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Summary. 

compressible flow with any downwash distribution is considered. The pro- 
blems are formulated as boundary value problems for the Laplace equation. 
In order to solve these problems appropriate orthogonal OOOrdinateS are 
introduced. Suitable solutions of the Laplace equation are found by sepa- 
ration of variables. By means of these solutions Green's function of the 
second kind can be constructed. A comparison of the regular velocity 
potential and the regular acceleration potential leads to a general ex- 
pression for singular solutions of the Laplace equation. The complete 
solution of each of the physical problems can be written as the sum of 
the regular acceleration potential and a singular solution, which is 
singular only along the leading edge of the wing. This singular solution 
oontains an unknown weight-function, which must be determined by requiring 
that the normal velocity at the wing surface corresponding to the complete 
acceleration potential coincides with the given normal velocity. The re- 
sulting integral equation is replaced by an infinite system of linear al- 
gebraic equations. In order to arrive at numerical results the infinite 
set of equations is broken off. The fast convergence of the process is 
illustrated by several examples. 

A lifting surfacenof circular planform in steady and unsteady in- 

In troduc tion. 

the pressure distribution, forces and moments on an aerofoil of circular 
planform in steady incompressible flow. In 1940 Schade (ref ,153) extended 
Kinner's theory to the problem of the oscillating circular wing in incom- 
pressible flow. Numerical results for the oscillating circular aerofoil 
were published by Krienes and Schade in 1942 (ref.10). Although these 
papers greatly contributed to the lifting surface theory at that time, 
they do not well fit in with the present state of the lifting surface 
theory. 

One of the main objections against Kinner's and Schade's solutions 
is that they fulfil the Kutta condition only in a finite number of points 
of the trailing edge of the wing. The number of these points depends on 
the number of linear equations by which a certain infinite system of al- 
gebraic equations, occurring in their theories, is approximated. Between 
the points of the trailing edge mentioned the pressure distribution 
becomes infinite. 

Neither Kinner nor Schade give any information about the convergence 
of their solutions, when the number of linear equations increases. Schade 
treats his problem of the oscillating circular wing for the six downwash 
distributions up to the second degree in x 
wash distributions of higher degree i n x  and $ requires such a lot of 
analysis that it becomes inconvenient for practical use. 

of the pressure distribution and lift and moments on three-dimensional 
Wings of arbitrary planform in steady incompressible flow have been de- 
veloped. One of the most important methods is that of Multhopp's (ref.16). 
Application of Multhopp's method yields more reliable results as the 
aspect ratio of the wing becomes larger. At the I.L.L. an approximate 
lifting surface theory has been developed which is a slight modification 
of Multhopp's method with the advantage, however, of being especially 

In 1937 Kinner (ref.9) solved the problem of the determination of 

and LJ, . An extension to down- 
In the last decade several approximation methods for the calculation 
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adapted to electronic computing; moreover it does not have the restriction 
of two pivotal points in chordwise direction (ref.23). In order to check 
the accuracy of such an approximation, it would be most useful if an exact 
solution for a three-dimensional wing of not too large an aspect ratio 
should exist. Such an exact solution can be found for the wing of circular 
planform. However, the numerical results of Kinner's theory are so scarce 
that a further elaboration of this theory would be necessary. 

For the non-stationary theory the situation is somewhat different. In 
the last years some approximate theories for oscillating wings of arbitrary 
planform were developed. In fact, most of these theories are extensions of 
known steady methods. In particular mention can be made of Garner's exten- 
sion of Multhopp's steady lifting surface theory to pitching oscillations 
of low frequency (ref.3). Garner applies his method among other things to 
the circular wing and compares the values of some aerodynamic derivatives 
with those found by Krienes and Schade. He remarks that for the damping 
derivatives these comparisons cast doubt on the results of Krienes and 
Schade and emphasize the desirability of checking the complicated analysis 
developed in their method. 

Recently two other methods were developed which claim a larger range 
of validity as to the frequency (refs. 4 and la). However, some insight 
into the reliability of these theories does not exist. Therefore it would 

- be important if there existed an exact solution for an oscillating three- 
dimensional wing of moderate aspect ratio. 

problem of the wing of elliptic 
(refs. 11, 12, 13, 14, 15). In some of the papers mentioned numerical-re- 
sults are given for the elliptic lifting surface of infinite aspect ratio 
and the circular wing in steady incompressible flow. These values differ 
considerably from those of Kinner's and from the values found in this re- 
port. The reason of these discrepancies can be ascribed to several errors 
in KUssner's theory. 

In this paper a new method is developed for solving the problem of the 
circular wing in steady and unsteady incompressible flow. In fact the method 
used is an extension of a method applied by Timman f o r  solving a two-dimen- 
sional boundary value problem for the wave equation. In his thesis (ref.24) 
Timman solved the problem of the harmonically oscillating aerofoil in sub- 
sonic compressible-flow. Due to criticism on the numerical results of his 
theory he re-examined his method of solution in 1954, which resulted in a 
new, and more stralght-forward theory (ref.25). In the latter paper it was 
recognized that singular solutions of the boundary value problem for the 
two-dimensional wave equation can be expressed in terms of Green's function 
of the boundary value problem concerned. In particular the generalization of 
this idea has opened the possibility of attacking the pryblem of the Cir- 
cular wing. It may be remarked that the sane method is applicable to a Wing 
of elliptic planform, but the analysis required for the evaluation of the 
ultimate pressure distribution is much more cumbersome due to the very con- 
plicated nature of the Lam6 functions which have to be used instead of the 
associated Legendre functions corresponding to the circular wing. 

Since 1954 Kiissner has published a series of papers, dealing with the 
planform in steady and unsteady flow 

.. 
' 

In the present paper the two main problems treated, are firstly that 
of the circular wing in steady incompressible flow, and secondly that of 
the circular wing harmonically oscillating in an incompressible flow. 

incompressible aerofoil theory. 
Chapter I contains the derivation of the basic equations of linearized 
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Chapter I1 deals with the method of solution and its underlying 
theory. However, the method is applied to the circular wing in steady flow 
and several exanples of prescribed downnash distributions on the wing 
surface are evaluated, while the numerical results are compared with re- 
aults of Kinner and with values calculated by an approximate theory de- 
veloped at the N.L.L. 

the harmonically oscillating circular aerofoll. Because of the complexity 
of the formulas to be used, only the simpler case of low frequency is 
elaborated. Several cases of special modes of vibration of the wing are 
treated. It appears that the numerical results differ very much from those 
of Krienes' and Schade's, which is mainly caused by some errors in Schade's 
theory. 

Green for the boundary value problem considered, by means of a method given 
by Sommerfeld. 

In chapter I11 the theory is used to derive the equations required for 

In the appendix a closed expression is derived for the function Of 
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Chapter I. The basic equations of linearized incompressible 
aerofoil theory. 

- 1 The velocity potential. 

The fluid considered in this paper is a non-viscous incompressible 
gas. With regard to the mechanical properties of the gas this implies that 
the force acting across any interior or bounding surface is normal to that 
surface. This force is called pressure. The flow of a gas with the mention- 
ed properties can be described by specifying as functione of time t and 
position ( X , ~ . Z )  in rectangular Cartesian coordinates, the components 
( u .e ,  e) of the velocity vector 7 . These dependent variables are related 
by the law of mass conservation, which is expressed by 

die. ? = o  (1,1,1) 

and the equations of motion (Euler’s equations) 

The quantities and f denote the pressure and the density respectively 
In the last equation gravity and other external forces have been omitted, 
as is customary in aerodynamics. 

In aerofoil theory an essential role is played by a certain function 
which reduced the number of dependent variables, notably the velocity 
potential 
dition of irrotationality of the flow, which means physically that all 
fluid elements have zero angular velocity. This condition is expressed 
mathematically by the disappearance of the curl of the vector v, o r  in 
component form 

‘p (X,#,%,t) . The existence of this function depends on the con- 

It is ivcll known that the vanishing of the our1 in a vector field is a 
necessary and sufficient condition to assure that the vector is the gra- 
dient of some scalar function. In the present case this function is the 
velocity potential y[x.#,z,t) 

or in component form 

. This fact is expressed by the relation 
7 = grad y 

The velocity potential is ralated to the pressure, which is a quan- 
tity of more direct physical significance, by means of the equations of 
motion and a first integral of them. 
In irrotational flow equation (1,1,2) is equivalent to 

Because of the incompressibility of the fluid this equation can be written 
as 
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Integration of this equation shows that the s h  of the three quantitifs 
in parentheses is a constant throughout the field of flow at any parti- 
cular instant of time, so this sum cah at most equal some function of 
timer 

The expression is known as the uneteady Bernoulli's equation. The function 
can be eliminated by a redefinition of the velocity potential. Thus 

may be replaced by v u +  4 F(Wt without altering the velocity field, 
When the fluid motion at in inity consists of parallel streamlines'with 
velocity u the following relation holds 

,Fit) 

1 1  F(t) U * 

A partial differential equation for the velocity potential is found 
by inserting the eq. (1,1,4) into the continuity equation (l,l,l). Using 
the fact that the divergence of the gradient is equal to Laplace's operator 

eq. (l,l,l) can be rewritten into the follbw$ng conoise form 
i A V - 0  r; 

We may conclude that in the case of an incompressible fluid Laplaoe'e 
equation is the exact unsteady flow equation to be satisfied by the velo- 
city potential. 

- 2 
In order to get a complete mathematical formulation of flow problems 

we still have to consider the boundary conditions. These conditions 0811 be 
divided into two types: condition at infinity and conditions arising from 
the presence of the aerofoil. 

The former depend on the nature of the partial differential equation 
governing tf . As this is Laplace's equation, they require only that tho 
fluid be at rest or has some specified uniform motion at remote points. 

The condition at the surface of a body states simply that the velo- 
city of the fluid relative to the surface of the body ie everywhere tan- 
gential to its surface. 

Linearization of the boundary conditions. 

the boundary condition reads 

on the surfaoef. 

the velocity of motion of the surfacef.0is indicated by the components d, 

From eq. (1,2,1) it foilore 

The proof of this relation can be given as follows. Suppose that 

d and v' a 

aF I D F  
(1,293) tv '  - t w  - -  PF+ u' XF 

3 O X  "Y 3.7. -O ' 
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If 4 
F=o at the point ( r ,y , ,z)  

,m andn are the direction-cosines of the normal to the surface 
one has at any point of the surface 

4 u! t mw'+ nw'= tu t m v t  nw 
P 

Since 

1 Inserting this relation into eq. (l,Z,3) the desired result is readily 
derived. It is just the form of boundary conditions (1,2,2) that gives 

izing the aerodynamic problem. We think of the wing, which translates with 
velocity U i n  the negative direction o f x  . The wing is fixed to the coor- 
dinate system in such a way that it coincides nearly with thexy -plane. 

this formula can be split in two other equations, one of which defining 
the upper surfaaa of the wlng,and the other one defining its lower surface: 

rise t o  the small disturbance concept underlying the technique for linear- I 

Supposing that the variable z can be explicitly solved from eq. (1,2,1), 

VF ==I , we are able to solve eq. (1,2,2) for the values of Since 
the vertical velocityw over the wing surface: 

where 5 is the projeotion of the wing on the xg  -plane. 
The eqs. (1,2,7) are exact; however, we shall approximate them by assuming 
that over almost the entire area of the wing the following suppositions 
hold: 

, etc., are very small compared with unity, and (1)' the slopes -i)x - 
(2 )  the fluid velocity vectorq differs only slightly in direction and 

The second condition points to the desirability of introducing a disturbance 
velocity potentialv by isolating the contributivn of the uniform flow, 

PZU -% 
3% 

magnitude from the free-stream velocity u 

(ps ij t u.x (1,298) 
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The perturbation velocity components 

are assumed to satisfy the order-of-magnitude requirement 
c i , * , z r e < < L f  . (1,2,10) 

If the conditions (1) and (2) above are fulfilled, the eqs. (1,2,7) 
can be approximated by 

f o r  ;(.=xu, (x,$ ins  

f o r  z -  x 

=LA - + u - ,  32 U 

(1,2,11) 
*= P t  B X  

-OX P =2 - t u  - 
mt ax ' [ x , ~ ]  in s .  e *  e, 

Now we can state that condition (1) is equivalent to assuming that 
.zu and x-4 
This fact enables us to proceed one step further with the approximation. 
We expand W in MacLaurin series about its value just above and below the 

be small compared with the wing chord. 

m u , ( X . ~ . O - * t )  c -  %e" +Wlx .$*4 . t )  f..... 
V Z  Z! a x  

* [ x ,  Lif,zf, t) = e( ~ ~ ' 6 . 0 -  , t J C Z ~  

If the derivatives z, etc., are sufficiently well behaved such that 
their products with the small quantities zu , etc., may be neglected with 
respect t o w  itself, all but the first terms on the right hand side of 
eqs. (1,2,12) can be neglected. Then the boundary conditions finally take 
the forms 

(1 9 2,121 
Bup 

axu . for z = O + ,  [x ,$J  in S 

f o r  I =  0- , [ x , ~ )  in s . 
(1,2,131 

V X  
t u v ,  - at 

3 x P  .- *= - dx4 t u ax , 
dt 

It is important to remark that the use of eqs. (1,2,13) points to the 
admissibility of schematizing the actual wing by a mathematical plane sur- 
face across which appropriate discontinuities exist. 

velocity potential it must be remarked that the terms in Laplace's equation 
are already linear and there is no reason to expect anyone of them to be 
much larger or smaller than the others. Hence in linearized incompressible 
theory the governing equation for the velocity potential remains Laplace's 
equation. 

Concerning the linearization of the differential equation for the 

2 The acceleration potential. 

are sometimes great advantages in using.the concept of the acceleration 
potential instead of the velocity potential. 

equation of motion for incompressible fluids 

It has been experienced that in solving boundary value problems there 

The existence of the acceleration potential is assured by the vector 



This equation shows that the acceleration vector is the gradient of a 
scalar function, which we designate by V(X,y,z,k) , such that 

with the components 

From eqs. (1,3,1) and (1,3,2) it follows 

grad v+ grad T = o  9 (1,3,3) 

so that these quantities differ at most,by a function of time, 

G(t)nas the sane properties as F(t)  in eq. ( l , l , 7 )  and therefore can be 
eliminated in some way o r  another. In particular whenvis assigned the 
value zero at infinity where p =  p, , eq. (1,3,4) reads 

P-- P 
Y= 

Herev differs only by a constant factor from the disturbance pressure 

The relation between the acceleration 'potential'qf and the velocity 
potential is found by inserting eq. (1,3,3) into eq. (1,1,6). When the flow 
is uniform with velocityu at infinity, the resulting equation reads 

P-Po0 * 

If the small-perturbation conditions (1,2,10) are fulfilled, this 
equation can be linearized to 

may be interchanged with the other linear .3  
3+ U Y Z  As the operator 

operators in Laplace's equation, it can be concluded that the acceleration 
potential also satisfies the same differential equation as the velocity 
potential in the linearized theory. 

The relation (1,3,7)' can also be .considered as &.linear partial 
differential equation of the first order f o r  the unknown velocity potent- 
ial if . 
In order to get the general solution we write down the characteristic 
equations: . -  
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This  system of  ord inary  d i f f e r e n t i a l  equa t ions  has  t h e  s o l u t i o n s  

x =  uc+c, 

The requirement t h a t  
t h e  s o l u t i o n  for into the  form 

vanishes  a t  t h e  p o i n t  X S - ~ ,  enables  ua t o  wr i te  
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Chapter 11. The c i r c u l a r  wing i n  s teady  incompressible flow. 

- 1 Formulation o i  the boundary value proolem i n  terms of 
t he  ve loc i ty  ' so t en t i a l .  

Consider an a e r o f o i l  of  c i r c u l a r  planform moving with constant  velo- 
c i t y u  i n  an incompressible  and non-viscous medium. A right-hand system of 
r ec t angu la r  coordinates  ( x , y , z )  
of the  ax i s  o f x  i s  taken oppos i te  t o  the d i r e c t i o n  of  motion of the wing; 
t h e  a x i s  o f q  i s  taken i n  t h e  spanwise d i r e c t i o n .  The p ro jec t ion  of t h e  
a e r o f o i l  on thextd. -plane i s  a c i r c l e  .having r a d i u s  u n i t y  with i t s  c e n t r e  
a t  t he  o r i g i n  of the  coord ina tes .  The 
coordinate  axes  a r e  assumed t o  be 
f i x e d  t o  the wing. 

I n  chapter  I i t  has  been proved 
t h a t  the  per turba t ion  v e l o c i t y  potent-  
i a l  $ s a t i s f i e s  Laplace 's  equation: 

i s  used ( s e e  fig.1). The p o s i t i v e  d i r e c t i o n  

According t o  paragrapn 2 o f  
cnapter  I t h e  l i n e a r i z e d  cond i t ions  of  

read as follows: 

t a n g e n t i a l  f l o w  a t  the a e r o f o i l  su r f aces  

x = X , ( X , @  and Z = X i  (X,v) 

for zE O+ , X'+LJ'I 1 

for x - 0 -  X^+$I i 

xanrine t h e  boundary c o n d i t i  In order  t o  

I 

ns more c l o  e l y ,  we s p l i t  
x and ze i n  an even"par t  X4 and an odd p a r t  X k  , as follows 

U 

mhere.zt desc r ioes  
f i n e s  the  d i s t r i b u t i o n  of  t h i ckness  over  t he  :ving, whereas x* 
, ingle  ,of a t t a c k  and camber d i s t r i b u t i o n .  

Since t h e  condi t ibns (2,1,2) a r e  l i n e a r ,  ' t h e  ooundary value problems 
a s soc ia t ed  with Xt and xo. can be t r e a t e d  sepa ra t e ly .  ,The . a e r o f o i l  p rope r t i e s  
nay be regarded as t h e  supe rpos i t i on  of  those of a 'synimetrical  a e r o f o i l  a t  
zero incidence and a can,oered i n c l i n e d  mean plane of zero thickness .  

For t h e  symmetrical par . t  o f  the problem we must so lve 'Laplace ' s  
equat ion  sub jec t  t o  t h e  buunddry condi t ions  

a shape tha t  i s  symmetrical about t i i e x s  -plane and de- 
g ives  t h e  
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Because of the wing's symmetry, we expect a flow pattern, which is com- 
pletely symmetrical with respect to the xy-plane. Thus we can conclude 
that no pressure-jump exists over the wing surface. In general we can s a y  
that the thickness of the aerofoil contributes nothing to the lift, 
pitching moment and rolling moment experienced by the wing. 

x a  ' 
now be treated.extensive1y for the ciroular wing in this chapter. 

satisfies the following boundary conditions 

The anti-symmetrical part of the problem, associated with the function 
is of much more interest to the aerodynamicist. This problem will 

The problem is to find a solutione of Laplace's equation, which 

_-  
To supplement these conditions, it is worth-while to emphasize that 

no discontinuity of the pressure can exist across the ry -plane except 
over the wing surface. In order t o  express this condition in terms of the 
perturbation velocities we apply Bernoulli's equation. Its form may be 
simplified by observing that the uniform motion at great distance implies 

The consistent application of the small disturbance assumption calls for 
the substitution 

Q X =  ( U + U ) ~ + i f ~ t w ' ~  u p + 2 u u  . (2,197) 

With these insertions eq. (1,3,6) becomes in thecase of steady flow 

% - Q  u u =  - c 
As the pressure Q possesses no discontinuity across the xq -plane outside 
the wing planform, it can be concluded that the velocity componentu also 
has no discontinuity across this region. 

a continuous, even function of z . Recalling that integration reverses the 
evenness oroddness of a function, this means that the velocity potential Q 
and the velocity component 
Formulated mathematically this reads 

The conditions (2,l,5) express that the downwash distribution w is 

-+ are odd functions of the variable X 

- I f - 2  y u u  
From this relation we see at once that the velocity component U 
at points in theYy -plane outside the aerofoil. 

vanishes 
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Recapitulating, the boundary value problem can be formulated as 

It is required to find a solution of Laplace's equation 
follows: 

- .  
which satisfies the conditions 

3 )  g = o  for x .  o , x2+g2 > I 

- 2 Formal solution of the boundary value problem by means of 
Green's function. I 

Considering the:two sides of.the wing together as forming a.closed 
surface, the problem,is an;exterior Neumann problem for Laplace's equation. 
The starting point for the'treatment of such problems is a well-known 
theorem of Green (ref. a) ,  which reads as follows: 

If U and v are continuously differentiable functions in the closed 
'-regular region D and if their partial derivatives of,the second order are 
continuous in D , then the.following identity holds 

///(udv:'vAU)dT=/j' ( u  g;v$)db , . .  ' '  ' .(2,2,1) 
s 

. S represents ?he boundary of -the region D and,n the normal 'pointing out- 
ward f rom D . 

For the exterior problem we consider a region bounded-by a surface 5 
and a sphere C with radius R , enclosing completely .the boundary S.. F o r  
this regionD we can write 

The normaln is directed to the interior of the region enclosed by 5 . 
We shall now impose the additional conditions for infinit'e regions 

on'the functions U and v , that the absolute values of 
.' 

shall be bounded for all sufficiently large values o f R  , where R is the 
distance from any fixed point. Functions, satisfying these conditions, 
are called regular at infinity. 

Under these conditions it can easily be shown that 

so that eq. (2,2,2) transforms into 

whereD now represents the entire region outside the boundary S . 
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,z) be any point in D . We take v equal to i/r in the 
j, where r is the distance from P to a point Q . In the 

point P this function does not fulfil the conditions stated in Green's 
theorem. Therefore we surroundp with a small sphere with P as its center 
and? as its radius and remove from D the interior of this sphere. For the 
resulting region 9" , we have, since I/r is harmonic, 

the second integral on the right-htind-siie of eq.. (2,2,6)! tends to 
4XU(P)as the radius of'n tends to zero. 
Hence we can write . .  

. .  

. .  

(2,2;7) ' 
- fff foUd't.B.(U a 1  T:+ $)dr+ 4nU(P) 4 

5 .' . . ,  , 
:. 

D 
If u i s  harmonic in D , we'have - 

, .  

J 
If v is also a harmonic function i n D  we have moreover 

1. , .  
. . .  . .  

<. :I 1. - '  . 
Jointly these eqs. (2,2,8) and (2,2.,9) yield 

I 

- -  
I where the normal n is supposed to'point to the exterior region I> . 

In order that u(P) may be expressed only in terms of the. boundary 
values of its normal derivative on S ', we must eliminate the first term 
under. the integral s i g n  in, (2,2,10),. This .could be accomplished if we 
could fi.nd a functionv harmonic in D ", and having a normal. derivative 
which is the opposite of that of 5 . . .  

The function Ci(Q,P) which is defined by 

where v(Q,P) has the above stated properties, is known as Green's function 
of the second kind for the regionD and the pole P 
In term of Green's function we can write 

. 

5 
This formula gives U(P) in terms of its normal derivative for the exterior 
region b . 
Potential (p at the wing'surface is prescribed. The problem is thus to 
find the suitable Green's function. With the aid of Sommerfeld's theory 
Of "Riemann spaces" it is possible to determine a closed expression for 

In our boundary value problem the normal derivative of the velocity I 
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Green's function, but because of the limited usefulness of such analy- 
tical formula, we shall postpone the elabokation of this method to the 
appendix. In the next paragraph we shall derive an expression for Green's 
function in terms of an infinite series. 

2 The regular solution of the boundary value problem. 

In this paragraph we shall t r y  to find an infinite series represent- 
ation for Green's function. For this purpose we apply the method of sepa- 
ration of variables, which is often used in boundary value problems of 
this kind. We introduce the so-called oblate spheroidal coordinates. These 
coordinates are formed by rotating confocal elliptic coordinates in the 
xz -plane about the minor axis of the ellipses (i.e. the I -axis). The 
transformation formulae for these coordinates read 

X P  cos 4 
y =  s i n 3  

x =  PV 
where the range of variation of q is defined byOZlyar, that of,u by 
-lSpS+i and that of 3 by O S $ ~ m r r  . The surface q-0 is a disk of radius 
unity in the xy -plane, with centre at the.origin. The surfaceP=i is the 
positive axis of2 ; the surface,us-l 
surfacefir0 is the x 9  -plane, except for the region inside a circle of 
radius unity, centered at the origin (this region is just the surfaceq.0 ). 
The surfacesqs a positive constant are oblate spheroids with major axes 

given by %w 
constant are hyperboloids of one sheet which are confocal with the 
spheroids 
a plane passing through the axis of x at an angle 3 with the xy -plane. 

formulae for the partial derivatives 

is the negative axis of% , and the 

and with minor axes given by%q ; the surfaces ,us 

constant and orthogonal t o  them. The surface$= constant is 

This transformation to spheroidal coordinates implies transformation 

, viz.: 3 and - 3 5 
v=ij . 7% 
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is assumed to be a solution of equation ( 2 , 3 , 4 )  wherein F denotes a 
function of 
Solutions, w 1 ich can be written in the form (2,3,5) are called normal 
solutions. 
Substituting (2,3,5) into the equation ( 2 , j , 4 )  and dividing by FGH we 
obtain r 1 I I 1 

only, 4 a function of p only and H a function of 4 only. 

Since the third term on the left-hand side is the only one which involves 
J , it is impossible that the equation should be satisfied unless 

(2 ,397)  
- -  4 d'H 

dy where a is a constant. 
The equation 

1 

We see now that we must have 

- J  where f is again a constant. 

periodic function of 
solution provided the constant a assumes the value -mn 
positive integer or zerc. The.correa onding solutions are the functions 

The solution p(q,p,3') and, by consequence, also H(5) , must be a 
with period 2% . Equation ( 2 , 3 , 7 )  yields such a , where m is a 

cos mi? and sin m a  
In the equation ( 2 , 3 , 9 ) , +  varies from-I , which value it t a k e s  along 

the negative axis of % , to +1 , which it takes along the positive axis 
of x . In order that the function G ( l i )  be finite over the range ( - 1 , t I ) s  
the constant 6 must be equal to-n(ntr) , wheren is a positive integer 
(including zero) greater than, o r  equal to, m. The solution q&) is then 
proportional to the associated Legendrs function of the first kind, 

m 
viz. P,, (p) . 
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Replacing in the second equation ( 2 , 3 , 9 )  the independent variable 

possible solutions of (2,3,10) are P, (LQ) and Q, (Lq) , representing the 
associated Legendre functions of the first and second kind respectively. 

iq , the equation transforms into th," equationk(2,3,10). Bence t 

The boundary condition at infinity prescribes that the xotential 
at infinity. This condition implies that the function Q,, (LJ) 
chosen for the solution of our problem. 
Normal solutions of Laplace's equation showing the right behaviour at in- 
finity are thus 

The functions c ( p ) C o s  n13 and c@) 5Ln m$ , where n andm are 
positive integers, including zero, andms n , are called surface harmonics. 
It is well known that these surface harmonics form a complete ortho 
system of functions defined on the regionOs??<2'K ,-1$).l$+l (ref.1 

The ortogonality relations read 

0 i f  m#nf or npn' 

LX mti (n-m) E, if m=m' and n=d I 2 r  t1 

f 1 PZb) $@)cos mJ cos d8dp dS 
0 -1 

E, represents the Neumann factor, viz. &:l for m r 0 ,  E e = 2  . 
The followin important theorem concerning these surface harmonics 

will now be used 7 ref.1). 
If g.(,u,J) is a function of the independent variables+ andJ , 

defined on the region - l S $ 2 + l , O S 3 ~ 2 %  and if this function has continuous 
partial derivatives of the second order, then $&,a) can be expanded into 
a uniformly convergent series of surface harmonics. 

Thus we may write 
00 1 R m  00 n m m  

g w , S ) =  ;L A, P, $U)CCOS m 4 t  B,, %+)sin ma. 

In order to determine the coefficients I$, 

( 2 , 3 9 1 3 )  n=O m-0 nSi mal 

4 c 
m 

and 0: we multiply 
both sides of (2,3,13) with % &)COS Pg and 8 @)Sink? respectively 
and thereupon integrate over& from -1 to +1 and o v e r 3  from 0 to 171 . If 
the series on the right-hand aide of (2,3,13) ia assumed to be uniformly 
convergent, termswise integration is allowed. Performing this integration 
and applying the orthogonality relations (2,3,12), we find for the coef- 
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ficients 

and 

,293,141 
The condition of symmetry (2,1,9), expressing the odd character of the 

velocity potential with respect to the coordinate x o r p ,  ,restricts the 
values of the non-negative integers n and mto those values for which 
Tttmis an odd integer. 

problem can be written in the form 
Let us now assume that a suitable solution of our boundary value 

where the prime denotes that only those values ofm are to be taken for 
which n t m i s  an odd integer. 
In order to determine the coefficientad, an4 pz 
boundary condition of prescribed downwash distribution over the wing sur- 
face in the spheroidal coordinates at 'p-0 . 
This condition is expregsed,by means of the formula 

m 
I we write down the 

The assumption that the function d/u,4) is two times differentiable with 
continuous derivatives of the second order, implies that the function 
,UW@,s> can be expanded into a uniformly convergent series Of odd surface 
harmonica. 
Thus we can write 

a K  ti with 
on=--- m 1 ,tn+l (n-m)! /,uw(p, J) P;+) cos mY dp dY' & 2% o! 

0 -1 ( 2 , ? , 1 8 )  
.m t 1  

m (ncm)! 
0 -1 

Differentiating the formal series solution (2,3,15) with respect toy and 
thereupon putting q - 0 ,  we obtain 
, >  



1 ; where 

Equatin the corresponding coefficients in the expressions (2, J,17) and 
(2,3,19f, we find 

m B: 
(2 3 20) and Pn =T 9, (10) 9, (LO) 

m a: d. -- n - m' 

In the next paragraph it will be proved that the series occurring in 
the formula (2,3,21) are uniformly convergent for all admissible values of 
the variables p,,ul, y, y, and for q lying in the interval 1 2  q<w , where 
s is an arbitrary positive number. Under this condition of uniform con- 
vergence, it is allowable to interchange the order of summation and inte- 
gration in (2,3,21). This leads to the expression 

Putting 

we can write 
2lr t1 

or in Cartesian coordinates 

where S denotes the &face formed by the two sides of the wing. Apart from 
a factor this formula (2,3,25) agrees with the formula (2,2,12) which 
expresses the potential in terms of its normal derivative at the boundary 
with the aid of Green's function of the second kind. 
Because of the uniqueness of the solution we may conclude that the function 
G,(q,p,8;p1,~,) , defined by (2,3,23), represents a series expansion for 
Green's function of the second kind. 
This series 
potential @ , vanishes in the xy -plane outside the wing. 

expansion shows that Green's function and consequently the 
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4 The uniform converKence of the expansion of Green's function. 
It will first be shown that the series in question 

.I 

( 2-9 4 , 5 1 
Q: Cid I 
ifG 12 ntl 

is absolutely convergent- in the regionq>g ,: where 6 is an arbitrary 
positive number. m 

We observe that the,function Qnh) forz not being on the real axis 
between +1 and-." is.defined by 

Hence it is clear that 
m'. Lim d m mtl  

Q,(Lo)= ,,+ Q,C7I= Q, Cm) * (2,4,3) 

In order to give an estimation of the ratio Q3W we apply the 

following integral representation of the function Q"(Z] (ref .2) n 
cos6 mu m 

du (2,494) 
m i m n d  

Qn(x)z e . (n-m)t 
D 

wherein m6n , and x is not a between +1 and - w .  
We have 

cos# m u  du . : 
nt i 

d 

co 

m m 

I 
Qnfiv) Qn('q) I Cn-m-?)! cos4 u} 
r=- (n-m)! QnO QYb 

by their generating function, viz. 
02 

(1-2 e+,x jH= x r " t  (case) . (2,4,6) 
Tl-0 

Another expansion for the left-hand side of (Z,4,6) can be obtained by 
writing (q-2r cos~+r')-% as 

.. 
. .  
. .  
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which oan be expanded i n t o  t h e  product 

These two binomial expansions a r e  abso lu t e ly  convergent f o r  Ir I< 1 and thus 
t h e i r  Cauchy product converges t o  the  product of t h e i r  sums. 
Isol-at ing the  c o e f f i c i e n t  o f  r" we ob ta in  the  formula 

From t h i s  expresaion for t(cDs0) it  is e a s i l y  seen t h a t ,  when0 i s  r e a l ,  

t h e  maximum value of P, (COS e) occurs  f o r  = 0 , i n  which case Pn. i 3 thus  

P, (cos e) never exceeds +l. It is also c l e a r  t h a t  Pn(cos e) is  not  l e a s  than  

-li thus whenx is between -1 and +1, P?(X) always l i e s  between -1 and +l. 

The boundedness of P,,(x) w i l l  now be app l i ed  t o  t h e  i n t e g r a l  r e l a t i o n  

J c o s  myP,(cos8casd+su8 stnO'cos+f)dy= 
m 

which fol lows immediately from t h e  well-known a d d i t i o n  theorem f o r  the  
Legsndre polynomials ( r e f .  7 ) ,  v i a .  : 

P, (cos e LQS e' + sin e s tn  e' COS v) e P, (COS e)P, (COS e') + 

SO we g e t  the r e l a t i o n  

With regard  t o  t he  genera l  term of the  s e r i e s  (2,4,1) we o m  now 
conclude t h a t  for a l l  va lues  of t h e  non-negative i n t e g e r n  the  fo l lowing  
r e l a t i o n  holds;  
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where C is a fixed constant. 
Since eaoh term of the series (2,4,1) is numerically less, in absolute 

value, than a fixed multiple of (2n+l) (I+$) , it follows that the 
expansion of Green's .function' is absolutely convergent for 1,s , where 8 
is an arbitrary positive number. Application of Weierstrass' test for 
uniform convergence shows that the series-expansion for Green's function is 
uniformly convergent for all admissible values o f p  ,)A, , 8 and 9; and for 
all values of 9 lying in the range A<5qcu1, where 6 is an arbitrary posi- 

- n+i 
. . %  T 

tive number. 

5 

acceleration potential satisfies Laplace's equation. There are now two alter- 
natives for the determination of the acceleration potential. 

of the steady form of the relation (1,3,7), which expresses the connection 
between velocity pottntial and acceleration potential. Denoting this aoceler- 
ation potential b y y  , we get 

Comparison of two acceleration potentials. 
In chapter I it has been shown that in the linearized theory the 

At first we can derive a formula for the acceleration potential by aid 

5 
On the other hand an expression for the acceleration potential can be 

found i n  a quite similar way as has been applied f o r  the determination of 
the velocity potential 4 
acceleration a must now be prescribed at the wing surface. If the corresp- 
onding acceleration potential is designated b y v  , we have 

. Instead of the normal velocityw the normal 

v=Jy a@, ,#,) 4 b, g. x ; x, '9,) dx, dY, (2,592) 
5 

In order to compare both expressions for the acceleration potential, 
we evaluate the potential at points of the wing surface. Insertingqzointo 
the formulas (2,5,l) and (2,5,2) we get 

2 r  +l 

U'(O*p,$)= J 1 a ( r r , 4 , ) 4 ( 0 , / U , 4 ; ~ , , ~ ) ~ ,  d,u, ds, (2,593) 
0 -1 

As Green's function vanishes at the wing edge, i.e. for)A=q.O, it 
follows from equation (2,5,3) that the acceleration potentialtf also equals 
zero at the ed e of the wing. This conclusion may only be made when the 
function Q(JA,~? in (2,5,J) fulfils similar conditions as the normal velocity 
w , notably a(p.3) must be continuously differentiable up to the second 
order. However, the formula (2,5,4) shows that the acceleration potential W R  
becomes infinite as 1/& along the whole edge of the wing. 

can be explained in the following way, 
In physical terms the difference between the two potentialsy and vR 
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The velocity potential@ and consequently the acceleration potentialy" 
describes the flow over a circular wing without circulation, whereas the 
acceleration potentialy represents the potential of a flow with a shock- 
free entrance (no pressure singularity at the leading edge). The only 
possible reason for the difference between the .two potentialsv and w" must 
beascribed to the fact that the normal acceleration a indeed does not fulfil 
the condition of continuous differentiability up to the second order. This 
aspect will be further elaborated in the next paragraph, in which an exact 
formula for the normal acceleration will be derived. 

- 6 Complete exoression for the normal acceleration at the 
winn surface. . .  
In this paragraph a more detailed analysis for the evaluation of the 

normal acceleration at the wing surface will be given. Because of the ' 
three-dimensional characteristics of our problem it offers some advantages 
with respect to the surveyability to apply the technique of the tensor 
calculus. Moreover it will be supposed that some formulas that often occur 
in the tensor calculus are well known to the reader. For the derivation of 
those reference is made to text-books in common use (e.g. ref.20). 

x'(1=1,2,3) being the Cartesian space coordinates. The surface S of the 
body be given in parametric form, viz.: 

Let us consider a body that is placed in a homogeneous flow, 

where p* represent Gaussian surface coordinates. 
The line-element on the surface can be expressed by 

The system of numbers a represents the so-called first fundamental 

If denotes the velocity vector of the flow, one has 
tensor. dP 

where 

i dx' OX' d ~ *  i ,,s 
dt vu" dt a% 

=-- 
I '  2r = -  

The acceleration vector a' 
vector, hence, 

is found by differentiation of the velocity 

or 

In this expression the quantity xi denotes : 
% P 
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where r 
associated with the coordinates X' and ti is the Christoffel symbol Bit 

formed from the coefficients a 
coordinates kE . The uantities vanish because x are Cartesian coor- 
,dinates. The tensor Y the tensor derivative of x i  with '!, ; .  
r.espect to is a space vec$or normal to the 
surface, hence it is dire'cted a long  the unit norma ln '  . Consequently, there 
exists a set of numbers 8+ such that 

is the Christoffel symbol formed from the metric coefficients e )r 

associated with the Gaussian surface 
i d P  L 

9 .  IS called 
% P . It is well known that x L  

d* P 

Equations ( 2 , 6 , b )  are known as the formulas of Gauss. 
The quantities dP are the components of a symmetric surface tensor. 
In the tensor calculus the quadratic form 

I 

I 
I 

is called the second fundamental form. l 

ldp dua due 

Inserting the relation (2,6,6) into the expression ( 2 , 6 , 4 )  for the I 

acceleration vector, we obtain 
a L = 8 u"LvBd+x, . i dvd 

"P ( 2 , 6 , 7 )  

in the direction of the unit normaln to the surface 5 The component of .a' 
thus becomes 

i dvd . .  
L OL ana a ni = 8 w vPt xa - ni 

( 2 , 6 3 8 )  
&P dC 

f 
Assuming that the .velocity vector vL 
flow at the body surface we have 

satisfies the condition of tangential 

( 2 9 6 ~ 9 )  
I i 
I x, n , = o  
, 

Accordingly equation (2,6,8) reduces to 

IfS, and 5, are the principal directions on the surface 5 , h, 
and kz the unit vectors in the directions 5 ,  and Ss respectively and 

and the principal curvatures corresponding to the  principal direct- 
Kl 
ions, the following relations, which determine the principal directions, 
hold 

From these equations (2,6,11) so e other relations can be de ived. Multi- 
plying the first equation with and the second one with kt and subtract- 
ing thereupon, we obtain I adp A: A: S O  
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on the assumption that the principal curvatures.are unequal. I /  

a This relation (2,6,12) expresses the fact that the unit vectors A 
are perpendtcular. 
Furthermore we see that 

and A 1 

Multiplying 
A i  , addition of the results gives 

the first equation (2,6,11) by Ap 1 and the second one by 

The quantity w" can now be transformed as given by 

Substitution of this result into the formula (2,6,10) yields: 
d5 L d s n  ds, dsz 

an-dp 8 { hLhe(L)+fk' (  1 i dt a a X  ' ) + k e A ' - - + A n A  r a d  
P I &  d~ 

L 
Using the relations (2,6,13) and (2,6,14) we find: 

(2,6,16 

In physical language the formula (2,6,16) expresses that the normal 
acceleration an at the surface 5 of the body is composed of the two centri- 
petal accelerations of the fluid, each of them,corresponding with a prin- 
cipal direction on the surface. 

This general formula (2,6,16) will now be applied to the problem of 
the flow.around an oblateqheroid. Such an oblate spheroid can be represent- 
ea by the parametric equations 

X'-X." cos$ 

2 s  X r  pq0 
xgs g s v g v T f  srnJ (2,6,17) 

where the quantity To is a fixed positive number. 
If 
the XI& -plane: x + $ S ~ , X ~ O  . In other words, the oblate spheroid degenerat- 
es to our circular wing, if qo tends to zero. In fact% gives a measure 
for the thickness of the.wing. Until further notice we shall assume that 

surface coordinates by 

tends t o  zero, the spheroid flattens down to the circular region in 
x 

is different from zero. In that case we can designate the Gaussian 
T O  

Elementary calculations yield the following expressions for the com- 
ponents of the first and second fundamental tensors 



The principal curvatures X,(n=l,4) are determined from the determinantal 
equation 

de\. (ege - LCa "I, ) = 0 (2,6 919) 

In our case equation (2,6,19) can be written in the'form 

(%,- -,J (h- -2z) = 0 

The relations (2,6,11) thus give 

or in other words: the coordinate net@,J)' coincides with the net of the 
principal directions (Sl, 93. 
The exact relations .betweenp and S1 ,' and 3 .and:.Sa are found by aid of the 
formulas (2,6,14), viz. 

1 SY 1 

I 

(2 96 9 21.) 
If X denotes the velocity potential of the field of flow around the 

spheroid, the normal acceleration a,, at the. surface of the spheroid can 
be written, according to' (2,6,16), in the form: 

(2,6.22) 

Substitution of the relations (2,6,21) into (2,6,22) yields 

% 

(2,6925) 

on= - 

We did assume that the spheroid is placed in a homogeneous flow with a 
velocity vector u directed a l o n g  the positive axis of 3: 
potential X can be split in two parts, viz. the potential UX corresponding 

. The velocity 
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4. , '  
to the oncoming flow and a perturbation potential+ . 
Thua 

Application of the formula (2,6,23) to (2,6,24 
acceleration a,, on the surface l a ? ,  

yields f o r  the normal 

Starting from this formula (2,6,25) we shall now investigate to what 
form the normal acceleration a,, degenerates when the spheroid flattens 
down to the circular wing. 
Putting q o , O  in the expression (2,6,25) we see that a,, becomes zero, pro- 
vided> unequals zero. This means that the normal acceleration vanishes at 
the surface of the circular planform, except in the points of the edge of 
the wing. 
In order to obtain an exact formula for the normal acceleration at the wing 
surface, including the points on the edge, we shall assume for a moment that 

Moreover it can be stated that, within the scoqe of the linearized theory, 
terms which contain second powers of the derivatives of the velocity poten- 
tial4 , may be neglected in the expression (2,6,25). 
The normal acceleration can thus be approximated by 

s a smallcpositive number. 
'10 

Before reducing further the formula (2,6,26), we consider the function 

We note that this function A(p,qo) satisfies the relation 
+oo 

1 A (/U#ll,) d P = l  (2,6, 28) 
-eo 

In order to investigate the properties of A (,u,qo) in case 
to zero we rewrite the function in the form 

and,U tend 
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This formula ( 2 , 6 , 2 0 )  shows, that if we pUt,u equal to zero, the function 
~(p,l-Q increases strongly if r\, tends to zero. On the other hand, if 

tends to zero, f i ( ) . A , T l o )  converges t o  zero. 
We thus see that Lim A[p,qe) is a “function” whose integral always equals 
unity, whose value atfi-0 increases torard infinity and whose value for 
,+ 0 converges to zero. 
-Therefore we may conclude that 

/u differs from zero, and qo 

T0-0 

&(&)represents the deltafunction of Dirac. 
Furthermore we calculate now the derivative of the function A ( p , q )  

0 

If the function f (p) is an arbitrary, differentiable function of the 
variablep , we can write down the relation 

t o  t- a 1 A()L*%) ~(u)d~’’JA(~irZ,)~‘(/*)d/ll ( 2 , 6 9 3 2 )  
-4 -4 

tends to zero the right hand side of ( 2 , b , j 2 )  tends to the value If ‘1, -4‘ (0) . This fact expresses that the “function” 
can be identified with the first derivative of the delta Llm D 

function. 
Thus we have 

r l d 0  - w “p 11.1 

Taking now the limit ql,--cO in the formula ( 2 , 6 , 2 6 ) ’  and applying the 
relation ( 2 , 6 , 3 3 ) ,  we obtain the following expression for the normal acce- 
leration at the circular wing surface 

This expression for the normal acceleration corresponds to the complete field 
of flow around the circular aerofoil. In fact we are interested in the normal 
acceleration, which corresponds to the disturbance part of the field Of 
flow. This quantity can be found in the following way. 
The acceleration vector corresponding with the complete field of flow can 
be resolved into two vectors, viz. the acceleStion vector of the undisturb- 
ed flow and the acceleration vector which corresponds t o  the disturbance 
part of the flow. If v, denotes the normal velocity at the wing Surface I 
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of the undisturbed flow, then the corresponding normal acceleration is 
given by dv, 3% - . Thus the normal acceleration at the wing surface 

dt 3% 
of the disturbance part of the field of flow becomes 

or in terms of the perturbation normal velocity* 

Equation \2,6,36) gives an exact formula for the normal disturbance 
acceleration at the wing surface in the linearized theory. 
In the next section this expression ( 2 , 6 , 3 6 )  will be used to find the 
connection between the two acceleration potentials y and yx . 
1 The identity of the two acceleration potentialsv andV . 
for the normal acceleration a, at the wing surface. We remark that the 
expression for the normal acceleration does not fulfil the condition that 
the second derivatives be continous, whicn is required for the application 
of the formula (2,3,25) to evaluate the corresponding acceleration potential. 
However, it is perhaps possible that the conditions mentioned may be weaken- 
ed without affecting the ultimate expression for the potential in terms of 
its normal derivative at the boundary. In fact Laurent Schwarz‘s distrib- 
ution theory has given the possibility to formulate several classical 
theorems of the potential theory under less stringent conditions. Halperin 

’ remarks in his abstract of the distribution theory (ref.6) that Green’s 
theorems retain their validity by replacing the functions witkj the usual 
conditions of continuity and differentiability by the so-called distri- 
butions, e.g. the delta function and its derivatives. 
Therefore it seems admissible to insert the expression (2,6,j5) for the 
normal acceleration at the wing surface into the formula (2,j,24). 
We then find 

x 

The starting point of our considerations is the expression (2,6,35) 

0 -1 1 
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The functionv represents the regular acceleration potential which,'?, 
3V corresponds to the normal acceleration a , , . U x  i 

We shall now prove that the function )L i s  equal to the acceleration 
potential y" U a@ . 
For  that purpose we consider the difference of the potentials yJ'andX : 

.le 
y' -xs y"-v-nu c o s 4  $, (0,0,s,)~~,(rl,~,J;0,9;)d~l . 

0 (2,732) 
In order to calculate the integral in the right-hand side of (2,7,2) use 
must be made of sone formulas which will be derived in the next paragraph. 
These formulas read as follows 

I :2,7,3) 
2% 

I J sin mq ~ j ,  (q.p.J; 
0 

Now let us assume that the expression COS 4, $, (o,o,sl) 
in the form of a Fourier series 

can be written 

1 0 9  00 

dn cos nJl t E p,stn nYl . (2,7,4) 
n= 0 n= 1 

Thenthe integral in the right-hand'side of (2,7,2) becomes 
X l t  

, It will be immediately clear that the difference potentialvtx vanishes 
for+O andqfO. 
In the points of the edge of the wing, i.e. for,U=q.O , we have 
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The r e l a t i o n  ( 2 , 7 , 6 )  expresses  the  f a c t  t h a t  the d i f f e rence  p o t e n t i a l  ! 

1 
$'-x a l so  vanishes a t  the edge of the  wing. Thus the  poten t ia ly ' -Xvanishes  
f o r , u r O  . Furthermore i t  may now be concluded t h a t  the  poten t ia1V"-X 
i s  a r egu la r  s o l u t i o n  of Laplace 's  equa t ion  i n  the  whole space inoluding 
the  edge o f  the wing. 
Because o f  t h e  uniqueness of t h a  r e g u l a r  s o l u t i o n  o f  t h e  Di r i ch le t  problem 
we thus  may iden t i fy  the  harmonic f u n c t i o n y z x  w i t h  t h e  zero s o l u t i o n  i n  
the  e n t i r e  space. 
I n  t h i s  way we have proved t h e  important i d e n t i t y  

*It 

or 

" 
P a r t i a l  i n t eg ra t ion  of the second i n t e g r a l  i n  (2,7,8) t r ans fo rms  t h i s  
i d e n t i t y  i n t o  

5 5 

This r e l a t i o n  ( 2 ' 7 ' 9 )  can be r e w r i t t e n  as 

The last r e l a t i o n  holds  f o r  every downwash d i s t r i b u t i o n  W (X,L)) 
we may conclude t h a t  the i d e n t i t y  (2,7,10) remains v a l i d  by omission o f  t h e  
i n t e g r a t i o n  over the  wing su r face .  
Thus 

. Hence 

- 8 Determination o f  t h e  Four ie r  c o e f f i c i e n t s  of  the  func t ion  5% QV, i o,s,, . 
I n  order  t o  be a b l e  t o  eva lua te  the  F o u r i e r  c o e f f i c i e n t s  o f  the 

we start w i t h  t h e  d e r i v a t i o n  of t h e  fol lowing theorem: func t ion  BIW 
If U a n d %  a r e  a r b i t r a r y  r e a l  o r  complex numbers n o t  s i t u a t e d  on t h e  

r e a l  a x i s  between -00 and +1 and i f  the  i n e q u a l i t y  
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. . .  
, ' I~. ,UC(U~-,)~I  < I x t  (Z'-l)yp 1. holds, then the expansion 

..; 

is valid. 

formula of Heine, viz. 
In the case VI-0 , the expression (2,8,l)&g,~parates to the well-known 

m 
for 

m 
It is known that the associated Legendre functions p,, (%) and 

Q,(x) are single valued and regular in the x -plane, on the condition 
that the x -plane is cut along the real axis from t1 to-m - 
We assume that the following relations hold 

and 

For the proof of the lemma we start from the known recurrence 
relations for Legendre's associated functions, via. 

(r-m)! m 
(r+m) 

Multiplying the first relation with -TQ,,(X) and the second one with 

(rtm c(U) and subtracting thereupon the two 'relations, we find 
r-m m (r-mi)! m 

W+9 fi.r;s: (x- LI) $ (4 Q, (I) 5. (r+m)r [ Q:t, ct) P, (u) -P,;, (u) Q: ( x )  

E ( ~ + 4  4; (1-4 Pr (u)Qp ( 4 9  Z I  

m n 
(2) P, (U)-P,.-~ (4 

Hence, by giving p the values n ,n-1 ,n-z , ....., m l ,  m and summing we 
obtain the expression 

m m  7 l  ( r -m.  
r. m r.m 
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From the definition of the Legendre function of the first kind, viz.: 

it follows 

With Rodrigues' formula for the Legendre polynomials 

(2,8,8) P,(U] I - 1 - d" (Ug-,)m 

? m b)r (Im)! (u'-ljn/2 

2"! dum 
we find easily 

r21899) .zmm! m 
m 

In order to determine an analytical expression for the function Qm-,(x) 
we use the following representation in terms of hypergeometric functions 
(ref .2)  

a - r/r - v2 4 I 
e -*%Q~,W= i1-2wr ( m F ) ( X * - I )  r (qt%) 

1 

< - X  ( 2  98,101 
F (1/2+ 112 4 -  ~ Z J A ,  $+ 1/29 + y$$ ; 3 t 3/2 ; 7) 

In this formula it is assumed that 

(If9 1 <Tc t Jarg x (  ~ c n  , 

(2- l)"-@-l)" ( x t 1 ) d  and l f - x x l  7 1  

Putting 3,m-1 and&-m, we get 

OY 

\ - ,  e , 
As the left-hand side of (2,8,11) is an analytical function of 1: throukhout 
the complex plane with cross-cut ( - - , I )  
known theorem on analytical continuation that this relation holds without 
the restriction 

, we may conclude from a well- 

11-z' 1 > 1 . 
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Inse r t ing<$ the  r e l a t i o n s  (2,8,7), (2,8,9) and (2,8,11) i n t o  (2,8,5) we get 

We thus have found t h e  r e l a t i o n  

We s h a l l  show now t h a t  the  f i r s t ' t e r m  on the  r ight-hand side of 
tends t o  zero whenn becomes i n f i n i t e .  I n  order  t o  f i n d  an es t imat ion  of the 
above-mentioned term o f  (2,8,13) f o r  l a r g e  vklues o f n  , use can be made of  
Laplace 's  d e f i n i t e  i n t e g r a l  expression f o r  P, lu) 

2,8,13) 

, notably 

I 

I fn  a n d m  a r e  p o s i t i v e  i n t e g e r s ,  t h i s  i n t e g r a l  r e p r e s e n t a t i o n  i s  c e r t a i n l y  
v a l i d  for a l l  va lues  of u ou t s ide  the  cu t -m<US+l  . 
It can e a s i l y  be seen t h a t  the maximum of  the express ion  

IU+(d-l)% cos t I i s  I ut(&'-?) 'In I throughout the  i n t e r v a l 0 b t S  Q . R i t h  t h e  
a i d  of t h i s  es t imat ion  i t  may be concluded t h a t  

A similar formula can be found f o r  the  Legendre f u n c t i o n  O f  the  second 

kind q,(%) . To f i n d  such i n e q u a l i t y  we s t a r t  from the . r ep reeen ta t ion  
( r e f . 2 )  

m 

w h e r e 9  denotes z + ( ~ ~ - i ) ' / ~ .  
T h i s  expression holds  good throughout the  plane o f %  
of  the  i n t e r v a l  on the  r e a l  a x i s  of x j o in ing  t h e  po in t s - - ,+ l ,  

, with t h e  except ion  
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- +  . . . . . .  
(2,8117) 

+ (mt H) (m+%)(mtn+~)(mtn+~) I 

I. 2 (nt%)(n+%) 1 4 4  

o r  

provided thatlpl >I 
segment joining the points t 1  and -1 on the real axis of x . 
From these two estimates for t (u )  and Qxk) 

, which is the case for a l l  points % outside the 

m m 
we conclude 

( 2 9 8 ,  19 I 
Using the well-known Stirling formula for the asymptotic behaviour of 
the gamma function it can be easily seen from this inequality (2,8,19), that 

converges to zero whenn becomes infinite, if 

Similarly it can be proved that 

converges to zero when n tends to infinity, subject to the same condition. 
The conclusion can now be. made that the right-hand side of (2,8,13) tends 

, whenn tends to infinity, provided that c-ri” (d- 1 p  

x-‘ ( & , ) V 2  
to - 
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Iu+(u-1) II Ya I <  . I x * ( x ~ - , ) ~ ( .  
I 

I 

So we obtain' the formula 

which had to be proved. 

series of Green's functionG is uniformly convergent for all admissible 
values of ,utpur ,J, 3, and for q situated in the intervalS$qs R , wherek 
is an arbitrary small positive number andR is an arbitrary large positive 
number. The equations q-h and q=R represent two confocal oblate spheroids. 
Thus it follows that the series expansion of the functionq is uniformly 
convergent in the closed region which is bounded by the two spheroids 
mentioned. Now uee will be made of a theorem of Harnack (ref.8), which 
reads as follows. 

Let H be any closed region of space, and let u, , & I  u, , . . , . be an in- 
finite sequence of harmonic functions in . If the sequence converges 
uniformly on the boundary 5 of H , it converges uniformly throughoutH and 
it7 limit u is a harmonic function in H . Furthermore, in any closed region 

In section 4 of this chapter it has been shown that the expansion in 

H entirely interior to H , the sequence of derivatives 

LaxL ny' 3z' '- 1 
i , i and 4 being fixed, converges uniformly to the corresponding derivative 
o f U .  

With respect to the function4 
m 

In the closed region H bounded by the spheroids qm A 
functions 
Moreover, tht sequence u, , u2 , u, , ... converges uniformly to the 
function4 throughout the entire region H . On ground of Harnack's theorem, 
we can nbw decide that the sequence 

and q:R , the 
, being finite sums of harmonic functions, are harmonic. 

convLrges uniformly to the function for all allowable values 

of'p, , 5 , 3, and for 'I O * c h ) < o . J .  
Therefore we have proved the formula 



In order to simplify the right-hand side of (2,8,,22) we consider the 

ratio + 
Using the relations (2'4'3) and (2'4'4) the expression 
written in the form 

. .  . .  
Pm;O) 
Qn (LO) m' 

Q,(iO) can be 

m! m t i  rm-nti 2 n!, 7. asR(mt1) U du,, 

(%-TO! ,)n+i . ,  
Q,W= Q,, U G  . .  (-1) 

(2,8923 
Putting eU.x , the integral in the right-hand side of (2,8,23) can be re- 
Dlaced by . ,  , 

The substitution e-upx yields 

The integral in the right-hand side of \2,8,24) can be expressed in terms 
of the beta function by aid of t\e transformation 

This tranformation yields after some elementary calculations 

x 
9=?Tl* 

Using the definition of the beta fuqction, via. 
B ( p , q ) * J  x~- ' ( l -x )~ - idx  

0 
the expression'(2,8,29) can be rewritten in the form 

03 

(2 98~26) 1 rosA(m+r)u due 
0 (cosAu)nt' 

Inserting this result into the relation (2,8,23), we get the formula 

On applying the well-known relation between the beta function and the gamma 
function, via. 
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the erpress,ion ( 2  A.27) finally can be transformed into 

( 2  , 8 , 2 9 )  
m' 2m- n+1 rp+r IT) 

r (n- m) Q,(io)= (-1) 7 2-l 

I n  order to obtain a similar expression for the quantity p"(o), n 
we consider the definition of the function Pm(z) , where 1 is a point 

not lying on the real axis between -em and +l . This definition is ex- 
pressed by the formula 

n 

m '% dmP,(x) . p,o - (%%I ( 2  ,8930)  &" m 
Ifx is a point on the interval 1x1 c 3 , the function t ( x )  is defined by 

Differentiation of this formula (2,8,32) leads to 

m+ i 
+ (-l)m(l-x 21% a@) 

dxm 
Putting xr 0 , the formula 

( 2  ~ 8 , 3 4 1  m' mti Pn (01 = - P, (01 
is obtained, 
With the aid of Rodrigues' formula (2,8,8) for the Legendre polynomials we 
easily derive 

m+1 
Ifn+mti is an odd integer, it is directly clear that P' (0) equals zero. 
We are, however, more interested in the case thatn+mtiis an eeen integer. 



For this case ho1,ds 

By elementary calculati'ons it can now be deriv 

if ntm is an odd integer. 
Insertion of this result into the formula (2,8,'22) gives 

We have already proved that the series in (2,8,38) is uniformly con- 
vergent f o r  all values of /ul , s , s, and for? in the interval O < s 6 ~ c = .  
Hence the following termsaise integration is allowed: 

I nn+i ,%mci (n-m)! m 

n=m 

t U  

/cos m J b ] p . o  d& Z C  1F 
0 (2,8,39) 

The prime again denotes thatn+m must be an odd integer. The evaluation of 
the series in ( 2 , 8 , 3 9 )  can be performed by application of the theorem, 
mentioned in the beginning of this section. The formula (2,8,20) gives 

and similarly 

Thus according to the relation (2,8,31) we get 



Replacing in (2,8,40) the variable& by -r~.c , one obtains the formula 

Subtraction of the relations (2,8,40) and (2,8,41) yields 

Hence the formula (2,8,j9) can be written in the form 

In a quite, similar way it can be proved 

From these two relations (2,8,43) and (2,8,44) it may easily be deduced 

that the function can be represented by the Fourier series Bpzo 
(I$$% 

COS m4 cos mS, + 1 A -L-- - 00 

2 1  m=O E,,,%' pi + '7 (,++)% 

This formula can now be simplified as follow8 
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The last series, occurring in (2,8,46), can be considered as the sum of two 

In these cases the final result appears to be 
. .  convergent geometric series, whenq o r p  differs from zero. 

, ,  ,. ' I t ,  
. -  .. 

I . _  4 kL0 = -- x d  (l-/+X vq M(.l-q)+(ltg:) 
(2 9 8,471 

In the Appendix this- formula (2,8,47) will be derived from the closed 
expression for Green's function. 

. ,  . 

2 Determination of the final acceleration potential. 
In section 5 of .this chapter we %ave shown that the velocity'potential 

I . '  4 , .which fulfils the condition of a prescribed normal velocityw'at the 
surface of the wing; yields a pressure distribution over.the wing surface 
that is infinite along the whole edge of the wing. Furthermore it appeared 
that the acceleration potentialv , the existence of which presuppo6ed.a. 
normal acceleration U z . a t  the wing surface, gives a pressure distribution 
over the wing surface,. which vanishes along the whole edge. Nevertheless 
none of these two pressure distributions agrees with the actual pressure 
distribution. In linearized aerofoil theory it is always required that the 
flow over the wing satisfies the Kutta condition, which implies that no 
velocity discontinuity occurs at the trailing edge of the wing. In terms of 
the pressure distribution the Kutta condition requires that the pressure 
difference between 'the upper and lower side of the.wing vanishes at the 
trailing edge. 

-.The ultimate physical problem thus can be formulated. as follows: It is re- 
quired to find a solution of Laplace's equation, which satisfies the con- 
dition of a given normal velocity at the wing surface, which furthermore 
yields a pressure distribution over'the wing surface that vanishes at the 
trailing edge and,which finally possesses a singularity at the leading edge. 
In order to obtain a solution of this physical problem we can add to the 
acceleration potentialy a solution of Laplace's equation, which does not 
contribute to the normal acceleration at the wing surface with the exclusion 
of the points of the edge and which vanishes at the trailing edge of the, 
wing, but which possesses a singularity at the leading edge. 
Such solutions are given by the integrals 

.. 

UT 
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Replacing in (2,8,40) the variable,+ by -p, , one obtains the formula 

Subtraction of the relations (2,8,4O) and (2,8,41) yields 

Hence the formula (2,8,39) can be written'in the form 

In a quite similar way it can be proved 

From these two relations (2,8,43) and (2,8,44) it may easily be deduced 

that the function can be represented by the Fourier series , 

1 00 

This formula can now be simplified as follows 



The last series, occurring in (2,8,46), can be considered as the sum of two 
convergent geometric series, whenq or ,u differs from zero. 
In these cases the final result appears to be 

(2,8947) 
. .  

In the Appendix this formula (2,8,47) will be derived from the closed 
expression for Green's function. . .  

2 Determination of the final acceleration potential. 
In section 5 of this chapter we save shown that the- velocity potential 

" 
* ' $ ,  'which fulfils the condition of a prescribed normal velocity d a t  the 
surface of the wingi'yields a pressure distribution over the wing surface 
that is infinite along the whole edge of the wing. Furthermore it appeared 
that the acceleration potentialyl , the existence of which presupposed a 
normal acceleration U--.at the wing surface, gives a pre,ssure distribution 
over. the wing surface, .which vanishes along the whole edge., Nevertheless 
none 'of these two pressure distributions agrees with the actual pressure 
distribution. In linearized aerofoil theory it is always required that the 
flowfoyer the ,wing satisfies the Kutta condition, which implies that no 
velocity diicontinuity' occurs at the trailing edge of the wing. In terms of 
the pressure d,istribution the Kutta condition requires that the pressure 
difference between'the.upper and lower side of'theiwing vanishes at the 
trailing edge. 
The ultimate physical problem thus can be formulated as follows: It is re- 
quired to find.a.solution o f  Laplace's equation, whioh satisfies the con- 
dition of a given normal velocity at the wing surface, which furthermore 
yields a pressure distribution over the wing surface that vanishes at the 
'trailing edge and which finally possesses a singularity at the leading edge. 
In order to obtain a solution of this physical problem we can add to the 

.:'acceleration potentialy a solution of Laplace's equation, which does not 
contribute to the normal acceleration at the wing surface with the exclusion 
of the points of the edge and which vanishes at the,trailing edge Of the 
wing, but which possesses a singularity a t  the leading edge. 
Such' solutions are given by the integrals 

.' 

3 W  

QP 
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As the function of Green itself has a vanishing normal derivative at the 
wing surface, it is clear that expressions of the type (2,9,1) have a zero 
normal derivative at the wing surface. 
Furthermore it follows from the analytical expression (2.8.47) for 

that the function is only singular for r.0 ,pSo 
. Due to the fact that the integration in the expressions (2,9,l) 

extends only along the leading edge of' the wing, the singular points of the 
expression (2,9,1) can only lie on the leading edge of the wing. 
The integral relations (2,8,43) and (2,8,44) show that the singularity of 
the integrals (2,9,1) is of the typel. This singularity agrees completely P 
with the square-root singularity, which occurs in the two-dimensional thin 
aerofoil theory. 
At the trailing edge the integrals (2,9,1) vanish because the function 4 
is equal to zero f o r p o  andJ#q . 
We have thus shown that the expressions (2,9,l) indeed fulfil the required 
conditions. 

The complete acceleration potential can now be represented by the 
expression 

This expression (2,9,2) satisfies all conditions stated in the above 
mentioned formulation of the boundary value problem, with the exception of 
the requirement of the prescribed normal velocity at the wing surface. 
However, this condition of the prescribed normal velocity enables us now 
to determine the unknown function 4(,?) . 
Application of the identity (2,7,7) between the two potentials y and vK 
yields for the complete acceleration potential the expression 

The first term in this formula denotes the acceleration potential, which 
corresponds with the regular velocity potential 4 , Consequently the 
normal velocity at the wing surface, which belongs to this acceleration 
potential exactly equals the prescribed normal velocityw(x,Y) . Hence the 
following conclusion can be made: 

ration potential 
The normal velocity at the wing surface corresponding to the accele- 
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( 2 , 9 9 4 )  

and t h e  
must be equal  t o  zero.  

cor respcnding-ve loc i ty  p o t e n t i a l l p  are r e l a t e d  by t h e  formula 
I n  chap te r  I we have proved t h a t  a n  a c c e l e r a t i o n  p o t e n t i a l v  

I n  s t eady  f low t h i s  formula degenerates  t o  
L 

If t h e  normal v e l o c i t y  a t  the  wing su r face  which corresponds t o  the  
c i t y  p o t e n t i a l  (p i s  denoted by w @,I&) ,, we have 

It i s  c l e a r  that  the equat ion for t h e  unknown weight func t ion  %is) 
t h e  form 

X 

velo- 

2 , 9 , 7 )  

t akes  

aw o r  e x p l i c i t l y  

, .? <: .? 

: *ti 

( 2 , 9 9 9 )  where g(J)= R COS 3% (0,O.J) 
If t h i s  equat ion  (2,y,a) or ( 2 , 9 , 9 )  f o r  t he  func t ion  a($) has been solved,  
i t  w i l l  be p o s s i b l e  t o  eva lua te  t h e  a c t u a l  a c c e l e r a t i o n  p o t e n t i a l  with t h e .  
a i d  o f  the formula ( Z , 9 , Z ) .  

0 - w  . 
. 1 . ,. .. 

- 10 Transformation of t he  equat ion  ( 2 , 9 , 9 )  i n t o  an i n f i n i t e  system 
of  l i n e a r  equat ions .  ,' 

, L  - . .. ')'. - . I I 

I n  t h i s  s e c t i o n  i t  i s  our  main o b j e c t i v e  t o , t r a n s f o r m ' t h e  equatiqn,.  
( 2 , 9 , 9 )  f o r  t h e  unknown weight f u n c t i o n  ~ L ( J )  
equat ions  with an i n f i n i t e  number of unknowns by means of Four ie r  s e r i e s  
expansion. 

The a c c e l e r a t i o n  p o t e n t i a l  n (q,p,$) , which has been .def ined by the  
formula ( 2 , 9 , 4 ) ,  w i l l  be w r i t t e n  h e r e  i n  t h e  form 

i n t o  a system of l i n e a r  

. .  
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wherein 
9" (0) = R % (O,O,J) and I (3) = 4" (3) ws 4 I. 

which are anti-symmetric with respect to the axis of y. . T 'R e property of 

(2,10921 
For shortening the mathematical expressions, we distinguish between 

problems, which are symmetric with respect to the axis of and problems, 

symmetry designates that the given downwash distribution over the wing 
surface is represented by an even function of the variable i+. , whereas 
anti-symmetry assumes that the downwash distribuFion is expressed by an odd 
function of(). . Deduced quantities such as velocity potential, acceleration 
potential or pressure distribution retain this property of symmetry or 
anti-symmetry, according as the corresponding downwash at the wing surface 
is symmetric or anti-syyetric with respect toy . Our problem is now to 
calculate the function & (3) in the range $63 9 . 

It is well known that the functions 

1, sin j ,  cos 25 ,  sLn 34, co9 r y ,  sin 5 3 ,  cos 65, . . . . . . . 

form a complete orthogonal set of functions in the r a g e 3 6 5 6  

Bence we assume that the function 4 (s) 
2 

X 
can be represented by the Fourier 

series 

for symmetric problems, and by the series 

for anti-symmetric problem8. 

$(a) then can be written into the form 
First of all we treat the symmetric case. The g-ren weight-function 

Inserting the series (2,10,4) and (2,10,6) into the formula (2,10,1), we 
obtain 

P 
On the assumption that the series for $(s) and .R"($) are unfformly con- 
vergent it is legitimate to invert the order of summation and integration 
in the expression (2,lOJ). In most practical cases the Fourier series for 
the function $@) breaks off. 
The potentialn can so be written in the form 



t o  find a similar expansion'for t h e  product 
For.we have 

. . _ I  
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Introducing the expressions 

it is evi'dent that the formula (2,10,9) can be rewritten into $he form 

Furthermore it can easily be shoin that the series on the right-hand side 
.of the last formula are uniformly convergent f o r  all admissible values of 
the variables J, J, ,p and? , except f o r p q = O .  
Inserting this series (2,10,11) into the relation (2,10,8) and reversing 
the order of summation and integration, we obtain 

or 
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In the formula (2,10,12) the functions $ do not enter. This fact agrees 
completely with the symmetry property of the problems considered. The equa- 
tion for the coefficients a, is found by requiring that the acceleration 
potentialR has a vanishing normal velocity at the wing surface. 
If the normal velocity at the wing surface that corresponds with the 
acceleration potential y, is denoted by Wn , the equation for the coef- 
ficients an takes the form 

m 

6 S 

s The evaluation of the normal velocity W,, will be performed in the 
3 next paragraph. We know that the acceleration potentialvn has a zero 

normal acceleration at the surface of the wing. This implies that the 
normal velocity wn is a function of the variable I+ only because of the 
connection between normal acceleration a n d  normal velocity. The equation 
(2,10,14) must be interpreted as an identity in the variable 
It is obvious to transform the identity (2,10,14) into an infinite system 
of linear equations by means of some orthogonal system of functions of the 
variable 9 . The variable # lying in the interval-1s s t l ,  we choose the 
orthogonal system of the Legendre polynomials p,(#) . 33 ecause of the 
symmetry of the problems, we can restrict the set of the Legendre polyno- 
mials to the half of the system, viz. the Legendre polynomials of even 

Multiplying the identity (2,10,14) with p (9) (n=O,1,2, ....) and integrat- 
ing thereupon over the variable y from - 1  to + 1 ,  we obtain the system of 
equations 

5 

Y :  

order, %,,($ . 
2n 



- 5  4, o,i,z, . . . . 4 n  
E ,X 5'' C n  
n.0 n.0 

Sn S 
The coefficients p and$' will be evaluated in section 12. 
The system (2,10,17) represents an infinite set of linear algebraic equations 

it is necessary to truncate the infinite series in (2,10,17) to get a finite 
system of linear equations, which can be solved. 

same lines as in the symmetric case. The weight-functions @)and %(a) are 
written in the form 

for the unknown coefficients an . In order to arrive at numerical results 
The mathematical treatment of the anti-symmetric problem follows the 

I 

I The acceleration potentials reads in this case 

or on substituting the Fourier expansion (2,10,11) of u cosy 

wherein 

and 



The Condition, that the normal velocity at the wing surface which corresponds 
to the acceleration’pctentialil. vanishes, yields the identity in the 
variable # : 

The quantity G,, 
corresponds to the acceleration potentialyn . 
Multiplication of (2,10,21) with the Legendre polynomials Pz~tl($ (4, o , ~ J ,  ....) 
p d  taking thereupon the integral overs from -1 to t 1  , yields the system 

denotes the normal velocity at the wing surface that 
a 

or written in a simDler way 

where 
Ll 

Quite similar as in the symmetric case, approximate values of the unknown 
coefficients 4, 
solving the resulting finite system of linear algebraic equations. 

are found by truncating the infinite system (2,10,23) and 

4 a. - 11 Determination of the downwashes Wn W, . 
correspond with the singular acceleration potentials y and @, will be cal- 
culated. The usual method of determining such velocities is based on the 
relation between acceleration potential and velocity potential as indicated 
by the formula (l,j,lO). This method will be applied in the second part Cf 
this paper, which deals with the unsteady problem. Bowever, in the steady 
case it is possible to evaluate the normal velocities mehtioned by applicatim 
of some formulas from the ordinary lifting-surface theory, in which downwash 
and vorticity components are connected by an integral equation. In this ap- 
proach to the lifting surface theory a three-dimensional planform is re- 
presented by a vortex sheet, which covers the proJection of the Wing Onto 
the x+ -plane. The pattern of velocities induced by this vortex sheet must 
fulfil the linearized boundary condition 

In this section the normal velocities at the wing surface, which 

n 
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where denotes  the  p ro jec t ion  of t h e  wing su r face  on to  the  
x s ~ ( x , i )  i s  t h e  a n a l y t i c a l  r e p r e s e n t a t i o n  of the s u r f a c e  of the  wing. 

v e c t o r  normal t o  t h e  vo r t ex  shee t  and the  d i f f e r e n c e  v e c t o r  of the  ve loc i -  
t 2 s  j u s t  above and below the  vo r t ex  shee t .  The components of t h i s  v e c t o r  
y can be expressed i n  the  pe r tu rba t ion  v e l o c i t i e s ,  v i z .  

-plane and 

T e v o r t i c i t y  v e c t o r T i s  def ined  as t h e  vec to r  product of t h e  uni t  

where u is  t h e  v e l o c i t y  component i n  the d i r e c t i o n  of t h e  x -axis and t7 
t h e  component i n  the  d i r e c t i o n  of  t h e #  -axis.  The + sign denotes t h e  
upper s i d e  of the x 
of the  vec to r  f i e l d  F a r e  def ined by the  requirement t h a t  i n  every po in t  
t h e  tangent  t o  t h e  vo r t ex  l i n e  co inc ides  wi th  t h e  v o r t i c i t y  vec to r  7 i n  
t h a t  point .  

q u a n t i t a t i v e l y  t h e  con t inu i ty  o f  vo r t ex  l i n e s .  
For, i f  'p+ a n d y - r e p r e s e n t  the  va lues  of the  d i s tu rbance  p o t e n t i a l  j u s t  
above and below t h e  vo r t ex  shee t ,  we have 

-plane and t h e  -si@ the  lower s i d e .  The vo r t ex  l i n e s  

The equat ions  (2 ,11 ,2)  a l s o  f u r n i s h  a simple means of express ing  

" L- 

A c lose  examination of the  vo r t ex  p a t t e r n  shows t h a t  t h e  vor tex  shee t  cannot 
be l imi t ed  t o  the  r e g i o n s  alone.  If i t  were, the  v o r t e x  p a t t e r n  would have 
t o  c o n s i s t  o f  a s e r i e s  of  c losed r ings according t o  Helmholtz' l a w .  I n t e -  
g r a t i o n  Qf ( 2 , 1 1 , j )  over the  wing chord a t  any spanwise s t a t i o n  o f  t h e  wing 

wherein XI xI (#I r:presents the  l i a d i n g  edge of t h e  wing and Xn 2C.t (9) t h e  
t r a i l i n g  edge. The right-hand s i d e  ( 2 , l l , 4 )  can be p u t  equal t o  zero. The 
condi t ion  of zero u, (xt ,I+) 
a l l  i n t e g r a t i o n s  over 5 
i n t o  the reg ion  of zero v o r t i c i t y .  This  a r t i f i c e  i s  completely c o n s i s t e n t  
wi th  the a n a l y s i s  given here .  
The lef t -hand s i d e  of (2,13,4) can be reduced as fo l lows:  

and y, (xt,$ i s  j u s t i f i e d  when we a s s e r t  t h a t  

extend a s h o r t  d i s t ance  beyond the a c t u a l  Wing edge 

where r ( y )  i s  t h e  c i r c u l a t i o n ' a t  t h e  spanwise s t a t i o n  + 
For the  second e q u a l i t y  i n  ( 2 , l l , 5 )  the  same reason ing  holds as above. 
Thus we have the  r e l a t i o n  I n  

(2,11961 
o r  i n  o t h e r  words, t h e  c i r c u l a t i o n  r($) is  a c o n s t a n t  over t h e  span of 
t h e  wing. 
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Because at  t h e  t i p s  of t h e  wing t h e  c i r c u l a t i o n  f a l l s  down t o  zero,  t h i s  
cons tan t  must be equal t o  zero. We can thus  say,  t h a t  i f  the  vo r t ex  shee t  
were r e s t r i c t e d  t o  the p r o j e c t i o n 5  of the  wing onto the  x y  -p lane ,* the  
wing could n o t  develop a l i f t  fo rce .  
The need f o r  a s o l u t i o n  which g i v e s  a non-zero l i f t ,  r e q u i r e s  t h a t  the 
vo r t ex  l i n e s  somehow extend away from 5 t o  i n f i n i t y -  Since thd vor tex  
l i n e s  have t h e i r  source a t  the wing, t h e  only d i r e c t i o n  i n  which they can 
move while s t i l l  obeying the  r u l e  t h a t  they must always be a t tached  to  
*he same p a r t i c l e s  i n  t h e  open flow, i s  downstream a long  the wake. 
To be c o n s i s t e n t  with t h e  idea  of small d is turbances ,  we therefore  assume 
a wake region S which l i e s  i n  t h e  XI& -plane between the  downstream pro- 
j e c t i o n s  o f  t h e  wing t i p s ,  and we fill i t  with a vor t ex  shee t  having vor- 
t i c i t y  componentsyx and Y s i m i l a r l y  as on the  wing. 
The condi t ion o f  zero pressure  d i s c o n t i n u i t y  a c r o s s  5' 
v o r t i c i t y  component Y" 

It then fol lows f r o m  equat ion (2,11,3) that-, 0 

'd. 
implies  t h a t  the  

everywhere i n  S'or t h a t  

must vanish  i n  the  wake. 
J.yx  c !+ 

a .  7s < is  a f u n c t i o n  of y only throughout t h e  wake. 

We cons ider  now the  v o r t i c e s  contained within a small r ec t angu la r  
e lement&dy o f  the s h e e t ,  cen tered  at(%,+) and i n  p a r t i c u l a r  the  v e r t i c a l  
v e l o c i t y  dw induced by them at  an a r b i t r a r y  s p a t i a l  po in t  P(X,,,t$o,X,,) 
Therefore we app ly  Biot-Swart 's  law, r h i c h  s t a t e s  t h a t  an elementary length  
& o f  a vo r t ex  l i n e  with v o r t i c i t y - s t r e n g t h y  induces a v e l o c i t y  

. 
. .  

I 
I 

1 .  

L 
. .  

a t  a p o i n t p  l o c a t e d  a v e c t o r  d i s t anoe  r from ds . The d i r e c t i o n  of d5 must 
be taken such t h a t  the  c i r c u l a t i o n y  i s  p o s i t i v e  around i t ,  i n  accordance 
w i t h  the  right-hand ru l e .  The s c a l a r  form of t h i s  l a w  r eads  

(2,11,8) 
dq= Ysin Pds 

4% rz 
where P denotes t h e  angle between r and t h e  element d9 . 
Elementary c a l c u l a t i o n s  show t h a t  the  t o t a l  v e l o c i t y  due t o  v o r t i c e s  wi th in  
the  r ec t angu la r  element &*is given by 

dW= + b; CX-Xo) dJc* & (%-%o)d=% 

To c a l c u l a t e  t h e  e f f e c t  of  t h e  e n t i r e  shee t ,  we simply sum the  ,elementary 
con t r ibu t ions  by i n t e g r a t i n g  over wing and wake reg ions .  
We f i n d  
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We can now construct an integral equation by letting x,, approach zero, 
while the point ( X ~ , ~ + ~ . O )  belongs to the region S . 
In the limit the singular integral over the wings assumes a principal 
value, analogous as in the two-dimensional case (ref .17) 

Ys cx-e~x($-o 
I 

w (xo.(doL+ 1 3 dXdyt 
I 5'k-%Y+ - .  ('b-%? 

Let us now return to the circular wing. In order to express the vor- 
, we consider a s t r i p 4  of the wing 

Due to the law of conservation no vortici*y 

This fact expressed mathematically reads 

ticity component r, 
as indicated in figure 2. 

in terms of Ylb 

.-. hgm vanish within this strip. 

Moreover it follows from the' formula (2,11914) 

The expression (2,11,11) for the downwash thus can be written in the form 
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Y-Yo .ir - dxdy . + A J j  ps dy (2911 17) 5' a 
Our problem being the evaluation of the downwashes &,, and wn , which 

3 a 
correspond to the singular acceleration potentials vx andvn resp., we 
remember that these singular potentials have vanishing normal accelerations 
at the wing surface. Consequently the normal velocities 
%and tu,, at the wing surface must be independent of the variable x . This a 

means that we may put Y, equal to zero in the formula (2,11,17) without 
changing the value of the downwash. 
Thus 

., 
In particular we shall suppose that the acceleration potentialv and thus 
the corresponding vorticity component Y is an even function of the 

The formula (2,11,18) then reduces to 
variable Y . v 

Due to the connectionbetween the quantities y andr(i,1L) we put 
% 

r (x .9 )  = f (9 + 9 c=.L~) (2,11,20) 
where $x,@ is an odd function of the variable x . 
In the wake the function r(x,#) reduces to the function P ( g  and thus the 
following relation holds 

. .  
For XI- m. the function f(x,y) vanishes, thus 

These two relations (2,11,21) and (2,11,22) lead to the conclusion 

f ( y )  =+ r (9) 
Hence equation (2,11,20) can be written as 

( 2  11 23) 

r ( x , ~ ) - +  r w+ 9 CVJ) (2,11924) 

where 9 @,$) is an odd function of Y . 
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Insertion of this result into (2,11,19) yields 

Assuming that y,,, 
possible to calculate the corresponding downwash by aid o f  the formula 
(2,11,25). 
Here this methocl w i l l  be applied to two cases, v i z .  

is an even function of the variable x , it is now 

1 
sin (Imti) Y 

(2 11,26) /u- 
cos 2mY and Y#=-2 

yl( -7 P 
1 

Hence we must calculate the two integrals + w  p'" 1 - 9  

cos "dr and 
h m E - 2  ' 1  P - w  

Lamti -2 sin (nm+i)S& . 1 

Let us consider the real Dart of the infinite series 

with O< ? <  1 
It can then be derived that 

(2,11., 28) 

Putting r we get 





5 5  

The righ’t-hand side of (Z,ll,3l) agrees with the generating function of the 
Legendre polynomials, viz. 

where .p,(+) denotes th’e Legendre polynomial of order m . 
We have now proved the identity 

From this relation it follows 

The downwash corresponding with the vorticity component yb , first mentioned 
in (2,11,26) can now be found by application of formula (2,11,25) 

1 
(2,119 35) 

(_lp+‘ 
*(%I= 4x1 

we must take for the vor- s In order to determine the downwash warn+, 
ticity componentY 

1 (2,11936) 
cos 2mSt P 

Using the relation 
dP*t, %-I 

4 dn 
(zn+i) Pn (9). -- - 

equation (2,11,37) can be written in the form 
+’ P,m+i 9 , 

Y- Lb. 
(-l)m (4mt3) j 

Ylnt1=7 -1 

S 

The integral in this expression (2,11,39) can be calculated with the well- 
known formula from the theory of the Legendre functions, viz. 

where Q,,(%) denotes the Legendre function of the second kind. 
Equation (2,11,39) becomes thus 

(4m+3) Q,,,, (16) ‘ (2 9 11 941) 

In the same way it can be derived that the downwash wnm , which corresponds 
to the acceleration potential %+fmm is expressed by the formula 

S 

2Vlm+1= 2v2 
a 

a 
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S a 

is represented 
.and vnmt, In connection with the evaluation of the downwashes ut/,, 

we remark that the corresponding vorticity component Yu 
by an odd function of the variablex . This fact implies that the oirculation 

P($ is equal to zero for these cases. From the definition of the function 
P($ it follows that the ciroulation r($ is proportional to the velocity 

potential in the plane x.0 behind the wing ( x > m )  . Thus the velocity 
potentials corresponding to the singular potentials yak 
the plane LO outside the wing surface. Such velocity potentials can be 
written in the form 

4 a 
and Ifamtl vanish in 

where w@.a) is a still unknown downwash. 
In this way we get the following two integral equations for the unknown 

S a 
downwashes W%,,, and Wnmt, 

a -1 

(2,11,44) down, reads f o r  m z l  

cos (am-1) St  

0 -1 

At the wing surface the equation' (2,11,46) reduces t o  

Multiplying both sides of (2,11,47) with,u and taking thereupon the limit 
f o r p  tending to zero, wet get 



57 
S 

where use has been made of the fac.t that W2,,is a function of the variable 

In order to simplify the relation (2,11,48) we substitute the Fourier series 
9 only. 

into' the right-hand side of (2,11,48). 
Morebver we apply the following formulas, which already have been given 
partly in the expressions (2,11,27) and (2,11,34) 

'-p cos pm ydr= rtm (9) 
P 

The equation (2,11,48) reduces now to 

Let us now assume that ~7~,.,,(#) can be represented by a series of Legendre 
polynomials, via. 

. 



Inserting this series ( Z , l l ' , 5 2 )  into the equation (2,11,51) and performing 
the integration, we get for mLi 

Thus 

Form.oit can easily be derived along the same lines that 

a a 
The downwashes WXmcl , which correspond to the potentials y12,,,+, can be 
determined with the sane method and the result is 

. .  (9) . a 4m+3 p 
%tl 4% 4 m t i  (I+) I - 

- 1 2  

be applied frequently..These formulas read 

Numerical evaluation of the coefficients i n  the linear systems. 
In this section sone integral properties of Legendre's functions will 

The properties expressed ,by (2,12,1) are well-known and will therefore not 
be proved here. However, the proof of the formulas (2,12,2) will be given. 
Because P, (x) and Q, (x) 
following relations hold- 

satisfy Legendre's differential equation, the 

t n(nti) PnzO -2x - dr 
dRP, *p* 

(q-x") - 
dr2 
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Multiplying the first expression by Q (x), and the second one by P(%) 
and subtracting the results, we find m n 

Intemating both sides of this equation between the limits + I  and-I , we - 
obtain 

t 1  
(n-m) (ntmti) P,O 

-1 -1 

Hence the value of J P, (x) Qm(x) dx for n g m  is given by 

In order to evaluate the right-hand side of (2,12,6) use can be made of the 
formula (ref. 2) : 

(X) , - l < X ( t i  1tx w Q, (XI = '/a P, (XI % l-x - ,,-, 
with 

We see easily that 

In the casen=m , we have 
+l 

i n 

B a 
I It is now easy to calculate the coefficients (T" and($ which occur in 

the right-hand sides of the  systems (2,lO,l7) and (2,lO,23) respectively. 
In fact we have 
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(2,12910) 

The determination o f  the coefficients on the left-hand side. of the' 
linear systems requires more elaboration than the quantities mentioned above. 

The definition of the coefficient T; 
I ' I  

5 is given by;the formula (2,10,6), viz. 

m After substitution of the expressions for the coefficients p,, 

downwashes w,, and by application of the integral relations (2 

9n (2,12,2) we can write for this coefficient't'' 

9 

and the 

12,1) and 
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The further elaboration of the coefficients is simplified by splitting up 
the expressions under the summation signs into four terms. We write 

(2,12,12) 

I + 1 + 
(2m-24+1) &m+aC+ a) Czm+zf t 1) (2 m tz4+2) 

The infinite sums in (2,12,12) can be written i n  a convenient form by aid 
of the so-called I+f -function, which is usually derived from the gamma 
function. Here we introduce the gamma function r(%) by Beierstrasz'defi- , 

Insertion of the expression (2,12,13) 
yields the formula 

into the definition of t h e y  -function 

Xt  0 , -1 , - 2  , . .. , If a and b differ from 0 , - 1 , - 2  , . . . , we have 
according to (2,12,15) r 1 

Thus we have proved the relation 
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1 Differentiation, of the relation (2,l2,l5) yields 

(2 t 12'9 17) ._ - 1  YV(*b E 
n.0 (xtd2 

The formulas (2,12,16) and (2,12,17) enable us to express the coefficients 

m 
The coefficient T: will be treated separately. 
The right-hand sides of (2,12,18) can be further reduced by application of 
some relations known from the theory of the gamma function. For that purpose 
we start from the formula (ref.2) 

I Differentiation with respect to x y i e l d s  
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5 

We consider now the special c a a e b  . The coefficient T; becomes according 
to (2,12,12). 

This 

Subs 

and 

can be written 88 

itutingz-1 and x-i/z into ( Z ' , l Z , l 5 )  we get 

- 

(2,129 25) 
3 2 @ 2  . 

In order to coefficients?; we 
derive the following recurrence relations: 

and by differentiation 

(2 ,129 27 
1 y' (Xtl) I y'(x) --g . 

These two formulas (2,12,26) and (2,12,27) enable ua to evaluate all coef- 
ficients 'tn . Numerical valuea are given in table I. 
On OLn 't which correspond to the anti-symmetric problems. This coefficient Tk 
has been defined by the formula (2,10,24): 

S 

I 
In a quite similar way expressions can be derived f o r  the coefficients 

4 
t l  

J ?am P2&tl(U)% 
Pn mt1 +I 0. I m  T =  
4 '!anti -1 J %tl %kt1 (+Wt m i l  ,E %2.p,1 -1 

If 4#n , the expression in the right-hand side of this formula can be re- 
duced as follows 



The cas@& results into 
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(2,129 2 9 )  
Putting .k,o into (2,12,29), we get 

Applying the recurrence relations (2,12,26) and (2,12,27) it is possible 

to determine al l  coefficients . Numerical values for these Coefficients 
are given in table 11. t 
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Derivation of formulas for pressure distribution, forces, moments 
and spanwise lift distribution. 
If the oomplete acceleration potential, corresponding to the physical 

boundary value problem is denoted b y T  , the presaurep can be found by 
aid of the formula (1,3,5), which reads - Q,-P y =  - c 
where p, represents the pressure in the undisturbed flow and p the den- 
sity of the fluid: Because of the odd character with respect to the 
variable z of the pressure p , the pressure j u m p 7  over the wing surface 
can be expressed by the formula 
. .  
, , ' C ( .  . ... 

The complete acceleration potential has been given in a general form by 
the formula (2,9,2), which reads 

371: - 
T= Y (?+d) + u  i -II (4) [yjlr,.o 25 *s; 

,lr 
7- 

The pressure distributionn over the wing surface becomes thus 

F 
(0+8)= 2 ry (opJ)+2 pu lr J 4 (4, [$] p,=o dq * (2,1392) 

x 12 =o 
The substitution of the Fourier series 
stitution of the analytical expression t !  2,8,47 for the quantity 

2,10,4 and (2,10,5), and the aub- 

34 into the formula (2,13,2), yield for the pressure distribution [=I p,=o 
over the wing surface, the expression 

for symmetric problems and 

for anti-symmetric problems. 
In the two relations given above, the Fourier series have been 

truncated after the 
and (2,13,4) give approximations for the pressure distribution. For 
every arbitrary downwash distribution prescribed at the wing surface, the 
pressure distribution can now be evaluated by aid of these formulas 
(2,13,3) or (2,13,4). The regular acceleration potential V(y,p,$) is 
found by application of formula 

(i+.()tK term. Consequently the ezpressiona (2,13,3) 

(2,5,2): 



0 -1 
and the coefficients an and 8, must be solved from the systems of linear 
equations which have been derived in section 10 of this chapter. 

The lift-force and the moments acting on the aerofoil are obtained by 
suitable integrations. The lift L i e  given by the formula 

m 1 

(2,13,5) 

s denotes the area of the projected wing surface onto the x# -plane. In- 
serting the expression (Z,l3,2) for the pressure distribution into (2,13,5), 
we get 

S 0 0  

Interchanging the order of integration in the second term on the right-hand 
aide and applying the integral relations (2,8,43), the lift L can be 
written in the form 

Taking int2 account ( i + j )  terms of the Fourier series of the weight 
function 8 (3) , the lift L is approximated in the symmetric case by the 
formula 



68 

The moment about the I+ -axis, denoted by M , is obtained in a similar 
way. In fact we have 'b. 

0 0  

4 p u  5? 2r 1 

=2fJ f f v(O+J))*w c0sYdjldY-Z f %(J,)casqd3, - 
(2,13,9) 

F 0 0  

This moment can thus be approximated by the expression 

(2,131 10) 
In the anti-symmetric case the lift L and the moment M vanish; the main 
quantity in this case is the monent about the X -axis?This moment M,, 
mostly oslled the roll-moment, is defined by the formula 

2* 1 

M x = f l  ST@, 9) vdx d$ =/ f TT (Opt4)y sin 8 dyda.  ( ) 
S 0 0  
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Inserting the formula (2,13,2) for the pressure distribution into (2,13,11), 
we obtain 

.%* i 
M,= 2eJ / V  ( 0 , p , 8 ) p p  sing dpd8 + 

0 0  
X l r l  !F 

+qU f f 1 R(8) ["I p.w si.nYd{ dpd8 ' -??I p,'O 
'I -0 0 0  

?I 

r'U T i ( q ) s i n \  d$ . n r  1 

= 2~ f f y (o,Y.,$)~ sin 4 dpd8'- 
(2,13912) 

lr 
2 
- 0 0  

Truncating the series for the weight function A"(4) after the (ifl) 
term, the moment M, is approximated by 

th 

2 

In the symmetrical case the moment is equal to zero. As is customary 
X 

in aerodynamics the foroes and moments are indicated by their dimensionless 
lift- and moment coefficients. Therefore we introduce the following ooeffi- 
cients 

Besides the forces and moments, the so-called spanwise lift distri- 
bution plays an important role in the theory of lifting surfaces. This 



spanwise lift distribution C(Lb.) i s  defined by the formula + w  
- W' 

C(Y1 / -n (r,!&dx ' (2913,151 

is connected with the circulation r (v) by means of the The quantity C (3) 
formula 

Substitution of the expression for the pressure 
yields 

into this formula [2,l3,l5) 

The second integral on the right of (2,1J,16) can be further reduced by 
interchanging the order of integration. We find 

Rep1 .acing the function by its Fourier series (2,8,45) 
n .o 

and applying 
-- 

the integral relations (2,8,43) and (2,8,44), we get after termswise inte- 
gra t i on 

The introduction of the new variable Or=$ - E , transforms this formula (2,13,18) into 1 2  

+ v q  n$ m 

C(t&zpJ y (o,,u,19)dx-y/# (o~+f)x fPm(v)w5mac.du. 
(2,139 19) 

m=O 'm 0 -w 
It is now possible to evaluate the sum of the series in the right-hand aide 
of this formula by aid of the relation between the Legendre polynomials and 
their generating function, viz. 



i f a c e  1 

e ’ ’ z 9 / 2 ( a s d - c 0 s ~ j  

i 4  a , ~  f 

e %i(d+=) v2 CO!j @-cos Q’ (2,13,21) 

, i .fw<e CUS%oc. 

S i R ‘ l z d  

V ~ ( C O F . ~ - C O S ~ )  
2 (COS e - COS &)’ 

(2,13922) 

Putting ~ = e ~ ~  , we get 

00 

n- o eina P, (COS e> = 

On equating the real parts on both sides of the equation (2,13,21), we ob- 
tain the relation 

c4 cos 
doc + 

2gu e 
\I. (COS &-COS e3 0 

i v  
OD 

X P, (~0.e) COS TW 
n-0 

Using this formula (2,13,22), we can transform the expression for c(%) into +w 
-w C(#= ne J v (4pJ)dx- 71 4 (a+ $) 

where the parameter @ 
variable I& equals +I or -1 , and thus 
(2,13,23) it follows at once, that the spanwise lift distribution 
vanishes at the tips o f  the win 
series for the weight-function f($) , we obtain f o r  the spanwise lift distri- 
bution in the symmetric case the approximation 

is defined by y s ~ s  0 . At the tips of the wing the 
or 8=‘TC . From the formula 

c(#) 
Inserting into (2,13,23) the truncated 

p u  4 1 
OL * s ina  a s  2nd s i n T  

dwt-  E anPnn 2eU ;G 
+- L (-$’a,, 1 

n=o e V  z(cos e - c o s d ) ‘  X n - 0  (2 1 3  24) 

and in the anti-symmetric case 

@ sin OL cos 0nti)a. COS% 
,4 d b t  

v n  (COS &-COS e) 

sin a cos (nnti)a sin 9 
CLCL . n e u  4 +- r- (-Vtn 1 

IT n,o e v 2  (cos 9-W4&) ’ (2,13925) 
These two relations enable us to determine numerical values of the spanwise 
lift distribution. 
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Next we consider thex -componentD of the aerodynamio force which acta 
on the wing according to potential theory. In order to obtain the total drag 
on a wing in a real fluid we have to add D t o  the profile drag which is due 
to the effect of viscosity. By contra-distinction, D is called the induced 
drag, since it is associated with, or induced by the region of disturbed 
motion of the fluid behind the wing. The expression for the induced resistance 
is obtained by means of the momentum theorem. A surface enclosing the wing is 
denoted by s ; the momentum law applied to the wing then leads to the ex- 
pression 

D= f/p cos (np) do.+//? [ Ucos(n.r)t ?)II [u+2] dr  (2,13,26) 
S s 

( n , X )  represents the angle between the outer normal to the surface S and the 
axis of IC , whereas yI denotes the disturbance velocity potential. Hence 
ut 
P 2,1j,26) can be written in another form by application of Bernoulli's equa- 

QQ is the X -component of the fluid velocity and UcoS (n.r)+ T)I~ the com- 
3 X  

onent of the fluid velocity normal to the surface S . The expression 

P 
+ ?uJ/cos (n,x) dcrt eu f/ 2 dG+ e// (2,13,28) 

S 5 9 
In order to simplify the relation (2,13,28) use can be made of the well-known 
theorems oi Gauss and Green, which read respectively 

dG 

f// di*.'S dTt-Jf IT,, dG (2,13929) 
D 

(2,13,30) 

particular 

ff cos (n.x)dG = 0 . (2,139 31) 
9 

With respect to the identity (2,13,30) we assume that I#, is a harmonic 
function and V2 is equal to one. Then we obtain the relation 

J 
Application of the formulas (2,13,31) and (2,13,32) transforms the ex- 
pression (2,13,28) into 
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The surface s is now chosen in a particular way. In fact we take a hemisphere 
of large radiusR with center at the pointxaa of the* -axis enclosing the 
wing and the circle cut out by this hemisphere on the p1anex.a. If the 
radius R increases to infinity the corresponding parts of the integrals in 
( 2 , 1 3 , 3 3 )  tend to zero. On the surface r=a  holds 

Thus 

Fora..-,- the following equation is obtained: 

D = - i g  ff {(,$r+ (271 ds dr ( 2  139 36) 
X= m where ~ ) _ = L i m  Q C X , ~ , ~ ) .  

11, fact (p- denotes the velocity potential in the %-called Trefftz-p1ane.h- 
serting in the theorem of Gauss for two dimensions V=Wqrad I$ , we obtain 
the relation 

r-w 

I f v  is harmonic this formula degenerates to 

ff {(#+ (q} dT=/I$ %+- * 

Application of this relation (2,13,37) to the expression (2,13,36) for the 

( 2  13,371 
s L 

induced drag yields 
+I 

=QW 

-1 -1 

+1 

D = - C  f ‘9, - v x  dy= -e 1 v*wb. $4 ’ ( 2 9 1 3 ~ 3 8 )  

It is now possible to express the induced resistance in terms of the 
circulation C(%) . According to formula (2,13,15) we have 

or 

In order to find an expression for the downwashW,,use can be made of the in- 
tegral equation (2,11,11), which expresses the downwashW in terms of the 
vorticity components. This equation reads 

r(Y-) -- 2 ‘p- (X,#) 0 ( 2 , 1 3 9 3 9 )  
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Substituting the expressions (2,13,39)and (2,13,40) into (2,13,38), we ob- 
tain the formula for the induced drag: 

I t  is very remarkable that this formula for the induced drag agrees com- 
pletely with the formula for the induced drag in lifting-line theory. In 
fact this corresponds with the meaning of Munk's so-called stagger-theorem. 
For the evaluation of the induced drag it is convenient to replace the cir- 
culation r($ by its Fourier series, viz. 

w 

T(v)= E A n s i n  ne 
. Substitution into (2,13,41) yields (2 13 ,421 n=i 

with 9 =COS t3 



75 

Exanplee. 
The cir'0ular plate at a finite angle of attack. 
If d is the angle of attack and u is the undisturbed fluid velocity, 

then the normal velocityw at the wing surface is given by the expression 

uY=-ocu (2,1491 
The regular velocity potential is found by aid of the formula (2,3,24) 

I 
1 I -p  arctan 5 

=+..Up (1-?arctan-) * 
= - mv=o 'I (2,1492) 

The regular acceleration potentialv is equal to zerc because the normal 
acceleration UL')vanishes at the wing surface. According to formula ( 2 , 9 , 2 )  

the complete acceleration potentialq can thus be put in the form 

a=u 7 4  (9 [g] )L1so d41 

im 

(2,141 3 )  

wherein the function 4 (4) is still unknown. The other weight function 9(3) 
which plays an important role in our theory can easily be derived by means 
of the formula (2,9,9) 

P 

9 (SI= - 7r: cos 3 9  )* (0,0.4)=-2CcU C05Q ' (2,1494) 
The functions $(a) and #(a) must ncw be written in the form 

03 

~ ( 3 ) ~ c o s 4 R x ( 3 )  3 c o s 4 >  a n e o s t h  4 ,  
n=o 

The coefficients C,, follow at once from (2,14,4): 

co= -2 ocu, c, I ca = cj  z , . , . . , . = 0 (2,141 5) 
In accordance with section 10 of this chapter, the equations for the unknown 

L -  
The integer i indicates that the Fourier series'of the functions { ( a )  and rx@)  are truncated after the (btl) th term. The system (2,14,6) has been 
solved for different values of# , viz. t z 2 , 3 , 4 , 5  and 9 . In this par- 
ticular case the coefficients an are given in tablemfor the different 
values of and apart from a factor ocu . 
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Table I11 

& 4 
t292433 
-0,092890 
+0,040842 

-0 023475 
+0,015436 

- 
- 
- 
- 
- 

i s  5 

+2,2433 
-0,092875 
+0,040836 
-0 023471 

+0,015435 
-0,011011 

- 
- 
- 

These coefficients enable us to evaluate the weight function #.($). The 
result is given in figure 3 .  It appears that the successive approximation 
for #(a) coincide nearly completely. Further we can determine the lift L 
and the moment about the axis of , M# . We find 

2 L. 2.812 c t c ~  and M,= - f,q65 , 
These quantities can also be expressed in terms of their oorresponding 
coefficients, viz. 

The center of pressure of the whole wing is in the middle section 9-0 
on a distance I +- =I - - -0,479 

distribution over the wing surface can be calculated by aid of the for- 
mula (2,13,3). Here we restrict ourselves to the calculation of the 
pressure distribution on three sections of the win notably the middle 
sectiong.0 and the two sections $ = '/2 and yX1/2& . Graphs of the 
pressure distributions are given in figures 9a, 9b and 9c.  Moreover the 
sectional center of pressure is indicated in these figures. Using the 
formula (2,13,24) it is possible to evaluate the spanwise lift distribut- 
ion C&). The result is given in figure 15. With the aid of the formula 
(2,13,43) we calculate the value of the induced resistance and find 

1465 
. tp lZ  

fln aft of the leading edge. The pressure 
L 

2 Dt 1,260 TU 

14.2 The spherical cap. 

in a homogeneous field of flow with velocity vector u , directed along the 
positive x -axis. The equation of the wing surface can be written in the 
form 

Be shall now treat the problem of the spherical cap, which is plaaed 

./ 

(z-af+ 2+ $2 = 1 +a2, x > 0 . (2, 1417) 
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Assuming thatpiis large compared with 
unity, linearization of the boundary con- 
ditions of the boundary value problem is 
allowed. The equation of t h e  wing surface 
can be approximated by 

Thus we can represent the wing surface 
by the equation 

V 

2 2 P  Fi~.21 
, % > O  , x + # $ I  . 1-x -9 

za I=- 

The downwash distribution, which is prescribed on the projected wing sur- 
face, becomes so 

The regular velocity pot'ential 4 
(2,14,9) into (2,3,24): 

is found by substitution of the expression 

ular acceleration potential is easily found by aid of the formula 
2n tl 

V( l l IJL,W f -  4 d ~ l d ~ i = ~ / / C 7 ( ~ . I L 1 ~ : H , 3 1 ) ~ l d d l L 1 d ~ =  
S 1 0 -1 

The complete acceleration potential ,can t h u s  be written in the form 
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The weight function a($) can be determined by means of (2,14,10): 

1 -  
The Fourier coefficients C, of the function 8'($) become thus 

According to formula (2,10,7) the system 
coefficients a of the unknown function ix($) can be put into the form 

f linear equations for the Fourier 
c. n 

The coefficients g1 c 
Solving the system of e uations for i =  4 , we find the numerical values to 
be apart from a factor &/a 

can be easily found by aid of the formula (2,12,10). 

a0=o,73op a,= o,bobr7 a2=-o,i2qs8 a,= 0,057417 a4--o,03ns56 

The function R(3) is drawn in figure 4 for 
have been evaluated, again coincide nearly completely. The lift L and the 
moment have the values 

and g=g . The points which 

U2 M =-0,6802 p z  U2 Y 
9 L=-i ,465 Tx 

and their respective coefficients 
. .  1 CmY= -0,21'94 1 

Cat- 0,4663 -6: 
- 

The position of the center of pressure of the whole wing is in the middle 
0 6892 section I#-0 on a distance It-- 1,471 

1 4 
1,465 - 

pressure distributions on the sections 9.0,~ = - and y = - v  are given in 
2 2 

the figures loa, 10b and 1Oc. The sectional center of pressure is also in- 
dicated in these figures. Finally the spanwise lift distribution is given 
in figure 16. The induced drag becomes-in this case 

aft of the leading edge. TBe 

The wing with a downwash distribution Drouortional to u . 
We shall now apply our theory to an anti-symmetrical problem. In par- 

ticular we consider the surface 

x s r y  , x"$ 6 7 ( 2  14916) 
which is placed in a homogeneous field of flow with velooityu directed 
along the positive x -axis. The downwash distribution on the projected wing 
surface follows immediately from (2,m4,16): 
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The regular velocity potential becomes here 

For anti-symmetrical problems th'e function 9($) is written in the form 

The coefficients d, become here 
%($) = t" (3) cos 4 s COS 3 d, 5in n4 

n:i 
_ -  4u d,= - , d 2 = d a = . . . . . . . = O  

The unknown weight function K($) be expressed by means of the series 

.L n= 0 
The coefficients 4, can now be solved from the system of linear equations 
(2,10,23). In this particular case the equations read 

(2 ,14323)  
4u a1 R.o,i,n, .. * .  . Gk T 

Substitution of the numerical values of transforms (2,14,23) into 4 
2U 

n=o 

nz 0 

a an (2,149 24) 
'Cz2 6, = O  for -#=1,2,3, . . , . 

F o r i - 4  we have the roots, apart from a factoru 

4,=-1,3730 $,.+0.017714 ~2r-0,010305 g,=+ 0,0068407 g4: -0,004qf77 

The function #(a) is plotted in figure 5 for$= 2 and i :  9 . The agreement 
between the successive approximations is again remarkable. The roll-moment 

1 M, becomes 
1"1,=.-0,384g pu . 
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The corresponding coefficient is thus 

Cm*= - ol'11z9 I The pressure distribution on the wing sections I&= 3 
plotted in the figureqlla and llb. In the middle section the pressure 
vanishes because of the anti-symmetrical character of the problem. The 
sectional center of pressure is also dram in these figures. The spanwise 
lift distribution which is calculated by means of the formula (2,13,25) is 
given in the figure 17. The induced resistance appears to be 

D= 0.1890 Tu2 * 

and $=iv have been 
. 

The domwash distributionw; u x p  
In order to calculate the regular velocity potential which corresponds 

with a downwash w= uxp on the wing surface, it is necessary to develop the 
function/LLur()l,$) in a series of surface harmonics. We find easily that 

According to formula (2,3,24), the velocity potential @ becomes 

- 5 3t3 arclad}- & p (1-p') (I+$){ 15-- 5 t 

2 ? it+ 

The acceleration potentialv' becomes here 
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The complete- ac ,ce le ra t ion  p o t e n t i a l G . c a n  thus be wr i t t en  i n  the  fo& 

The Four i e r  c o e f f i c i e n t s  C, a r e  thus  

E I O  c ~ a ~ u , c 1 = o , c 2 = ~ u ,  c;.c,, ,..,.. s o  . 
The system of equat ions f o r  t he  c o e f f i c i e n t s  a, reads now 

So lu t ion  of t h i s .  system f o r j . 4  , y i e l d s  

ac=-o,7601s a1=-0,50206 a~=-O,Ol2630 a = +  0,0060424 a4= -0,004s061 3 

wherein the  f a c t o r  u has been omitted.  The f igu re  6 shows the  func t ion  t (3)  
x o r i = 2  and i = g  . The corresponding p o i n t s  of the  d i f f e r e n t  approximations 
co inc ide  near ly .  The l i f t  L and the  moment M assume the  va lues  

2 'k 2 M - -0,036g7 ell Y -  L =  -1,180 TU 

c&= - 0,3755 CmY =0,0118 
whereas the  corresponding c o e f f i c i e n t s  are  

The c e n t e r  of pressure  of t h e  whole wing l i e s  i n  the middle s e p t i o n  S O  on 

t h e  pressure  ' d i s t r i b u t i o n s  on the  wing s e c t i o n s  9-0 , #= i/z .and # =  1 / Z v  

and t h e  corresponding s e c t i o n a l  c e n t e r s  of  pressure have been p l o t t e d .  The 
induced drag becomes i n  t h i s  case 

a d i s t a n c e  0,969 a f t  of  the  lead ing  edge. I n  the f i g u r e s  12a, 12b an t 12c 

D=O,2568 fUz 
The downwash d i s t r i b u t i o n  w ;  Us* 

Simi la r ly  as i n  the  preceding case ,  we must develop the  
func t ionp .W(p,$)  i n  a s e r i e s  of surface harmonics. We obta in  e a s i l y  
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The velocity potential can immediately be derived from (2,14,25) vi&. 

. P  

(2 14, 33)  
As the normal acceleration &* is equal to zero, the regular acceleration 
potentialv also vanishes. The complete acceleration potentials can thus be 
put in the form 

3 X  

dJ, 9 

(2,14934) ' 

The weight function S(3) becomes in this case ' cos 3 (10- 8 cos 23) (2,149 35) 

and the coefficients C, 

The truncated system of equations can be written as 

I 

l 

I ae= -0,73534 a,=+0,56399 a2=-qo14598 a,,+0,00e8065 (1,=-0.005g843 . 
For j r 4  we find the coefficients 

Different approximations for the weight-function R($) viz. i s 2  and 5-9 , 
are drawn in figure 7 .  The agreement between these approximations is again 
very good. Lift and moment take the values 

2 M - Of3O22 fU e '  
%- L = - 0,6952 TU 

and the corresponding coefficients are 
C,= -0,2213 ~ m $ =  O,O¶b2 . 

The center of pressure of the whole wing lies in the section -0 on a 
distance 0,565 aft of the leading edge. Pressure distributio 2- s and correspond- 
ing sectional centers of pressure for the sections Y = O ,  9. ' /2  and y ='/2 VT 
are plotted in the figures lja, l 3 b  and ljc. The spanwise lift distribution 
can be found in figure 1 9 .  The induced drag has the value 
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14.6 The downwash d i s t r i b u t i o n  W = u x y  

example of the anti-symmetrical  problems. The function,KW(p,$) can be  w r i t t e n  1 
i n  t he  form 

I n  c o n t r a d i s t i n c t i o n  t o  t h e  prev,ious two cases, t h i s  problem is  a n  

po (p,$j= up (r$)sin 3 c o d ,  2 2P (+$)sin 2 42 $T$ 01) sin 2 4. I 
I 

It folIows immediately f r o m  (2,14,26) t h a t  the regular v e l o c i t y  p o t e n t i a l  @ 1 

The r e g u l a r  a c c e l e r a t i o n  p o t e n t i a l  car. e a s i l y  be der ived from the  veloci'ty 
p o t e n t i a l  4 i n  t h e  case 14.3: 

The weight func t ion  g[$) i s  he re  

and thus  
d,,O, d2=$, C$=C$~ ..... - 0  8 

The c o e f f i c i e n t s  8, of t he  unknown welght-function #(-f) must t h u s  s a t i s f y  
the  equat ions i an 

n=o  T 4 a,,+ a , o , t , ~  ,..,. 
For i s4  we f i n d  for t h e  c o e f f i c i e n t s  a p a r t  from t h e  f a c t o r  u 

80~+0,43812 .t,,+ 0,27750 b2G-0,067837 ~3=+0,0321S7 84~-0,018'38kl 

This 'weight-f .unotion $(4 )  i s  p l o t t e d  i n  figure 8 f o r  i z , 2  and 

moment Mr i a  II r l x =  -0,1809 TU' 
differenc.es  between these  two approximations are  neg l ig ib l e .  T 

while t h e  corresponding c o e f f i c i e n t  C becomes 

The pressure  d i s t r i b u t i o n s  on the  wing sect ' ions  L&.= '/2. and y = % v . a r e  
drawn i n  the  f i g u r e s  14a ' and  14b. The s e c t i o n a l  cen te r s  of  i r e s s u r e  are  
ais0 ind ica t ed  i n  the  f i g u r e s  mentioned. The spanwise l i f t  d i s t r i b u t i o n .  is  
given i n  f i g u r e ,  20. The induced d rag  has the  value 

mX 
Cm = - 0 , 0 5 7 6  

X 

D a  0.0488 Fu2 - 



Kinner 
Sohade 
Kffssner 
Approx.Thsory 
This Theory 

Table V. Moment coefficients C for symmetric downwash distributions. 
my 

r - 
ur=-ccu W E  u x  W-UX' w=uya 

0,908 -0,468 - - 
0,8992 -0,4718 - - 
0,8488 -0,4244 - - 
0,8927 -0,4520 -0,3632 -0,2215 
0,8951 -0,4663 -0,3755 -0,2213 

Kinner -0,468 -0,219 - - 
Schade -0,4659-0,2191 - - 
Kiissner -0,4244-0,2122 - - 
Approx.Theory -0,4698-0,2074 0,0070 0,1007 
This Theory -0,4663-0,2194 0,0118 0,0962 

L . 



Kinner 
Schade 
Kiissner 
Approx.Theory 
This Theory 

-0,127 - '  

-0 1276 - ,  

-0,1112 -0,0566 
-0,1232 -0,0602 
-0,1225 -0,0576 

Kinner 
Approx.Theory 
This Theory 

- - - 0,4122 0,1230 - 
0,4017 0,1083 0,0738 0,0145 0,0607 0,0157 
0,4011 0,1186 0,0817 0,0341 0,0602 0,0155 
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Table VI. Position of the center of pressure aft of the leading, 
edge for symmetric downwash distributions. 

, .  . 
Kiisaner 0;500 1,500 - - 
Apprcx.Theory 0,474 1,459 0,981 0,545 
This Theory 0,479 1,471 0.969 0,565 

Table VII. Roll-moment coefficients cm, for anti-symmetric 
downwash distributions. 

I I 

Table VIII. Induced drag coefficients c for symmetric and anti- 
symmetric downwash distribu ? ions. 
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Chapter 111. 
The circular wing in unsteady incompreseible flow. 

- 1 
We consider a wing of circular planform which moves with constant velo- 

city u in an incompressible and non-viscous fluid and having at the eame time 
a motion of small amplitude in the transverse direction. Similarly as in the 
steady case the reference system is a right-hand eyetem of Cartesian coor- 
dinates ( x i y , z )  nhich is fixed to the aerofoil, when the translational dis- 
placement of the wing in the direction of the vectoru is considered only.The 
positive axis of X is again taken opposite to the direction of the vector , 
the axis of y is taken in the epanwise direction. 

the equation of Laplace 

Formulation of the problem. 

According to chapter I the perturbation velocity potential 9 satisfies 

I 

I 

whereas the linearized boundary condition at the wing surface 
X I  x (x.y,t) ( 3 , 1 , 2 )  

reads 

We shall now investigate in particular the case of harmonic oscilla- 
tions of the circular wing. As already mentioned the amplitudes are aseumed 
to be small, so that linearization of the boundary conditions is allowable. 
It i s  clear that the equation (3,1,2) of the wing surface can be wrieen in 
the form 

(3,194) 
i 3 L  

x =  z, (x,!+) + xz (x.%)e 
The term zl(x,$) represents the wing surface in its equilibrium state, 
while% (x,y) denotes the amplitude of the harmonic oscillation in the 
point (qg) of the wing surface. 

problem can be eplit into two problems associated with XI 
tively. The first problem is just the steady case, which has been des- 
cribed in the preceding chapter. The second problem deals with the pure 
unsteady part of the complete boundary value problem. This laet problem 
shall be treated in detail in this chapter. It is clear from the foregoing 
considerations that the wing surface in ite equilibrium state may be re- 
placed by a flat plate, which of course can be deformed under influence 
of the harmonic oscillations. 

oscillation indicated by 

P 
Because of the linearity of the condition (3,1,3) the boundary value 

andX2 respec- 

In considering a circular flat plate which performs a harmonic 

is t 
x (x ,y , t )=  e,vb)e ( 3 9 1 ~ 5 )  

the boundary condition at the wing eurfaae can be written in the form 

or 

In terms of the velocity potential @(x, 
= isz e,$)+ u 2-1 ox $or x . 0 ,  x ' t+ '~  1 . 

, this w x . 9  iSC 
X k) = 3  (X ,y ,X )e  

boundary condition can be expressed by 2 2 %  e formula 

_I 

,- 
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Equally as i n  the  s teady  case the  cond i t ion  must be supplemented by the 

condi t ion t h a t  no d i s c o n t i n u i t y  of  the  pressure  can e x i s t  aoross  the  XIJ. - 
plane ou t s ide  the  wing. In order  t o  express  t h i s  condi t ion i n  terms of t h e  

e r t u r b a t i o n  p o t e n t i a l ,  use can be made of t h e  unsteady Bernoul l i  equa t ion  s 1.1.7)  which can be w r i t t e n  as . . ,  

The condi t ion of  no pressure  d i s c o n t i n u i t y  reads thus 

c J 
(3,1910) 

J 

T h i s  condi t ion  can again be s i m p l i f i e d  by us ing  t h e  f a c t  t h a t  t he  normal 
v e l o c i t y  w i s  a continuous and even func t ion  of the  v a r i a b l e  ..z . T h i s  pro- 
pe r ty  of t he  downrash implies  t h a t  t he  v e l o c i t y  p o t e n t i a l  * 
func t ion  of x , or i n  formula 

i s  an odd 

Ifr represen t s  t he  pressure  jump over t h e  %$-plane, i t  fo l lows  from 
(3,l,9) t h a t  the  r e l a t i o n  holds 

T = n p  [;+us] (3,1,12) 
For the  harmonic case the  requirement (3,1,10) can thus be rep laced  by the  
simple expression 

k 
- -4 2 2  i J @ t  Ugj;:o l o r  x .o ,x+y  7 1  . 

( 3 , 1 1 1 3 )  
The boundary value problem for the  v e l o c i t y  p o t e n t i a l 3  can thus  be for- 
mulated as follows: t o  f i n d  a so lu t ion  of Laplace 's  equat ion,  which f u l -  
f i l s  the  condi t ions  

9 ?(x,y.z)=o l o r  (x,y,z) d inf ini ly  

2J 4- 3%-  ~ ( x , v )  
2 2  $or z-0,  x + g  2 1 

- 2 Determination o f  t he  complete a c c e l e r a t i o n  po ten t i a l .  
The theory developed i n  paragraph 3 of  chapter 11, enables  us t 0  

write down a t  cnce an  expression for t h e  r egu la r  v e l o c i t y  p o t e n t i a l  
$(X,g!z) , which f u l f i l s  the t h r e e  condi t ions ,  mentioned i n  the  preced- 

i n g  paragraph. The func t ion  of Green f o r  t h e  unsteady boundary va lue  problem 
i s  completely the  same as the  func t ion  of  Green, used i n  the  s t eady  case.  
According t o  formula (2,3,25) we can wr i t e  
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~ 

. ,  

wherein=[=,&) represents the amplitude of the downwash distribution over the 
wing surface, which is determined by means of the relation (3.1.6). Similar- 

the formula (l,3,7) ,.which simplifies to 
~ 

~ 

ly as in the steady case, we can introduce an acceleration PotentialTusing - 

I 
I . '  

for harmonic oscillations. Hence 
- 
vx= i q z i i . ( x , ,  #J 4 (x,jf,x: x,,ql) drl "Lb, + 

S 

Moreover it is possible to obtain an expression for the acceleration po- 
tential by considering the normal acceleration at the wing surface as the 
given boundary condition. This acceleration potential, denoted b y q  , can 
thus be written in the form 

G = J j ~ ( x 1 4 , ) $  (X,W;X,tY,)dX,dY, (3,294) 
s 

It would now be possible to derive an exact formula for this normal 
acceleration ~ ( X , L & )  along the same lines as is done in paragraph 6 of 
chapter 11. However, we shall follow here a somewhat different way for 
finding the ultimate expression f o r  the real acceleration potential. To 
this purpose we assume that the normal acceleration5.(x,y) be given by 
the formula 

r 

The corresponding acceleration potentialT reads then 
7x5 = 'JJyG (x, I #,)G (x ,q ,x;  x, 4,) dx, dY,+ll// z, 4 (x. Ld J P, (s,) dX, d% 

5 9 (5,296) Henceforth we consider the difference of the potentialsqand? . We ob- 
tain the tormula 

The right-hand member of (3.2.7) contains exactly the same terms as in the 
corresponding expression in the steady case. Thus we can immediately con- 
clude that the identity (2,7,7) retains its validity. This means, that the 
following formula holds 



B9 
After quite the same reasonine as in the steady case, we come to the normal 
expression' for the actual acceleration potential, via. 

3% 

This expression (3,2,9) satisfies the Kutta-condition, while at the leading 
edge of the wing the square root singularity is guaranteed. The unknown 
weight-function A($) can again be determined by the requirement that the 
normal velocity at the wing surface which corresponds with this acceleration 
potential must coincide with the prescribed downwash. Using the relations 
(3,2,8) and ( 3 , 2 , 9 ) ,  we can rewrite the complete acceleration potential in 
the form -- 

wherein a($). - Xcos 4 4 (0,0,2) (3,2910) 
Remembering that y x & s  the acceleration potential which has been de- 

rived from the velocity potential @ 
at the wing surface which corresponds with this potentialqis equal to the 
prescribed downwash. Hence the above mentioned requirement of coinciding down- 
washes can be replaced by the condition that the normal velocity at the wing 
surface, which belongs to the acceleration potentialR , where 

, we can state that the normal velocity 

vanishes. In order to express this condition in terms of an equation use 
must be made of the relationship between velocity potential and acceleration 
potential. This oonnection has been derived in Chapter I and reads . x  

Under the assumption that the time dependency is represented by the factor 
e i s c  this relatlon can be transformed in$o 

- 

where w= - 4 is the so-called reduced frequency. 
11 The equation for the unknown weight-function 8 (3) reads thus 



or written out 

Quite 
for the weight-functions 9 (4) and k (3) , viz. analogous to the steady case we now introduce the Fourier expansions 

if the boundary value problem is symmetric with respect to the variable u. 
and 

if the boundary value problem is anti-symmetric in the variable y. 
shall also use the Fourier expansion (2,10,11), which reads 

. We 
- 6  H a  = y,, c " 4 ,  t L v, 5in "3, 

m=i 
s a 

where v,,, and V, have the same meanings as in (2,10,10). 
For the symmetric problems we can then write for the acceleration 

potentials r 

and f o r  the anti-symmetric problems . 

c 
The quantities P," and 9: are again defined by the formulas (2,10,13) 
and (2,10,20) respectively. 

corresponds to the acceleration potential vn by I%,, and the normal velo- 
city corresponding to v,, 
cients an and 8, reed respectively 

If we denote the normal velocity at the wing surface which 
5 

a a bywn , the equations for the unknown coeffi- 



The only new problem for the unsteady case is the evaluation of the down- 
washes w,, and ton , which will be performed in the next paragraph. 

S a 2 Evaluation of the downwashes Wn & Wn f o r  the unsteady p roblem. 
In this section the normal velocities at the wing surface, which 

5 a 

9 a 
correspond to the acceleration potentials v,, and V, will be determined 
by means of the relation (3.2.13). 
pressions 

In fact we must reduce the two ex- 

The integration in both formulas extends along a straight line parallel 
to the x -axis from-@ t o x  . For the line element d x  on this line we 
can derive with the aid of the transformation formulas (2,3,1) the three 
relations: 

0, KdP + Fl ( 3 9 3 ' 3 )  

*r l  ( 5 , 3 9 4 )  7 \Iccos.4 

Solving these equations for dq , we obtain the formula 
1 a 2  

fix== 

Substitution of this expression into the formulas (3,3,1) and (5,3,2) 
yields respectively 

iwx  ,,, cos ma e X dq (3,3,5) 
1. 6 - i w x  Lim u w  

00 
z-0 3 x  u m = e  

b and 
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It is clear that 
an odd function of . Hence it lies at hand to consider the combination ( 3 , 3 , 5 )  is an even function of the variable $ and ( 3 , 3 , 6 )  

This expression ( 3 , 3 , 7 )  can be rewritten into the form 

or 

We introduce now the new variable t , defined, by 
' i+$==~* , t r i  . 

On the wing surface holds T - . O  or t,i , Whereas q =  01 corresponds with 
&,a . The line element dq becomes 

Furthermore we have 

c 

and 

\ - -  

With respect to the integration interva; in the formulas (3,3,1) and 
( 3 , 3 , 2 )  we can remark that y is always less than zero'. Consequently we can 
write 

The expression ( 3 , 3 , 8 )  can finally be written into the form 

- 
. ( 3 , 3 9 9 )  
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Performing the differentiation under the integral sign and taking the limit 
x-0 , the expression (3,3,9) transforms into an infinite integral. However, 
improper integrals of this kind can be treated with the theory of the finite 
part of an infinite integral, which has been developed by Hadamard (ref.5). 
Mostly the common integral sign is replaced by the aim$, which indicates 
that the finite part of the infinite integral is meant. Instead of (3,3,9) 
we may thus write 

dk 4 

-iw m 
OD 

(3, 3910) 
s .a u +t.u,,,~e m 

Henceforth we substitute into (3,3,10) 

thus obtaining the expression in the more convenient form 

In order to be able to evaluate the expression (3,3,11) we consider at 
first the general fprm 

where f(s) is assumed to be a differentiable function of the variable S . 
The formula (3,3,12) can easily be reduced as follows: 

(3,3913) 
The second equality in (3,3,13) is justified by the fact that the inte- 
grand concerned possesses an integrable singularity. Thus it appears that 
the main problem becomes the evaluation of the expression 

ds 7 (3, 3914) 
1 ma 

In fact the calculation can be performed using the concept "finite part Of 
an improper integral" , this being defined as a contour integral in the 
complex domain. Replacing the segment(1.a) on the real axis by a circuit 
c around it, we can write 

a.3 

1 db . (3,3915) 

By application of Cauchy's theorem we easily see that the contour integral 
can be transformed into an integral along the imaginary axis, viz. 



Bence 
W 

;-I  . d5 

1 
Equation (3,3,13) thus becomes 

or 

. 

90 

=- J(-4+Jm S 5'69 ds 0 

1 
The assumption that f (s) 
( 3 ~ 3 ~ 1 8 )  to 

vanishes at infinity, simplifies the relation 

00 c4 

f'e) ds I 

1 

In our case the function f (5) takes the form 

(3, 3 J 9 )  

, 
is a pure real number, the condition that I+) is equal to If w = -  

zero is only fulfilled f o r m z O  . However, in unsteady aerofoil theory 
the assumption is mostly made that the imaginary part o f o  is less than 
zero, thus ascertaining that integrals concerning the wake become con- 
vergent. In this way we still satisfy the requirement that ((00) vanishes 
in the case m,o . According to ( 3 , 3 l 9 )  the expression (3,3,11) can be re- 
placed by 

3 
U 

I 

i 

This formula can now be rewritten into the form 
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c I 

+ 6 a u +iu,,,= e m m 

(3 ,3922)  

The fundamental integral, which has to be evaluated, is 

,Putting S =  cos#. 4 , we obtain the formula 

The following reduction can nor be made 

Hence 
W 

Applying this relation (3, 3,25) repeatedly we finally obtain the formula 
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Using the well-known relation (ref . 2 6 )  

(1) 

1 
in which H 
the formula 

represents the Hankel-function of the second kind, we obtain 

w 
m-1 E e-WY /(u-w,> e 4 Y H:) (u,w) dw, + I,+, (4= C-i) I 

0 -  2 m. 

The only problem which remains :is to determine the value of 1 (0) {or m 
We can write m 1 . 

00 

( 3 9 3 1  30) 

In order to obtain an expression for this integral in terms of known 
functions, use will be made of the integral representation of the associated 
Legendre function of the second kind, v i a .  

wherein Re (ai)) ~ 1 , 3 # - 1 , - 2 ,  -3, - . . . . 
real axis between t 4 and-- (ref.2 
with -1 s y s + l  , into the formula (3,3,31). Then we obtain 

whilst z is not situated on the 
j . In particular we put z t = y  - io, 

Horeover uee I s  made of the important relation (ref.2) 

Thus 
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(393,351 

The two formulas (3,3,30) and (3,3,35) together yield 

m L m 
By aid of the definitions of QrJx) 

m m -1 ( 3 ,  3 ,  37) 

Let us now return to the expression ( 3 , 3 , 7 ) .  Using the foregoing consider- 
ations, we can easily derive that we have for m 2 i  

. 
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( 3 9 3 , 3 8 1  
It is rather easy to split expression ( 3 , 3 , 3 8 )  into a symmetric part and 
an anti-symmetric part in connection to the coordinate # . After some 
elementary calculations we obtain the relations 

cos m4 6( = 6 -Lux Lim -J 
z--0 3% umre 

1 
-01 

tz) 
w 
1 f w1 (w-wl)m-‘ co~R(w,-w)~ H, ( w l w d w l  t 
(m-I)! 0 



4or m i 1  1 (3.3.39) 

The symbol [n] denotes the largest int'eger less than or equal t o n  . 
For  m.0 we have 

The formulas (3,3,39), (3,3,40) and (3,3,41) enable us to determine the 
4 a 

downwashes ~7~ and W by means of the relations m 
wm= 5 - - 1 (:,,,,.,+ &,+,) {or m 2 i  

2% 

1 5  S 
wo I-- 

2 
a a 
w = - -  

2% 

which follow from the definitions (2,10,10). 

t 3, J ,421 

4 Approximation for low frequencies. 

given in the formulas (3,3,39) and (3,3,40), it can be expected that the 
Because of the complicated nature of the downwash distributions, 
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necessary calculations for the determination of the forces and moments, whioh 
occur for some prescribed harmonic oscillations, will be rather cumbersome. 
In order to limit the required numerical work, re restrict ourselves to the 
case of harmonic oscillations of low frequencies. In fact we still take into 
account terms of orderw , but neglect terms of higher order i n w  . This 
means that the results of our calculations will be of interest f o r  dynamic 
stability investigations. S a 

the parameter w 

The first thing to be done is to expand the downwashes U,M~ Unto . We easily find the following approximations to the first 
order of w : 

Form21 .Lux s (-I)”’+’ - d42m + iw n m  (-1) zmP,, 
d9 

u2m= 

uo = - -  
d’b 

Umm+,= (- . l \m % 

“-2m - 2 &  

eiur 5 4% 

* L + 1  + Lw(-t)” (zm+i> Q,,,, e iwx s 

e iwx Q - ( - I ) ~ + ‘  E ?+iW (-I) zmQ,, 
”b 

mti  dP 

It e i w x  = Uzm1 5 (-i)m+‘ 5 1  +iw - 2 (-l)m (2m+1) $m+, . 
& 

+where use has been made of the well-known formula 

With the aid of (3,3,42) ’ we obtain the approximations 

(4m4P + (-Om io { (2m-t) Q a r n - l -  (2mci) Q,,+l iwx s (-l)m+1 W”= - 
i t l l  3 4ff  

e 

The zeroth order terms i n w  are just the downwashes in the steady case; 
they agree completely with the formulas, derived in sectizn 11 of ghapter 
11. These apprnximations for the downwash distributions w,, and wn 
enable us to find approximate values for the unknown coefficients a, and 

1 in the equations (3,2,18) and (3,2,19) resp., Up to the first order n 
in the reduced frequencyw . Therefore we assume for the coefficients con- 
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whereas the downwashes can be represented by 

Substitution of the expressions (3,4,4) and (3,4,5) into (3,2,18) and 
(3,2,19) Yields 

and 

Equating the terms, which are constant in the parameterw , and thereupon 
the teras, which contain iw only, we obtain the system of equations 

The first equation in either of the systems is exactly equal to the 
corresponding equation in the steady case. This means that the coefficients e) and $$ can be immediately derived from the steady theory. If these 

zeroth order coefficients have been evaluated, they can be substituted into 
the second equation of the systems (3,4,8) and (3,4,9hj In this way these 
second equations become equations for the unknowns and d t  respec- 

tively, which can be solved in a analogous way 88 has been followed in the 
steady case. The equation for the symmetric problems can be written in the 

C, 
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form 

1 and for the anti-symmetrical problems as 

In order to transform the identity (3,4,10) into an infinite system of 
linear equations we multiply both sides of (3,4,10) with the Legendre poly- 
nomial %,, ($) (n=O, I, 2, .. . . . ) 
from -1  to +I . We obtain in this manner and integrate thereupon over the variable 9 

Furthermore we put , . 

and 
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The system of equations for the symmetric problems can thus be written as 

For the anti-symmetric case we multiply the identity (3,4,12) with the 
Legendre polynomials P,A+~ (#= 0,1,2, , , . .) 
tities 

and introduce again the quan- 

In order to find approximate values of the unknown coefficients a: an& 

(3,4,16) 
equations, which can be solved. 

1. 
I g’ it is necessary to truncate the infinite systems (3,4,14) and 

resqectively, thus obtaining finite systems of linear algebraic 
I 

I Calculation of the coefficients. 
5 an For the evaluation of the coefficients ,Ul, 91 ,p& an and 34 , use 

will be made of some relations, which have been derived in section 12 $f 
chapter 11. We begin with the simplest coefficients, viz. 
According to their definitions and the relations (3,4,3) we can write 

A and Pi 

I 2 
(211-1) 2 - (Xrl+?) 

(24-znti) (24+2n) (24 - zn- I )  (21 + nn t 2) 



toor Si# n-i and -k + n 

I =  I - (2nt2) 2. 

(24 - 2n+ I) (&+z n+n) (2#-2n-1) (&tZn+4) 

{-l)n+' - - 1% 

., 

(3,592) 

1 
2nt.2 - - - (k9.y [( zn 

A-miti) ( d t m t 2 )  (A-2n-1) (2&+2n+4) 

'n 
For the coefficients 3 4 ,  we can derive the following relations 



Ln 

0 - 1  2 nP+1 & re 21-1 oe+l - 4. Po - 
4= 44+1 4r 4P+1 

= 
m2 (20-1) ( d + Z )  + Po 

- -  - 1 + a0 - 21 (3,593) 
h (ZP-4)  @ t Z )  It (4ttl) (2{+1) R (s t t i )  (24-1) 

sn ?fumeriCal values for the coefficients Yr 
an 

anti-symmetric coefficients Pk 
are given in table IX. The 

can be reduced in a similar way. We find 

- 
( 3 9 5 9 4 )  

I +  an 9% =--I (-11" 2n - 2nt2 
(2P-2n+i) (z.@tmtz) (24-an-1) (z(tnnt4) 

6 on 2 # caR+ 1) 

~ 1 ( 4 ~ + 3 )  [4P- (pnrl)'] 
+ (-1P & R 4  @2pt2) - 

r (4gtsj { 4 (g+?l2- C . t n t ~ ~ ]  

an The numerical values of pR are given in table X. 
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- 6 .  
- Examples. 

. Introduction. 
In this section several examples of oscillating circular wings will be 

treated. As our results are mainly of interest for stability investigations, 
it is sufficient to evaluate the lift-force and the moments. A detailed in- 
sight in the pressure distribution over the wing surface is not of so much 
importance as in the steaty case. The complete acceleration potential once 
beingknown, the pressure jumpn over the aerofoil is found by multiplying 
this potential with 2f  
formula (3 ,2 ,9 )  we can write 

, where fJ denotes the air density. According to 

3% 
-5- 

L In quite the same way as in the steady case formulas for lift and moments 
can be derived. Therefore we can immediately conclude that the expressions 
(2,13,$0), and (2,13,13), which give approximations for lift, moment about 
the y. -axis 
una teady case. 

and moment about the x -axis respectively, remain valid in the 

- 6.2 The vertical translation. 
The vertical translation can be represented by the equation 

(3,692) i3t . x ( x , v . t )  = Re 

The downwash distributionw on the wing surface is then 

whereas the normal acceleration becomes 

In our approximation up to the first orderinw , we obtain for the downwash 
iiF= iwUA (3,6931 

and for the normal acceleration E we find the value zero. The regular velo- 
city potential is found by means of (3,2,1), viz. 

The weight-function g($) is thus 

For the 



The regular acceleration potential vanishes in this case. The complete 
acceleration potential assumes the form 

1 
The function R(3)  is written in the form 

where the coefficients a:) and must be solved from the identities , 
( 3 , 4 , 8 ) .  In t h i s  special case the coefficients are all equal to zero as, 
follows from the first identity in (3,4,8). The second identity in (3,4,8) is 
equivalent to the infin,ite system (3,4,14) of linear equations. Here we can 
write 

a!: 

e : o , t , n ,  . , e .  ( 3 , 6 9 8 )  
nxo- 2 ' ~_ 

This system is exactla equal to the system (2,14,6), if the quantityfl is re- 
placed by -a . Thus we can immediately write down the coefficients d: . 
Apart from a factor ufl they are in an approximation of five terms in the 
Fourier series. 

For the lift K we obtain 
K = - ~ , ~ I Z  iwpRU a e ish 

and for the momentM about the axis of y 
M E  1,4b5 Lw~RU' e"' 

Mostly the values of lift and moment are given in dimensionless coefficients 
according to the definitions: 

K=7t?U. P (#A+LRI)Rei3' 

i.34 2 
MS q U  (mh+ima) Re 

k; 50 ; i f f=  -0,8951 w o r  E] =-0,0951 
wao 

mL.0 ; ml- O,4bb3 w or = 0,4663 , 
W.0 

Hence 
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Rotation about the axis o f U  . 
This harmonic oscillation of the wing can be expressed by the equation 

Hence the downwash distribution on the wing surface is given by 

w (x,y,4)= - dt dx I [i) B ~ + B U } P .  ++i...I BU.,~~L 

and the normal acceleration by 

In our approximation we can write for downwash and normal acceleration 
respectively 

ii = x iwBU' ( 3,6111) 

The regular velocity potential 3 corresponding to the normal velocity 
(3,6,10) becomes now 

1 
31 m i a n q  i u ~ p v  cos~m (3-- - 

1 
(3,6,J2) 

= - A  ~p ( 1 - q  arctanl)  - 
7 I+ If R 

whereas the regular acceleration potential corresponding to the normal 
acceleration (3,6,11) is 

The complete acceleration potential can thus be written in the form , 

For the weight-function 9(>) we find 
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Thus 

and consequently 

c ~ ’ = R U B ,  c:)= O 

cu’=O 0 * , $UBI c:=O f o r n f  o 

(or n P  1 

The function R(3) is written as. 

(3,6915) 

The coefficients a(’) follow from the system of equations n 

The solution can immediately be found in example 14.1 of section 14 of 
chapter 11. We have apart from the factor UB 

The coefficients &: must satisfy the system of equations 

or in our special case 

A good approximation appears to be 

d:=+ 1,047‘( dy = +o, 62725 cl!; I - 0,099754 df I t 0.0421 66 -0,025405 

wherein the factor U B h a s  been omitted. For  the lift K we find 
2 

K =  {-1,812 - 3,766 h }  TU B 

M= {+l,rbs- 0,&70 iw] qU*B 
and f o r  the moment about the axis of #. 

Introducing the coefficients 1 and m4 according to the definitions a 



we can write 

= -0,8s51 ; i+z = - i , i g g w  or [ - "'"1 = - 1,199 
do w.0 

mi: + 0,4663 ; ma = -0,zbabw or [2]y., = - 0,2696 . 
Rotation about the axis of% . 
The roll oscillation of the wing is given by the equation 

z , C q e  i S t  . 

The downwash distribution on the wing surface takes the form 

w ( x . 9 , ~ )  = i ~ ,  i3Cye'Jt = i w y ~ c e ~ ' '  I 
dL 

while the normal acceleration a(x,g,t) is  

Taking into account only terms up to the first order i n w  , we can 
write 

i5 (x.9) s i w y c u  

(x,'b.) SI 0 
The regular velocity potential is thus 

3 R  

The regular acceleration potential is equal to zero. Consequently the 
complete acceleration potential has the form 
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- .  
The weight-function A($) is written in this anti-symmetric problem a8 

sin (2nti) 4 . 
(01 

The fact that all coefficients tAab 8 ,  = 0 

.where 
(0) d, -0 for ever9 n I 

This system is equivalent to the system (2,14,23), which had to be solved 
in one of the applications of the steady theory. The solution can immediate- 
ly be written down, vis. 

where the factor uC-~i%as~bt%3~l~ef t-out~TThe-moment ~-about-the_a=is~of~x-~ap- - 
pears to be 

9 
M ~ - 0 , 3 8 4 9  h(' u c 

or expressed in terms of the coefficientmc 

we have' 

, defined by 
M t  R ~ U  X (mLtim;l)Ce i34 

The oscillation z . D x  2 e L S t  

The normal velocity on the wing surface is given by 

i3Dx"+ nUDx 
and the normal acceleration by 

+4 i w x t 2 )  U'De iJt 

In an approximation to the first order of o , we obtain the formulas 

iif (x ,y)= f iuxX+2x) UD (3,6927) 

C (x .9 ) -  [q iur+2} lJ2D . (3,6928) 

for  downwash and normal acceleration respectively 

The corresponding velocity potential is 
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Thus 

The systems of equations become nor 

For the coefficients a'') and an (I) 'we find apart from the factor UD n 
a;=ti.r615 ar),t (2129 a':= -0,25916 a~=+o ,11483  a,, (0) = - & 0 6 5 1 t 2  

cL~)~-O,rri8B a(:: -0,57700 a!"- 2 -  t 0,014j92 (I!' 3 -  - -0,0053921 d~=-O,OO5!j189 

Lift and moment about the y. -axis obtain the values 

1(. [ -1,941 -0,Bosr } PU'D 
~- - -~ 

2 TE; 1,379 - 0,4650 iu p u D 
If we write I 

K= 7C~Ui (n;+La;) DeiJk 

M: rpU 1 (mgtim2)De i.JL 
we have 

a " -  -0,2575 W or ["""I - = -0,,'?575 

mdx I - q 4 3 W  mas-q2976  w or rp] =-0,2976 

d w  w-0 J;=-O,g32Y d -  

CJ W.0 - 6.6 The oscillation x .  Exye% 

The downwash on the wing surface is represented by the equation 
w ( ~ . y , t ) ~  - =  iaEr%tUEy ] e '''= {iwxyty} UEe ;31 " I  dt 

and the normal acceleration by the equation 

The approximations Yor downwaeh and normal acceleration can thus be 
written 

( 3 9 6 9  35) 

(3 ,69361  
&(x,+)= 2 Ldf U'E . 

The expression for the regular velocity potential becomes here 



whereas the regular acceleration potential obtains the form 
- y (x,g,i)=-&~u~~~pwm E d - f - 3 7  

'+Q 
The complete acceleration potential assumes the form 

(396 9 39)  

The weight-function ,(J) i s  easily found by 

CJ ($1 = -7c cos 3 gP (o,O,& -IT cos 3 {- i.wUE sin 2j- & UE sin $1 = 
= u r s 4 [ ~ i w s ; n a 4 t ~ s i n ~ } u t  . 

In this anti-symmetric case we write 

( 396 940) 

Thus we have 

4 

(0) (1 ) The coefficients e ,  and gn 
satisfy the equations 

of the unknown function k"(3) must now 

(396,421 and 

The solution appears to be apart from a raotcr UE 

and 



The moment about the x -axis i a  

M a  {-0,304q -0~906 iu 
If we write 3 P E 

the following values are obtained 

m; I - o l i m  : mg =-o,obo7 w or =-0,0607 . 
The oscillation: z= Fv s! e i31 . - 
Tne downwash distribution over the wing surface is expressed by 

w(x,q,t)=dz. ~ J F + ~ ~ ~ ~ = ~ W U T ( $  3 e i31 
dC 

while the normal acceleration becomes 

.a (x ,y ,C)  = - =  dw -w 2 U 2 Fy 2 e i J k  

In our approximation we may write 

G ( x , # )  = iw UFv2 

5 (x ,y )  = 0 
Bence the regular velocity potential is 
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Because the regular acceleration potential vanishes, the complete acceleration 
potential can be written as 

The weight-function 9 (9) is 

= c o s 2  [ 2  T i w - ~ i w c a ~ & ] U F  15 . ( 3 ~ 6  147) 

For the coefficients cf) and c, ") we find 

cE)= o for every n 

( 31 6 948) c ( f ) - z U F ,  c, 0) = o  , c 2 = - -  (1) 8 U f ,  c:)=o f o r  n,2 
0 - 3  15 

It can immediately be concluded that 

a(') o for euery n . n =  
According to (3,4,14) tne coefficients a, O) satisfy the equations 

The solution of this system is 

a:)=-o,735w o:)=+o,li63yq +=-o,ow5q8 as (1 ) =to100eBd5 4 =-o,oo5g843 

wherein the factor UF has been omitted. Lift and moment about the 
1 

1 

y. -axis obtain the values 
K=-0,6451 iw TU F 
i"l=t0,3022 iw CU F 

K=nyU2 (!\+i#Y)Fei" 

M =nyU2 (mj+imY)FeiJC , 

Putting 

4: = O  1 [p] = -0,2213 ' k;=-0.2213 W 

we can write 

Or dw W = O  - -  

1 Comparison with other results. 
As already mentioned in the introduction Krienes and Schade have 

evaluated forces and moments for the air harmonic oscillations with a doan- 
wash distribution over the wing surface up to the second degree i n x  and9 . 

1 
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Their numerical results also contain the derivatives with respect to the re- 
duced frequencyw of the imaginary parts o r  the force- and moment coeffi- 
cients in the pointcho . These values can be compared with the correspond- 
ing quantities obtained with our theory. 

From table XI below we see that the agreement between some values of 
Krienes and Schade and our corresponding values is very good, whereas other 
values differ very strongly. From a close examination of Schade's theory it 
appears that there are some mistakes in it. In fact in the singular part of 
the solution Schade uses the Hankel function of the first kind, while the 
Hankel function of the second kind is required. Furthermore some errors in 
signs have been made. 

ciliation x= Bxe 
plies an approximate method which is closely related to Multhopp's lifting 
surface theory. It can be remarked that it is possible to extend the appro- 
ximate method developed in ref. 23 to slowly oscillating aerofoils. 

1 

Some of our results, viz. the damping derivatives for the pitching os- 

can be compared with results found by Garner who ap- i S t  

I 
Table XI Aerodynamic derivatives for six harmonic oscillations. I 

Krtenes and Schade 

Garner 

Tiiis kReorS 

-49435 -0,8033 -0.rr81 t q o 5 ~ 6  -0,i276 -40652 0 -qanse o +qogbo 
- - - - - - - - - - 

-49324 -0,9575 -0.4389' -qn976 -0,1225 -0,0607 0 -0,enta 0 tqosb i  
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Appendix: 
Derivation of a closed expressi 

~~ - 

n for Green's function. 
In order to obtain a closed expression for the function of Green of 

the boundary value problem we can apply Sommerfeld's theory concerning the 
Riemann spaces tref.21). As the underlying theory of this.method is rather 
unknown, we shall give a short description of it. 

value problem for a certain bounded region to be carried over in a problem 
for the whole space. This method is special adapted to problems with plane 
o r  spherical boundaries. However, it is possible to formulate such problems 
in a surveyable way by means of functions of Green. One of the character- 
istic features of Green's functions is that they possess a singular point P, 
a simple pole, in the interior of the considered region, where the functions 
behave as I / R  

the fact that a pole in the interior of the region is carried over in poles 
in the exterior of the region. A potential is called rational, when it is 
uniquely defined in the entire space and when it possesses a finite number 
of poles. 

ials which are also defined in the entire space and possess a finite number 
of poles without fulfilling the condition of uniqueness.-In fact algebraic 
potentials have branch lines in a similar Ray as two-dimensional potentials 
can have branch points. In order to distinguish the different branches of 
the potential, Sommerfeld introduces the concept of Riemann space, thus 

space. Any section of a Riemann space gives a Riemann surface, where the 

of the Riemann surface. 
One of the simplest examples is found by the region betneen two 

planes, which intersect at an angle % , wheren andm are positive inte- 
gers. The function of Green for such a region becomes a unique potential 
in a m, -sheet Riemann space, which has the sharp side of the wedge as 
branch line. Moreover the function of Green has2m poles in this space. 
For m-1 , n.2 the region between the two planes degenerates to the entire 

responds with this configuration. 

called source solution, of the potential equation in a n -sheet Riemann 
space. The point of departure is the ordinary source solution I /R for the 
normal three-dimensional space, whereR denotes the distance between the 
pole PIX,, g,, z,) 

The ciassical potential theoretical method of images results in aboundary 

, if 'R denotes the distance of an arbitrary point Q to the 
point 'P . It is obvious that application of the method of images results in I 

In his paper above-mentioned Sommerfeld introduced algebraic potent- 
~ 

achieving that the potential is uniquely defined in the entire Riemann 

points of intersection with the branch lines are exactly the branch points I 

1 

2 '  space and the boundary becomes a half-plane. A 2-sheet Riemann space cor- 

It will be our first purpose to find an elementary solution, the so- 

and a point Q (x,~,;L) : 

It is immediately clear that the integral expression 

wherein the integration extends over an arbitrary path in the complex 
OL -plane, is also a solution of the potential equation. By a suitable 
choice of the parameter a: and the function 4 (CL) , it is poesible to ob- 
tain an integral representation f o r  the ordinary source solution 1/R . 

1 



121 

For that purpose re introduce polar coordinates in the plalleyro , according 
to the formulas 

We can write 
a 

R = r2+r(-2rr, cos ( r p - c p ~ +  ( x - r ~ ~  . (A941 

In this expression €or R2 we replace the parameter y, 
new expression R" I 

bye( and call the 

If oC is a real number, the sign of R' is taken positive. The function +(a) 
is chosen in such a wag that it has a single Dole with a residu = i  in the 
point C ~ Z Y ,  and that it i8 periodic i a d  amd q, 
a function is for instance 

with a periodZ7i . Suah 

Further the path of integration is taken as a contour c, around the point 
d r v ,  , which is passed through in a positive sense. Bence we can write I, 

e id 
doc I 

i 1  1 
E= E / eioc,eiY, ( A 9 7 1  C 

The branch points of the integrand are given by the equations 

R" = 01 
d R = O  and 

The second equation is satisfied by the roota.i.n. The first equation 
2 2  r t r, + (x -xrf means 

cos (V-&)= zrr, 
If we put 

r2+ ,-:+ (X-XJ' 
cosk a, = c05 Lal I Zrr, I 

then equation ( A , 8 )  can be written in the form 

cos (lp-a) = cos ia, . ( A s 9 )  

Consequently the other branch points are given by 

'p- OL= - + ia,+2#7t o r  OC= '9+2 ~ C R Z  'a, 
where f! is an integer. The poles of the integrand are found in the points 

L 
O L I  ' p , + n i l ? K .  
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From this the conclusion can be drawn that an 
infinite number o f  aequidistant poles and an 
infinite number of pairs of aequidistant 
branch points lie in the& -plane. The path of 
integration is now transformed as shown in 
figure 22. The length of the vertical sides of 
the rectangle is chosen in an arbitrary way. 
Because the integrand in the expression (A,7) 
is periodic with period 21t , the integrals 
over these vertical sides cancel each other. 
If the length of the vertical sides tends to 
infinity, the integrals over the horizontal 
sides of the rectangle vanish. Hence it may 
be written 

Fig.22 

whereD denotes the path of integration, 
which exists of the two contours around the 
cuts (Ip+ La,--q& i v3 ). The right-hand side 
of (A,lO) gives an integral representation 
of the source solution in the ordinary 
three-dimensional space. For the transition 
to the TI -sheet Riemann space we take a 
function {(a), which has a single pole with 
residu 1 forckq, , but which has a period 
XXn in ff and Q, . Such a function is given 

We consider now the function 

The branch points are again the same points, while the poles are given 
by aL, rp,+zknn . It can now be proved that this funotion u haa all the 
properties of the source-solution for a n -sheet Riemann space (ref. 
26). If we put in the upper half-planea=ip+iP and in the lower half- 
planecL-Ip-ip , we can reduce the expression (A,12) after some ele- 
mentary calculations to 

Of particular interest for us is the casen.,~ . In this case the er- 
pression foru. simplifies to 
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. In rectangular coordinates the for- V-Q* L a 1  wherein T=cOS - and G=COS - P 2 
1 mula (A,14) foru can be written in the form 

R 

We shall now apply this theory to a practical problem. Let us con: 
' sider the half p1anex:O , # 4 0  to be a wedge of which the sharp side 

coincides with the x -axis, the wedge angle, being Z'K . If the point P has 
, then the image point 'P' has the coordinates the coordinates r,, L, , 

problem. It is obvious that Green's function of the second kind is given 
by the difference u I ,  when u. represents the elementary source 
solution of the two-sheet Riemann space with the' pole 'P . We now apply an 
(o,i,o) as center of inversion. If 'p(x,g,Z)  and p(%,g,Z) be any two 
points which are inverse with respect to the sphere, at distances p 

Ql . As already remarked a 2-sheet Riemann space belongs to this Pf * x ,  * - q ,  

inversion with respect to the sphere xz+(y-o P Z  +% = 2 , which has the point 
P-'P P 

and 
from the center of inversion, we have thus 

I 

*. whereas the transformation formulas read 

T T  = I (  
I 

It is easily seen that by the inversion the axis o f x  is transtormad 
into the circle x"+g2,1 , z = O  , while the half plane x - 0  ,yIOis trans- 
formed into the region %'+g25 i , z s o  . Now the following well-known 
theorem concerning the inverse, transformation (ref . 8 )  will be used. 

then 

is harmonic in E , ij and 2 in the domainT into which T is carried by 
the inversion. 

Application of this theorem to our elementary solution (A,15) 
yields the harmonic 

- 
If u(x,g,x) is a harmonic function of x , 9 and 2 in a domain T , 

v wp)= gu (X,$,Z) 

function for the transformed problem 

ardan 0 v m  R +;} , 
wherein 

h 
Furthermore it can be derived that 



and similarly 

2 1  
I - 4  
r = -  

?l 

Let us now introduce the ellipsoidal coordinates 

z,=m cos s, 

x=pq 3, = PI?, 
Substitution of the relations (A,le), (A,lg), (A,20) and (A,21) into 
the formula [A,17) yields after elementary calculations 

As to our circular wing problem Green’s function of the second kind is 
found by 

4 



On the ring-surface, 1.e. r l = O  , the following expression (apart from a con- 
stant factor) is obtained 

R 
or 

Thie formula agrees completely with the relatlon:(2,8,47) ,apart from the 
constant factor -. 

<':L ,- .: ,,>,\, y 
- I  
8% * 

b 

. . .  . . .  

.: . , .  ... . ,  



5 ,  .Numerical values' o f  t h e  coe f f i c i ent s ' f  . < *  . , - . .  .: .: Table I 

t0.020727 
+0.49981 . 

-0,0011348 ' 
-0.0010416 
.0.03386557 
-0:30671407 
-o.'.ooo59~oj 
,-0.00050243 
-0.003429.77 

-0,0086486 -0~,0048645 -0.0031620 
-0.00091680 t0.00090462 -0.00@7,77169 

+0.00027410 +0.49998 -0.000073664 -O.OOOIZ>G3 +0.00011801 

+o. dm28212 -o.ooo14313 to .  000070213 
tO.00025604 -0.00014141 t0.000078525 
+0.00023121 -0.00013550 +0.000081180 

-0.000072727 +0.0@0073696 
- 0.000041332 tO .OO034 5 597 

+0.000011524 -0.000021034 +0.00@026924 

-'0:49994 . . . ? O . O O $ Z ~ l ~ ~ ~  4L0.:-026463 -0.00021288 r0.00019354 

+0.00031475 -0.00010542 -0.49999 
t0.00030554 -0.00013525 +0.000051202 t0.49999 

0 
i 

3 
2 

4 
5 
6 
7 
8 

-0.89046 
+O.OZO~Z~ 

+0.0051840 
+0.0090589 

eO.OC33976 
+0.0024173 
t0.0018173 
+0.0014213 
t0.0011454 

9 

- 
N 
01 

.. 

on 
. .  k ,  Table I1 ,, Numerical values of the coe f f i c l ent s ' c  

*0.00094477 -0.00037196 t0.00020879 -0.00012793 +0.000080183 -0.000050970 +0.000031168 -0.0000175'76 r0.000008030 0.50000 

L 
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n !*? i 

90 1 1 0  130 150 170 190 210 230 2 5 0  270 

J IN DEGREES 
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RESSURE 01STRIBUTIONS ACCORDING TO THIS THEORY 
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