 

I 0.9 

! ' 0.9 

0.04 , 0.06 1 0.08 ' 1 0.10 
- 

0 0 
- 1.5789 - 1.5789 , 

0 0 
0.80596 0.80596 

0 - 0.031578 
0 0.13922 
0 0.79870 
0 0.016119 
0 - 0.10829 
0 - 0.52611 

0 

0 
0.80596 

- 0.094734 
0.34397 
2.0720 
0.048358 

- 1.5789 

- 0.28725 
- 1.4128 

0 

0 
0.80596 

- 0.063156 
0.25388 
1.4893 
0.032238 

- 1.5789 

- 0.20403 
- 0.9Y710 

0 

0 
0.80596 

- 0.12631 
0.40947 
2.5466 
0.064477 

- 1.5789 

- 0.35790 
- 1.7735 

0 

0 
0.80596 

- 0.15789 
0.45041 
2.9131 
0.080596 

- 1.5789 

- 0.41602 
- 2.0791 

I I I I , 



TABLE 8. Factors of proportionality. 

I - 3  - 5 '  j -4  

unsteady - 31.227 - 19.866 - 11.225 0.7 
0.7 quasisteady -- 34.221 - 21.9S0 - 12.459 
0.9 .unsteady - 23.612 - 11.560 - 3.9617 
0.9 quasisteady - 56.063 - 36.009 - 20.412 

xi 

I 2.86 1 5.71 1 11.43 1 

- 2  ~ --1 I 0 1 tl I t 2  

- 5.3046 -2,1045 - 1.6246 - 3.8649 - 6.8254 
- 5.6589 - 1.5786 - 0.21845 - 1.5786 - 5.6589 
- 0.82550 - 2.143 - 7.9167 - 18.147 - 32.834 
- 9.2707 - 2.5861 - 0.35787 - 2.5661 - 9.2707 

Af 1 .  e - +  1 -8  1 -7 I -6 1 -5 1 -4 I -3  I - 2  [ -1. [ 0 [ + 1  '+ 2 
- 

0.7 . unsteady 
0.7 quaskteady -1118.11 - 90.463 - 66.505 -46.234 -29.647 -16.747 - 7.5327 -2,0040 - 0.16114 - 2,0040 - 7.5327 
0.9 unsteady - 23.380 - 1.400 '+ 14.560 + 24.472 + 28.345 + 26.181 '+ 17.960 + 3.7389 -16.540 -42.857 -75.212 

- 88.588 1 - 65.032 - 45.166 -28.986 -16.49.1 - 7.6831 - 2.5602 -1.1233 - 3.3721 - 9.3067 -16.927 
P m 

-2  I -1 I n 1 '  ii 

0.9 quasisteady - 193.48 - 148.20 - 108:95 - 75.742 - 48.570 - 27.436 1-12.340 -3.2831 - 0.26398 - 3.2831 - 12.340 1 

f 2  

- 31.980 
- 8.9495 
- 131.14 
- 14.661 

I l l  E - +  1 -14 1 -13 [ -12 1 -11 1 -10 I - 9  -8 1 . - 7  1 -6  

0.7 unsteady -317.23 - 266.24 - 219.66 2 177.51 - 139.79 - 106.48 ' - 77.595 - 53.139 - 33.099 
0.7 quasisteady - 433.47 - 373.77 - 318.49 - 267.64 - 221.21 - 179.20 - 141.61 - 108.45 - 79.702 
0.9 unsteady - 114.82 - 61.504 - 15.444 + 23.386 + 54.956 + 79.296 + 96.386 + 106.24 + 108.83 

____ ___ ~, 
~. 

0.9 quasistea.dy , - 710.10 - 612.30 - 521.75 - 438.44 - 362.38 - 293.56 - 231.98 - 377.65 - 130.57 ' I 

' N  

0.7 
0.7 

0.9 
0.9 

-3 
- 

unsteady - 17.482 - 6.2881 + .0.4849C 
quasisteady - 55.381 - 35.482 - 20.005 

quasisteady - 90.726 - 58.127 - 32.772 
unsteady ,+ 104.19 i 9z.302 + 73.177 

+ 2.8359 1 + 0.76500 
- 8.9495 - 2.3165 + 46.798 + 13.179 
- 14.661 - 3.7950 

- 5.7281 -16.643 
- 0.10551 - 2.3165 
- 27.684 - 75.791 
- 0.17285 - 3.7950 
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The influence of non-stationary stability derivatives 'on the 
snaking motion. at high subsonic speed *) 

by 

J. Y F F .  
. .  

summw. 

' Some latcrai stability d c u l a t i o m  with two rlegrees of freodom for  flight at high subsonic s p e d  hav0 'been performed 
in order to studg tho influeneo of the non-stationary stability derivatives Cn. C . 'C"; and C,; on the damping of the 
snaking motion. These derivatives e m  be determined thwretioally for  the ti198 of ems11 aspat ratios and with eompressi- 
bilit,y taken into account. 

It is found that  only C , .  has 5 small influence on the damping in yaw, the influence of the othor nan-stationary 
derivatives being negligible. Whether the introduction of C,p ea- s decrease or an inorease of the damping in yaw 

depends mainly on the aspect ratio of the vertical tnil. For nearly all practical tail designs, however, an increase of the damping 
in yaw will result. Furthermore it is fouud that tho theoretical nan-stationary stability derivatives far vertical tails are 
praoticelly jadcpendont of the reduced frequency. 
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B. 2 Further consideration of the stahility derivatives C,;. and C.;. 

Symbols. 

A C" amplitude of translation of mid-chord point of vevtical tail, made dimensionleis 'by aid of - 2 

. .  

H amplitude of rotation of vertical tail 
C ,  lift coefficient (Lift/q.S) 
K force acting on the vertical t,ail 
K,, , X, aerodynamic force derivatives defined 11s eq. A-1 
K('J coeffcients of the series expansion of t,lie kernel of the integral eqilat,ion relating downwash 

and pressure distribution 

.. 

L rolliig moment 
N 
If,,. M o  aerdvnamie moment derivatives defined b r  PV. A-7 

moment about mid-chord axis of the vertical tail 
" .  

Ma Il~ai" number 
N yawing moment 
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in ph,ase .,component of yaving moment due to sideslip 
out of phase component of yawing moment due, to sideslip 
in phase component of yawing moment due to yawing velocity 
out of phase component of yawing moment due to yau7ing velocity 
period of the lateral oscillation 
wing a,rea 
vertical tail area 
time to damp to one-half aniplitude . 
airspeed 
weirht of '  a,irplane 
IateFal force 
in phase component of lateral force due to side slip 
out of ~ l i a s e  comuonent of lateral force due t o  side slin 
in  phase component of lateral force due to p w i n g  velocity 
out of phase component of lateral force due t o  yawing velocity 
wing span 
vertical tail span 
mean aerodyna,mic chord of vertical tail 
coefficients of series expansion of t,he function. determining t,he lift distribution along the span 
of the vertical tail 
coefficients of series expansion of the function determining t h e  moment distribution along the 
span of the .vertical tail 

reduced frequency k = __ 
radius of gyration about X-axis 
radius of gyration zbout Z-axis 
product of' inertia factor 
mass of a iv lane  
angular rolling velocity ( p  = $) 
coefficients of series expansion of pressnre 
dynamic pressure 
angular yawing velocity ( r  = +) 
2 bo 

v . C" 

2 v  . , 

c, 
time 
downwash 
coordinates made dimensionless by cV/2 
angle of attack of body rcfercnce axis 
angle of sideslip 
angle of rotation of vertical tail ahout y-axis 

distance of e. g. to mid-chord axis of vertical tail 

angular chordwise coordinate ( f  = - cos 9) 
roots of characteristic equation 

ni 
relative density factor, p = - 

PSb 
angular frequency of lateral oscillation 
x and 21 coordinates of an arbitrary point of the wing 
ai? density 

t 
non-dimensional time factor D = - 
time conversion factor T = __ 

angle of yav 
angle of hank 
sweepback of wing quarter-chord line 
sweepback of vertical tail quarter chord line 

T 

m 
p s  v 
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Non-stationary stability derivatives 

R E E A X I S  
AZIMUTH REF 7 

r I R O U  R E F  

2 
,Stnbility system of axes. 

1 Introduction. 

I n  view of t,he iincertaint,y wliicli~ exists concerning the influence of unsteady aerodynamic effects upon 
stability calculations, an investigation was perf.ormed with the parpose of clarifying t,his quest,ion for 
the snaking motion at  liigh subsonic speeds. 

Hitherto it Ius been very difficult to take into account in a proper wtiy the unsteady flow effects 
because accurate measurements of hhe non-stationary stahility ,derivatives are hard to obtain and the 
theoretical determination of these derivatives VD hampered by the Pact that tin unsteady finite span 
theory for the calculation of t,he aerodynamic loads on the low aspect ratio tail did not exist. 

'P,herefore the results of former investigations are not, very aecurat,c due to inadequate representation 
of the aerodyriamie forces. E. g., VA.. DE VOORFX and I'm (ref. 1) used two-dimensicylal nnsteady aero- 
dynamic coefficients and only a reduced value of the lift slope curye was used to take into account 
the three-dimensional effects. BIRD, Frsrmt and HUBBARD (ref. 2) applied tlic finite span method of 
BPOT and Bo in -~~m as well as that of RI?I&SXER which was used also by A m i r z ~  and eo-authors (ref. 3) .  
These finite s1ia.n methods of BIW arid BGIWLFJIN as well as of REEISNER were applied, however, to aspect 
ratios of ahont 2 while they a.re only valid for relatively large aspect ratios. Moreover they are valid 
only in inconiprcssihle flow while RUATA~S (ref. 4) has shown that for two-dimensional flow pitching 
or  yawing instability occurs f.or a much larger range of parameters when compressibility is taken 
into account. 

As the first part of the present investigation n theory has been developed therefore 'by v u -  DE 
VOOREX and DE JAGER (ref. 5) for the ealculation of the aerodynamic forces acting upon a. slowly oseil- 
lating finite span airfoil which takes into account HISO eompressihility effects. The present report deals 
wit,li the introduction in the stability calculations of the unsteady aerodynamic forces obtained in ref. 5 
wliile, moreover, sume examples are given of ealculat,ions with and TTithout the non-stationary stability 
derivatives. These calculations refer to snaking motions with two dcgrees of freedom viz. yawing and 
side-slipping, at llncri i~umbers of 0.7 and 0.9, because it was reasoned in ref. 5 that a t  the high speeds 
a t  which snaking occurs the iriflueiicc of the noii-stationary derivatives would ,be much h rge r  than a t  
lower speeds. 

For the ease of yawing motions which is studied here the airfoil for whieh the unsteady effects 
should be taken into account is the vertical tail. 

A similar investigation for three degrees of freedom which used measured non-stationary stahility 
derivatives has been mrried out ,by C.uirmx& and WQODLIXG (ref. 6). This investigation however, was 
restricted to kiw speeds and high angles of attack, tlius representing the landing condition. Tliercfore 
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it is impossible to compare the results with these of tkie present investigation. It was found in ref. 6 
that for large angles of attack the introduction of non-stationary stability derivatives caused large dif- 
ferences fo r  the calculated damping i n  yaw. 

2 Analysis. 

The linearized equat,ions of motion for the lateral motion of an aeroplane in level flight, rcferred ‘to 
the stahility axes, are given by: 

I*#@.+ I,,*=L 

I<:+ f I $ = N  (2.1) 

- w p  .+ inv ( j ,  + ;a) = Y 

in which a dot denotes a differentiation with respect to  time and I ,  and I ,  denote mass moments of 
inertia ahout the 2 and the z axis ,while I,, gives the product of inertia. .According to the elmsical 
stability theory the aerodynamic roll and yawing moments L and N as well as the lateral force Y depend 
only on the instantaneous values of the angle of side slip p ,  the yawing veloeity 4 and the rolling 
velocity +. Thus it is possible to write: 

.ay $6 aY +b 
+lJ 2v 

+-- ay Y=- p f __- 
ap $lJ 2v a- aw  2v 

When eqs. (2.1) are made dimensionless they become in the notation of ref. 6, after substitntion of 
(2.2) in (2.1): 

p” - Zfl’ + K,y‘ - 4.y - Is ,  ,8 .== 0 

- gn . 4’- - 9  + (1 - g,)p + p’--2/.R. p = 0 

X#- w’ + +“ - m,+‘- no. f l c  0 (2.3) 
C L  

2 
t m 

L 

where a dash denotes a differentiation with respect to o= - where I =  -. Eqs. (2.3) were used 

for the calculations with three degrees of freedom. 
However, snaking is a motion which consists mainly of two degrees of freedom viz. yawing and side- 

slipping. The calculations which have been performed to illustrate the influence of the non-stationary 
derivatives therefore take into account only these two degrees of freedom. For that case the non- 
stat,ionary stahility derivatives can be derived from ref. 5 in which the unsteady forces acting on air- 
foils of finite span are calculated for low frequency pitching and heaving motions. It has been derived 
in Appendix A, in whioh the results of ref. 5 are transformed to stshility derivatives, that the follow- 
ing expressions for N and Y are valid for harmonic motions when unsteady f lov effects are taken into 
account (compare eq. A. 3) ) : 

7 PSV 

rb N = (No’ f iN,J’)P + (N; + a/’) - 
, 2v 

Y = (YB’ + iYg)p  + (Y/ f iY/’) - rb 
21’ 

(2.4) 

In  these expressions the stability derivatives have a somewhat different meaning from that in eq. 2.2, 
as has hecn explained in App. A. 

Rere thev exmess the eomnonents of the moment and the force which are in-. rem. out of phase with 
“ L  

the motion. When cqs. 2.4 a;e substituted in the last two equations of eqs. 2.1 in Cvhich p=-0 and use 
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is made of the non-dimensional notation of ref. 6 tben the following equations of motion for the flat  
yawing motion with the degrees of freedom : yawing and side-slipping, are obtained: 

$"(1- 11;) - $'% --p ?Lo - p.n. - 0 8 -  
--+''.y; + ~(l--,)--pPvS+p'(1--1,&)=0. 

The solution of these equations can be found from tl;e follow~ing characteristic dcterminant : 

A 2 ( 1  - n;) - A n ,  

--zy;+ X(1-YY,) 

- hiti - np 

( 1  - !ti) - !I8 

which e m  be written as 

hz { (1  --yi,) (1  --?CP) - -1,;nb) -A ( Y p ( l - ? & )  + ~ ~ ( 1 -  Y i )  ?Lp-1,>- ? t i ( ]  - -1,,) ] + 
f ( 3c,yg + ICs( 1 - y,*) } = 0. ( 2 . 5 )  

The period of  the oscillation P and the time to damp to one-half amplitudc 2'5 are related as fol- 
lows to  tlic complex rwt h=I2 -C i l  of the complex quadratic equation in A :  

(2.6) 

The in-phase and out-of-phase aerodynamic cocfficients can he derived from Appendix A mbcrc the 

following expressions are obtained in which k is tlie reduced frequency k = - and lL ,is tlie non- 

dimensional radius of gyration, K: = 2 while p =defined by p = - 

YC" 

2V 
I;. m 
b pSb .' 

When using the results of ref. 5 it is found however that K/  and #I/ are zero, thus indieatiw that 
the most important non-stationary derivatives C , .  and C,. are zero. This is due to  the fact that in 
ref. 5 for  the real parts of the flutter derivatives also the terms of second order of k are neglect& as 
it was thought, that with the low d u e s  of k concerned these terms are negligihle in comparison with 
tlie steady term. The real parts of the translational dcrivativcs, however, do not contain steady terms. 
Moreover, these derivatives influence also the damping derivatives. Therefore the derivatives K,' and 
111,' are needed more accurately than they are given in ref. 5. It is possible, however, to obtain these 
derivatives accurate to the third power of 1; from the results which are given already in ref. 5. This 
is outlincd in Appendix B. The results are given in  table I and fig. 1 m a function of the qua.ntity 
b" 
6" 

The results of ref. 5 for the other derivatives are repeated here for completeness. They are given 

in table 2 and in figs, 2-3 in which they are given as a function of - 1/1- Maz. Tbis gives the 

possibility of obtaining, by mems of interpolation, values of the stability derivatives for other v a h s  
of the aspect ratio then the few eases which have been calculated. 

P P 

-v 1 -Ma*. 

bo 
c, 



c1 
P 

Y‘ 
kz Fig. lb. 2 &s function of b , / c ,  Vl-for wrious values 

of the reduced froqucnej’ k. of the reduced frequency k. 
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Because in ref. 5 the forces and moments liave been calculated for complete wings while t,he results 

of ref. 5 are used liere only for vertical tails which are Treated as semi-wings, the scale of - I.'l- #la2 
CY 

in figs. 1-3 and in table 1 and 2 is halved in comparison with ref. 5.  
The derivatives Ifa' and Jfa' are not repeated here because they occur only in the expressions for the 

stability derimtires C,; and Cn; of which it is concluded in section 4 tha t  the are ncgligible. The 
results of 'section 4 are obtained with values of the derivatives C,; and C,; ~diicli were derived from 
ref. 5. In A4ppcndix B it is derived that these expressions a r e  not quite correct hut that the order 
of magnitude of these derivatives is not changed when t,he correct rxpressioris are used. Therefore the 
results mhich are obtaiued in section '4 will remain unchaiiged because it is found that the influence 
of C , ;  and C,; OIL the stahility of the airplane motioii is completely negligible. 

3 Calculations. 

Calculations were mxde to cletcrmiiic the period and the damging of the oscillatory yawing motion in 
order to study the influeoce of the lion-stationary derivatives C 3 ,  Cniii, 12"; for the ease of 
flight wit,h high subsonic speeds at aero altitude. 

T h e  calcnlatioiis have 'been performed for two different examples. The first, example A, is a con- 
veiitional straight wing high sul,sonic fighter design which is idenlical with configuration 5 of ref. 8, 

b" 

and C,,; 

. . ... 
, , ,  

1 : , , , :  

; I  
. ,  

. ,  . ,  
, .  

: ; I  
, 1  . .  . .  

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 50 5.5 6.0 
b $ " v c z  

a sketch of which is given iii fig. 4, Nost data could he derived directly From ref. 8 although the stahility 
derivatives must he adapted to the lift c,oefYicieiit, corresponding to  the NXH nnmher Ma = 0.7 and 
Na= 0.9 for whicli the cilleulations have been performed. This could be done easily because the  
stahility derivatives wcre given for several values of the lift coefficient and thus the proper values of 
t,he stability derivatives could 'be found hy intergolilt,ion for the lift coefficient lielonging to  the chosen 
~ L ~ c H . .  nuinher. Moreover, the stability dei*ivaTives had to 'lie corrected for compressibility effects heeause 
the thmretica.1 determined non-stationary stability derivatives C,. , Cni ~ C,; and C,; depend upon, the 
A1hC'H nuklier. These eorrectioiis have heen detcrmined according to ref. 9. 

2\11 non-statioiiary stability der ixdves ha,m heen ealc~ilated for a rectangular vertical tail of as11ecT 
ratio 2 which possesses the same area as t,he vertical tail of configuration 5 of ref. 6. These theoretically 

determined nun-stationary derivatives depend on the reduced frequency k = 2 and this an iteration 

procedure should have been used in order to determine the  frewency Y .  However, i t  can he seen from 
figs. 1 and 3 that for the small tail aspect ratios iuvolved t,here is l~a rd ly  any dependency on li of the 

P 

"C 

2V 
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non-stationary derivatives and therefore t,he fretliicriey t i t  the motion can IJC found direet,ly, thus simpli- 
fying the calculations considerably. 

All ,data concerning example A, derived i'rom ref. 8 as well as theoretically determined, are collected 
in tables 3 and 4. The following calcnlationu have been performed with example A. 
a) Threc degrees of freedom, rolling, yawing and sideslipping. Withont non-stationary stability deri- 

vatives, Ma = 0.7. 
11) Two degrees of freedom; yawing and sideslipping. Without noii-stationary stability derivatives, 

nra = 0.7. 
c)  Two degrees of freedom ; yawing and sidcslipliing. Without non-stationary stability derivatives, 

Gyp = 0, Ma = 0.7. 
d )  Two degrees of freedom; yawing arid sideslipping. M'it,hout nun-statioiiary stability derivatives, 

Cy,= 0, Ma=0.9. Radius of gyrat,ion k ,  h a  heen v a r i d  
e) Two degrees of freedom; yawing and sideslipping. Wit.h the noii-st;~tiona.ry stability derivatives 

Cub, C,,;,, C,,i, and C,,, included. Cur= 0, Ha = 0.9. Radios of gy-ration kz has heen va.ried. 
f )  Two degrees of freedom; yawing and side,slipping. With C,.but without Cub,  CI.; and Cmr- C,,,=0. 

Ma = 0.9. Radius of gyration k, has hecn varied. 
g) Two degrees of freedom; yawing and sideslipping. With C , .  lint without C . C,; and C,;= Cy,= 0. 

i%=0.9. Radius of gyration k ,  has been varied. The vahte oi' c,,b has h C I l  taken equal to 1h Of 
the theoretical value of C , .  

ICxamplc B is derived from ref. 10 and it represents a semi-taileus airplane with small tail length as 
shown in fig. 4. In ref. 10 all aerodynamic data arc given for two values of the tail length and there- 

P 

P UP'  

P .  

Of PPf 8 

SMALL TAIL LENGTH 
-LARGE TAIL LENGTH 

TAIL OF REF 10 , 

EXAMPLE A EXAMPLE B 

Fig. 4. Basic configurations for  which calculations werc made 

fore the staljility calculations Iiave been performed also for both cases. The mass of the airplane has 
becn chosen after comparison with airplanes comparable in size and configuration. ' All rekvant data 
can be found in tables 4 and 5. 

The calculations have been performed for different values of the radins of gyration es Well as for 
three different values of C"b, viz. C , .  eqnal to the theoretically determined value of C . equal to half 
that value and equal to zero. C4 ,has been calculated for  a rectangular vertical tail of aspect mtio 
1,70 with the same area as t,he swept back vertical tai l  of the original model while C*@, Crr, Cn7 
and C,, are neglected. The other stability derivatives hare Iiecn corrected for compressibility effects 
hy aid of ref. 9. 

4 Results and discussion. 

F 

B "P' 

The results of the ca.lculations coiieerniug cxamplc A are collected in table 4 while those of exilmplc B 
arc given in table 5. 

Influence of number of degrees of freedom 

By comparing the results of the calculations of example A with two and with three degrees of free- 
dom (calculations 1 and 2) it will be seen t,hat, the period of the oseillation remains nearly the same but 
that the calculation vi th  two degrees of freedom overestimates the damping of the motion by about 10 %. 
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Yet .the subsequent calculations have been performed with two degrees of freedom only hecause all essen- 
tial properties of the oscillatory motion are found with such a calculation. 

Moreover, it has becn found possible to neglect the stability derivatives G,, as will bc clear from a 
eompnrison of calculations 2 and 3. The results of both calculations are exactly the same. Thus in the 
subsequent calculations the derivative Cvr is neglected. 

I7~fluence of Machnzimber. 

The calculatioIis 1, 2 and 3 have been pcrfomed for ala = 0.7. The influence of the MACK number 
ca.n he studied by comparing t.hc calculations 3 and 5 .  The latter calculation is exactly the same as 
calculation 3 except for the NACH number which is chosen as A[a=0.9. It is seen that both frequency 
and damping are increased by increasing the MACH number. The result is not very conclnsive, how- 
ever, hecanse compressibility effects have heen taken into account only in a rather simple manner so 
that e .  g. shock waves have not bern taken into account. The results of ref. 5 show however that, for 
,ala. = 0.9 the non-stati,onaly derivat.ives become mnch larger and thus the influence of the non-stationnry' 
derivatives will he more important for Ala = 0.9. Therefore thc, subsequent calculations were performed 
for Ma=0.9 only. 

Ef fec ts  of the non-stationary stability devioatives C,; , C,,; , Cvb u,7d Crib. 
In  'order' to investigate the influence of the non-stationary staliility derivatives on the results of the 

stability calculations, some calculations have heen performed with and without these derivatives. The resdts 
can be found in table 4 by comparing thc calculations 4 through 9 and 10 through 15 where for several 
values of the radius of gyration the  damping and the period of the oscillatory motion of airplane A 
flying a t  Jfa=0.9 are given. By compa,ring the results of the calculations with a,nd without the non- 
stationary stability derivatives for a certain value o f  the radius of gyration it, i s  seen that again the 
period of the oscillnt,ion is hardly a.ffected while the damping is increased by about 10 %. 

Influence of different non-stationary deriwtives. 

Another question which can be posed here, is, which is the influence of cach of the different non- 
stationary dcriratives. In order to investigate this question some calcnlations have hcen performed in 
which Cyi, c C.; = C,,, = 0. By comparing the results of calculations 10-15 with thcse calcnlations 
(16-21) it will~be clear that the derivatives C,. , C,; and 6,; can he safely neglected for  the results oE 
calculations with.and without t,hese derivatives are exa t ly  the same. 

Thus the non-stationary effects in lateral stability calculations with two degrees of freedom are due 
to the derivative C ,  

Dependance of iwn-statiomry effect on, C,. P 

! ' .  3 '  . 
I ,  

6 

b .  

The accuracy by which C.. is determined is not known because up till now it is impossible to  com- 
pare the theoretically determined value of C , .  with the results of unstca,dy measurements. It seems how- 
ever that the tliooret,ically determined values of Cnli are tca large for it is found by calculating other 
stability derivatives for which experimental verification is possible that large differences exist between 
the theoretically determined and the measured values of the derivatives. Though the theory of ref. 5, 
which is used here, is valid for small aspect ratios a,nd though i t  takes into account compressibility 
effects it is found e. g. that the theoretically determined value of COT is twice a hig as the value given 
in ref. 8. The main reason for this difference will be the uncertainty about the eCfect,ive aspect ratio 
of the vertical' tail. I t  is assnmed in  t,his theoretical investiga,tion that the pressnre distribution of the 
vertical tail is equal to that of a semi wing thus assuming the  horizontal tail to  act a s  an infinitely 
large .plate.. For this case the effective aspect ratio is twice the geometrical aspect ratio of the ver- 
tical tail: ' 

This value will not be reached in  practical cascs hecause there is always a dccrease in the pressure 
difference on t,he vertical tail towards the horizontal tail. . .  

Because this uncertainty about the nmgnitude of C,&) some calcnlations have heeii performed with 
valnes of Cnj which are one-half the theoretical values. The results of thcse calculations are numbered 
22-27 in table 4. It is shown by these results that the difference in the damping of the oscillatory 
motion due to the introduction of C ,  is about proportional to G ,  

Influence of different yu,rumeters determining C, . 

B 
P 

8 '  6 

P 
Up till now the introduction of C , .  i n  the stability calcnlations has led to increased damping of the 

P 
oseillatoIy motion. The question arises on which parameters the sign and magnitude of C,$ depend and 
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if a decrease of the damping of the oscillatory motion is also possible. The theoretical expression for C,. 
is given by P 

K,' JiG' h,, -_ 
The values of '- and - are given in fig. 1 as a fnnction of - l/1-1nIa9 for several values 

of the ~ L ~ c H  number. It is seen, in the first place that for practical values of E (5 to 10) the term 

e h, is mucli more important than - . A point of great interest is that for practical values of the 

vertical tail aspect ratio thcrc is practically no influence of the rcduccd frequency k. 

liz liz CY 

.if"' 
kY k2 

The most important feature of fig. 1 is however that for. both Kmr-numbers 0.7 and 0.9 2 changes 

sign Iictwecn aspect riit,ios 1.5 and 2.5. This means that only for tailplanes of very high aspect ratio 
the introduction of C, will cause a reduction of the damping of the oscillatory motion. Blost present 

eha.nges K,' da? tailplane designs, however, have aspect ratios ivliieh are less then the values at. which - 
lP 

sign and therefore in most cases the intr.oduetion oU C , .  in stability ealeulations will lead to increased 
damping of thc oscillatory motion. 

I?iflilonce of radius of grratioqi.. 

As can bc seen from table 4 most cslenlat,ioiis have been performed for scveral values of the ra&w 
of gyration. The value Kz2=0,101 is the value giveii iii ref. 6 .  For large values of the radius of 
gyration the motion will be governed more 'by ineltin forces then hy aerodynamic forces and therei'ore 
also the influenee of C , , .  will diminish when K z  h o m e s  larger. This is what is actually sliawn by the P 
results of the calculations 8s they are given in table 1. 

lnfl,u.e?i~ E of tuil length.. 

r ,  

IC ' 
l? 

P 

, P 

In  order to study also the influence of the tail leii,@th on the lichaviour of C,. in stil,bility calculations 
the calculations. referring to example B have 'bceri performed. The results of these ca,lculatioris are given 
in table 5. 

As it is found in the previous seet,ions that C,.. , Cv; arid Ci; as well as Cur can he neglected, this 
has been 'done in this case. 

By comparing the ealculations for both cases of example B, which haw tail lengths of ~ - 3 , 9 5  and 
5,56 resp. (ealeulations 2 6 - 4 2  and  43-57), it is seen that  for the larger tail length the motion is damp- 
ed heavier than for thc small tail length as could he expected. Thc same is found when the results of 
tlic caloulations of example B arc compared with those of excample A (~=10,75). 

the intraduction of C,. causes a.n increase o i  the damping of the mot,ion. This is shown by comparing 
the results of caleulatioils 26-32 and 35-42 as well as 4 3 4 7  and 53-57. The di€ference in the 
damping of calculations with and  wit,hont C q b ,  is much larger than for example A,  riz. 20-50 % de- 
pending on t,he value ,of tlie radius of gyration. This percentage however is nearly the same for both 
tail  lengths and thus it cannot be attributed to the influence of the tail lengtli. The only further para- 
meter of tlie vertical t,ail which is found t o  bc different for examples A and H is the aspect ratio of 
the vertical tail which i s  1.7' for  example B and 2 for example A. From fig. 1 it will he clear that this 
is very important for the magnitude of. C,. 

P 
Thus it ea,n ,be coneludd that the influence of C. .  on the damping of the motion is nearly independent 

of the tail length but dependent on the aspect rat,io of the vertical tail. 
As in the ease of example A it is found thnt the difference in the damping of the oscillation due to 

the introduction of C, in the calculations is almost proportion.al to the value of C , .  as is shown by 
the results of the calculations 33-37 and 48-52. 

Also with regard to the inEluenee of the radius of gyration the samc results a.re obtained as with 
example A. The influence of tlie acrodynamic forces and thus of C ,  becomes relatively smaller when 
If; is increased. 

5 Cor.clusions. 
From the calculations for the period and the damping of the oscillatory motion of a n  airplane flying 

a t  high submnic speed and possessing two degrees of freedom, viz. pawing and side slipping the fo!- 
lowing conclusions can he drawn with regard to the influence of the  non-stationary stability derivatives 

P 

P 

As has been Sound already with exa,mgle B it  is found here ton t,hat for both tail lengths of example B I 

P 

P 

ij P 

P 

C u i ,  C,: , C,; and C.; . 
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a )  

h) 
c) 

'The only non-stationary stability derivative which has any influence on the calculated damping of 
the oscillatory flat yawing motion is C,,. 
The influence of CSrj hecomes only noteworthy at high subsonic MACH numbers. 
T!ie derivative C , .  can cause a decrease as well as an increase of the damping of the oscillatory B 
motion depending on the aspect &io of the vertical tail. For all practical tailplane designs with 
aspect ratios between 1 and 2 an increase of the damping will result. 
For the small aspect ratios involved in practical tailplane design the derivative CnB is independent of 
the reduced frequency Iz. 

P .  

d) 

e )  The influence of Crib on the damping of the oscillatory motion is about proportional to the value 
of c,, . 

r 
f )  
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APPENDIX A. 

Relations between flutter and sta'bility derivatives. 

In linearized unsteady aerodynamic theory the'expressions for the moment about the mid-chord axis ' 

and the force acting a t  a harmonically oscillating rigid a.irfoil can be written in the fo rm 

8" 
2 

8, cu 

2 2  

Ii i 7 r p V 1  -'( (Kd + iKd')A.+ (Ka' + iKd')B } eiv' 

(A.  1) 
ili = 7 p v z  - - { (Ma' + iJ1,")A + (x; + iillb")B } e?"' 

in which A is the non-dimensional translational amplitude of the mid-chord axis and B is the rotational 
amplitude. While eqs. A. 1 are defined with respect to fixed coordinate axes, in stability theory use 
is made of axes which are fixed to the moving body. Then it is supposed that  the lateral force Y 
and the yawing moment N can be expressed as functions of the angle of side slip /3 and the angular 
velocity r and of their time derivatives. Hence: 

ay ay . ay .. ay ay . 
ap ap ap ar ar 

aN 
ap ar ar 

Y=-p+--p+,p+ ...... - r + -  r +  ...._. 

aN aN . - r ,+ - r +  ._.... iV=-p+- ...... 

which can be written for the ease of harmonic oscillations when p=/305i" and r =roe'"' as 



61 

I n  the foregoing expressions for Y and N it is assumed tha t  it is possible to expand these quantities 
“C” in  power series of the reduced frequency k = - I t  follows however fram ref. 5 that for the ease 2v ’ 

of low frequency hamonic oscillations of finite aspect ratio wings ,the force and moment cannot he 
identified with a power series of k because also terms with k‘logk, k310g k ete. occur and thus it is 
impossible to identify the different partial derivatives in eq. A. 2 with certain terms of the theoretical 
expressions for Y and N as they are derived in ref. 5 .  From a theoretical point of view it seems more 
appropriate therefore to write e. g. 

rb Y = ( Y ~ ” i Y ~ ’ ’ ) P +  ( Y / +  iY-’’)- 2 1’ (A.3) 

in which Y$’ and Y$’ denote the in phase and out of phase components of the force Y due to thc mgle 
of side slip p. Comparing eq. A. 3 with the first of eqs. A. 2 it is seen that e. g. the following iden- . tifications may be made 

+ . ‘ , . . . , Y p = k  -__ b , a Y .  
c* j b  aw  

I n  general, the contri,butions of, the higher derivatives to e. g. Y& and Yp” will be very small. There- 

and k - C  . have been 
b fore the symbols of the non-dimensional values of e.g. Ys’ and Y$’, viz. C 

chosen identical to the symbols of the non-dimensional values of - and k - __. 
’P G 

a- 
ay b ay 
a@ G b b  

~ 2v 

J Y 

z 
Sketch a. 

As can be seen from sketch a the following relations exist between Ti, jll and Y ,  N when linearis- 
ation is allowed. 

I n  order to .express the stability derivatives m functions of the flutter derivatirev the relat,ions between 
A, and p, 1’ h w e  to  he derived. It follows at once from sketch u that 

= y D e i ~ t  = BeivL 

and rb - 
.. . r  , 2 1 1  C” 

Y k b  $ = T op Bei’t = - 1 - =-% - - = y,  
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In  the same ,way it follons from sketch a. that , , I . .  . .  . 
A E ' " ~ = E ~  + Z. 

ivA Ei"' = E +  + 2 
ma 
, .  . .  

(A.  6) 
i 

' .  T 
( p + y )  a.nd y = - t - .  Moreover k = - - * i  v 

GI2 Y 

After suhstitution of these expressions in (A. 6) the following result can. he derived: 

rh 

When eqs. A. 1 are suhtituted in A. 4 and use is made of A. 7 and A. 5 it follows that 

I which can be written as: 

Me' f e l l {  Mer + &,' M," + &," 
+ k s  + i  (- - - e  IC B 

From eqs. A. 8 the expressions for the stahility quant,it,ies as  they are given in eq .  A. 3 follow at once 
and are given by: 

I 

Y", . e, Ii,' lib' K.'f 
Cv;=-- g . Sbk -22a-- S b ~  - 2 ( E 62 +-  kZ -4 k3 
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APPENDIX B. 

Deter-?ninution of the flutter derivatives Ke' and ifa'. B. 1 

Jn ref. 5 the pressiive distribution on m airfoil is determined from the following integral equation 

--j/( K(0J + kK(f1 + k210g k .  K ( 2 )  + kzK(3) + k310g kKW + k9K(5) + ... } 
w'= (w(o) + k w c ' ) ) e i Y l  = 

1 
(B. 1) %V " 

{ pCo) + k p c ' )  + k l o g  k p(')  + kzp(3 )  + k3 logk . p ( * )  + k3p@)  + ... ] eivY'd&L,,, 

By equating corresponding powers of k ,  the following series of equations is obtained 
where the integration should be taken over the vertical tailplane V. 

" 
, t  

0 $= JJi { f[(& p(0) + & p  + KC') pea, '+ Kid) p)) &kd1 
U 

etc. 

As the downwash is different for translation and rotation, separate calculations are necessary for both 
cases. For translation one has zT '= Advt and hence : 

I Thus i t  is found that for the case of translation w+ = 0 and w p  = iAV. In the same way it is found 
that for rotation z = Bze"' and thus 2oE(Q) = BV and tu,$') = i.13.V.z. 

From the fact that K(") and K'" arc real and K") and K(4) are purely imaginary while KCS) and K(" 
are complex it follows at, once from (B. 2 )  that pc') and p(&) are always purely imaginary and pC0) and 
p(*' are real while pc3) and pc5) are complex. Because w , . ~ ~ )  = 0 it, follows moreover tha.t p ~ ( ~ j  and p P  
are zero and that prc3) is real. 

In ref. 5 the coefficients are determined by preseril)ing the chordwise distribution in the fo rm:  

in which 9 is a coordinate in chordwise direction being determined hy 

[=- cos 2. 
From this expression for p ( ' )  it follows that is proportional to  the lift per unit span while ~ ~ ( ' 1  

is proportional to the moment pcr bn i t  span about the mid-chord axis. Then the expressions for the 
total force K and the total moment III of the rectangular airfoil become: 



say1 puu 



65 

At last the real part  of the sixth equation of B. 2 for dlle case of translation must he compared with 
the imaginary part of the fourth equation for . the  ease of rotation. The two equations are given by 

.the following expressions 

O =  InaKc3).p,c')+,Kco).Rep,.cb))dfdr) 
" 

A By aid of the relation p(+)-i- p$)  the first equation heeomes 
T -  I1 

R 
A 

0 = // ( ImK(3)  p,.(o) --i - 7 W .  Re ~ $ 5 )  ) d<d, 
" 
iA 
B 

Re gC5) - i - I m  gfk and Ref,, = i - Im g[!& U.T - 11 

Wlien now the cqs. E. 8 and B. 9 are substituted in the expression for K,' the following Pelation is 
ohtdined 

Thus it follows t,lIat R e p , @ )  = - Im p,(3) and 

(B. 9) 
A ' '  A 

R 

2 11 
c, 

in which s = 2 

Now g&, =gSk - .q$k,, ,  as I r a  hecn derived almvc and hence i t  is pmsilule to write 

I n  ref .  5 the derivative Ka" has been ealenlated by taking into account terms up  to the second power 
of k .  Thns in the approximation of ref. 5 

l ' h e  'relation l)et,ween R a "  and K/ follons now immcdiately by- comparing this expression with E. 10. 
The result is 

(B. 12) 

in which fi,,' is acciirate to t,lre third power of 1;. As KO" and Ra" . .have been calculated in ref. 5 t,he 

. K,,' = - I; (K,/ - RL" ' ) q . a  
~ .. 

V . '  
results of K,' a.re d i r e d y  ohtainahlc from ref .  5.  The same derivation and thus also the sa.nie result 
is valid for M"'. Thus 

Ill,' = - I< (Me'' - ilf L" ) (B. 13) 

which a.re denoted fl: I" 
From these results it follows also tlwt the non-stationary effects of 2 and - 

9s qsb 

Considering e.g. CVy the following expression is given in eq. A. 9 :  

4.5 

I also by the symbols C,,? and CSr are sma.11 of the third power in k .  

From cgs. B.10 and B.11 it follows that 

while it follortrs from eq. E. 5 that 
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Thus C,, (a similar derivation is valid fo r  CnJ,  consists of a quasi steady par t  denoted by gC') and 
g fh  and further of terms of third order of k. When considering eqs. A. 2 and A. 3 this result can he 

as aN . 
given also in the statement that and r m d e e d  are quasi steady quantities while the higher order 

0 R q . s  

". 
ay aiv terms of Y,' and N,' can be identified with -- and __ r hZ ; b Z  ' 

4v2 a- 4vz a- 

B. 2 Further consideration of the stability derivatives C.; and e,,;. 
When the expressions B. 5 are substituted in eq. A. 9 the following exprcssion for e.g. 6,; i s  obtained 

At first sight it would appear from B. 13 that for k= 0 the expression for  Cu; would become infinitely 
large. However when B. 6 is snhstitnted in B. 13 and when a similar relation betseen g$& and g t $  
could he derived the terms which cause the singularity for k=O would disappear. Therefore the fifth 
equation of B. 2 for the ease of translat,ion will he compared wit,h the third equation for the case of 
rottition. These eqiiat,ions are : 

. .  0 = i,i { IPpdO) + K'", p p )  dtdl,  
" 

A 
. n By substituting the relation p,(')=i - pR(0) in the first of the equations given ahove and subtract. 

ing hot,li equations it follorvs that 

Because this rrlation must be valid for any point of the lifting surface it is possible to write 

and thns 

When B. 6 and B. 14 are suhstit,uted in B. 13 the following cxprcsqioion is obtained 

(B. 15) 1 i 
I ' B  A 

+ - (Re , &,+,A! Re gfh + ... ) + - ( I m  + ... ) 
I t  is seen hat the singularity has been removed. 
and the same conclusion will he reached. 

When investigating C,; the same derivation is valid 
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. .The formula which has been derived from ref. 5 is given by 

(B. 16) 

so that not only all terms containing k have been neglected but also 

1 i 
- RE & + - Inc 0 t h .  B A 

Although this exgression is not zero it will be shown that indeed it is wry  small compared with 

A. g 0 . r .  (3) Therefore the imagiinaly part of the 6th eq. of B. 2 for translation miist be compai-ed with 

the real part  of the 4th eq. of B . 2  for rotation. These cquations yield 

o =  j/{BElirnPr") + K(+,,(m+ l i (o)zn lp , [6) )d td l  
" 

O = L { (  Re X(9)p,('') + li")p,c') + K @ ) .  RE pxC3) )  @dv. 
0 

Since it bas been shown already that 

A A p p  = i  - p p  and *,p> = i - pE(tl - 
B B P4;.,I 

it follows that 

, When a quantity pE(a) is defined by the relation 

it is possible by substltUtillg cq. B. 18 in eq. B. 17 to obtain: 
A - 
B I m  p p )  = i- Re { pR@)-  ~ ~ ( 3 ) )  

and henee 

(B. 17) 

(B. 18) 

(B. 19) 

i 1 -  1 i 1 -  
gh3i and - Re giai + - I m  gc\ = g& 

1 
B A a,? B B A 
- Re g& + - 1911 gm = - 

which are very small indeed, as they are determined by p(') i n  (B. 18). 
R q  . a  

Since i t  is shown in see. 4 that the influenee of C.; and C,; on the stability is al&dy very small 
1 -  when using eq. B. 16 the neglect of the term gh3& is certainly allowed. 
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TABLX 1. The acrodynamie derivatives Ka' and Ma! for various values of the rcduced frcquency k. 

1 1.43 2 . W  5.715 b, --v 1 - Ha2 
CV 

1.43 2.85" 5.71' 

IC = 0 
0.02 
0.04 
0.06 
0.08 
0.10 

AI/ 
k= 
- 

- 0.85 -4.07 -8.66 
-0.82 -3.87 -5.09 
- 0.76 -3.66 -7.48 
-0.71 -3.45 -6.86 
-0.65 -3.23 -6.25 
- 0.59 -3.02 - 5.63 

11 - I 

0 1.40 3.19 5.59 7.43 16.01 27.06 
0.02 1.37 3.10 5.31 7.42 15.79 26.13 
0.04 1.34 2.99 5.00 7.28 15.30 24.76 

0.08 C '  1.28 2.77 4.37 7.00 14.31 22.00 
0.10 I .25 2.65 4.05 6.85 13.82 20.63 

0.06 1.31 2.88 4.68 7. i4  14.80 23.37 

-7.59 -22.95 -43.80 
-7.75 -22.36 - 41.79 
- 7.49 - 21.42 ,- 39.08 
- 7.24 -20.48 - 36.38 
-6.98 - 39.55 - 33.68 
-6.72 - 18.61 -30.98 

I -  I, I I I n 

b, TABLE 2. The aerodynamic derivatives &", Na", &" and Ala" for various values of - v 1 - Mia2. 

I 1 I I 1 

1 ,  

0 7  0 9  

I 1 I I 1 I1 

Ka" - 
k 

k = O  
0.02 
0.04 
0.06 
0.08 
0.10 

0.1289 3.108 7.572 
0.0716 2.915 6.961 
0.0135 2.701 6.347 

- 0.0447 2.448 5.733 
- 0.1028 2.275 5.118 
- 0.1609 2.061 4.504 

6.663 21.37 41.95 
6.517 20.78 39.94 
6.261 19.84 37.23 
6.006 18.90 34.53 
5.750 17.97 31.83 
5.495 17.03 29.13 

0 
0.02 
0.04 
0.06 
0.08 
0.10 

- 1.614 - 3.350 - 5.691 
- 1.593 - 3.260 - 5.414 
- 1.560 - 3.149 - 5.101 
- 1.528 - 3.037 - 4.787 
- 1.496 - 2.926 - 4.474 
- 1.464 - 2.814 - 4.160 

- 7.789 - 16.27 - 27.24 
- 7.775 - 16.05 - 26.31 
-7.635 -15.56 -24.93 
- 7.491 - 15.07 - 23.55 
- 7.353 - 14.58 - 22.17 
- 7.212 - 14.09 - 20.79 
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TAHLK 3. IXmciisioiial a i d  mass characteristics of example airplanes: 

1v 11) 

W/S lb/sq.ft 

I* (17 = O )  

S S(1.ft 

b f t  

AE 

A 'o'rees 

tiper ratio 

s', Y(] . f t  

AX, 
C,% i t  

A%, degrees 

taper rat,io of 
vertical tail 

E 

l>xiimplc A 
conf. 5 of ref. S 

' 20333 

50 

1s.4 

417 

35.4 

3 

00 

0.5 

45.5 

2 

4.iS 

00 

1 

10.75 

Example B (rcf. 10) 

;mall taillength 

20.000 

64 

24.9 

313 

33.6 

3.6 

37.5' 

0.455 

30 

1.7 

4.2 

00 

1 

3.95 

large taillength 

20.000 

64 

24.9 

313 

33.6 

3.6 

37.50 

0.455 

30 

1.7 

4.2 

00 

1 

5.56 



No. C L  Ma ao KSz KZ2 K C Z  % C"@ C l @  c., C*P Clp CYI. C", 

I (1 I I I 

modes I G1, 1 Aperiodi; 

I, T% 
___I___ 

1 O.M 0.7 +0.7 0.0237 0.00128 -0.51 0.145 -a058 0.024 -a0087 -0.29 0.39 -0.29 0.092 156 0.143 /I 

I 4 /I 0.04 0.9 + 0.3 n.050 

7;; 
1.13 1.03 

No. 

2 
3 

0.101 
0.159 
0.201 
0.258 
0.328 

1 C,. 1 Ma I 2 ~ Kc2 

0.07 0.7 C 0.7 I 0.101 

I 

II 10 I ;; /I 

5 
6 
7 
8 

0.050 
0.101 
0.159 

0.258 
0.328 

0.201 

I 1 6  
17 
18 
19 
20 
21 

I 

' 

24 
25 
26 
27 

0.050 
0.101 
0.159 
0.201 
0.258 
0.328 

I 

0.050 
0.101 
0.159 
0.201 
0.258 
0.328 

0.51 1 0.145 1 0.39 1-029 0 

I I I / n i o l o  
-0.55 0.172 n - 0.33 0 0 0 0 

I 

__ - 
0 0.059 0 n 

I 
I. 

0 0.0295 0 0 
I 

I 

Oscillatory mode I 
%ec 

1.14 
1.14 

0.73 
1.04 
1.30 
1.46 
1.65 
1.86 

0.73 
1.04 
1.31 
1.47 
1.66 
1.87 

0.73 
1.04 
1.30 
1.46 
1.65 
1.87 

0.13 
1.04 
1.30 
1.16 
1.65 
1.87 

T y ,  see 

0.92 
0.92 

0.46 
0.82 
1.13 
1.31 1 ~ 

1.31 0 

1.71 I 
0.40 
0.73 

l.02 1.19 I 
1.38 
1.58 

0.40 
0.73 

1.19 1 
1.m 

1.58 1.38 I 
0.43 
0.77 
1.07 
1.25 
1.45 
1.64 
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0.96 
1.20 
1.44 
1.69 
1.93 

0.96 
1.20 
1.44 
1.68 
1.93 

0.96 
1.20 
1.44 
1.68 
1.92 

TABIlE 5 

1.25 
1.66 
2.03 
2.34 
2.60 

1.48 
1.92 
2.29 
2.59 
2.83 

1.81 
2.26 
2.62 
2.89 
3.10 

-Conditions for which calculations were made, derivatives used in calculations 
and resiilts of calculations for example B. 

28 
29 
30 
31 
32 

33 
34 
35 

0.054 0.9 0.04 
0.0625 
0.09 
0.1225 
0.16 

0.04 
0.0625 
0.09 

38 
39 
40 
41 
42 

0.85 
7.06 
1.27 
1.48 
1.69 

0.84 
1.05 
1.27 
1.48 
1.69 

0:84 
1.05 
1.26 
1.48 
1.69 

0.04 
0.0625 
0.09 
0.1225 
0.16 

0.97 
1.35 
1.70 
2.03 
2.31 

1.17 
1.58 
1.96 
2.29 
2.57 

1.46 
1.91 
2.30 
2.63 
2.89 

43 
44 
45 
46 
47 

48 
49 
50 
51 
52 

0:04 
0.0625 
0.09 
0.1225 
0.16 

0.04 
0.0625 
0.09 
0.1225 
0.16 

53 
54 
55 
56 
57 
__ 

0.04 
0.0625 
0.09 
0.1225 
0.16 

E = 3.95 

-0.57 0.096 -0,057 0.046 

0.023 

0 

E = 5.56 

- 0.54 0.125 -0,084 0.064 

0.032 

0 
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Stability diagrams for laminar boundary layer flow 

by 

R. TIMMAN, J. A. ZAAT and TH. J. BURGERIIOUT 

i . 1  

SUmmarY 

Far o one-parameter family o f  boundary lager velocity profiles stability diagrams are given. The method of ealeulatian 
applied, starts from tho m p p t o t i c  beliaviour of tho inviscid & f f e x n t i d  equation of disturbanco. This method makes use 
of only ona solution in the complete domain of integration. 

This investigation mas performed 'under contract 
with the Netherlands Aircraft Development Board 
(N. I. V.). 
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List of symbols. 

x, Y coordinates along and nor- 
mal to the wall 

0 ve1oci:y in t,he boundary 
layer 

I? frec stream velocity 

W = = f(g/s, A )  velacity profile for z ='const 

s ' boundary layer .thickness 

A =  -P-- profile form-parameter 
b 

- 
0 

5 ' 1 2  
7 7 

velocity profile parameter - -  
stream function of the i. ( Z - e , ,  $b> Y, t )  =cp(y)e 

e 

t 
22.n 

disturbance 
amplitude of the disturbance 
velocity of propagation of 
the disturbance 
time 
the reciprocal wave length 

,i 

- C u c = -  I,, , 7 =s , a=& dimensionless quantities 

7='10 for w = f ( q o ) = c  . ' 

Y kinematic viscosity 
IPS R = -  

+%> Qszi Va. i"r 

Rcynolds number 

particular solutiong of eq. 
12.41 ' 

Y 

A , =  displacement thickness 

A* momentum thickness 
%=.,--?n in sec. 4 

6 

see Appendix A 
functions of 

I <=q + i" 
Q = x  + i* 
o ( 0 ,  G(C) 
O(z )  =-- %(') functian,of Tietjens ref. 5, 

_ _  +&a p. 38 
&=a C circular frequency 

coefficient,. see eq. (6.2) 

denoting differentiations to q 
denoting derivatives to q, v 

A " = - m  Qi(0) 

k arbitrary intensity factor 
f', f', Q" 
subscripts v ,  v 

1 Introduction. 

I n  ref. 1 a one parameter method for  the cal- 
culation of laminar boundary layers is given. As 
unstnbility of the laminar boundary layer is a n  
important feature in the transition to turbulence, 
it is useful to 'complete this calculation method by 
designing a stability diagram, giving the stability 
limit of the boundary layer profile corresponding 
to different values of the parameter. As the theory 
oE this subject has been exposed comprehensively 
in several papers (refs. 2 ,  3, 4)  it is not repeated 
here. As the numerical method is different from 
the method followed in other papers, only an ex: 



~ ~~ ~~ 

74 

position of the numerical methods will be given, 
starting from the well-known differential equations, 
which describe the phenomenon. 

2 Results of the theory of the stability of 
laminar boundary flow. 

Wc consider a two-dimensional laminar boundary 
layer flow along a plane u-all. Introducing coor- 
dinates 5 and u along and normal to  the wall, the 
velocity profile in a section z = eonst. is assumed 
t o  he gix’en by an equat,ion 

f ( V / S ,  A )  (1) 

- 
W w=- = 
W 

where W is the local free stream velocity and 6 
is a length, corresponding to  the boundary layer 
thickness. 

We assume an infinitesimal disturbance, with 
periodic time dependence, determined by a stream 
function 

(2) ircc.c-er, 

where a and are real. c is.thc velocity of pro- 
pagation of the disturbance, which at a certain in- 
stant 1 represcnts a wave with constant amplitude. 
Thc function q(y) satisfies the ~ Q n ~ f ~ F L O  equat- 
ion (rcf. 2, p. 282) 

$(z,Y,t)=rp(ll).@ 
- 

where Y is the kinematic viscosity. 
Introducing dimcnsionless quantit.ics 

we obtain the equation 

( W - 6) (9” - a2tp) - d’p = - 
% 

( 9  ‘“ - 2a2Q” f a4 Q ) ,  (4) _- 
aR 

where R = ??is the RNNOLB’ nnmher referred 

to free stream velocity and boundary layer thiclr- 
ness. 

The boundary conditions for the stream function 

V 

d v )  are 

7 = 0  9 = = ,  q’= 0 ( 5 )  

?-fa 9+0, Q’+o. (6) 
Any solution of the linear homageneous equation 

($) can be obtained from a set of particular in- 
dependent solutions Q , ,  v 2 ,  Q~ and Q, .  

It is shown in the theory, that a good approxim- 
ation for  large values of R is obtained by choosing 
for ‘p, and pz two independent solutions of the 
“inviscid” equation 

(w - e )  (d’ - aZp) -d ’y  = 0 (7) 

if necessary corrected for viscosity effects. 

The functions pa and (P< are represented asymp- 
totically for large values of R by solutions of a 
simplified equation, representing the behaviour of 
eq. (4) in the neighbonrhood of the point 1 = 7 ~ ,  
where w = c .  Here, w = (7-0)~; and the ap- 
proximating equation is, on introducing a new 
variable (ref. 5) 

z=(aEzu,‘)’h (I-%), (8) 

(9) 

The function p a ,  which is finite a t  infinity, then 
is taken as the solution 

Any other solution Q& is infinite for z+ ca 
Regarding the boundary condition (6) it is oh- 

vious, that Q~ cannot contribute to the solnlion. 
Hence we put 

( 1 1 )  . . .  9 = AI% + 
and A, ,  A,,  A, are determined from 

+ AaQz 

A3vI(0) + A,?.(O) + Aava(0) = 0  

A,rp,’(O) + ~ Q ; ( O )  + A,tp,’(O) = 0  

Axtpi(m) + A * s Q ~ ( ~  ) 

(12) 

= 0. 

If, moreover, we choose vL so; that Q ~ ( W )  =0,  
then A,= 0 and the system becomes 

4~~ (0) + Aay13 (0) = 0  
AA’(~) +.ASpd(0) = 0. 

This is only possible f o r  non-vanishing coefficients 
At,3 if c and (I have values, which make 

1 (13) - 

. .  

The values of c and a satisfying this equation 
can be plotted as functions of R to give the 
stahility curve. 

3 The inviscid solution 

The inviscid solution is a solution of the 
equation 

where 70 is the value of 7 for which f ( ~ ~ )  = c,  
which tends to  zcro if 7 -+ m . 

The function f(1) is a modification of the velo- 
city profile, chosen in. ref. 1. 

f ( 7 ) = ( 1 - b ) f 1 ( 7 )  + b f ~ ( ? ) - - d f s ( ? )  

where the third term has been added to  remove 
the discontinuity in the passage from accelerated 
to retarded flow. 
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The functions f , ( ~ ) ,  j.(7) and f . ( 7 )  are given hy 

( (1 + t z ) d -  d t =  - 

These values can, in the region, where they are 
valid, be taken as starting values for the numerical 
integration. This numerical integration was per- 
formed by ADAN'S method, operating with central 
differences and extrapolation, 

This method was useful up to the neighbourhood 
2 2 *sd l  of the pole ~ = l 7 ~  of the coefficient of yl in the 

11 

v 

-__ 
differential equation. 

4 The integration through the pole. 

The equation for the inviscid solutions 

1/, 7E-" + __ / e-  V, o 

j 2 ( 7 ) = 1 - 0 - 7 a  

f s ( 7 )  = qse-v' 

1 and d= - ( 2 h  + 5 6 9 .  14 
The value of b in the stagnat.ion point follows 
from: 

_= (1 - b )  + 2 ( b  - d )  (4, + 24%) = 0, 4 
3 V n  

where A, the displacement thickness, is 

4,== / ( l - f ) d ~ =  

= 0,752253 + 0,133974 b + 0,443114 d 
0 

and A, thc momentum hhiekness: 

A , =  / f ( l - f ) d v =  
0 

0,289430 - 0,014670 h - 0,015190 bZ + 
d(0,188063 - 0,058279 b )  + 0,117498 d Z  

in the stagnation point 

6 = - 0,41.2. 

Hence, for sufficiently large values of 7, the term 

f" may be neglected and the differential f--c 
equation simplifies t o  

Q" dQ. 
The solution q l ,  which, for 7 - f  m must vanish 
together with its derivative, hence it can he ap- 
proximated by 

'PI (7) = e-ny 

'P:(7) = - a e - = v .  

tias a singular point for 7 = 7 0 ,  where f (7 , )  = c. 
It is known from the general theory, that, the 

differential equation has two solutions, the first 
one is regular in q o ,  the second has a logarithmic 
singularity and as the function calculated 
here, is a linear composition of these two solutions, 
it will also contain a logarit,hmic part. 

Introducing a ne?v variable 

. f = v - 70 (2)  

and putting 

we write the differential equation as follows 

C.V*'=s(b)?.  

Assuming, that the zero of f(7,, + i) -f(?,) in 
simple in 5, the function g ( i )  is regular in a 
neighbourhood of = 0 and 

Hence, we assume a power series fo r  g ( i )  

g(c)  =ao + a,< + a.Cz + .. 
The coefficients a,, which are the successive 

derivatives of y(%), can be determined from a 
difference-scheme for the tabulated function. 

We now assome, from the general theory a series for (pl 

~ ( f )  = (ali + ad' + ... ) t a l  + (/& + PIC+ ... ) 
valid in a, neighbourhood of l = O .  

known coefficients m and px:  
Substitution in the differential equation gives the following scheme for the computation of the un- 

1.2. a2 = a,a, "1 = noPo 

2.3. a3 =ads, + a+, 3 as + 1.2.p, = uop, + al& 

5 a, + 2.3.p,  = ago,  + a,& + a&', 
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From this scheme the coefficients a, and & can be expressed into a, and PI .  ' 
Putting 

we find for cn and d, the set of formulae 

n 

n(n - I )& = 2 Uk-*.d,-,- (21L- l ) c , , .  i k=l 

Substitution gives : 

The values of a1 and  p ,  are determined by fitting 
tho solution for small positive values of [ = q - qo 
to the values, obtained by ngmerical integration 
for p and p'. Here a check on the accuracy of the 
numerical integration can be given by comparing 
the results in two neighbouring points q and 

If the ,coefficients in the ,series expansion are 
known, the functions ~ ( 7 )  and q'(7) at  tho 
other side of the pole can be determined. 13erc 
q = q - q o  is negative and the logarhhm becomes 
complex. The ambiguity in sign of the imaginary 
part is removed in the general theory ,by a con- 
sideration of the viscosity correction (ref. 2, p. 292). 
The logarithm must be chosen as 

7) + 4. 

hf = In 1 g 1 ;Ti. 

Now, the numerical integration must be pursued; 
its starting values different values of 7 are chosen 
and again a check on the accuracy is obtained by 
comparison of the values of p and p', eoniputed 
from the series expansion and the numerical in- 
tegrat,ion. The numerical integration is pursued 

?' up to q = O  or t=- q o ,  where the quotient - 
is calculated I). 'p 

5 The determination of the neutral oscillations. 

The values of __ "(') were calculated for each 

velocity profile, characterized by a value of b ,  for 
several values of c and (I. 

The determination of the pair of values ( c , ~ ) ,  
Corresponding to neutral oscillations., was made from 

PI (0)  

The function pZ is given as a function o f  z= 

Usually, tables and graphs are given  of the 
(C.nW()". (q-7 , )  (ref. 5). 

function 

\yk plot a diagram with the real and imagin- 

I)  A second motlmd of integration using thc principle 
of analytical continuation is given in Appendix A. 

ary part of this funetion'as coordinate axes with 
z,, = - q , ( a f i ~ , ' )  ''3 as a parameter. Now we must 
solve the equation . 

PL(0) are For different values of u the curves 

plotted on the same diagram with qo (or c )  as 
parameter. The intersection of the two curves gives 
a set of values (I, G and z. From the latter the 
REYNOLIS' number can be found 

7)0?*" 

6 Discussion of results. 

of the velocity profile parameter b 

b=0,8; 0,4; 0; -0,4 

The diagrams were 'computed for several values 

The corresponding velocity profiles are given 
in fig. 1. 

The indifference curves are given in fig. 2 for 
these profiles in the form of a plot of disturb- 
ance wave length TS* against REYNQLZS' number 

. The corresponding frequencies 
TT'S' Red'= -- 

V 

- 
G 

and velocities of propagation e=- are given in 

fig. 3 and 4 (dotted lines are obtained by extm- 

The regions enclosed by the indifference curves 
increase in the region of adverse pressure gradient, 
in particular in the neigbourhood of the point of 
separation. 

For b = 0 (corresponding to the BI,AS~S profile) 
the results are compared with those of SCHJJCIITING 
and LN (figs. 5 and 6). 

The values computed here correspond mostly to  
those of LIN. The agreement with tbc measurements 
of S C F I I J B A ~  and SKRAXSTAD is even somewhat 
hetter. 

1V 

I polation from. computed values). 
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Fig. 1 The laminar boundary layer profiles for which the 
indifference-curves m e  calculated. 

77 
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19 Re6' 

.Fig. 2 Indiffercnee eorve8 for the disturbing ware lcngth pig,  *, ~h~ illdifference the vcloeity of ~ V R P ~ .  

.d* of the laminar boundary layer profiles with increasing propagation f u r  laminar boundary Inyecr profiles with in- 
and decmasin~ pressure gradient, 898 function of REYNOLDS' creasing and decreasing pressure gmdicnt, a9 a function of 

- 

number. the RElNoms' number. 
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R.6. 

0 5  
CP 
77 

04  

03 

0 el I I I I I I I I I 
0 800 1600 2400 5200 4000 

R.6. 

Fig. 5 A comparison betwecn the various calculated indif- 
feronee mwes for tho B ~ Y C  lcngth and the vclucity of wave! 
propagation af the ncutral disturbances in the cnse of tiic 
Hmms' profile. The hcavy lines arc thcoretirally computed. 
The experimental values are indicated by dots and open 

eireles, 
The critics1 values are: .: 

R o ~ , , ~ ~  ,= 341 NLL, 420 LIN, 515 Scmrcrm1h-a. 

For the lower limit of the critical R~NO'OIIDG' 
numher S C H L I ~ - G  calculates Eeax = 575, Lm 
obtains 420 and from the cume here the value 321 
is derived. 

The velocity profile of the disturbance is cal- 
culated for the value b = 0, corresponding to  main 
flow along a flat plate (Bmsm-profile) for  Jwo 
points, (indicated by A and 0 ) and for one point 
of the profile, corresponding to b = 0,4 (indicated 
by V in fig. 1). The values 

dl) =PI(?) + A,Bs(l) ( 2 )  
and 

are plotted as functions of 7 in fig. 7. This yields 

the aniplitudcs 76 I p 1 and k - from the distnrb- 

ances inside the houndary layer. 
121 

a* ' Theoretical values of . u = - are plotted as 
a1 

functions of y/8" in fig. 8 and compared with 
experimental values from ref. 6, p. 21. Although 
the conditions in the measured values (+ and X 
in fig. 2 )  do not correspond exactly to the coil- 
ditions in the calculated points (v, 0 in fig. 2) 
the results show a reasonable agreement. 

520 

480 

460 

400 

360 

320 

280 

240 

20c 

160 

120 

80 

40 

0 800 1600 2400 3200 4000 
Re$ 

Fig. 6 A enmparisoii between the various numerically eal- 
' eul;lt.ed frequencies of the neutral disturhances in thc ease 

of tho R ~ n s m s  profile, and the values meaurcd hy 
S ~ - F U U K R  and S ~ p ~ h r l s T m .  Thcsc lnttcr values are iu- 

dieated by meam of dots. 

In the region of retarded flow the shape of the 

Finally, in fig. 9 the critical %YNOLDS' number 
. €or velocity profiles with ,pressure gradient is 

amplitude distribution is prcserved. 

plotted as a function of the form-parameter. 

This gives a means for obtaining directly the 
critical REYNQUS' numher from simple boundary 
layer calculations. 
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Fig. 8. Distribution of tho amplitudes of disturbanem in 
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APPXNDIX A. 

A method of integration using analytical 
continuation. 

The function f(7) which is used for  the des- 
cription of the velocity profile, is regular along 
the entire real axis. The function. .which is con- 
tinued into the complex plane is givcn hy f ( C ) ,  
where 5 = I) + iv. 

Putting p=x + i$ the differential equation 
for the inviscid solutions~ changes into: 

a?$$ - __ [a2+  G ( p ) J  p([)=O (v=const.) (1) 

%+ [a'+ G ( p ) ]  q ( C ) = O  (?=const.) (2) 

I 
I 
l 
I 
I 
I 
I 
I 

.aqz 

a v z  

The path of integration in the complex ,plane 
is indicated below. 

It starts a t  infinity, passes along the real axis, 
then turns around the pole along the sides of a 
rectangle and subscquently terminates at the origin. 

80 

The initial conditions in the case of a change 
of direction, which are to  be used for the numer- 
ical computation, follow from the relations of 
CAUCHY-R"NN : 

xv = $, $* ='-x, 
x v v  -- X W  *,, =-*"" 
X,*,  - - $*"" *ls* ' - X , , ,  > etc. 

I 

- - 

The advantage of this method is that the function 
G(C)  is regular along the entire path of integration. 
Ilifficult developments into series such as in sect. 4, 
are avoided in this way. If the. path of integration 
is kept at a sufficient distance from the pole, the 
steps of integration generally need not to  be di- 
mini!hed compared with that occurring along the 
real part of the integration path. 

- 

- t 1 
t" 1 

$LE 
9.9, 

1-0 
&O 

Fig. 10. Tho path of integration in the complex plane. 
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Nachprufung der einfachen Rechenmethode fur dreidimensionale 
laminare Grenzschichten mit Hilfe von exakten Losungen 

von 

J. A. ZAAT. 

Ubersiaht: Besoadero dteidimcnsiousla GrenzJcliichtstrbjnuilgen sind exakt "nil mit Hilfo einer einfaehen XBhemngs- 
methode gC1oRt .  Die Ergclmiane siud eunfultdiek niit einniider vergliehen. Einc gute Ubcreinstinrmung iut erreieht moxlcu, 
falls die N2iltrmngdiisurrgcn nuf eine sehr cinfaelic - i n ,  dierer A I o i t  bea&riclieae - Weisc korrigiert uwdcn. 
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Bezeichnungen. 

5, Y, 2 orthogonale (kartesische) ICoordinaten. 
u, w, tu Gesehwindigkeitskomponenten in der 

Grenzschicht im x, y, z-System. 
U ,  V, 11' (~cschwiiidigkeitskomponente~i der 

freien Ausscrlstriimuna im x. w .  z- 
System. 

1 p47yy 
F(q), G(1j siehe C1. (2.7). * n Offnungswinkel. n1+1 P.i 
Ut, u, Geschwiiidigkeitskompone~iteii in der 

Grenzschicht in Stromlinienrichtung 
und Qnerriehtung. 

T Quadrat der freien Stromgeschivindig- 
keit. 

,f2fin+,(?),Pi, F;,,,Fija . siehe GI. (2.18). 
(T Psraiiietcr f u r  die Profile in der . 

~aup~t romungsr ieh tung .  
a, R Parameter fur die l'rofile in ,der  

Quei.sti~omungsriehtun,a. 

ai, ai" =- Koeffizienten. 

Pi(?) siche GI. (2 .27 ) .  

ai 
UO 

ut 
u, r?j= ' 

Ih, __ 
V F '  

V T '  

% 

5 
.f.ll>7L siehe GI. ( 3 . 6 ) .  
,\, N ,  11, li 

z - 

siehe die Qleichungen (3 .3j ,  (3.4) und 
(3.9). 
a - In p( 1 +zz*+ZuZ) = a, P 

. .  
2 su SY 

-&-+ g,). 
S a a s  a a .  

sx a9 as 611 a~ as 
+ z, - , - = - + z, - Dilfereii- 

tiationen wo x oder ti komstant blei- 
ben., und 2: sls Fnnktiou von L und 1~ 
genommcn w i d .  
g = 1 + zzz + zy?. 

_=-  

u 
A, Verdrangungsdiekc. 
011, g*, Impulsverlwtdieke. 
P, q, r sichc GI. (3.11) und Tatjelle 1. 
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1 Einleitung. 
Eine einfaehe Methode znr Bereelinung drei- 

dimensionaler, laminarer, inkompressihler Grenz- 
schichten vird in der Arbeit [l] hcscliricben. In- 
iviefern diese einfa.che Beveehnungsmethode noell 
cincr lCorrekt,iir iiijtig hat. wird in  der vorlicgen- 
den Arhcit, a n  Nand exakter L6sungen der Dif- 
fer~nt~ial~leichungen fur drciclimensionale Grenz- 
schichten, nachgcp-aft. Dazu werdcn, mit Hilfe 
yon cxaktcti Iiosungen: die Ciesch~vindigkcitsprofile 
der C:ren~sehicht,e;i in der Riehtung der Stroni- 
linieii der freieri Ausseiistrijmiing nnd in der senk- 
I'echten Qoerricht,nng zusammengcsetzt. Die Ilaten 
f u r  diese Gi~t.nzschichtprofile sind zum Teil den 
Arbeiten voii HWARTH [ Z ] ,  OSRTISK [3] und. 
Hassm [4] entnommen und zum Teil berechnet. 

Es .handelt sich nm die cxakten Lijsungeii der 
dreidimmsionaleii Reibungssehichten bei schragcr 
Anstromung an Kcilen, rechten und scharfen 
Ecken, die St,nomung in der Umgehung des Stau- 
piinktes und die Striimung an dem schiebenden 
Zylinder. 

Die Stn5mung an dem schiehenden Zylinder lie- 
fert megen Konvergenzschwierigkeiten keine genaue 
A u s s q e  mehr iiber die Sekundiir-Stnomungen bei 
dem. Ubcrgang yon der besehleunigten zu der 
verziigertcn Strbniung. Nehen dieser StiGmung 
hetrachtcn wir deshalb aueh noch die cxakte 
Iiiisnng einer Grenzschicht ohne wirbelfreie Ausscn: 
stromiing. \Vir wviihlen dam die Stnijmung uher 
einer ehencn FEche mit einer scharfen Vorder- 
kante, mobei die parallelen Stromlinien der freien 
Aussei~strbmung durch tin Polynom . dargestellt 
werden k6nnen. 

Aus den Ergebnissen der exaktcn LGsungen und 
Niiherungsliisungeri geht hervor, dass die einfache 
Berechnungsniethode fur dreidimensionale laminare 
Clrenzschichten in ziveierlei Weisen verhessert ver- 
den kann.. Erstens durch Ver+hlemng des gc- 
a%hlten Gcsehuindigkeitsprofils der Querstromung 
in dem Ohergangsgchiet von der brschlennigten 
zii der verzogerten , Stromung mittels eines Kor- 
rektnrgliedes. Dadrireh erh,iilt man in diesem 
Clnliict cine hessere Ubereinstimmung mit  der Ge- 
stalt der exakten &uei~trom-Geschwindigkeitspro- 
file, und beugt man mugliehen Scliwierigkeiten vor, 
h i  der Berechnung des Profilparameters der 
Querstriimung. 

Zwcitcns wird der Anfangsnert des Hauptprofil- 
parameters mit dem Anfangswert, folgend aus den 
vollstiindigen Inipi~lsgleicli~ingen, in Obcreinstim- 
mung gehraeht ; ond der Verlauf d iem Parameters, 
der aus der einfachen hIethode entsteht, his ziir 
Druckgradienten Nall mehr oder-renig abgcindert. 

Ilkireh diese Ergiinzung stimmen die Ergehnise 
der einfachm Bereehnungsmet,hode mit den exakten 
1,iisungen der nifferentialgleichiingen fur 'die drci- 
dimensionalen Crenzsehichten gut uberein. 
2 Exakte Grenzschichtlosungen. 

Linter esakten ~renzsehichtlosongen werdcn die 
Liisungen rerstnnden, wohei keinc weitemn - als 
die hei der Oreiizschichttlieoric vorhandenen - 
Resehi~&~kungen gemacht, 'sind. I n  diesem Sinne 
sind die T h u n g e n  der .Impulsgleichung~it nicht 
exakt. 

Exakte Grenzschichtlosungen sind im Falle 
dreidimensionaler Grenzsehichtcn nur sehr w n i g  
vor1ia.nden. Sie werden hier gehraucht, um die 
Ergehnisse einer einfaellen Xherungsmethode zur 
Berechninig dreidimciisionaler, leminarer Crenz- 
sehichten nachziipriifcn iind moglicherweise noch 
zu verhesseren. Folglieh wcrden vorerst einigc 
esakten Iiisungcii niilier betrachtet,. 

* 2.1 Die sckragen K e i l -  .und Ecl;,striiniungei~. 

Bci schr>igcr Anstrbmung cines zweidimensiona- 
leri Keiles mit einem Offnungswinkel PT werden, 
in der Umgebung, der Vorderkante, die Gcschwin- 
digkeitskomponenten dcr freicn Stromung senkreeht 
nnd parallel z u r  Vorderkante gegeben durcli (vgl. 
NANGLEE [ 5 ] )  

Q 

Die (!renzschielit,gleiehung~ii sind in diesem 
Falle, wobei slle G16szen unabhingig von der 
Koordinate sind, 

(2.4) 

niit den Randlredii~gu~igen 

u = u c z u = O  fu r  z = O  (2.5) 

u,-+ U ,  v +  V ,  

lichen ~kkartcsisehen Koordinaten. 

fur  z-bm. 

z, y, z sind die in Ahb. 1 gezeichncten rechtwink- 

Ahb. 1.  StrSmung um einen Koil. 

u, v, w sind die Oescliwindigkeitskomponenten in 

Nach Einfiihrniig yon 
der Grenzsehicht in den z, 21, z Richtungen. 

(2 .6)  ?f$ 2 "Z 
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(2.7)  

gehen die (:renzsrhiehtgleieliun~en (2.2) his (2.4) 
iihcr in 

mit den Rsndbcdingungcn 

Die Gleichnng (2.9) lasst sieh lhscn als 

‘I 

Die Gleiehuiig (2.8) ist, die Diffe~entialglcieliung 
der iihnliohcii Iiisitngen des chenen Problems. Van 
praktiseher Berlcutung ist hierbei die Pote~itial- 
str,omnng gcgen einen Keil Tom Offnangswinkel 

0 < pv = __ lis 2 T, auf wclche die C:csciiwiii- 

digkeits~erteil~ing U = ,4x’]L mit TIL > 0 fuhrt. Vgl. 
X ~ A K ~ ; I Z R  [5J.  W i u  Iret,rachten die folgmdcu Son- 
dcrfalle ; 

n. Die sehrige Umst,r6mnng cines Keiles mit dem 
halben ICeilwinkel I/, pv = ‘/+ li(m = ’/3). Ilic 
Aussenstromliiiiotr sind dann p”e1fOrmig 

2 m 
11L+1 

R ’ Is 
? I = 3 / 2 - x  A +c.  

h. Die schragc Stromung gegcn eimc senkreeht- 
stehende Elatte, d.h. gegeri eiiicn Keil vom rech- 
ten lialbcn Kantenwinkel 9. =I/$ n(m = 3 1. 
IXe Aussenstromlitiien sind die logaritlimisclien 
Knrven 

13 
A 

y =  - Ins + c. 
C. Die sehriige E c k s t ~ m u n g  mit dem stnmpfen 

halben Keilwinkel x/2 p~ = 4 / 5  v ( m  = 4) .  llie 
Aussenstromlinien sind hyperbelfomiig 

B 
A $I=--‘/,- s c 3 f C .  

Ilic Iiisungen der Cleiehungen (2.8), fiir 
2 ni. 

m+7 
p=-- -0,5; 1: 1$, sind der Arbeit [6] cnt- 

nomtncn. Biir die I2sung der Oleichung (2.9) 
vcrgleich auch [73. 

Bildet die Oeseli~~indigkeitslcompon~~ite in  der 
Riehtung der freien Stpamung aineii Winkel 3 mit 
der :r-Achsc nrid sind t k ,  I&, die Geschwindigkoits- 
komponenten im Grenzschicht in der Richtung ,der 
St,romlinicn dw freicn %&mung und senkreeht 
darauf, d a m  existielen die Beziehungen (siehe 
Ahh. 2) .  

uV-dJ  
I(,, = 71 sin 9 - I I  cos 3 = 

V F  
mit 

7’ T =  T i 2  + V2 und tg 3 = - 
U 

oder 

___ dIi‘(?) sin23 If(?). (2.12) 
d? 

IXc cxaktcn Lijsungcn sind fiiv verschiedene Werte 
ron  9 in den Ahhildungcn 32% und 31) gczeiehnet. 

,IC nachdem ,der 6ffnungswinkel des Keiles zli- 
niinmt,  nimmt uuch die Querstrak”tg zu. Tmtz- 

21, dem ergiht sich. dass die Sekundiirstrijmuug - 

fiir den Fal l  c der sehragen Eckst,i+rnung noch 
klcin blciiit gcgeniiber der Hnuptstriimung. 

2.2 Die Stron~tnny in der 1JmyebtLng des Stuu- 

Nsch HO\VARTH [ Z ]  kann die wirhelfreie Aussen- 
stromuny in der unmittelbaren Umgehng  des Stau- 
p ~ i i i k t e s  eirics ~villkurlichen lGrpei3 von den linea- 
sen Fanktionen 

Vr. 

pw&tes .  

U = A x  V=Bu (2.13) 
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T l = L @ z  

2 9 %  
4 

.3 

2 

1 

0 

T 

3 

a 

I 

OD2 0.04 Q06 W8,, 0 0.2 0.4 0.6 0.8 '0 Ut 

37 

0 

Abl>. 3%. Keil- iind EckstrBmnngon. Die Gesdi\riudigkeitsproEilc der Grcnz~chiebt in der Rieirtung dm Stromlinien der 
V 

-0 
freicn StrBmung rind in der senkreehtcn Quorrichtung f t r  versehiedene Wertc Yon 4 =are tg - nnd f i r  p = 0,5;-1. .~. 

a2 0.4 0.6 0.8 1.0 3 
G= 6 

902 W4 406 0,08 un 0 
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77 
Abb. ah. Kcil- und Flkstriimungex. Die GEsehwindighcitrprufiic der Grcnzscliirht in der Riclitung der Stromlinien der 

v 
U 

' freicn StrSmung und in dcr senkrcchten Querriehtung far rerschicdene WVertc von 4 =are t,g - und fur  P = 1,6. 



dargestcllt werden. Jlahei wird vorausgesctzt, dass 
die Oberfkche in  der Umgebimg des Staupunktes 
(z = y = z = 0) rcgiilir ist. Folglich kijnnen ohne 
Beehrankung der Allgcmeinheit die mctrischen 
Fuiidamentalg~ssen 11 j des Linienelementcs 

as’ = i l , Z a x 2  + b.,zayz + h ,2azZ  

in  der unmittelharen Umgebung von z = y = 0 
dureii die Werte ,,eins” ersetzt iverdcn. 

Demit, gchen die ~ren~ehichtgleichuiigeii fur  
orthogonale kriimmlinige Koordinatcn [Lit. 11 
iiher in 

(2.14) 

mit  den IZandbedingungcn 

1 L  = 21 = 20 = 0 

u+lJ o.+ 17 Sur e +  m 

fur z = O  

Naeh Einfiihruug von 

(2.15) 

n A = -  
A 

gchen die Grenzsehichtgleic2irngen uber in 

4- 
d”(?) + p ( ? )  d W 7 )  + A G ( , )  d?F(?J)  

a 3 G ( 7 )  -+ P ( 7 )  

w d12 dv2  
+1- (,,I W?) = o  

+ h G ( 7 )  d2G(1 )  dll + 

i- A - h  ( W 7 )  )2=o 

(2.16) 

d7$ 

d? ’ 
m i t  deli Randbedingungcn 

ap a 6  
d? d7 

B”=G= -=-=O fcr ,,=O 

aF dG -+l -+l fiir ?-+a. 
d? d7 

Die Lo’sungen dicser Gleichungen werdcn der 
Arbeit [ 2 ]  entnommen. 

1la.n braucht sich nur auf den Bereieh 0 5 h 2 1 
zu bcschrankcn. Fur die iihrigen Parametcnverte h 
konnen die zugehorigen Funktionen leicht niit, den 
schon herechneten Funktioncn ermittelt iverdcn 
(vgl. Arbeit 2) .  A = 0 stimmt mit der nveidimen- 

~ ~- ~~~~~~~ ~ 
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sionalca Stromring uberein und A = 1 mit einer 
Ilehs~n-symmetrischen Strijmung. 

Die Stromlinien der Ausscnstromung cntspreehen 

der Gleichong - = zA. f i r  X > 1 h a k n  sie eincn 

Beruhrungspunkt yon der Ordnung h mit der z. 
ilchse, und fur 0 < X < 1 einen Re~iihrungspnnkt 
von der Ordnung l / h  mit der y-Aehse (siehe 
Abb. 4).  Nit  Hilfe der Gleicliungeu (2.11) und 

!I 

Yo 

/ 

hbb. 4. Die Sitromliaim ciiier St:tupunktstrGmung. 

(2.12) erhalt man wieder dic Geschwindigkeits- 
verteilungen innerlialb der Reihnnyssehicht in der 
Richtung der Stromlinien der frcien Aussenstro- 
mung und senkrecht darauf. Diese Ucschwindig- 
keitsverteilungen sind in der Abh. 5 fur  die Punkte 
tg  j E - = - A?’ = 1 und iu der Ahb. 6 f u r  den 

U 5 

Staupunkt z = !/ = 0 ( 9 = c) f u r  verschiedene 

Parametenverte A, mit 0 < A < 1, aufgetragen. 
Lit der hbb.  6 sind statt der Nullverteilungcn 

16, 1 ILn U, -0  die Verteilungen __ - E-  cos9 vr = u 
mf getragen. 

Es Sol@ aus 01. (2.11) dass die g&sste G m i z -  
?r 

sehielitqnersti~hnuny f u r  9 = - anftritt. Aus der 

Abh. 5 geht folgeudes hervor. Bei wirbelfreier hus- 
senstriimuiig hleihen die Querstromprofile der Iami- 
naren Oesehwindi~l~eitsgrenzschicht klcin gegen- 
uher den IlauptstromproCilen in  der ortlieheri 
Rieht,ung de.r freicn AusscnstrBmnng. Dicsc Be- 
traehtungen gelten also in der Umgehung des Stau- 
piinkt,es eincs Grpers.  Ilabei kouncn schr grosse 
Krummungen der St,romlinien ‘auftreten. Folglich 

.ist zii envarten, dass aueh bei AnstrGmung eines 
Korpers unter Anstellwinkcl innerhalb der ganzm 
laniinaren Grenzsehioht, die Qucrstromprofile 
klcin gegeniiher den FIauptstromprofilen bleiben. 
Die fast immer g~osseren Ahwciehungcii der Strom- 
linien an der Wand mit den Aussenstromlinien, bei 

4 
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ziiiichmcnderi Anstellwinkcln, finden ihre Ursaclie 
in den riel Iiingcren Weg uber den die Zent,rifugal- 
kraft auf  die Sekund;irstlu"ung eiriwirkt. Klein 
Iileitwi der Querstvomprnfilc gcgcniiber den Raupt- 
strnmprnfilcn hedeutet noch nielit, dass aiicl i  die 
Sclinhs~annun~sknmpo~iente in der Querriehtung 
klein gegeiiiiher der Sel~ubspanrmn~skomponente 
der €Ilnnpt,strnmrichtung ist, welches 'bei der lami- 
naren Ahlosung ersiclitlich ist. 

2.3 Die Stroninng (1, i i f  .sch.iebenderL Z~l i? ider .  

In der Arhcit [31 I~eselrreiht CORTLER eine Me- 
tlrnde zur Berechniing der laminaren Grenzschieht 
am schictmiden Zylinder. Er iibertragt die allgc- 
mcine Methode der Bt,hsnJs'sehen Itcihe des nwi- 
dimensionalen 1'rol)lems nuf. den dreidimcnsionalen 
Fall des schichenden Zylinders. Sind dic Gesehwin- 
digkeitskomponenten in der Richtung des scnk- 
reehten Querschnittes, imd in der Achsenriehtirng 
des Zylinders 

11 = U(a) ,  U I I ~  V = Kwistant, 

darin sirid die Qre~~zsehiehtglciel i i i i i~~n und Rand- 
bedingungen in deli Gleichungen (2 .2)  his ( 2 . 5 )  
gegehcn. 

Ilairci ist z die \Vmdhogenlan&c lings der 
k'ontnr des seiikreehtcn Querschnittes. ist der 
Ahstand in der Riehtung der Erzeugendeii des 

'Zylinders rind z ist der Alistand in der Anssen- 
normalrichtung. 

Die Bi,snis'ache Reilie setzt die Eiitwickelharkeit 
der iuszoren Gcsehwindigkeit V(z) in eiiie Reilie 
niiclr I'otenzen voii z ~oraiis.  Bei symmctrischcr 
Anstr6mung 

crgel iei i  sich fur die (:escliwindigkeitskomp~ncriten 
11, I;, w in der Grenzscliicht die Enlgcndcn Reihen- 
darstellungen 

(2.18) 



88 

4 

3 

2 

1 

I I I I I I r 7 
3 

2 

1 

0 
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Un 1 Un --la- 

6 c o s 9  " 'Ut 

E 
u us %I 1 

VT u vr cos 3 
hbb. ti. StaupunktatrGmung mit U = AC, Y = By. E o  Grcnmchiohtpcofilc 2 und - =-- - shld fiir 

B .  
A 

versehiedenc Werte von A = - in dam Staupunkt U = P = 0 gereiehnet. 

mit 

7 = z  (2.19) 

uiid den IZandbedingungen 

I)er Strich hcdeutet Differentiation naeh 7. 
Die Zahlentafeln f,,,, (7) iiiid.,f'nn+, ( q )  sind von ULRICH his zim Qliede 9. Ordnung gcgcben IS]. 

Dahei sind Zf , (v)  und Zf , ' (v)  dorch fL(v )  nnd f,'(7) und ~ ~ ~ + , j ~ ~ + , ( v )  dnrch die Funktionen von 

\,SI innerha!h den Klammern zii ersetzen (z. B. f j  = g, + - J I : ) .  Die Zahlcntafeln der Funktionen 

P ( 7 )  siiid in der Arbeit [3]' gegchcn. Leider crfolgt die Konvergcnz der Rechenentwicklmg nicht ge- 
niigend schnell, sodass bei vorgcschriebmen Oenauigkeit die Berechnungen der Grenzschichtprofile mit 
zunehmender Entferniing von der vorderen Staulinie z= 0 immer mehr Gliederen auffordern. Mit den, 
in Zahlcntafeln . vorhanden, Funktionen ist es nicht mkiglieh urn bis weiter als das ~rnckminimum die 
Grenzschiehtprofile, bis aiif einige Prozente, noch genau zii hereehnen. 

Die l2escliwindigkeitsverteilungen innerhalb der Rcibungsschicht in der Grtlichen Ricbtung der freien 
Aussenstrbmung und senkrecht darauf erhalt man mit Hilfe der Formeln (2.11) und (2:12) aus 

1L12 

%lu.$ 
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ut uz t6 vz u 

Vr- T (7 V r - T  U T V 
+--. u, uv 26 

In der Staulinie 2: = 0 gehen dime Geschwindigkeitsverteilungcn uher i n  (siehe Abh. 7 )  

(2.20) 

2.6 

2.4 

2.0 

1.6 

1.2 

ae 

0.4 

0 0.1 0.2 0.3 0.4 0.5 ' 0.6 0.7 0.8 0.9 1.0 

Abh. 7. ZylinderstrSmung mit U = x - z', I'  = 1. 
ut un 1 

V F  V T M  
Die Grenzschichtprafile - und - - f i i r  de!, Grciizfall z = 0. 

1"iir die Zylinderstiiimnng, mit U = x - x3, 
1 7 = 1  sind fu r  versehiedehe Werte von x die 

Gcschwindigkeitsprofile der Grtnzschicht __ 

mit  Hilfe der abgehrochenen Reihcii- und __ 

cnt~wiokliing berechnet und in der Abb. 8 gezeich- 
net. 1h.3 Druckminimum lie@ in dem Punkt mit 
5 = m. Fur  diesen Pnnkt ist das Geschwindig- 
keitsprofil der Hauptstfimung mit Ahmeichungen 
his zii 3 % hekannt nnd ist die Profilform der 
Seknndirstmmung, trotz ihrer Ahwciehungen, die 
dort schon sehr gross sind (bis etwa 50%), noch 
hinreichen& genau zn erkennen. Fiir Profile anf  
gicsserer Entfernung konnen die Abweichungen 
sehr vie1 grosser sein. Folglich sind die Ergeh- 
nisse dort vallig unzuverEssig. 

Die Berechnnngsmethode van GRTLER am schie- 

Un 

V-F 
Ut 

1 ' 7  

bendcn Zylinder liefert also ivegen Konvergenz- 
schwierigkeiten keine gensue Aussage mehr uber 
die Form der Gesch~~~idigkeitsprofile der Sekun- 
Grstromungen vorbei dem Ubergang von der 
beschleunigten zu der verdgerten Strijmung. Dam 
vird der folgcude Fall betrachtet. 

2.4 Eine Grei~zschichtst,-b'nucn~ ohne wD.be7fr.eie 
Aussenstronaung. 

ELAXSEX und Hmm [ 4 ]  betrachtcn die ehakten 
Iikungerr der  inkompressiblen, laminaren, drei- 
dimensionalen Grenzschiehtst,liiimung iiher eine 
chcne I?latte mit scharfer Vorderseite, wohei die 
parallelen Stromlinien der nicht wirlielfreien Am- 
senstliiimung dureh eine Potenzreihe darstellbar 
sind. Dicse S temung  gibt cine Einsicht in den 
sekundaren S t ~ m u n . g s e l s c l l e i l ~ ~ ~ t l ~ e ~ ~  ,bei .gekri im- 
ten Kanilen. Die Grenzschichtgleichungen sind 
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rl 

mit 

(2.21) 

wo 

wid F,(r)) die Brmus-Funktion [4] ist. 

Setat man 

u =  3 niziPj(?), (2.24) 

I?;: 

i s 0  

dam elitspreehen die Funktioncn Pi(,) der Dif- 
fei.ti~tialgleieh~ing 

- iE''Pj + i = (I, Pi" + __ 
2 

mit den Randbedingungen 
P,(0)=0 I i m P ~ ( ~ ) = l .  

*=a. 

Dcr Strich hedeutet IXffemltiation nach 7. 
I)ie Stromlinien c r l d t  m a n  ails der Bezichung 

wo 

1 )ie C~esch~~itidigkeits~~crteilungen innerhalb der Rei- 
hnngsschicht in der Rielitung der Ausscnstromung 
und senkrccht darauf, erhalt man ails den Formehi 
(2.11) und (2.12), sodass 
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(2.26) 

B'iir den Fall 
ax* = 1 ug* =- 1 

- = 1 + ( z - z3j9 

mil = 0 fur i f  1,3 
sind 

(2.27) 2' 
U,2 

Ilie Stroniliriie iut 

(2.28) 

(2.29) 

Ilic Y11nktio11cn E', N, und N, sind der Arheit (41 cntnommen. In der Alhildung 9 sind die Strom- 

h i e  (2.29) und auch die C:esehwindigkcitsrcrteilungen - fur rersebiedene Werte yon z als 

Fnnktioncn voii 7 aufgetriigen. Bci dem ir'liergang von der bcschlennigten zu der vervogcrteu hnssen- 
stromung weiven die Sckun~~s tmmungspru i i l e  - wic auch schon aus der i\l~l~ildiing 8 hcrvortritt - 
eiuc Riickstmmiing auf. Hicrauf k0mmc.n wir im nichstcn Abschnitt zuriick. 

21t tL,, 

V r  ul'd m 

X 
1.5 

1.0 

0 0.1 0.2 0,3 0 0.2 0.4 0.6 0.8+ 1.0 -0.4 -0.3 -0.2 -0.1 0 +O,l 

3 Y-Yo 

Ahb. 0. Die Stromlinic dor freicn AussonutrGmung und die cxektcii Ocscli,ri,,digkdtsvI:ltsilullgm I"r_ und - innerhalb 

der Crrcnzschicht riiicr ebenw PlattenstrSmung niit den freieii Gescli,~ivindig-keitskomponenten U = U,, V =  U n ( s - z ' ) .  
I/r . ViF 

3 Naherungslosungen, 

J3ine einfache Naherungsmethode ZUI' Bereehnung dreidime~isionaler laminarer C:reii7schicliten 11111 will- 
kiirliehe Koqier wird in der Arbcit (1 ] besehricl~eu. Nit I-Iilfe de r  Inipulsgleieliiingeii in Stromliriien- 
koordinaten wcrdcn zwei einfache I)ifferentialgleielii~~~gci~ liergcleitet, die cine einfache Quadraturglci- 
chung iind Integralgleicliung zur Tiisung hahen. 

' Die einfaehen J~iffeieritialgleichungen (4.3) und (4.5) in der Arbcit 1, lauten 
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u und sind die Parameter der vorgegebenen Crenzschichtprofile in der Richtung der Stromlinien 

-Die Funktion wira durch die Kontinuitatsgleichuiig - angewandt. aut’ der PotentialstiGmung - 

Die Grenzsehichtprofile konnen dargcstellt serde,n durch 

der freien Stramung und in der Querrichtung. T ist das Quadrat der freien Stronigesehwindigkeit. 

‘bestimmt,, iind mit Hil fe  der Glciehung (3.8) berechnet. 

<=f(?) - A s ( 6  - -W)  (3.3) 

(3.4) 

wo 

und 

K =  0 liefert uns die Gleichungen der Brensschichtprofile an& den Arheiten 11 1, [9] rind [ I O ]  
Die Funktionen f ,  g und h sind in Abbildung 11 gezeichnet und in Tabelle 2 tabelliert. 
Fur < = O  sind die Randwerten 

f = g = JL = f” = Jp f”’ = g’’? = K” = f IV = 0 

.. --- g” = 1 

glv=- h I V  =_ 6. 

ILL und U“ sind die C:eschwindigkeitskomponenten iunerhalb der Grenzschieht in der Richtung der art- 
lichen Stromlinian der freien Strzmung und in der senkrecht~n Querrichtung. 

die Gmnzschichtdieke. Sie hat die Dimension einer liange. Sctzt man 
UY =Z2/Ker  , dann ist I die dimensionslose Gr6sse O= Um u / ~  nnd man bekommt 
,v- UY .. 1st ein Nas.s fur 

(3.7) 

Dic Grenzschiehtdieke de r  Querstrijmung ist um einen Faktor griisser als die Grenzschichtdieke der 

Sind S, y, z die raumlichen kartesisehen Koordinuten dann sind wegen den (:leichungen (5.3), und 
Hauptstrijmung. 

(6.3) in der Arbeit [l] 

(3.9) 

(3.10) 

Ijahei sind 

Uifferentiationen \vu y oder 5 konstant hlcihen und z als Funktion \“on z a n d  ! j  genommen w i d .  

gcgeben 
A und M hangen mit den  Gevchwindigkeitsgradienten znsummen und sind in der Arbeit .Ill G I .  (3 .3)  

(3.11) 
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F u r  das Crenzschichtprofil u, in 'der  Haupt- 
stmmungsrichtung wird fur  die bcschleunigte Stm- 
mung (h > 0) die Losung niit N = O  gcnommcn. 
k'ur die verziigerte Strqimung ( A  < 0) wird eine 
l i k i n g  mit N = A angesetzt. Die Sehubspannung 
an  der Wand in Sti+jmiingsrichtnng (au,/a[) 

C=-O 
vcrschivindet dann f u r  A =--I. Der Punkt, wo 
:\ =- 1 ist, sol1 n l s  ein Punkt der laminaren 
Abl6sung gcnommen irerden. Das Kriterium . fu r  
laminare hblosung i\ =- 1 ist fu r  die Strom- 
linienkoordinaten riieht cxakt (vgl. Arheit [I]). Sic 
evgiht slier meistcns cine ziemlieh gute Anniiherung. 

Fur die Geschwindigkeitsprofile u, der Qner- 
strtimung wird in der  Arbcit [I] der Wert K G O  
angesctzt. Dicsc Annahnie ist nicht mehr riclitig 

wenn - sich von Vorzeichcn Zndert, d.h. wenn 

die Stromlinic eincii Wcndepunkt entldlt. I n  die- 

scm Falle reieht die Funktion g (:) nicht m e h r  

BUS, um die Profile der Sekundiirstmmung zu he- 
sclireihn (vgl. die Ahb. 8, 9 und ll). 

mit einem 

Korrekturglied KRZh (;I crweitert. Das Kor- 

rekturglicd 7~(6 ist so gewahlt, dass die Funktion 
ziir Beschreihung dcs Querstromprofils, anch 

das nichst h6hez-c Olicd ?e- '* mthiilt, ohne dahei 
dic I~~ridhcdingungc:~~ an der marid 

aT . 
a+ 

Folglicli wird die Profilgleichung 
- 

- 

mi verlctzcn. Damit wird zngleieh ein neuer Profil- 
parameter eingefuhrt. Zur Losung neuer Profil- 
pai'amcter konncn die hoheren . Randhcdingungen 
an der Wand ohne sehr grossen Arheitsaufwand 
nicht mclir angcwandt werden. Sie licfern niim- 
lich mit der Gleichung (3.2) ein System simul- 
taner I)iffercntialgleichungen, dass ausserordent- 
lich schwierig zu Yosen ist. Von physischem 
Standpnnkt aus ist aber zii errvarten, dass in dem 
Bcrcicli wo der Druckgradicnt sich praktisch nicht 
mehr iiudert, auch der Profilparameter R sieh nicht 
stark Hndert. Infolgedessen werdcn, falls dcr Para- 
meter I( auftritt, f u r  die Funktionen K und R die 
t'ol~cndcn Annahmen gemaeht. 

K = 0, R =a(?) ; fur die hcsehleunigte Stro- 
mung vom Staupunkt aus ,his oben auf dem 
Koqicr, \YO der Ihuekgradient sich nicht mehr so 
stark andert. K = K ( y ) ,  12 = Konstant ; oben aut 
den1 Korper. Die Funktion K andert sich so lange, 
Iiis sie wiedcr den Wert Null annimmt. K = 0, 
(1 = R (7) in dem etwaigen weiteren Bcreich. 

Nit Hilfe dieser Annahme geht die Differential- 
glcichung (3.2) fur die Querstmmung uher in die 
Integralgleichung 

dbb. 10. IL und B als Funktionen von 'p. 

- 
Abb. 1 1 .  f, g iind h sls Funktion yon 5 = -? 
Abh. 12. p, q, r, P, Q und R ala  Funktion Ton n. 

V Y '  

(3.12) 

I)ic Vcrdriirigungsdicke A, uncl Impulsverlustdicke O?, sind gegelm durch 
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! 
I TABELLE 1 I 

Die Fnnktionen f k ) ,  g @ ) ,  7 1 ( i )  der Grenzschieht,profile und die/Funktionen p ,  q, r, P,  &, tl mi- Besehreihung 
der Impnlsyerlustdicke O,, , 

f (i, 

0 

0,15043 

0,30019 

0,44641 

0,58344 

0,70433 

0,80335 

0,8i811 

0,92983 

0,96258 

0,95154 

0,99160 

0,99647 

0,99863 

0,99984 

0,99999 

8(4) 

0 
- 0,05561 

- 0,07617 

- 0,07204 

- 0,05537 

- 0,03611 

- 0,02015 

- 0,00949 

- 0,00357 

- 0,00087 

+ 0,00007 

+ 0,00025 

+ 0,00019 

+ 0,00011 

+ 0,00002 

+ 0,00000 

h(5) 

0 

- 0,0i452 

- 0,14434 

- 0,19762 

- 0,22410 

- 0,22005 

- 0,19074 

- 0,14753 

- 0,10252 

- 0,06432 

- 0,03656 

- 0,01745 

- 0,00888 

- 0,00381 

- 0,00054 

- 0.00005 

- 
n 

0 

0,25 

0,50 
0,75 

1,oo 
1,25 

1,50 

1,75 

. 2,oo 

2,25 

2,50 

2,75 

3,00 

3,25 

3,50 

3,75 

4,OO 

P(R) ___ 
0 

0,00196 

0,00780 

0,01729 

0,02983 

0,04460 

0,06055 

0,07802 

0,09571 

0,11368 

0,13179 

0,14993 

0,16505 

0,18613 

0,20416 

0,22211 

0,24000 

i 
I qn) 
I 

o,bo072 

! 0  

1 

I 

i 

I 

0,00204 

0,00313 

0,00380 

0,00412 

0,00418 
I 

0,00407 
I 

0,00393 

0,00377 

0,,00361 

0@345 

0,00330 

0,00316 

0,00303 

0,00421 
I 

o,oq290 

r(0) 

0 

0,00097 

0,00369 

0,00740 

0,0110s 

0,01409 

0,01624 

0,01763 

0,01842 

0,01578 

0,01854 

0,01869 

0,01841 

0,01505 

0,01764 

0,01719 

0,01673 

r ( n )  

0 

0,01365 

0,05367 

0,17447 

0,15762 

0,26621 

0,34640 

0,42648 

0,50583 

0,58429 

0,66192 

0,73850 

0,51506 

0,89075 

0,96607 

1,04097 

1,11556 

Q(n) 
___ 

0 

0,0041s 

0,01116 

0,01105 

0,01021 

0,00522 

0,00739 

0,00665 

0,00608 

0,00557 

0,00513 . 

0,00475 

0,00443 

0,00414 

0,00389 

0,00921 

0,00918 

WQ) 
____ ____ 

0 

0,00666 

0,02276 

0,03842 

0,04774 

0,05106 

0,05066 

0,04545 

0,04552 

0,04244 

0,03949 

0,03676 

0,03425 

0,03205 

0,03005 - 
0,02826 

0,02664 



95 

m ( (3.13) 

- _-  
Die Fuiiktioiien ~ ( a )  bis R(R). sind in Tabelle 1 urd  in der Abtiildung 12 gegehen. 

=a(,), als in dem 
Bereieh wu K = K ( v )  irnd n konstant ist, R und 11' mit Hill'c der (:+leichungen (3.12) und (3.13) bestimmt. 

Durch ein Iteratiotisverfahreii werdei~, sowohl in dem Bemieh LYO R = 0 und 

Ails (3.1) folgt die Quadraturgleiclrutig 

Ih t i  Stromlinicii eiitlaiig gilt 

(3.14) 

(3.15) 

Sind z = z ( z ) ,  U =  U ( s ) ,  V = V ( z )  F'uirktionen  oil z allcin, dann sind alle (:rrnzschiohtg.r~sseti 

Folglieh gchen die (:leiehungeii (3.8) his (3.11) iiber in 
unabhangig voir der Koordinate g. 

(3.16) 

im Anfangspunkt z= 0, wo U = 0, ist co(p) =@. 

4 Spezielle Losungen. 

l k i  den schrigcn Keil- und ~'clc-Stmllziin~-/e?1 mit 

U= AS"', V = II = U t g 9  

gelten die folgendeii Rrzieliuiigcn 

T = l P +  V Z = I P ( l  + eotgZ3) 

Folglich gcheii die Cllcichungen (3.16) iind (3.12) mit K = @  ulier in  

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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i: Der Or~nzubergang z+ 0 l,zw 9 -+ licfert dic (:leichungen 
L 

,-?It - 
5,08 ' A  

( B t g > )  A 3 = -  m + l  
11, 

und damit die Anfnngswertc fiir u iind R. 

Bei der Btnupunktstriim?~ng mit 

77 == Az, V = IIu = 1J t g  9 

2 '=7Jz+ V 2 = A Z z ~ ( 1  + tg '3 )  

cntsprcclien die Stromlinien der AussenstMmun: den Gleichnnyen 

y = a x A  mit A = -  
D 
A 

Den Stromlinien cntlang geltcn die nachfolgcuden Bcziehungen 
8 s  ist 

1 ,  
I 
I aiz&-'=tg>, 

ist 

I Die Differentialgleichung (3.1) hhat die Losung 

(4.5) 

(4.7) 

(4.8) 

_ -  

cos* 9 sin2 9 + __ 5'08 sin&>. (4.9) 
5 08 5,08 

2 + 6  A 
as=; c a ~ 4 9 +  __ A u = 5 , 0 8 L / %  T2 (I 6 + 2 h  2 + 2 h  

Unter Benutzung der Glcichungen (3.9) bis (3.11) sild 

Die Integralgleichung (3.12) lautet fur K = _  0 

Der Anfangswert 0 fur 5 --f 0 und 0 < h < 1 folgt aus 

R - 0,293 -A,  e,,. - 1 1 + 3 h  2 - --Q*p(R) - A R*q(n) = - 
M 234 3 + h  (3VT 

(4.11) 

(4.12) 
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5 Geeignetere Anfangswerte und Staupunktwerte (mit, Reispiel). 

I)ie vollstindigen Impulsglcichungen (2.8) in der Arbeit, [I] liefern fur die Keil-  mid Eck-Stroniunyeii, 
mit  

naeh Einfiihrung yon 
U=AIC* V - B  

und mittels des Grenziibergangs z -0, die Gleiclrungen 

(nZp(R) -0,06699n3)Sp- 0,14471 (1 -t m)Z + 0,75225=0 V l (  I+ V L )  

n,ooig W L ( I + ~  ~ b ) w ~ ~  + 
2 

1+5n* R'p(R)S + 0,37613n-1,04168=0. 
2 

Fur die StnirZ,xnktstroi i i~~i i~ niit 
B 
A 7 / = A s ,  V = B y  0 <  - = A < 1  

lauten diese Grenziibergi\ngs-Gleichungen, naeh Einfiihnlng yon Au=X,  fi iv den Punkt z = y = 0 

( 2 + ~ j  = a  2 
-(I - A )  [Vp(n)-0,06699n3 + A n*g(Cl)l S* + [(I + ZA)B.,, + AA,] 2-- 

3 I,', 

(5.2) 
2 

0,0076 (1 -A)ClfiSz + ( 3  f A )  [RZP(R) -F A R*Q(fl)]Z-  ( O , ,  f A,) + __ 
3V,"=0 

16.0 

A=A(Au)  =AS 

Die Funktionen B,,, nnd AI .siii,d in den Arhciten [ Y ]  nnd [ lo]  iind die fi'unktianeii p ( n )  iind q(n) in 

In Alib. 73 sind die Staupunktwerte 
Hat die St16mnng eincn Staupnnkt, d a m  konnen. die Anfangswerte R und 'i in diesem Punkt uii- 

mittelbar ails der Abb. 13 sbgelesen werden. Dazu beii6tigt man die lineiren Glicder der Reihencnt- 
ivieklung der (1eschffindiArkeitskoniponenten in der Riehtung von zwei orthogonalen Koordinaten in der 
Tangentialeheiie im Staiipunkt. 

Tahelle 1 gegeben. 
und 2 = Ao iiber A ausgesetzt. 

Als Beispiel wird die Staupunktstromung an einem dreiachsigen Ellipsoid 

* y* zz -+-+ -=1 n 2 b 2 c  
a* bZ c' 

(5.3) 

gex%hlt. Wird dieses Ellipsoid in einer seiner Srmmet,rieebenen (z, ylC'bene) nngestMmt, d a m  ist 
das Geschwindigkeitspotential p auf der Olmfkehe in  den Ol~erfl~elie~ilroor.di~iaten 2 und y gcgel~en durch 
mi wi 

p = - p x  -qy .  (5.4) 
Hier ist 

und 

(5.5) 

-TI , ,  - V, ,  0 sind die nngestorten GescIi~~~indi#keitskomponenten im Unendlichen. 

system, danii gilt auf der O b e r f k h e  
Sind li, li, 1V die G~schwindigkeitskomj~oncntzn in  dem. orthogonalen kiirtesiselien IC, ?I, z-Koordinaten- 

TI' = uz,+ vz, . 
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R 

. 
0 0.2 0.4 Ob 0.8 

E 
A 

Abb. 13. Dio Stnupunktswcrtc c = A r  uad R iibcr 0 < n = - < 1, bereehnet init Hilfe der rollstlindigcn hpulsgleiclungcn 

fSr  die Staupunktstriimung mit  den Gcsoh*ndigkeitskompanentcn der frcien Striimuag U =A%, V = Xg. 

In  den1 Staupunkt ist U =V= W = ' O .  Folglieh ist in diesem Punkt 

sodass in dem vorderen Staupunkt 

In der Tangentialebcne im Staupunkt fiihren wir jetot die orthogonalen Koordinaten [9] [lo] 

(5.10) 

ein. Die Gleieliungen fur die Stromlinien bezeiehnen, dass sie iiherall auf der Ohrrfkche tanger?tial zu 
dem '~:esehwindigkeits\,ektor sind, sodass wegen (5.10) 

(5.11) 

Im Staupunkt (7, = 7, = 0) sind die kontravarianten Geschwindigkeitskomponenten U 2  und U 3  
wegen ( 5.7 ) 

/ .  2 
u3 = W f c  - ,* %=&a 

! 

(5.12) 
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Nach (12, S. 301) werden a, und p ,  berechnet mit Rilfe der Formelri 

2 abc 1 2 V ( l - s * ) ( l - k z s Z )  
ao=---- - [ F ( s ) - E ( s ) ]  = [ P ( s )  --s(s)] v (a2 - c') a /i* s3kZ 

(5.13) 

(5.14) 

wo 
a2 - 7P 
nz - c2 

0 < k2= < I  o < s = V i - e i n 2  c: I (5.15) 

und die elliptischen Integralen 

(5.16) 

(5.17) 

in vorhandenen Tahellen gegehn sind. 
Fiir das Rotationsellipsoid (c = b )  ist k = I und man erhalt dureh de11 C:renzubergang lim k = 1 

(5.18) 

Naclrdem fur ein bcstimmtes Achsenverhiltnis (a ,  b,  c)  'h bestimmt ist, konnen dic Staupunktwerte Ao 
ond C? aus dem Bild 13 abgclesen werden. 

S-AG 

Y n 
I mgenihert mit GI. (4.9). 
_ _ _ _ _  Korrcktion mit Hilfe .der Anfmgswerto (ais GI. (5.2) ) der vollstindigen Impulsgleiehungen. 



6 Ergebnisse. 

Die Greii7schichtberech1i11iigen merden fur  die 
schagen Keil- und Eck-Stromungan und fur  die 
St,romungen in der Umgehung des Staupunktes 
somohl cxakt mit, den Grenzschichtdifferentinlglei- 
chungcn, wic awh mit der einfachen NShenings- 
mcthnde ausgefiihrt. Gemasz der in dcn Ahsehnit- 
tu1 2.1 und 2.2 angegebcnen exakten Iiisnngen sind 
die (Icsehwin'digkeitsprofile? in der dort angewand- 
ten rechtwinklichen kartesischcn Koordinaten, im 
Falle solcher Stromiingen ahiilich. lXe Ahnlieh- 
keit der Ocschwindigkeitsprofile gilt ntir fur diese 

Abb. 15, Keil- und Eckstriimungen (0 = Azl'L, V = B ) .  
3 - f n  

(i. - 
Die Funktioncii I: = ($ tg 3) A,v = - una n Gber 

5 

v .. 1 
U 3 

9 = a r c t g - - , f u r ? 7 * = - - ;  1; 4 

__ angenxhcrt mit Hilfe der GlciehJnges am (4.3) 

----- Korroktiau mit Hilfe der Aofangwerto (BUS GI. 
und (4.4). 

(5.1) ) dcr vollstZndigen Impnlsgleiehusgen. 

Wshl des Koordinutensystems und besteht daher 
nicht hei der Vcnvcndung von Stromliniankoordi- 
natcn. Ailwendung der einfachen Berechnungs- 
methode liefert mittels Gleiehungcn (4.3) und 
(4.9) die Parameter u fur die Grenzschichtprofile 
in der Richtung der Stromlinien der freien Stro- 
mung. Die Parameter 0 der  Querstromungeii wcr- 
den mit Flilfe der Integralgleichungen (4.4) und 
(4.10) durcli cin lterationsverfal~ren berechnet. Die 
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Berechnung der Keil- und Eekstromungcn werden 

fiir P I L . = ~ / ~ ,  1, 1 bzw. p= __ = 0,s; 1; 1,6 

' A  
( F t g 3 )  An 

und sind in der Aljbildung 15 gcgehen. Ilie 
hnfangswcrte der vollstindigen Impulsgleichungeii 
Eolgen aus (5.1). 

2 m  
% + I  

I-% - 
'uusgcfuhrt. Die Funktionen 2 = 

Abh. 16. Koil- und EekstrGmungen mit U = A z m ,  V = B .  

Dio R i ~ h t u n g s k o e f f i z i c t ~ ~  dy und die Funktionon fiir die 
d s  

freien Stromlinien ond die Stromlinien y = ~ ( 2 )  an dor 
v .. 1 
U 8 

Wand iiber 4 =arc  tg - fur m= -, 1 und 4. 

7r Sie sin3 fu r  3 = -, also 011 der Vorderkantr 
2 

111 B 2 R 

0,s 3,04777 1,4128 
1 I , O  1,8181 1,3107 (6.1) 
4 1,6 0,6719 1,2281 

Die Anfangswerte S der vollsGndigen Impuls- 
glcichnngen sind bedeutend versehieden von den 
Anfangsswerten von 2,  die BUS der einfachen Me- 
thode folgcn (vgl. Abb. 15). Dies, Versehieden- 



hcit findet ihre Ursache darin, dass in1 i\nfang, 
also fur 3 + x / 2  

I~)eshalb sollen, uni cine 'Iwsere Oliereiiistiniiniuig 
mit den l(:rgebnisuen der vollstandigen Impuls- 
gleiehungen zii erhalten, die Rcsultaten der ein- 
Paehkn Methude, nnchdeni sie berechnet, sind, kor- 
rigiert werden. Bedenkt man, dass au i  grassere 
Entfernung der T'orderseite, tinter l~inwirkung 
des Druckgradienten, die Unterschiede zwiselien den 
Werten a der vcreinfaehten Netbode und der voll- 
standigen Inipulsgleichungcn sich meistens aus- 
glciehen, dann konnen in der Abhildung 15 die 
gezogcnen a-Kiinvn dureh die gestriehelten K u n w  
ersetzt werden. Die n-Kiirven hrauehen gew6lin- 
lieh nieht korrigicrt zu werden, weil die hnfangs- 
werte iron a, folgcnd aus den vollstiindigen Impuls- 
glcichinigen, im allgemeinen nnr venig verschie- 
den sind von den Bnfangswertcn 0 der einfaehen 
filethode. 

Die ~eschwindigkeitsprofile in der Richtung der 
Stromlinie und in der, Querrichtung werdm fiir 
die exakten ~renzsehic11tlGsungeii mit IIilEe der 

~~ ~~~ 

101 

I.'ormeln (2.11) inid (2.12) erhalten. f i r  die 
Xihe~ungsl6suiige-t.n werden sic mit I-Iilfe der For- 
melii' (3.3) und (3.4) berechnet. Die Werte fiir !\ 
und .V befriedigcn dic Gleiehiingen \-on (3.11), 
rvahrend die zugehorigen \Vertc 0- den gestriehelten 
Kiirren der Ahbildung 15 entnommeri sind. Zum 
\'crgleieh sind die axakt und rGheriingsv;eisen 
hereehneten Profile fiir ni = n z  = 1, 711 = 5 in 
den Ahhildnngen 3a und 3h gezcichnet. 

Fur ?n c ist ausseidem noeh einc gestrichelte 
Kurre iiiit dem Anfangswert 2 = 3,S13 gezeichnet. 

Die Profilkoordinaten in 8er z-R,ichtung sind 
dahei alle auf die uniforme Linge 

normiert. Ilie Winkel 9 gehen die Pnnkte der 
Stromlinien der f'reien Strdmong an, wofiir die 
Profile hereehnet sind. 

dY In der Abh. 16 sind die Riclrtungskoeffizieiitcn - 
dX 
V 

der Stromlinieii a n  der W;und uber 9 =tire tg - U 
aiisgcsctzt. Fir die exakten Likingen gilt (vgl. 
Ahschnitt 2.1 j 

, Ails der Arheit [SI und eigenen Bereehnungen folgeii die Werte 
m P Pqv (0) G,, (0) a 

0,5 0,92768 0,53906 0,5811 
1 1,23259 0,57058 0,4629 
4 1,6 1,52151 0,59404 0,3904 

f i r  die N~herungslosnngen gilt, wegen (3.3), (3.4) iind 

P A  =ut cos 3 + I C ,  sir1 3 II = u t  sin 3 - urL cos 3, 

' a!/ v 1L1tg9-?In = (2 + A )  tg3-C2(H-K) lim - = lim (7G ),%,, f -, 0 ld C+" Ut + U,& tg 9 
Die zugehorigeii Werte a sind den gestriehelten Kurveri der Alh. 15 eiitnonimen 

'I' B Wegen tg 9 = - = - 
U A  

2 f A f n(j1-K) t g 3  

gcht (6.2) naeh Integlation uber in 

Sic giht die Bezieliuiig zwischeii den freien Stromlinieri iind den Stromlinieii a.n der Wand (siche 
itlib. 16). 
In den Ahhildungen 5 und 6 sind fiir die Staupunktstr6muiig s o ~ ~ o l i l  exakte Iikiingen, als Filreriin'gs- 

I6siinge.cn der Grenzschieht-Geschwindigkcitsprofile in der Richtung der Preien A u s s e n s t ~ m u n g  und in der 
71 

scnk~echten Querriclitiing als Funktionen von 'I = z ansgcsetzt; iind zwar fur 5 = - und in dem . 4  
7r wird in Clem Staupunkt Staupruikt 3 = - fur rerschicdene W e i t e  von h, mit 0 5 X 2 1. Statt __ 

betraehtet. Die Wertc Ao werden den gestriehelten Knrven der Ahb. 14 die Funktion - __ 

c!itnommen. 
Bei der Betraehtung des sehiebendcn Zylinders werdeii' die exakten Liisungen der (:renzseIiiehtproflle 
ut T L n  - nnd - fur die Staulinie s=O in der Oleiehung (2.20) gegehen. 

2 V T  
u, 1 )/r C O S 3  

I.'F u 

http://I6siinge.cn
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Die mit der' Impulsmethde cingefuhrteii Grenzschichtprofile sind in (3.3) und (3.4) gegchn. Die 
vollstandigen Impulsgleichuiigen (2.8) in der Arbeit [I], ha~ben fu r  den schrag angeswomten Zylinder, 
f u r  x = 0 ,  die ljisungen (vgl. a.oeh (5.1) und (6.1) fur m = 1 )  

ul/ i- ; i i?.-=o--=1,81S~+0(x2);  dZi n=1,3107 + @ ( & ) ,  
2 dx2 ax 

Damit gilt 

Die exakten Grt 

, 

u v dT d all ti 

u ti dT 
2 2 ax 

B f = -  - -=- u -=1818-+0(3;3) 
2 ~ a z  v ax ' v 

A = -  - --=O(x2). 

rschichtprofile sind fur x = 0, vgl., (2.20). 

111 e= Po(?) 

Die Naherungsprofile sind fur x = 0 I 

mit 

Die cxaktni Losungen nnd Nahernngsliisnngcn 
bind in der Abbildung 7 nufgctragen. Sie stimmen 
sehr gut iiberein. 

$7 

hildnngen 8 nnd 21 gezeichnet. Die, mit der ab- 
gebrochenen Reihenentwicklnng bereehneten, Quer- 
stromprofile werden mit zunehmender Entfernung 

n 

Abb. 17. ZylinderatrSmung mit U = a- d ,  Y = 1. 
Die Goseh~indigkeita~crteilung. 

Weiter sind mit Hilfe der Quadraturgleichung 
(3.17) nnd der Integralgleichnng (3.12) die Profil- 
parameter u, 0 und K f u r  eine Zylinderstr%mung, 
mit den freien Gemhwindigkeitskomponenten U = 
z-@, V = l  berechnet. Dabei ist x die Wand- 

, hogenliinge langs der Kontur des senkrechten 
Querschnittes, ?J der Abstand in der Riehtung der 
Zylinderachse. Der, Abstand in der Aussennormal- 

richtung wird mit z sngedentet 

Ans den vollsti'ndigen Impukgleichungen folgt der 
Anfaagswert v =  1,818. Damit wird, nachdem die 
cinfaehcn Grenzsehichtberechnungcn ausgefuhrt 
sind, die Funktion u korrigiert (Ahb. 18). 

F u r  den schiebenden Zylinder, mit U= z - xl, 
V = l ,  sind fu r  verschiedene Werte yon z die 
(:esehwindigkeitsprofile der Grenzschicht in der 
Richtung der Stromlinienkoordinaten mit Hilfe 
der ahgnhrochenen Reihenentwicklung uiid mit der 
einfachen 1lethod.e berechnet. Sie sind in den A b  

(?=e). z 

OJ 92 0_1 0.. 0,s 

Abb. 18. ZylinderstrSmunp mit U =z-L ' ,  Y =  1. 
Die Funktian e, 

von der vordeRn Staulinie 5 = 0 stets nnzuver- 
lassiger. Im Anfang wird der Fchler nieht mehr 
als einige Frozenten sein. Naeh dem llruckmini- 
mnm (z= via sind die bereclineten Profile 
schon vollig unzuverlassig. Fu r  die einfache Be- 
rechnnngsmethode ist der Sta,rtpuiik.t des Profil- 
parameters K nicht einwandfrei bestimmt. Bei 
nnscrer Bcrechnung wahlen wir dafur den I'unkt 
mit x z =  0.20, wcil von dort ab his znm J)rnck- 
minimum die Oeschwindiykeitsverteilnng 7J sieh 
nicht mehr stark andert (A,bh. 1 7 ) .  

Fur den Verlauf der Profilparameter 0 und K 
und des Schubspannungskomponenten an der 
Wand vergleiche man die Abhildungen 19 und 20. 

W e  Profile der Querstromung sind in Abh. 21 
mit einander verglichcn. Dart, wo die ahgebrochene 

. 
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Reiheiientiricklung noch brauchbar .ist wird eine 
t'bereinstimmang erreicht. In dem Cebiet der 
verzgerten Stromuug treten Riickstromprofile auf. 
Ohwohl diese Profile auch in der Abbildung 8, 
bei der Berechnung mit der abgehrochenen Reihen- 
entwicklung auftreten, sind sie dort sehr ungenan. 

Q 
> , e  a, 

I.4 w 

0.1 

0.I D.? 0.3 0.1 as 

Zylindwstrijmong mit U =x--2', V = l .  Abb. 19. 
Die Funktionon n und K .  

hhh. 90. Zplindemtrijmung mit  D=z--2', V = l .  
Der Sclmb*p;i~,mnipw-Xompu~~e~it i n  Qucrriehtung.. 

3 0.1. .*I* .om -008 .&OB .mi .w> (7 .a02 aor 

hlil>. 21. Zyliodcrstrijmung mit O= x-x: V c I 

un 

V F  
Die (iesehwimli~Reits\.ertcil,,ngen - iiinorhalb der Qrenz- 

sclkht in der seakroehtea Querrieldung der Sttcmlinien der 
frcien Stramung, fiir vermhiedeno Werte von 5'. 

Ahnliclie Riiekstromprofile sind aueh schon in 
der Arheit [13] gefunden, wo Grcnzschiehtberech- 
nungen an dem schrag angestromten elliptischen ' 
Zylinder ausgefiihrt sind, und die Querstromprofile 
ails Bereehnungen in der Achsenrichtung und senk- 
recht darauf zusammangesetzt sind (vgl. Abb. 2 2 ) .  

Fur die nicht-wirbelf.reie Aussenstromung, be- 

schrieben in Abschnitt 2.4, sind die exakten Grenz- 
sehichtprofile in der Abbildvng 9 gegeben. Aueh 
dart treten bei der Sekundirstrbmung ebenfalls 
Riickstromprofile anf. 

7 Schlussfolgerungen. 

Niahcrcingslosungen der di~eidimensionalen, lami- 
naren Ijrenzsehichten; - mit Eilfe eiiier selir ver- 
einfachtcn Impulsgleichnngsmethode - werden 
mit exakten LGsnngen, ' folgend ails den Grenz- 
scliichtdifferentia.lgleiehungen, vcrglichen. Es bun- 
delt sich dabei um sch~%ge Keil- und k:ckst,romiin- 
gen, Stromungen in der Umgehuug des Staiipunktes 
und Strbmimgen a n  dem schiebenden Zylinder. 
Bei der Iml~ulsgleiehungsmethode sind sowol~l in 
der Richtung der Stromlinicii der freian Stitimung 
als in der Querrichtiing die ~esch~~ , ind i~ke i t sp ro -  
file in der Grenzse.hicht gegeben, una zwar je mit 
einem Parameter c und il benv. J l .  Die Profil- 
parameter D und n, die die Crcnzschiehtdieken in 
der Hauptrichtung (11;) und in der Qnerrich- 
tung (0 vu;) bestimmen, werden mit den Nahe- 
rungsi'ormeln (3.1) und (3.2) einfach bcreclinet. 

I m  Anfangspunkt (Staupunkt, Staulinie, sclinrfe 
Vorderseite einer FIHche) .konnen die, mit den voll- 
stindigen lmpiilsgleiehungen berechneten, Werte (T 

Iiedeiitend >Termhieden sein von den Anfangswerten 
cr, die aus der einfachen Methode folgen (vgl. 
Abschnitt 4) .  I n  diesem Falle muss der Verlauf 
von D etwa bis zum Druckminimum korrigiert wer- 
den und in t'bereinstimmung mit den Ergebnisseii 
der vollstindigen Impulsgleiehungen gebraeht wer- 
den. Man vergleicht dam in den Abbildungep 14, 
15 und .18 die gestrichelten Kurven mit den aus- 
gezogenen Kiirven. 1st der, mit den vollstiindigen 
Impulsgleichungen bet'echnete, Anfangswert w be- 



kannt, dann kann die korrigieito ICurae aus freier 
Hand gczogen werdeli, falls man die Gestalt einer 
nf Eincn Verzerrung beihehalt. 

1)ie n-Kurven hrauchcii meistens nicht mehr 
korrigiert zu werden. Die Korrekt,iou von (r wird 
erst nachtraglich ausgcfiilirt,, nachdcm die ein- 
faehcn ~renzschic~it~lcicliungcn (3.1) und (3.2) 
gellist sind. Aneh die fiir die CTrenzscliicht~~rofile 
notigcn Werte i\ und i)I wcrdeii dnnn mit, den kor- 
rigiertcn Werten von u berechnct,. 

W e  die Ahbildungen 3, 5 ,  6, 7 rind 8 zcigen, 
: stimmen -- unter Anvendung ,der korngierteir 
Werte D - die N~her~uigslosi~ng-en der Geschrvin. 
digkeitsprofile zicmlich gut mit  den exakten G- 
sungell iibcrein. Fur die Stromlinien an der Wand 
ist die ilbereinstimmnng ausserordcntlich gut, 
(Sild 16). 

Wird dort, wo es notig ist, die Korrektion in o 
' nicht angebracht, dann ist im allgemeinen keinc 

gute Ubereinstimmtmg mit der exakten l i k i n g  
zu erivarten (siehc Abb. 3a) .  

I n  Abb. 9 sind die exalctcn LGsuneen der Grenz- 
schichtproi'ile in dem Ohcrgangsgebiet, von der 
heschleunigten zu der verzijgerten freien Stromung 

I wirhelfrei ist, giht die Sekundarstromong doch 
einc Aussage iiber die Gestalt der Querstrompfile.  
Enthiilt die Stromlinie dei.~ hcien Ai.is&nstromung 
einen Wendepunkt, d a m  ergilrt, sich, dass dns friihe- 

re gegebone Querstromprofil us = - V M g  (A) in 

dem t'licrgangsgebict vori de? lmehleunigen Z I I  
der verzSgerten Sti%mung mittels eines Zusatz- 
glieds korrigiert werden muss. Dadureh vevsehwin- 
det aucli der friihere Schijnheitsfehler des uncnd- 
lich werden von in diescm Gehiet. Diese Kor- 
rektion ist, in Ahscbnitt 3 hesehrieben nnd auf den 
Fa,ll des sehiebenden Zylinders angenandt (vgl. 
Abschnitt 6). Ein genanes Kriterium fur die 
Wshl des Startpunktes des Korrek't,urprofils fehlt 
noch, weil kein Vergleich mit exaktcn Lasungen 
vorhanden ist. VorXaufig vird als Startpunkt des 
Rorrekturprofils ein Punkt gewiihlt, ron wo his 
z n  dem Dmckminimum die Gesehwindi~keitsrer- 
teilnng sich nur  wenig andert. 

Hat die Strijmung einen Staupunkt, dann konnen 
dic Anfangswerte u und n in diesem Punkt,  be- 
reebnet mit dcn vollstiindigen Impulsgleiehungeu, 
unmittelbar aus der Abbildung 13 ahgelesen \Ter- 
den. Dazu benotigt man die linearen Clliedci, der 

, gegeben. Ohwohl die Aiusenstrromung da'bei mieht. 

- 

Reihenentwicklung der Gesch~vindigkeitskomponeli- 
ten in der Richtung von zwei orthogonalcn Koor- 
dinaten 111 der Tanrreritialebene im Staupunkt ( v d .  - 
Ahschnitt 5). 

Schliesslieh wird an dieser Stelle noehmals hin- 
cewiesen auf die Bemerkunc am Ende des Ah- - 
sehllitts 2.2, wohei die Erwastung ansgesprochen 
ivird, dass such hei Anstromnng eines Korpers 
uut,er Anstellwinkel die . Querstromprofile stets 
klein gcgeniiber den 'Hauptstromprofilen hleiben. 
Folglich ist offenhar auch hier die vereinfaehte 
~mpulsgleichuiigsmethode fu r  Grenzsehichtberech- 
iiuiigeii ohtic me.itercs anwendhar. 
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Linearized theory of lifting sweptback wings at sonic speed 
by 

W. ECKIIAUS and E. &I. DE JBGER. 

Summary. 

A liiicariccd tlieory is prcsentcd for tho dotermination of the load distribution on raeptback wings at sonic apcetl. 
Tho method is rxlid for  m y  given embw aiid twist of the ming, vitb the only restriction that thc dowvn\!--nsh on the wing 
is msunlcd to bo symmetrical with respcet to the axis of s p m c t r y  of tiic wing; tho cane of anti4ymmettricn\ h s n v a s h  rari 
bo treated, witb,somc madifientions, in tho same way. Thr thcory is applied to two flat swppthaak wings at ineidcnee, o n ~  
without taper m d  tho otlier with tapper. 

Compari8ooa have been made with othw theories in 5rhicli thc s m c  prohlcm is treated. 
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Symbols. 
(& & coefficients of develop- 

a; * i = O , 1  ... 5 coefficients of another 

i = 0,1, . . . 5 
ment of g(1 ) .  

development of g ( 7 ) .  
b i - 

ai = (+" i = l , 2 ,  ... 5. 

b wing-semispan a t  the cross-section 
through the kink of the trailing edge. 

semi-chord of the centre-section of. the 
wing. 
ahseis of tltc most i'orward point of the 
wing-tip. 
ahscis of the most rcanvarrl tmint of the 
wing. 
vorticity in the wake; 7 is spanwise 
coordinate. I 

__ - 1/ 1 - A* 
lnad distribution on the wing. 
dyiianiic pressure p 1;2. 
wing semi-span. 
some parameter lasger than s. 
down-wash, taken positive in downward 
direction. 
cartesian-coordinates (see sketch a , ) .  

coordinate of leading edge. 
21 coordinate of t r a i h g  edge. 
slope of leading edge of right semi- 
wing. 
slope of trailing edge of right semi- 
wing. 
coefficient, of the singular term of g(7) .  
aerodynamic lift-coefficient. 
incomplete elliptic function of the 
second kind; E ( k )  complete elliptic 
hnct ioi i  of. the second kind. 
incomplete elliptic fnnct,ion of the First 
kind. 



J ,  

.I/ 

K ( k )  

U' 

l d l  ___ 1 

complctc elliptic function of the first 
kind with modulus k .  

l Y I  1-- 

total lift on t,hc wing, taken pasitive in 
upward direction. 

lift distrihntioiCper unit chord. 

hLACH number 
polynomial of the fifthdegree 

'I, 

11 "free stream vclocity 
I' velocity of sound. 

Y! 

n angle of incidence, taken positive in 
clockwise direction. 

P V i = E  

7. 
lr 1' 

6 ' integration vaiiable in direction, 
r) density. 

x-component of the vorticity vector. 
inteiration variable in spanwise diree 
tion. 

j \ ( , ($ ,%j ' E l 3 U ~ l h N ' s  Innildm Eunction with ar- 
gument and modulus 2;. 

1 Introduction. 

In  order to calculate the forces on air-ships in 
low-speed flight, in 1924 MIM( developed an  ap- 
proximate theory of tho flow past slender bodies, 
elongated in t,he direction of flight, (ref. 1). 

In this  theory the flow pattern near the body 
in any transverse section is assumed to be the same 
as in two-dimensional incompressible flow. 

111 1946 R. T. J'"W extended M ~ m ' s  theory 
to low-aspect-ra.tio pointed wings (ref. 2) and this 
cx$:nsion~-gave ~ rise to many publicat,ions on the 
siihject, of calculating the flow nbout slender 
wings, slender bodies and slender wing-body com- 
hinations (see e .  g. ref. 3 and ref. 4). 

The assumption that the flow pattern near the 
hndy m*the wing in hny transverse sect,ion is the samc 
as in t,wo-dimensional incompressible flow means 
'mat,hematicully, that in the PRANI),TL-C,T,ATJERT 
equation for  the perturbation velocity pokntial the 
term ( l - M 2 ) p z z  is neglected (.&I denota ' the free- 
stream lWAC€I number), This approximation is al- 
lowed when the body or t,he wing is elongated in 
the direction o€ the flow but also in the case of 
wings, not necessarily slender, without thickness, 
when If equals unity (see ref. 5 ) .  

By aid of slender body- and slender wing-theory 
a first approximation is obtained for the flow 
about wings without thickness and not necessarily 
slender at sonic specd. The slcnder-wing theory 
gives the flow aronnd wings in a.simple and ele- 
gant way, when the two-dimensional cross-flow 
contains no shed vortex sheet, as c. g. for a delta 
wing. Homver when in the two-dimensional cross- 
flow a shed vortex sheet is present, as is the case 
for wings with a swept trailin,g edge, the dcter- 
minat,ion of the flow around the wing and hence 
of the pressnre on the wing is mnch more com- 
plicated. 

I n  ref. 6 Loif.4~ and Hmsrm considered the in- 
verse problem, where the assumption Tvas made, 
t,hat,.there is no vortex sheet present #behind the 
swept wing and where. consecutiTely the form of 
t,he trailing edge is calculated, which would give 
i.ise to the absence of a vortex sheet behind the 
wing. The direct problem, where the wing plan- 
form and the downivash on the wing is completely 
specified, is of course much more difficult to solve. 

In  ref. 7 RQBIS.SO~U has treated the lift problem 



for a wing of given planform with swept trailing 
edge; his solut,ion however is only valid, when tlie 
trailing edge is slightly swept (see ref. 8). 
In ref. 9 ~ ; P C I ~ ~ R E N X Z X  has succeeded in de- 

riving an integral equation for the unkn6mn vorti- 
city in the wake of the wing; this integral equation 
is very complicated and according to the autliois’ 
knowledge it has never been solved up to now; 
when this integral equation would have heen solved, 
the perturbation velocity potential and the wing 
pressure could IIC determined. 

Finally, M~~c:rm< in ref. 10 and llwfi in ref. 11 
liave treated the swept wing completely and they 
have determined the load distribution ‘on f la t  
swept wings :it, incidcnce. in steady roll and in 
stea-dy pitell. 

These solutions of ALVGLER and ; \ Imns  are not 
valid for a w ie ra l  nrescribed downrvash on the 

~ 

wing, hut ~Y~,LXGL.ER has also giver1 (see ref. I?) 
il new mctliod For calculating the wiiig pressure 
on swept wings for arbitrary downw~slr, provided 
t,he downwash distribut,iorr is continuous in stream- 
wise direction, the case of deflected flaps being 
outside the scope of his papcr. A h ~ i i m t  has 
applied this mcthod only to  the case of cropped 
deltawings; the ease of sweptbaek wings >Till lead 
i o  rather cnmbcrsomc numerical calculations. 

TVhcreas JLisiiimi starts from the integral cqii;i- 
tion, relating the downwash to the load distrihu- 
tion, in the present report the integral eqontiori, 
velating the downrrash to the vorticity component i n  
strcamrrise direction, has lieen taken as the starting 

2 Basic concepts and formulation of the problem. 

point. The formulae which iiow determine t,he load 
distrihution 011 bhe wing seem somewhat simpler 
illan those of >Lm7mm and it may be, that they are 
.a more appropriate starting point for the deter- 
mination of the load (Iistrihntion on swept swings 
for  gcneral prescribed downwash ; moreover by aid 
of this method some knowledge dmut the behaviour 
01 the vorticity in the wake is olitained, which is 
iin interesting additional result especia.lly for the 
rorticity in the neiglibourhood of the kink of the 
trailing edge. 

In this paper the downwash is assumed to be 
symmetrical with respect to  the axis of symmetry 
of the wing. The ease of antis,vmnret,rical down- 
\viish can be treated with some modifications in 
the same way as for symmetrical down\vash, and 
will be presented in a subsequent paper. 

All tlie derivations and deductions which are 
‘riot strictly necessary for the understanding of the 
couteiits of this report are presented in a scpar- 
ate report, viz. : NLL report E’. 206a “Linearized 
theory of lifting swept ‘back wings at sonic speed; 
(derivations of formulae) .” 

After this report was finished, the authors 
ruceivcd a paper of X .  TRUCKMIROWT, wherc the 
Same prohlem is treated and wherc a numerical 
calculation of the lift distrihuiion for sweptback 
wings wit,h arbitrary camber and twist is presented. 
(sec lit. 18). 

Thc authors wish to thank Mr. J. G.. W O U T ~ S ,  
iuider whose direction the nnmerieal computations 
Iiii~e lieen perfomied. 

I n  keeping with the concepts of linear theor5 the wing is eonsidered an impenctrable surface, which 
lies nearly in the (5, y)  plane, and the downwash w (5, y),  taken positive in downward direction, is pre- 
scribed in the region A, the project,ion of the wing on the (z, !/) plane (see sketch a) .  The coordinate 

Sketch a. 

system and the surface A are assumed to move in the direction of tlie negative x-axis a t  a uniform 
velocity U. The lift distrihution p(s ,y)  on the wing, taken positivily in upward direction, is now de- 
termined by the following well known integral equation : 

__ 

e denoting air  density and p = I/-, with M as MACH numher; the integral is taken in the sense 
of €€ADAHARD. 



108 

When the TTelocity of the wing equals the velocity of sound the integral equation (2.1) can be reduced 
to a much simpler f o ~ m  by putting p cqnal to zero and U equal to t,he velocit,y of'sound V ;  doing 
this one obtains: 

whcrc y = y i ( z )  is the equation of the leaditig edge of t,he wing and -e the x-coordinate oE the most 
forward point of the wing; the cross in the integral sign denotes ti& the finite part has to he taken. 
Usiug the relation hetireen the pressure distribution and  the x-component yz(x, y )  of the vorticity 

vector, via. : 

and integrating (2.2) by parts one obtains the well knomn integral equation of slender \ring theory: 

(2.4) 

where the flow in some plane z = constant is treated as a two-dimensional incompressible flow, with given 
dovrnwash dong the intersection of the wing and the pla.iie z = constant, 

For some literature about, slender wing theory the reader is referycd to refs. 1, 2, 3, 4 and 13. 
A formula for the lift distribution on t,he wing, xhich expresses p ( z ,  y)  ip the z-component of the 

nirticit,y vector, can lie ohtaitied by integrating (2.3) with respect to y, viz: 

Hence for the determination of the lift distribntion on tile wing, equation (2.4) is inverted and the 
rcsult is snhst,itnted into cquatioii (2.5) ; this process will he carried out in the following sections 3 and 4. 

I n  this rcport the donnwasii will 'be assumed symmetrical with respect to  the z-axis; the dcdiictions 
for antisymmctrical downwash run along the same lines as those given below for symmetrical downwash 
;ind similar results which will lie presented in a subsequent paper can easily lie obtained. 

3 Solution of the integral equation. 

The solutions of singular integral equations of the type (2.4), where the integral must be taken in the 
sense of CAUCHY, are well known today in theoretical aerodynamics; the form of the various possible 
solntions depends on the conditions, which are t,o Iic imposed o n  the unknomn function yz(x, g), as 
whether this function bceomes integrable infinit,e or zero a t  one or both limits of the integration interval. 

The solutions, necessary in this section, have hecn given already by S ~ H X G ~  in 1939, ref. (14), and a 
full account, of the theory of this type of singular integral equations has been given in textbooks, such 
as ref. (15) and ref. (16). When + c is the z-coordinate of the most forward point of the trailing edge, 
t w o  cases have to be considered, according as the value of z is larger or smaller than c. 

3.1 Solution of the  integral equntion for  - c 5 x 5 f c. 

For x s c  the dowmmh is a given function of x and !/ along the whole integration interval and 

The solntioii of equation (2.4) is now 
~ ~ ( z ,  y )  remaining of coiirse integrable hecomes infinite for y = -C vl (z), 

(see refs. 14, 15, 16), which according to H!ElarfIoLTz's law of conservation of vorticity reduces to 

z 
?&, Y) = - 

li 

I n  the case of a flat plate a t  an  angle of attack this formula reduces to 

Y .  ys(x, y )  = 2 n 1' VYl' - yz 

(3.1) 

(3.2) 
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Substitution of (3.1) into equation (2.5) ' yields, after interchanging the order of integration and 
remembering the symmetry of w(x, 7), for the lift distiibntion on the wing for - c 5 z 5 + c 

Subst,itution of (3.2) in equation (2.5) yields the lift distrihut.ion on the flat, plate at, incidence for 
- c 5 z S + G and the resnlt, is: 

(3.4j 

wlicrc q dwotes the dynamic pressnw vhicli equals vl p Vz; foi,mula (3.4) is a well known result of 
slender wing theory, already found ,by It. T. JOSES in ref. 2. 

3.2 Sohition of t h e  integrril eqimtion for z > G 

For x > C, w ( z ,  !/) is no longer B given fnnet,ion of z and ;y along the whole integration interval, 
hu t  is in fact nnknown for -g,(z) < y < + gt(z), y=yt(z)  heing the equation of the trailing edge 
of the wing; the soh~tion is now more complicated than in the ease of z S c. Equation (2.4) can he 
written as: ! 

Xeplaeitig iii the first  two integrals 1) l1.j - 7 and iising y.(:, u )  =-yyr(z,- y ) ,  ivhich is true h e  
to t,lie symniet,ry of w(:x, ! I ) ,  the last cxpression cnn also I I E  writt,eii as: 

hy which the problem of. solving y.(z,y) is reduced t o  a problem for the right semi-wing only; 
yx(zc, y) f o r  the left semi-wing can of coiirse he ohtuined ,by considerations of symmetry. 

AS p ( x , v )  is zero in the wake, it follows immediately from eq. (2.3) that y.(z,g) is a function of 
!/ only, when - u t  < g < + y,. Hence it is allowed to replace in the first, integral yr(z ,  7) hy ~ ( 1 )  
and the last, equation becomes equivalerrt with 

"I 

where 

Equation (3.5) will now be solved far y.(s, 1 ~ )  which in this way will he expressed in the known dovw 
wa7h at the wing and the as yet unknown Tor t idy  g (u )  i n  the wake. Subrtituting X = qz, eq. (3.5) 
becomes : 

This is again a n  integral equation of the C m c m  type, containing the nnknown function ( p ( x ,  'I) - 
- y y . ( s , ~ t ) )  which is integrable infinite at the upper limit and zero a t  the lower limit of the inte- 
grittion interval; the purpose of the substraction of yr (x ,  yi) from y.(x, q )  was of course to get the 
zero condition a t  one of the limits of the integration interval. The solution of (3.7) is according to  refs. 
14, 15 and 16: 
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Putting agaiii X =$, substituting (3.6) into (3.3) and'reversing t,he order of integration in the  double 
integral which originates from the third term of (3.6) one obtains finally: 

'.. 
1: 

~. . 
For the reduction of h o t h . ~ i n t e ~ r ~ l s ~ t h e ~ r e a d e r  is referred to  lit. 17 (sections, 1 and 2) .  Substitution of 
(3.10) and (3.11) in (3.9) finally yields for . the $-component of the vorticity vector on the wing: I 

I 

When ut tends to zero, the righthand side of this equation becomes equal to the righthand side of 
b equation (3.1), if in equation (3.1) symmetry is also introduced. Hence y.(z, y) is continuoils in x 

Substituting the relation (3.12) into equation (2.5) one obtains after interchanging the order of in- 
along the line z = c, rzs could bc expected from physical considerations. 

tegration the lift distribution p ( x , y )  on the wing: 

where 

and (3.14) 

From equation (3.13) it is seen that the lift distrihution on the wing consists of two terms, one 
containing the downwash on the wing, which is a known function of z and y and the other containing 
the vortieitiy g(7) in the wake which is as yet ' an  unknown function of 7. 

Fquation (3.13) is still rather complicated; it is however passihle' t o  simplify the formnla consider- 
ahly by performing in ' t he  right hand side the differentiation with respect to z in an appropriate way. 
This will be done.in the nest chapter. . .  ~ . 
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4 The lift-distribution on the  wing. 

The righthand side of the expression (3.13) for the lift distribution on the wing consists of two 

az(x'y) , where.. ' . ' 
a w x ,  Y) .and terms, which will be denoted by 

ax ax 

and 

(4.2) 

(4.3) 

a 
ax The first term - T ( z , y )  can always he celcolated either exactly or numerically, since w(x,y) is a 

given function of + and y on the wing. The operation 

has been applied to the lunction Z(+,y) in lit. 17; section 3. The result is 

where F ( $ ,  k )  and E ( $ ,  k )  respectively are incomplete elliptic functions of the first and 
with argument 

Y12- YZ 

VI" - YtX 
and modulus k = 1'1 - yt*/ytZ. $ =sin-' 

Putting 

and 

the formula for the lift distribution becomes: ,! 

(4.4) 

second kind 

(4.5) 

(4.6) 

(4.7) 

Applgiiig the KUTTA condition at the trailing edge of the wing gives a relation betweei~ 8 and 1' which 

The Krm~n condition followj: from eq. (4.7) by setting y = v t  and p(+, y)  =0, viz.: 
enalilcs the elimination of T(y,, yr), 
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Eliminating T(yf,yL) from equations (4.7) and (4.8) fiually yield3 for the lift distribution on the wing 
the formula: 

dU1 
ax - Formula (4.9) is valid for arbitrary f o r ”  of leading and trailing cdgcs, provided -2 0, and for 

arbitrary symmetrical downwash distributions. This general formula contains st,ill one unknown function, 
viz. S ( U < , ? / ~ )  which appears as a, factor and which is moreover a function of z only. 

Thas for the determination of the wing pressure it is not required to know exactly thc complete 
vorticity distritint,ion in the wake, represented by the function g ( v ) ,  but the knowledge of the function 
9 ( ! / t ,  y~ j is already sufficient. Formula. (4.9) yiclds also the following important result: for the part 

of. the wing with z > c and - = 0 the lift distribution is given by the simple formula : a!/ 1 

ax 

(4.10) 

. this formiila hcing valid f o r  arbitrary symmetrical downwash distribntion and arbitrary shape of the 
trailing edge. Here, the pressnre is completely independent of the vortieit,y distribntion in the wake. 

For any given symmetrical downwash  the two terms, appeering in (4.10), can easily ,he calculated 
hy aid of (4.1). Hence the lift distribution on swcpt wings is now known in  the region of the tip, 

i i h i  the tip has a straight edge with - = 0; in particular the lift distribution on swept wings for 

which the foremost point of the tip is lying ahead of -. the ~ . . ~  most foriyar%d.point (if thc  trailing edge~(sec-  ~ 

4% 
dx 

-sketch b) is now.determined-on the  whole^ iVing. 

Sketch b. Sketch c. 

It is girin ‘by equation (3.3) if x c and hy equation (4.70) if z 2 e. For wings of the type of 
sketch e, foremost point of the tip aft  of the most forward point of the trailing edge, the lift distribu- 
t,ion for x < c is given by (3.3),  for x > d ‘by (4.10), and for c < x < d by formula (4.9). I n  order 
to calculate the lift distribution in the latter region, it is necessary to detcrmine the function S(%/t,?/i). 

5 Method of determination of the function S(y,, vi). 
Subst,it,uting the esprcssions (4.5) and (4.6) for the functions S(yr, g r )  and 7’(yt, 111) into the K ~ A  

condition (4.8) one obtains: . >  

J 
The function l Z  W(x, g) I 
numerically and hence the right hand side of (5.1) is lmomn for any given downwash. 

is a known function of x which can be calculated either exactly or . 
Y = Y L  
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The unknown function g(7) can he approximated fo r  very small values of 7 hy aid of an asymptotic 
e\aluation of the left and riglit hand sides of  equation ( 5 . 1 )  fo r  tending to zero; this is performed 
i n  lit. 17 (section 4). The behaviour of g(7) in the neighourhood of the kink in the trailing edgr 
appears to he: 

with 

c heing the ahscis of the kink in the trailing, edge. 

Sketch d 

The hehnrioor of g ( v )  in the neighourhood of the tip a t  7 = s  (see sketch c or (1) is given by: 

as is shuwn in lit. 17, sect,ion 5 ;  ( I ,  is a coefficient, which has to  be determined later on. Wit,li t,lie 
knowledge of the asymptotic behaviour of (I(?) near t.he cnds of the interval o < 7 < s, the function g(7) 
in the whole intersal can J ~ O W  be approximated by thc f o r m i h i  

(5.5) 

where P ( % )  is some polynomial in - I 
b 

The semispan b of the wing a t  5 = c is taken as length of reference. 111 order to  avoid a singtllarity 
a t  ?=!I in the logaritlimie term of (I(?), which in reality does not exist, this term is written as 

I 

7 1-- 
for q --f 0. 

tl G 

b 

G- which is asymptotieal1.v equal to __ 
7 log 7 log - 

The polynomial P (5) is written as:  

the constant term heing omitted, since g ( q )  equals zero for q=O.  
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Suhstituting now (5.5) into equation (5.1) and dividing by y~ one obtains: 

equations are obtained for the unknown constants (io, n, , ... thb; solving this system one gets the eon- 
stants ( i o ,  n,, , ... n,, and finally the fiinctions S ( g t ,  ' y l )  given by: - 

~. ~~ ~ 

m 

s(!/t, I l l )  = Q,.&I'+ ff,d J ,  + CL. (5.9) 
n=< 

It appcars in lit. 17 (sections 6 and:  7)  that the int.egrals I f ' ,  L' and J,,' contain a factor utz and hence 

the factor - oecurring in equation (6.1) is cancelled. 1 
!I 3 ! 

The integrals J ,  and J,' can he mi t t en  according to  table 1 as 

Here t,he planform of the wing is represented only by the factor Iience for whgs with differ- 

eiit planforms the functions B'*(k') and P,'(k') remain tho same. This mems a reduction of the amount 
of calculations, which has to  be performed, wheii anot,her wing-plant'orm is considered. Therefore 
numerical values of P.(k') and Fd(k')  for k ' = O ( O . l ) l  and n=1(1)5  arc  g;vY"' in table 2. 

can simply be expressed into the paramctcr"1d and into the sweep- For wings vith straight edges 
b 

ratio y ,  dcnotiug the ratio of the slopes of the trailing and leading edges, viz: 

(6.3) 
ut' 

b y-k" VI' 
where y = - . ?I 1 _=___ 
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l"rom', the formulae (6.:), (6.2), (6.3) and the expressions for M, Jf', 1, and I/, derived in lit. 17 
(sections 6 and 7)  it is seen that in equation (6.1) the use of k' as cross-sectional parameter is prefer- 
able to x and therefore equation (6.1) will be considered as an equation in If. When x = e  is the 
abscis of the most back-ward point of the wing (see sketches e and d), the interval c < z < e eorres- 
ponds to the interval 0 < k' < 1. 

6.2 
. .  

'7'(1,pered wings with straig71.t edges.  . 
For tapered wings with straight edgcs whose sweep ratio y is larger than one and not nearly one 

the method of calcoletion of S(y,, yt), as descrihed in section 5,  em simply be spplicd. 
I n  section 7 the theory is applied to a Plat fully tapered swallowtail wing a t  incidence with a 

sweep ratio y = 2 ; the degree of the polynom~al I .  I P(%): is taken cqnal to 5. After the determination 

of the constants a, ,  a, ._ .  a,, the function B ( , y t ,  y ~ )  is calculated in the interval 0 < k' < 1 by aid of 
formula (5.9). 

6.3 Wings without t6per or with small tmper and with stynight edges. 

F o r  wings without taper ( y = 1 )  or with small taper (7 nearly one), the method for  nnmerically 
calcnlating S(:y,, :/,) is somewhat different from 'that dcscrihed in 6.2. 

'I 
b 
- 

--used in the approximation (5.5) of y(7)  can he For initapered wings the term a, 

/(+T- ( + I 2  
omitted, because t,he function y(7) remains the same within the interval 0 S 7 5 y i ( d ) ,  when the wing 

S 

Sketch e. Sketch f .  

is not cut off a t  the tip, but stretches ,outward to infinity (see sketch e). Also for wings with a small 
taper (see sketch f )  the term 

'I 
h 
- 

(!an mostly he omitted, 'because the singularity in y(?) a t  7 = s  cannot strongly influence the function g(7) 
for 0 5 7 5 y t ( d ) ,  since gi(d) is mostly much smaller t,han the ordinate 'I = s  of the singular point. 

Hence for nntapered wings and for wings wid11 siiiall taper a simplification of equation (6.1) can he 
made, since it is allowed to omit the first term and equation (6 .1)  heeomes: 

1 
?It2 

- C  1 y t ' E ( k ) L  + v t 'k 'K(k )  - L' 1 (6.4) 
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The coefficients of the unknown constant n ,  , however, contain the factor (h) 111 " = ( Y *' and 
Y -  I 

lienee they become very large in comparison with the ~lmown right, hand side of equation (6,4),  eveii 
when k' is not near to the value 1. 

?/,(a) ' In this ease it is very difficult to satisfy approximately equation (6.4) in the  interval 0 < k' < __ 

Instead of the polynomial P (,%I, used in the a.pproximation ( 5 . 5 )  of g ( q ) ,  the following polynomial 

S 
by satisfying this eqLiation exactly for n~ chosen values of k'. 

will he used now : 

where t is some parameter which has to be chosen properly. 
The approximation (5.5) of the fnnction g ( 7 )  becomes now: 

Instead of the integrals J ,  and J,' ocourring in (6.4), a linear combination of J ,  and J,+,, resli~ect- ~- 
~. irely J,' and J',,,,, will n o w  appear; ~ v i z :  ~ ~ ~ 

(s," (J, - tJ,+l) h and (4) n (JL-T 71 J',+,) 

I and equation (6.4) becomes: 

! b - has now to he chosen in auch a manner. that the coefficients of < do not become \cry large in t 
comparison with the known right hand side of equation (6.7). 

By satisfying (6.7) for (ni - 1) values of k' the constants i i  can be calculated a n d  consecutively the 
function S ( ~ J , ,  ~ 1 )  is determined by the formula 

This procedure for the determination of &'(ut, 1 1 1 )  is used in section 7, whei~e the theory is applied 
b 

to a flat nntupered wing at  incidence, with wing semi-span cqual to 2h. Ti1 this case the parameter - t 
is chosen equal to i /3  and m is taken equal to 5. 

7 Application of the theory to swept flat wings at given angle of attack. 

The theory of the preceding seetioil will now be applied to t x o  swept f la t  wings at a give11 anglc 
of attack a; the wings have straight edges, one without taper and the other with taper. The wing with- 
out taper has a semispan equal to 2b and the wing wit,h taper is a so called "swdlloiv tail" for which 

dY1 the sweep ratio y is takcn eqna.1 to 2. The slope of the leading edge -, denoted by ul', is not fixed, dx 
so that strictly speaking two families of wing planforms are considered; a member of hoth families is 
s h o w  in figure 1. 

. .  
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’ 7.1 Tke l i f t distribution. 

The downwash w ( z ,  g) ,  prescribed on the wings, is given by w =UT’. For - c < 5 < + c the lift 
distribution on both wings is given hy formula (3.4) viz: 

(7.1) 
Y1 

$ I ( $ , ! / )  = 4 a q U i ’  --, 
Vylx -.!p 

irheie q denotes the dynamic pressure and eqnals Y2 p V Z .  

I 
-C 

Y - 

, 
x xi. 

Untqcred wing; y = 1. Tapered wing; y =  2. 
Fig. 1 

h’or z > c the influence of the nakc must he taken into account and formula (4.9) has to he used; 

has to ,be dctermined first. In  accordance with the formulae (3.14) therefore the function arv(z’ 
a i d  (4.1) W(z, 9) hccomes 

as 

In lit. 17 (section 8) this expression is reduced to  the simple form: 

W(2, !/) =4  aq V I  ( E($, 1;)  - k’*F($ ,  k ) )  

yiz- p ut and k’= - 
1/12 - ! I t 2  ?/I 

where 

$=sin-’ 

lhffercntiation with respect to z yields: 

Putting y =yt gives 

Substitution of (7.3) and (7.4) into (4.9) gives finally the prewire on the wings, viz: 

which is the sdme expression as found by l h o i m  in ref. (20) and by Mmxs in ref. (11). 
Putting 

(7.2) 

S*(z) corresponds with the function If(%) of MAXGLER and the fiinctioii S(z) of D I m  
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7.2 T h e  tcntapered wing. 

For the wing without taper. the. function S ( y t ,  V I )  is needed only for 0 < li’ < (see fig. 1) and is 
determined hy aid of the procedure described in section ( 6 . 3 ) .  After substitution of (7.4) in equation 
(6.7) it  appears that  both sides of this equation can he divided by yt’=yt’ and equation (6.7) is in., 
dependent of the angle of sweep of the wing. Hence S ( y t ,  !/a) is also independent of the angle of sweep. 
By aid of (5.3) the coefficient C in the right hand side of (6.7) appears to be al7rr. By satisfying 

b equation (6 .7 )  with T I L =  5 and - for A’= 0.1; 0.2; 0.4 and 0.5 a system of four linear equations 
t 

for the constants n, , rc, , ai and i, is obtained. After solving a., , a,, as and a, t j e i r  numerical values have 
been substituted again into equation (6.7) and both sides of this equation, verd calculated for K = 0.3; 
the error appears to he 4l/r %. 

Consecutively S(y,, y ~ )  is calculated ‘by aid of formnla (6.8). In  fignre 2 the function S*(k’) = 

~ _ _  - - _ _  

(see form. (6.3) ). 1 1 + ‘ ( u t ’  is plotted against. z=- 

I n  the same figurc the values of S*(V) as found by RIAKGIZR (ref. 10) q i d  AIm,t3x~ (ref. 11) have 
been inserted and moreover also the asymptotic values of S’(7c‘) for  small values of k‘ or what is the 

OT’T b 1--11 

. .  

same, for z in the neighbourhood of z=c,. i. e. the ab& of the kink in the t,railing edge. The asymp- 
totie approximation of S“(k‘) is given by t,hc expression: 
, , :; k‘ - 

This formula has been derived from formula (4.9) of section.4 of lit. 17, wherc the .asymptotic ex- 
pression for S ( ? h ,  yr) is determined for arhitrarily given downwash. 

Comparing the three curves fo r  S*(k’) it  appears that t,he values of S*(k’)i prcscnted in this report, 
agree quite well with the  results of MANGLER and nhnlirs. The values, ohtained by M,\N~~,ER and lip the 
prcscnt ant,hors, approximate rery good the avymptot,ic v h e s ,  which ap,proximat,ion is not so good for 
MIREIS’S results. 

Sulrstitution of the numerical values of S*(k’ )  in (7.5) yiclds a t  last the pressure distrihntion on 
thc wing for  2 > c. 

When z is larger than the abscis d of the most forward point of the tip yc’ equals zero and hence 
the pressure on the wing vanishes. 

In figure 3 the lift distribut,ioil p ( z ’ y )  in several cross sections of ,the wing, denoted by several 

I 

.aqy1 . ,  
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.. 
! I1 1 !I values of - = L , is plotted against the spanwise coordinate - Since the angle of sweep of 

tlie wing can still he arbitrarily chosen, figure 3 gives tlic lift distrihution for  a family of untapered wings. 
The wing section a t  z = c  is an important section from the theoretical point of view, ,as for z < c 

the lift distribution is given by (7.1) and for  z > e hp (7.5) ; therefore the right liand side of formula 
(7.5) will he investigatcd for z going to c, or what is the sime for u t  or k' going to zero. 

The limit of t,he right liand side of equation (7.5) for k tending to 1 and y f 0  is 

0 1-.w b '  

, provided :/ + 0. (7.8) 
b b 

VlP-u* V b 2 - y 2  
+ 4aqyi '  __, and hence p ( c + , ~ ) ' = 4 ~ q y ~ '  

Comparing (7.8) and (7.1) leads to the conclusion; that' the lift distrihtion in the cross-sect,ion z = c 
is. continlious in 2, provided y f 0. 

For u = O  and z=c, i. e. a t  the kink of the trailing edge, according to (7,1), the wing pressure 
cquals 4 u q ~ l ' ;  according to (7.5), however, lim ~ ( z ,  u t )  = O ,  since thc K U ~ A  condition is satisfied 

at tlie trailing edge; hence tlie 'kink of the trailing edge is a singular point, f u r  the lift distrihution 
on the wing. 

The hehaviour of the pressure distribntion ip the neighbourhod of the  section s = c  is illustrated by 
sketch g. Integrating the expressions (7.1) and (7 .5)  to t,he spanwise coordinate !/ over t,lie wing siir- 

fiiec yields t,he lift dist,rihut,ion per u!iit, chord, denoted hy - and lienee : 

s i t d o  

d L  
. .  c7A 
8 

, ... for  - c s z 5 + e iind 

d 

aq 
13 

a - 

9 

8 

7 

6 
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Sketch g. Fig. 4, Lift llistribution per unit chord; y'= 1. ' 



for c 5 z sa. 
111 lit. 17 (section 9) the integral is reduced to the simplc form: 

d L  
d z  ?/I . 

Ml!/I 'h 

- 

against - IS given in figure 4 ;  the lift per unit chord shows a A plot of the function __ 

vertical tilngent at, -= 1, i.e. a t  the cross seetion 5 = c through the kink of the trailing cdgc; although 

the lift, distribution per unit chord is continuous at the cross section z=c, nerert,hcless it falls off 
ui . rapidly after this cross section; for larger values of - it, increases amgain. When the wing is not cut b 

off nt the tips hut stretches outward to infinity, the limit. of - can lie eoiisidered for k' approxima 

t,iiig 1, i.c. for ut and g1 tending to infinity. 

for r/ tcndinr to infinity the funct,ion # ( s t ,  y l )  will vanish also for yt and yI tending to infinity and 

b 
U l  

b . 

d L  
dX 

Due to the fact, that the vorticity vector in the makc and hence also the function g(y) vanishes I 
.~ , .  . 

d L  E ( k )  
w+ 1 w+i dz k'+ 1 K ( k )  

hence lim S"(V ) = 1. Therefore lim - = 4 riaq y ~ '  lim y I  ] 1 - -1 = 

VI2 -UP ~~ 2 "q ~ 1 ' ~  l i m ~  ( y ~  kz)  = 2 J aq VI' lim 
I l l d m  VI k d O  .~ 

~~ ~- 

Since V I  -? i t  is constant, a d  cqrial to  A, the limit heeomes 
d L  

1im - = 4 rr ay y1' b. 
k'+I dJ 

d L  . which, incidrntallp, is thc same value as is reached by the function - tor k'=0. The last formula 
dx 

could of course also hc ohtairied by simple two-dimc~~sional wing theory. 
dL 
dz 

Integration of - with respect to z yields a t  last the total lift L on the wing, viz.: 

The intezral is calculated numerically and the result is L = 16.131 aqb2. genee the dcrivatirc 

Thus for the family of untapered swept wings the aerodynamic derimtire - d c ,  is proportional to 

The aerodynamic centre is given hy the formula: 

dn 
the slope of the leiidi~lg edge ~ 1 '  and the proportiona1i:y fact,or equals 4.108 

5 ill 
c b After suhstit.iition of -= 2--1 the cxprcssion is craluated in the form: 

X A C  

C 
the integra! is calculated numerically and the result is __ =1.3897. Thus for the family of un- 

tapered swept wings the location o€ the acrodynamic centre is independent of the angle of sweep of 
the wing. 



7.3 T h e  tapered wing. 

For the s~va11ow tail wing t,he fuuct,iun S(!yt, !/I) 
is needed for 0 < k' < I (see fig. 1) and is deter- 
mined hy the procedure descrithed in sections 5 

:ind 6.2. The cxpression for 
I ,  =I , .  
I "I 

given hy (7.4), is si111stitiit.ed into equation (6.1) ; 
trfter dividing liy ~ 1 '  it appears that this equation 

depends oil the swcep rat,io y = 7, but not 011 

the angle of sweep' of the xing. Hence this is 
a h  the ease for S(Y~,YZ) .  

By satisfying equation (6.1) with na = 5 and 
y = 2  for k'=0.1; 0.2; 0.4; 0.6; 0.8 and 0.9 a 
system of  six h e a r  equations for the constants 
( I " ,  u , ,  ... ( t 5  is obtained. The constaiit. C in the 
right hand side of cquation (6.1) is determined 
by the formulae (5.3) and (7.4); for y = 2  this 
constant is equal to vzaVx.  After solving the 
constaiits their numerical values are substituted 
again iuto equatiou (6.1) and both sides of this 
equation are calculated for k'= 0.3, 0.5 and 0.7; 
t,he error apuears to  he 2 %, 3'% and 8 % rcs- 

Yt' 
'U I 

~. 
pectively. 

ated bv aid of formula (5.9). 
Consecutively the function S(gc ,  VZ) is calcul- 

The &ymptotical values' of 'S*(k')  for k' tending 
to zero iirc given by the formula : 

k' - 

4 . ' I;' 
Y 4 

+ O(k'9) = I  + - 12 (-) + O(k'*) (7.13) 

this expression is dcrivcd from formula (4.9) of 
section 4 of lit. 17. 

5' 
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Y t  
b 
- 

Fig. 5. Tho function S*(kr)  ; y = 2. 

In  figure 5 the function S'(7c') is plottcd again 
against the cross sectional p a w "  2, wllich is 

b 
2 - Y equal to __-__.  

y-k' 2-k' 
I n  thc same figure the corresponding results of 

IVIASGTJX (ref. (10)) and the asjmptotieal values 
are inserted and the agreement is quite satisfac- 
tovy. Because ~KIRICLS has not carried out a ealcul- 
at,ion f o r  a tapered wing, t,here is no comparison 
possible with a corresponding result of k h " .  
Snbstitutio~i of t,he numerically obtained values of 
S*(k') into (7.5) finally yields the l if t  distribut,ion 
0 1 1  the wing for x > c. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Y 
b 

Fig. 6. Tho lift, d i r t r ibut~im 011 t lw Iring; y = 2. 

- 

P (2, u) ill S C ~ e T .  In fipi1r.e 6 the lift. dist~ibutian 
a4 ill' 

a1 cross sections of  the miog, denoted hy several 
V I  values of -, is plotted against the spanwise 
fl 

!/ coordiiiate - Since the angle of sweep of the 6 '  
wing can still hc arbit,rarily chosen, figure 6 
gives in the Nilme way as figure 3, the lift distri- 
hution for a family of swept wings with y = 2 .  

Finally, figure 7 sllows the plot of the lift 
distribution per unit clior'd, which is given by the 
same furmulac as are valid for the nntapered 

dL 
wing, viz: (7 .9)  and (7.10). Integration of - dX 
with respect to z from - c to + 3 c; see figure 1, 
yields the total li€t on the wing; L is determined 
119 aid (if (7.11), where the integral is calcuiat- 
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I 

I 
I 
I 
I 

ed numerically; the result is I, = 12.5239 qb2m 
dCL 

Hence the aerodynamic derivative - is equal 
da 

= 6.2620 yf. The. acroclymamic 
bZ to 12.5239 - 

4 bc 
centre is also calculated in the same way as fo r  

dL a r  

o a2 a4 0.6 0.8 1.0 , 1.2 1.4 1.6 1.8 2.0 
Y t  - 
b 

Fig. 7. Lift distribution per unit chord i y = 2. 

the untapcred wing and the result, obtained hy 
5A.C aid of formula (7.12): is -- - 1.0454. c 

Thus also for the family of swa.llow tail wings 

the aerodynamic derivat,ive - d C ~  is proportional 

to the slope of the leading edge and the centre 
of pressure is independent of the angle of sweep 
of the wing; this result holds of course for any 
family of' swallow tail wings with constant sweep 
ratio y. The numerical values for the aerody- 

and €or the aerodynamic dCL namie derivative - 
da 

eentrc zdc agree quite well mit,h the results of 
TRUCKENBRODI (lit. 18). 

8 Recapitulation of the theory and conclusions. 

Expressions fur the lift distribution ou swept- 
hack wings without thickness have been obtained 
for any given symmetrical eamher and twist of 
the wing.'  ~ 

cla 

I n  cross sections perpendicular to  the direction 
of the .undisturbed flow the lift distribution on 
the wing is given by formula (3.3) when there 
is no wake and lby formula (4.9) or (4.10) when 
thcre is a wake present. 

I n  those parts of the wing where the load (lis- 
ttibntion is 'given by formula (3.3) or (4.10) the 
determination of t h i s  load distribution involves no 
difficulty a t  all, whatever may be the given down. 
m s h  distribution or the planfoim of the wing. 

I n  those parts of the wing, however, where the 
load distribution is given by formula (4.9) the 
wing pressure apart from the factor S(yc, yi) can 
also he calculated without much difficukies. 

The determination of the function S ( y t , y l )  in- 
volvcs the largest part of the amount of numerical 
caIculiitions which has to be performed in order 
to obtain the lift distribution on the wing. 

The dctcrmination of this function S ( y t , y i )  is 
reduced in section 5 to the solution of a linear 

tem of algebra+ equations, see formula (6.1). 
\ ~ r l ~ c ~ t  the function ~ ( Y c ,  yt) has already been 
calculated for snme givm wing planform with 
~ n i ~ n  downxash distribution on the wing, the de- 
termination of s ( ~ , ,  ut) for a wing with the same 
planform h u t  with another given downwash distri- 
bution is readily performed, since onl?, t,he. first 
t c m  of the right hand side- of equation (6.1) is 
changed and hence only the known terms of the 
linear system. of algchrai'c equations have obtained 
other values. Thus when the load distribution for 
some wing with given eamher a i d  twist is already 
linown, the determination of the load distributioii 
on a wing with' the samc planform but with an- 
other camber and twist does not involve much 
extra numerical calculations. 

Whet1 however the wing planform is also chang 
cd, the whole system of linear equations (6.1) is 
altered, since the coefficients of the unknowns 
( I , ) ,  a > ,  ,.. u, and the known terms havi now ob- 
tilined other values. 

The integrals $1, N', J,, Jm', L and L' must 
again he calculated; the calculation of Jf, M', J,, 
and J: is fairly simple, since they can be cal- 
culated exnctly (sec table l) and moreover J, and 
Jl:  can hc written in the form (6.2), but the total 
numerical calcu,lation of L and L' has to he carried 
(nit again. 

The theory has been applied to two examples 
viz. a flat wing without taper and a flat wing 
with taper, both a t  constant angle of attack. 

The results obtaincd by aid of the method pre- 
sented in this report are satisfactory and show 
good agreement with the results obtained by aid 
of other methods (lit. 10 and 11). 
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TABLE 1. 

Expressions for the integrals M, H’, J ,  and J”’. 

J ,  = (f.) ( K ( k ’ )  - -E(k’)  } 

3 
J, : (”) ( ( 2 + k ’ ~ ) K ( k ’ ) - Z ( l + k ’ * ) - E ( ! C ’ ) }  

b 

[EUMAN‘s lambda-functiun 

5 

J ,  = . (F) ( (9  + 3 k‘Z  + 4 7d4)K(k’ )  - (8 + 7 k’ + 8 k’ 4 ) E ( k ’ ) }  

d,‘= uta ( % ) ( - K ( k ’ )  + 2 E ( k ’ ) )  

2 
J,‘ = ‘ / 2 .  y t *  (+) 

4 
J,‘ = , (E) h 

(1  - 4 k’ * ) K (  li’) - (1 - 8 k’ Z ) E  (k’) ) 

1 t k ‘ I  - W ( l  - 15 k ‘ Z )  + I / * ( l  + 6 k I 2 - 1 5  k ‘ l )  log 
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0.00789 
0.03190 
0.0732'2 
013406 , 
0.21829 
0.~3267 
0.49003 
0.71895 

TABLE 2. 

Numerical viilues of >'"(7<') and P,'(k') 

0.00067 
0,00542 
0.01869 
0.04572 
0.09332 
0.1713.~ 
0.29614 
0.50085 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.8 
0.9 
1.0 

0.7 

___ 

k' p,' P,' 

1.57080 

0.7 
0.8 

I .o m - m  
0.9 

P3 

0 
0.00014 
0.00103 
0.00502 
0.01624 
0.04144 
0.09155 
0.18545 
0.36046 
0.72241 
+ m  

_- 
f l 4  

___ 
0 

0.00017 
0.00135 
0.00589 
0.01883 

o.noooi 

0.050oo 
0.11846 
0.26450 
0.60160 
+ m  

J', ___ 
0 

0.00007 
0.oO009 
0.00042 
0.00220 
0.00869 
0.02774 
0.07694 
0.19675 
0.50701 
+ m  

p: 

n 0 0 
0.02345 0.00265 . o.00030 
0.09188 0.02082 O.OO.L~I 
0.1~981 0.06801 0.0225s 
0.33735 0.15346 0.06601 
0.48916, 0.27916 0.15504 
0.63189 0.43536 0.29129 
0.72878 0.59232 0.46561 

0.43741 0.52164 0.56962 
0.71518 . 0.68093 0.62138 

- - * )  - m  - m  
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