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Sunmary.

A lifting surface of circular planform in steady and unsteady in-
compressible flow with any downwash distribution is consldered. The pro-
blems are formulated as boundary value problems for the Laplace equation.
In order t0 solve these problems appropriate orthogonal coordinates are
introduced. Suitable solutions of the Laplace equation are found by sepa-
ration of variables. By means of these solutions Green's function of the
second kind can be constructed. A comparison of the regular velocity
potentiasl and the regular acceleration potential leads to a general ex-
pression for singular solutions of the laplace egquation. The complete
solution of each of the physical problems can be written as the sum of
the regular acceleration potential and a singular solution, which is
singular only along the leading edge of the wing. This singular solution
contains an unknown weight-funotion, which must be determined by requiring
that the normal velocity at the wing surface corresponding to the complete
acceleration potential coinecides with the given normal velocity. The re-
sulting integral equation is replaced by an infinite system of linear al-
gebraic equations. In order to arrive at numerical results the infinite
gset of equations is broken off. The fast convergence of the process is
illustrated by several examples.

Introduction,

In 1937 Kinner (ref.9) solved the problem of the determination of
the pressure distridbution, forces and moments on an aerofoil of circular
planform in ateady incompressible flow. In 1940 Schade (ref.19) extended
Kinner's theory to the problem of the oscillating circular wing in incom-
pressible flow, Numerical results for the oscillating circular aerofoil
were published by Krienes and Schade in 1942 (ref,10). Although these
papers greatly contributed to the lifting surface theory at that time,
they do not well fit in with the present atate of the lifting surface
theory.

One of the main objections against Kinner's and Schade's solutions
is that they fulfil the Kutta condition only in a finite number of points
of the trailing edge of the wing. The number of these points depends on
the number of linear equations by which a certain infinite system of al~
gebraic equations, occurring in their theories, is approximated. Between
the points of the trailing edge mentioned the pressure distribution
becomes infinite.

Neither Kinner nor Schade give any information about the convergence
of their solutions, when the number of linear equations increasea. Schade
treats his problem of the oscillating circular wing for the six downwash
distributions up to the second degree in x and . An extension to down-
wash distributions of higher degree inx and requirea such a lot of
analysis that it becomes inconvenient for practical use.

In the last decade several approximation methods for the calculation
of the pressure distribution and lift and moments on three-dimengional
wings of arbitrary planform in steady incompressible flow have been de~
veloped. One of the most important methods is that of Multhopp's (ref.16).
Application of Multhopp's method yields more reliable results as the
aspect ratio of the wing becomes larger. At the N.L.L. an approximate
1i¥ting surface theory has been developed which is a .slight modification
of Multhopp's method with the advantage, however, of being especially




adapted to electronic computing; moreover it does not have the restriction
of two pivotal points in chordwise direction (ref.23). In order to check
the accuracy of such an approximation, it would be most useful if an exact
solution for a three-dimensional wing of not too large an aspect ratio
should exist. Such an exact solution can be found for the wing of circular
planform. However, the numerical results of Kinner's theory are so scarce
that a further elaboration of this theory would be necessary.

.For the non-stationary theory the situation is somewhat different. In
the last years some approximate theories for oscillating wings of arbitrary
planform were developed., In fact, most of these theories are extensions of
known steady methods, In particular mention can be made of Garner's exten-
sion of Multhopp's steady lifting surface theory to pitching oscillations
of low frequency (ref 3}. Garner applies his method among other things to
the circular wing and compares the values of some aerodynamic derivatives
with those found by Krienes and Schade. He remarks that for the damping
derivatives these comparigons cast doubt on the results of Krienes and
Schade and emphasize the desirability of checking the complicated analysis
developed in their method.

.. Recently two other methods were developed which claim a larger range
of validity as to the frequency (refs. 4 and 18). However, some inaight
into the reliability of these theories does not exist. Therefore it ‘would

- - be important if there existed an exact solution for an oscillating three-

dimensional wing of moderate aspect ratio.

Since 1954 Kiissner has published a series of papers, dealing with the
problem of the wing of elliptic planform in.steady and unsteady flow
(refs. 11, 12, 13, 14, 15). In some of the papers mentioned numerical- re--

... sults are given for the elliptic lifting surface of infinite aspect ratio

and the circular wing in steady incompressible flow. These values differ
congiderably from those of Kinner'’s and. from the values found in this re-
rort. The reason of these diserepancies can be asoribed to several errors
in Kiisgner's theory. :

In this paper a new method is developed for solving the problem of the
circular wing in steady and unsteady incompressgible flow. In fact the method
used is an extension of a method applied by Timman for-solving a two-dimen-
sional boundary value problem for the wave equation. In his thesis {ref.24)
Timman solved the problem of the harmonically ogcillating serofeil in sub-

. 8onic compresalble flow. Due to criticism on the numerical results of his
theory he re-examined his method of solution in 1954, which resulted in a
new, and more straight-forward theory (ref.25). In the latter paper it was
recognized that singular solutions of the boundary value problem for the
two-dimensional wave equation can be expreased in terms of Green's function
of the boundary value problem concerned. In particular the generalizatlon of
this idea has opened the possibility of attacking the problem of the cir-
cular wing. It may be remarked that the same method is applicable to a wing
of elliptic planform, but the analysis required for the evaluation of the
ultimate pregsure distribution is much more cumbersome due to the very com-
plicated nature of the Lamé functions which have to be used instead of the
associated Legendre functions corresponding to the circular wing.

In the present paper the two main problems treated, are firstly that
of the circular wing in steady incompressible flow, and secondly that of
the circular wing harmonically oscillating in an incompressible flow.

Chapter I containa the derivation of the basic equations of linearized
incompressible aercfoil theory.
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Chapter II deals with the method. of solution and ifs underlying
theory. Rowever, the method is applied to the circular wing in steady flow
and several examples of prescribed downwash distributions on the wing
surface are evaluated, while the numerical resulis are compared with re-
gulta of Xinner and with values calculated by an approximate theory de-
veloped at the W,.L.L.

In chapter III the theory is used to derive the equations required for
the harmonically oscillating circular aerofoil. Because of the complexity
of the formulas to be used, only the simpler case of low frequency is
elahorated. Several cases of special modes of vibration of the wing are
treated. It appears that the numerical results differ very much from those
of Krienes' and Schade's, which iz mainly caused by some errors in Schade's
theory.

In the appendix & closed expression is derived for the funetion of
Green for the boundary value problem considered, by means of a method given
by Sommerfeld.
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Chapter I. The basfe equations of linearized incompressible
aerofoil theory.

1l The velocity potential,

The fluid considered in this paper is a non-viscous incompressible

-gas. With regard to the mechanical properties of the gas this implies that

the force acting across any interior or bounding surface is normal to that
surface. This force is called pressure. The flow of a gas with the mention-
ed properties can be described by specifying as functions of time t and
position (x,y,z) 4in rectangular Cartesian coordinates, the components
(w1, w) of the velocity vector G . Thesge dependent variables are related
by the law of mass conservation, which is expressed by

dis. g <0 ' (1,1,1)

and the equations of motion (Euler's equationa)

45 5 .
TS @ god) Lo Lgrd 5 . (1:1,2)

The quantities p and @ denote the pressure and the density respectively
In the last equation gravity and other external forces have been omitted,
ag 1s customary in aercdynanmics.

In asrofoil theory an essential role is played by a certain function
which reduced the number of dependent variables, notably the velocity
potential l?(r,g“z,t) » The existence of this function depends on the con-
dition of irrotationality of the flow, which means physically that all
fluid elements have zero angular velocity. This condition is expressed
mathematically by the disappearance of the curl of the vector ﬁf, or in

- component form

2% ou oW DY DU D
X D%EO T DYy DX © . ox-ox=° (.”3)

It is well known that the vanishing of the curl in a vector field is a
necessary and sufficient condition to assure that the vector is the gra-
dient of some scalar function. In the present case this function is the
velocity potential LP(:;%;;t) « This fact is expressed by the relation

. 3; = 91~a.d Y
or in conmponent form
A _ oY oY
LL_—_a—-x— ’ '9‘—*7'5-@ . U= ---——--.oz (1,1’4)

The velocity potential is related to the pressure, which is a gquan-
tity of more direct physical significance, by means of the equations of
motion and a first integral of them.

In irrotational flow equation (1,1,2) is equivalent to

2 q,z 1 .

> grnd. Y 4+ grad (.2_)= .ﬂqx (3_1*0.(1 P . (1,1,5)
Because of the incompressibility of the fluid this equation can be written
as

gfo.d. [%‘%4';4'%] =0 (1,1,6)




Integration of this equation shows that the sum of the three quantitiea
in parentheses is a constant throughout the field of flow at any parti—

‘eular instant of time, so this sum ceah at most equal some function of

time: b
:g-lE'l--q-'-‘*—P—sF&) (1 1 7)

The expression is known as the unsteady Bernoulli's equation. The function
F{t) can be eliminated by a redefinition of the velocity potential. Thus
¥ may be replaced by y¢*+ fF()dt without altering the velocity field.

When the fluid motion at infinity consiste of parallel sireamlines with

velocity U the following relation holds

JOE 2 ) (1,1,8)

A partial differential equation for the velocity potential is found
by inserting the eq. (1,1,4) into the continuity equation (1,1,1). Using
the fact that the divergence of the gradient is egual to Laplace's operator
% Q 2
A:d.\.\" gra.d.g—-—n+ ® +_.-°_§.
S ox? oy oz
eq. (1,1,1) can bve rewritten into the follbwing concise form
:
AL?:O ) (19119)
We may conclude that in the case of an incompressible fluid Laplace's
squation is the exact unsteady flow equation to be satisfied by the velo-
city potential,

2 Linearization of the boundary conditions,

In order to get a complete mathematical formulation of flow problems
we atill have to consider the boundary conditions. These conditions can be
divided into two types: condition at infinity and conditions arising from
the presence of the serofoil.

The former depend on the nature of the partial differential equation
governing ¢ . As this is Laplace's equation, they require only that the
fluid be at rest or has some specified uniform motion at remote points.

The condition at the surface of a body states simply that the velo-
olty of the fluid relative to the surface of the body is everywhere tan-
gential to ita surface. ' :
If the equation of the surface is given by

F (x,4,2,t) =0 (1,2,1)

the houndary condition reads

F-t-?i.g,r&d F=0 | (1,2,2)

on the surfacefF.
The proof of this relation can be given as follows, Suppose that
tha veloclty of motion of the surfacef.0is indicated by the components W,
v' and w' . .
From eq. (1,2,1) it follows
oF , o F . 2F .0 OF
HEE etV Sytw 220 (1,2,3)
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If £ ,m andn are the direction-cosines of the normal to the surface,
F=0 at the point {x,4,z) , one has at any point of the surface
0 £+ me s nw = du s mes nw (1,2;4)
Since ' /
\ oF oF
1< X —-, M. O ;
(@f_)‘ N (vF‘)‘ s 18)2 ' 'P_E)*,, (‘_O_F‘_)R ' EE)"‘
X ¢/ \dz DX Y 0z
. QE ]
ax
'OF) oFY, (2EV
X Y az
it follows from eq. (1,2 4) that
| r oF 10F QE ?P oF .
u ox*t YV gt + oz * Uox ”’*ag,*'w‘_’ ‘ (1,2,5)

Inserting this relation into

derlved It is just the form
rise to the small disturbance

eq. (1,2,3) the desired result is readily
of boundary conditions (1,2,2) that gives
concépt underlying the technlque for linear-

izing the aerodynamic problem. We think of the wing, which translates with

velocity L in the negative direction of x . The wing is fixed to the coor-

dinate system in such a way that it coincides nearly with the xYy =~plane.
Supposing that the variable z can be explicitly solved from eq. (1,2,1),

this formula can be split in two other equations, one of which defining

the upper surface of the wing and the other one defining its lower surfaoce:

<y, t)=0
. F‘{FZ-Z{ (x,l},t)= 0

P z-z, a
(192!6)

Since .35_1 y we are able to solve eq. (1,2,2) for the values of ’
the vertical velocity uwr over the wing surfaces
.OER DX, oz - :
w 1 oo Ww .
w= ot W=+ o for x= 2, (x,4) in 5
. (1,2,7)
?Z{ -DZ{ ?Z{ :
W= ==y #LL—:E{-’D'-.E*— for Z:;Z‘t,(x,té.) in S

where S5 is the projection of the wing on the Xy -plane,

The eqs. (1,2,7) are exact; however, we ghall approximate them by assuming
that over almost the entire area of the wing the following suppositions
hold:

(1) the slopes

"DZLL 'azu_

X 7 Y

(2) the fluid velocity vector g differs only slightly in direction and
magnitude from the free-gtream velocity U .

The gecond condition points to the de31rabllity of introducing a disturbance

velocity potential‘$ by isolating the contribution of the uniform flow,

s eté., are very small compared with unity, and

Y= _l.ﬁ+ Ux (19298)
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The perturbation velocity oomponents

—_ l-P : _ oY _
L= -—_5-—=u.-U, Y= D'd— ’ =

QJ'
¢
NS

(1,2,9)

are assumed to gatisfy the order-of-magnitude requirement
u, s, w <« U . (1,2,10)

If the conditions (1) and (2) above are fulfilled, the eqs. (1,2,7)

can be approximated by
X

Uy = ?;‘+U ?xu’ $m~z=zu,(xﬂ)ins
(1,2,11)
PEp Ly oA :
ws ot 5%’ for z= 2, , [x,4) ins.

Now we can state that condition (1) is equivalent to assuming that
Z, and Zp be small compared with the wing chord.

This fact enables us to proceed one step further with the approximation.

We expand w in Maclaurin series about its value just above and below the

xté_-planea
vw(x,y.0,.t) 2& Dfuwr(xy, 0+,£)

W2t 2w (x40, )47, T o7 ey S
x,y.0..t z§ BRuw(x,y.0 .t

WX, 4.xp )2 10 (x.y,0_, t)+zp """(vg ) . zf fmi o

' | (1,2,12)

If the derivatives %g%t, ete., are sufficiently well behaved such that

their products with the small quantities %, , etc., may be neglected with
respect to wr itself, -all but the first terms on the right hand side of
eqs. (1,2,12) can be neglected. Then the boundary conditions finally take
the forms

Dz LT

W= u + u S H for Z= O+ ) ()C, LJ.J ‘fl’l 3
ot (1,2,13)
P2 u 0 '

U= —y * >’ or z=0_ ,[x,%] mSs.

It is important to remark that the use of egs, (1,2,13) points to the
admissibility of schematizing the actual wing by a mathematical plane sur-
face across which appropriate discontinuities exist.

Concerning the linearization of the differential equation for the
velocity potential it must be remarked that the terms in Laplace's equation
are already linear and there is no reason to expect anyone of them to be
much larger or smaller than the others. Hence in linearized incompressible
theory the governing equation for the velocity potential remains Laplace's
equation.

¥

2 The acceleration potential.

It has been experienced that in solving boundary value problems there
are sometimes great advantages in using the concept of the acceleration
potential instead of the velocity potential.

The existence of the acceleration potential is agsured by the vector
equation of motion for incompressible fluids




d'—b
a_g:_%_q_‘md -p_..__q'ra(ci-—g- . ' (1!351)

This equation shows that the acceleration vector is the gradient of a
scalar function, which we designate by yf(x}g,z,t) s such that

d—.‘
TE=grad v (1,3,2)

with the components

du dv = dw
=3 |-Sy o TE-SY

From egs. (1,5,1) and (1,%,2) it follows
3md1¢+gmd-§=0 o (1,3,3)

so that these quantities differ at most by a function of tiwme,

ve-Fea . (1,3,4)

Q(t) has the same properties as F (t). in eq. (1,1,7) and therefore can be

“eliminated in some way or another. In particular wheny is assigned the

value zero at infinity where p= p_, , eqa. (1,3,4) reads

Poo - P ) ‘ .
Y= — (1,3,5)

Here\g differs only by a constant tactor from the disturbance pressure

P-Foo - : ‘ ' ’ : ;
: he relation between the acceleration'potentialmg and the velocity
potential ¢ is. found by inserting eq. (1,3,3) into eq. (1,1,6). When the flow

is uniform with velocity U at infinity, the resulting equation reads ‘
o | 2 2 .
Vr.. ‘,3%""5' Q'u) . (1,3!6)

equation can be linearized to
Y - 29 D
V:_O—I-+ uU--—E-_a + U 5

As the operator r+ Ll?ﬁf may be interchanged with the other linear

If the small-perturbation conditions (1,2,10) are fulfilled, this

Gl

(1,3,7)

®

operators in Laplace's equation, it can be concluded that the acceleration
potential also satisfies the same differential equation as the velocity
potential in the linearized theory.

The relation {(1,3,7) can also be considered asa.linear partial
differential equation of the first order for the unknown velocity potent-
ial § . ‘

In o?der to get the general solution we write down the characteristio

dx _d¢ ' - ,
dt = 0 ° v (1,3,8)

. eguations:




This system of ordinary differential equations has the solutions

x_: U_£+C1-

5 —‘af’qf (x,8) dx +C, =fmg (Ut+C ) dt+C,

(1,3,9)

The i‘equirement that § vanishes at ‘the po:.nt X = -00, enables us to write

the solution forl.p into the form

j x+U.(’c -t), Y, z,i) d.'l:

-0

(x1,g,z,t+

8\3

- 1
kv

(1,3,10)
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Chapter -II. The circular wing in steady incompressible flow.

1l Formulation of the boundary value problem 1n terms of
the velocity potential.

Consider an aerofoil of circular planform moving with constant velo-
city i in an incompressible and noniviscous medium. A right~hand system of
rectangular coordinates (x,4,x) is used (see fig.l). The positive direction
of the axis of X is taken opposite to the direction of motion of the wing;
the axis of is taken in the spanwise direction. The projection of the
aerofeil on the Xy -plane is a circle having radius unity with its centre
at the origin of the coordinates., The
coordinate axes are assumed to be : _‘
tixed to the wing.

In chapter 1 it has been proved
that the perturbation velocity potent-
ial § satisiies Laplace's equation:

= = x
A gz Pyt ‘I’w"ézz“o (2,1,1) y
According to paragrapn 2 of ' : ,
cnapter I the linecarized conditions of ,
tangential flow at the aerofoil surfaces : Fig.l

}Z

4

x=Z (x4} and Z=2y (x.y4)
read as follows:

X :
W 2, ,,2¢
wzu_sz- for =0, , Xx"+y £

0Z . (2$192)
w':LL—-i for z=0_ , x’u}"‘éi

in order to examine the boundary condltlons more closely, we split
Zu and zf in an even part zZ, and an odd part x, , as follows

xuﬂ ZQ.+ zt g’ z.[ ="zo_-'z{ : (2,1,3)
where z, déscribes‘.a shape that is symmetrical aboutl the xy -plane and de-
fines the distribution of thickness over the wing, whereas z, gives the
angle of attack and camber distribution.

since the conditions (2,1,2) are linear, the boundary value problems
associated with z, and 2, can be treated geparately. The aercfoil properties
may ve regarded as the superp031t10n of those of a gymmetrical aerofoil at
zero incidence and a camoered inclined mean plane of zero thickness.

ror the symmetrical part of the problem we must solve Laplace's
equation suuvject to the boundary conditions

DX
+ 2 R
w= WU S tor z=0+ y XTHYTE A

(2,1,4)
X -

t
w=-W 7 for z=0_  , xnd,

||l‘~
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Becauge of the wing's symmetry, we expect a flow patiern, which is com-
pletely symmetrical with respect to the xy -plane. Thus we can conclude
that no pressure-jump exists over the wing surface. In general we can say
that the thickness of the aerofoil contributes nothing to the 1ift,
pitching moment and rolling moment experienced by the wing.

The anti-symmetrical part of the problem, associated with the function
Zg 1 is of much more interest to the aerodynamicist. This problem will

now be treated.extensively for the circular wing in this chapter.
The problem is to find a solution § of lLaplace's equation, which
satisfies the following boundary conditions

DX

) a R R <

wa 5t U 5= for z.0, , Xeyg F1 (2,1,5)
'0¢ 'azO. . 2 g

e —_b-i—=Ll-:5i— for z=0. , JC+IJ,=1 .

To supplement these conditions, it is worth-while to emphasize that
no discontinuity of the pressure can exist across the xy -plane except
over the wing surface. In order to express this condition in terms of the
perturbation velocities we apply Bernoulli's equation. Its form may be
simplified by observing that the uniform motion at great distance implies

P

F) =1 ute 22 . (2,1,6)
2 S

The consistent application of the small disturbance assumption calls for

the subgtitution - ' .

q.2= (L.L»u)’lurﬂw‘*z W2 lu . - (2,1,7)

With these insertions eq. (1,3,6) becomes in the case of steady flow

P~ P
Uluws=
=73

As the pressure 4 possesses no discontinuity across the xy -plane outside
the wing planform, it can be concluded that the velocity component u also
has no discontinuity across this region. ‘

The conditions (2,1,5) express that the downwash distribution wr is
a continuous, even function of z . Recalling that integration reverses the
evenness or oddness of a function, this means that the velocity potential §

(2,1,8)

-2
and the velocity component Tz are odd functions of the variable z

Formulated mathematically this reads
@(x”*lz) - - Q ()C,IJ,,-Z)

o (x,y,2) __ 2P(xy.-x)
K B

(2,1,9)

Denoting the pressure jump over the:xg,-plane by W , we can write

M. 2 ¢Uu - - (2,1,10)

From this relation we see at ance that the velocity component W vanishes
at points in the XY -plane outside the aerofoil,
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Recapztulatlng, the boundary value problem can be formulated as
follows:
It is required to find a solution of Laplace's equatlon;

Oyy @W.“' Dz =0
which gsatisfies the conditions.
1) | $(xy,2)=0  for ‘_(x,L},Z) at lniinity
'2) —.'g—gizw(x,q) - dor 'z= 0, and zsQ -,x‘n*’_ﬂ, “
3) —?—on for z=0 , x%yls>1

X !

2 Formal solution of the boundary value problem by means of
-Green's function.

Considering the: two sides of the w:ng together as forming 8. closed
surface, the problem is an exterior Neumann problem for Laplace's equation.
The starting point for the treatment of such problems is a we11~known
theorem of Green {ref. 8), which reads as follows:

If U and V’are continuougly differentiable functions in the closed

“regular region D and if their partial derivatives of the second order are

continuous in D, then the following 1dent1ty holds

JJf (Uav-Val)dT- jf (u 'ﬂ_v‘ou)d& )

S represents {%e boundary of _the reglonwD and n the normal pointlng out-
ward from D .
For the exterior problem we consider a region bounded-by & surface $
and a sphere C with radius R , enclosing completely the boundary S . For
this region D we can write '

f'[/ (UAV VAu)dT [[(uw Vvu)d"- ff(ul’-\—/-V 'au)dtr (2,2,2)

The normal11 ia directed to the interior of the region enclosed by 5 .e
We shall now impose the additional conditions for 1nf1nite regions
on the functions Ll and V , that the absolute values of

a9l p2 ol 2ol 2V p2 bV nbV R
RU, R* 2L, R o R R RLRGE R Ry (22,3)
shall be bounded for all sufficiently large values of R , where R is the
distance from any fixed point. Functions, satisfying these conditions,

are called regular at infinity.
Under these conditions it can easily be shown that

m /f(Ll N v2yac-o - o (2.2,4)

so that eq. (2,2,2) transforms into

jjf (UaV-Val)dT= jj(u“’v v“"u)dcr . (‘2,2_,-5.)'

where D now represents the entire region outside the boundary S .
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Let P (x,y,?) be any point in D . We take V -equal to 1/r in the
identity (2,2, g), where r is the distance from P to a point Q@ . In the’
point P this function does not fulfil the conditions stated in Green's
theorem. Therefore we surround P with a small sphere with P as its cénter
and ¢ as its radius and remove from D the interior of this sphere. ‘For the
resulting region D" , we have, since 1/r is harmonic.

./.f 1 AUdT‘jf(U' on '1? *lr )d@‘+jj (u"aﬂ- '11' 11” ‘%ITJ{) d'G

(2 2,6)
Us:l.ng the. fact that onQ one has — =~ —.}% , it can easily be proved that:
the second integral on the rlght -hédnd--gide of eq. (2 2, 6) tends to
4% L(P)as the radius of . tends to zero,
Hence we can write - - o .
1 1_1 ol ' R oy
j.f Audt"ff(u- RTFLT 'an)d'a'+"'“u(P) _ N (2'?"12 '
1f Ll is harmomc inD, we have - o o !
LN v '
1 1ol - !
LL(P)- ZTf ff(u'on LG 'an)d'(r : S (2’233.)
If V is also a harmonic functlon :|.nD we have moreover
ff(uv"v V"’“)*icr 0 L (2,2,9)

Jointly these eqs. (2,2,8) and (2,2, 9) yield LT s
UP)=z5 ff{ aa (V4 7)- (V*‘)-ou} ‘W (2,2,10)

where the normal n is supposed to point to the exterlor reglon D.

In order that LL(P) may be expressed only in terms of the. boundary
values of its ‘normal derivative on S, we must eliminate :the first term
under- the integral sign in (2,2,10). This ‘could be accompllshed if we
could find a functionV harmonic in D, and having a normal. derivative

which is the opposite of that of 1 ¥ e
The function G(Q,P) which is defined by

G(Q.P)=++V@Q.P) (2,2,11)

where V(Q,P) has the above stated properties, is known as Green's function
of the second kind for the region D and the pole P .
In terms of Green's function we can write

UP=-7zz [/ %@G(Q,P)dsr . (2,2,12)

. S . |
This formula gives W (P) in terms of its normal derivative for the exterior
region .

‘ In our boundary value problem the normal derivative of :the velocity
potential {: at the wing ‘surface is prescribed. The problem is thus o
find the suitable Green's function. With the aid of Sommerfeld's theory
of "Riemann spaces" it is possible to determine a closed express:.on for
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Green's function, but because of the limited usefulness of such analy-
tical formula, we shall postpone the elaboration of this method to the
appendix, In the next paragraph we shall derive an expression for Green's
function in terms of an infinite series.

I’

3 The regular solution of the boundary value problem.

In this paragraph we shall try to find an infinite séries represent-
ation for Green's function., For this purpose we apply the method of sepa~
ration of variables, which is often used in boundary value problema of '
this kind. We introduce the so-called oblate spheroidal coordinates. These
coordinates are formed by rotating confocal elliptic coordinates in the
xZ -plane about the minor axis of the ellipses (i.e. the z -axis). The
transformation formulae for these coordinates read

X = \/1-/1.2 \ﬁnf‘ cos |
4= \oaf Ve snd i)

Ze MY B

where the range of variation of n - is defined by Ofneo, that of u by :
-1.‘—‘_/ué+1 and that of 7 by 05J< 2T . The surface n=0 is a disk of radius
uanity in the Xy -plane, with centre at the-origin. The surface u=1 is the
positive axis of 2 ; the surface h=-1 " is the negative axis of x , and the
surfacea=0 is the xy -plane, except for the region inside a circle of
radius unity, centered at the origin (this' region is just the surfacena0 Y.
The gurfacean = a positive constant are oblate spheroids with major axes

given by 1{2\/11—112 and with minor axes given by Xul ; the surfaces }L:

constant are hyperboloids of one sheet which are confocal with the
spheroids M = constant and orthogonal to them. The aurfacei: constant is
a plane passing through the axis of x at an angle«" with the xy ~plane.
: This transformation to spheroidal coordinates implies transformation
formulae for the partial derivatives '

° .. 0 0 o
-B_x" L] %‘9‘: and _—a-—x— s V1Z,:
__'°_= _ M V1-u V1+11" cosV 2. 1-}1.’l \V 14»1;3E cos o _ sind )
2 }§2+Tla o - }:f_”lx o \/m\/;qr oV
| oM Viad \[1e® sind = g \1V 10y’ stm?f o, cosd =
oy /u."-!-'q’ AL /u.zi-q’ on W 149
2. () o NPT CC, 7 R S
'?z /u.*i-rl" oM }}4.12" oy

(2’3|2)

In the new coordinates the line element is expressed by




15

- £ 2 2,2 .
dst s axtedyledxte 20T e %;—} dnte (o) (et a3t (2,3,3) .
Laplace's equation can now be written as
2 D ) N AT A
'_0-}"-{("») ?}%}*:&T '{(1+Q)—'5?l}+;3' ol .‘)_0 . (2,3,4)

In accordance with the method of separation of variables an expression

of the form |
 (uuY) = PG HE)

is dssumed to be a solution of equation (2,3,4) wherein P denotes a
function Ofl only, G a function of au only and H a function of ¥ only.
Solutions, which can be written in the form (2,3,5) are called normal
solutions.

Substituting (2,3,5) into the equation (2,3,4) and dividing by FGH we
cbtain

(2,3,5)

. | . ‘
A _d. (1.}1,’) 9_’9. 1-.1_ ._4. (1+q‘) iF + 1 &H LA =0
du| F

G du dn | A APl el (g,

Since the third term on the left-hand side is the only one which involves
J , it is impossible that the equation should be satisfied unless

4 a
H c;;i =4 ' (213s7)

where a is & constant, .
The equation (2,3,6) may now be written

1 d 2y dG 1 d n df 1 t N ‘
28860 2314l & G L hha “-a— 1 =0
G du )L du| F dq 1) dy 12 et (2,3,8)
We see now that we must have . '
' 1 d ) =3 b ._.a..“_aa . (2,3,9)
g d}LL du| - 3235/}
.1. _.i‘.'. 1 * fl-E - -----a = - *
F d.q_‘(Hl) dn i gt (2,3,10)

where & 1is again a constant.

The sclution Q(n,,u.a) and, by consequence, also HE) , must be a
periodic function of & with period 2% . Equation (2,3,7) yields such a
solution provided the constant a assumes the value -m" , wherem is a
positive integer or zerc. The corresponding solutions are the functiions

¢os mJ and stn mY

In the equation (2,3,9), m varies from-1 , which value it takes along
the negative axis of x , to +#1 , which it takes along the positive axis
of x . In order that the function G(u) be finite over the range (-1,+1),
the constant § must be equal to-~-n(m#t) , wheremn is a positive integer
(including zero) greater than, or egual to, m. The solution G(u) is then
proportional to the associated Legendre function of the first kind,

viz. P, (u) -




@

m n& -
f _f P ) P () cos m¥ o8 m¥dudd =y 0 i
H 6 -1 _ " '

/!
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'Replacing in the.second eguation (2,3,9) the independent variable u by
in , the equation transforms into tlg\e equationm(2,3,10). Hence the only
possible solutions of (2,3,10) are P (in} and Q. (in) , representing the.

associated Legendre functions of the first and second kind respectively.
The boundary condition at infinity prescribes that the ‘Eotenyial" vanighea
at infinity. This condition implies that the function Q, (I}) should be ‘

. chogen for the solution of our problem.

Normal solutions of laplace's equation showing the right behaviour at in-
finity are thus ‘ -

Bl (u) Op (i) cos m¥  and B, (u) Q7 (1) stn m¥ (2,3;11)

m m -,
The functions B, (W)cosmd and P, (u) sinmV , where m andm are

positive integers, including zero, andmZn, are called surface harmonics.
It is well known that these surface harmonics_form a complete orthogonal
system of functions defined on the region 0SV<2®m ,-15us+1 (ref.l).
The ortogonality relations read :
AT +1 04 ménl or nén

L i \q ol
T (e € if m=m’ and na7

AR+ O mimM or mew
S [ B wP@)stn m¥siemTdudd a0 iy

o -1 anel (“_mﬁ i-" m‘.:Tn' Q.'nd. NaT

AT #

m k] . . | v
B () Py (M) cos m¥ sin mivdudd 20 for ell values Zid“r&'m' “-( .
' 2,3%,12

£, represents the Neumann factor, viz. &u=1 for m>0, €,=R .

. The following important theorem concerning these surface harmonics
will now be used (ref.l). f S

If g (u,J) is a function of the independent variablesu and v ,
defined on the region ~13 U 541,05052W and if this function has continuous
partial derivatives of the second order, then g(u, ¥} can be expanded into
a uniformly convergent series of surface harmonics. '
' Thus we may write : '

co n m _m e T R,
g5 s R osmis = 5 B R gdsinmd. (2,3,13)

n=0 wm=0 ' Nl M=y *e?
In order to determine the coefficients H:‘ and b': we multiply

4
both sides of (2,3,13) with B ()cos #J . and B (u)sin k& respectively

.and thereupon integrate overu from -1 to +1 and over from O to 2W . If

the series on the right-hand side of (2,3,13) is agsumed to be uniformly
convergent, termswise integration is allowed. Performing this integration
and applying the orthogonality relations (2,3,12), we find for the coef-
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ficients

+1
£ 1 et (R
A= g Ry %Trﬁl‘ff ‘30*1-‘71)3(1“1)“3 i d‘f‘ﬁd"'

and.
£ aler (=R -
1
B =S R jj 9();1,0) (,;1)91,1 ) du d,

\'2i3I14‘)

The condition of symmetry (2,1,9), expressing the odd character of the
velocity potential with respect to the coordinate X or i, .restricts the
values of the non-negative integers m and m to those values for which
nemis an odd integer.

Let us now assume that a suitable solution of our boundary value
problem can be written in the form :

Q.("l-/"",a');,}l_—-__b n{_;_—(; " n()"')Q (n)eos. mﬁ'i-z Z [5“]3 Qu)Q (in) sin nz-g s 15)

where the prime denotes that only those values of m are to be taken for
which m+m is an odd integer. "

In order to determine the coeff:.c:.entscc and we write down the
boundary condition of prescribed downwash dlstnbutlon over the wing sur-
face in the sphercidal coordinates at =0 .

This condition is expressed by means of the formula

%% 2o =ﬂu;g;.~7) - (2,3,16)

The assumption that the function w().l.,J') is two times differentiable with
continuous derivatives of the second order, implies that the function
-, v) can be expanded into a uniformly convergent series of odd surface
harmonics.

Thus we can write

M (u, ) = Z Z ﬂ P ()A)cosm0'+}: Z'B P, (}LJSln'm.J (2,3,17)

=0 m=0 =1 m=1
mith . S
Hn=-&—1n- 2;11;-1 %:T::l))' jj,uw(,u J’)P gu.)cos my du dv’ _
: 0 - ' (215!18)'
m + ) 2T+
B.= - 2;::_' (n:m)‘/f};ww NP (}L)smmﬁ'd,a.td«? .
0

Differentiating the formal series solution (2,3,15) with respect tom and.
thereupon putting =0, we obtain

8 22
o = o& ¥ ! v
M (a0 40 E B s n *E 5;‘-1 Pn (,u)Q 0ysin m N
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T
wherg Qm (io) = .'lifo ;:1 Qm an)
Iéiqua.fin§ the corresponding coefficients in the expreasions (2 3, 17) and
2,3,19 we find
, ’ m 91.: m b.r:
=" and 'Pn-—' m' *
n q":(w) Q, 0 (2,3,20)
The solution § (M. M,Y) Dbecomes thus |
s oy Saed 3 3B, mwawas, my
= ‘ €03 m¥+ in
m"u' ) nZ.-,o E’oﬁ % QG q, o) n=1 Mal LX)
or ' 2.115 +1
! Q (LQ)
{J(TUL,U)_ nZ'o m}:(; _5_1_ 2;;1 %’%g‘w) o) ©° mﬁjj}ﬁl&(}lr. 1A (}&)cosm»‘) d,u1d3
. n .‘ m . 2E+1
= 2141 @-m! o .
+;§1 E: 2 el P (1) Qm( )Smm\?/‘f}gwyx‘, B, (}1,)5[\17110' GL,(u, ad

In the next paragraph it will be proved that the series occurring in-
the formula (2,3,21) are uniformly convergent for all admisgible values of

- the variables u,u, ,J 17'1, and forn lying in the interval 8z rl<oci s where

is an a.rbitra.ry positive number. Under this condition of uniform con-
vergence, it ig allowable to interchange the order of summation and inte-
gration in (2,3,21). This leads to the expression

duJ) = :
2T +1 o m . ) m - Q,n(l-(n '
f‘/ﬂlwwvd’l) IR - ;l;r‘ g:?n)' PaQ B (u) ~or —cos mI-U)duy d .
0 -1 ~ n=0 M0 "m ' Q, (io) -
(2,3,22)
Putting R 7 :
o (S N~ m . G GR)
Gl T ) = 'L oankl (em) oML p n : .
L aadae ) TE) oo &m 2W ,(‘n-bm)lpngl) w ko) Q.I:'(io)cos m{y. ‘71) (2,3,25)
we can write o 41 '
‘P(‘UI-J) O//A,w()i,.J)Gi(TUUT,}H-J)d)-H dv; - (2,3,24)
or in Cartesian coordinates _
b,y ) jf(.m) RIS u,)daq dy; (2,3,25)

where § denotes the s%rfa.ce formed by the two sides of the wing. Apart from
a factor this formula (2,3,25) agrees with the formula (2,2,12) which
expresses the potential in terms of its .normal derivative at the boundary
with the aid of Green's function of the second kind.

Because of the uniqueness of the solution we may conclude tha.t the function
Q('q/u My, V) > defined by (2,3,23), represents a series expansion for
Green's function of the second kind.

This serles expansion shows that Green's function and consequently the
potentisal {) s vanishes in the'xl.d_ -plane outside the wing.
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4 The uniform convergence of the expansion of Green's funotion.

It will first be shown that the series in gquestion

1 2n41 (n-m)! Qn(
> ST & g Fomt ) g @s m-B (3.0.1)
“ﬁo ms
is absolutely convergent in the region r|_>8 y. Where 8 is an a.rbltra.ry
positive number.
‘We observe that the .function Qn(z) forz not being on the real axis
between +1 and - e is deflned by . :

2 % 4" A
. Qn(z)"‘ ok @ (2,4,2)
Hence it is clear that . _
' . Lim
Qn('-o)" =0 dq Qn("l)’ CLO) ) » ) (2,4,3)
In order to give an estimation éf the ratio M we apply the *
(LO)
following :Lntegra.l representatmn of the functlon Q @) {ref 2)
cosf mu’ ) |
an ca=- du - '
n (“"m.)' f {z+(f-1)/§ cosf u} (2,4,4)
, whereln mg-n ' and z is not a point ‘on the real axis between +1 and o .
We have -
j o cosh mu
Qn(‘-'ﬁ Qn(“ﬂ . oFt mrem-d {'ru- W cosh wf .
1 (m-mt ' l
Qn( w) @, (W ‘ 7 cosk (m+1)u. dit
) cosf u 1
Because here 11>0 -and n—m=1 it follows: | '
Qn ('-'l) __1____.__._.n+1 o B o ) ( )
m ' 254,5
Q| Vi s

Further use is made of the representatlon of the Legendre polynomials
by their generating function, viz.

(1~2 r cos 9+r") =Z rP (s ®) . (2,4,6)
Tald
Another expension for the left- hand -side of (2,4,6) can be obtained by

wrltlng (1 ar cose-l-r:) |2 I
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1oy V¥ BTN . . -
("'re ) (1""6 ) ‘ (2r.4’7)
which can be expanded into the product _
i6, 1.3, 2 26 1 ..~iB, 1.8 9 _-2i8 .
{1+R t a4 r'e i--"'} {1-‘-—2;— re +—2:|"P e “'} _ (2,4,8)

These two binomial expansions are absolutely convergent f‘orlrl<1 a.nd thus
their Cauchy product converges to the product of their sums,
Igolgting the coefficient of p™ we obtain the formula

P, (cos 6)=2 l‘zi — (22;11) { s nH+ 1—@1,;_—1‘—17 cos (n-2)6 +

1'3-“ n1 .....
*TE Gno)(aneg) ©F (m-4) 8+ }

(2,4,9)

From this expression for P(c0s8) it is easily seen that, when & is real,
the maximum value ofi P.n (cos 8) oocurs for 8:=0 ' in'which case Pnn 1 § thus.
Pr (05 8) never exceeds +l. It is also clear that B, (cos ) is not less than
=1; thus when x is between -1 and +1, Pn(x) glwa.ys lies betwaen =1 and +1.
The boundedne;; of P.n(x) will now be applied to the'{ntegral relation

f €os mw& (cose cas 8'+sind stne' cos ¥) dv =
o .

o § M o™ s 6) B ™ (cos €Y -

"'m) “‘ (2’4310)

which follows immediately from the well-known addition theorem for the
Legendre polynomials (ref. 7), viz.:

P, (cos ® cos ' + sin @ sin 6 cos ) = B, (cos )R, (cos 6%) +

" a
o+ 2 ): (':l: (cose)P (cose')cosmv
(2,4,11)

So we get thé relation _ .
‘ : - n-m)! n n ' l
R | | : l‘%mpn(ﬂose)‘&t(me) £t . (2’4’12)

With regard to the general term of the series (2,4,1) we can now
conclude that for all values of the non-negative integer n the following
relation holds:

' m
| Q, (m) :
4 ane (nem)! o
Em A (nem)) 'n P QL)P (/u'|) Q (l-) f-ﬂsm(ﬂ ‘7) <C V‘]TQT n+i '

(2,4,13)
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where ¢ is a fixed constant.

Since each term of the series (2,4, 1) is numeilcally less, in absolute
TR

value, tnan & fixed multiple of (2n+1) (1+17) , it follows that the

expansion of Green's .function is absolutely convergent for11>8 3 where <

is an arbitrary positive number. Application of Weierstrass' test for

uniform convergence shows that the series expansion for Green's function is

uniformly convergent for all admissible values of W , M, , ¥ and iﬁ and for

81l values ofq lying in 'the range 5-'q<m y Where 8 is an arbitrary posi-

tive number.

‘5 Comparison of two acceleration potentials.

In chapter I it has been shown that in the linearized theory the
acceleration potential satisfies Laplace's equation. There are now two alter-
natives for the determination of the acceleration potential. '

At first we can dérive a formula for the acceleration potential by aid
of the steady form of the relation (1,3,7), which expresses the connection
between velocity potential and acceleration potential., Denoting this acceler-
ation potential by1y y We get

Y= u"ﬁ% -ax.u' fw(x1,g1)q{xgz X, . ¢y )dx, dy, . (2,5,1)

On the other hand an expression for the acceleration potential can be
found in a quite similar way as has been applied for the determination of
the velocity potential § . Instead of the normal velocity w the normal
acceleration a must now be prescribed at the wing surface. If the corresp-
onding acceleration potential is designated by y , we have

E //a(x1 UG (X, 4. % 5 Xy, ) X, Ay (2,5,2)

In order to compare both expressions for the acceleration potential,
we evaluate the potential at points of the wing surface. Insertingmaointo
the formulas (2,5,1) and (2,5,2) we get

AN+

¥ (O u, )= j/a%.\?)ﬁ(o/u. i Mg V) Mg dm o, (2,5,3)
and

v (Oud)--U -—-AM/“'& cas @)‘_(_O,j.!..J)-U—:"V_%_% b, (Op, V)

As Green's function vanishes at the wing edge, i.e. for =ma0, it
follows from equation (2,5,3) that the acceleration potentialy also equals
zero at the edge of the wing. This conclusion may only be made when the
function qu.ﬂ' in (2,5, 3} fulfils similar conditions as the normal velocity
w , notably a(u, J) must be contimuously differentiable up to the second
order. However, the formula (2,5,4) shows that the acceleration potentlaliy
becomes infinite as 1/A+ along the whole edge of the wing.

In physical terms the difference between the two potentialsy and uf
can be explained in the following way,

(2,5+4)
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The velocity potential § -and consequently the acceleration potential y*
describes the flow over a circular wing without circulation, whereas the
acceleration potentialy represents the potential of a flow with a shock-
free entrance (no pressure singularity'at the leading edge). The only
possible reason for the difference between the .iwo potentialsy and y* must

beascribed to the fact that the normal acceleration a indeed does not fulfil

the condition of continucug differentiability up to the second order, This
aspect will be further elaborated in the next paragraph, in which an exact
formula for the normal acceleration will be derived.

& Complete expression for the normal acceleration at the
wing surface.

In this paragraph a more detailed analysis for the evaluation of the
normal acceleration at the wing surface will be given. Because of the
three-dimensional characteristics of our problem it offers some advantages
~with respect to the surveyability to apply the technique of the tensor

calculus. Moreover it will be supposed that some formulas that often occur
in the tensor calculus are well known to the reader. For -the derivation of
those reference is made to text-books in common use {e.g. ref.20).

. Let us consider a body that is placed in a homogeneous flow,
x' (i=1,2,3) being the Cartesian space coordinates. The surface S of the
body be given in parametric form, viz.:

xtx xt(u®), otat,2 S (2,6,1)

where uf,represent Gaussian surface coordinates.
The line-element on the surface can be expressed by

"t t ) :
ds*a 2 X quduf. o, dudu® - (2,6,2)
2u* ouf xp
The system of numbers c::.ﬁ‘P represents the so-called firgt fundamentsl

tensor: o .
If‘u'i_a\r denotes the velocity vector of the flow, one has

i dx' ox" du™

L 4 _ ’ ‘
ViEar oS ar % Y v (2,6,3)
where <« du®
o vo=Tar
The acceleration vector a}

is found by differentiation of the velocity
vector, hence, 1 :
U ot dx,

w, b dv
q-g——d;é = d:*'v +I‘ d-'L
or «
_od g%pBy et S S
A=XepV VT X Tt o (2,6,4)
In this expression the guantity x; p denotes: |
?
i .
. X L H Ao
i e t £ i (2,6,5)
- x . 19y
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i
where r}* is the Christoffel symbol formed from the metric coefficients
X A
%3 associated with the coordinates x' andllﬁ is the Christoffel symbol
formed from the coefficients a.“p associated with the Gaugsian surface ‘

‘ *>
coordinates u* . The %uantlties r vanish because x' are Cartesian coor-
8 is called the tensor derivative of x; with
I

respect to uP . 1t 13 well known that r %P is a gpace vecjpor normal to the

[

surface, hence it is directed along the unit normalnt . Conseguently, there

exists a set of numbers 5“_& such that

X p s dep™ (2,6,6)

Equations (2,6,6) are known as the formulas of Gauss.
The quantities §,, are the components of a symmetric surface tensor.
In the tensor calculus the quadratic form

o p
b pdu™ du
ig called the second fundamental form.
Inserting the relation (2 6,6) into the expression (2,6 ,4) for the
acceleration vector, we obtain
{ o i i dv® :
d-8 o%oPrisx
| xp “ df (2,6,7)
The component of @ in the direction of the unit normal ™ to the surface 9

thus becomes

a.aa.n-é o ols xt v,

*p «at " (2,6,8)

Assuning that the. velocity vector o' satisfies the condition of tangential
flow at the bhody surface we have

i
xac Tllzo , ' (2,6‘,9)
Accordingly equation (2,6,8) reduces to

o &
Gz b puof (2,6,20)
If 8, and 8g are the principal directions on the surface S , A
and Aﬂ the unit vectors in the directions &, and 8y respectively and
¥, and y{z the principal curvatures corregponding to the prineipal direct~

1
ions, the following relations, which determine the principal directions,

hol
old (&x[,—w. o.u)k‘::o

[ 4
(bep="G OLF);\ =0

From these equations (2,6,11) sope other relations can be derived, Multi-
plying the first equation with K and the second one with h1 and subtract-

(2,6,11)

ing thereupon, we obtain

L I B (2,6,12)
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on the assumption that the principal curvatures- ~are unequa.l. E 4
‘This relation (2,6,12) expresses the fact that the unit vectors ,\ and A
are perpendicular.
Furthermore we see that
% Au 30 .
oc[! 1 (2y6’15)

Multlplylng the first equation (2,6,11) by Af' and the second one by

‘Ka, y adchtion of the results glves
' P P , .
‘ 3(. ‘f)uﬂ 4 K and YL “Plnl (2’6’14)
The quantity ™ can now be transformed as given by '
ds ds, , ds ds
«  du_ ou* T ou* « S5 e T2
L R LT (2,6,15)
Substitution of this result into the formula {(2,6,10) yields:
p ) ( ) g d.S d-5 « CLS d.s
anedpi X ( R el TR ATy
Using the relations g2,6,15) and (2 6,14) we find:
d.s d.sg '

In physical language the formula L2,6,16) expresses that the normal

acceleration 9%n at the surface O of the body is composed .of the two centri-’

petal accelerations of the fluid, each ot them .-corresponding with a prin-—
-cipal direction on the surface.

This general formula (2,6,16) will now be applied to the problem of
the flow around an oblate spheroid. Such an oblate spherocid can be repreaent-
ed by the parametric equations

x'n xa\/1-)1." \/14-11’2 cos v

xts Y= 1—).!-" \'/14-1& sinY (2,6,17)
s .

X's Xz /"'Tlo

where the guantity Tlo is a fixed positive number.
it N tends to zero, the spheroid flattens down to the cirecular region in

the xy -plane: x + "51 x=z0 « In other words, the oblate spheroid degenerat-
es to our circular wing, :|.f N, tends te zero. In fact'rlo gives a measure

for the thickness of the wing. Until further notice we shall assume that
N, 1is different from zero. In that case we can designate the Gaussian
surface coordinates by

u. = M and u.” =17

Elementary calculations yield the following expressions for the COm=-
ponents of the first and second fundamental tensors
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2 2
sl - |
R gm0 e (o) ()
n,U"*’& . - | .qo (1-’ ﬁ) \ 7 | (296’18)
'81;;? ' H "12::‘321: 0 ; %u=- 2 . ‘ .
(1) \ o0 . VAo o

The principal curv&tures}<n01=ﬂ2)are determined ffqm the determinantal
equation

det. (8,5~ KO.“p) =0 . (2,6,19)
In our case eﬁuation (2,6,19) can be written in the form l

(b~ 7<ay) ($g=rcay,)=0

L
PR e

and hence

n 1+'q: '

K1=~W

The relations (2,6,11) thus give

and Y

2 oV J
?\1= -__a—s-1=O avnd h. =———-—=0 ¥

or in other words: the coordinate netCMqu- coincides with the net of the
principal directions (51.5a)- . . :
The exact relations between . and S, .’ zamd13'.ax1d:_‘3>‘.z are found by aid of the

formulas (2,6,14), viz.

T L. A T :
s, /3y \}_/"La”lt on By - \[O) (1) (2,6,21)

If 3 denotes the velocity potential of the field of flow around the
spheroid, the normial acceleration @, at the. surface of the spheroid can
be written, according to (2,6,16), in the form:

‘qa \} 1+TI: 0% 2 . Tlo (‘ax - :
T 3'3 *——) - . : ) (2,6.22)
H.Ju“a""li “031 \[(}"-1"‘7{3)'(1*72:) 08,
Substitution of the relations (2,6,21) into (2,6,22) yields
e\l () oy % aah
= (‘0}») 3 oV

VRO (o) \asteng \f el (2,6,23)

We did assume that the spheroid is placed in a homo'geneous flow with a
velocity vector U directed along the positive axis of x . The velocity
potential X can be split in two parts, viz. the potential Ux corresponding

Cl.n=_
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to the oncoming flow and a perturbation potential $ .
Thus

X (’Q,}L '0') Ux + § (MM, da U V- 2 \/1+'Q cosry +& (V) . (2.6.28). .

. Applitation of the formula (2,6,23) to (2,6,24) yields for the normal

acceleration @4, on the surface Tls‘l'l

- mm () 1+ sV + P v
S [ty Ve hesn ]

‘lt .

- ¥1 [..u_\/:;,l\/ %TLE stV « Qo_ (qo,}l.,a') ] *

(W)\/ﬂ‘“l.\/”’lo | | (2,6,25)

Starting from this formula (2,6,25) we shall now investigate to what
form the normal acceleration. a, degenerates when the spheroid flattens
down to the circular wing.

Putting 7m,-0 in the expression (2,6,25) we see that @y becomes zero, pro-

vided M. uneguals zero. This means that the normal acceleration vanishes at
the surface of the eircular planform, except in the points of the edge of
the wing.

In order to obtain an exact formula for the normal scceleration at the wing -

_ surface, including the points on the edge, we shall assume for a moment that

_ is a smallcpositive numbder.
Moreover it can be stated that; within the scope of .the linearized theory,
terms which contain second powers of the derivatives of the velocity poten-

tial § , may be neglected in the expression (2,6,25).

The normal acceleration can thus be approximated by

q‘(t-/.l-").‘ ,: 2 /u' -

A ~ LA J 2U cosV P (Ou, V)| +
A o U*‘_ i
n,

- - [u_ (1-};.) stV - 2U\/ 1-4 st @a (O/U-J)]
(N e (2,6,26)

. Before reducing further the formula (2,6,26), we congider the function

2 |
A ()= - (2,6,27)
Praky |
We note that this functlon Al u, q) satigfies the relation
/ A (A1) dpt =1 . (2,6,28)

In order to mvestlgate the properties of A (j.c 1}) in case Mo and/u. tend -
to zero we rewrite the function in the form
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5(2,6,’29)

This formula (2,6,29) shows, that if we put u equal to zero, the function
AL}L11\ increases strongly if 1, tends to zero. On the other hand, if '
A differs from zero, and 1, tends to zero, a(Mm,n,) converges to zero.

CA(un)s mn o
TelT W, 1+(¢H.'

We thus see that #EEO a{u.m,) is a “"function" whose integral always equals

unity, whose value at w0 increasea toward infinity and whoae value for
AL£ O converges to zero.
‘Therefore we may conclude that

Lim ' . 8 \ . ‘
8(u) represents the deltafunction of Dirac,
Furthermore we calculate now the derivative.of the function A(}LJLJ

a(pn) = ALY,
-o,u. A ( A i) (2,6, 31)
If the function +( ) is an arbitrary, differentiable function of the .

variable u , we can wrlte down the relation

/ So () F () s fa()u. odu + (2,6,32)

If tends to zero the right hand side of (2 b,32) tends to the value
- @3 -This fact expresses that the "functlon"
Lim o
Tl-—bO 'D’A,I.
iunctlon.
Thus we "have

AQ}L ' ) can be identified with the first derivative of the delta

Lim 2 M'Q 8(
- =d(m) -
W0 T (e pt) - (2,6,33)

Taking now the 11mit'n;—p0 in the formula (2,6 26) and applying the
relation (2,6,33), we obtain the following expre331on for the normal acce-
leration at the circular wing surface

M
o pa i & (u) (w)[-_— U cos* -2 U cos §,0, J)}
# o (o o

or

o = T U cos* V'8 (uy -l cochD CYTIRIEDT: 3(’“) " (2,6,34)

This expression for the normal apceleratlon corresponds to the complete field
of flow around the circular aerofoil. In fact we are interested in the normal
-acceleration, which corresponds to the disturbance part of the field of
flow. . This quantity c¢an be found in the following way.

The acceleration vector corresponding with the complete field of flow can

be resolved into two vectors, viz. the acceleration vector of the undisturb-
ed flow and the acceleration vector which corresponds to the disturbance

part of the flow, If'vh denotes the normal velocity at the wing surface
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of the undisturbed flow, then the corresponding normal acceleration is
d.\r“ 2%

dt %
of the ‘disturbance part of the field of flow becomes

a, =—u.2 cos® T § (}J.) ~tileos VP (0}#3) \/1}.1- BOU')_

or in terms of the perturbation normal veloolty\#

“n 2 W2 cos® J X()- %uwsJQ}L(O)LJ) \f1-p —S—g"—*'u ox (2,6,36)

Equatlon {2,6,36) gives an exact formula for the normal dlsturbanoe
acceleration at the wing surface in the linearized theory.

In the next section this expression (2,6,36) will be used to find the
connection between the two acceleratlon potentlalsly and \r”

given by. . Thus the normal acceleration at the wing surface

?r (2, 6,55)

1 The identity of the two acceleration potentialswy andivu.

ThHe starting point of our considerations is thé expression (2, 6 ,35)
for the normal acceleration ap at the wing surface. We remark that the
expression for the normal acceleration does not fulfil the.condition that
the second derivatives be continous, which is requlred for the applicatioh
of the formula (2 3, 25) to .evaluate the corresponding acceleration potential.
However, it is perhaps possible that the conditions mentioned may be weaken-
ed without affectlng ‘the ultimate expression for the potential in. terms .of
its normal derivative at the boundary. In fact Laurent Schwarz's distrib-
~ution theory has given the possibility to formulate several clagsical
theorems of the potential theory under less stringent conditions. Halperin
remarks in his abstract of the distribution theory (ref.6) that Green's
theorems retain their validity by replacing the functions with' the usual
conditions of continuity and differentiability by the so-called distri-
butions, e.g. the delta function and its derivatives. ‘
Therefore it seems admissible to insert the expression (2,6,35) for the
normal acoeleration at the wing surface into the formula (2,3,24).
We then find

2 41

X ()= j/ gk T3+ 7 W eos 3#15"(){1)*
-l s B, CYIRARY I E‘(ﬁ)} Gd ., d
M

=_/_1/ u %‘%1@ (Tll/u'l.){;}l‘!'qj‘]’))lﬁ du, d“j; +
o -

af ;
+j U cos @M (0.0.31) G/”'1 (q,)J.,J'; 0,31) du,
0

21 L
ﬂ,mni/ s, 3, (00.9)G, (0,49:0,7)dY, - (2,7,1)
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The function?y represents the reg-ula.r acceleratlon potential wh:l.chu
u"ou?‘

corresponds to the normal acceleration aq . _ ‘ ' (

We shall now prove that the function X is equal to the acceleration
potential y* =1l 'U«IJ .

For that purpose we conslder the difference.of the potentials xp“ and X :
ar .

WX = y-y- U j cos.\'wﬂL1 0.0,%)G,, (n.}w 0.3’)d-.7 |
(2,7,2

In order to calculate the integral in the right-hand side of (2,7,2) use
must be made of some formulas which will be derived in the neéxt paragraph.
These formulas read as follows

anw

. 1—

Mm% G, (s 0.0)dY, so ko T cos Y
6/C°S 16}*1 (1?1 |0| ) 1 ™ +'I‘l \/-—1;;-1——{111 ¢os ™M

g (2,7,3)
an | \ g o8
b/ éin m, C-i/u1 (. 9; 0, )d.J ﬂ/‘*’*ﬂ. \/1—’?’“‘ ——sinmy .

m

Now let us assume that the expression €0 J é (0 0, J) can be written
in the form of a Fourier series

Z L éés n, + i Bostnndy (2,744)
=0
Thenthe integral in the rlght -hand side of (2 ’( Z) becomes
AT
TI:LI__[ cos (OO 1)C-', ('Q,/u.,«)' 03)01\7:
M oo \/1_ " \VA o |
=-U-— Zac“__é_"___; cos nd ~U —— Z]%n 5i.nn'q' (2.7,5)

MET oo \Vaen? Py nat \/ wqt

It will be immediately clear that the difference potentlal'qr“-x vanishes
forp=0 and N#0 .
In the points of the edge of the wing, i.e. for \lem=0 , VWe have

Lim x

o [vropn-xoud)

Lim

,u.—-o [\P‘ op,9)- v(O/uJ) nujcosJ 3, 009)G, (O}L‘J QJ’)d_J]

o (W2 N s 2 ]
AL

=-U cos J@»(o,o,a)\»uf: o, cosndell 5= B, stnn¥=0 . - (2.7.6)
n=0 :
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The relation (2,7,6) expresses the fact that. the difference potentiel

'qr X also vanishes at the edge of the wing. Thus the potentlalv" XVanishea
for 4= 0 . Furthermore it may now be concluded that the potential y"~-Xx

is ‘a, regular solution of Laplace 8 equation in the whole space ineluding

the edge of the wing.:

Because of the unigueness of the regular solution of the Dirichlet problem
we thus pay identify the harmonic function 1'r..x with the zero solution in
the entire space.

In this way we have proved. the important identity

[ 41 .
w-"(n-ﬂﬂ)-v(m».«?)ﬂru oj cosMM(O.O.J,)GAm.p,J; 0,9, ) dv, o)
or
w jj wG dx, d.h -U j qu dy, =
.'n:LLj cosm (oo,é',)cw (q,,;,a 0,9, dV, (2.7.8)

Pa.rtial integratlon of the second 1ntegra1 in (2,7, 8) transforma this
identity into

{/w o dx; 4y, +{/ur-.%%dx1 dy, =

+

-3 S

S | |
=t f con Gy, (i 0.9, oj{ Wy 96, 00y R il
. This relation (2,7,9) can be rewritten as
S [ 3] e
=T ff e G ) %/msa G, (q,uJ 0,96, (00,3 1 ), -
2,7,10

The last relation holds for every downwash distribution w (x, ) . Hence

we may conclude that the identity (2,7,10) remains valid by omission of the
integration over the wing surface.

Thus

2% ox

24, 'Bﬁ-“o/cos*Z,G»,(’Iy“J:0:“73)%("'0-'7;;/“1"71)&‘2' (2,7,11)

8 Determination of the Fourier coefflclents of the function

Q}H M‘IJ__

In order to be able to evaluate the Fourier coefficients of the

function %,fh]}‘_ .0 Ve start with the derivation of the following theorem:
1

If u and 2 are arbitrary real or complex numbers not situated on the
real axis between -eo0 and +1 and if the inequality
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:E;“_(uz_.l)‘v!‘ < l,u. (Z"-‘I)W l holds, then the exﬁanaipn

9™ ) |
(21)u 2; 1%“” 5(&1\4-1)%1’ (w) Q (%) (2'3'1)_

is valid.
In the case M=0 , the expression (2,8,1)déggnara.tes to the well-known
formula of Heine, viz.

*z—rw 5; (2n+) P W) G, (D (2,8,2)
for IU.’f(U— 1)1#' |z+(z’-—1)wl :

It is known that the associated Legendre functions - P'n. (x) &and
Q (x) are single valued and regular in the- ¥ -plane, on ‘the condition -

that the x -plane is cut along the real axis from +1 to ~oo -
We assume that the following relations hold

larg (x| <™, farg z] <™ (2,8,3)
and

(;’-1)‘ - (2-1)‘ (z+1)" .

For the proof of the lemma we start from the known recurrence
relations for Legendre's associated functions, viz.

(ar+1) uP" (W) - (r-me DB (W)= (rsm) Br, () = 0

m m
(@renzQ @ -(rme) G @-(rm) Q. () = 0 (2,8,4)

-y m
Multlplymg the first relation with %—%TQP(Z) and the second one with

LE"—‘% P (u) and subtracting th_ereupon the two relations, we find
@r+) {H;%, (2- u.)P (w)Q, (z):%%‘- {Qm (z)P w- ,.H(u)Q (z)}
b el {Q @ P (WP, (W Q) (z)}

(r+m-1)!

Hence, by giving pr the values m ,M-1 , M2, +e.eqy, Mtl, m and summing we
obtain the expression '

n n .
(r- (r-meq) | m
r‘?’r—ﬁ (ar+1) rF (z u)P (u)Q (z)- = —————l—" il {Qm (=) B (w) +

™ (rem) '

m m n
(r- )! m m m m
-P,, W&, (2)]+§n T {a,.., @WP W-P_ (WA, cz>} =

.z e {Qm(x) (W-F,, (Wa, ()
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n-1
* r:-;,.-,, L(_inT—“)_l {qr P ret (W= p (u) Qt‘ﬂ (z)}

_ ,
- %1’;,;—%' { 0., P w-r, W q, (z)] v

1 m ™m m m
* Gm-1! { Qay R P (W-P W) @, (D }

(2,8,5)
From the defln:.tion of the Legendre function of the first kind, viz,:

P;n(u.h,(u.“-d) | aMRW

it follows ' ‘ ' |

" ‘ o IR/ d"']s (u) .

P, Ws0 and P (wa{u-1) — = (2,8,7)
With Rodrigues' formula for the Legendre polynomials

1 d™ g . m .

we find easily

™ (am)! |, 2 ™2

Pm(u)= 2mm! (U. 1) (2,8,9)

: m
In order to determine an analytical expréssion for the function Q z)

?e use)the follow:mg representation in terms of hypergeometrlc functions
ref.2

, -¥2-v2y 1
e AT @)= z“°V?F(1+%*»)§=“*‘> & T(+5)
F YR+ Y23 VR4, TR+ 12Y + YRAL; 94 32 -1 (2,8 105
1-2" 7

In this formula 11: is assumed tha.t

lo.rg (z+1)| <™, )a.rg zl <T ,

(2% 1% (2-1)% (x+D* and ]1-—2”‘ >1 .
Putting 9=m-1 and Lem, we get

e "m"‘Q;‘_, ()=2""VED @@m) (::’-1)'W 1

1
— PO, m;m+ YR; —
M(m+¥2) ( 1-13)

or : m . m. - I"(ﬂﬂﬂ (Z ) ‘72 .

- o
Q. @= 0 2VE s (2,6,11)

As the left-hand side of (2,8,11) is an analytical function of x throughout
the complex plane with cross-cut (-es,1) , we may conclude from a well-
known theorem on analytical continuation that this relation holds without

the restriction |1_za‘ >1 .
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Insert:.ng ithe relations (2,8,7), (2,8, 9) and (2,8, 11) into (2,8,5) we get

!
' Z (ere ‘) E;Jr‘:.))n (&~ ”-)Pr CY Q r )= % [-QTIH &) P’ﬂ (u.) - B\H Wy QTL (z)

1™ rem 2™  @ml o ™
* (am-1)1 -1 2 ﬁm(z Dj | m(,uﬂ) =

- me)! %
=%T_T:—;_r {Q'ﬂ.ﬂ(z)P (w)-F, nH ('-1)0 (z)] +(E-D" —((—L}—*D)—-r%— ~(2 012
' y8,12
We thus have found the relation
1 ! m
E}m (ar+1) %%OY W) Q &= 54 (l({:%:)lr {QnH(ZJP (wW-P +1(“)Qn(‘) * ‘
+-——2— NCDLa (2,8,13) |

0 )™ |
We shall show now that the first term on the mght-hand side of (2,8,13)
tends to zero whenm becomes infinite. In order to find an estimation of the
above-mentioned term of (2,8 15) for large v%‘lues of n , use can be made of
Laplace's definite mtegral expression for P (W) y notably

m

P (). Fms) j [LL+(U.’-1) costJ cos mt di . (2,8,14)
" wl(nen) 5

Ifn andm are positive integers, this integral representation is certamly

valid for all va.lues of U outside the cut-es<u£+1,

It can easily be seen that the maximum of the expression

1 1 ,
ut(u’-1)/‘ cost\ is lu+(u‘.1)/‘| throughout the intervalO4t< M . With the
aid of this estimation it may be concluded that )
n
ws (U 1)/x }

}E‘m(u)] < ['(nem+1) ) (2,8,15)

F(n+1)
A similar formula can be found for the Legendre function of the second

m
l(ci-nd Q.(x) . To find such inequality we start from the representation
ref.2)

imT m r'(1+n+m) ™E  jent-T ooy . 3 ' 1
Q @ =" V2 m(z 1) F(Yoem, ftnem;Hen; )(2 6.16)

where ML denotes z+(x* 1)/
This expression holds good throughout the plane of x , with the exceptlon
of the interval on the real axis of x joining the pointg-e2,+1.
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We thus have

(m o) (1+n+ m) 1'.

V——v 2~m |"(1+m-m) A 1' %I “(1+M'm)

p(%_ n) 1.(ne¥R) Mz
(m+ %) (m+2R)(men+) (mene2) L
1.2 (n+ W) (ne %) | S
- . (2,8,17)

As the integerm never exceeds n, we have

v Fanem) (o WO | (-Genemd | ooy & x*
Qn(z)l < Vi 2™ ;(:?;’:) 1) wl (14n+ 1+ (ma¥2) L‘—-"l_i +(m+1,§)(m+%)_'ﬂ.“_+,__._

SV |"(1+~u-:-vm)(z )"% [JHI ~(1#n+m) Fmah ;

P(%+n) M*)
or
- 2 L am-
(z>| VE a™ T(anem) (2t ’% | }4 {1+ n+m) (1-—5) m-% ' |
M%)y " ) : (2,8,18)
provided thatl | >1 , which is the case for all points z outside the '
segment .]om:.ng the points +1 and ~1 on the real axis of z .

m
From these two estimates for El(u.) and Q (x) we conclude

-me) -me)) T om
" [ S e | Ty e B
2 /] Ya -(‘fn*-m)
4] * Javt o )™ |
(2,8,19)

Using the well-known Stirling formula for the asymptotic behaviour of
the gamma function it can be easily seen from this inequality (2,8,19), that

emedt | ()

(naem) !
converges to zero when n becones inflm.ta, if

u+ (- 1)1‘&' < lz-l- (2*- 1)]/'"

n+1

Similarly it can be proved ‘that

(n-ms1)!

(n+m) t

converges to zero when M tends to infinity, subject to the same condition,
The conclusion can now be:made that the right-hand side of (2,8,13) tends

(= ™ (ux_ 1)")/2
- (zs,_‘)"y,g

w) Q (Z)I

'I"l+1

to , whenn tends to infinity, provided that !
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l Wt (u2_1)yﬂl < _lz‘.(l—ﬂ_;‘)% ‘ .

So we obtainﬂ the formula

1™ [

% (2\"‘"1) %‘%% P.':(LL) QT:(‘:) = Z-LL L\
r=m (z-1)"" (2,8,20)

which had to be proved. .

In section 4 of this chapter it has been shown that the expansion in
‘geries of Green's function G is uniformly convergent for all admissible
values of Moy Sy ,«71 and form situated in the intew318§q§R s wheres
is an arbitrary small positive number and R is an arbitrary large positive
number. The equations Med and =R represent two confocal oblate spheroids.
Thus it follows that the series expansion of the function § is uniformly
convergent in the c¢losed region which is bounded by the two spheroids
mentioned. Now use will be made of a theorem of Harnack (ref.8), which
reads as followa. ' : :

Let H be any closed region of space, and let !.l.-1 ,le,u.a,.... be an in-
finite sequence of harmonic funciiona in H . If the sequence converges |
uniformly on.the boundary S of H, it converges uniformly throughout H and

itg limit U is a harmonic function in H . Furthermore, in any closed region
H', entirely interior to H ¢ the sequence of derivatives

' i+}+

——L-o—-?——! uT\. ] ‘!1.:1'2,5 » 4 s ]

X oY DX

t ,j- and & being fixed, converges uniformly to the corresponding derivative

of U .

With respect to the function'§

oo et (em)! 1 m Qn(i.fn : -.
G2 2n Tam e g WOORIM T cos m ()
we put | . ) |
n 1 m . m Q_(in S
W « 12 (em). A PP n c05m(3-«7) .
3 T R R SR et

(2,8,21)

In the closed region H bounded by the spheroids 11.3 and'q.-.R , the
functions U, y being finite sums of harmonie functions, are harmonic.
Moreover, thg seguence IJ.1 ’ g v Uz ...converges uniformly to the

,function,__G throughout the entire region H . On ground of Harnack's theorem,
we can now decide. that the sequence

*a-l.ll |
-D}l- }LHD
‘convérges uniformly to the function E}%—] for all allowable values
M=0

of/ ’ J ’ J:I__and fory lying in tl’;é interval 0'<3§q<eo;
Thérefore we have proved the formula
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S ,m
- Q, (i)
3&] o am Gt o Ty Tl s -0y
T T 1 e )"‘1 (I ikl PN

l:'?jd- ).\--0 %{) 'm.z- : (hem) 1\(0) S I (2 8922)
In order to Bimpllfy the right- hand aide of (2,8 22) we conaider the
ratio . ‘ _ o

(LO) ' o

Using the relations (2 4, 3) and (2, 4,4) the expression Q (i0) can be

written in the form :

Qm.( ) Qm+1 [) ( )ﬂ?-ﬂ m! CDSR-(‘MH)LL du .
)= Q. (i0)= (-1 — ) —

n e s SR (r-m-1) 5 (cns'ﬁu.““

‘ (2 8,23)

Puttlng e%. ¢ , the 1ntegral in the right-hand. side of (2 8 23) can be re-

placed by

m+'n.+1 T m+n-1

COSR (m+1) 4 du. g™ x d
f (cosﬁu. (cosR W)™ '/ ( "‘) T

The su'bsti'tution e %o yields

oo . ‘ 1 _—
j C.OSﬁ,(mH!u. d-“--z“j xm+n+1+x m+n 1d,x .

; (C;OSK u)'nﬁ (xa+1) nH
H
ence co m+n+1 - M+N~1
cosk (MU 4, om1 / x
(cosR @
0 (cosk W (:c +1 "“" (2,8,24)

' The integral in the right-hand side of {2,8,24) can b‘e e‘:\cpr'essed in terms
. of the beta function by aid of thf transformation

Y= i
This tranformation yields aiter some elementary calculations
ﬁ( 1) m+'n. smen-2 T -nlin-z m;n
COSh(m+ 44 'n -2 v -2 '
./ -n+1 ./ 'ﬂ' Kl (1"4) - dyer” j % a-y) © dy-
(cosh w) 0 . :
Y (2,8,25)
Using the definition of the beta f‘uqction, viz.
B (», c;)=j xP 1) ¥ N
the expregsion’(2,8,2%) can be rewrltten in the form
cosﬁ(mn)u. d n-1 (’m+'n+2 -m+n) :
we 2R (M ' . ' (2,8,26)
| ‘/(cos% u)nﬂ _ 2 b
Inserting thls result into the relation (2,8 y25), we get the formula.
. Amonel | 2 ~men
Q (m) (_1)—-—2——- ™1 n B (mq-nf ’ ) .
(‘n-"rn-1)| 2 (2,8,27)

On applying the well known relatlon between the beta funotion and the ganma
-function, v1z.

. IENCING)
B(P.q,) b(q,.‘P) Y o (2,8,28)
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the expression (2 8.27) finally can be transformed into’

ol N U N o s il e e I

Q @@= 60 % 2 P [ (2,8,29)
In order to obtain a similar expression for the quantityP (0) ,

we consider the definition of the function 'P (z) , where X is a point

not lying on the real axis between ~eo and +1 , This definition is ex-
pressed by the formuls

Pl - eﬂﬁiif (2,8,30)

. m
If x is a point on the interval |x|< 1 , the function B (x) is defined by

m I .
P (=% [elﬁz tm T 1%‘:“1(:@i.o)+e'1/‘2 tmT P:l(x-io)] _ (2,8,31)

m
where 1:1’1. (X#i0) = Lim Pm(x+t_e)
£—-0 n —

£E>»0 o
Replacing z*-1 by (jl--ac1 efTt | according as Z=x+10 , equation (2,8,30)
yields . '
m . d"P () . d R ()
'Pn (x)=_} [etmt(.[_xz)% _d._.:m_ +e Lmﬂ'(,l_xZ)% ___&_%.n__ =
m
R, -
m amp 4k o .
=(-1? (1-x7) _d:cT (2,8,32)
Differentiation of this formula (2,8,32) leads to
- R (x
(X)" (JC) D™ ' mx - x)wi ! —“—(—)4-
dx™
d'm”R\(I) .
+(—1)m(1-x1)% _ 2,8,3
Putting x. 0, the formula |
T
1 . .
pmco)ﬂ_pm"' (0) | (2,8,34)

is obtained,
With the aid of Rodrigues' formula (2,8,8) for the Legendre polynomials we
easily derive

Mg g
E,_ @ = -('-—:—n-—';i (1-33) W(x L (%;8,35)

If Rem+1 is an odd integer, it is directly clear that P (0) equals zero.
We are, however, more interested in the case that N+meq is an even integer. :




For thid case holds

me me TAMAT
-1) Lim & 'y
P'n. (OJ —Rﬁ:ﬁ Xl dx’“’m” G 1)

‘iﬂ#m+1

( 1)m+1 lim an_ (T{.)xﬂﬂ--ﬂ +

211‘“’ X0 dxm-mﬂ .
. -m-1 . _ _ -
o (_1)1‘——2— n-r;q) LA m 0, e
(-ﬂmﬂ ( 1) ( ) (n+m+1)‘ .
a8 (-
v - (2)8a36)
By elementary calculations it can now be derived
m! ‘
R© (gm  mmet, _2_m;n_121 . Pla-m) - m
W == () (n-'mﬂ (neme1)! (1) min+d e\ e & n T
Q G0 =2'n! ( 2 )r( x)

(2,8,37)

if m+4m is an odd integer.
Insertion of this result into the formula (2 8,22) gives

'DG oo ' 1 - m m "
H - s mg e el o “-(»n%(wmm(%%){-z o

}L )&so =0 m=0
We. have already proved that_the_series in (2,8 ,38) is uniformly con-
vergent for all values of M, ’ J J . and for'rl in the 1nterval 0<8é12<ao-
Hence the following termswise integratlon is allowed:

o o
f cos mJ[%GL] . ava E' A Mol ((?:1'2)1 (/;,)Qn(uu s Y, -
0 » | (2,8,39)

The prime again denotes thatn+m must be an odd integer. The evé.luatlon of
the series in (2,8,39) can be performed by application of the theorem,
mentioned in the beglnnmg of this section. The formula (2,8,20) gives

( - ( ) (1 }* % ] i
n_m ! P . . N - -1 1
E m: @n+1) —)—(mm)! > (. + 10) Q.a (in) i, c - 1)"%

and similarly

()"
(n-m)! P
Encm”) %p (uy- "°)Q (tn)= Tq)-,u., (_nx_o‘W'—'

Thus according to the relation (2,8,.31) we get
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e Cem)t g L
I 00 TR Qe € '-’WH s (2,8,40)

Replacing in (2 8 40) the varlable)41 by /“ﬁ , one obtaing the formula

o9
3 anen & = anan et A Gy & -
-“}h"n:i. *)% _ . ‘
MUy (Hn’)"y‘ .  (2,8,41)

Subtraction of the relations (2,8,40) and (2,8,41) ylelds

S Gney LT AR Q, ()=

N=amm '
Cgymm
te AL (_"&ill)_wi [L ! ]ae-””mt My (17‘*:)A
| rent) ™ DL i-'l*)h' T, 2 Y
(o' : Al el
Hence the formula (2,8, 39) ecan be wrltten in the form
: . 1
'_/‘cos mﬁ[%—} : d.Jg-_". .l £—}i)ﬁcos m, . (
T P TR A o) 24043)
Iﬁ a quite~similar way it ecan be proved o
2\"Va
. 1-
_/ sin 'rm" -D;"] d\?.—.-%t :L1 3 (/u:).,% stn m71 . _ ,
ey et (en?) (2,8,44)

From these two relations. (2,8,43) and (2,8,44) it may easily be deduced

that the function Fggﬂ can be represented by the Fourier series

oM M=0 s
-aq : . _ PAWE
[’Dﬂ] .= - 1 /2“-4 . () cos ™Y cos m, +
Mz0 m=0 Em‘ﬂ: M +Q" (1+722)1%
%
Ay (4
+ Z L ( }‘;),,yg sin my sin m:)'
ma & Al (¥ | + {2,8,45)

This formula can now be simplified as follows
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| e (Y™ N
P&} = M )*;)m cos m (Y-, =
VMo m=0 g’ 1t Mi-\‘l (1+Q

o - PR .

R (1-»?""’ M%) -in@-3)
M0 ‘Em"‘a )™ e (2,8,46)

The last series, occurring in (2,8,46), can be considered as the sum of two
convergent geometric series, whenn or u differs from zero.
In these cases the final result appears to be :

-
P . L

[39_ My

1
M uoamt (1ud)-2 el Virn) cos (J'-J;)+ (1+0))

(2 8,47)

In the Appendix this formula (2,8, 47) will be derived from the closed
- expression for Green's function.

2 Determlnatlon of the final acceleratlongpotentlal.‘

In sectlon 5 of this chapter we have shown that the veloc;ty potential
$ , which fulfils the condition of a prescribed normal velocity w at the
surface of the wing; yields a pressure distribution over - -the wing surface
that is infinite along the whole edge of the wing. Furthermore it appeared
that the acceleration potentialy , the existence of which presupposed a-

normal acceleration_U;%E;vat the wing surface, gives a pressure distribution

.over the wing surface, which vanishes along the whole edge. Nevertheless
none of these two pressure distributions agrees with the actual pressure
distribution., In linearized aerofoil theory it is always required that the
flow over the wing satisfies the Kutta condition, which implies that no
velocity discontinuity occurs at the trailing edge of the wing. In terms of
the pregsure dlstrlnutlon the Kutta condition requires that the pressure
difference between the upper and lower side of the wing vanishes at the
trailing edge.

- The ultimate phys;cal problem thus can be formulated as follows: It is re-
quired to find a solution of Laplace's equation, which satisfies the con-
dition of a given normal velocity at the wing surface, which furthermore
yields a pressure distribution over the wing surface that vanishes at the
trailing edge and which finally possesses a singularity at the leading edge.
In order to obtain a solution of this physical problem we can add to the
acceleration potentialy a solution of Laplace's equation, which does not
contribute to the normal acceleration at the wing surface with the exclusion
of the points of the edge and which vanishes at the trailing edge of the
wing, but which possesses a singularity at the leading edge.

Such solutiong are given by the integrals '
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AT (1 /'Lt)‘%

I.').-/U..l (1+ )1!!/,_ .“ ' 1238’40)

n_m) ” m

.Em aned GERR Gu) G i) £

Replacing in (2,8,40) the variable).g‘ by Ak, s one obtains the formula
L=~ ]

S ey i PR - z o) Lo e 7 (L.

nam
e 2 "" ("')“:)%

gj + . ) . .
VM eg?)™ o (2,8,41)
Subtraction of the relations (2,8,40) and (2,8,41) yields

Z (an+1) L(m > () Q (l.q)..

NamMm
: . 2\"R [ ‘ g (1 -1)"'/;
L 1e ™ (1-A_k,) : 1 ] se AT 1 Akt
=LA : = * R
2 (1ent) ™ ‘1/"‘1 peu, ﬂ_’:ﬂ!a (14.11‘)% (2.6,42)
Hence the formula (2,8,39) can be written in the form
L8/ S
. 1
/‘°5 mﬁ[ ] R e Lﬁ")@?“’s mJ, . (2,8,43)
J120 /0.1“1 (1+q) 18143
In a quite similar way it can be proved
: 1) | .
_/ Sin my |2 = } dﬂ':-—-:-t ':H 3 (/u;)'% sin -m-3'1 . R .
Jhs0. Mien (1+0?) o ‘ (2,8,44)

From these two relations (2,8,43) and (2,8,44) it ma.y'-egsily be deduced

that the function [ﬁ] ~ ‘can be represented by the Fourier series

-D}" }L:O ’"y
‘DG . 1= 1 x N .
[-oﬂ‘ - Z. - 1 . Ay ( ).LJ s ma. o8 ma:l .
/L’O m=0 E‘I‘I‘L ®™ }J.?.'I- Tla (1+ 122)1%

.
o A "
+Z-“i,t 112 (ﬂ;).,%sn m sin’ m{'f
Mmet T MY (1”1) | (2,8,45)

This formula can now be simplified as follows
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. Sy LA\ .
[39_] = E - ! M (1 }‘-1)‘"” €0s m.(J-J.') =
Mo m=0 Emirl p.:‘i-wq’ (1+n_")

| . ,u, ()" im(-%) ,  -im@-T)
. 2 ' o ‘ .
The last series, occurring in (2,8,46), can be considered as the sum of two

_convergent geometric series, whenm or s differs from ZET0.,
In these cases the final result appears to be

[zﬁ_] A

om0 2

(1-/)- F \/:q? cos (V-4,)¢ (1+-q )

an

(2,8,47)

In the Appendlx thls iormula (2,8,47) will be derived from the closed
expression for Green's function.

g Determination of the final acceleratlon potentlal.

In sectlon 5 of this chapter we have shown that the velocity potential
Q‘, which fulfils the condition of a prescribed normal velocity w at the
surface of the wing; yields a pressure distribution over the wing surface
that is infinite along the whole edge of the wing. Furthermore it appeared
~that the acceleration potentialy , the existence of which presupposed a

normal acceleration U.:Eg-at the hing_surface, gives & pressure distribution

over.the wing surface, which vanishes along the whole edge. Nevertheless
none of these two pressure distributions agrees with the actual pressure
distribution. In linearized aerofoil theory it is always required that the
flow%over the wing gatisfies the Kutta condition, which implies that no

- velocity discontinuity occurs at the trailing edge of the wing. In terms of
the pressure distribution the Kutta condition requires that the pressure
difference between the upper and lower side of’ the ‘wing vanishes at the
trailing edge.
The ultimate physical problem thus can be formulated as follows: It is re-
quired to find -a-solution of laplace's equation, which satisfies the con
dition of a given normal velocity at the wing surface, which furthermore
yields a pressure distribution over the wing surface that vanishes at the
trailing edge and which finally possesses a singularity at the leading edge. s
In order to obtain a solution of this physical problem we can add to the

-acceleration potentialy a solution of Laplace's equation, which does not

. contribute to the normal acceleration at the wing surface with the exglusion
of the points of the edge and which vanishes at the trailing edge of the
wing, but which possesses a singularity at the leading edge.
Such solutions are given by the integrals '
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As the function of Green itself has a vanishing normal derivative at the

wing surface, it is clear that expressions of the type (2,9,1) have a zero

normal derivative at the wing surface,

Furthermore it follows from the analytical expression (2,3,47) for

e (2:931)

{%?i] that the function {Eﬁi] is only singular for'q=0 ’/L;O
}"‘I )1110 i/ )1-150
andwf:.a + Due to the fact that the integration in the expressions (2 9,1)

extends only ‘along the leading edge of the wing, the singular points of the
expression (2,9,1) ecan only lie on the leading edge of the wing.
The integral relations (2,8,43) and (2,8,44) show that the singularity of

‘the integrals (2,9, l) is of the type;r » This singularity agrees completely

Wwith the square-root singularity, which occurs in the two-dimensional thln
aerofoil theory.
At the trailing edge the integrals (2,9,1) vanish because the function 4
is equal to zero foru=0 and J#+, . |
We have thus shown that the expressions (2,9,1) indeed fulfil the required
conditions,

The complete acceleration potential can now be represented by the |
expression

A .
26
A +
¥ () uﬁjﬁ(ﬁ,) [‘% =0 & (2,9,2)
L, 1 .
2
This expression (2,9,2) satisfies all conditions stated in the above
mentioned formulation of the boundary value problem, with the exception of
the requirement of the prescribed normal velocity at the wing surface.
However, this condition of the pregcribed normal velocity .enables us now
to determine the unknown function 4 (J) .
Application of the identity (2,7,7) between the two potentials i and yr
yields for the complete acceleration potential the expresszon

u _'%2-4. 1'cU./ cosn71 @1(003,) [%—] 43+ujﬁ(3)[w] 1 .
° A0 1 (2,9,3)

The first term in this formula denotes the acceleration potential, which
corresponds with the regular velocity potential § , Consequently the
normal velocity at the wing surface, which belongs to this acceleration
potential exactly equals the prescribed normal veloclty1c(k q) « Hence the
following conclusion can be made:

The normal velocity at the wing. surface corresponding to the accele-
ration potential
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e '
o (ud)=wll fcos (ooa)[_j}] REAT RIS
0 , .

(2,9,4)

must be equal to zero.
In chapter I we have proved that an acceleratlon -potential Wy and the
corresponding -velocity potentlallg are related hy the formula

| 9 (xy, zt) jw CH AR ) ' (2,9,5)
In steady flow this formula degenerates to . |
0 eyt S ¥ (g0 ax (2,9,6)

If the normal velocity at the wing surface which corresponds to the velo-
city potential @ is denoted by w (x,4) » we have

SR T f‘*’ O, g.7) i’ (2,9,7)

It is clear that the equation for the unknown weight functlon‘ﬂ(J) takes
the form

x .
M2 E fawuase e
" D 7 ’
or explicitly 3ﬁ
Lim =
z—0 oz ./' a/’ 3 35 Ul a0 '

z‘i:lo;’z/dxjg-("[*a}x,] de‘o'

where g()= T cos J@L(OOJ) . (2,5,9)
If this equation (2,9,5) or (2,9,9) for the function ﬂQJ) has been solved,
it will be possible to evaluate the actual acceleration potential w1th the'
aid of the formula (2,9,2).

10 Transformation of the edquation (2,9,9) into an infinite system
of linear equatlons. .

L.

B

In this section it is our main obJectlve to transform the equatioq
(2,9,9) for the unknown weight function &({J)  into a system of linear
equations with an infinite number of unknowns by meang of Fourier series

expansion.
The acceleratlon potentlaljlfq, J) y Which has been .defined by the
formulas (2,9, 4), will be written here in the form

'.Q.(q,/u,J’)au.O/ g,"(a?,)cos:n?1 [-&] d.J1+ U}E-ﬁ " (V) cos V), [5}-‘“] d.171

1: (2,10,1)
2 .
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wherein ‘ . S,
¢ @), (009) and R@)-A Neosd (2,10,2) °

For shortening the mathematical expressions, we distinguish between
problems, which are symmeitric with respect to the axis of 4 and problems,
which are anti-symmetric with respect to the axis of 4 lte property of
-aymmetry designates that the given downwaah-distribution over the wing
gurface is represented by an even function of the variablel+,; whereas
anti-synmetry assumes that the downwash distribufion is expressed by an odd
function of . Deduced quantities such as velocity potential, acceleration
potential or pressure distribution retain this property of symmetry or
anti-symmetry, according as the corresponding downwash at the wing surface
is symnmetric or antl-symmetric with respect to q,. Qur problem is now to
caleculate the function &°(Y) in the range 155 L

It is well known that the functions

1, si.n.-J,' .08 23, 5Ln53, cos 44, sln'53, C°5°‘7. " (2,10 3).
L H

form a complete orthogonal set of functions in the range——<1jf-11-

2 2

Hence we agsume that the function ﬁ.(J)' can be represented by the Fourier
series

‘ﬁ. W)= Zoan cos 2 nv (2,10,4)
. . . = . . R
for symmetric problems, and by the series
x o2 )
@)= 8, sin eV (2,10,5)
n=0

for anti-symmetric problems.,
First.of all we treat the symmetric case. The given weight-function
g () then can be written into the form

g_('ﬂ') Z Cn s v . | (2,10,6)

Inserting the series (2,10;4) énd (2 10,6) into the formula (2,10,1), we
obtain

4

2 @u,d)= Ll_/ ): ¢, cosm? cos ¥, %7‘1]};:0

1

AT oo
[ d.«71+

+U./ ): a, €os ,tm? c,osa [.a)""]p;,o d31 .

n0 (2,10,7)

On the assumption that the series for'g () and %.03) are uniformly con-
vergent it is legitimate to invert the order of summation and integration
in the expre331on (2,10,7)+ In most practical cases the Fourier series for
the function g*(J) breaks off.

The potentiall can 50 be written in the form
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B ;
2 (q,p, J)ci'.l go < f cos m) cos [W‘J po dJ +
| m " _
+l.l. nzo a, f cos 2ny] cos«T [)‘ty oo dﬁ; g (2,10,8)

0G
Using thé Fourier series (2, 8,45) for the funétion [‘D ] it is easy
1

to find a similar expa.ns.\lon for the product cc.!‘.iar ‘DG .
For we have 'D)ﬁ My=0

cos o). G E 1 )-" (- )% 3 3_ J
> [%;‘_J B0 o0 € i R Gand) T 08T os

-t
"‘1— /u' (1 )% sin mwj’sm ‘rmj' <os 3
cma1 gt e

-

R +

i-y A (1R

+ 11'1=1- 2 )fﬂf (ﬁ-q’)”}i sln my {si.n Q‘nﬂ) \71 r sin (m-,1)_5;} :

' ’“(’f“) g0 M “(1-’) 5
- a /“'”l'(“'?z)ﬂm 2111).&11 mat (1+~q)m.1 s (O +

e &
(1 ,u.) cos (meD)J | cos mal- +
e !

A o [ (18 ©

' ; 60 (M) I+ ———— i )W su.nm\?
a? uleg? W3 | (g )m!_s m-) (+112)m1"5n(m+

(2,10,9)
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Introducing the expressions

. ’ - 21/2.! % . . I,I
—_l_‘.l'___}.f__ (17" c°53’=w ) ! ‘

Yol @y o ‘ ‘
En e .
- u, 4 (U*) C%(m—ﬁ T ﬁ’”—")—,m—cos me) J be v, for m-’-1"(2,1o,10)“
T (1) Gen) T \
mﬂ

_ U.a. /2“': .(Uu') sin (m-1) J+ gﬁ_)_TSi.n(‘mﬂ)J' .Iqﬁ for m21
AW M L hend) - (o) T "

it is evident that the formula (2, 10,9) can be rewritten into the form

kS :
4 COS\T {‘a).L,L_ mzo V"“m m‘?* n?n V st m'J' (2,10,11)

Furthermore it can easily be shown that the series on the right-hand side
‘of the last formula are uniformly convergent for all admissible values of
the variables 4,4, , and p , except for m=ne<0.
' Inserting this 'acries (2,10,11) into the relation {2,10,8) and reveraing
the order of summation and integration, we obtain

(v d)e Eo Eoc

"

o
\svm[cos n.\71 oS m\j;d.:fj+
0

- W
[*3
+ 2 i cos nJ sin mJ’ dd +
© M=0 mad e i ‘/
’ 3%
\  ee e , t
| N S /cos 2n.J cos my, di) +
| . =0 mz0 %_

. [-=-]
| F T Ay jcos 2nJ,smmJ;cLJ,
m= E
2

or

me0 2N

afqu-T= e c ¥+Sa ¥ i mt G (2,10,12)
NAophv/= n,oE“ n ¥a — | Vxn L4 am+1



A6
where . 3t
n_ 2 ond dd-¢
?RII.: / o5 n1 & |
T
and k] (2,10,13)
fymentt {am+2)
(2"\1'1)2 ‘1_4 nr

3 .
amat ES -
Py =1i:/ cos’zn-\'ll cos (.2m+1)~3; d.31.-.
Z

In the formula (2,10,12) the functions ‘qf do not enter. Thls fact agrees

completely with the symmetry property of the problems consldered The egqua-
tion for the coefficients a, is found by requiring that .the acceleration
potential Q has a vanishing normal velocity at the wing surface.

If the normal velocity at the wing surface that corresponds with the

acceleration potential \ffn is denoted by ‘?’n ,. the eciuation for the coef-

ficients a, takes the form
. b

’Yt'iic\ir-\-w e — s 0.
no " " “Zwa.n mein Eopan emet [0 (2,10,14)

The evaluation of the normal velocity ﬁrn will be performed in the
next paragraph. We know that the acceleration potential \?I;l has a zero
normal acceleration at the surface of the wing. This implies that the

normal velocity &rn is a function of the variable only because of the
connection between normal acceleration and normal velocity. The equation
(2,10,14) must be interpreted as an identity in the variable .

It is obvious to transform the identity (2,10,14) into an infinite system
of linear egquations by means of some orthogonal system of functions of the
variable ¢ . The variable lying in the interval-1%y#$ 41, we choose the
orthogonal system of the Legendre polynomials 'P (y) . Because of the
symumetry of the problems, we can reatrict the set of the Legendre polyno-
mials to the half of the system, viz. the Legendre polynom:l.als of even

order, P P
Multlplylng the identity (2,10 14) with 'P N0y (n=0,1,2,...-) and integrat-

ing thereupon over the variable g_ from -1 to +1, we obtain the system of
equations

oo +1
1rZ € n fw e ($) dy +% a, p::/l%:tn?k‘f (g,)dg.'i'
= -1

oo am#1 B! '
'+1%0 Pzn .[wzmﬂ?t{ @) dyp =0

for L= 01,2 (2,10,15)
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Putting : .
‘ - enj Hmd.g & |
and (2,10,16)
an ph am+1 *15 P Yd SE_
B 4 5 P e+ Z tn S Vi Bt @y Ty
the system of equations transforma into
Z 't{o.“ Z Gi Cn ‘l: 0,1,2. e . (2’10,17)

N=Q

The coefficients TF and & will be evaluated in section 12.

The system (2,10,17) represents an infinite set of linear algebraic equations

for the unknown coefficients a, . In order to arrive at numerical results

it is necessary to truncate the infinite series in (2,10,17) to get a finite

system of linear equations, which can be solved, J
The mathematical treatment of the anti-symmetric problem follows the

game lines as in the symmetric case. The weight-functions g.w)a.nd L6 are \

written in the form

g () =cos ¥ ¢* (V) =cos ¥ Z d.sin W and R(J) cos TR (J)gcosJ'ZS sin (ame)d

Nzl

The acceleration potential reads in this case

2t |
a(npuY) = u£1d fsr.n n, cos, [_%"L&, dd; +

d (2,10,18)

1

_aF .
+U Z 8. /Sm (an#) 4, cosJ[

1
or on substituting the Fourier expansion (2,10,11) of ws J j
g p ( ot U [-0}4.1] =0

?}11} }1110

: ncd @ % , e & 2 am &
afqpd=t=d_ y+> & +
@) et RT 2 e {q'am« w’"ﬂ '.'%:_1 Finer Tam ](2’10’19)

wherein

T
Q:'” ?sm (:m+1)0 dy =

an‘ T
I
and : (2,10,20)
3%
BB 4N
4m

9. = j sin 2m171 sih (2n+1)\7 d.«Ts ('1) —
1
z ‘

».\,-.-1

4m -(2n+1)
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The cbndi't:.on, that the normal velocity at the wing surface which corresponds

" to the acceleration potential.a vanlshes, ¥ields the identity in the
varlablel* S

ANy & ' .
i Z d.nw 1'2 L q, * 1n+1+ Z 2.7\1. =0 . (2910!21)

el na0 an+ :m+1

The quantity 1?'7“ denotes the normal velocity at the wing surface that

corresponds to the acceleration potential 1:(
Multiplication of (2,10,21) with the Legendre polynomials okey &) (*k=0,1,2,...) .

' 9.nd taking thereupon the 1ntegra1 over% from -1 to +1 s yields the system

ant1
w w, P + by dy +
‘ &1 d'n‘_! ' Daer (9 d"J’ Ea qun :1/ et Tada (D44
r, y _ h + P d =0
o m221 q’znn f am Tekes (B ’4} | o (2,10,22)
or written in a slmpler way ' |
TI}EO "II'{':t ‘5.“: Syt Gl“'in_ ‘&:0,1,2,.... : (2,10,23)
where , ' :
N .
- a :
o = -11’.—1/ Yh aﬂn (dy

and | (2,10,24)

Lo

a +1
T!:‘ = $anet _1j et 2&+1 ('*)d‘zl-* 7-: ‘hnn f Wom z&u P dy-

Quite similar as in the symmetrlc case, approximate values of the unknown
coefficients '&n are found by truncating the infinite system (2,10, 23) and
solving the resulting finite system of linear algebraic equations.

S a -
11 Determination of the downwashes wj, and w, .

In this section the normal velocities at the wing surface, which
corregpond with the singular acceleration potentials 'qrn and .&n will be cal-

culated. The usual method of determining such velocities is based on the
relation between acceleration potential and velocity potential as indicated
by the formula (1,3,10). This method will be applied in the second part of
this paper, which deals with the unsteady problem. However, in the steady
cage it is possible to evaluate the normal velocities mehntioned by applicatim
of some formulas from the ordinary lifting-surface theory, in which downwash
and vorticity components are connected by an integral egquation. In this ap-
proach to the lifting surface theory a three-dimenslonal planform is re-
presented by a vortex sheet, which covers the proaection of the wing onto
the xy -plane. The pattern of velocities induced by this vortex sheet must
fulfil the linearized boundary condltion

Wa ‘.—%zi- for z=0, (J'C,I.}) ing, (2,11,1)

!
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where 5-denetes the projection of the wing surface onto the x "-plaﬁe-and
zgzcx;t} is the analytical_representation of the surface of the wing.

The vorticity vectmr?rle defined as the vector product of the unit
vector normal to the vortex sheet and the difference vector of the veloci-
ties just above and below the vortex sheet. The components of this vector
i
Y can be expreeeed in the perturbation velocltiea, viz.

(-a v) =u.-u. ,Y—o | o - (2;11,2)

where W is the velocity component in the direction of the x -axis and ¥
the component in the direction of the y ~axis. The + sign denotes the -
‘upper gide of the xy -plane and the -gign the lower side. The vortex lines
of the vector field Y are defined by the requirement that in every point
the tangent to the vortex line coincides with the vortlclty vector Y in |
that point,

The equatione (2,11,2) also furnlsh a simple means of expressing |
quantitatively the continuity of vortex lines. .
For, if ¢, and §_represent the values of the disturbance potential Just |
above and below the vortex sheet, we have

Y, 13 i&Y
A ___.'i: ! (u. u)_ Ty (\P+ 0)=or (u- v_);- x
or
oY, oY,
S (2,11,3)

A close examination of the vortex pattern shows that the vortex eheet cannot
“be limited to the region S alone. If it were, the vortex pattern would have
to consist of a series of closed rings according to Helmholtz' law. Inte-
gration of (2,11,3) over the wing chord at any apanwiee station of the wing
then yields x

t oY,

f _!‘ ='/ 'ox""Y (xg.4)-Y, x4, 4) (2,11,4)

o %y
wherein Xa X (g.) represents the leading edge of the wing and x= x4 (Y ) the
trailing edge. The right-hand side (2,11,4) can be put equal to zero. The
condition of zero¥, (%y,y)  and Y, (x, g,) is justified when we assert that

all integrations over § extend a short distance beyond the actual wing edge
into the region of zero vorticity. Thie artifice is completely consistent
with the analysis given here.
The 1eft~hand side of (2 11,4) can be reduced as follows:

f | d"*a;f Yo=Y (¢.4) dg"'vg, Gy q,) d.g

Xy

"EI{ Yq"""?ﬁ;’ - (2,11,5)

‘where F( ) is the circulation at the spanwise station Y .
For the second equality in {2, 11 ,5) the same reasoning holds as above.
Thus we have the relation dr
4 - (2,11,6)
or in other words, the circulation F(g) is a constant over the span of
the wing. -
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Because at the tips of the wing the circulation falls down to zero, this
constant must be equal to zero. We can thus say, that if the vortex sheet
were restricted to- the projection S of the wing onto the xg.-plane, -the
wing could not develop a Yift force. .

The need for a solution which gives a non-zero 1ift, requires.that the
vortex lines somehow extend away from 5 to infinitye Since thé vortex
lines have their source at the wing, the only direction in which they can
move while still obeying the rule that they must always be attached to
the - same particles in the open flow, is downstream along the wake.

To be. conslstent with the idea of small disturbances, we therefore assume
a wake region S' which lies in the xy ~-plane between the downstream pro-
‘jections of the wing tips, and we fill it with a vortex sheet having vor-

~ ticity components Y, and Y% similarly as on the wing.

The condition of zero bressure'discontinuity scross 5 implies that the
vorticity component YH’ must vanish in the wake._

It then follows from equatlon (2 11 3) that =0 everywhere in'S' or that

Y; is a function of y only throughout' the ‘wake.

We congider now the vortices contained within a small rectangular .
element dedy of the sheet, centered at (x,4y) and in particular the vertical
velocity dw induced by them at an arbitrary spatial point P(x,,4,,%,) .
Therefore we apply Biot-Swart's law, which states that an elementary length
d.x. of a vortex 1:|.ne with vortlclty-strengthY induces a velocity

‘ darm 'J'. (2,11,7)

at a p01ntF9 loceted a vector dlstance r from ds . The direction of ds must
be taken such that the circulation Y is positive around it, in accordance
W1th the right-hand ‘rule. The scalar form of this law reads

d_q' .X_s_"ﬂ_& ’ . . (2,11,3)
_— 4T n? '
where denotes the angle between r and the celement ds .
Elementary calculations show that the total velocity due to vortices within
.the rectangular element dxdyis given by _
dwz + YB- (x-x5) dxdy - _ Ve (4-4,)drdy
—3

: ‘ . —3
- Y N, R V 2
ar Veexyfs (y w47 AT NEX e gy ey (2,10,9)
To calculate the effect of the entire sheet, we simply sum the elementary

contributiong by integrating over wing and wake regions.
We find

Yq (=% )~ Y (4Yo)

w (IQ' g‘o' = ‘ITE jf

=3 d"d*}*
V(:c x°)+ (l& Yo +z ;

Y (8"‘*0)
V(x" o) ('ﬂ‘ 'i,

- 3 dxdy . " (2,11,10)

o //
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We can now construct. an integral equation by letting =z, _ approach zero,

while the point (Xo1Y4,+0) belongs to the region 5 .

In the limit the singular integral over the wing S assumes a pfincipal

value, analogous as in the two-dimensional case (ref.l7)
Ys_ (}I&'Yx(u’g‘h
3 —dxdy +

w (x

2o ’+£1T‘:lf

TS e e (4o
' f 'Y (§-4)
4T : 3
" §' \/(x-xoyﬂ(q-go)“.

dxd.t&

(2,11,11)

Let us now return to the circular wing. In order to express the wor-
ticity component Yx in terms of Yg' y we consider a strip dy of the wing

as indicated ing'figure 2.

Due to the law of conservation no vorticisdy
g - =~ - tan vanish within this strip.
] This fact expressed mathematically reads
—— - d.g.
' » | | |
fig.2 a2 x x
D
VAR dx-—[ VARAL o [ Ydxdy | -Y.dy-0
~ -yt -\}M‘;‘ - -y
: °
or Y=~ oy Y.é dx (2,11,12)
=\/1-yt )
Hence for a point »« in the wake one has
+ \fi-y®
Vea~oy J Hdx . (2,12,13)
Putting x
e ATHEN !‘ ¥ dx (2,11,14)
we can write = V-
o (x,
Yr'-f“';—l*)‘ and for a point x in the wake Y_= AN (2,11,15)
oY - x dy
Moreover it follows from the formula (2,11,14)
' o (x,y)
¥Q= — - (2,11,16)

The expression {2,11,11) for the downwash thus can be written in the form
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X=Xy ' 9’“’0 r
w(x*’"*n‘%%rgf“‘;? =5 dxdy+ o= ff 2L g dxdy+

4% ‘éo dl" |
ti fj p? dxdy - (2,11,17)

Our problem being the eva.luation of the downwashes 31' and %rn » Which’
correspond to the singular acceleration potentials ur“ and qr“ resp., we

remember that these singulsar potentials have vanishing normal accelerations
at the wing surface. Conaequently the normal velocities

-E;;‘and 37“ at the wing surface must be indepcndent of the variable x . This
means that we may put x' equal to zero in the formula (2 11 ,17) without

changing the value of. the downwash.
Thus

1 x ol Y% <o
W(l,}q-;'—,r—t : 5-ax d"d‘a‘ T./j ) ‘ng‘xdﬂ

Y- 'Je :
o -// d xdy (2,11,18)

In part:.cular we shall suppose that the acceleration potential v and thus
the corresponding vorticity component YH' is an even function of the

" variable x .

The formula (2 11,18) then reduces to

440 Y ‘éa r o
w4y = 2 ff ¥ 2 dxdys f j% dxdy - (2,11,19)

Due to the connectmn between the quantitles Y% and l"(x,g,) we put
Pl = f )+ ¢y - (2,11,20)

where g(x,y) is an odd function of the variable x .
In the wake the function I (x, ) reduces to the function M(y) and thus the
fellowing relation holds

fp=1@)+ ¢ (W 4) - ‘(2.,11,21)

For x=- \/1-%1' the function [(x,4) vanishes, thus

D'=+(td')+g- (" V—’?ol})'f(@'@(w&)' (2111’22)

These two relations (2,11,21) and (2,11,22) lead to the conclusion

F=57® (2,11,23)
lience equation {2,11,20) can be written as |
f‘(x.l})=-i-r‘(q)'+c (x,4) (2,11,24)

where ‘}(T-,‘p ig an odd function of x.




53

Insertion of this result into (2,11,19) jields
K %% d,l" Ta ¥4 dlt
W (§o) = 5% .S/f 3 —“W*mf‘f 3 —~ dxdy
5

r* dy dy

or

' + dr oo '5'9 ; T4+ ar 1
W(goc-L:Tt!—Z;dtéj rs.d.x's.:ﬁt-!-;*,wd—u.
- - 0 : :

(é;11,25)

Assuming that Y“_ is an even function of the variable x , it is now
possible to calculate the corresponding downwash by aid of the formula

“(2,11,25).
Here this method will be applied to two cases, viz.
P a. ame . : ‘
1 oAb 1 - .
¥ =-— cos amJ and Y a-—p - sin (am+d)J |
T A £ T e e
(2,11,26)
Hence we must calculate the two :Lntegrals
2 anm
+ \f1-
L L f ' e s 2mJddx and
[am “2 ‘ }"
- Yoy Ny gm
. 1= l} \/1/“; , ]
bomss = -~ sin (amef) Vdx . .
T A (2,11,27)
Let us consider the real pa.rt of the infinite series . '
E (o™ e ™
with 0<@< 1.

It can then be derlved that

Re Z ) eLmJ }- = @*™ cos amde I 1™ ™ sin (amed) J =

mal m=0 ™Mud

1 1+ 9 aind
BRG ! = Re = .
o 11~ice 1-ioely we sind-ip ws 1re*s 2@ sind

(2,11,28)"

Putting ¢= r \11-)1-2 we get
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The righ't'-ha.nd side of (2,11,31) agrees with the generating function of the ‘
Legendre polynomials, viz. '

1 T* ; NP

Virzgrert  meo m (2,11,32)

where P () denotes the Legendre polynomial of order m .
We ha.ve now proved the 1dent1ty

[--]
am ms+t 1ﬂ‘l+1
o CO M Lyt %:o( - Lomer™ E o ) (2,11,33)
From this relation it follows
(_1)1“-1’1 - (—1)1'“".1
LszTgm @ and  Lypy== x Am @ - (2,11,34)
y ]

The downwash corresponding with the vorticity component Yl], y first mentioned
in (2,11,26) can now be found by application of formula (2,11,25)

|
dF, |
( 1')111"'1 ﬂm 1 ) |
W (g )= dy - (2 11,35)
(g'o) 41: _1/ a,g, Y-y, Y sils ‘
In order to determine the downwash Wzmn we nust take for the vor-

ticity component }'

ms2 :
¥, a-2 E_ws 2mJ+C——ms (xmnr)J} .

(2,11,36)
 Application of the formula (2 ll 35) yields
‘ 5 ™ 1)""“'1 _ YFimea 1 .
W, e ™ f dy | gy, (2,11,37)
Using the relation
(2n+e) P (y)« dp““ oy
| " dy  dy (2,11,38)
equation (2,11,37) can be written i:: t_ge for;n
Y, )
Yimer =~ o7 (am+2) -/ Y-y dy | (2,11,39)

The integral in this expression (2 11,39) can be calculated with the well-
known formula from the theory of the Legendre functions, viz.

+1 (4)
4
Qp 0= 5
f (2,11,40)
where Qm(x) denotes the Legendre function of the second kind,
Equation (2,11,3%9) becomes thus
s (_1)1“"'1 3 Q
u.’emﬁ ane? (4“") am+T @ - (2,11,41)
In the same way-it can be derived that the downwash %:m , which corresponds
&
to the acceleration potential v, 1is expressed by the formula
Q _1“‘
w, &9 em () (2,11,42)

=
am 2,’,(2
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In c'ohnection with the evaluation Qf the downwashes %rz and wzmﬁ

" we remark that the corresponding vorticity component Y'.,‘_ is represented

by an odd function of the variablex . This fact implies that; the circulation
My) is equal to zero for these cases. From the definition of the funetion
r‘(q.) it follows that the circulation r‘(q,\ is proportional to the velocity

potential in the plane xu0 behind the wing (x;—\/ -y ) « Thus the velocity

a
potentials corresponding to the singular potentials Vsm and w;lmn vanish in

the plane 2,0 outside the wing surface. Buch velocity potentials can be
written in the form
4%

IO wmﬁ)e(nﬂ Mok M dd 01 43)

where w-(/u. J) is a 8till unknown downwasgh.
In this way we gel the following two integral equations for the unknown

.downwashes ‘uJ' and AT

am#+1
21 4
%h‘l ox U'j ./ \’{tm(:' (H}LJ /u"l"’"l) )11 d‘/u‘-' dj ' (2,11,44)
and - 0211: 4 '
"’imﬂ axu'/ j “ﬁmc'(’lr}"-‘?‘/ﬂ"?t) My L, dﬁ : (2,11,45)
0

The first integral equahgn (2,11,44) completely wgltten down, reads formzZ1

A Ve o™

cos (2m-1)17'+ \/T_,——m cos (2m+1)17'

ZTL"l/.lHl \/-—2—»21“-1 1+q2

U ff B & (T pry ) gy 4

(2,11,46)
At the wing surface the equatlon (2,11,46) reduces to
am-1 am+1
11\, 2 V-8
1_.2 ")‘j. 1~ Cos (:zm-ﬂ 17+ 1-/u cos (2m+1)a7 =
Y 1/‘* oG, 5i.nJ oG |
o~ - SRS casJ —% du, dJ, -
o// m B 1=t 2 ek (2,11,47)

Multiplying both sides of (2,11,47) withu and taklng thereupon the limit
for}.x tending to zero, wet get

__.“_:i { cos (am-1) 4 + cos (am+1) J} .
21 AT 4

‘o_/-j_ '&rg cosJ (0 0 'j- ' My r'z)f"ﬁ d‘/u‘1 dJ—

or
1-43

___2(.05 amy = z] '(\ﬂiﬂh f & (003}.1.1,3)&:
03
AR

(2,11,48)
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. where use has been made of the fact that usqm is & function of the variable

4 only. ‘
In order to simplify the relation (2,11,48) we substitute the Fourier series

for [P-E-'—] s Viz. .
. -D}J- ’u.ao . . m :

. 11-0 oo 1 r :_—'1 }
4 e L s c.osmjc_osmj;q.
.a}" 1]-% m=0 E t’. }J." .

. In

+ - -1—3 N 71 5in 'mJ 5in mj.; (2911149)
m‘ﬂ a1 4

into' -the right-hand side of (2,11,48)..
Moreover we apply the following formulas, which already have been given

partly in the expressions (2,11,27) and (2,11,3%4)

am
+

T
£

k cos am Jdx= " ‘“-’Blm Ch)

S
¥,

»

'
T
ek

;‘05 (2m+1)-3'dx.-. 0
-\ /-y (2,11,50)

q am |
A\ 2
| -_-’-;-——stn' 2amvdxa0

.+
\ﬁ
L~
T
3

a1 : | o
1-
* /.‘* V -2 sin @m#i) Jdxz 1) RP )
1

M Am+1

The equation {2,11,48) reduces now %o

+1 o2 )
cos amYJ<-2 -.1/ firm (49 -‘E:O- —gz (-1)&«:1‘31& (y,) cos 287 4
+ﬁ ("1)&“%%44 ) sin (ake) dy., - (2,11,51_

Let us now assume that W, (4)can be represented by a seriea of Legendre
‘polynomials, viz.
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We can now conclude
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B = éanﬁm . -' (2,11,52)

" Inserting this series (2,11,52) into the equation (2,11,51) and performing

the integration, we get for mz2+

= w 2 ""
‘ cos amV = -2 5 a,, - GO Weos and oo ) ‘
=l n -
i | n R
~ - i 9 [ * )
R :4:0 Ay -D° T SN (2n+)3’qm_3 (2,11,53)

b and o ™t AT

Gpp=0 forngm ;o am 47
- Thus
S met L4me : : b .
Wom (= OO o (B formB . (2,11,5)

Form:.0it can easily be derived along the same lines that
5 1o :
w, (P=-Zz7x R - | (2,11,55)

) a
The downwashes W,

determined with the same method and .the result is

- . a !
me1 ? which correspond to the potentials Womsq CBD be

a - 4med : ‘
wﬁmn (9‘)' ('1)‘““ 1:::( BMH (‘d') ' (2!11!56>

<

12 DHumerical evaluation of the coefficients in the linear systems.

In this section some integral properties of Legendre's functions will
be applied frequently.. These formulas read
+1
2

) . +1 |2
i/Et(x)lf,n(x)abc‘-%O dor mgm 1/ {&(x)] dx= Frei (2,12,1)

n+m

+1 +1
j 'Pn (x) Qm(x) dx- (n—:r:)(_(2+m+1) fOF Mgm ; 1/131 ) Q, (x)dx=0.
-1 , -

(2,12,2)

The properties expressed by (2,12,1) are well-known and will therefore not
be proved here. However, the proof of the formulas (2,12,2) will ve given.
Because P, (x) and Q_,(x) satisfy Legendre's differential equation, the
following relations hold

a*r - dP

(1~-x*) ————2— - 2% —E':— + n(ne1) P =0
dx
d*Q de_ -

(1-x%) - ax —am{me) QS0

dx? dx - (2,12,3)
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Multiplying the first expression by Q (x), and the second one by 'P(':) _
and subtracting the results, we find

P 44
Qm d.r.{ﬁ *) 1‘;‘"}-&%{(1-1* "If}:-(n—-m) (e B Q (2,12, 4)

Integrating both sides of this equation between the limits +1 and -1 ; We
obtain :

v dQ
Mm~m) (Mrma) _/ (%) G (x)dx= _/ [En de—{(‘ x*) ___m} +
dp, dg dp, [ | **
¥ - ) “m Zn )
™m dx{('l I) d.x }}dx—\:("-x){% dx"‘Qm d.l: }] Xc-1 (2,12’5)
Hence the value of _/T:l(x) Qm(x) dx formgm is 'given by

4
-

+1 4 . dq da‘ Xt
P(IQ(xdx='____.____-_-{1— {P——'—"—- ——'}
_-1/ n 09 m ) M=) (e mt1) -7 n o dx Om ax j } xa-1 (2,12,6)

In order to evaluate the right-hand side of (2,12,6) use can be made of the
forpula (ref.2):

A, 09 = VRP () ‘ED(} 1+x W 00, 1<x<
with
' an-1 25 2n-g
W,. (x)‘: n ..1 (x)+¥ s(n B (x)"s—(n_ﬁp )t - (2,12,7)

We see easily that
1-(-11“*"‘

+1 *
, ‘ 1

In the casen-m , we have

+1

_/P ™) Q (x)dx,vsz(x)mx){ag%ax:

% jP(x)P(x){og X dy s Y jP(x)P(x){’og x

(2$12s9)

3 : S Ln '
It is now easy to calculate the coefficients 0:{ and G& which occur in

the right-hand sides of the systems (2,10,17) and {2,10,23) respectively.
In fact we have ,
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o forngd

+1 . " +1
¥ s | W) o
Framvey f BB Wy ST B R ey
- B Y2 € (-D¥ior n=t

D™ (an+s)
7 (24 - 2n-1) (2f+ 2n+2)

1
5 (1) (4n+3)
EE™aet f g By g =g f UOLAOLS

- (4n+1)
& (2%- 2ne1) (2R+ 2044)

o n41
qfn =" ./ AT u)d.g = (4n+1)/ Qn WP (P4

o for ng k

+1
o f & Py (e ETEMD PR )y | '
-1j 2ntt 2k '*)d“ f e+ 2kt # (-0F forn-k

(2,12,10)

The determination of the coefficients on the left-hand side of the
linear systems reguires more elaboration than the quantities mentioned above.

+

The definition of the coefficient %}‘ is given by.the formula (2,10,6), viz.

+1 . ‘
LA f B B ay+ >: e f W Pt @ dy -

After substitution of the expressions for the coefficients -p: and the

downwashes 'Ern and by application of the integral relations {2,12,1) and

s
(2,12,2) we can write for this coefficient ’t‘;

(~D™ @m+2) @m+s)

3 .
e 2 \ — for nzt
£ m=0 ‘ltﬂ [(27&*1)2 ...J.”f' } (3{'km"1) (2‘[.‘,2“1_'_&) A
lé’lﬁd | ‘ , (2,12,11)
‘f‘f a ££ 0 bt + = C'1) um+) (am+3)

4 m=0 1« {(2m+1) 4{’} (2L- 2m-0(2€+2m+aj
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The further elaboration of the coefficients is s:mellf:.ed by splitting uwp
the expressions under the summation gigns into four terms, We wrlte

- b
%n (- )ﬂ-“"‘ Z [ 1 + 1

= : +
t ot (2m-2n+1) (em-2£+1) (am+2n+1) (2m-2441)
* ! + ! ]§m'n¢f
and @m-2ne)(2meaf+s)  (2ma2neny(ameatsd
g O, @ S| 1, 1
-t “2_ m=0 (2l‘l_l-2'f+1)1 (2me2f+1) (2m-28+1)

1 + t .
(am-28+1) (Emeale 2) 62m+2f+1)(£m+2’2+2)]" (2,12,12)

The infinite sums in (2,12,12) can be written in a convénlent form by aid
of the so-called y -function, which is usuglly derived from the gamma
function., Here we introduce the gamma functlon () by Weierstrasz'defi-

nition Y » _ _ )
__!_zze z = —ﬁ. ) .
r@ l:(‘*z)“" } . | - (2,12,13)

where Y denotes Euler's constant. :
The function y(x) is the logarithmic derivative of the gamma funetion

d fog () _ r@y
dz M) (2,12,14)

Insertion of the expression (2,12,13) into the definition of the y -function
yields the formula

y(z)=

(z)_-__)'_l-.;.g %
Y 2 a nGam) (2,12,15)

We see at once that the W -function is meromorphic with simple poles at
Ze0 3-1 -2 , vve o If a and b differ from QO ,-1 3~2 4 +++ , W& have
according to (2,12,15)

b a

V(g)-‘if@’cl; - 37*% '_‘“s‘n)‘ rlatn) R

_ba o ba 2 __ v
Y +,,Z=1 (n+a)(n+8) (¢-2) %% (nray(n+€) =

Thus we have proved the relation

§ 1 3 - ¥YO-v@ 4ot~a~%*o 4,2, .....and azb
(rea(ns ) b-a - (2,12,16

n=0
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Differentiation. of the relation (2,12,15) yields

Yy (= =, (;m)a | o (2,12,17)

The formulas (2,12,16) and (2,12,17) enable us to express the coefficlents
T{" in terms of the v -function. We find

2 (-1 e [V (-ne VoY (~1+Y2) . ¥ (maVe) -y (-h‘/z)

1 4u* K 2% : A 23,1

V (et (), v (e YR) -y () ] for ngd
Lens Y n-t-% | ' ‘
and
L4t 141 y

TS ) r v () -y )
‘t'{{- e+ e [-qf (-1+¥) + 2}{][ f

By ) |y () - w (fe) for £ g0

als 12 2 | (2,12,18)

i 2
The coefficient ’l'.': will be treated separately.

The right-hand sides of (2,12,18) can be further reduced by application of -
some relations known from the theory of the gamma funetion. For that purpose
"we start from the formula (ref. 2)

Fey M (s z;o,ﬂ,:z, ..... '

. 5i n'ltz (2,12,19)
Differentiation with respect to z yields

M @4-2)-I@) " 0-2) = - 1{%-5—'5‘—5

A1 0l -4

or . 2

re e x 6:51[2 SN2 xocolg mx,

r (z) r (1-1) sin“mwz T
Thus

W(Z) v (1*1)= - 1'[':0&% Tx x£0, +1,+2,..... . (2’12’20)
Putting z-l+n wheren is an 1nteger, we get

v (2en) =y (o-n) - (2,12,21)

Application of this formula transforms the expressions (2,12,18) into

s (_1)111-1- 24
£ 4t L’-n” {W‘ (ne¥8)-y ({WR)} '

8l+y . ‘
1) -y ({41 ” for n gt
and (an+2841) (zn-2£-1){v (nek)-v (149 :

L1, b4t . |
%{‘a(“z + (:)1: 2 [yr (-L+ 1)+ j::‘ {v(fﬂ) -w(h‘/z)}l ~ for Lzo .

(2,12,22)
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We consider now the specilal case{=0 . The coeffic1ent ‘t° becomes according

to (2,12,12). 7
to_ Y-t ¥ [ 2+ 2 ]

°=" m=0 (am+1)2 (am+1) (am+2) (2,12,23)

This can be written as

2 Voo
. T: ="'./2 2.11' [W ('/R)+2{“-F(1)-\F(V2)H (2,12,24)
Substituting z=1 and 2<% into (2,12,15) we get

: PR NI K R I G
SR AU R v e A i v

=1
and

1
_ V(‘lﬂ)--‘f—h/zzz () = =y (1) -2+ = ™ ane)

Thus we have 0T N ok

_1.'_1_ " -
V) -y (1) =2- 1—:' n(zrm) watastygt o } =
RO AU SURUUUR GHPS IO I U I T I TV O
=2V 2374587 }‘2[11*3 4*5° 67 } 2 {og 2
Purthermore 2 %
1 oy .
v (B)= = —tsea g

m=0 (Tn+V2) m=0 (ame)?
In this way the coefficlent "l‘;° .becomes

S
(R { +4fog£}.=--—-~%2— . (2,12,25)
In order to determine numerical values for the other coefficients 'r{ we
derive the following recurrence relations: :
d .
| ) E{zf"(z)} Poszl") 1, TR
Y (24N = = =—+
. M (x+1) x[¢x) PIMEA 2w

R A%
(2,12,26)

and by differentiation : ,
v e ay@ oy (2,12,27)
These two formulas (2,12,26) and (2,12,27) enable us to evaluate all coef-
ficients ‘f? . Numerical values are given in tadble I.

In a quite similar way expressiona can be derived for the coefficients
‘E;: which correspond to the anti-symmetric problems, This coefficient ’?,":

has been defined by t&e formula (2,10 24) .
“'n anst a.
=9 ./ winn 2&+1 (Pdy+ ):1 q’ann _.1/ Wim Pars P Y -

Ane1 -3
If ’f(.-f.-n s, the expression in the right-hand side of this formula can be re-

duced as follows




., oo a )
=29 .1/ -”’zm?z&h (\prd"'f’ |

o0 D™ 4m (ame)

™=t ..11':2 '[qm.’- (am)’] (am-2k-1) (zm+_sz-&+z) 5

+

N1 oo s T
-gﬂ)___z L + = 1

T oxt mao[(gm-zn-b(am-z&-'l) V[Rm-ﬂn-a)_(zm‘a-ahz)

1 1, l
+ + = " =
@m+2ne1) (Am-2k-1)  (2m+2n+1) (amegked

. N’ [ v (n-%)-y (-%-%) | y(n-h)-y (k)

4ud £-n . ek -i-

i

LV Oy (R v )y e |
nefe - n-k- 12 J

_mw{VW)ma WWQVWﬂ
N 2 %-n ‘

.41 mefs 3 7

- 3 .
X v (ne'h) w(fi&} v (n+¥2) -y (k) ]=

Yy e * g 7>
™! 4n+3 ne2 441
} + ne¥2) +
an® | (k) (aneakes) v (v3) (naket) (2n-2k-1) v (ne )

2k+1 3 8(&+1) ‘ :
- —rh & -
(*"ﬂ) (n‘l'*‘F‘l) V ( * ) (2"“‘2*4-’) (ﬂn-x%-i) w (*+1)

The case‘E n results into .

(2,12,28)

g, 2*%1

T* q’ﬂ*ﬂ / ¥+1 TR (q')d"“' Z: ‘h&n ./ 2:&_1-1 ($)dy =

_(_1)-&+1+ (_1)&41 ; | 4m (4met)
4 T me [411"-(2%”)] (am-2k- 1)(am+z&+z)
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) )
= —g—t

L + 1 -+
(m-2%-0*  (am-2k-1) (2m+2k+2)

FYERE ”['

2 M0

1 B 1
+ (2m+2¥:+1)(2m-2&-‘3+ (2M+z&+1)(2m+x&+£) } =

Tt

. ot (-)** W' (3-%)- YR w(*n) ve)-vek %) W(ﬁm%)]_

2%+ 2 3 2441 - '/z

. (_1)*+1
=3

! .. - _2 ‘  .‘ . i
v v (% YR)+4&+3 {v(ﬁn) qr(%+2_)}+ ‘
| =
ﬂ { (i+3) \p(h‘/z)}m {qr (f<~~1)-1.p*(¥c\‘$§)T } -
B I |

X LT T | | | -
- 0+ {v(ﬂvm Sch) {v(%n) w(h%)}—‘—“iﬂ"——

4 4ke3) (2k+1)?

- | - (2,12,29) ,
. Putting k=0 into (2,12,29), we get

a R ) ‘l . e
Tom-1-— [w'(~72)+§ v~y ) - 1§J

NEES [.} L8 Jm,g-_] _3. melgs
(2,12,30)

Applying the recurrence relations (2,12,26) and (2,12,27) it is possible
to determine all coefficients %“

i Numerical values for these coefficienta
are given in table II. B
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12 Derivation of formulas for pressure distribution, forces, moments
and spanwige lift distribution.

If the complete acceleration potential, corresponding to the physical
boundary value problem is dencted byiﬁ s the pressure p can be found by
aid of the formula (1,3,5), which reads

~ 2-P

=

where ¢ represents the pressure in the undisturbed flow and ¢ the den-
sity of the fluid: Because of the odd character with respect to the
variable 2 of the pressure , the pressure jump I] over the wing surface
can be expressed by the formula

b

{ I .‘ - -IT""‘P.._l‘Pa- =‘@ [ﬁ-_ V—] =2Q“\F S (2’13’1).

The complete acceleration potential has been given in a general form by
the formula (2,9,2), which reads

: : £l
2
V=v Pl S 4 ) [ﬁgﬁ] g0 4
T

The pressure distribution T] over the wing surface becomes thus

.‘gl .
s 4 : '
m (0:)"13)"2?‘?' (O’P'3)+'2 ?u'n;/ k ('3;).[-3)*1 ,u,éo dﬂ; T (2,13,2)
' z 1 =0 '
The substitution of the Fourier series 52,10,4; and (2,10,5), and the sub-
gtitution of the analytical expression 2,8,47 for the quantity

o4 into the formula (2,13,2), yield for the pressure distribution
_0)"1 }L"=0 '

over the wing surface, the expression

cos V| cos 2nd

S3TC
Tepdesey oS8 2 o, [ tE s 48
5 (2,13,3)

for symmetric problems and

E

: 14
‘ Upp ¢ kS cos ¥y sin (2n+d) V)
Topd)=2vopd)-—5 8, [ —— 7= dv,
= -JL =2 4= (05 ('3'- 3)
| | "ol 2 - # 1 (2,13,4)

for anti~-symmetric problems.

In the two relations given above, the Fourier series have been
truncated after the (}+1)£ﬁ term. Consequently the expreasions (2,13,3)
and (2,13,4) give approximations for the pressure distribution. For
every arbitrary downwash distribution prescribed at the wing surface, the
pressure distribution can now be evaluated by aid of these formylas

. {2,13,3) or (2,13,4). The regular acceleration potential qy(qvu,J) is

found by application of formula (2,5,2):
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- (upd)- Df [ & ()G s Pod) el

and the coefficients a. and 3 - must be solved from the systems of linear
equations which have been derived in section 10 of this chapter. ’

The lift-force and the moments acting on the aercfoil are obtained by
suitable integrations. The 1lift L is given by the formula

arm
L- ff“(x §) dxdy= ffo(ON)ﬂdM-*’ (2,13,5)
S denotes the area. of the projected wing surface onto the x -plane. In-

serting the expression (2,13,2) for the pressure distribution into (2,13,5),
we get

AT 4 F 314 1

L2 f S V(O,}*, ,nmeu f VA j ﬁ(ﬁ [_%] pdy, d7ud3

Yz' " (2,13,6)

Interchanging the order of 1ntegrat10n in the second term on the rlght-hand
gide and applying the integral relations (2,8,43), the 1ift L can be
written in the form .

' 211.’1 | .31( 1 . _
L= 2¢f_/y 0, . 5));d.}xd3’+2¢l.lf %(3 dy, fjxd/uf [v ])u. dv-
5 | .qf
2% 9 11‘ 1
-/ S v(ow"”)ﬂdﬂdmeuf K@) [~ 4 dp
7 o
AT 4 u' 2 |
=20/ f v (o pdpad - [ RE)S,
00 e | (2,13,7)

Taking 1ntg account (}+1) terms of the Fourier series of the weight
funetion 4 (3) , the 1ift L is approximated in the symmetric case by the
- formula

Wy
L=z S S v O pdpad- %ﬁ f cos ana) cos ) d
%
ol 20l ¢ - |
"2‘;_/6/"’ (O'P'J))‘d'}‘dg“'%' >— %n ‘P;n- ' (2,13,8)
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The moment about the ~axis, denoted by M ., is obtained in z:a similar

way. In fact we have ‘ ' 4

2T 4

9' ffTT e g,)xd.xd.g,_jj Ll (ov}*-.s))# \/ 1=2° cos d.)a.d.ﬁ' =

2T 1

_29_/f1|f(0,).1, 3’)}&\/1—2 cos ¥ d};d.a'q-

a1 F ] -
w2l f S [ () [%1] o M\ cond 43 dpad
00 E M=0 -
27 1

..29//1((0,}1—,3)}1.\{1 /u. cos&d/;d3+

n=0

+29U._/8.(J)d.5 f}J,V_}? d.}.o._/ [_‘Df‘;l;t sV dY
n .

o % 4 4?[1 _;.E .
=2e_/f\y(0).t3)p.\’1)u cosﬁd.)n.dﬁ——— f (Ji)cos%d.q .
b1
z (2,13,9)
This moment can thus be approximated by the expression
2 4
M 5 2Q jfv (0,}.»,3)}&\’ 1-48 cos ¥ ddd +
0 ? ' s‘rt
- ‘fﬂ: Z a, f cos 5m31 cosx'a; d-%
R 4 d,
| '2?//‘*’ o 3)}"' V14" eos 3"')"'6‘3' n.zo On [P;n+ Pin] '
(2,13,10)

In the anti-symmetric case the 1lift [ and the moment M‘* vanish; the main
guaentity in this case is the moment about the x -axis.”This moment Mx ’

mostly called the roll-moment, is defined by the formula
‘ AT 4

Mxr.{/' 'lT(x,ld_)gdxd;g_-_a/o/‘Tl'(ow,ﬁ)}L\[:)F sinad/;da. (2,13,11)
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Inserting the formula (2,13, 2) for the preasure distribution into (2,13,11),
we obtain -
AW 4

-2?_[_/1;)‘(0}1.,3))1.\/1)1. si.mql d.};,d.3+

+29Ujff %(3) '0}»1 e M 1-})." si.nffd.fg d.}a.d.a"

1..

an 4

=2(-’/_/1|J(0,}J-3)J. -}J- 5|.n3d.}).d3+.‘

t

. +2@U.fﬂ(3 ) dy) f}LV -)u, d.)uf "D)L] ;—.o sind dJ

=0

srr 1 | LL
.-2?ff1p'(0).1. 3)}1,\, -}J. smﬁ'd};dﬁ- il f‘ﬁ(\msm%dﬂ; .
'y (2,13,12)

'Truncatmg the ser:.es for the weight function 'R. (_J) after the (?-H) th
term, the moment P4 is approximated by -

210 4

u'—'zej_fv (0,}&,3) }LV -}.L sind d.};d.3'+

3T

20U % z
_—%c—;\'_"o ﬂn f sin (an+1) 31 si.n231 d-31 = (2,13,13)
= (4
2
2T 1 sell ¢
-wff‘v(o,)ﬁ)u 1}" 5°n3df"d'3- -0 g“qrznﬂ

In the symmetrlcal case the moment Pﬂx is equal to zero., As is cuatomary

in aerodynamics the forces and moments are indicated by their dimensionless
1lift- and moment coefficients. Therefore we introduce the following coeffl—
cients

C = L
a 15?“-2
"y (2,13,14)
c = 2’13s14
" el |
MI
szﬂeu

Besides the forces and moments, the so-called spanwise lift. d:l.str:.-
bution plays an important role in the theory of lifting surfaces. This
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spanwise lift distribution C(y) is defined by the formula
+ Viog®
Cy) = / T (xy)dx - (2,13,15)
The quantity (:(%) is connected with the circulation'r'(%) by means of the
formula ' ’

C(IJ,) = (-’ll r(‘}‘

Substitution of the expression for the pressure'Tr into this formula (2,13%,15)

yields
+\/1-g§ +V1 ﬂ-‘
C=z [ v (0)*3)“-“2?‘1[ d"f“‘& %ﬁ*]}* 4 -

A\ -\ F 110 (2,13,16)

The second integral on the right of (2,13,16) can be further reduced by
interchanging the order of integration We find

N

WA
cp=2 f V(O}Lﬁ)dxmellfﬁ(ﬁ) dd) f [%leﬁ]pm#'

“\ft-y4? -\/1- , P
4 ¥ =0 2,13,17)

Replacing the function {?&]}L by its Fourier series (2,8,45) and applying
13

the integral relations (2,8 4;3 and (2, 8,44), ve get after termswise inte-

gration
+\[;:;§ %EE “o _
Cy=2 [ w(o,p,ﬁ)dxﬂellfﬁ(«l) {;Zw %—l}r—q P () c05 2m31+
-V £

y S ("1) 2m+1(|d,)5i.n. (:zm+1)31:| d.ﬂz - (2,13,18)

m=z0

+

. The in%roductioﬁ of the new variable oc:ﬁr— 15 s transforms this formula

(2,13,18) into 1 2
1-yf 2pll £ o
cy)= Re/ ¥ (o, , d.x-—-—fﬂ (oc+-—)mZ_ % P (4) cos maz. dec

W . (2,13,19)

It ie now posgible to evaluate the sum of the series in the right-hand side
of this formula by aid of the relation between the Legendre polynomials and
their generating function, viz.

Z A" P (cose) (2,1%,20)
V o1- 2{{ o5 6+&E .
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Putting R.:e L%, we get' - . |
: SRR e ! ifoc <p
e e/““'Vz (cos o - cos B)
S— inw ‘
o © R, (cos &) =
Y ' ! if >0 |
| e ’_“'(‘”“)Vz €05 8~COS o (2,13,21)

On eguating the real parts on both sides of the equation (2,13,21), we ob-
f$ain the relation

P cos‘/zoc-'__
\/ 2 (cos ot~ cos 8) ,
— SiRet -L;,x,-e
\,2 (cos 6 - cos oc)

Using this formula (2,13,22), we can transform the expresaion for (:(%) into

f o<

i P, (w0s8) co3 TLOLJ (2,13,22)
n=0

u

+ T cos =
dx- — f 4 2
C(y)=2p {% v (o d)dx j (w+ ) LT doc +
' ot 1l T
RG'U./ R (oc+1t) dot+ — fﬂ(ou-—) doc R

2(cos 0~
V (cos cosoc) (2 13,23)

where the parameter § is defined by =C0s © . At ‘the tips of the wing the
variable y equals +1 or -1 , and thus 8=D or 6=1C . From the formula
(2 13,23) it follows at once, that the spanwise lift distribution C(g)
vanishes at the tips of the wing. Inserting into (2,13,23) the truncated
series for the weight-function® i( , we obtain for the spanwise 1lift distri-
bution in the symmetric case the approxlmatlon

o

AN 22U § 4 sinoc eos 2noc cos 7 -
Clyy =2 0, .3 dx i 1 dot +
@ _?\‘/[1__‘_%: ¥ Opud)der T o > a“O/ \/ 2(Cos o<-cos 6)

ReU. ¥ | T sinee cos 2na 5-i.n°7" ol 4 1
n=0 0 \/ 2(cos 6 - cosat) T m=0 ° 7(2,13,24)
and in the anti-symmetric case
+V1-2
aell sin o cos (zn+1)accos 2
C( )= 2 0,p,V) dx+ —— :z___ Ny b dot +
¢ PV{T}T ¥ (o) ( f \/2 (cos o -cos 8) -
 gell sin o cos (2n+15oc sin &
UL S L de
T Tep F Vz(_cose cosac) | (2,13,25)

These two relations enable us to determlne numerlcal values of the spanwisse
lift distribution.
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Next we consider the x ~component ) of the aerodynamic force which acts

" on the wing according to potentisl theory. In order to obtain 'the total drag
on a wing in a real fluid we have to add D to the profile drag which is due

to the effect of viscosity. By contra-distinction, D is called the induced
drag, since it is associated with, or induced by the region of disturbed
motion of the fluid behind the wing. The expression for the induced resistance
is obtained by means of the momentum theorem. A surface enclosing the wing is
denoted by S ; the momentum law applied to the wing then leads to the ex-
pression

. 2 ?
D;f_/‘p cos('n.,x)d.a'+_/f§' Ucos’-(n.!)i'-o—z Ll+§x?' a0 (2,13,26)

(n, x) represents the angle between the outer normal to the surface $ and the
axls of x , whereas ¢ denotes the dlsturbance velocity potential. Hence

L[+ - is the Xx -component of the fluid velocity and U cos (n, r)+ra—?% the com-

onent of the fluid velocity normal toc the surface § . The expression
f2,13,26) can be written in another form by application of Bernoulli's equa-

tion: 2p\2 /P )
R [ R R IR

Equation (2,13,26) becomes now

".// ‘-5;% ; (-ax) (O) (-az) - ¢os (n,x) d0+

+§°/f U.r:os’.(ﬂ:c)+-—‘E ,,[l.fﬂ% de =

=p_ ffcos(nx)d.ﬁ'——e// ('vx.) (_'" (_oz) c.os(n,x)d.ﬂ'i-.

+ (-'Uffcos(n x)dﬂ'+ell_fj Kl 4 d.G'+Q_// % 2‘; d . (2,13,28)

In order to simplify the relation (2, 13,28) uge can be made of the well-known
theorems of Gauss and Green, which read respectively

///d.il" v d.T //1.?' do ‘ (2’13'29)

f/f {M'A‘qu W,AV,} d.r:f/{w;q _:; -, _,I‘}dq‘ . (2,13,30)

D denotes & region in space which is closed by a surface S . In particular
we consider the case 7 a (1,0,0) . Then equation (2,13,29) gives

f/ cos (R, x)dF =0 . - (2,13,31)

With respect to the identity (2413,20) we assume that Yy is a harmonic
function and 1V, is equal to one. Then we obtain the relation

_/j -ov, dr=0 . (2,13,32)

Application of the formulas (2, 13 31) and (2,13%,32) transforms the ex-
pression (2,13,28) into




-

13

=-§¢ i (35 @%)2* BY | s o acee i 2“ W (2,13,33)

The surface S is now chosen in a particular way. In fact we take a hemisphere
of large radlus'R with center at the point Xsa of thex -axis enclosing the
wing and the c¢ircle cut out by this hemisphere on the pla.ne X=a « If the
redius R increases to infinity the corresponding parts of the integrals in
(2,13,33) tend to zero. On the surface x=a holds

cos (M,X)=-1 and :_?L;__,_FL‘P_ .

X (2,13,34)
Thus
=1 2P\, (9)2_ (2R)R
b- ef/ ) - R u ax (2,13,35)
For a.—» o0 the following equation is obtained:

D--z¢ S/ =5+ (W; teds 9

where o Lim ¢ (x,y,% )

X-woo
In fact lpm denotes the velocity potential in the so-called Trefftz-plane.In-
serting in the theorem of Gauss for two dimensions ¥= ygrad y , we obtain
the relation

4 &) G [—"L ~—"’—] ) v B ds

X g,

Ify is harmonic this formula degenerates %o

2
/f ) 9) "‘T=Lf_‘!’ Spdr . (2,13,37)

Application of thls relation (2,13,37) to the expression (2,13,36) for the

induced drag yields

?lP
=-¢ft?..,o =z ds+=-<’/ € W 4y - (2,13,38)

It is now poss:.ble to express the induced res:.sxance in terms of the
circulation C(4) . According to formula (2,13, 15) we have

Vg g / it
pUT (Y =Cy)= f/  Teey)dxs2p [ Veydxs 291.1 cbc 2elly_

or

FP =29, 0c49) -« (2,13,39)

In order to find an expression for the downwash i}, ,use can be made of the in-
tegral equation (2,11,11), which expresses the downwash w in terms of the

vorticity components. This equation reads



T4

L RVEE oy gy (x-x‘,) |
w"’:}fé'[ (%4, Y d.xd.g_‘+
A yie Vot @y
> Yx ('}'Ho)
-711-!: f f 3 dxdy .

L vy Vo o

If X, increases indefinitely, the downwashar becomes
Lt m' 1 fH f x (4 " 4o) dx dy
w, = :‘“ i —J 2 TR -
X3 4T 3 VT:T \/(x—xo) +(LJ,-L3.D"
Y-,

_Lim dx

xa--oo 415 j d.l} f \[(x- ) o
\[FTE? o Y- 90

] L _1‘ ] d,r 2 X'o . ]x:«:: . d,g_

x:-en A1T% 4 d_té, i "- g’o (x - o) + (‘év' la'o) Xa 1“4—9.
+1 i 1oy’ ~x

Ltim v dl} 1 1 ¥ o ] dy
X w0 41‘_1 d_g’ I 'ﬂ'-g'a g"g' V( 1“‘}1 _xa)7-+ (H' ‘*0)2

+1
1 arf _1
=2—1er Ty, 44 (2,13,40)

Substituting the expressions (2,13,39)and (2,13,40) into (2 13, 58), we ob-
tain the formula for the 1nduced drag:

D---e/ %F(tndgf pis i" 3
-1

..+4',m fl‘(g.)d'}_{ l* re el (2,13,41)

It is very remarkable that this formula for the induced drag agrees com-
pletely with the formula for the induced drag in lifting~line theory. In
fact this corresponds with the meaning of Munk's so-cslled stagger-theorem.
For the evaluation of the induced drag it is convenient to replace the cir-
culation r(‘*) by its Fourier series, viz.

r(g,) Z A, sin m6
. Substitution into (2 13,41) yielas

dq s

'(2’13’42)
with y =¢0s 6

-0

9 sin 0 sin Gd.Bf 2: m@ . cos my m dy
=1

cos my

A nfsm né 5""“9/ ooy &Y

1@

——

/sm ng sin mGd.G = Z nﬂ

(2,13,43)
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14 Exam ples.

14,1 The circular plate at a flnlte angle of attack.

If & is the angle of attack and [l is the undisturbed fluid velocity,
then the normal veloeityw at the wing surface is given by the expression

W= -oll . - (2,14,1)
The regular velocity potential $ is found by aid of the formula (2,3,24)
21 +1 ' ;
T Q, (i)

n.)L,J):; S 1/ UG (qud; poy o) Ay dptgdd) =~ 2 UB (p) TN

1-9 arctan%

.._—. -oc.U./.L

2 &l b
&dT'z (-Q arc!-.am')] 7= o’“ FU anerats ) (2,14,2)

The regular acceleration potentialys is equal to zero because the normal
acceleration l_l’_g—:gvaniahes at the wing surface. According to formula (2,9,2)

the complete acceleration potentialw can thus be put in the form

VY= jﬁ(‘?) [}J e 0“31 | (2,14,3)
-

T
wherein the function 4 (3) ig still unknown., The other weight function (3)
which plays an important role in our theory can easily be derived by means
of the formula (2,9,9)

g ()= - 1C cos 3@)* 009)s-2 ¢ cosd « (2,14,4)
The functions g,(a') and -ﬁ.@') must now be written in the form

%(3).—. €os 3%" (3) = C0S 3£ ¢, €os nd
n=0

A= cos JR* (3) | £ 0, €05 2n.'3 ]

N=0
The coefficients Cn follow at once from (2,14,4):

Coe-2ocll, € =CheCzainnn.. 20 (2,14,5)

In accordance with section 10 of this chapter, the equat:.ons for the unknown

coefficients @, read
,}: ’t" & =-2 ocU.G'

n

. M=0 .
Thxe integer 4 indicates that the Fourier series of the functions x(ﬁ) and
£*() are truncated after the (§+1) th term. The system (2,14, 6) has been
solved for different values of § , viz. }=2 3,4,5 and 9 . In this par-
ticular case the coefficients a, are given in tahle]]Ifor the different
values of 4 and apart from a factor ocll .

(2,14,6)
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Table III

':'.j.‘::?. j-=3 j-.':‘l i=5 i:g
o, |+2,2435 +2,2433 42,2433 [+2,2433  }+2,2432
a, 1-0,092964| -0,092916 |-0,092890 -0,092875|-0, 092852
’a2 +0,040863| +0,040851|+0,040842| +0,040836 [+0,040824
a, - -0,023476|-0,023%3473]-0,023471|-0,023464
ay - - +0,015436|+0,015435|+0,015431
ag - - - -0,011011|-0,011009
g - - - - +0, 0082956
oy, - - - - -0, 0065009
% - - - - +0,0052479
aq - - - - -0,0043354

These coefficients enable us to evaluate the weight function ﬁ&&). The
result is given in figure 3. It appears that the successive approximstion
for f(J) coincide nearly completely. Further we can determine the lift L
and the moment about the axis of g ,lﬂ% « We find

2 2
L=2812pxll’ and M,=-1,465 el . ‘
These quantities can also be expressed in terms of their corresponding
coefficients, viz.

"oc¢ oc
— _ ' L S .
o = 08951 and e 0,4663

The center of pressure of the whole wing is in the middle section g,:O
My

on a distance 1+T=1 -i%%:o,q‘?g aft of the leading edge. The pressure

distribution over the wing surface can be calculated by aid of the for-
nula (2,13,3). Here we restrict ourselves to the calculation of the
pressure distribution on three sections of the wing, notably the middle

- gectiony=0 and the two sections y = Y2 and y:Y2V3'. Graphs of the
pressure distributions are given in figures 9%a, 9b and 9c¢. Moreover the
gectional center of pressure is indicated in these figures. Using the
formula (2,13,24) it is possible to evaluate the spanwise lift distribut-
ion C(y) . The result is given in figure 15. With the aid of the formula
(2,13,43) we calculate the value of the induced resistance and find

D-ﬁ 1,260 (*"U.z ’

14.2 The spherical cap.

We shall now treat the problem of the spherical cap, which is placed
- in a homogeneous field of flow with velocity vector Ul , directed along the
positive X -axis. The equation of the wing surface can be written in the
form

(z—q.)2+ x4 'd'2= 1+a%, x50 . (2,14,7)




&

17

unity, linearization of the boundary con-
ditions of the boundary value problem-is
allowed. The equation of the wing surface
can be approximated by

*z . Assuming that|ofis large compared with

2
AN / 1-x"-y
| / a? LQ
\ e
\\ |/ Thus we can represent the wing surface
\*/ by the equation .
Fig.21 a
.__S_.__ 1_],_2_‘*2 2

2
Z= = Z.>0 . x + = ) .
@ ' ¢ (2,14,8)

The downwash distribution, which is prescribed on the projected wing sur-
face, becomes so

u.'r_-.U, llx 'FOY'Z 0 and x+g. £, (2,14,9)

The regular veloecity: potent1a1 $ 1s found by substitution of the expre‘ssion
(2,14,9) into (2,3,24): :

: M 4y
@(Tl’}"'&)'—'ff/‘ﬁv 14 cos G p }11"31)‘1}‘1 dJ, =
21r+1
=& f/ B (R q(rz/um,?f)a,u, 4y -
1 Q) (in)
=-3ua P () K cos«()’-

Q) (o)
""H}"‘V ccs-ﬁVHrl 3-—-—3q a.rcl:a.nﬁ . ,(I2,1-4,10)

The regular acceleration potential is easlly found by aid of the formula
(2,5,2) e

¥ (npn9) / q dx, dy, = —//q('l}‘ ‘7)‘11 )/"1"[)"1&3
=-2 UWp {1-narctan = } . 2,14,11)
)J.[1'qa.r'c.a.nq] | (
The complete acpéleration potentialﬁ-;can thﬁs be wr:'i.'_tten-:.ln tﬁe form

2

~ \_ 2U ) Tﬂ :
v (‘l,}i,ﬁ)z_ﬁ 1-1 arc{o.n-. f ‘ [‘?}L,] P d3; . (2,14,12)
. . 1°
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The weight function g{J) can be determined by means of (2, 14,10):

q(ﬁ)-_mos?iq 0.09)s 4 ot . (2,14,13)

T 'L C
The Fourier coefficients ¢, of the function g."(-j') become thus

C,=0, c1=‘;l°]j yCpaCy=Cys vn. =0 _ (2,14,14)

~ According to formula (2,10,7) the system of 1inear equations for the Fourier
~coefficients Ao of the unknown function -ﬁ. ( can be put into the form

s : S '
411 324
nz 0 trzl Cl-n:*-éa-: G-E ‘E:'.. 0,1,2,-._... (2,14,15)
s
The coefficients &) can be easily found by aid of the formula (2,12,10),

i
Solving the system of eﬁzationa for }_ 4 , we find the numerical values to
be apart from a factor . S .o

@.=0,73073 a,= =0,606%7 a,=.0,12958 a =0057417 a, = ~0,032556
The function ‘K.(j) is drawn in f:l.gure 4 for 1 =2 andj. g . The points which-
have been evaluated, again coincide nearly completely. The lift L and the
moment M,, have the values

L}' 2 2

L=-1,465 (’% | | Mg.-.-p,bm e-% s

and their respective coefficients
c a-o,qbba—L cmg.:-o,zwq =

The position of the center of pressure of the whole w1ng is in the middle

?'286952;- 1,471 ' aft of the leading edge. The

pressure distributions on the sections y=p, Y= and H-'_V are given in

section l& 0 on a distance 1+

‘the figures 10a, 10b and 100. The sectional center of pressure is also in-
dicated in these figures. Finally the spanwise lift dlstrlbutlon is given
in figure 16. The induced drag becomes Sin this case

D = 0"3725 Eﬂ.g' ’ ‘

14.3 The wing with a downwash distribution proportional to 4 .

We shall now apply our theory to an anti-symmetrical problem. In par-
~ ticular we consider the surface

Zaxy , X4y 31 | (2,14,16)

. which is placed in a homogeneous field of flow with velooity L directed
along the positive X ~axis. The downwash distribution on the projected wing
surface follows immed.lately from (2,34,16):

_ ' (2,14,17)
ws %;:Ug for z:o,x2+tf.§1 . A
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The regular velocity potential becomes here

. R
b (H'P'J)"uof‘{ M W’)”ﬁ si""316‘ ('I*/‘-ﬁ;}‘vl)d}ﬂd'%
20T 44

STV VREAS CIRPR ZRALTLS
U Q,(in)
-SR03

2U. \/ \, 1 1 :
=‘ﬁg}-’~ 1_}3 ‘“‘"lﬁ 3_:“?»&[ a.r'c{a.n-‘;z- 5m3. (2,14,18)

Sin 3:

As :%.‘;c.!:o' the regular acceleration potential V(‘Z'}-‘-.j) vanishes. Thus the eom-
plete acceleration potential  assumes the form
~ ' D .
W(‘l-}ha%u’?%‘a (3"1) [:D%-‘] Ak, 0 Cl"a‘l ' (2,14,19)
. 2 1=
The weight function c‘}@’) reads in this case :
9(3):-1‘: wsjéﬁ(QO,D');iQQCOSSSLnﬁ . (2,14,20)

For anti-symmetrical problems the function %(3) is written in the form
D= (V) cos J=cos V= d sin ny .
g@) =g ) s I d, i

The coefficients dn become here

4l
dya=g=,dy=dy=z.n.... =0 (2,14,21)

The unknown weight funetion R(&) be expressed by means of the series
X oD
Rz R @ eos = cos3nZ=O Ensm (aned) ) . (2,14,22)

The coefficients gn. can now be solved from the system of linear equations

(2,10,23). In this particular case the equations read

n 410 % .
r%o T} b=t G c)“&:(),1,2, (2,14,23)
1

Substitution of the numerical values of 0‘& transforms (2,14,25) into

¥ o all
S T, 4, 2=

fso ° ™"

' (2,14,24)
‘%0 %I 6,=0 for f=1,2,3, .... e
N=

Foriuz. we have the roots, apart from a factor U

6 =-1,3730 %1.+o,o17714 £,= -0,010305 $,=+0,0068407 34= -0,0049177

The function ‘R(-y)'is plotted in figure 5 forj,:.? and j.: d . The agreement
between the successive approximations is again remarkable. The roll-moment
beecomes

M_ = ~0,38449 ?U.n.

x
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The corresponding coefficient is thus
‘ me= -0,1225

1 ' .
The presgssure distribution on the wing sections Y= and l}:-}\“

have been

plotted in the figures lla and 1llb. In the middle section the pressure
vanishes because of the anti-symmetrical character of the problem. The

sectional center of pressure is also drawn in these figures. The
1ift distribution which is calculated by means of the formula (2,
given in the figure 17. The induced resista.nce appears to be

D= 0,1890 eU.

_14.4 The downwash distributionws= U.Jt:jl

spanwige
13, 25) is

In order to calculate the regular velocity potential which corresponds

with a downwash w= sz on the wing surface, it is necessary to

develop the

function)).w(/.k,a') in a series of surface harmonics. We find easily that

s (B, )= W (18 cos*J = % U (1—};2) (1+cos 2 3) =
[P (W) -7, ()"')} i p? ()L)coszﬁ

According to formula (2,3,24), the velocity potential@ becomes

AT 44
§ (npd)- Uf f [ {P (- ()”1)]*
+5 P5 (i) cos 2, ] G (¥ %) i 4,

: Qa(ifz) u Q (rn
k% 2o s 0y ® Pacx ) &

1
U
m

=-§'—}J.{ qa.rc’ca.n }um (5)1. 5}&){211 +—+

3
_‘ﬂzi_ﬂ a.rcl:a.n-:i} T M (s~ 2) (”rll){ 15';;;5 *

QD 1

-(1—*122;52 -157 arctan%}ms 23.

The acceleration potentially becomes here

¥ Oupd)UJf 3 Gdx by, -

m.,,

_-ﬂlff/ﬂ\/ H cosd 6 (updipy )y 43, -
-—Q—}LV 1o cos V1+~q_2 3--1 -aqanctan 1 1 -
140* ki

(2,14,25)

cos 23

(2,14,26)

(2,14,27)
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.The complete: a.cc'eleration potential'{l'},can thus be written in the form

v (q}x 3)~-——- 1~ 0 V*I+T|_ {.’.-ﬁ - 37 arctan—?-} cos ¥ +

+ufﬁ @) [%] R
-

(2,14,28)
For the function %(3) fono_ws from (2;14,26)
: 4. . 20l s ell )
q,(\?)'z‘-'lt‘cos \?@)" (0,0,3)=—TCC053 = wm 1?1?- 15,“:C0523
| _u R
=5 COS‘&(‘IO-FBCOS 23) (2’14,29)7
The" ‘Pourier goefficients Cn are thus
) . ,
10u C- ,¢2=%u,(‘.3=c‘l=...... =0 . (2'14'30)
The system of equations for the coefficients ap reads now
e 0 S
+ — 0- ‘E: 1 ke
o Ty an G‘-’ ¢ 0.1 2. (2,14,31)

Solution of this -system fo:_-;i=q , yields

=~070019 a,=-0,50206 a,=-0,012630 ay=+0, 0068424 @, = -0,0043061

wherein the i‘actoru has been omitted. The figure 6 shows the function AR(J)
1or =2 and }—g . The corresponding points of the different approximations .
coincide nearly. The lift L and the moment M'} assune the values

2 2
L=wt80 U7 M'z}: -0,036g7 ¢l
whereas the corresponding. c_oefficients a,re_
c,=-0,3755 20,0118

The center of pregsure of the whole W:Lng lies in the middle segtion %:o on
a distance O 969 aft of the leading edge. In the figures 12a, 12b. 1l2¢
the pressure ‘distributions on the wing sections Y= 0 s Ys /2 and Y = 1/2V 3

-and the corresponding sectional centers of pressure have been plotted. The

induced drag becomes in this case

D=o0,2568 ¢U* .
1l4.5 The downwash distribution wrs U':LR

Similarly &s in the preceding case, we must develop the
function'}a.ur(ju.,ﬁ) in a series of surface harmonics. We obtain. easily

g (g ) U (108) sin®o = —%- o (1-p2) (1-cos 2d) =

=2 B (W-Rw --—P (wycos 2d (2,14,32)
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~ The velocity potential can immediately be derived from (2,14, 25) viz.

b (up, -2 {1 -n orctan & 11}

+15ﬂ (5 4 -3p) {2 Tl +-- J__'l q.rc{:an.Tz}

2
1477 (ml )2

~-157 a.rclo.n%- cos 23 .

-2
ol () (o) -
(2,14,33)
"~ As the normal acceleration Ij,%%% is equal to zero, the regular acceleration

potential y also vanishes. The complete acceleration potéhtials can thus be
put in the form

¥ (n J) oo
v (o) 1115(_/ G ["’FJ by =0 4 (2,14,34)
The weight function g(&) becoges in this case
| %(3) c.os ‘3' (10 8 cos 2.3) | (2,14,35)

and the coefficients c“

011 ~ - . .8 _o .
= T§L1f51"-0 1 C2_ llac 4- o =0
The truncated system of equations can be written as
? 6 N g .
> a _%_(.-*E-iq? £-01,8,..... -
= (2,14,36)

For 3’=q we find the coefficients

+0,56299 @,=-0014598 @, s+00088068 o, =-0,0059843 .

0,z -0,73534 a = 33+, ”

1=

Different approximations for the weight-funection R.('&) Viz..j,sz and i.g '
are drawn in figure 7. The agreement between these approximations is again
very good. Lift and moment take the values

L= -0,6952 ellz M%= 0,3022 e'Lf

and the corresponding coefficients are :
| Co = ~0,2218 Cny= 0,0962 .
The center of pressure of the whole wing lies in the sectiony:pon a

distance 0,565 aft of the leading edge. Pressure digtributions and correspond-
ing sectional centers of pressure for the sections g =0 y Y= /2 and Y= =2

are plotted in the figures 13a, 13b and 1l3c. The spanwise 1ift distribution
can be found in figure 19. The induced drag has the value

D= o077 ol .
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14,6 The downwash distribution w=Tlxy

In contradistinction to the previous two cases, this problem is an
example of the anti~symmetrical problems. The functlon}:.w(p.,ﬁ) can be written.

in the form

pa (}1,3)= Wy (142)sin 3 cosd: & 5 p (145 singJ= 4 33?5 () sin 2.

It follows immediately from (2 14,26) that the regular velocity potential Q

reads _
- 5 2 1] .
@ (-q'}j.’,av)= -—.ﬁ M (1—)]?) (H'llg') [15‘-1%11—2 - -G:{i? -15Q CU‘C*.G.H.?} 5L|'\}23' .

The regular acceleration potential can-easily be derived from the velocity
potential § in the case 14,%: . _

V(Tl ,u-, }).V1 ),LE \/1+n {3— - 3y a,rc’ca.n-ﬁ} sin v

The complete acceleration potential W becomes thus

¥ (upd)=- 35 }*FF{B-— - 39 a.r‘c’ca.n—}sm 34
| +Ilz&(3) [_o I

1
. )”1] )u.1 .
The weight function q_@&) is here -

| 9(“”’-""? cos @F(U.ﬂﬁ): %cos J sin 23

and thus
d. 0 d- d d -.'....-'0 :
The odefficieﬁts,gr; of the unknown welght=-function RQ&W nust thus satlsfy
the equations i
. 2n all ,
‘n"z T% B“- 15 G‘& '2:0'1,2’

-For} =4 we find for the coefficients apart from the factor L

b =+0,43812 4,=+0,27750 by:-00b7837 % =+0,032157 b =- -0,018989 .

Thig weight-function R(J) ig plotted in figure 8 fari-Q and 429 . The
differences between these two approximations are negllglble. The roil-

noment qu is

M, = -0,1809 (éU.'

while the corresponding coefficient Cp, becomes
Cm "'0057b .

The pressure distributions on the wing sections Vz and Y= 3&\r—ﬂ are

drawn in the figures l4a ‘and 14t. The sectional centers of pressure are-
also indicated in the figures mentioned., The spanwise l1ift distribution is
giver in figure' 20, The induced drag has the value

D= 0,0488 ¢U*
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15 Comparison with other results.

. In this section a comparison will be made between the numerical re-
sults found in the preceding paragraph and the values given by Kinner,
Schade end Klissner in their papers. Furthermore our exact values are com-
pared with results, derived by aid of an approximation method (ref.23). As
has already been remarked in the introduction, Kinner's and Schade's solu-
tions satisfy the Xutta condition only in a finite number of points of the
trailing edge. This number of points is related with the number of equations
by which an infinite system of linear equations is approximated. Kinner ap-
proximates this infinite system by 4 equations, whereas Schade applies an
approximation by 6 equations, Although Kinner's and Schade's methods are
completely the same, their numerical solutiong display a greater discre- .
pancy than between the approximations with 4 and 6 linear equations in our
theory. From the papers of Kinner and Schade we can only find overall gquan-~
tities as 1ift, moments, etc. for the downwash distributions Wwz.«W ,
w=lx and w=Uy.

_ In the tables at the end of this section, some values found by Kliasner
are also mentioned. It immediately appears that these values disagree very
much with the other wvalues. The reagon for thls can be ascrzbed to the er-
rors in Hiissner's theory (ref.22).

Moreover we have treated all the six downwash dlstrlbutlons up to the
second degree inx andy with the approximation method for lifting surface
calculations, which the author has described in ref.23%. For a complete sur-
vey of this method the reader is referred to the reference mentioned. It
can be remarked that the approximate calculations have been performed with
4 pivotal points in chordwise direction and 5 points in spanwise direction.
The results for lift, moments, induced resistance and center of pressure
are given in the tables below, while the results for the spanwise 3ift
distribution, the sectional centers of pressure and the pressure distribu-
tion on some sections are drawn in the same figures, which show the exact
results. The agreement of the approximate values with the exact values is
rather good. This result confirms the reliability of the approuximation
* method.

Mable IV. Lift coefficients Cq for symnetric downwash diétributions.

we-alfwe Ux {wallx? {wsUy?

Kinner 0,908 |[~0,468 - -

Schade c,8992 [-0,4718 - -

Kiisaner 0,8488 |-0,4244 - -

Approx.Theory|0,8927 |~0,4520|~0,3632 [=0,2215

This Theory |0,8951 |-0,4663[-0,3755}=0,2213

Table V. Moment coefficients cmq'for symmetric downwash distributions.

wa-oll fw=Ux [w-lx* |w- Uyt

Kinner -0’468 -0,219 - -

Schade -0,4659-0,2191 - -

Kiissner -0,4244-0,2122 - -

hpprox.Theory}-0,4698-0,2074} 0,0070 | 0,1007

This Theory [-0,4663-0,2194{0,0118 | 0,0962"
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Table VI. Posifion.of the center of pressuré aft of the 1éading .
edge for symmetric downwash distributions.

Wzl ws X I!J’auxz W= U.g,!
Kinner 0,48511,468| =
Schade 0,482(1,464| -
Kiisgner ¢,50011,500 - -
Approx.Theory (0,474 |1,459]|0,98110,545
This Theory [0,479(1,471]0,969}0,565

Table V1I. Roll-moment coefficients Cn

downwash distributions.

Table VIII.

for anti-symmetric

w= Uy | we U'x'zlr
Kinner -0,127 -
Schade -0,1276 - .
Kiisaner -0,11%2 [-0,0566
Approx.Theory)-0,1232)-0,0602
This Theory |[|-0,1225]|-0,0576

Induced drag coefficients ¢

for gymmetric and anti-
symmetric downwash distribu¥tions.

ws - oL wellx? | w- U.H,’ w-ly |w: Uxy
Kinner 0,4122 - - - -
Approx.Theory! 0,4017 0,0738 | 0,0345 | 0,0607 | 0,0157
Thia Theory 0,4011 0,0817 | 0,03%43 0,0602 | 0,0155
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Chapter III.
The ciroular wing in unsteady incompressible flow,
1l Formulation of the problem.

~ We congider a wing of circular planform which moves with constant velo-
eity U in an incompressible and non-viscous fluid and having at the same time
a motion of small amplitude in the transverse direction., Similarly as in the
steady case the reference system is a right-hand system of Cartesian coor-
dinates ﬁ(,g'z) which is fixed to the aerofoil, when the translational dis-
placement of the wing in the direction of the vector Ll is considered only.The
positive axis of X is again taken opposite to the direction of the veoctor U ,
the axis of is taken in the spanwise direction.

According to chapter I the perturbation velocity potential d satisfies

the equation of Laplace '

Oyt Qg,g.* 92220 , (3,1,1)
whereas the linearized boundary condition at the wing surface
' Za 2 (x,4,4) | (3,1,2)
reads
w2224+ W22 for za0, Xeyts1 .
ot oX (3,1,3)

We shall now investigate in particular the case of harmonic oscilla-
tions of the circular wing. As already mentioned the amplitudes are assumed
to be small, so that linearization of the boundary conditions is allowable.
It is clear that the equation (3,1,2) of the wing surface can be written in
the form '

iyt
z=x,(x,$) + %, (x.y)e . (3,1,4)
The term zq(x,g) represents the wing surface in its equilibrium state,

while Z, (x,4) denotes the amplitude of the harmonic oscillation in the
point X4 of the wing surface..

Because of the linearity of the condition (5,1,3) the boundary value
problem can be split into two problems associated with X and X, respec-
tively. The first problem is juat the steady case, which has been des-
eribed in the preceding chapter. The second problem deals with the pure
unsteady part of the complete boundary value problem. This last problem
shall be treated in detail in this chapter. It is clear from the foregoing
congiderations that the wing surface in its equilibrium state may be re-
placed by a flat plate, which of course can be deformed under influence
of the harmonic oscillations.

In considering a circular flat plate which performs a harmonic
oscillation indicated by : ™ '

: L

z (x,4.t)= Z (x,y)e (3:1,5)
the boundary condition at the wing surface can be written in the form
x ‘ 1% DR | oLt
W (.y,t)a w(x-'J-)eut= %"u%:{wz&.uhu -oz-é: } e’
or

wx,y) = WZ(xy)+l 32__%——%9 for z20, X'ty S 1

In terms of the velocity potential & (x,y,%,t) :6(x,g,z)en£ s this
boundary condition can be expressed by e formula

2% Wz eyl BROW for zo, XMy - (3,1,7)
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- Equally as in the steady case the condition must be supplemented by the
condition that no discontinuity of the pressure can exist across the xif ~
plane outside the wing. In order to express this condition in terms of the
erturbation potential, use can be made of the unsteady Bernoulli equation
fl,l,?) which can be written as '

2$, 4 Cod\a, (o4\2 2 {2, P
2t [0 G Lep e S o
or in linear approximation

P (3,1,9)

 The condition of no pressure discontinuity reads thus

% {4, (x,q,+o)-q>(x,g,'-b)} +U % l@(x,g,a-o)-@ ("q%“-’)} 20 for x4 .32> {

: - (3,1,10)
This condition can again be gimplified by using the fact that the normal
velocity w is a continucus and even function of the variable zx . This pro- |
perty of the downwash implies that the velocity potential § is an odd

function of 2 , or in formula |
\

b (x4 +D)=-0&x,y,~0) .

If T represents the pressure jump over the xy -plane, it follows from
(3,1,9) that the relation holds ‘

o ¢
T=2¢ {:5;+u*-5;} o (3,1,12)

(3,1,11)

For the harmonic case the requirement (3,1,10) can thus he replaced by the
gimple expression -

AT od 2 2
L)Q*F[I.:a:() *FOI" Z:O,x-l-t’, >

, _ - (3,1,13) .
The boundary value problem for the velocity potential § can thus be for-
mulated as follows: to find a solution of Laplace's equation, which ful-
fils the conditions :

k), ?f_(x,g.z)_:o -For_(x,zg,:e’) at infinity
2 %’- W (x,y) for z-0, ):’24-5}2 £

3 Wg+U 2—?‘:0 for z=0,12+32>1

2 Determination of the complete acceleration potential,

The theory developed in paragraph 3 of chapter II, enables us to
write down at once an expression for the regular velocity potential
(%,4,2z) , which fulfils the three conditions, mentioned in the preced-
ing paragraph, The function of Green for the unsteady boundary value preoblem
is completely the same as the function of Green, used in the steady case.
According to formula (2,3,25) we can write

B y0= ff B (x40 G (a2 x4 ) dx dyy (3,2,1)
S
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whereiJlﬂ?@m,g) represents the amplitude of the downwash distribution over the
wing surface, which is determined by means of the relation (3.1.6), Similar-
ly as in the steady case, we can introduce an acceleration potential?F’tsing _
the formula (1,3,7) , which simplifies to

Yewgsl 2

(3,2,2)
-for harmonic oscillations. Hence
-'-“‘I_x= i-o.//ﬁ-r(x.p*')G(x:gyz:x.«lvlh) dx1 d'-td'1+
S ' )
"'u%?i Jf W (e, 4)6 (542, X Y )dx dy, - ( )
‘ S . : 3:2,3) !

Moreover it is possible to obtain an expression for the acceleration po-

tential by considering the normal acceleration at the wing surface as the
given boundary condition, This acceleration potential, denoted byif y can
thus be written in the form '

Ve ff & (x,,4)6 (54,2 %,,4,) dx, dy, | (3,2,4)
8

It would now be possible to derive an exact formula for this normal
acceleration E.Cx,g) along the same lines as is done in paragraph 6 of
chapter II. However, we shall follow here a somewhat different way for
finding the ultimate expression for the real acceleration potential. To
this purpose we agsume that the nmormal acceleration a(x,ld,) be given by
the formula . .

@ (et = Accyle Vs %r - {'Lh?r )+l ‘“-"‘T’—‘,f’ﬂ—l} et
or

- - ow (x
@ (x,y)= WE(xy)+ ‘—"a(_xﬂ-) v (3,2,5)
The corresponding acceleration potentialiﬁ reads then

F =T (2 4G G 35, ) oy dyge L ff S5 (x.ls.zarwf)dxzdtu |
5 3 3,2,6

Henceforth we consider the ditference of the potentials;;?andqﬁ . We ob-
tain the tormula

v y=U % //‘T’ (x4} (i,g,z;x, ) ) e dig,y +
S -
‘u{/‘%%@‘(x.q,z;xv%)dxi d"in‘ ’ (5!2!7)

The right-hand member of (3.2.7) containg exactly the same terms as in the
corresponding expression in the steady case. Thus we can immediately con-
clude that the identity (2,7,7) retains its validity. This means, that the .
following formula holds , ‘)

I
7“-‘.?:1[[1/ cos«‘}1 5}1_1 (O'O"D;)G)"ﬁ (q_,p,ﬁ; D,J)d.:); . (3,2,8)
0 . -
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After quite the same reasoning as in the steady case, we come to the normal
expression for the actual acceleration potential, viz.

¥ (uad)r u/ FR@ g, e e

This expreassion (3,2,9) satisfies the Kutta-condition, while at the leading
edge of the wing the square root singularity is guaranteed. The unknown
weight~function A () can again be determined by the requirement that the
normal velocity at the wing surface which corresponds with this acceleration
potential must coincide with the prescribed downwash. Using the relations
(%,2,8) and (3,2,9), we can rewrite the complete acceleration potential in
the 'form

i

w (0.p 3)+Ue"”f A6) [%JP 43

\
V+Ue“”’f 9(3 [ﬁf"’l})«_ cI.°I+L1e‘°’°j %(3 [_a;l d..'j :

wherein (J): - T cos 3 (0 0, 3) (3,2,10)

Rememberlng that 18 tne acceleration potential which has been de-
rived from the velocity potential Q s we can state that the normal velocity
at the wing surface which corresponds with this potentialiy“is equal to the
prescribed downwash. Hence the above mentfioned requirement of coinciding down-
washes can be replaced by the condition that the normal velocity at the wing
surface, which belongs to the acceleration potentisl 2 , where

o (q,/u,ﬁ) Ue"\“"f 3,(3) [?}11]#1 dJ+Ue"M}!—R 31) [‘O)LJ df y |
3,2,11

vanishes. In order to express thia condition in terms of an eguation use
must be made of the relationship betwesn velocity potential and acceleration
potential. This connection has been derived in Chapter I and reads

\P(xvq,z,t)-.--i- fmg(x',tg.,z {- Jc"cr)dx' . {3,2,12)

Undei'the assumption that the time dependency is represented by the factor
iy '

s this relation can be transformed into

[153 g,z)w e “"“j ¥y, et A, (3,2,130

where (J= Jl ig the so-called reduced frequency.
The equation for the unknown weight-function-%(ﬁj reads thus
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. ' x L
Lim 2 -le""wxfn.(x',g.z)_e“-'wx dx' =0

X—=0 X o
- u o | (3,2,14)
or written out
Lim twx' y_r ?
g S f10) (3], e
i ¥ (3,2,15)

. x . ' . o
+1'j_‘_'"; %fe“’mx d.xf g,(»Z) ’.%1 cl171=0 ]
-0 0 [I! | }L‘so

Quite analogous to the steady case we _now introduce the Fourier expansions
for the weight-functions g (¥) and RW) , vis.

g ()= ¢ ) co's{T: cosJ% ¢, 05 ny

‘FL(&) = %.*(3) 5053 a C,OS? i Q.n cos ﬁﬂ.j ’
. N=0
if the boundary value problem is symmetric with respect to the variable y

and g,(J) . g,"(aj') cosd = cosd ?:.131 d., sin ny

R = K(J) cosds cosd % 4. sin £2n¥1)3' ,

if the boundary value problem is anti-symmetric in the variable Y . We
shall also use the Fourier expansion (2,10,11), which reads‘

‘ e« 8 ' =2 a .
Llc:osfl1 [%GL] = Zwmcosm;+zz me""m‘z
M) =0 M0 m=1
-] a. R
where V, and ¥, have the same meanings as in (2,10,10).

For the symmetric problems we can then write for the acceleration
potential g '

= 8 = n 2 2, amHt S ,2,16
Q. (q,)z,ﬂ')a'rc%o %“—m*% a“{Pzn u{m«r%o L ngn} (3,2,16)

and for the anti-symmetric problems

o W)= S”d Y+ S b Wapg ¥ = (3,2,17)
_("l')" ) eyl A v q'.um anH e q'm“ Yam( * és
The gquantities *p;':‘ and q,':_‘ are agein defined by the formulas (2,10,13)

and (2,10,20) respectively.
If we denote the normal velocity at the wing surface which

5
corresponds to the accelération potential 'qfn by ﬁrn and the normal velo-
o
city corresponding to &n by'w'n_ » the equations for the unknown coeffi-

cients @ and gn read reapectively

b
“”




V&

o1

ams S
Trz:‘a‘1 . +Z°~ {Pgn an*Z: Pan zm+1} =0 (3,2,18)
and

N o b=
1‘5:‘* “" *Z % {Q—zrrtn 20+ ZZ'_ arzrm } 0

b (3,2,19)

The only new problem for the unsteady case is the evaluatlon of the down-

a
washes &m. and'wh y which will be performed in the next paragraph.

. C) o a
3 Evaluation of the downwashes Mﬁl and uﬁl for the unsteady problem,

In this section the normal velocities at the wing surface, which

) a
correspond to the acceleration potentials 7V, and W, will be determined
by means of the relation {(3.2.13). In fact we must reduce the two ex-
presgions

' x \/
S -lwx lim ® Lwx __ﬁ__
U.m=e Z—=0 3% !e }L2+q2\[1+qzm cos ma dx (3,3,1)
and r———?w{
a twx Lim z Lwx Yot el \7
— ‘ -
Ul T T AT LT Y

The integration in both formulas extends along a straight line parallel
to the X -axis from -¢o to X . For the line element dx on this line we
can derive with the aid of the transformat1on formulas (2,3,1) the thres
relations: .

J‘x“"\/{%’ W msjd}“‘\[&[yw-ﬂg cos Jdy '."\/:}IEW sind dJ
-F{% \f1+ql sind du+ —v:ﬁqg\/:}? sin o d"l*@‘/‘“-\f‘ cosd A

0 a nd ph + pudn | (35343)

Solving these equations for dxl s we obtain the formula

R, .2 '
dx . L0 L d . .3,
SR [ e 222:4)

Substitution of this expression into the formulas (3,3,1) and (3,3,2)
yields respectively

‘m“ Z—=0 % 1 \farn? x dn - (3,3,5)

and
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1] a ' n m ' x
& =e-uf)x L;m ) f .LL__&_WSUI mJ et d-q ’
™ | XD "OZ-” n \ m!i-\‘l m x (3:396)

1t is clear that (3,3,5) is an even function of the variabley and (3,3,6)
an odd function of Y . Hence it lies at hand to consider the combination

fL  -°" _mLwx Lim 'af/“V"}"

L
-m.+ u’m' - Z=eD DX

C.Osma' e d..&+

5irﬂm3.e d-rl . (3’5'7)

This exp;ession (5,3,7)-can be rewritten into the form

Su_ 1S ._e—i.mx. lim 1B /u. V -/u. tmj e wx
m " m = 20 DZ ‘q V"T x
oo

or

1
5 ..e ' -iwx Lim A
u‘m_“'“’m”"" i =] 5 o rf) (‘x+ug,)

* (3,3,8)

We introduce now the new variable ¢ , defined, by
s 21,

.On the wing surface holds M20 or t.1 , whereas n- e corresponds with
$z200 o+ The line element dn becomes

dy= dt ,
. -1
Furthermore we have o
| Mo X _Z
i .Qz {?-1

and

2
I+Ié. (1)1)(1“2") =8 ( z) 2 :z) .
Ed ¥
With respect to the integration interval in the formulas (3,3,1) and

(3 3, 2) we can remark that x is always less than zero., Consequently we can
write

The expression (3,3,8) can finally be written into the form

a ¥

2
s m -th g+{’(1-;§':)
e | et ('F.T) \[.ZM‘ 1-—-—- '

(3,3,9)

dt -
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Performing the differentiation under the integral sign and taking the limit
z—~0 , the expression (3,3,9) transforms into an infinite integral. However,
improper integrals of this kind can be treated with the theory .of the finite
part of an infinite integral, which has been developed by Hadamard (ref.5).
Mostly the common integral sign is replaced by the sign-f', which indicates
that the finite part of the infinite integral is meant. Instead of (3,3%,9)
we may thus write

. 1-2m m ~Lw ‘L‘l&

fbﬁg'o' o LW f el iy~ Y £ dt

v 'E.a" '*2 (3)5910) |

HBenceforth we substitute into (3,3%,10)
-y = 8 (1- ¢) with s>0
thus obtaining the expression in the more convenient form
, \[ D
O +ill_ze WX (‘1) f glweVr ™
moom V { \f1 -y +i.|*}

In order to be able to evaluate the expression (3,3,11) we éonsider at
first the general ferm

ds - (3,3,11)

$(s) |
jV— ’ (3,3,12)

where .f(s) is aasumed to be a differentiable function of the variable § .
The formula {3,3,12) can easily be reduced as follows:

Lo

te) 4. [ fe-f ) ds + 1 - - fe)- 4(1} ds+ i ds |
1f '52-15 1)( 5?1 fV > Vs’-— fV %1
(3,3,13)

The second equality in (3,3,13) is justified by the fact that the inte-
grand concerned possesses an integrable singularity. Thus it appears that
the main problem becomes the evaluation of the expression

)(V—: (3,3,14)

-In fact the calculation can be performed using the concept "finite part of
an improper integral' , this being defined as a contour integral in the
complex domain. Replacing the segment(1 oa) on the real axis by a circuit
C around it, we can write

4
5 ; . (3+3,15)
j 3 2 fv—-1 ‘

By application of Gauchy 8 theorem we easily see that the contour integral
can be transformed into an integral along the imaginary axis, viz.




. d +i_co . + o0 d_
- d% dse . _ 4y .5 . .

f.. 9 s ™ / T -—f 3 - 2 (3:3!16)

C Vst -<ieo Ya'-1 -oo \’%4-1
Hence : .
r3 ds  _
j{ 2 3 - -1 - ) (553’17)
i 5 =1

Equation (3,3,13) thus becomes

hs) do o f F(s) f@) -fa)

o0

f

7V V_ﬁ
or
;;:"‘s ds= - j{f(s) Hﬁ}-f; V?—-ds - =
=-[¥{s)—4(1)} Sf_1 z:a +frs-=4(5)ds ()=
- [ s feyds | (3,3,18)

The assumption that f(s) vanishes at 1nf:|.n1ty, aimplifies the relation

(3,3,18) to

S . ]

X Vs r -1

In our case the function ¥ (s) takes the form

‘F -st \’1 I‘. ) o )
()= - . - (3:3’ 0
[;V‘l l} +I.Ij, :

If w= — 1is a pure real number, the condition that 'F(eo) is equal to

Feyds (3,3,19)

zero is only fulfilled form»> 0 . However, in unsteady aerofoil theory
the assumption is mostly made that the imaginary part of w is less than
zero, thus ascertaining that integrals concerning the wake bhecome con-
vergent. In this way we still satisfy the requirement that {(oo) vanishes
in the case m:g . According to (3,319) the expression (3,3,11) can be re-

placed by
w +iﬁ _omiwx (1)‘" / '“"sw'y?
m v_l_., ds ( VJ“‘J-)

This formula can now be rewritten into the form

- - {3,3,21)
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s e -lwx (<A™ f ) Lw
W +i_=e — +
Vieg™ 7 Vebt o\ ifiy)”

: 1
™ - lws \[ 1-y
e ds 3,22
@r@qw} 13:3,22)
The fundamental integral, which has to be evaluated, is
o Lws \/1 - :
m @)= f ds - (3,3,23)
Vs (5\/1 -y +Lq.)
Putting s=cosft ¢ , we obtain the formula -
2
omtw \[1-4 cosh ¢
I, R fcosﬂt (3,3,24)

di
5 (\]1—? cosk L4 u‘)""

The following reduction can now be made

e 1-yf cosh ¢

(W)= /cosa L —=

dt =
. 1‘““ in_ "cosk L+ u})m”

ombw (\f 1=y cosh i) m
(\ / -y cosh b+ i.g;)'"“’1

Furthermore the relation holds

: oo -tw \I -y [
._d'_ eI ()l =-t fcoshi -€ oy cosk hu") di--ie“%1 W .
d. N+ m

w 5 (\{1._4? cosk b+ ly)™

Wi
et 1 @a-ife®] @wdwrI O - (3,3,25)
o

=e'wg’7cosﬂ t

Hence

Applying this relation (3,3,25) repeatedly we finally obtain the formula

w w

w m }
. - - . ‘}
1., @ (-D™e ""36/ dwé/dm.‘;/éwg I, w)dwse it % (-i) (;I Lt 3,( ) -

Zm+1) lrﬁ;grafs (3,3,26)

By partial integration we find
amiet e @Y p m o Wy
I () = (~1) —m!— f(w-w1) e 1 IO (w1) d.&J_' +

T4

+e'“"d'§T_n: (.--‘i-)i B—f Loy O
420 & t (3,3,27)

\
)
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Using the well-known relation (ref.26)
e ' 7 . @) ‘ | -
Io(w)=f cosh + e” '@ Y14 °°5ﬁ,‘ci£=-% H, (w\’i-tf) , (3,3,28)
0 Co

W .
in which |--|1 represents the Hankel-function of the secord kind, we obtain

the formula

. .
~ 2
Ly @= ™" F — f(“’“‘*’f)mew'g'H1)(“’1\l"‘4'z)dw1+
| o .

m S
+e-w9§%<_;)*'% Ly © (3,3,29)

The only problem which remains -is to determine the value of Im(o) {orm?J .
We can write : ‘ A

I, 0=/ cosh £ _ g4 (3,3,30)

0 (W cosh {+i.g)m

In order to obtain an expression for this integral in terms of known

. functions, use will be made of the integral representation of the asséciated

Legendre function of the second kind, viz.

\ oo R ut
Q{:(x).-.-.e"}m SRE\LOR m;//u T 9t (3,3,31)
M Q-p+) g {z+ (2*-1) ? cosh ’c.}

~ wherein Re (3t M) >4,3£-1,-2,-3,~..... whilst z is not situated on the

real axis betweéen +4 and-oo (ref.2 }. . In particular we put Z=Yy -Lo,
with -1 é\&é +1 5, into the formula (3%,3,31). Then we obtain

cosh ut

M FQed 7
q) (4-i0)=e AT e e
v U FG-PH) 6/ [1}_-& 1-y* cosh i} e (3,3,32)

Moreover use is made of the important relation {ref.2)

Q}; (y-0)= e RuT {Q};(x)f-%‘PQ (x)} . (3,3,33)

Thus _ ) ‘
Foomph . hisr QW cosh ut ..
Ry )+ Py @)=e™% . o di
YWET R F(-ped) of {.&_L VimgF cosh 1} "
‘ (3,3,34)
For jua1 and J=m-1 we thus find
‘qu (y)+ % P;‘n_" @=1i ('“‘1)f cosh t dt =

m
.0 {l*-'t V‘!-lf cosf 'l:}
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L i) f cosf ¢

(\/1_5}—' cosh £+|.g)m

The two formulas (3,3,30) and (3,3,35) together yield

_ yM '
Iy @£ {Gm W+ 5 7, ,(%)} ’ (3,3,36)

m m
By aid of the definitions of Q () and P (x) , we can write

4 dP |
I (0) ——)——1 1“, { m-1i' 1“' —a—“;:l} ¢ (5:5’57)

Let us now return to the expression (3,3,3) Using the foregoing consider-
ations, we can easily derive that we have for m 21

. (3,3,35)

T
, .

. wXx
s .o -twx Lim 2 g
w+iu ze 2mg az T €05 mJ dn+
1+Q
m
R ! \/ 2
-Lwr Lim—2—, A _L)L_sfn*ﬁ _elux L
-0 0z J | : x =

_mtwx (™ ]

z=e W twl (w)+mIm+1 wHt =

]

semtwx O il w ™ X e f(w w)m -1 w‘*H (m -y Jdoys

) W 2 ( 0'

-y @
e et ﬂ g f(w-w1)'“ e"""*HT (w1 V 1-?) duw +

bt

viwe 3T ot % I, Ome ‘*"*?—_H

1’0 m+1}” =

- o X (-1)"‘: [_( o™ 1r e f (m~w,)m" *-’ﬂ#H“)( \{ i) dew, +
\/1-5 ‘
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. i g A
+iwe “"*ﬁ (-if Tl- Im }(okme'““f(-t) 7 lm,,1 }(o)]

—iwx (™ i m-11_'c.e""q' e m-1 M%H deo. +
i [“’ F o J o e ()

' -1
+e WY % (-.i, ‘}' (m 3) Im“_.}(o):l .

: =e.-i.wx'._(—_1)i’j [( 1)m+1 n e % fw (- whm -1 wf'ﬂlﬂ(m,\ﬁ-—tf)dw .

Vi

da_; .. dP
*W—Z m W*\/_-z' Dneg, o wi Tmed ]
=0 O i 19{:15 TR dy H

_)l

PP _(_—_1_)_7?_"_1_ ()™ T _l; f‘-"’ (W= u')“” {cospt (w, -w)g,+
e P e

| M 2

| |

{ sin <°’rw)%} HY (w0 Vig) doy

| - - i mi 4P

| + (cosk wy-sinf wy) (- V 9 S:'.% ﬂi [-—mi-;- 1—;-5 -——i]

b0 ¥ | 4 dy
- ( ! -1 m+1 U -
Lwx , ,-—-f,: S ~i)™ T “(-r;l{—ﬂ*l f w, (w-w)"™! {coa& (wy-w) y+

+5mﬂ(m-w)g} H” (w V-_‘)d.w

wmi' dQ} 'ﬂ:rl. d'Pi-
+(COSR wy - sinf wg) L™ \/1- g. ;Z.;. m! {dg 7 dlg

(3,3,38)

It is rather easy to split expression (3,3,38) into a symmetric part and
an anti-symmetric part in connection to the coordinate g » After some
elementary calculations we obtain the relations m
x A
§ o gtiwx lim wx _ M V1M
m= 0 Dz R, 2 ™
-oo A\ ug?

e'i’wxﬁq [tm+1 1—: ! f @, (u “"cosﬂ.(w-u)gH ( lf do, +

€os mﬁ dx =

1- (m- 1)'




, -24 d . dR; . .
-1V 1ey !:?-I__-.] M Q% cosh wy - -1'52-"- —* Siak wy
i.:“ (m-ﬂ})! d-g. d.lé_ :

-1
2] m-23-1 da,; . dP
#M \}1-5}2 t/\___] " 24+t sinf wy- 1:—- o cosf wy

j=0 (m-2 i dy dy
and '
& __jex Lim o /’ wx A VR Y dx
w_=e ot D e SLn M =
m Z—=( ?32!_90 }‘:24_\,12 V‘l_-i-_‘l?'m

J

)

i

“Ol‘ mél

(3,3,39)

- “ : @, '
g™ wx \[_—1_—,; [i,'“ %(_m%')—i /w1 (w-w1):m'1 siof (w-0) y H1 (w1 1-!{.2 daw, +
: -1)% o

-4
Bl e [ . 4hy
L\ = w™ " 5ink wy- T 2 cosh Wyt

jet (mogf)! ¢

m-1 ol )

T m-kj.-1 ‘daz}*q i dp!i‘” .

A\ s Wl cosk wy- Tt sinf

S Ak I jzo- (megj-Y dy ,,%_f, B j

3

form2 1

The symbol [‘n] denotes the largest integer less than or egual tom .

For mz= 0 we have

_ ! Lwx K y
Bl eriwx lim 2 j Mgt dnz - iwe ™%
ot LU= Uy = x—o 2z J x - \lq.lf

I, s

e (3,3,40)

(3,3,41)

The formulas (3,3%,39), (3,3,40) and (3,3,41) enable us to determine the

S a
downwashes w,, and wW,_ by means of the relations

m T
5 1 S S >
wm""_a (um_1+ u,mH) for m2 14
RTC
O N
= =--— il

(o] ‘mz 1
Wz (& +u )

Mt 2 N e ™t

which follow from the definitions (2,10,10).

4 Approximation for low freguencies.

(3,3,42)

Because of the complicated nature of the downwash digtributions,
given in the formulas (3,3,39) and (3,3,40), it can be expected that the
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necessary calculations for the determination of the forces and moments, which
occur for some prescribed harmonic oscillations, will be rather cumbersome.

"In order to limit the required numerical work, we restrict ourselves to the

case of harmonic oscillations of low frequencies. In fact we still take into
account terms of order w , but neglect terms of higher order in w , This
means that the results of our calculations will be of interest for dynamic
stability investigatious.

The first thing to be done is to expand the downwashes U. and u. to

the parameter w . We eagily find the following approximations to the first
order of w : ‘

. S dQ :
e WX VI 8 SR, iy R 14 2 (—1)"‘sz farmz1
dy
. 44
elJDX ELO - - o
d'il' 4
lwx 8 m %Tamer . m ' L
e Uypyy= (N 5 T+ Lw O™ (me) Qo _. (3,4,1)
; - d?P
twx & oam# T M . T
e Wom = (=) 3 rr +iw (07T 2maQ,,
_ wx met Bomys
| i uzm‘ = (—-1) —T 4l = ("1) (Rm*“') amed
‘where use has been made of the well-known formula.
dQ
n
— - Q. =nQ 2
Y4 dy n-{ n . (3,4,2)
With the aid of (3,3,42) we obtain the approximations
wx s n™! "
e W, = '(4m+1)?2m v fw (M=) Q= (2ma) @y b
iwx S 1 iw
€ Wo "'ama"m! 4

2m+1 q1C

o lwx @ S‘—z' (am+1) ng g_;.,%' tw {(Rmd) am-q~ @M+ 2m+1} |
m+t ™

wxs ™ CON -
e w, -—21?— Gm+3)Q e L {:mP (am+2) P e 2} (3,4,3)

am™

The zeroth order terms inw are juat the downwashes in the steady case;
they agree completely with the formulas, derived in aect:.on 11 of chapter
II. These approximations for the downwash distridbutions wn and w'

enable ug to find approximate values for the unknown coefficients a, and
% in the equations (3,2,18) and (3,2,19) resp., up to the first order

in the reduced frequencyw . Therefore we assume for the coefficients con-
cerned

¢, = cO, Lwc“)

' oy
n ‘ ’ d'ﬂ.: d.n + Lﬂ)d.

n
‘&('1) (3:4:4)

. n *

(©
ahaa. +a,wa.“r3 , § -8 v




o
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whereas the. downwashes can be represeotéd by |
58 S, ;. 50 & & N
Wi = W LW X Wy = Wy +W“’U ! (3,4,5)

Substitution of the expressions (%,4,4) and (3,4,5) into (3,2,18) and
(3,2,19) yields

e Z €, (¢4 iwcl) (5 @, wa('))+z ( +|.u,a(2 Pon (%(o)i- Lod )+

+Z Fan (Bamar 0 80,) }=° (3,4,6)

and

n n+

oa _- ) ., a e © . Wy
m S (40hiud?) BPvwd e (s Lol) {4 (GReioby, ).

-o

& (1)
: +Z 2I’l+1 (w(")ﬂ,w Qm)} =0 . (3,4,7).

Equating the terms, which are constant in the parameter w , and thereupon
the terms, which conta.in lw only, we obtain the system of equations

.

L e, of 6“ QO ] Bo, s gmE SO h e
nZ € c‘ +Z @ {Pzn Won Z)P,m Vymaa[ =0

=2 1 1 o2 (o) (1) am4q S (1)
TS e B ey i+ 3 o [rm Bhes o i

Z___ oW @) amer 5.0 | _ . ,
Yo% [Pznw +: Pon Wamps | =0 (3,4,8)
and

nS a0 30,3 47 [ e S g ::;w)} 0

=4 " e et 2T Ty Yy A

“.: d[o) m+1tZ: d(l) ‘W@*Z 3(") q'nr1+1 G (1) 1*2: am au)} +
et " 2n+1 Van M=1  AnH

(1 an+t & (o) am
*ZE {Qv 2n+1+Z: qran 2m =0 .

n=0 At (3,4,9)
. 1
The first equation in either of the systems is exactly equal to the

. corresponding equation in the steady case. This means that the coefficients

a.fi) and %]so) can be immediately derived from the steady theory. If these

zeroth order coefficients have been evaluated, they can be substituted into
the second equation of the systems (3,4,8) and (3,4,92. In this way these

second equations become equations for the unknowns CT: and d() respec-~

tively, which can be solved in a analogous way as has been followed in the
steady case. The equation for the symmetric problems can be written in the
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L= - ] l
n 5 m+1 S (0) - {1) o) (ﬂ) (1)
> o {Psm Ars e gmn} mE e B r e ) -

M=0
S o@ B0y 52 pamit G0 (3,4,10)
no ™ pin +Z Pan Vame : 1%
and for the anti-symmetrical problems as
20 0 [ ons1 @ () 2am &) " & @ % g
= ) + ZT_' w e TEE: d ‘KZ d_ w(i +
n=o " {q'zrm ? S By am n=1 " ". n
= @ | 24 o ) ' -
- (1) { .
Z 'g {2n+—1 N+ Z q'gm-: zm} (3,4,11)

In order to transform the identlty (3,4,10) into an infinite system of
linear equatlons we pultiply both sides of (3,4,10) with the Legendre poly-
noinial B () (m=0,1,2,.....) .and integrate thereupon over the variable y
from -1 to +1 We obtain in thls manner

oo ‘ . +1 |
2 ap [ ?1/ “’m Pze(#)d'ﬁz P”"‘“ B2, Py Wy} -

. oo +1 .
=x3e, c“’/ u*“”aew)dr"t%;,enc?_[ wy Ppp ) dy +

- > [Pm 7 By + > p*“‘”f Vet ag ds} for 10,2,
-1

3,4,12)
In (2,10,16) of section 10 of chapter II we have already 1ntroduce§ fhe
abbreviations .

- 2n o s
Pan 1f “’“Pz{(‘*)d‘ﬁz Pm'_.[ Wi Pt Wy =Ty

<—-Tr£nfw‘°)P£(g.)dg G"t .
Furthermore we put

“Tey _{ Wl Rt W) dy < - i

and

pﬁn / (” Pt(q')dg-"'z 1,::“"' j 2(:1)1+1 af (‘J-) dl* D{ . (3'4i13).
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The system of equations for the symmetric problems can thus be written as

ad

> '%t a“ri Z G"" ‘"+Z}L c‘°’+Z 9" Lo) 4= 01,2,
n-0 (3,4,14)

For the anti-symmetric case we multiply the identity (3,4,12) with the
Legendre polynomials F;*+1 (k=0,1,2,....) and introduce again the quan-
tities ‘ :

a,

. :
n 2n+1 f (Ol (g,)d%*-z q,ﬂm (:?l b+ (‘J') 4 }

:zn+ . & an 2&+1 2N = |

s 1’:1/ "3#3’ Poger () Ay | |

+1
ﬁ3‘=-1cj O Py, @) dy (3,4,15)

a.n n+1 f (::.4-1 1 ) d-l} +Z Qrzm f w.(ﬂ Rz Bt ) d.lj, .

2n+1 =1

__The system of linear equat;ons reads now

Z 'L'& ﬁ’)-f T} dﬁ%: s dff’+zo 8“ k=0,1,2,...(3,4,16)

In order %o find approxlmate values of the unknown coefficients aﬂ: and
i
sn it is necessary to truncate the infinite systems (3,4,14) and

(3,4,16) regpectively, thus obtaining finite systems of linear algebraic
equations, whiech can be splved,

5 CLalculation of the coefficients.
For the evaluatlon of the coefficients uﬂ’ Ql /&k and Q& y use

will be made of some relations, which have been derived in section 12 of
chapter I1., We begin with the 31mplest coefficients, viz. } and )&&

According to their definitions and the relations (3,4,3) we can write

net +H '
ﬁin____ f w'm P dy = (-1;11: -T/ [(2“‘1) Qpa.q = @041 Q2m—1}_ ‘Pﬂ dy =

) il 1) 2 (211+4) 2
= -1) — - (an+
T n (2f-2n41) (2d+2n) (28-2n-1) (2l+gn+r)
L e v } for n 21
T (ef-2n+1) (ran)  (20-2n-1) (2tr2n42)

+1

5S¢ _ ﬁ) sk - 2
%= f w Py ) dy $=x _1/ @ P =5 (28-1) (2L+2)
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I't+| j hrmn 2{('4](1'}”( ‘) [gn‘PRn (2'“2) 2n+:} 12 dy,-.—D

for 14n and 4 n+

+1

o RE . f.
,.g+1_ m:j ‘%(}HB{ Uﬁ‘*‘k%ﬂf{ﬂpi (2l+2)P £+z] Py dly = (‘3 f

B !
_ /"it-h -'n:f lii1 22(5‘_)513_ 1) f{(ﬂ-ﬂ R“’z } o dy = ng{
' ©(345,1)

zn == ‘n:f wfr)t E&H(‘ﬁd‘&- -———j{(zn D hneg ™ (2041 2n+1} E&ﬂ dy =0

for £ n-1 and &#n '

*
z&+z, -'n:/ +2 2*+1 ) d-#’ '1/ [(3*+1)P%+1 "(2*"3) 'P& +5} 2het 44 =

6 22141)
2 (4R+3)

. .
-_ﬂ;j (') P&n (‘})d‘}-“) /{ k-0 P, k1" (2&“) %H} 2ot 4=

2 (uk H)' :

o ’
#Enn:_mi!‘ me et (g)dg.. m_ f [MQM\ (2n+2)Q2n+1] 2k 41 dy =

L . R
Toam {m (2k-20+1) (2ke2n+2) (?n+2) (2%~ 2n-1) (2%+2n+4)}
e R o an - an+e2 . (3,5,2)
T ™ U(ek-2n+1) R+2n+2)  (2k-2n-1) (2k+2n44)

_ %
n "
For the coefficients_ QQ‘ we can derive the following relations

¥4
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= 2/ wm sz (‘J-H%'*Z Py Hf wg;z-f-: 20 ) dy =

= (‘02 j{(ln-") Bgn-q= @71 ann} T (D dy +

Z P’;:M -1 f {sz - (am+2) 2m+2} Pop dy

|
) 2 ' A |
2 (an~1 - = =(
= Pan "2 { (2l - 2n+9) (22+zn) (28 an-1) (22+2n+2)} * |
$+4 2+ |
B4 (1) 4 L) R
+‘p;n+1 1411'!: 44+1 + Pﬁn 1 1{115 4?+1

(-1)“ an-1 2n+ 4
(22 ant) (2lean)  (2f-2n-1) (28+2n42)

+ (-2 (ud+2) . O™ (at-9)
T (4{+1) {(29+1)2—4n2} T (40+1) {(22-1)2 -qnf}

for n21

F *t X f 50 By > P’"‘“f s T O dy =

1
—T’o;::z _/ q1pggd‘3+z meH __)_j {m‘np - (2m+2)?m+2} Py dy

Po -1 2 + 2{'+1 (-1 )3” P29-1 g-ﬂf‘“.' _ab
° mme? (2af-1) (haz)’ . 4% £+1 ° 4T 4bs

.- f T 1 . af . (3,5,3)
T (2-1) (2042) e (ale) (21 T (abet) (2b-1)

Sn . '
Numerical values for the coefficients v[ are given in table IX. The

anti-gymmetric coefficients )J*_ can be reduced in a similar way. We find

- - N 2n+2
* AW (2R -2n41) (z£+2n+z) (22 2n-1) Riznes)
=™ ef1) @Be2) _ )" 2k (28er)

+ .
T (4R+3) {4(£+1)"‘- (2n+1)9‘J 7 (4#43) {4&“-(2m1)2}

y (315+4)

41 .
The numerical values of p}: are given in table X.
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Examples.

6
6,1 Introduction,’

In this section several examples of oscillating circular wings will be
treated. As our results are mainly of interest for stability investigations,
it is sufficient to evaluate the lift-force and the moments. A detailed in-
sight in the pressure distribution over the wing surface is not of so much
importance as in the steady case. The complete acceleration potential once
being known, the pressure jump || over the aerofoil is found by multiplying
this potential with 2¢ , where @ denotes the air density. According to
formula (3,2,9) we can write

Y '
| 1 i [2e
T (0,p,3)= 2¢v (0.}1.3)4-,1@11[_ £(J3) _%] 1y=0 dd, . (3,6,1)
T \ol ) .

"In quite the same way as in the steady case formulas for 1lift and moments -
can be derived. Therefore we can immediately conclude that the expressions (2,13,8)
(2,13,30), and (2,13,13), which give approximations for lift, moment about
the Yy =-axis and moment about the x -axis respectively, remain valid in the
unsteady casge,

6.2 The vertical translation.

The vertical translation can be represented by the equation

v

b 4 (x:%-i)ﬁ Helhi . ' (3,6,2) ‘
The downwash distributionwr on the wing surface is then |
dx . . 013
w Wt z — = LYRe = U,Fle
W (x,y,t) T Lus UM R

whereas the normal acceleration becones

G-(X,"d,,'l:):.: %'}i_"___ (N)?. f-'le i.Q'L= _ql Re 'LQLz_wa ua Re'ﬂ'\: .

In dur approximation up to the first order in w s we obtain for the downwash
13'= qug (5!‘6’3)

and for the normal acceleration & we find the value zero. The regular velo-
city potential is found by means of (3,2,1), viz.

-y AR + . - . Q1("Q)
$ ¢y,0)= f { iwUhG (Q.)L,j;p1,31)).t1d);1 dd = iw UAP, () oN
o - T ' 1
3% iwlLlFl)u. (-9 ,cu-c{an-:i) : (3,6,4)

The weight-function 9(3)is thus

9(13):-1!.’&5 J P(O;O,ﬂ'):x in.ﬂ s v - (3,6,5) ‘

' For the Fourier-coefficients of'g’(&) we find
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"cﬁ’) 20 for every n B
\ - . cg’ =2 UR, cl:: =0 for m21 . -~ (3,6,6)

The reéular acceleration potential wvanishes in this case. The complete
acceleration potential agsgumes the form

3t '
uj R (V) [%%J}L_o dJ, - (3,6,7)
= 17 ‘

2
The function %(3) is written in the form

j - 4¥- R (3) cos o = cos 35 {a.(‘:q-i.wa“’] cos e,

n
N=20

where the coefficients {1&? ang ag) nust be solved from the identities 1
(3,4,8). In this special case the coefficients aﬁ? are all equal to zero as,

follows from the first identity in (3,4,8). The second identity in (3,4,8) is
equivalent to the infinite system (3,4,14) of linear equations. Here we can

write )
ad S
A = Bl 2URG lod,2, .. (3,608)
r——fAA_—_V——v v%—_77ﬁ,fm?o_ % - A _—— .
é;: This system is exactly equal to the system (2,14,6), if the quantityfq is re-
placed by -ot . Thus we can immediately write down the coeffiecients alh

n
Apart from a factor UA they are in an approximation of five terms in the
Fourier gseries.

22,2433 a‘;‘;w,ogzavo d<~0,040842 of) = +0,023473 o) = - 0,015436 .

For the 1lift K we obtain
2 .
Ks-2,812 twefll eVt
and for the moment M about the axis of y
1 N
M= 1,465 twe ALl el -

‘Mostly the values of 1lift and moment are given in dimensionless coefficients
according to the definitions:

K= mell (&ﬁn&ﬁ)ge"“
Mewpll (mprimg)Re™t

. Hence ~
¥ . | ﬁ t ‘Eu d‘&ﬁ 8951
k A =0 A= -0,8851 w or 'm-wgo =-0,
| :img-
‘mh:-O ! mﬁ: D,4663 w oOr T 0 = 0,4663 ,
LT el
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6.3 Rotation about the axis of Y .

This harmonic oscillation of the wing can be éxpressed by the equation

it :
z(x,y,t)= Bxe . (3,6,9)
Hence the downwash distributlon on the wing surface is given by

w (X, 9.*-)* —.. {LQ Bx+BU.}e s {1+wa}Blle"%
and the normal scceleration by '

a.(xté{)-—...{uw wx}Blle .')

In our approximation we can write for downwash and normal acceleration
regpectively

gl

{ﬁm} B (3,6,10)

5. 2 iwBl o (3,6,11)

The regular velooity potential Q corresponding to the normal velocity
(3,6,10) becomes now

- am o+
$- U.Bdf_[ {1+'Lw 1= cos 4 })}1q (11,}1,3;)11,31) du, dd,
G g ()

=-2 UBu (1-9 a.rc{an—- qu.B}LV‘I)L cosﬁ\/ 1erf 3-—— - 3 arc{a.nﬁ) ”

(3,6,12)
whereas the regular acceleration potential correspondlng to the normal
acceleration (3,6,11) is

g M+

V- 2w’B[lf/ G (s g ) phy e b <

=..._'- wBU.)J. (1 -n ard.a.n.—) (3,6 15)

The complete acceleration potential can thus be written in the form .

| ——wBU.)L(f qarc’can )-I-U./'ﬂ [%&]}L Oda" .
2

| (3,6,14)
For the weight-function %Cﬂ) we find

9(3)--1‘“053@ (6,0,)= -'I'I:’Cos&{ ' 3} ub = wsj[uq:‘ows-&} UR.

1

L
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Thus

g,(w?) {F-—wms& LB

(3,6,15)
and consequently
c?)z-& up, cr‘f’z-. 0 for n214
0 . M_ 4 n A
=0 C = - UB c¢’'=0 ‘fOl"ﬂ.:E ‘
° TR (3,6,16)
The function R (J) is written as ' |

AW = cos TE W)= cos:)Z { @, Lwam} cos 2nY

The coefficients a

52

follow from the system of equations

= a3 8 PL2UBE L042,..
N= =0

(=

(3,6,17)
The solution can immediately be found in example 14. 1 of section 14 of

f:

chapter II. We have apart from the factor Uub

| 0-[?— - 2,243 0(°’-+0.092890 o) = -0,040842 a‘;’_+ 0,023473 a‘“’--o’EEEb """"

The coefficients ag{ must satisfy the system of equations

oD [-le] O [ (-] sn {O)
S- B d a3 Gy P 1 d@eST 3 to0,1,2,....
n=0 n=o0 n-o /1

2 “n
n=0
or in our special case

<D o g
S A Q0.4 UB G+ aUB S Yay 01,2, 0
=0 | (3,6,18)

A good approximation appears to be

(1}
des 10474 ) z40,82725 = ~0,099754 o = + 0042165 dj= -0,025405

wherein the factor [LP» has been omitted. For the lift K we find

K= {;2,812-3,766 Lw} (JUQB

and for the moment about the axis of'*'

M

{4-1465 0,8470 Lw} QU.QB

Introducing the coeffic1ents§£ and1ﬂg according to the definitions
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KameW (Rp+iff)Be't

‘ Ma mellz (mr'lm'i)Belw‘_
we can write d%
gﬁ:-0,8951 H z =-1,199 W or [-;J]wﬂ) =-1,19¢

mh= + 0,4663 ; m) =-02060bw oOF e = - 02696 - .
4 4
. we O

6.4 Rotation about the axis of x .

The roll oscillation of the wing is given by the equation

z = Cye Mt (3,6,19)

Tﬁe downwash distribution on the wing surface takes the form
w (g b) = o idcyett s umaLU.ce“"L ,

while the normal acceleration a(x g-t) is '

a (x,y,t)= --—; -?yll Ce"N'"

Taking into account only terms up to the first order inw , we can
write

w (x,g.) = ng,CU. (3!6!20)
a(x,4)= 0 . (3,6,21)

The regular velocity potential is thus
M 4

Q(xn& Z)= Ile_/ Lw\/1)1.1 su.m?(;', (Q}.l J: )11,3;)/1.101)11 ch?
Q (in)

; (io)

=-__qu(', }L\’ 1-p \/1+q [3-——--3q arctan — }si.n J.

sin ‘&:

=-1 UCh @

(3,6,22)

The regular acceleratlon potential is equal to zero., Consequently the
complete acceleration potentlal has the form

Ilj A () WJ# odv? : (3,6,23)
2
The weight-function g(3 reads

Q(ﬁ)= - 1 cos Té},, (O,b,.a'):—;-‘ ll.C sin  cosV

Thus

g,'(&): i {d.(::+ lwd.(::} sin n3=§ wlC sin J . (3,6,24)

Nzt

i
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N where
(o)

. d’n =0 for eue‘m& n

\ ]
d® .4uc , d% =0 fornzaz
L n (3,6,25)

The weight-function &(3) ig written in this anti-symmetric problem as

R = cos F& (W) = cos 3'2 {P)()i- Ll } sin (2ne) ¥ .

n=0
0)
The fact that all coefficients d.{n_ vanish 4ls¢ implies that 8 5 0
for everyn . Accordlng to (5 4,16) the system of equations for aﬂ“ Teads
S— tn 4 Uc $-0
T = G' =0,1,2,
n=0 £ n 3 % (5,6s26)

This system is equivalent to the system (2,14,23), which had to be solved
in one of the applications of the steady theory. The solution can immediate- ‘
ly be written down, viz. |
| |
|

)] {1 0] ] -uJ
&oa-1,37ao £+ 0017714 & =-0,010305 G§=+0,0068407 £, =-0,0043177

1

IR
)L ~ where the factor uc has "been left out. The moment-about-the-axis-of x-ap- .
r_’_l:k: pears to be

Mz-0,2849 twg u'c
or expressed in terms of the coefficient m_ , defined by

g X e
M< mell (m(';+ ng) Ceitt
we have’
dam’
™, = 0 ; mi.-otasw  or |—= 2-0,1225
: dw jw=0

6.5 The oscillation Z,ka e‘l'N" .

The normal velocity on the wing surface is given by
] N = \ '] i )
w (x.t&.’c)=-‘c-"E . {LOsz«L RU.Dx}e“N‘: {wa2+ 2x } UDe'™
and the normal acceleration by '

a (x.l.},ﬁ = %—}f a {-—wzxam LwX +2 } UEDe Lt .

In an approximation to the first order of w , we obtain the formulas
for downwash and normal acceleration regspectively

W (x,y4)= [‘wa"mx}llD (3,6,27)
‘ ‘ a (x,4)= {4 i.uox+2} D . (3,6,28)
{

The corresponding velocity potential is

,‘
ny

X:.
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m

@(xg,z)s U_D_/f {wa +2x} Q (. 3’}11 3;)/“1"'/“4 clJ =

Q, {in) | Q, (i)
1. __1___ U 3
=5 WUDR ) g s WUR O uo) '
¢
_él HDP (K Q3LQ) cos 23*—- UDP (o ) cos&
(o) x( o)

"‘gﬁ-le.'Dp. {1-:1 arc{an—:l-} 1_5_16 iwUD (5}1. -3 ) {{. n*t 2

3 2 2 |
-390 ucﬁan%,} - WUDa (%) (1)) l‘f’“mﬂ TG

-15!2 q.n.{an-]cos 23 U.D}l\h }L V‘H- {3- -_— "3?1 a.rclan—} cos 3

1+
(3,6,29)

and the regular acceleration potential
2+

V (x,y,2)= U.D/f {4 Lwx +2}G(11}13')11,3;)}).1d}1.1d3 -

1.,
4, 2ol Q ( ) ("?)
=-2iw WDP, (p) —— w53+2LIDP(p.)
T e 2/ |
='5%: in.zD/u\]f-)uﬂ Vﬂrzz {3-.i.i -3 arclan%l ]cosﬁ-% U.zD/u.{M) arclan—éJ .
1+
. (3,6,30)
The complete acceleration potential can be written in the form
v+llj £ () [#J od5; - (3,6,31)
My

The weight-function 9(3) is in this case

9.(3')=-1tc053¢:}‘_(0,0,3 - cos ¥ {--—- iwlD- % iwlD- = zw‘llD ma23-— UD s 3}

151

or

gxw)=§inD+%leDcos 23+-§ lchosj . (3,6,32)

=
4
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Thus
(@0, ¢?<5UD , D=0 for n>t
2 ) n 8 i ()]
cﬂ’:suD, o, Dz UD, Pio fornsrz . (3,6,33)

The systems of equations become now

5
Z 1: @ -%UD(T{‘ t=0,1,2,
(3,6,34)
o Bn 0 _ 5, 2. 3
" a UD(T t g LT.D(T2 LlD v S 3, @
Nn=0 ‘t n > { )J'a n=0 {
For the coefficients a&? and aﬂz ‘we find apart from the factor UD
o) =146t d¥=t12028 0¥ 025916 Pato,11488 ¥ =g 068412
o= -0,4a108 s -0,57780 o+ 001502 df - -0,00539% o= 0,0055184
Lift and moment about the y =-axis obtain the values
Ks {-2,931-0, 8081 iw } eUW'D
_ i —— e R
: {~1379 -0,9350 Lw 1)) .
If we write - M { 137 g } ¢
2 v, 194
K- mell” (ki +ik]) De'™
2 . n. L
M: vell (mt+im")De'
we have ' ¢ ( d d) -
| 4! = _049g32 "-- 5 W or d} = -0,2575
q=-09329 ﬂd- 0,257 T Lo ,257
dm)y
m&: -0,4389 mJ_--O,RQ‘]bm or | — =-0,2976 .
L _Clu) W= 0

6.6 The pscillation xs Exye'

The downwash on the wing surface is represented by the equation
w{x,y,t)= -':-i—:- { LY Exy+ U.Eq.} Lt {1wxg.+g,] Ee't
and the normal acceleration by the equation

cx(xg{)- _-t” {-waxgjz 'ng,} u.a Ee”i

The approximations tor downwash and normal acceleration can thus be
written

W (x,Y) = {i,wxpg,} Ut
a (x,4)= R iwy ute

(3,6,35)
(3,6,36)

The expression for the regular velocity potential becomes here
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B0y UES f {W%%} Q (T gty ) py sy A9,

q (i) a‘
3—-&513 i &
2 o UE P} () a 0 sin 2 ) (w) sin

e A o i

U.E)u.\/wu. V‘“"l {3*—-- -3y arclan—-} 5m3 (3,6,37)

140"

uqanhnﬁ}mn23+

whereas the regular acceleratlon potential obtains the form

v (x, g,x)_ Lw'll Ep V teut \/ 1+q {3- — -3 arttan—} sin V.

" (3,6,38)
The complete acceleration potential assumes the form
v (5, W)’“u?s“‘? [?Jﬁ] A:od‘} o (3,6,39)

2
The weight-function 9(3) is easily found by

9(3’)-—-1\:@53{: (0,0,4)= n'nr_osﬁ{-— Lo ULE sin 27 - -——T.IE 5m3}

ST
_amﬁ{ Lmsmaﬁh—smﬁ}uﬂ.

In this anti-symmetric case we write

g.(ﬁ')z cos 3(3,"(3); cos Jf {d‘:deu:} sih mof ) (3,6,40)
=4

Thus we have

© 4 ©)
d.1 =§-'U.E , d.nzo ‘fOI" n>1

0 W g Q) |
d =0 , R’T5U'E' d =0 forn>z2 (3,6,41)

()] (1 x -
The coefficients 3; and gn of the unknown function %.(3) must now
satiafy the equations

co [+ % © 4 ﬂ-1
> b= UEG,  &-01,2,....
and (3,6,42)
2 &, ;0 8 Ty 4 )
E} TE -gn=1—511E G:&'*'EU.E /J.* Z Q E=0,1,2,.....

The golution appears to be apart from a Iactor UE
{© . @) )
by =-13730 b =+o017714 8.~ 0,010305 3 - + 0,0068407 £, >-0,004a177

-

and
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) i) 1
30 =+1,2q867 31 =+0,83824 8:’:-0,2065q %;?=+o,qqaoqb

The moment about the X -axis is

If we write
M el (myvim ) Eettt
the following values are obtained

' dm'f
mé == 0,125 : =-0 0607 w or —-d——e
w

it

6.7 The oscillation: X= Fgfe

s(.ﬂ _
4 = _.0, 015‘7240

Ms {-o,seqq - 0,1906 Lw} (JURE

= -0,0607

. Tne downwash distribution over the wing surface is expressed by

w (x,4,4) = i_z - LFyelt, (wILFyl ettt

while the normal acceleration becomes

a.(xq,t) d“’ - uﬂF‘g, el

In our approximation we may write

W (x,4) = lwlUFyg?
a (I,lj,) =0

Hence the regular velocity potential is
X

B oy URS [ i 6 (i %) sy dp &3 =

Q, (i)
(0)
Q {ig)

Q3 (o)

Qs(fl)
@3(0)

-% twUFP, (u)

—;—E'LwllF'gz (w) cossz_-—uuuF')x{

3
, 2 BNt3Y

-n arctan 1—} +

(3,6,43)

(3,6,44)

1

+ ;;—wiw UF (sp3-3u) {% N3 T3 cu*c{an—:i} +

1+Q" (1+79%)

151[1w11F')u (1;1.)(11—:3){ 5. 2&‘2

~150 arctan 19 ]cos 23’ .

(3,6,45)
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Because the regular acceleration potential vanishes, the complete acceleration

potential can be wrltten as

o |
u% *Q) -%] 0 dd - (3,6,46)

The weight-function ?(3) is

(ﬁ)--ﬁcos‘x’f@ (0, 03)--11: cos v {--— twllF- —5-— LwU,P-rﬁ“ iwUF cos 23} =

&1
-CoS&{ Lw-%tw c.osaﬁ'}u . (3,6,47)

For the coefticients cg? and cg) we find

(n‘”_ 0 for every n

cg’_ilJ.F' c.“”:o,; BI.lF' cg’w for n>z2 (3,6,48)

It can immediately be concluded that
(") =0 for every n .
According to (3,4,14) the coefficients dﬁ satisfy the equations
oD

Z %;' (lfﬂ -;—uF G—‘E up G-‘E e= 0'132' e (396!49)

The solution of this aystem is

a‘”-_-- 73534 o= +0,56399 cé;’--oowsqa a® = +0,0088065 a{:‘) =-0,0059843

wherein the factor UIF has been omitted. Lift and moment about the
Y -axis obtain the values

K=-0,6451 iw eU. F

M=+0,3022 iw Q]f F

Putting 2 L
K=mgll™ (Ky+iky)Fe’

M =mell? (my+imf)Fe W

we can write
£} =0 c BT el0213 W or d%‘c = -0,2213
$= p RET LAW4W=O ’
-—d.m:cﬂ
mg =0 § M<+0,0962 w or [—< =+6,0962 .
_d'wJ wW=0Q

1 Comparison with other results.

As already mentioned in the introduction Krienes and Schade have
evaluated forces and moments for the aix harmonic oscillations with a down-
wash distribution over the wing surface up to the second degree inx and.%
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Their numerical reaults also contain the derivatives with respect to the re-
duced frequencyw of the imaginary parts ot the force- and moment coeffi-
cients in the point w=0 . These values can be compared with the correspond-
ing quantities obtained with our theory.

From table XI below we see that the agreement between some values of ‘
Krienes and Schade and our corresponding values is very good, whereas other
velues differ very strongly. From a close examination of Schade's theory it ‘
appears that there are some mistakes in it. In fact in the singular part of
the solution Schade uses the Hankel function of the first kind, while the |
Hankel function of the second kind is required. Furthermore some errors in
signs have been made.

Some of our results, viz. the damping derivatives for the pitching oa-

eillation z= Pxe Lot can be compared with results found by Garner who ap-

-plies an approximate method which is closely related to Multhopp's lifting
surface theory. It can be remarked that it is possible to extend the appro-
ximate method developed in ref. 23 to slowly oscillating aerofoils,

Table XI Aerodynamic derivatives for six harmonic cscillations.

b (@ (@l @ (el fle

Krienes and Schade 0 |aBs92| 0 4659 |-08a92 [-9b880 04659 05981 | 0  |-176

Garnet -~ - — —  [-08940|-1,219 [0,4089 |-02440 | — —

TRis tReory 0 |-08951| 0 |+046b3}qB961|-1,189 #Q4bb3|-0,2696| O |-01228

eI A RN

Krlenes and Schade [-69435 |-0.8033 [-0,4381(+0,05g6(-0,1276 (-00662{ © [-04235| 0O [+Q09b0

Garner - — _ - - — - — - —

This theory -0,9324|-02575 |-0,4389]-02976 {-01225 [-00b07| O (-08213 | O |+00962
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Appendix:
Derivation of a cloged expression for Green's function.

In order to obtain a clesed expression for the function of Green of
the boundary value problem we can apply Sommerfeld's theory concerning the
Riemann spaces (ref.21). As the underlying theory of this method is rather
unknown, we shall give a short description ot it.

The ciassical potential theoretical method of images results in a boundary
value problem for a certain bounded region to be carried over in a problem
for the whole space. This method is special adapted to problems with plane
or spherical boundaries. However, it is possible to formulate such problems
in a surveyable way by means of functions of Green. One of the character-
igtic features of Green's functions is that they possess a singular point P,
a gimple pole, in the interior of the considered region, where the functions
behave as /R, if R denotes the distance of an arbitrary point  to the
point P . It is obvious that application of the method of images results in
the fact that a pole in the interior of the region is carried over in poles
in the exterior of the region. A potential is called rational, when it is
uniquely defined in the entire space and when it possessgses a finite number
of poles,

In his paper above-mentioned Sommerfeld introduced algebraic potent-
ials which are also defined in the entire space and possess a finite number
of poleg without fulfilling the condition of uniqueness.-In fact algedraic
potentials have branch lines in a similar way as two-dimensional potentials
can have branch points. In order to distinguish the different branches of
the potential, Sommerfeld introduces the concept of Riemann space, thus
achieving that the potential is uniquely defined in the entire Riemann
space. Any section of a Riemann space gives a Riemann surface, where the
pointg of intersection with the branch lines are exactly the branch points
of the Riemann surface.

One of the simplest examples is found by the region between two
rlanes, which intersect at an angle 2%? y wheren andm are positive inte-
gers. The function of Green for such a region bhecomes a2 unigue potential
in a m -sheet Riemann space, which has the sharp side of the wedge as
branch line. Moreover the function of Green has 2m poles in this space,
For m=1 , n-2 the region between the two planes degenerates to the entire

- space and the boundary becomes a half-plane. A 2-sheet Riemann space cor-

responds with this configuration.

It will be our first purpose to find an elementary solution, the so-~
called source solution, of the potential equation in a2 m -sheet Riemann
space. The point of departure is the ordinary source solution 1/R for the
normal three-dimensional space, where R denotes the distance between the
pole P(xi,g“x,) and a point Q (x,4,2):

R¥= (x-x )+ (g-y ) + (z-x} (4,1)
It is immediately clear that the integral expression
u,:/—%- f @)do , (4,2)
wherein the integration extends over an arbitrary path in the complex
o< -plane, is also a .solution of the potential equation. By a suitable

choice of the parameter o and the function § («) , it is possible to ob-
tain an integral representation for the ordinary source solution 1/R .
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For that purpoase we initroduce polar coordinates in the plane y.p , according
to the formulas '

tiz=ret? i 0y
y+iz=re y  Yytixane ™ (4,3)

We can write
o 2 2 Z
R= roen’-2rn cos (g-9)+ (x-x)° . (8,4)

In this expression for -R2 we replace the parameter "P‘I by o« and call the

new expression R'?

g 2 2
. . - o)+ (X=X
R'=r +r-2rn cos{ tp- o)+ (X-X,) (4,5)

Ifot is a real number, the sign of R' is taken positvive. The function -F(a;)
is chosen in such a way that it has a single pole with a residu =1 in the
point 6=, and that it is pericdic ima and ¥, with a period 2T . Such
a function is for instance .
T A
_—te .
F )= T ., , (4,6)

Further the path of integration is taken as a contour C, around the point
=, , which is passed through in a positive senge. Hence we can write

11 1 et -
—— i —— — e e d.“- ’
R T cj. -Rr ewﬁ_ e""’i (A,?)

The branch points of the integrand are given by the equations
2 ok '
R'=0 and R 2z oo .

The second equation is satisfied by the roototsica. The first equation

means , | N "iz + (x_x»ﬂ
cQs (P-OC = " .
| - 2rr, (4,8)
If we put
N . P rf+ (x-xag
Cos a.1 = CO5 Lﬂ-1 = zrn’ )
then equation (A4,8) can be written in the form
cos (p-a) = cos ia, . (4,9)

" Consequently the other branch points are given by

p-oc= + ia+2kr or o= prafnuyia,

where &_ is an integer. The poles of the integrand are found in the points

o=+ k.
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From this the conclusion can be drawn that an
infinite number of aequidistant poles and an
infinite number of pairs of aequidistant
branch points lie in the o¢ ~-plane. The path of
integration is now transformed as shown in
figure 22, The length of the vertical sides of
A the rectangle is chosen in an arbitrary way.
Because the integrand in the expression (A,7)
is periodic with period 2t , the integrals
over thege vertical sides cancel each other,
If the length of the vertical sides tenda to

= pria, infinity, the integrals over the horizontal
— sides of the rectangle vanish., Hence it may
0 ﬁ,\% | “tP o be written _
e 1 U L e""‘ d
— "i'—' f—-i -——r———-“l—' o 4
R AT R e'*e'h (4,10)
<) -la : b
Ak 1 where]) denotes the path of integration,

which exists of the two contours around the
cuts (p+ia,—+@tico ). The right-hand side
of (A,10) gives an integral representation

W : of the source solution in the ordinary
three-dimensional space. For the transition
to the 7 ~-sheet Riemann space we take a
function f(«), which has a single pole with
residu 1 foroa= ¢, » but which has a period
AN in ¢ and ¥, Such a function is given

Fig,22 b o

v . i ®

L .

o) = — v N ‘
_ f ) n eL%_eL‘%! (4,11)
We consider now the function
: el
4 4 4 1
U = — fle)d = — - ———— da

ATt D/ R' ’“‘“I{ R ik i (4,12)

The branch points are agsin the same points, while the poles are given
by o¢= @+2&nk . It can now be proved that this function u has all the
properties of the source-solution for a n -sheet Riemann space (ref.
26), If we put in the upper half-plane oc=y+iLp and in the lower half-
plane oc= P-ip , we can reduce the expression (4,12) after some ele-
mentary calculations to

sa . 3in 'L-ﬁ

Lo 1 d (4,13)
Uz ——— . — . , ’
Tn Vare a{ Veos 1o, -cos ify ws% - Co% %% P

Of particular interest for us is the casens,2 . In this case the ex-
pression foru simplifies to

T
u“&ir% {a.rclan ———-—-4-%} y (4,14)
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-9 La :
and G =cos —SI_L + In rectangular coordinates the for-

wherein T =z cos
wula (4,14) foru can be written in the form

\ V-f\’q.gﬁzzﬁbq "
R R : 21

1
Uz R arctan

(4,15)

We shall now apply this theory to a practical problem. Let us con=-
sider the half plane x:0o , 4<0 to be a wedge of which the sharp side
coincides with the x -axis, the wedge angle being 2T . If the point P has
the coordinates Mo Xys I.P1 y then the image point P' has the coordinates

"

problem. It is obvious that Green's function of the second kind is given
by the difference u,P-u,p. s When u..P represents the elementary source

s )C1 ,..;,91 . As already remarked a 2-sheet Riemann space belongs to this

solution ot the two-sheet Riemann space with the pole P . We now apply an
inversion with respect to the sphere x2+(g-f)2+zz= 2 , which has the point
(0,1,0) as center of inversion. If P(x,y,z) and P(X,},Z) be any two
points which are inverse with respect to the aphere, at distances @ and
(3 from the center of inversion, we have thus

°F -2

whereas the transformation formulas read

- 2 - 2 - R
Is < x , -1= 2 ( ...1) , T2 = 2 . 4,16) °

It is easily seen that by the inversion the axis of x is transtormed
into the circle J_cg+\-}2=1 y Z=0 , while the half plane Za0 ,gso is trans-

formed into the region X+ &1 ,%=0 . Now the following well~known
theorem concerning the inverse,transformation (ref.8) will be used. .
If U.(x,l&,z) is a harmonic function of x , Y and 7 in a domain7T ,

V(x,7,%)= oU (x,y,2)

is harmonic in ¥ , i} and X in the domain‘T into which T is carried by
the inversion. ‘

Application of this thecrem to our elementary solution (4,15)
yields the harmonic function for the transformed problem

then

—— e - 8y _ \F&‘ Vq,q{a-zz#r-q *
V«p (x,t},z; x,,l&1,z1)=-‘;‘% arcten = 3
wherein
2 2 : 2
X= -% X, y-1s= % ('V§~1) , %= GT z with Q?.—.xz+ (g,-1)2 ¢ x*
2 2 2
¢ _ P T T TPt I
Xeegr X, o y1= —2-(3!-1) » L X with e =Xty vy -

(4,17)

Furthermore it can be derived that




| ?2 e* 2 Q’" 92 A ¢, ¢ 2
R - (rx gy (22 {’2’ —iii} * {7(%}--}(@,—0} ['z ‘22,}

4 -

-

*l

Q’f . e?
[1 +(G-)*+ 22 }«1- q [xi + (E‘,-1)2+if] - T{ %, +(G-1) ( 511—1)4-11] s

4.2 4s2 2.9 :
ee S % l__ . - _ Ll 1
=yt ST 21 {x"#('&") Uh'ﬂ*“} (’2*912""‘1{ X+ (G- (§,-1)» 2%

e’ﬂz{q 4

- -
- =

i e R XX —2(4—1)(4, 1) -2 2%,
(" ?

-_.-,,..__.’

4

(4,18)

|

ool |
= {?1“*(5 -2 XX ‘2('& ) (§-1)-2%% ] ) {(i‘iy*(g'@f% (2"21)2} .

2 2 Yy . a . s
ey e [ﬂ%@*ﬂ] v {%’%@4\} R [[‘é*u@«)} oa 22]
¢ ¢ .

and similarly

Let us now introduce the ellipaocidal coordinates

SE:VT-,FW cos 5&1.—.\/1-}112 \/ 4412 cmsJ1
:VT—;’?V;:? sind g1=V1—-—;?W sina;

= M0 0= M .
Substitution of the relations (4,18), (4,19), (4,20) and (4,21) into
the formula (4,17} yields after elementary calculations

B B

(4,21)

R

.As to our circular wing problem Green's iunctlon of the second kind is

found by
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VP (‘I )""’ '?1 )“1“31) V‘p‘('l;u& Ve }‘1 '31)’

o o ) - AN,
4% {‘“‘"“ A [ PR G

On the wing-surface, i.e.

stant factor) is obtained e

| yys L
Q(Q}L J: 0, jys ) 24 {arcian%i—%} -%% {arc&an, 'R-1+ %}
or . - . ) K ' .
4 1 My
G (!’g /u.,ff 0}L1.3) -&-ﬁ.arcla-@ = 4.24)
In our theory the quantity - [%-(1] ' piays an in‘ipﬁrtant role,
We eaaily derive : 1} . =0 e
L Mg=0 :
il . ' - (4,25)
_ [af‘;l N4=0 [Rz] R,=0 #?(1 ) -2 V1 )J.E \luq cos (1? J)+ (1+q) '
}"'1"0 : /u'

This formula agrees completely with the rela.tlon (2 8 »47) ,apart from the

-1 .
t — ‘n
¢cons ant factor I

=0 , the following express:l.on (apart from a con- .
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Table I - Numerical values of the'coefficients"["}-: e . .
n 0 1 2 3 4 5 6 T -] 8 9
0[-0.89045 +0.020727 |~0.0086486 [-0,0048645 |-0.0031620 [+0.0022396 |-0.0016793 |[+0.0013114 [-0.0010538  (+0.00087047
1[+0.020727 - [+0.49981 -0.00091680|+0.00090462|-0.000T7162 |+0.00064550 |~0.0005426% |+0.00046103 [-0.00039628 +0.000%4414
2|+0,0090589 |-0,0011348 /(-0:49994 .. 1+0.00020137{-C.00026463 )+0.00026872 |-0.00025382 |+0.00023356 |-0.00021288 [+0.00019354
3[+0.005184Q [~0.0010416 |+0.00027410]+0.49998 ~0.000073664 |+0.00001177 |-0.00012498 +0.00012691 |-0.00012363 1+0.00011801
41+0.0C33976 -} '0.00086557|+0.00031475]{-0.00010542(-0.49999 +0. 000034704 | ~0. 000057397 | +0. 0000682451 -0. 000072727 [+0.000073696
51+0.0024173 ;-0.00071407|+0.00030554 |-0.00013525(+0.00C051202(+0.49999  |~0.000019018 {+0.000033315 {-0.000041332 [+0.000045537
6l+0.0018173 -9;0005990} +0.00028212(-0.00014313 [+0. 000070213 [-0.000028637 | -0, 50000 +0.000011524 { -0, 000021034 {+0.000026924
7(+0.0014213- |-0.00050243]+0.00025604 | -0.00014141 [+0.000078525 | ~0.0000421060 [+0. 000017609 {+0.50000 - |-0.000007503G+0. 000014122
© 8]+0.0011454 [-0.00042977]+0.00023121{-0.00013550 +o.000081180 ~0.000047722 | +0, 000026068 | -0, 000011591 |-0. 50000 +0. 0000051545
© 91+0-00094477 |-0.00037196 {+0.00020879 | -0.00012793 }+0.000080783 | -0.000050970 |+0. 000031168 | -0. 000017576 |+0. 0000080308+ 0. 50000
Table II Numerical values of the coefficients%‘,‘
\ 0 1 2 . 3 4 5 6 T B 9
0l-0.48553 +0.0012309 [-0.0015797 |+0.0012947 |-0.0010307 |+0.00083097 [-0.00068244 |+0.00057043 [-0.00048426 - {+0.00041666
1[+0.0064496 [+0.49949 _|-0.00024192|+0.00038179 |-0.00038649 {+0.000235715 |-0.00072121 {+0.00028678 |-0.00025606 -|+0.000229%4
21+0.0037441 [-0.00068386 |-0.49950 +0.000084216{-0.00014686 |+0.00016539 }|-0.00016617 -|+0.00015966 |-0.00015036 |[+0.00014028 -
3]+0.0024815 [-0.00063184 [+0.00019826+0.49997 ~0.000038 564 | +0.000071352|-0.000085720]+0.000090880 |-0.00009128% |+0.000089220
4 1+0.0017817 |-0.00054848+0.00022192 -0.000083080-0.49999 +0. 000020748 | -0.000039921 [+0.000050092 [-0.000055138 |+0.000057184
51+0.0013497 '{-0.00047113|+0.000218687|-0.00010337 |+0.000042414|+0.49999 .  |-0.000012412|+0.000024555 [-0.000031791 [+0.C00035977
61+0.0010626 [-0.00040601{+C.00020638 |~0.,00010998 |+0.000056436]-0.000024508]-0. 50000 +0. 0000080033 {~0.000016167 |+0.000021432
7 [+0.000861181-0.00035246 {+0.00019107 [~0.00010996 }+0.000063150|-0.000034161 | +0.000015420+0- 50000 -0.0000054576 | +0.000011205
"8 [+0.00071396 |-0.00030851 [+0.0001 7563 (-0.000106T2 |+0.000065752|-0,000039628 |+0.000022238 |-0.000010325 [-0.50000 +0.00000%8868
9 1+0.00060277 {-0.00027223 |+0.00016109 [~0. 00010192 |+0.000066001 {-0.GO0042509 { +0.000026506 -0.000015282 |+0.0000072485|+0. 50000
- B N
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