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P R E  F A  0 E. 

This volume of “Verslagen en Verhandslingcn” (5 “Reports and Trans- 
actions”) of the “Nationaal Lucht- en Ruimtevaa.rtlaboratorium” (N. L. R.) 
(- “National Aero- and Astronautical R,esearch Institute”) contains a selec- 
tion of reports by the N. L. R., completed in recent years. As such, it is 
a logical continuation of the series up to Volume XXI of “Verslagen e11 

Verhandelingen”, which was published in the end of 1959, containing t.reatises 
on hound’ary layer tilieory, lifting surface :theory and’ non-stationary aero. 
dynamics. The preceding Volume XXII, published in the course of 3959, 
contained one comprehensive report, entitled “Bound‘ary values in lifting 
siirface theory”, by, E. van Spiegel, \vbich served the author as a thesis 
Por the degree of doctor of the technical seicnces ‘at the Technologiedl’ 
University, Delft. 

The printed reports of the N. L. R., which are collected a t  more or less 
regular interva,ls in the volumes of “Verslngcn en Verhandelingeo”, form 
only a part of the publications issued by thk N. L. R. A series of multi- 
graphed reports and of pithlieations in scientific and technical journals on 
research suhjectv studied by N. L, R. is continuously growing. Both the 
multigraphed reports and  the preprints of the reports meant for bound 
volumes of “Verslagen en Verbandelingen” are distrihuted as soon as they 
become available. 

A list of all printed and multigraphed papers, covering the period from 
1956 up to the end of 1960 is included in this volume of “Verslagen en 
Verhandelingcn”, The complete list of puhlicatiom issued hetween the years 
1921 and 1956 is available upon request. 

Amsterdam, July 1961. A. J. AIam 

Director of thc 
“Nationaal Lucht- en Xuimtevaartlaboratorinm”. 
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TRC A. 1466 Slijkhuis, A. J. liivestigation of a valve system in the contraction nozzle to reduce 
velocity fluctuations in the small mind tunnel of the NLL. 1956. 
( In  Dutch). 

The relationship between tihe intensity and the scale of turhulence 
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A simplified method for the calculation of three-dimensional laminar 
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response of aeroplanes. 1956. 
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van de Voorcn, A. I. wings on the flutter specd. 1956. 
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TN F.200 Eckhaus, W. A method for the asymptotic expansion of the integral equation 
of a lifting surface at near-sonic speeds. 1957. 

TN F.201 IJff ,  J .  An investigation on the influence of amplitude, sidewash effects 
and Ercquenry on the aerodynamic derivatives of a model oscillating 
continuously in yam. 1957. 
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TN F.215 Zaat, J. A. The behaviour of tihe three dimensional laminar boundary layer 
flow at increasing angles of incidence. 1958. ( I n  German). 

TI1 F. 164a de Jager, R. 11, Lateral stability derivatives for a swept wing in supersoiiir: flow. 
1956. ( In  Dutch with English summary). 

TM F. 178 de Koek, A. C .  The NLL card eatdogue of aerodynamic measurements. Manual. 
Ha,gedorn, A. C. F. 1956. 

Till F.180 ,Burger;hout, Th. J. The ZEBRA. Part 11. Motivation of the choice. 1956. ( I n  Dutch 
with English summary), 
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TM F.194 Zaat, 3. A. Application of streamline coordinates for the calcnlation of the 
bonndary layer on ya,wed cylinders. 1956. ( In  German with ahstract 
in .En,glish). 

TI1 F.195 IJff ,  J. Measurements of some low speed oscillatory stability derivatives 
of the ACARI) wing model D. 1956. 

TnI F.203 Hagedorn, A. C. F. Description of bhe NLL Hollerith card system catalogue of aero- 
de Kmk, A. C. dynamic measnremcnts. 1957. 

Tnl F.205 Bergh, H. Experimental determination of the acdyn&nic forces on an 
oscillating wing with a,n aemdynamieally balanced flap in in- 
compressible two-dimensional flow. 1957. 
Gust loads on clastic swept wings. 1958. (In Dut,ch with English 
summary). 

Bmschaart, A. C. A. Investigation of some semi-enipirical methods for ,the instationary 
acrodynamie coefficients. 1958. ( I n  Dutch with English summaq7). 

Bosschaart, A. C. A. The influence of wing hcnding and torsional flexibility on the gust 
IJff ,  J. response of aeroplanes. 1959. 

Umteady prcssurc measnrements on a wing with an oscillating flap 
in t.wo-dimensional, incompressible flow. 1958. 
Cslculation of the pressure d5strihution on swept win@ according 
to  the so-ealled slender wing theory in tihe case of antisym,metric 
stationasy flos. 1959. ( In  Dutch with English summary). 

Bosschaart, A. C. A. A criterion for aileron-springtab flutter. 1956. 
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TRI F. 216 
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TR G. 1 van der Walle, F. Theoretical determination of the power-efficiency a.nd overall flow 
behaviour of semi free-jet wind tunnels with speciad empbasis on 
transonic wind tunnels 1958. 
Determination of the influenee of a fuselagc on the characteristics 
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1958. 
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TR G. 3 van der Wallc, F. 

TN 0. 5 

Tal G. 17 
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illaterials Section. 
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Jacobs, F. A. 

TN ?I. 2009 Hartman, A. 

TN If.  2010 Schijvc, J 

TN 11.2011 Hartman, A. 
Klaassen, W. 

TN 11.2016 Hart,", A 
Jacobs, F. A. 

TN 1 Z .  2024 Schjjvc, J. 
Jacobs, F. A. 

1'N Ai. 2033a Hartman, A. 

TN AI. 2041 IIartman, A. 
Jacobs, F. A. 

TN 11. 2045 Hartman, A. 

TN 11. 2047 Hartman, 11. 
de RGk, P. 

Till AI. 2000 Schijve, J. 

T M  A l .  200s Hartman. A. 
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1955. ( In  Dutch with English summary). 

Research on cumulative damage in fatigue of riveted aluminum 
alloy joints. 1956. 

Program-fatigue t a t s  011 notched light alloy specimens of 2024 
and 7075 material. 1960. 

Tensile strength sild time to fracture tests on Rcdux-honded 
75 S-T clad single lap joints a t  temperatures from room tempera- 
tures to 8 O O C .  1956. ( I n  Ih t ch  with English summary). 

Fatigue crack propagation in light alloys. 1956 

The fatigue strength a t  fluctuating tension of single lap joints 
of clad 24 S-T and 75 E-T aluminum alloy with 2 rows of 1'i S 
rivets, 1956. 

The fatigue strength a t  floctuating tension (R =0.1) of Redus- 
bonded 75 S-T clad simple lap joints from -45°C to + 80°C. 
1956. 

The fatigue stmngth of aluminum alloy lugs. 1957 

1 1 1 ~  i ~ l ~ ~ ~ ~ ~ ~ ~ ~  -,C ?,!x t!:icknes of ?.he spwimen on bhe .mechanicad 
properties in  compression and in 3-point bending of glass fabric 
base plastic laminates at room temperature. 1957. 

Research on the static and fatigue strengths of ,bonded and riveted 
single lap joints in clad 2024 a,nd 7075 aluminum alloy a t  room 
and elevated temperatures. 1957. 

T,he effect of t,he relative humidity of the air during fabrication 
on the meohanied properties of 'glass fabric reinforced plastics. 
1958. 

T'he effect on the static- an& fatigue propertic% of riveted li,ght 
a,lloy lap joints of reinforcing tihe critical section with thin ad- 
hesive bonded sheets. 1958. 

Some rema,rks on the ultrasonic testing of glued metal joints in 
connection with a. visit to the finti Dr. Lehfeldt and Co., GMBH 
at Heppenheim. 1956. ( In  Dutch wit,h English summarJ.). 

Considerations on safety of aircraft against fatigue failures. 1956. 
( I n  I)utch with English summary). 

m7.- .-m..".."- 

T31 11.2019 van Imiiwen~ H. P. A survey of literature on the ccmpavison of the mechanical proper- 
ties at clcvated tcmpcr.at,urcs arid the teahnological properties of 
fourheat-resistant alloys. 1956. (In Dutch). 

Literature search on the mecltanical properties of glass base plastic 
laminatcfs. 1957. (In Dutch with English summary). 

TI1 1\1. 2026 Hartman, A. 

TM 11.2039 de Vries, (1. Apparatus for the mechanical investigation of plastics. 1957. ( ( In  
Dutch). 

Til1 AI. 2044 Schijve, J. Effect of curing on the internal damping of Redux metal adhesive. 
1957. (In Dutch). 

Tbl 11. 2046 Scihijve, J. X-ray inspection of aircraft structures. 1958. (In Dutch with 
English summary). 

TAZ M. 2051 €hitman, .4. Weathering tests of various wrought aluminum alloys on the roof 
of the NLL. 1958. (In Dutch with English summary). 
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TM If. 2057 Hartman, A. Exploratory investigation on the effect of temperature on the 
mechanical properties of glass reinforced Araldite hminating resin 
No. 556. 1959. (h Dutch with English summary). 

TM If. 2059 Schhijve, J. Fraetographieal investigation on a fatigue failure in an extrusion 
of R helicopter blade. 1959. ( In  Dutch). 

Till If. 2064 Hartinan, A. Effect of friction on the fatigue strength of single row riveted 
Jacobs, F. A. double cover plate joints in cla.8 2024-T aluminum alloy. 1959. 

Till M. 2065 Hartman, A. The effect of the ,thickness of the glue layer on the fatigue strength 
de Rijk, P. of light alloy specimens with adhesive bonded reinforcing plates 
van der Vooren, J. on both sides. 1959. 

Preliminary investigation of the influence of .glue-line thickness 
and porosity on the peeling strengbh and shear strength of b o d e d  
light alloy ,specimens. 1960. ( In  Dutch with English summary). 

Scone remarks on random noise and fatigue. 1960. (In Dutch), 

The effect of cell size and foil thicknes of aluminum honeycomb 
on the peel strengt.h and tensile strengt,h of adhesive loaded light 
alloy sandwich specimens. 1960. (In Dutch with English summary). 

. .  

Till 11.2068 Hartman,, A. 

TDI Af. 2071 Schhijire, J. 
TM At. 2076 Hartman, A. 
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TR S. 476 Koiter, W. T. Buckling and postbuckling behaviour of a eylindrical panel under 
axial cmpresion. 1956. 

TR S. 5158 Zandbergen, P. J. Detenminatiori of t.he stresses in a not shallow sphericad shell with 
a hole, due to an axial force, a bending moment and a transverse 
force. 1958. 

Bending at the oblique end sect,ion of cylindrical shells. 1958. 
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TR S. 521 van ,der Neut, A. 

TR S. 527 Benthem, J. P. 

TR S. 529 Hakkeling, B. Airplane loads in pitohing manoeuvres. 1958. 

TR S. 539 Benthem, J. P. The reduction in stiffness of cmbin&om of rectangnlar plates 

TR S. 542 Benthem, J. P. A stress diffusion problem for a wedge-shaped plate with three. 

in compression after cxceoding the buckling load. 1959. 

st,iffcners. 1959. 

TN S.478 Beruthem, J. P. The effect of airplane structural flexibility on landing gear loads. 
1956. 

TN S. 52'0 Benthem, J. P. Bnalysis of panels wibh bonded, hat-shaped stiffeners, loaded in 

TN S.531 Benthem, J. P. Note on the compressive and 'bending Strength of fiberglass re- 
inforced plastic plates. 1958. 

TN S. 536 van. Grol, H. J. Results of stress and deflection measurements performed on a 
swept4mck box beam and their ,comparison with theoretical results. 

. .  . .  van der Vooren, J. shear. 1958. 

Hakkeling, B. 
Schuerman, J. A. 1959. 

van der Vooren, J. 

On the diffusion of a load from an edge stiffener into a wedge- 
van der Vooren, J. shaped plate. 1959. 

%he reduction in stiffness after exceeding the buckling load of 
van der Vooren, J. simply supported flat panels that change in thickness discontinuous- 
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TN S. 537 Bcntheon, J. P. On the stress problem of anisotropic wedges. 1959. 
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TM V . ’ I W ~  van Oosterm. T 
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Investigation of the root effect with swept beams. 1956. ( In  Dutch 
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Discussion of S O ~ C  information from’ literature on the number of 
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Literature study of the h u e  pressure and the effect of sting 
support on the base pressure in the e a ~ e  of tramsonic and super- 
soiiic velocities. 1958. ( In  Dutch). 
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Some results ,of comparison of model and full scale spinning tests. 
1956. 

Asscssment of the modified vertical rudder of the KNVVJJ-~YI 
ghder on 24th Aby 1956. 1956. ( In  h t c h  with English summary). 

Balloon contest for the Andries Blitz Coupe 1956 a t  Nijmegcn 
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handicap hallast. 1956. ( In  I h t c h ) .  

Circular turns in wind of constant velocity. 1960. ( In  Dutch) 

Section Muthematioal Problems and Numerical Computations. 

TR W. 1 

Mixellation Publications. 

1l-P. 131 Plantems, P. J. 

van Spiege!, ‘E. Boundary value problems in lifting surface theory. 1959. 

Structural investigations for the development of the Fokkkcr F-27 
“Friendship”, carried out at NLL. 1956. ( I n  1)utch with English 
.summary). ’ 
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steady and unsteady incompressible flow. 1956. 
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Semi-avtomatic 200-point scanner for static st.rain gauge measurc- 
mcnts. 1958. 

NLL flight test instrumcntation for the Fokker F-27 ”Friend- 
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mary). 
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in simulated manoeuvres. 1959. 
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summary). 
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Theoretical determination of the power efficiency and overall 
flow behaviour of free jet wind tunnels with 
special emphasis on transonic wind tunnels 

by 

F. VAN DER WALLE 

SURUIlq. 

The power efficiency and the ovcrall flow characteristics m e  theoretieally derived for a free jet  transonic wind 
tunnel. The derived formulae appear to  bo applicable to nil types of wind tunncls (sub-, tram- and supersonic; with and 
+thout free jets). 

It is found for tho e;ue of a transonic free jet wind tunnel that  the results are ip good aeeordanee,rvith experiments. 
The theory given i n  this report is sn extenrinn and modification of the theory given by R. H E R M A "  in ref. 4 and 5. 

I n  contrast t o  the theory of H F R ~ ~ ~ N N  a loss factor A is introduced which describes the combined influeneo of mixing losses 
i n  the free jez bounliaries, t-n-I a:~!! friction drag, drag of model support and the re-entry losses of the air. flowing 
tlirough the permeable test seotion walls. 

Because of the introduction of the factor A it is possible t o  treat  the cross section of the diffuser entry as an inde- 
pendent variable. As a eonscquonee B blocking phenomenon with respect to  this CIOSS section i a  found that  is analogous to  
the blocking phenomenon due to a tOo small diffuser throat in the ease of closed wall wind tunnels. 

In  section 3.2 of this report a comparison is g i ~ n  of tho measured and eeleulsted power efficiencies f o r  the transonic 
free jet wind tunnel of the N.L.L. togcthw with an estimate of tho pkrmissible model drag coefficients. 
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cd drag coefficient. 
c,  friction coefficient. 
D 
D ,  drag of model alone. 
D ,  drag of model support. 
P 
8'* 

drag of model and model support. 

friction drag of the tunnel walls. 
friction drag of the tunnel walls for  m,= 0. 
S h =A 
S. 

m, 3 me + mk. 
m, mas of air floving through permeable test 

section walls. 

jet 
U f F , t  J r d S  

u, mk = 
p = pressure. 
R gasconstant. 
Re Reynolds number. 
S area. 
U axial velocity. 

Dc - P k  

PI 
s =  
y ratio of specific heats. 
e frec-jet expansion angle. 
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my 
P A U I  

h __=“loss factor”. 

AT loss factor for tunnel with model support 
but without model. 
loss faetor for model done. h, 

o density. 

area =model blockage coeffi- 
I” test section area 

cient. 

shear stress along free-jet boundary. 
Y kinematic viscosity. 
r 

Indices : 

1 

2 ,, ,, crws section of constant-area 

C ,, ,, plenum chamber around free-jet. 
j e t  .l, ,, free-jet boundary. 
m ,, ,, model. 
mw ,, ,, model wing. 
S ,, ,, model support. 
t ,, ,, stagnation condition. 
td ,, ,, diffuser throat. 
tn ,, ,, nozzle throat. 

applies to cross section just in front of test 
section. 

diffuser intake-section. 

I W ,, ,, test section wall. 

this way p,zrtieular properties of free jet tunnels 
can be explained at least qualitatively. For in- 
stance H m m  cites in ref. 4 page 34 that it 
was only possible to achieve pressure equilibrium 
in the Peeneniiinde tunnel, if t,he diffuser intake 
area was enlarged above the value mostly em- 
ployed in free jet wind tunnels. This enlargement 
was neces.sary when large models at low Mach 
numbers were tested. This can be explained by 
the present analysis. The analysis shows also that 
the effect of the re-entry in the diffuser of the 
mass of air flowing through the permeahle test- 
section walls is analogous t o  the effects of model 
drag, wall friction drag and shear stresses along 
the free jet boundaries. The influence of all these 
effects is described by one parameter A, called the 
loss factor. As a consequence the application of 
the analysis is not. limited to transonic wind tunnels 
but can also be extended to supersonic and subsonic 
wind tunnels with and without free jets. 

The influence of the parameter h is largest,, how- 
ever, for test section Mach numbers close to unity. 

A schematic drawing of a free jet transonic 
wind tunnel., on which the analysis is based, is 
given in figure 1. 

The characteristic properties of this type of 
tunnel are mainly determined by the flow-pheno- 

MODEL SUPPORT 

AIR TIGHT CHAMBER 

PERMEABLE WA 

INTAKE SECTION 
ITRANSFORMATION ZONE1 

€.EXPANSION ANQLE 
D.DRAG 
W.WALL FRICTION DRAG 

Fig. 1. Sketch of transonic semi free j e t  windtunnel. 

1 Introduction. mena occurrinc between the cross sections 1 and 2 

The theory given by H E R I ~  in ref. 4 and 5 
explains some fundamental properties of free jet 
supersonic wind tunnels. I n  a discussion an the 
applicability of the results of HER&- to the 
N.L.L. transonic free jet wind tunnel, it be- 
came apparent, however, that  in order to describe 
the special characteristics of this tunnel type some 
modifications and extensions would be necessary. 
A closer examination revealed that the fixed 
relationship between free jet length and diffuser 
intake cross section had to be revised and in ad- 
dition that the effect of the re-entry in the diffuser 
of the mass of air flowing through the permeable 
test section walls had to be taken into account. 

The subsequent analysis will show that in 

Y 

(see fig. 1). 
The air flowing through the test section will be 

partly deflected outward and will flow through 
the permeable tunnel ivalls because of model bloek- 
age. This small ~~~ilss flow of air will be &noted 
by me;  from this air practically all kinetic energy 
will be transformed into heat. Experience with 
transonic test sections indicates that this mass of 
air will not flow back again through the test section 
walls behind the model but has to  be induced in 
the flow again a t  the diffuser entry. 

Along the free jet boundaries mixing takcs place 
between the main flow and the air in the plenum 
chamher. Because of this mixing and its associated 
impuls losses in the main flow the free jet vi11 
expand. The expansion angle E is dependent upon 
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the pressure difference pc-pp, and the shape of 
the model support that \rill be located mostly in 
the free jet. I n  addition the angle E varies slightly 
with Mach number (see ref. 2). 

The first part of the diffuser consists of a.paral- 
le1 section. In this  part the transition occurs 
from the non-homogeneous velocity distribution a t  
the entrance to a homogeneous one a t  the end. 

On the model, model support and the tunnel 
walls are acting respectively the drag D and the 
friction force F. Along the free jet Imundaries 
work shcaring stresses, denoted by 1. 

In the next chapter the equations will he derived 
that govern the hchaviour of the air within the 
dotted lined control surface in figure 1. 

The tot’al pressure ratio *, the Mach number 

111, in the diffuser intake and the stability of the 
solutions will he determined as a function of the 
test section Mach number N,, the tunnel con- 
figuration, and the loss factor A. Just  as is done 
noiinally in the derivation of tlie noimal shock 
ivave equations, only the state of tlie homogeneous 
flow in cross section 2 will be determined. Apart 
from the introduction of the loss factor X, the 
detailed flow phenomena between the cross sections 
I and 2 will not be considered. 

In chapter 3 the resnlts are discussed and zp- 
i plicd to the case of the N.L.L. transonic wind 
I tunnel. 
I 
I 2 Derivation of the equations. 

PI1 

P21 

P21 PU 
a -  

2.1 Detei*mination of M , ,  - and __ .  
The follorTing conservation laws are valid : 

a. Conservation of mass. 

ID11 as 

P I w 4  PZ&UI (1) 
where p is density, S is the cross sectional area and 
U is the axial velocity. The indices 1 and 2 arc 
related to the cros9 sections 1 and 2 in figure 1. 

c.  Conservation of energy. 

P.7 Y P, - + + B u , ’ = - -  -++u ,z .  ( 3 )  
Y - 1  PI Y - 1  P2 

The following assumptions have been made: 

1. All changes of state are adiabatic. 
2. A11 transverse velocities are neglected. 
The riglithand sides of tlie equations (l), (2) and 

( 3 )  are identical to those of the normal shock equa- 
tions. Because of this it can he expected that the 
equations (l), (2 )  and (3) will yield two solutions 
for tlic state of the flow in crass section 2 ;  one with 
a subsonic and one with a supersonic Mach number. 
The two solutions are related to each other in the 
same way as the two solutions of the normal shock 
equations. 

In appendix A it will be shown that from the 
equations (l), (2) atid (3) the following expres- 
sions can be derived for the Dilach number M2 and 

, ( p l r  and pzt arc the stagnation PA1 the ratio - 
Pit 

prcsrures in the cross sections 1 and 2 respectively) 

and 

The symbols used are defined as follows: 

(6) 
s diffuser intake area h = L =  
S ,  test section exit area ’ 

I (7) p, - p ,  - pressure differential betweeii prcssure chamber and test-section s =  - 
P I  test section pressure 

b. Collseruation of imp&. 

P c ( & - - s , )  + s,P,U,z= P,S, + &P*u*z (2)  
where p is tlie static pressure. 

The assumption is made that the wall friction 
force F is composed of the following parts: 

1. The friction P, in case TIC, = 0. 
2. The additive friction force m,U, in case a 

mass m c  is tllrough the perme- 2.2 Detclminntion of the stabili t~ of the solutions. 
able walls. 

X will be called tlie “loss factor”. 
With equation (4) the two values of Jf, can 

hr determined €or givcn valnes of h, Jf , ,  8, y 
and A, wlrcrc-after with equation ( 5 )  the two 

values of - ‘’* can he calculated. 
Pt 1 

P l l  This assumDtion seems realistic as oracticallv all a- ” 
kinetic cnei& oE the mass flow m&-will he &ns- 

able walls. 

It will be shown that the quantity __ directly formed in heat during passing through the pcrmc- as 
determines the static stability of the solutions. 



~~~ ~ ~~~~~ 

4 

formation to a homogeneous veldeity distribution 
takes place in the diffuser intake section. 

A11 of these losses are accompanied by entropy 
increases and are related to the following pheno- 
mena : 

a. ,The re-entry of the’ mass flow m, in the 
diffuser intake. 

b. The drag D of model and model support. 
c. The friction force P on the tunnel walls. 
d. The shearing stresses. T along the free-jet 

boundaries. 
The entropy increase between the sections ( I )  

and (3) is dependent upon the detailed flow dis- 
tribution. Whcn some crude assumptions are made, 
however, the following approximative criterion can 

P2t be derived for the parameter- (see appendix B) : 
PI L 

If in a certain tunnel set-up. h and al, are 
fixed, the only parameter than can vary under 
the influence of disturbances is tlie parameter 

6 =  -. The influence of the disturbances 

on the parameter A is assumed to be zero. 
Suppose now that an eqnilibrium condition is 

disturbed in such a way that the plenum chamher 
pressure pc i s  enlarged &hove its equilibrium value. 

The equilibrium condition can only he restored 
in ,’ case more’ air escapes through the diffuser 
than enters through the test section. The ratio 

P I  

mass flow through-diffuser . P9l . Std 
IS equal to __ 

PlI . st,, ’ mass flow through nozzle 
where S,,, = diffuser throat area and St, c nozzle .. 
throat area. Therefore, for a given tunnel geo- 
metry, a necessary condition for this to  happen, 

is that the parameter - ’*‘ must hecome larger 
PI, 

became of the increase of p ,  (and of 6 ) .  
The criterion for static stability is thcn : 

PZl a- 
- > o  P2t 

as I 
In Appendix A the following expression will be 

derived : 

From equation (IO) it follows that the stahility 
criterion is satisfied for  every value of ill, and M 2  
if k > l .  

As this is normally the case in free-jet wind 
tunnels both solutions of the equations (4) and 
( 5 )  will he stable i n  normal cases. 

2.3 Comptability of the solutions with the second 
law of thermodynamics. 

It may be possible that not all solutions of the 
equations (4) and (5) can be realized physically. 
The condition imposed by the second law of thermo- 
dynamics on the solutions is, that a decrease in 
entropy ;is forbidden. For the entropy S per unit 
mass . .  the . following expression is valid: 

shere  R = ,gaseonstant,, 
S=-Rlnp,’+ G a ( 1 1 )  

p ,  = stagnation pressure, 
C = integration constant. _ .  . , . .  ’ 

From equation (11) and the second law of 
thermodynamics it follows that always the ratio 
- should he smaller than 1. 
?At 
It can be shown, however, that a more severe 

restriction, is placed on tho ratio a. A consider- 

ation of figure 1 reveais namely that several losses 
are introduced in tlie air flow before the trans- 

<. 

PI t I 

On the basis of the assumntions made in anvendix B - _  
the upper bound (“) is completely determin- 

ed by the Mach number M,, the “loss factor” 
P 3 I  limit 

A and y. 

3 Discussion of the results. 
3.1 Results for arbitrary values of M, and 11,. 

From equations (4) and ( 5 )  it can be seen that 
h and A are the only parameters that take into 
account the free jet character of the wind tunnel, 
whereas also other factors contribute to  the value 
of A. The loss-factor A is built up in the following 
way (see equation 8) : 

u. The influence of the re-entry of the mass 
flow m, (characteristic of transonic wind 
tunnels). 

b. The wall-friction force Po (characteristic t tunnel type). 
e.  The drag of model and 

model support 
d. The shear stresses 7 along the free jet hound- 

a rks  (characteristic of free jet wind tunnels). 
This means that the present analysis is valid for 

all types of wind tunnels; only in the calculation 
of A and h the specific character of the tunnel 
has to he taken into account. 

The parameter 6 will he taken equal to  zero 
in the remainder of this chapter, as pressure equi- 
librium will be prescribed fo r  flexible wall transonic 
wind tiinnels and is mostly desired for supersonic 
wind tunnels. The influence of 6 has been des- 
cribed in detail by  HI^" in ref. 5. 

I n  figure 2 the solutions for >I, are given for  
JL = 1.25 as a function of A and 51, , 

As remarked already, for most combinations of 
A and ill, two real solutions are found for &, 
a supersonic and a suhonie one. This .  stems 
from the fact that in equation (4) the quantity 

of any 

H, 7-1  

has a maximum for ill, = 1 
1 + yM,1 

(see figure 3) .  
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There is an upper bound for A above which 110 

real solutions for N, are found (see figure 2).  
This maximum value A,,, is a function of the 

Fig. 2. The Mwh number M, as a function of A and M, 
far h =  1.25 ana 8 = 0. I 

Mz (, 9 M; ,% 
l + Y M :  

test scction llaeli iiumbcr. The lZach number 11, 
equals 1 for X = Amax. A,, indicates the maximum 
allowable value for the drag, friction forces, etc., 
above which no real solutions for the tunnel flow 
will be found. The curves for 111, shift to smaller 
values of A when N, increases from M , = O  and 
also whcn df, diminishes from N, = co , There is 
a Mach number for which the curve lies 
most to the left. 

This Mach number is somewhat larger than. 1 
and it. represents the most critical operating con- 
dition of the wind tunnel as for this Mach number 
the maximum allowable value for A, A,,, is the 
smallest. (XJCFjt is dependent upon the parameter 

h = 

For h = 1 this critical Mach number also equals 
one and the associat,ed value for  X is zero. This 
can be seen easily from equation (4) by introducing 
,If2 = 1 and h= 1. With increasing values of h, 
(dfl)cr,t and A,, also increase (see figure 4). 

Figure 2 shows that the influence of A is largest 
at  Mach numbers somewhat greater than 1. This 
is aggravated by the fact that A will tend to be- 
come relatively large a t  these Mach numbers (high 
drag coefficients‘ for model and model support in 
transonic flow). 
In figure 4 A,,, is given as a function of Mach 

iiuniber for 6 0 (pressure equilibrium) and for 
some values of h. 

From figure 4 the conclusion can be drawn that 
for a given value of X a lower bound, k,,, , for h 
exists. The parameter 71, (or the diffuser .intake 
height,) can only be decreased until A,, equals 
t,he given value of A. If the diffuser intake height 
is decreased to valnes below no real solutions 
for df2 for 6 = 0 will be obtained. This phenomenon 
is analogous to the blocking of the flow in closed- 

diffuser intake area 
test section area ‘ 

M, (1 + ’+ Ma,>’” 
Fig. 3. The quantity ea a function of MI.. 

1 + 7.w: 



wall wind tunnels when the diffuser throat area 
is decreased below a certain minimum value. I n  
the case of free-jet wind tunnels, however, this 
blocking by the diffuser intake area does not lead 
to  a complete flow bread-down but to an increase 
of the chamber pressure p,. This can be seen in 

P c  - PI figure 5 where kin is plotted against 6 = 
PI , 

I for = .10 and 11, = 1.2. 
h 

030 

0.28 

026 

0.24 

0.22 

0.20 

0.18 

0.16 

0.1 4 

0.12 

0.10 

a00 

a06 

eo4 

0.02 

0 
08 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

M1 
Fig. 4. The limiting value A ~ . ~  for A a8 a function of X, 

and h, for S = 0. 

The parameter 7bLn is decreasing steadily when 
S is increased. This means, when h is decreased 
with constant. values for X and M, , that the para- 
meter S will have to increase as soon as 7~ becomes 
smaller than 

This bebaviour explains completely the phcno- 
mena mcntioned by H ” i i  in reference 4. Ac- 
cording to I~FMN it was impossible in the Pene- 
munde wind tunnel to obtain pressure equilibrium 
with the original diffuser intake dimensions when 
large models a t  Mach numbers around 1.5 were 
tested. As the analysis predicts, pressure cqni- 
librium could only be obtained in this wind tunnel 
when the diffuser intake hcight wm enlarged. I t  
is especially noteworthy that this phenomenon only 
occurred with large models (large A )  and a t  Mach 
numbers asound 1.5. At  these low Mach numbers 
the influence of X is rclatively large as is shown 
by figure 2. 

The quantity - is plotted in figure 6 against 

Z’zt Only those values of - are plotted that are 
PI, 

lower than the limiting value (a) (see 

section 2.3). 
For each Mach number and diffuser intake 

height the curve of - against X consists of two 

branches; the upper branch is related to the super- 
sonic solution (& > 1) ; the lower branch to the 
subsonic one (Mz < 1). The two branches have 
the point for X=X,, in common. The following 
observat,ions can he made: 

P2t . 
P4t 

X for some values.of h and Hl. 

Pi1  limit 

P?l 

P41 

a. Part  of the supersonic solutions are permitted 
by the second law of thermodynamics. Ex- 
periments have to show, bowevcr, whcthcr 
these supersonic solutions really OCCUP. As 
shown in section 2.2 both solutions are stahlc. 
The supersonic solutions lead to a higher 

Pr, efficienc.y (greater -) of thc transform- 
PI1 

ation process than the subsonic ones. 
This does not mean, however, that the 

overall flow efficiency is better for these 
supersonic solutions. The deceleration in the 
diffuser from the supersonic flow at Mach 
number ill, to a subsonic flow will often have 
an efficiency that is somewhat lower than the 
efficiency of a normal shock a t  the super- 
sonic Mach number so that normally 
the subsonic solution has the highest overall 
efficiency. This will probably cause the sub- 
sonic solutions to prevail in experiments. 

b. The influence of X is large for illacli numbers 
somewhat above 1 as A,,, is very small there 
(see also fig. 4).  

c. The influence of h diminishes rapidly with 
increasing Mach number but is very high for 
small Mach numbers. 

The influence of the diffuser geometry ca.n 
be seen from figure 7. I n  this figure the 
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Fig. 6. The quantity !!? as il function of A with .Ir, and h 89 parameters for  d = 0. 
Pit 

Prt . 
Pit 

The important diffuser dimensions are: 
s (I. The diffuser ititake area S, h = 2) 

b. The diffuser throat area St&. 

The pressure ratio 

pressure ratio -IS plotted against 6 and h 

for $1, =1.0 and A = . O 4 .  

( s, 

is determined by this 
P t t  

throat area according to  the equation: 

(13) p j ,  diffuser throat area Sta 
This relat,ioii stems from the fact that the mass- 
flows through nozzle and diffuser are equal and 
proportional to respectively P I , .  S,, and p,, . &; 
the proportionality factors heing the same in both 
cases, due to  the constancy of the stagnation tem- 
perature. 

From figure 7 it follows that a t  a fixed value 

of A a decrease in - (larger throat area) results 

in a decrease of 6 (decrease in chamber pressure) 
and vice versa. An increase in h (increasing in- 

take area) leads a t  a constant value of - to a 

larger valae of 6 (increasing chamber pressure). 
Thus the influence of the diffuser geometry can 

he summarized ils follows: 

a. A decreme in t,hroat area leads to an ~ T L C Y E ~ S E  

in the chamber pressure. 
b. A decrease in intake area leads to a decrease 

in chamber pressure. 
A requisite is, however, that A is essentially 

independent of 6. This theoretically predicted 

pst nozzle throat area - St” -= _- 

Prt 
PlI 

P26 

Pit 

104 

102 

/ / I  I I I 
a86 
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1 
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Fig. 7. Thc pressure ratio E &s a function of 6 
1111 

and h for XI = 1.0 and A .04. 

behaviour of the chamber pressure p. has hcen 
confirmed by some preliminary experiments a t  a 
Mach. numher of 1.5 in the 1” X 1.5” supersonic 
wind tunnel of the N.L.L. (National Aeronaut,ical 
Research Institute). 

3.2 A p p l i c a t i o n  to the cnse of tke N.L.L. transonic 
W i l d  tunnel. 

The N.L.L. transonic wind tunnel, further de- 
noted by IJ.S.T., is a continuous closed-circuit 



wind tunnel for Mach numbers up to  1.3. The 
test-section size is 2 X 16 mz (6.7 X 5.3 sqft .) .  
The value of k for the H.S.T. is 1.17. 

As is scrn from figure 4 the most critical operat- 
ing Mach numbcr with respect to hmax for this value 
of h is 1.24. 
In figures 8 and 9 plots are given of M a  and 

- respectively as a function of A for  some Mach 

numbers. 
In  the figures the limits imposed by the second 

law of thermodynamics upon d l ,  and* are in- 

dicated. In Appendix C an estimate is made of 
the value of A for the H S.T., as a function of 

P21 

P,, 

Plt 

, the Mach number M,. 

Fig. 8. The Mach number N ,  as B function of A 

nnd N ,  for h = 1.17 and d = 0. 

The following values of A are considered: 
a. The value for the wind tunnel without model 

but with model support, deuotcd by A T .  
b. The additional value for the model alone, 

dcnoted by A,. 

The value of AT is indicated by the dotted line 
in figure 9. 

Without model there is amule marain between 
hr and A,,, , the mast critical Mach number being . 
about 1.24. 

The largest permissible value for A, is limited 
for two reasons: 

a. The value of A,,, is an upper limit for  

b. The pressure ratio required to drive the 
A, + AT. 
mind tunnel is limited. 

In figure 10 the pressure ratio - is plotted 

against the Mach number . The following curves 
and data are given: 

a. The calculated pressure ratio for h = XP (no 
model). 

b. The pressure ratio as measured in the H.S.T. 
(no model). 

c. The available pressure ratio across the driving 
fan corrected fo r  the losses in the return- 
circuit. 

d. The nceessary pressure ratio as calculated 
for h = A,, . 

PZt 

Fig. 9. The quantity 8s n function of A 

nnd AC. for h = l . l ?  and d =O. 
PI  I 

The calculated pressure ratios agree with the 
measured ones within the measuring accuracy. 

The curve for the required pressure ratio for 
h-A,., and the curve for the available pressure 
ratio e m s  each other at a Mach number of 1.1 
(see figure 10). This means that for Mach numbers 
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below 1.1 the permissible model drag is limited by 
the available pressure ratio and for Mach numbers 
above 1.1 A,, is the limiting faetor. 

I n  figure 11 the resulting maximum permissible 
value of Am is plotted against Mach number. 

P I 1  
P2f 
- 

1.36 

1.32 

1.28 

1.24 

S CALCULATE 
i.eo 

1.18 

1.12 

I . 0 6 ~ f l l C A ~ C U L A ~  (RETURN CIRCUIT V r E  NOT (il INCLUDED) A;:Tl , 

t.04 

NO MODELIS 

1.00 
0.6 0.7 0.6 0.9 la 1.1 1.2 '3 1.4 1.5 

(blTEST-DATA AS MEASURED IN H.5 

M I  

Fig. 10. Comparison of calculated, measured and available 
pressux mtio for the N.L.L. transonic windtunnel. 

where C D ~ ~  = drag coefficient based on test section 

C D , , , ~  = drag coefficient based on wing area 
p =' model blockage coefficient 
SW = model wing area. 

s 
S W  

area 

Typical values for p and 1 are ,005 and 20 

respectively. For these values of p and -L the 

maximum permissible value of c,,,,,~ is also plotted 
in figure 11. 

The permissible value of cD seems to  be well 
above the drag coefficients that can be expected. 

This means that the available pressure ratio is 
larger than is necessary, which can lead to the 
following possibilities: 

a. The Mach number can be increased ahove 1.3. 
The theory predicts a possible increase to  
N = 1.5 without a model. 

b. At the high Mach numbers the stagnation 
pressure can he raised. A requisite is, how- 
ever, that the fan can absorb the maximnm 
horse-power at the lawer pressure ratio. 

It must be kept in mind, however, that the 
numerical results of the theory can not yet be 
cheeked sufficiently. 

S 
s w  

A W  

4 Conclusions. 
With the theory derived in this report the 

overall flow characteristics of free jet wind tun- 
nels can be analysed. The power efficiency of 
these wind tunnels can he calculated with a good 
degree of accuracy. I n  addition to the variation 
of the chamber pressure with the diffuser throat- 
area, that has been found first by R. HERMANA~ in 
ref. 5 ,  a variation of this chamber pressure with 
respect to tlie diffuser intake area has been pre- 
dicted. This predicted hehaviour has been eon- 
firmed by some preliminary experiments. 

A hlocking phenomenon with respect to  tlie diE- 
fuser intake area has been found that is of special 
importance for transonic free jet wind tunnels. 
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'h"max , 

Fig. 11. The maximum allovablo model drag and blockage 
cocfficicnts for the lI.5.T. as a function of the Mach number. 
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APPENDIX A. 

Derivation of the formulas for 

a -  
as ' 

PI, "' and __ Jf9, - 
Pi, 

The basic equations are (see page 3) 

PrSJJ, = P Z S Z U Z .  (1) 

- ~ - ~ ~ - n i ~ u ~ -  /' r . d ~ + p , ~ , +  

Pc(S,-SS,)f SIP,  U,2=PaSz  + &P,7J,2. (2) 

__ Y -+*up=-- PI ./ + +usz. (3)  

ie t 

Y - 1  h ./-I p1 

The flow is assumed t o  be adiabatic. 
The following parameters mill be substituted. 

h=-. (4) s2 

S I  

(9) u* Id, = /%' 
Equations (I); ( 4 ) ;  (8) and (9) yield: 

& [ ( h  + S ( h - l ) }  + y(l-A)M12] = 
P, 

= h ( 1 + yM22 }. (11) 

The substitution of ( S ) ,  (9) and (10) in (3) gives: 

The ratio between the stagnation pressure p ,  
and the static pressure p in a stream with a illaeh 
number N is: 

-=(I Pt +L JI')Y''-r. (14) 
P 2 

From (14) and (12) it follows: 
Y11 

~ 

Pzr 
PI, 

The quantity a -can be derived in the follom- 
__ 

as 
ing way: 

a (B) 
ani, 

PI, - From cq. (15) : - 

From equations (16) and (17) it follows: 

?, 

P ,  
Elimination of 2 from the equations (11) and 

(12) gives the following relationship between the 
Mach numbers M ,  and M 2 .  

a can be shown with some simple algebra. 
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APPENDIX B. 

Determination of the upper bound for -. 
As remarked already in section 2.3 the following 

sonrces of losses are introduced in the flow hetween 
the cross-sections (1) and (2) (see fignre 1 ) .  

a. The re-entry of the mass flow m, in the 
diffuser intake. 

b. The drag D of model and model support. 
c. The friction force F,  on the tunnel malls. 
d. The shearing stresses T along the free jet 

boundaries. 

All these phenomena are the results of irrever- 
sible processes that are accompanied by entropy 
increases. The magnitude of the entropy increase 
is, however, not determined by the magnitude of 
the forces etc. alone, but also by the detailed 
velocity distribution in the flow. 

In order to get an estimate of the order of 
magnitude, the ent,ropy increase will be calculated 
for a schematized case. 

Just  as is the case with force (a) the forces (b) ,  
( e )  and (d) are thought to result in a deceleration 
at constant pressure of a mass flow mh at velocit,y 
li, to a negligible velocity. The total effect of 
t,he phenomena denoted above under (a) through 
(d)  is thus t,hat a mass flow of air ma f m, is 
decelerated at constant, pressure from the un- 
disturbed stream velocity U ,  to a negligible velocity. 

Pa 
Pt, 

A simple impuls analysis shows that 

D f F6 i- / rdS 
jet ' mh = ; i. e. mh + m, = m.. u, 

The entropy S per unit mass can be calculated 
with 

S = - R In p ,  + C where p ,  = stagnation pressure. 

The increase in entropy AS between the cross- 
sections ( 1 )  and (3) is thus:  

A S  =m.R ( In p,,-ln p ,  } 

The second law of thermodynamics requires that 

plS,U,(- R ln PZJ 2 &Ur(- R 111 PU) + 
ma ( R  In pit- R In p ,  ) 

- l n p ~ 1 2 - l n p , l  + h(lnptr-lnp,)  
o r  : 

mhich leads to: 

or : 
- AY - 

I APPENDIX C .  

Estimation o f  h for the N.L.L. transonic wind tunnel. 

The following data apply to the N.L.L. transonic wind tunnel. 

Test section height 
Test section width 
Total slot area 
Total length of test section mall 
Free jet length 
Diffuser intake width 
Diffuser intake height 
Shape of model support segment 
Maximum Mach number 
Maximum stagnation pressure a t  M = 7 
Maximum expected model blockage 

The parameter A is defined by 

Two values for h will be considered; one.for the 
wind tunnel without model hut with model support, 
denoted by A T ,  and an additional one for the model 
alone denoted by.  A,. 

From the definition of h it follows that : 

1.6 m (5.3 ft) 
2 m (6.7 ft) 
5 mz (53.8 sq.ft) 
3 m (10 f t )  
2.4 m (8 f t )  
2 m (6.7 f t )  
1.87m (6.2 f t )  
see figure 12 
1.3 
1.1 ata 
1% 

where D, =model drag and D. = model support 
drag. 

C. 1 Estimation of AT. 

and where 
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~ - r 
C,. =- 

le' + pJ,z 
- 
T is mean value of shearing stress T .  

The' total drag of the model support, consisting 
of segment and sting support, is assumed to  he 
twice the drag of the front wedge of the model 
support segment (see figure 12). 

260" 

l3g. 12. Dimensions of model mpport segment. 

The following drag coefficients for a wedge were 
taken from ref. 3. 

0.8 ,0340 ,00442 
0.9 .0773 .0100 
1.0 ,1138 ,0154 
1.1 .. ,1403 .OH2 
1.2 3 1 5  ,0210 
1.3 3 9 4  .m20 

5,ed,, is the area on which C D , ~ ~ ~ ~  is based; 
S,,,,, = .26 X 1.6 = .416 m2. 

As the quantity m, is normally very small, the 
parameter qjet in a first approximation is equal 
to the mean friction coefficient along the, stream- 
line A,A (see figure 1). From reference 1 it 
can he concluded that in an incompressible 
flow is independent of free jet length and is equal 
to  .022. 

The measurements from ref. 2 indicate that the 
mixing phenomena are quantitatively about equal 
for an incompressible flow and for a compressible 
flow' at Mi = 2.9. 

As in general also the wall friction coefficients 
tend to vary only slightly with Mach number the 
value ,022 is assumed to be valid in the whole 
Mach number range from .8 to 1.3. 

- 

The jet boundary is composed of: 

a.-The free jet  boundary a f i  of the test section 

b. The slot area. , .  

(9.6 m2). 

- 

becomes then: The quantity -- Crjet. Si,, 
2 S I  

- 
Crje,.Sj,, ,022 X 14.6 
-= = ,0502 2 8, 2 x 3.2 __ 

~ 

over the whole Mach . .  numher range 

The quantity etvis evaliiated for a flow a t  Mach 
number 1 along a flat plate of 3 m length at a 
stagnation pressure of 1 atmosphere absolute. 

In a first approximation the wall friction coeffi- 
cient can be taken equal to the incompressible 
one, so: - 

c/., = ,074 (E,) -" 
Re is equal to 

- 
GI,,, = .074.(4.09.1k)-.2= ,00224. 

The surface area S,  is composed of: 

a. The side wall surface up to the diffuser intake 
about 2 X 5.4 X 1.6 = 17.3 m*. 

b. The surface of lower and upper test secdion 
walls minus the slot area about 3.2.2 - 5 = 
7 ma. The snrface area of the diffuser walls 
has been neglected as the flow velocities are 
much smaller there. 

From this it follows that:  - 
Crw.Sw .00224 X 24.3 
2 SI 2 X 3.2 

= .0085. __- - 

As this quantity results only in a small contri- 
bution to Ar and as the friction coefficient will 
not vary much with Mach number this value of 
0.0085 is assumed to be valid in the whole Mach 
number range. 

I n  the next table the total value of AT is given 
as a function of the Mach number illL. 

.8 .0044 .0502 .0085 .0631 

.9 ,0100 ,0502 ,0085 .0687 
1.0 ,0154 .0502 ,0085 ,0741 
1.1 ,0182 .0502 ,0085 ,0769 
1.2 ,0210 ,0502 ,0085 ,0797 
1.3 ,0220 ,0502 ,0085 .0807 

C.2 Estimation of A,. 

111, I n  near sonic flow the quantity __ is equal 

to the percentage model blockage p in a good ap- 
proximation. 

D ,  can be mit ten as: D m = C d m l .  4 p,Uii2. 8, 
where cDm, is the drag coefficient based on the 
test section area 5,. 

S?P,U, 

The value of cDm, depends to a large extent on 
the size and the shape of the model. 
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List of symbols. 
n =radius of the sphere. 
a, 
b 

3 

=coefficient in the expansion of 2 , .  

=damping coefficient occurring in ex- 
ponential functions. 

bi =integration constants, to  be deter- 

Ci =integration constants, to be deter- 

h =thickness of the shell. 
h= h ,  orh,-see for definition eq. (2.41). 

mined from the edge conditions. 

mined from the edge conditions. 

=quantity taking the values 1.2.3. ... 
=quantity taking the values 1.2.3. ... 

-separation constants. 
=displacement of the shell in radial 

direction. 
=displacement of the shell in tangen- 

tial direction. 
=displacement of the shell orthogonal 

to  u and u. 
=independent variahle. 
=solution of the differential equation 

given by eq. (2.22~~).  
=function of 3. 
=hypergeometric function defined by 

eq. (2.27). 
= constant, defining elastic properties 

of the shell. 
=factor of a narticular integral of 

- and so on. 

- and so on. 

~ 

eq. (2.15). 
B = constant, defining elastic properties 

of the shell. 
Bi =integration constants. 
B =factor of a particular integral of 
- 

eq. (2.15). 
Ci =integration constants. 
D =transverse force. 
E = Your;cr's modulus. 
€I = operator of the spherical functions. 
d&, M 3 9 ,  M+,. M3, moments occurring in the 

shell (fig. 3b). 
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Nqq, Nss, N p ,  N5rp membrane forces mcurring 
in the shell (fig. 3a). 
shear forces occurring in the shell 
(fig. 3a). 
solutions of the equation H(y )  = 0. 

Qq, Qq$ 

%,> 8, 
sin 3 a 1 an =v-ui+ __ 

T 2 s i - ( s inSzJ  
T,,, , T,*, TV,, T,,, solutions of the eqL1ation 

V =defined. by eq. (2.10a). 
W ,  =defined by eq. (2.10b). 
a(<) =function of E ,  which must be small ' 

a 

P 

H ( T )  =sT. 

compared to h. 

- and so on. 

- and so on. 

- 
=quantity taking the values 1, 2, 3 

=quantity taking the values 1, 2 ,  3 
- 

b -_ 
- VT P 

Y =quantity taking the values 1, 2, 3 

9 =angular coordinate defined in fig. 2 .  
E ,  E q  =strains occurring in the shell. 
9x =angle defined by eq. (2.44a). 
h =s, or s,. 
G?, T ~ ,  resp. G ~ ,  ut tangential and axial stresses 

occurring in the shell (fig. 6) .  
%3 =shear stress oecnrring in the shell. 

'nz 
- IJZ P 

Y = POISWE'S ratio. 

- and so on. 

. 

-_ 

=angular coordinate defined in fig. 2.  
=functions of 3 defined by eq:(2.44). 
=function given by the first relation 

-.' 
E <  
A ,  A. , 

of eq. (2.44a). 
R =function defined by eq. (2.12). 

1 Introduction. 

I t  is well known that in spherical shells very 
high bending stresses due to local variations of 
st,iffness or due to local loading may occur. These 
stresses decrease very rapidly as the distance from 
the disturba.nce increases. The ,problem which led 
to this investigation is the following one. Consider 
a pressure vessel, nhich consists of a cylinder 
closed by two half spheres. I n  one of these half 
spheres there is a hole which connects a pipe 
to the pressure vessel (see figure 1,. The bending 

<-E-pN 
Fig. 1. The actual structure. 

stresses which occur in the shell of the sphere 
due to  an axial force N and a transverse force D,  
and due to  a bending moment M exerted by the 
pipe on the sphere, form the subject of the present 
paper. 

For a shallow sphere it is possible to make 
a.pproximations which give rise to differential 
equations of B m ' s  type. By this method it is 
possible to  find the stresses if the radius of the 
hole is small with respect to  the radius of the 
sphere. 

I,n 1935 A. €€A" succeeded in finding the 
solution of the general problem of edge loading 
(ref. 1) ") by making use of an operation dis- 
covered by A. v. D. "I (ref. 2 ) .  However, it 
seems to the author that this work has not become 
generally known. It is therefore his intention to 
give a sketch of the work of HA- and there- 
upon to  use the results for  the solution of the above 
stated problems. 

It is assumed that the pipe is attached to the 
sphere by means of a so-called "neutral hole" re- 
inforcement. This is a heavy circular frame 
which makes the membrane stresses due to the 
pressure not to he disturbed by the bole. I n  
general there will occur some bending stresses, 
but, as can be proved, these stresses always remain 
very small. 

The report consists of three parts (chapters 
2, 3 and 4). I n  the first part the theory of 
H..kmm will be reviewed. In the second part the 
application to  the problems of an axial force,. a 
transverse force and a bending moment will be 
given, while the third part  is devoted to the 
numerical evaluation of stresses and displacements 
due to these loadings for the case of the pressure 
vessel and attached pipe of the supersonic wind 
tunnel to be built for the N.L.L. 

2 Review of the solution of Havers. 

2.1 Derivation of the differential equations. 

Consider. a part  of the sphere as given in 
fig. 2 and denote by u, 21 and w the displace- 
ments of a point of t,he shell as indicated in 

Fig. 2. Orientation of angles and displaoementn. 

the figure. We now make the usual assumptions. 
Denoting by .$ the distance of a point above the 

*) The author's attention was drawn to this paper by 

. ,  

P T O f .  A. V. D. %UT. : 



I5 

We will now calculate the forces and moments thaL 
occur in the shell and which are defined in figures 
3a and 3b. We have 

middle surface of the shell and by y 3 f ,  y9pt and 
y94 the shear strain components, it is assumed that 

e$ = 0 

US$ = UTE = 0 
and u, IJ and w are small compared to the thick- 
ness h of the shell. 

According to ref. 3, p. 47 

av  21 W 
.- + __ +- cotg 3 

9 ( a + t ) s i n >  i& a + . $  a + [  
(2.lb) 

1 
e =  

Fig. 38. Fig. 3b. 
Foreus aud momenta acting on sn element of the shell 

where a denotes the radius of the middle surface 
of the shell. The assumption that y $ t  =up$= 

the undeformed shell will remain on a normal of 
the deformed shell. If u,, v, and w, are the dis- 
placements of the middle surface, a simple geo- 
metric investigation will learn that 

I ,  
2 

_-  = O  implies that dl points lying on a normal of -;.. 

u=uo (2.2a) 

(2.2c) E au, 
W o - -  -. E +  a w=-- 

a a a3 

On substituting these results in the eqs. ( M a ) ,  
(2.lh) and ( 2 . 1 ~ )  one obtains 

+- uo (2 .3~~)  1 aw, t ac,  
a a3 a(a + f )  W a + E 

1 at), t a*lbo 

e3=-  -- 

+ E =__ -_ 
9 a s i n 3  a ( a  + ()sin*> 

cotg3 11 W E a% 
a(a + 8) 33- -+ -2- + 2 cotg3- 

a + <  a 
(2.3b) 

( 2 . 3 ~ )  

These strains are related to  the stresses by means 
of Hmm's law 

(2.4a) E 
(E9 + v e31 0 =- 

'p 1-"$ 

(2.5a) 

(2.5b) 

(2 .5~)  

t a = - Jl33 
_ -  h (2 .6~~)  2 

h 

M>Q (2.6b) 
It 
2 

_ -  
I ,  

+ T  

(2 .6~)  
k 

- T  

By making use of the equations (2.4a), (2.4b), 
(2 .4~)  and (2.3a), (2.3b), (2.3c), we get, with 

Eh' and A =  
Eh B = -  

1 - "2 12(1--"?) 

aw 
as + u, + wo cOtg3 + Y 9 -+ v u o  I (2.7a) 
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(2.7b) 

(2 .7~)  

A a u  2 ~ 0 ~ 3  au, 2 azzl, 1 aw, - tJu,cotg3+ 7- 1 = - M 5 3  (2.7d) I f q q z - -  __ _-____ 
uz 2 a3 sin*> a, s i n 3  +33 s in> a, 

M@=-- -+ w ~ c o t g 3 - ~ c o t g 3 + ~ - " ~  (2.7e) 

(2.7f) 

It is our purpose to derive three differential equations for the unknown quantities uo, v, and w,. To 

We find 

1 + u , + G  - avo + vu, + YW0 cotg 9 s in> a, 
B (avo  1 
a 2 

N@=N3?--  __ 

A I 1 . a*, 1 azu,, au aw azu j 
@"%!sins ap-sin29 a$ a3 a3 a32 I 
A aw, a*u, azu, , a Z v ,  au, 

~ ' ~ z - 2  I Z F - ~ S Z  s i n 3  a, sin23 ap2 a3 
+-, _-__ + Y wo cotg 3 - v - cotg 9 1 - 

obtain these equations we make use of the equilibrium of an clement of the shell. 

(2.8a) 

(2.8b) 

(2.8~) 

(2.8d) 

( M e )  

a(Nsqsin ') &d> -t a N T P ~  cos 3 dpd3 + a &.+sin 3 &d3 = 0 a- aNw 40 + a  aq 
a (N33 s i n 3  Gd9 + a __ aNp3 

a(Q3'sinx & ~ d >  .+ a __ a Q d  +t> - a NW sin >+i9 - a ~ 9 4  sin 9 ~ c ~  = o 

d9d3 - a N q q  cos 9d9d3 '+ a 992 sin 3 d 4 3  = 0 
a 3  a, 

a 3  a, 

a 

a 

a- a M q q ~ d 3  + a  dqd3 - a  Mq3 cos 3&d3 + a Q$&d> sin 3 = 0 

aMqs &d9 - a MTq cos >&a9 - a QTgd9d3 sin 3 = 0 a- 
a (M 44 s i n 3  - 

a 3  aq 
a '  

a M44 sin 3&d3 + a Nqy sin 3&d3 - a N8q sin 34dY + a N p s i n  >&a3 = 0. (2.8f) 

Since re =r3?, equation (2.8f) is satisfied identically. There remain five equations. If we elimin- 
ate the quantities Q4z and'Q,l from the equations (2.8a), (2.8b) and (2.8~) by means of (2.8d) and 
(2.8e), three equations result. Now on substituting the equations (1.7) into these three equations we 

find the followins differential equations, where k stands for 



2.2 Reduction of tlze differeictial equations. 

The problem has now 'heen reduced to the solution 
of the three differential equations (2.9a, b, e). We 
will only give the main points of view that lead 
to the solution. 

We introduce the following operations diseover- 
ed by A. v. D. N m  (ref. 2) : 

and 

(2.10a) 
1 av u - -  - 

s i n 3  aQ 

a w  
w0== (2.10b) 

Furthermore, we introduce the operator H of the 
spherical function 

a2u au 1 a*u 
a3 as aQ2 

If(y) =- + - cotg3 + 2 y + sin29 - 
(2.11) 

It is known that for a spherical function y,, of 
the n-th order 

H(y,) =- [ n ( n ' +  1) -21 yn 
n c 0, 1, 2, 3, etc. 

On introducing now 

v-w'=n (2.12) 

the system of differential equations can be brought 
into the form 

H H ( T ) - 2  N ( T )  + (I - v ' )  __ l + k  T=O (2.14) k 
where T is written for 

s i n 3  -(-- a l a 0  -) v-u0 f __ 2 a3 s i n 9  33 
and 

H(u,) = ( P + k ) [ ( l ' + v ) T - N ( T ) ] .  (2.15) 

Equation (2.14) can be split into two equations 

H ( T )  =sT. (2.16) 
by writing 

Inserting this in equation (2.14) one ohtains 

where 
H ( T )  =s,T and H ( T )  =s,T (2.17) 

and 

1-(1-2) __ +k (2.18) k s,=1- 

Equation (2.15) can he reduced to the general 
equation H ( u O )  = O  by assuming a particular so- 
lution of the form 

u , = Z H ( T )  +BT. (2.19) 

We then find by making use of eq. (2.14) 

(2.20) 

The solution of the problem has now been reduced 
to the solution of the equation 

H(Y) =XY. (2.21) 

2.3 Solution of tJte differential equation. 

We have to solve the equation 

Inserting this in equation (2.22) we find the dif- 
ferential equation for ~ " ( 3 )  

n2 -+- a3 "' eotg3  + y, (2-A- sinZ> = O .  a32 
(2.23) 

azv,, 

Using the following transformations 

I - cos 3 an = y, ( + ): (2.24) 2 1 -cos> 2= 

5 =  l ' f  2 c a r 3  
e, = !! !b ( ::::;)' (2.25) 

equation (2.23) becomes a hypergeometric differ- 
ential equation 

azz, 
ax2 

x(x- 1) - + 
+ [ (a+p'+ 115-y]  -+ ah -- a p z , , = O  (2.26) 

as 
with 

Z--h-p(pl+ 1)  
- - 
m = - p  P = p + l  y = l f n .  

The solution of equation (2.26) is - 
an = F(G 3, y ,  5 )  = 1 + X a@ (2.27) 

?=I 
with 

L(T+ 1) .. . G+ 1-1). p(p+ 1). . . (P+ r-1) 
a, = 

ForX=O --f p = 1  and 

1.2. ... v . y ( y + l )  ...(y+ r-1). 
(2.28) 

5. (2.29) F ( s , P ,  Y ?  5 )  = 1 - __ 
2 

1 '+  n 
_ _  

This gives with the equations (2.24) and (2.25) 

Y:,= n + c a s 9 (  n + l  1 + c o s 3  l -cos>)$  (2.30) 

YS= )'. (2.31) 

These solutions are independent for n > 2. 
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For n = O  and n = 1  the solutions are depen- 
dent. For the independent solutions in this case, 
the reader is referred to  the original paper by 
 HA^. The whole system proves to he 

% = o  yc =cos3  (2.32a) 

+ 2. (2.32h) ' 1-ea93 
l f c o s 3  y$ =cos3  In 

n = 1  y & = s i n 9  (2.33a) 

1 - c m 3  
l + e o s >  

-2. (2.33h) yL = sin 3 In 

The equations (2.30), (2.31), (2.32a), (2.32b), 
(2.33a) and (233h) give the solution of equation 
(2.23), except for constant factors, in the ease that 
h = 0. 

We now turn our attention to the case that 
X=s, or X=s,. Since s, and s, are comples 
numbers, computation of the coefficients a, (see 
eq. 2.28) would he very cumbersome. There is, 
however, another fact that makes it impossible to 
use the expansion given by eq. (2.27). That is the 
fact that we have assumed the thickness of the 
shell to he small compared to  the radius of the 
sphere. This causes, however, that s, and s, and 
thus too, are large. It is then to  be expected 
that the convergence of the expansion is very 
slow. This would mean that a very complicated 
numerical analysis would be needed for every 
practical problem. 

Therefore €€AVERS followed another way, inspired 
by the work of BLIJME~THN.. He so succeeded in 
finding asymptotically correct solutions. 

Notice that equation (223) can be written as 

Here 
l + k  

k (1-2) __- 

if h=s,  (2.35a) 

l + k  
IC (1-"2) __- 1, = h ,  = - 1 - z 

if h=s, .  (2.35h) 

- 

In  both cases 

I Ji,  I= \  h ,  /= 

We will now try to  bring eq. (2.34) in the fol- 
lowing form 

If a(<) is small compared to h, the solution of 
eq. (2.37) will he approximately 

I n  order to  transform eq. (2.34) into eq. (2.37) 
me introduce a new independent variahle t= f (9) .  
This gives rise to 

11.2 ' (2.38) 
h sin2> - 

If we take 

eq. (2.38) gives 

On introducing a new dependent variahle 

9 (2.40) 

h 

the second term in eq. (2.34) vanishes and the 
result is eq. (2.37). 

I n  our case we have to solve eq. (2.37) for two 
values of h. Remembering that k is assumed to  
he small compared to  unity, we may write 

nz 
ba On introducing - = p ,  and assuming that la\ 

may he neglected with respect to b', we obtain 
the following solutions (see eq. 2.40). 

I n  the case that k = k ,  

Here, the bar above means the conjugate complex 
value of f .  f as a function of 9 can be calculated 
from the relation 

(2.44) at  1 - = 7 Vsin'9 - ip. as Sin> 

Now, the eqs. (2.42), (2.43) and (2.22a) give the 
general solution of eq. (2.14) and therefore any 
h e a r  combination of y*, , y., , yn,, and yr is a 
solution of this equation too. We will use this to 
obtain a set of real functions. This can be done 
by taking 

- - 
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By introducing the following notations 
As NAvma has proved, this solution yields asymp- 

totically correct results. Only if $ = ?- 9 > 85" 77 

6 I 

P , p = - ( ~ . 4 4 ~ )  = sin49 + $, tg 4X =- 
sinz3 

and at the same time p < 0,5; the error will be in- 

The values of El and & as functions of p and 4 
have been tabulated bv HAVERS (see ref. 1) and 

V2 creasing rapidly. 

and 

(1 + i) [=t ,  + i t z  

one obtains : 

arc here reproduced in tables 1 i n d  2. 
Having solved the differential equation we can 

now calculate the displacements and the moments 
and forces occurring in the shell. 

2.4 Determination of the displacements and the forces and moments. 

We start with the determination of 11. From eqs.. (2.15), (2.17) and (2.19) it follows that u is deter- 
niined ,by the general solution of N ( z )  = U ,  together with the solutions of H ( T )  =s ,T  and H ( T )  =sa?'. 

On ,expanding u in a Fourier series U,=Z un: ,I :::zF { me find for the coefficient th, using the 
equations (2.18), (2.19), (2.30) and (2.31) : 

u.=B,y,f, + B 2 d , +  ( ; I s , i + B ) { C , y ~ , f C , ~ . , )  + (as,+B) { C 3 % , + C , G n , ) .  (2.47) 
sin 3 am 

we have Denoting __ - by ,, and recalling that T =  V - I L ~ ~ +  __ - 1 an 
s i n 9  a9 z as 

I . a, 
2 as . V - T + i i 0 - -  s i n 9  - (2.48) 

By expanding wo in a Fourier series v,=X wn 1 c ~ ~ ~ p  sin "' 1 we get (the upper sign refers to 2 w, sin u 9) : 

(As, + z,+ 1) ( A s ,  +%,'+ 1) - 
{ ca?/", '+ C4GnJ + sin 2 v,.= T n- { C,Y", + G!!",) n sin 9 

(2.49) n 1 aYn, ,+ B, . .  1 as . -- + sin . 9 {&YE, + B s ~ A ) * y n I B g L  as 

The displacement w o  can be found from eq. (2.10b) and eq. (2.12) 

(2.50) a iv  av ,. w o- -_-  as - ~ - u s i n 9 .  

Introducing again the Fourier series oo =Xw,  e?n3 n9 I we get (using the equation H ( o )  =0) 1 
- - 

as wn= ( X S I  + E +  1) 

+ B1& + B y'9 
?? 

t as - . {Bat/:, + Bay; 1 . 
a 3  

It should be noted' that in this way it is assumed that the solution of H ( u )  = O  is - 
u=.Z (BIH~:,  + B2,&! 

0 
and the solution of If(,) = 0 is 

+ cosnp ... 
m = X  (B,,Y;, +Bi,ynn) sin n p  

0 

(2.51) 
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For the sake of simplicity the suffix n has been omitted in the integration constants. 
With a view to obtaining a result which is in accordance with HAVERS' result we pnt 

1 { c 8 - i c d )  ( ; ? s , + B + l ) C , =  

{ c1 + i c * }  (As, + B,t+ 1)C,= 

{ CI + i c ,  4 2(1-  v )  

1 
L(1-") 

1 

( A s , . + B + l ) C , =  ' 

(2.52) 
1 

(CL - i C ,  Z ( 1 - v )  
(2% +B+ l ) C , =  2(1-") 

and 

(2.53) n.(n- 1) (1 - .) B,  = B,  = , E,= 

Denoting n(n-I)  Y:, by Sn,, n(n.- 1) yz, by S,, and differentiation with respect to  9 by a dot, 

and introducing += - - 2 ,  we ohtain (this is done for 9 b A - 2 ;  for n <  2, the definitions of S,, and 

SV, are given by eqs. (2.32a/b) and (2.33a/b) and B ,  = b,-n b, ,  B ,  = b, + n b,, B,= - 2 h,  and 

b, - n b, b, + n b,  - 2 b, - 2  b, 
n,(n- 1) (1 --.) 3 w ( m - l ) ( l - " ) '  m(n- 1) (1 - v )  

1 1 

77 

2 

B, =- 2 b,)  
1 

1 - v  Wn=- ( c1 in, '+ c, T,2, + cI Tn8 + cI Tn, + h,  Sn, 4 b S,,,) + 

(2.54) 

n 
[ e ,  T,,, f c2 T,, + c, T,, + c, T,,, + b, S,, + b, S,J + ." - - n- i- (I-") cos* 

(2.55) 
n 

1-" cos * 
b2 

u, = __ - yl { -GI T*, + e, T", + CQ T", - c4 Tn3) + 

(2.56) +- 1-" (b ,S , ,  +b,Sn,--~nS.,+b,nS.,) .  

We will now establish the formulae which give the amplitude of the forces and moments occurring in 
the shell, as excited by the displacements 

1 

c o s n y  , sin n p cos n 'p 

sin 919 ' '* e o s n p  and W n  s i n n p  u. 

Using the eq. (2.7a/f) and ey. (2.8d) and ( M e )  and neglecting k against unity we arrive a t  

a T.,-b*TD,l + e , -  a \tg+?,,,--T,,,+b*T,,[ e&$' + 
B B 
a 

B .. B .. B 
n a cos J.  

B nz B nz 

B n2 

- b, - + so,) - b, 7 (S", + S",) - b, - IL 1 ( S , ,  + Smz) + n ( --)I Sns (2.57) 

N>$a =C'; )-TO, - t g + + v l /  + c z u  ~GT T,, -tg*$,,/ + 
B nz ' I  B n2 
a 

+ c3 - \- y-3 -ttg*Tn,j + G I -  a \--I- cos $' ~ n ,  - t g + + n , I  + 
B .. B B s,, ' '  We, + &,) + b, ; (k, + 8,) + b, -71 a 1 (.ki.,: + S,) + n (--) cos + 1 + b, (2.58) 

B T.2 NV,,,=:NNq = - n  + - f e,  (=$I. + c, (&). + cs (L)' + c4 (&I cos * + b, (L)' cos * + 
v n  n COY II. 

+ b,  (-"-.-)'+ cos + b, [ (&,+ S , )  + n.(&)']/ (2.59) 
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1-" 

cos** 

I-" nz 
+ ca B 1 y T,, + 7 [tg $ Tn, - ( V  + -> cosz* I + 

I-" nz 
7 [tg + ( v  + -) Tn.] 1 + 

(2.60) + b , n z B k  (-L) ' S" ' + b , n z B k  (A)' 
cos * cos 

%+,=c ,B  IT" ,+  T [ t g J , ? " , +  1-" (I--) n2 + 

+ c p B  ! T n , - G [ t g $ + , t , +  (I-- + ) T".]/ + 

+ c3 B 1 :Tn, - 7 [ tg J ,  @a, + (1 -7) T".] 1 + 

+ c, B I Tn, + 7 [ tg $ T ,  + (1 -&) 1 + 

em'*. 

I-" n2 
cos * 

1-" 

(2.61) - b, nz B k ( A l l  9, b, nz B k ( 2 ) '  S, 
cas * cas * 

Mqq =-M,,,,-i.nB[c, ~ ~ ( ~ ) ' + k ( ~ ) ' ~  1-u T. T" + c ,  / -~(z) .  1--v T,,, + k ( & ) . i  + 
c- * 

* c- * 
& b, n k B (kt1 + S,,,) i b, w k  B (i',,, + Sn,) (2.62) 

(2.63) 

(2.64) 

I t  should be observed that only b, and b, give rise to membrane stresses. The term with b, in Nqq,,, 
N5>,, and Nq4,, vanishes except for n c 1 .  

2.5 The arbitrary constants. 2.6 Conclud,ing remarks of chapter 2. 
With the results derived here for  the state of As can be seen from the foregoing review, the stress and strain in a not shallow spherical shell, solution is determined by eight constants. Now, we will analyse in chapter 3 of this report some in general, there are two edges where we can technically important cases of .sphere loading. It 

will be Seen that the derived here give 
c n ,  w. and - ann It is, however, possible to  give . rise to a very elegant analysis, which yields the a3 ' 
the edge forces., as conditions to  determine the 
constants. Since there are five edge forces at.,each - 3 ~ p p l i w t i o n  to the problem of &11 axial force, 
edge, and we have only four constants, we replare 
the moment ."I,, hg a system of forces tangential 
and normal to the shell. 

B n  

B .  
a 

&?E,,= * 5 (CiTn, + C ,  T v ,  + ca Tns  + ~1 Tn4) 

&>E.=-- (c, T,, + c,  T,, + c, Tn8 + c, T "4 ) ' 

. .  .. . . . . , . - . J  , 

prescribe 4 independent edge conditions, viz. un, 

results ' in a relatively simple way. 

. . a transverse force and a bending moment. 

3.1 Introduction of an pxid force. 
The actual structure is such as given in figure 1. 

For. the sake of simplicity, however, we consider 
the structure given in figure 4. This simplification 
i s  perfectly acceptable, since we are mainly in- 
terested in the additional bending stresses occurring 
at the junction of pipe and sphere, and we may 
assume that, the edges are located so far .apart 
'that they do,.not influence each ot,her. 

Instead of the force we find in this manner - 

(2'65) .' 1 
N& = N@" + a Jf% 

and instead of &$E, we have 
1c -' 

(2'66),, . Q ~ = Q > E ,  + 3 '133n' 
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Having thus symmetrized the construction and Introducing this in eq. (2.55) for example and 
using the eqs: (2.45a/b), (2.46a/b), (3.1) and (3.2) 
we get 

its loading with respect to $ = O ,  it will be clear 
that the stresses and displacements will he given 
by symmetric functions. 

b2 e-@*sinp$ u,=- 
1 - w z  LC1 v- 

- 
8* co8 I N -  - N  e-@* cos p# + cQ e@* sin p+ 

V Z  

Fig. -e=' 4. Symmetrical loading by normal foreos. 1 - w  

Ve..J- + c, - c, L - -  - - 
+ Q / .  + - /b ,s in$+ 1 b, (sin$ln 1 - sin $ 1 + sin $ I 

(3.3) 

To make (L,, symmetric we have to choose 
Now for n=0, the case of rotational symmetry 

which we are considering here, 
ti=<,=$ a n d x = O  A = V T +  (3.1) 

c,=-c* b ,=O 

ca = c1 

XoJ = sin $ (3.2) 
1-s in$  
1 + sin $ 

So, =sin $ In + 2. 
The constants b, and b, do not occur for ?L = 0. 

We have thus reduced the problem to finding the three coefficients c,, C~ and b , .  
Now, as mentioned in the introduction, a t  the junction of pipe and sphere there is a heavy frame; 

Denoting by $o the $-coordinate of the edge, we have the following edge conditions (see fig. 5) : 
the neutral hole reinforcement. We aSsume that this frame can be considered as rigid. 

Fig, 5. Displacements and forces along the edge. 

om*o + (%)*nSin+o 

(N,,o)*, cas $0-  (Q,& sin $a 

where N is the load per unit of length of the circumference of the hole. 
Using eq. (2.66), (2.58), (2.64) and (3.4), eq. (3 .5~)  hecomes 

b,-(Sq+Sq)cos$,-N B 
a 

or  

= O  (3.5a) 

-0 (3.5b) 

= N  (3.54 

. . . . (3.6) 

We introduce the abbreviations 
A , - v ~  
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tg cosh /3$, eos p$, + - cosh B$o sin &j0 - __ 2 P  . 2 P  
A0 A0 *O 

A0 A0 A0 

as = To, + To, = -- sinh p+o cos 

a, = TO, - To, = + - 2 P  cosh /3$o sin &, + - 2 P  smh . /3$" cos + 2 tg ' sinh &, sin 

Then the solution of the eqs. (3.5a) and (3.5b) proves to he 

(3.7) 

I + "  2 
a3 1 - z  (3.8) 

Sh (a: cos $o + --a, sin $. I + "  bl c,= b, __ - 
(01; + a4*) sin $. bZ l + v  

( W + - a P 3 )  CW$O + __ bZ 
. / I  . l - s i n $  where S, = 2 tg $-cos $ In 1 + sin $ ' 

The forces and moments acting on the edge are given by eqs. (2.57), (2.58), (2.60) and (2.61). 
Using the above mentioned abbreviations they give 

and 

The + sign refers to  the inner side of the shell, the - sign to the outer side. 

We thus have solded the problem of finding the stresses due, to 'an axial force 2 n a cos q0 N ,  introduced 
are defined as in fig. 6. 

through a rigid pipe at  the section $=po. 

(3:9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The stresses 

Fig. 6. Orientation of the stresses on en q, Fig. 7. Symmetrical loading b7 bending moment. 

3.2 Introduction of a bending moment. 

Here too, we symmetrize the construction and its load as shown in fignre 7. We assume that the 

uo = u, cos 'p uo =v, a n  Q W ,  = W ,  COS Q. (3.15) 

This means that the bending moment is applied as a linearly varying load along the edge. This is the 
usual assumption in  bending theory. 

displacements can he expressed by : 
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Since, for instance, v, must consist of symmetric functions, the coefficients C, , c l ,  c, ;c,, b ,  , b,,  b,  
and b,  have to  obey eertain.conditions. To find these conditions we make use of eqs. (2.55), (2.45a/b), 
((2.46a./%), and of the fact that s _ .  1% - sin + .s,,=cos $ .. 

1 - sin $ 
1 + sin $ 

SI, = cos + In -2ttgd 

We get 

l - s i n $  
1 + sin $ 

s,z = __ + ~ + s i n + l n  
cos*+ 

- 2 t g * ) /  + 1 '  l-ssin+ 
1 + sin + + -- I b, cos + + b, (cos + In cos + 

l - s i n +  - 2  tg +)I]. 1 
1 + sin $ f h ,  { sin$-1 ] f b,  1 (+ + 2 + s in+  In is?; ) f (eos+ln 

cos + 
(3.16a) 

Since & and c2 are asymmetric and x is symmetric, we find that 

(3.16h) c, = c, b,=O 
G I = - - *  b,=-bb, 

Thus, we have reduced the problem to the determination of the four constants C, , c,, b,  and b , .  
' q  Tp do this we use the edge conditions. 
' First we have the conditions that there is no displacement of the edge in its plane 

(3.17a) 

(3.17b) 

Further we have the condition that the angle between the shell of the sphere and the pipe must 
remain the same after the deformation 

At  last, we have the condition that the resultant of the forces and moments working along the edge 

&noting the amplitude of the linearly varying laad by q, we have 
must be equal to the applied moment DI. 

M = rR2q R = a cos + o .  

Now the resultant of the force 

the resultant of the force Q:t= QgZ, cos (p is - rrRZQegl sin +o 

the resultant of the moment &&?- M3?, cos 9 is - nR If9?,. 

N331 cosp is T R ~ N ~ ~ ,  COS$J, 

This gives for the last condition 

= q. H39, 
a q0 h, cos h- sin h - 

Introduce the following abbreviations 

2 2 .  
4 4 

p, = T,, + T,, = -cosh @& emP& cos X, --sinhpf, sin sin x1 

(3.17a) 
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sin 2 sin 2 $o, + -- sinh p'tL sin PEP cos 5 xI + cosh p &  cos pt2 sin 5 XI 2 4 5  2 .2,4 

h , p= where A,a=eos4$, + pz, tg4x,=--- P 
cos2 $bo 2aV3(1 -v2 )  ' 

It is assumed that in the above abbreviations f ,  and tZ have values belonging to fro, 
The eqs. (3.17a/d) become 

Q M 
B '- rraB c,ksin$, ( P , - & i g . $ o )  + ~ ~ k s i l l ' $ ~  (P,-P.tg$d -4(1 + k ) b , = q -  cosz$ --. (3.18i) 

This system c a n  now he simplified in a rather remarkable way. 
8lultiplging eq. (3.1%) with cos$, and adding to  i t  eq. (3.18'h) multiplied with sin$, and sub- 

tracting from the result eq. (3.18~) multiplied with cos3$, gives 

b2 bP 1 lk (8, sin +o em $o - P,) - A   cos^, [ -.c, 1- (P. cos sin - PJ + pZ eosa$, + 
+ bzS+z cos3$, = 0. (3.19a) 

Multiplying eqs. (3.18a) and (3.18~)  .with cos q0 and subtracting yields 
I b2 b2 

P, c o ~  + c2 1 (P, sin +o cos +o - P,) + -- p ,  cos*$o + c1 1 (P ,  cos q0 sin $o - P,) - __ I t "  I + "  I 

6, = 0. (3.19b) 
4 +- 

cos $0 

The solution of the eqs. (3.19a) and (3.19b) is: 

cz = + b, (3.20b) 
b2 - 

- 
where Fl = pi cos sin $o - 8, , P2= P, cos $o sin h- P, . 

b, can be determined by using the following equation which is a result of adding eq. (3.18a) multi- 
plied with cos$, and eq. (3.18b) multiplied with sin$,. 

b2 - b2 - __ P A  - l+v p,cl f b, eos3+, = 0. l.+ Y 
(3.20~) 

b,  follows from eq. (3.18d) which can be written as 

Thus, the unknown quantities can be determined. 

(3.2Od) 
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We will now give the forces and.moments occurring in the shell at the edge, as derived from the 
eqs. (2.57)-(2.62). 

(3.21a) 
B 1 -  B 1 -  B 1  
a cos=*o a cos2$, a cos3$, 

= c1 - -- [/Il - b2PZ ch~~ljr~] -I- c2 - -- [ p ,  + b2&  COS'$^] + 2 6, - -- 

(3.21b) 

(3.21d) 
4 - b,kB __ cos3$ ' . 

(3.21e) 

I The highest bending stresses occurring in the shell at q = 0 and Q = 180' are given by 

(3.22) 

(3.23) 
1 6 

ut I= Nqql rt H ~ s ,  . 

The highest shear stress occurring in the shell at Q = - 90" and Q = 90' is given by 

1 1 
T =  - Nq3, + -M39,. (3.24) h ah 

To obtain the stiffness parameters of the sphere under this loading we will derive formulae for the 

This displacement is given by (ul)+-l. This yields per unit of moment 
displacement and rotation of the edge relative to the section + = 0. 

where 
t g 4 x *  = p. 

(u,) +o sin p0 - (wd +o cos h The rotation is given by . This gives per unit of moment 
a cos eo 

. .  

3.3 Introduction of a transverse force, 

duction I n  order of a to transverse reduce the force problem to  the of the simplified intro- w ~ / @ ~ w . o ~ s i n ~ e  D 

Fig. 8. Asymmetrical loading by transverse forces 
combined with bending moments. 

problem for the sphere, anti-symmetrically loaded, 
we hare to add a bending moment a t  each edge 
(see fig. 8). Then we may conclude that, for in- 
stance, the function u will be antisymmetric with 
respect t o  $ = 0. 
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We assume that the displacements can he ex- To determine the four remaining constants, we 
pressed by use the edge conditions. Again assaming that the 

- - attached reinforcement is rigid, we have the dis- 
placement conditions (see e.g. eq. (3.17a), (3.17b) 

w = W , C o s Q .  (3.27) and (3.17c), which are similar) 

(3.29a) 

= 0  (329b) 

U =U, COS Q IJ = v, sin Q 
- 

To find the conditions for the coefficients c, ,  
c2,  c,, c 4 ,  b, ,  b, ,  b ,  and b,  in order that e. g. L ) ~  
is antisymmetric, we make use of eqs. ( 2 . 5 5 ) ,  

(&) +o cos $o + (w,) h0 sin $o - 0 

(Vz)*o 
- - 

- 
(2.46a/b) and of the eqs. given for Sf, , SI,, &it 

and Rl2. The result has already been established 
azo +o sin $o - (4) +o cos 

(+) (2) a$ J.u - a cos $o 

(3.29~) 

We assnme that the distribution of the trans- 
C, =- C, verse force D along the edge is sinusoidal with 
c, = C, b,= b,  1 (328) amplitude 4. The resultant of the forces along 

the edge in transverse direction must be equal to D .  

as eq. (3.16a). We see that in order that v1 he 
antisymmetrical Jvith respect to $ = 0, 

6, = 0 

- 
The resultant of the force %33 =~3.,1cos~ is -&N3., sin $,. 

The resnltant of the force g;E =Q;t lc~+c is --xRQ* 

The resultant of the force %:? =N;9,sinrp is T R N , * ~ ~ .  
Thus we get 

- 

% 
- 

- - - - D  
N$, - Q&, cos $o - N,, sin aR c q = - . (3.29d) 

The equation giving the equilibrium of the moments is satisfied identically (except for terms 
of order k) by virtue of eqs. (3.28) and eqs. (3.29d) and (3.17d). To solve the system of equations 
(3.29a/d) we first introduce the following abbreviations 

I 2 .  2 

2 2 .  
A I  -4 1 

p," = - - sinh O f l  cos ptp cos x1 + - cosh Pf,  sin sin xL = T,, - T,, 
I 1'1 A 1 

ps' = - eosh Pf, sin p$ cos x, + - sinh cos p f ,  sin X, t T,, + TI, 

sin 2 
{ sinh p& cos /3f2 cos 5 x1 - cosh p f l  sin p& sin 5 X, } 

+ 2AIa 

2 bA, 

cos $0 
B,' = T t x  + = - __ \ sinh pEl sin p t 2  cos ( x1 - 2) - eosh p t ,  cos p f s  sin 

sin 2 $o - ( cosh sin p& cos 5 x1 + sinh /3t1 cos p& sin 5 X, } . 2 AI5 

Here A , ,  q, and p are the same as for p,, p l ,  ps and p4 
The equations (3.29a/d) now become 

b2 ba 1 c, 1 pf sin $o - __ p.' cos $o 1 + c2 ] 8,. sin $o + ~ PI+ cos $. + b, sin qP + 1 + "  l + v  

+ b, ( S,, cos$, + S j p  sin $o } = 0 (3.30a) 

(3.30b) 

and 

Thus the value of 6, is determined directly. 

(3.30d) 
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We will solve the three remaining constants c , ,  e, and b ,  as a function of b, from the three equa- 

Multiply eq. (3.30a) with $o and eq. (3.30~) with sin 
tions (3.30a/c) by proceeding as follows. 

Adding this together we find 

(3.31a) 
' ~ h Z  - b Z  - CI l+v A' - 62 1+1. PI" + b, ( S,, - S.12 sin qt0 cos '$o } = 0 

where 
- - 

p,* = p,' cos qo sin $a - 13," p," = p4* cos $Q sin $a - p,'. 

Multiplying eqs. (3.30a) and (3.30b) with cos$o and snbtraeting we get 

Now since 

we have 
S,, - S*? sin cos +o = cosz$, S,, - 4 tg 

S,,, sin*$ - S'lr sin $o cos to = - 4 t g  $o. 

I The solution of the equations (3.31a) and (3:3lb) is therefore I 

bZ bz 
( Cos2$, s3, - 4 tg $0 1 j P,' + 1+v PI' c w %  1 + 4 t g  $0 ST P,* 

P*~* 1 P x *  - 1-e, A" c w *  1 + P** 1 P," '+ 1+. O,' cos*qo 1 
( emZ1lo si, -4 tg 110 1 E* - Pa* C ~ * $ O  1 - 4 t g  $0 

Pi' 1 31' - 1 + Pa' ] P,' + Ifv A* COSZ$0 

(3.32a) ____ i + ,  c 
b l  bz - - 6 2  b2 1 -  

b2 b2 - 
P," 
- (3.32b) l + v  c - f - - b b , -  

b2 bZ bZ 1 -  

P,' 

bs, can now he determined by using eq. (3.30b). 

eqs. (2.57)-(2.62). 
We will now give the forces and moments occurring in the shell a t  the edge as derived from the 

B sin $o 
f b2&* cos2$,] + 4 b, - __ . (3.33a) - B 1  - B 1  [&"- h'p,* cos*$J + c1 - __ Nw, =c, __ 

c ~ 2 1 1 0  a cosvs'+o (G  COS^+, 

(3.33h) 
- B 1 -  B 1 -  B sin$, 

a cos2$, 0 COSa$o a coss$, 
Naa =- c1 - __ P , " - c -  - - & - 4 b b , -  __ 

" B  1 
- 4 h b , -  __ 

0 C o S S q ,  
(3.33c) 



I The highest stresses occurring a t  the edge are given by 

(3.34a) 

(3.34h). 

(3.34c) 

I or 

To obtain the stiffness parameters of the sphere under this load, we determine the displacement and 
the rotation of the cross section $=fig. Since the load is antisymmetrical, we have for $ 5 0 :  u,=O 
and w,=O. Hence the displacement per unit of transverse force is given by 

8 -  
where x* is given by tg 4 X* = p and a, by v1 + p*. (3.35) 

The rotation per unit of transverse force is given by 
~ 

1 (UI)+"~in$,-((Wl)~co~$.  ( w , ) + - o  
x D = 7 . i  a cos $'o + Do 

or 

(3.36) 1 2 b X  1 + - nD 1 1 - v  [c ,  cos (x* - 5) -I- c, sin (x* - +)] + a U ( l - " )  I&, + 4 &,I . 

3.4 Concluding remarks of chapter 3. 

As has been shown, the solution of the three 
prohlems given in this part, with the aid of 
HAVEPS' theory, is exceedingly simple and elegant. 

Closed expressions are obtained for all the dis- 
placements, moments and forces in terms of rather 
simple functions. Once these expressions are esta- 
hlished, the numerical work needed to calculate 
the stresses and stiffness parameters is not very 
elahorate. I n  chapter 4 of this report we will use 
the solutio? of chapter 3 for some practical ap- 
plications. 

4 Numerical solution for some cases. 

I 4.1 Introduction. 

As already explained in the introduction, the 
prohlems investigated in chapters 2 and 3 origin- 
ated from the question, what bending stresses 
occur in a sphere attached to a pipe if an axial- 
and a transverse force and a bending moment are 
applied. This question arose in connection with 
the design of the pressure vessel and attached pipe 
to he built at the National Aeronautical Research 
Institute (N.L.L.) as elements of a supersonic 
windtunnel. The numerical calculations given in 
this chapter are based on the actual dimensions 
of this construction. However, for the purpose of 
giving an idea ahout the influence-of the radius 
of the hole (viz. the value of J.,) three cases are 
given. 

The radius of the sphere a - 200 em. The thick- 
ness of the shell h=2.2 em. The three cases to  
he calculated are cos q0 = 0.3; cos $a = 0.4 and 
~ o s $ ~ = 0 . 4 3 5 1 1  giving for the radius of the hole 
R - GO em ; R = 80 em ; R = 87.5 em, respectively. 
Here the value R=87.5 em refers to the actual 
construction. 

4.2 Calculation for the case of axial bod. 

We will make these calculations for the cases 
specified above. It is assumed that the magnitude 
of the axiil load is 1000 kg. 

We get 

1 cosJ.,=0.3 
b,  = - 1.5184 X 1 l F  

va+ = - 4.742 kg/cmz 
uh-= + 10.259 kg/cm2 

2 cos$,=0.4 
b,  = - 1.5184XlCP 

-2 = - 2.811 kg/cm2 
u*- = f 6.204 lag/cm2 

3 COS J.o = 0.4351 
b,=-11.5184Xl(r 

ua+ = - 2.411 kg/cm2 
ua- = f 5.344 kg/cm* 

R=GOcm 
e, = 2.1551X1W13 
G. = - 4.X870X1W1' _. 
ut+ = - 1.298 kg/cm2 
ut- = + 2.842 kg/cm* 

R = 8 0 c m  
~ , = 2 . 7 8 2 9 X l @ ' ~  
c2 = 4.8538X1W13 
rf+ = - 0.770 kg/cm2 + 1.720 kg/cm2 

R = 87.5 em 
= 3.7547 x 1c-13 

C, = 6.42G4X11F'8 
ot+ = - 0.661 kg/cm2 
vt- = + 1.482 kg/cm* 



As will he seen from these results the stresses 
are very low, though increasing rapidly with de- 
creasing radius. 

It is seen that  coiisiderable normal forces can 
he withstood, wit,hout the occurrmee of dangerous- 
ly high stresses. 

4.3 Calcdntion fov the ciise of a bending moment. 

It is assumed that the applied bending moment 
is M = l P  kgcm. Application of the formulae 
derived in par t  2 of this report gives 

1 cos$,=0.3 R=60cm 
6, = - 1.4844XlIP c, = 4.0934X1P13 

ue+ =- 18.409 kg/cm2 ut+ =- 5.210 kg/em* 
0,- = + 36.241 kg/emZ ut- = + 10.203 kg/cmz 
T = 8.149 kg/cm* 

6, = 9.4987XlCF" radian/kgcm 
Kx = - 2.0616 X le" em/kgcm 

b ,  =- 7 . 8 9 3 3 ~ ~  cZ =- 2 . 2 1 1 1 ~ 1 ~ ~ 3  

2 e0s$~=0 .4  R=80em 
h,=-88.6567X1~5 ~ ~ = 6 . 6 8 3 3 X l O - ' ~  
6, =-7.8935XlWe cZ =7.0504X1@'3 
ua+ = - 8.794 kg/cm2 ut+ = - 2.487 kg/em2 
ua- = + 17.214 kg/cm* ut- = + 4.845 kg/cmz 
T = 3.643 kg/em* 

kU = 6.347 XlW" radian/kgcm 
kU=- 1 . 2 0 2 3 X l P  cm/kgem 
- 

3 COS = 0.4351 R = 87.5 em 
b,=-7,4429X1W5 c,=3.7913X1CF3 
b,=-7,8934X1WC ~,=1.2443Xl@'~ 
ua+ = - 6.825 kg/cm2 ut+ =- 1.9305 kg/cm2 
ea-= + 13.564 kg/cmZ ut- = + 3.8177 kg/em2 
= 2.850 kg/cm2 

kx = 4.6721XlIF" radian/kgcm 
kdl = - 1.0337 X lo-" cmfigcm 
- 

These stresses are fairly large, a moment of the 
order of 50 X 1oj kgcm not being extraordinarily 
high, for the structure considered. 

4.4 Calculation for the case of a transverse force. 

It is assumed that the amlied force is D= .- 
1000 kg. 

Using the formulae derived for this case in part 2 
of this report, we get 

1 eos+,=0.3 E=60cm 
b,=-3,8268X1W4 ~,=-8 ,5908Xl@'~ 
b,  =- 1.5874XlO-' c2 = i- 4.0778X1W3 
so+ =- 41.151 kg/cm2 ut+ =- 11.166 kg/em2 
u&-= + 74.666 kg/cm2 ut- = + 21.034 kg/emz 
r = + 17.676 kg/em2 

kD= + 3.3883X1W8 radianmg 
k, =- 5.9113XlCk' em/kg 

2 C o s $ "  =0.4 R = 80 c,m 
b, == - 2.4186 X1@' c, = - 1.2306X I@'* 
b2=-1.5874X10-1 c,=-l1.3502X10-" 
oa+ =- 17.107 kg/cm2 
ua-='+ 32.524 kg/em2 
I = f 8.459 kg/emz 

k o c  1.2452XlCFa radianfig 
k:,--3,8870Xl@' cm/kg 

vt+ =- 4.711 kg/cm2 
uc-= + 9.027 kg/cm2 

- 

3 cos +o = 0.4351 R=87.5cm 
b1=-2.1182X10-' c,  =- 6.5106X1013 
5 , s -  1.5874X10-1 ~,=-2.3207XlO'~ 
va+ = - 13.151 kg/cmz 
ua-= + 25.273 kg/cm2 
T = + 6.770 kg/cmz 

k ,  c 9.0460X10-9 radianikg 
k ,  =- 3.443OXlW' em/kg 

ut+ = - 3.620 kg/cm2 
vi-= + 7.015 kg/cm2 

- 

The stresses in this case a,re rather high too. 
As can be seen, however, by comparing these 
results with those for the ease of a bending mo- 
ment, the bending moment, applied together with 
the transverse force in order to give equilibrium, 
is the main cause of these stresses.' This will he 
demonstrated by computing the stresses for the 
loading specified in  fig. 9 and for the edge loaded 

Fig. 9. Decomposition of the ease of 5 transverse force 
dong one edge into already ~ o ~ s i d e r e d  e m s .  

by the transverse force only. We will limit our- 
selves to the case of cos +,t0.4351: 

u,+ = - 0.793 kg/cm* ut+ =- 1.215 kg/cmz 
0,- ='+ 0.713 kg/cm* ut- = -t 2.114 kg/cmz 
7 = 3.299 kg/cmz 

As follows from these fignres, the stresses result- 
ing directly from a transverse force are very low 
indeed. 

4.5 Estimation of the error involved in  the results. 

D'ue to the fact that the theory is only asympto- 
tically correct, an error is involved i n  the results. 
In ref. 1 HAVERE has determined the order of this 
error fo r  different angles +o.  For small values 
of p, as is, the eaqe here, .he has found that the 
order of the error ranges from 0.5 % to 1 %  for 
the angles +o considered -here. 

Another error is due to  the fact that the values 
of and c2 have been interpolated from the tables 
1 and 2. Since these quantities have to be multi- 
plied with the large quantity p to , form the ex- 
ponent of an exponential function, e.g. p, , rather 

Wc then find 



large differences can be expected in the numerical 
results, when only small differences occur in the 
d u e s  of f ,  and &. 

I n  order to obtain a reliable impression about 
this error, a completely independent calculation 
was made for the eases presented hy the “Instituut 
T. N. 0. voor Werktuigkundige Coustructies”. 

As a result of the comparison of the two cal- 
culations, it can be stated that the maximum error 
due to interpolating is of the order of 5 %. 

The total error involved in the results, there- 
fore, is of the order of 6 %. 

5 Conclusions. 

By using the asymptotic bending theory of 
HAVE=, u-hich is reviewed in chapter 2 of this 
report, the stresses occurring at the edge of a rir- 
cular hole in a sphere are determined in chapter 3 
of this report for the following conditions. 

The hole is reinforced by a heavy circular frame, 
which can be considered to bc rigid. 

The radius of the hole is not small compared 
to the radius of the sphere. 

The thickness of the shell is small compared to  
the radius of the sphere. 

The latter two assumptions are essential for the 
applicability of the theory of HAVER% 

The cases considered are: 

Introduction of an axial force. 
Introduction of a bending moment 
Introduction of a transverse force. 

The analysis leads to very elegant expressions, 
which are in fact not much more complicated than 
the expressions occurring in the analysis of edge 
bending of a cylinder. 

I n  chapter 4 OS this report, the results of part  3 
are used for the numerical evaluation of some cases. 
The case cos $o = 0.4351 refers to  the actual struc- 
ture of a pressure vessel and attached pipe, to be 
built as an element of the supersonic windtunnel 
of the N. L. L. The numerical results indicate that 

rather high stresses occur in the case of a bending 
moment. 

The stresses increase rapidly in all cases when 
the radius of the hole decreases. 

To gain an insight in the stiffness of the shell, 
the stiffness parameters k ~ ,  ZM,  k,  and &, as de- 
fined in chapter 3, are also given in part 4. 

These parameters can be useful for a,n analysis 
of a more complicated structure, where they enable 
the substitution of the sphere by a system of springs 
(see e.g. ref. 4) .  
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' TABLE 1. 

as a function of $ and p. 

__ 
SO0 

1.0472 
~ 
~ 

~ 

30' ___ 
~ 

0.5236 

0.5294 
0.5323 

__ 
0.5265 

0.5353 
0.5382 
__ 
0.5412 
0.5442 

0.5502 
0.5472 

0.5532 

0.5685 
0.5841 
0.5999 

0.6321 

0.6648 
0.6813 

__ 

0.6159 

0.6484 

__ 
O . K ~  

0.7470 

0.7143 
0.7307 

0.7632 
0.7793 
0.7953 
0.8112 

0.8426 
0.8270 

__ 
0.8581 
0.8735 
0.8887 
0.9038 
0.9187 
0.9335 
0.9481 
0.9626 
0.9769 
0.9911 
__ 
1.0051 

1.0328 
1.0464 
1.0599 

1.0190 

1.0733 
1.0865 
1.0996 
1.1126 
1.1255 

__ 
40' 

0.6981 
__ ___ 

I_ 

50° 

0.8727 
== 

__ 
70' 

1.223 

1.236 
1.250 
1.264 
1.278 
1.293 

1.308 
1.323 
1.338 
1.353 
1.368 

1.443 
1.519 
1.594 
1.667 
1.739 

1.874 
1.946 

2.0123 

2.1408 
2.2032 
2.2643 
2.3242 

__ __ 

~. 

~ 

____ 

1.810 

__ 

2.0772 

2.3830 
2.4407 
2.4974 
2.5532 
~. 

2.6081 
2.6621 
2.7152 
2.7674 
2.8198 
2.8694 
2.9192 
2.9683 

3.0644 
3.0167 

__ 
3.1115 
3.1580 
3.2039 
3.2493 
3.2941 
3.3384 
3.3821 
3.4253 
3.4680 
3.5102 
__ 

~ 

65' 

1.1345 
__ - 

__ 
80' 

1.396 

1.425 
1.455 
1.485 
1.516 
1.547 

1.578 

1.639 
1.668 
1.697 

1.837 
1.969 
2.086 
2.202 
2.318 
2.431 
2.541 
2.649 

__ __ 

__ 

__ 

1.609 

__ 

__ 
2.750 
2.848 
2.944 
3.037 
3.127 
3.215 

3.384 
3.466 
3.5467 

3.300 

__ 
3.6249 
3.7023 
3.7784 
3.8532 
3.9268 
3.9993 

4.141C 
4.2103 
4.2786 

4.3460 
4.4125 
4.4781 
1.5428 
4.6066 
4.6695 
4.7315 
2.7926 
4.8528 
1.9721 

4.0707 

__ 

__ 

7 50 

1.309 
__ 
I_ 

850 

1.484 
__ __ 

200 

0.3491 
__ 
~ 

x __ 
0.00 _ _ ~  
0.01 
0.02 

0.04 
0.03 

0.05 

0.1754 
0.1763 
0.1772 

0.1790 
0.1781 

0,3509 
0.3527 
0.3546 
0.3564 
0.3583 

0.7024 
0.7066 
0.7109 

0.7195 
0.7152 

0.8787 
0.8847 
0.8908 
0.8969 
0.9031 

1.0559 
1.0647 
1.0736 
1.0826 
1.0916 

1.1453 
1.1563 
1.1674 
1.1786 
1.1899 

1.328 
1.347 
1.366 
1.385 
1,405 

1.544 
1.604 
1.661 
1.716 
1.770 

0.1799 

0.1817 

0.1836 

0.1808 

0.1826 

0.3602 
0.3620 
0.3639 
0.3658 
0.3677 

11.7238 
0.7281 
0.7325 
0.7369 
0.7413 

0.9092 
0.9154 
0.9217 
0.9280 
0.9343 

1.1007 
1.1099 
1.1191 
1.1283 
1.1375 

1.2012 
1.2126 
1.2241 
1.2356 
1.2471 

1.425 
1.445 
1.465 
1.485 
1.505 

1.821 
1.871 
1.918 
1.964 
2.009 

0.06 
0.07 

0.09 
0.10 

0.08 

__ 
0.15 

0.25 
' 0.30 

0.35 

0.50 

0.20 

0.40 
0.45 

__ 
0.55 
0.60 
0.65 

0.75 

0.85 

0.95 

0.70 

0.80 

0.90 

1.00 

1.05 

- 

1.10 
1.15 
1.20 
1.25 
1.30 
1.35 

1.45 
1.50 

1.40 

- 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 

0.1883 
n.1930 

0.2027 
0.2076 
0.2125 

0.1978 

0.2175 
0.2225 

~ 

0.2275 
0.2325 
0.2375 
0.2424 
0.2473 
0.2522 

0.2622 
0.2672 
0.2722 

0.2572 

0.3773 
0.3871 
0.3970 
0.4071 
0.4173 
0.4276 
0.4379 
0.4483 
__ 
0.4586 
0.4689 
0.4791 
0.4893 
0.4995 
o . E . o ~ ~  
0.5199 
0.5301 
0.5403 
0.5505 

0.7636 
0.7865 
0.8098 

0.8569 
0.8333 

0.8806 
0.9043 
0.9281 
__ 
0.9519 
0.9757 
0.9994 

1.0464 
1.0696 
1.0925 
1.1152 
1.1376 
1.1598 

1.0230 

0.9663 

1.0656 

0.9990 
1.0321 

1.0992 
1.1329 
1.1666 
1.2002 

1.2336 
1.2667 
1.2995 

1.3642 
1.3961 
1.4276 
1.4588 
1.4897 
1.5203 

~ 

1.3320 

1.1847 
1.2329 
1.2816 

1.37871 
1.4267 
1.4742 
1.5212 

1.3303 

1.3059 
1.3657 
1.4259 
1.4858 
1.5448 
1.6026 
1.6592 
1.7148 

1.7695 
1.8234 
1.8766 
1.9291 
1.9808 
2.0318 
2.0821 
2.1317 
2.1805 
2.2286 

__ 

1.605 
1.702 
1.797 
1.888 
1.977 
2.063 
2.148 
2.230 
__ 
2.3101 
2.3881 
2.4642 
2.5386 
2.6114 
2.6826 
2.7523 
2.8206 
2.8876 
2.9532 

2.219 

2.583 
2.746 

3.054 

3.342 

3.479 
3.611 
3.739 . 
3.862 
3.982 
4.097 

4.318 
4.423 
4.58% 

2.409 

2.903 

3.201 

__ 

4.209 

1.5677 
1.6136 
1.6589 

1.7477 
1.7912 
1.8341 
1.8764 
1.9181 
1.9592 

1.7036 

0.2771 
0.2819 
0.2866 
0.2913 
0.2959 
0.3005 
0.3051 
0.3096 
0.3141 
0.3185 

0.5605 

0.5801 
0.5897 
0.5992 
0.6085 

0.6272 

0.6455 

0.5704 

0.6179 

0.6364 

1.1818 

1.2250 
1.2463 
1.2574 
1.2883 
1.3090 
1.3295 
1.3498 
1.3698 

1.2035 
1.5505 
1.5804 

1.6390 
1.6677 
1.6959 
1.7237 
1.7511 
1.7781 
1.8047 

1.6099 

1.9997 
2.0396 
2.0789 
2.1177 
2.1559 

2.2306 
2.2671 
2.3030 
2.3384 

2.i935 

2.2748 
2.3204 
2.3658 
2.4103 
2.4543 
2.4978 
2.5409 
2.5835 
2.6256 
2.6672 

3.0175 

3.1427 

3.2642 
3.3237 
3.3824 
3.4403 
3.4975 
3.5539 

3.0806 

3.2039 

4.6287 
4.7291 
4.8281 
4.9257 
5.0219 
5.1167 
5.2102 
5.3023 
5.3931 
5.4825 

0.3229 
0.3272 
0.3317 

0.3403 
0.3445 
0.3487 

0.3360 

0.3527 
0.3568 
0.3609 

0.6545 
0.6634 
0.6723 
0.6811 
0.6898 
0.6984 
0.7069 
0.7153 
0.7237 
0.7320 

1.3896 

1.4286 
1.4478 
1.4668 
1.4856 

1.5225 
1.5406 
1.5555 

1.4092 

1.5042 

1.8310 

1.8828 

1.9338 
1.9590 

2.0058 
2.0334 

1.8570 

1.9084 

1.9840 

2.0578 

2.3733 
2.4078 
2.4419 
2.4757 
2.5092 
2.5424 
2.5753 
2.6079 
2.6403 
2.6724 

2.70~2 
2.7486 
2.7884 
2.8276 
2.8663 

2.9420 
2.9791 

3.0516 

2.9044 

3.0156 

3.6096 
3.6654 
3.7186 
3.7719 
3.8244 
3.8761 
3.9271 
3.9773 
4.0267 
4.0753 

5.5706 
5.6574 
5.7428 
5.8268 
5.9094 
5.9907 
6.0706 

~.3022 

6.1492 
6.2264 
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TABLE 2. 

& as a function of $ and p. 

__ 
400 

0.6981 
__ __ 

__ 
30° 

0.5236 
- __ 

A 

0.00 

0.01 
0.02 
0.03 
0.04 
0.05 

0.06 
0.07 
0.08 
0.09 
0.10 

__ __ 

__ 

__ 

__ 
, = 10c 

0.1745 

0.1736 
0.1727 
0.1719 
0.1710 
0.1701 

0.1693 
0.1684 
0.1676 
0.1667 
0.1659 

__ 
I_ 

__ 

__ 

__ 
200 

0.3491 

0.3472 
0.3454 
0.3436 
0.3419 
0.3401 

__ __ 

__ 

~ 

50' 

0.8727 

0.8667 
0.8608 
0.8550 
0.8492 
0.8434 

~ __ 

_I 

__ 
60' 

1.047: 
-. 

__ 
65' 

1.1345 
__ __ 

__ 
70° 

1.222 

1.208 
1.195 
1.182 
1.169 
1.157 

__ 
~ 

~ 

~ 

750 

1.309 

1.292 
1.273 
1.256 
1.240 
1.224 

__ __ 

__ 

__ 
800 

1.396 

1.369 
1.343 
1.320 
1.298 
1.277 

1.258 
1.240 
1.223 
1.208 
1.193 

1.126 
1.071 
1.025 
0.984 
0.946 
0.912 
0.880 
0.851 

0.824 
0.795 
0.775 
0.753 
0.734 
0.716 
0.699 
0.684 
0.671 
0.658 

__ __ 

__ 

__ 

__ 

__ 

__ 
0.646 
0.633 
0.621 
0.610 
0.599 
0.589 
0.580 
0.571 
0.562 
0.554 
__ 
0.546 
0.538 
0.531 
0.524 
0.517 
0.510 
0.504 
0.497 
0.491 
0.485 
__ 

__ 
85' 

1.484 

1.430 
1.390 
1.357 
1.329 
1.306 

1.285 
1.266 
1.249 
1.233 
1.218 

1.148 
1.089 
1.039 
0.996 
0.957 
0.922 
0.891 
0.862 

0.835 
0.810 
0.788 
0.766 
0.747 
0.729 
0.712 
0.697 
0.682 
0.668 

0.655 
0.642 
0.630 
0.619 
0.606 
0.597 
0.588 
0.578 
0.569 
0.560 

__ __ 

__ 

__ 

__ 

__ 

_ _  

__ 
0.552 
0.544 
0.536 
0.529 
0.521 
0.515 
0.508 
0.502 
0.496 
0.490 
__ 

__ 
900 

1.571 

1.468 
1.410 
1.374 
1.345 
1.320 

1.299 
1.279 
1.261 
1.244 
1.228 

1.155 
1.095 
1.045 
1.001 
0.962 
0.927 
0.895 
0.866 

0.839 
0.814 
0.791 
0.770 
0.750 
0.732 
0.715 
0.700 
0.685 
0.671 

__ __ 

__ 

__ 

__ 

__ 

__ 
0.658 
0.645 
0.633 
0.622 
0.611 
0.600 
0.590 
0.581 
0.571 
0.562 
__ 
0.554 
0.546 
0.538 
0.530 
0.523 
0.517 
0.510 
0.504 
0.495 
0.492 
__ 

0.5207 
0.5178 
0.5150 
0.5122 
0.5094 

0.6939 
0.6898 
0.8656 
0.6815 
0.6775 

1.039 
1.030 
1.022 
1.013 
1.005 

1.124 
1.713 
1.103 
1.093 
1.083 

0.3383 
0.3366 
0.3348 
0.3331 
0.3314 

0.5066 
0.5038 
0.5010 
0.4983 
0.4956 

0.6734 
0.6694 
0.6654 
0.6615 
0.6575 

0.8377 
0.8321 
0.8265 
0.8209 
0.8154 

0.997 
0.989 
0.981 
0.973 
0.965 

1.073 
1.063 
1.053 
1,044 
1.035 

1.145 
1.133 
1.121 
1.110 
1.098 

1.209 
1.196 
1.181 
1.168 
1.156 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

0.1618 
0.1579 
0.1541 
0.1504 
0.1469 
0.1435 
0.1402 
0.1370 

0.3229 
0.3147 
0.3068 
0.2992 
0.2919 
0.2849 
0.2782 
0.2718 

0.4822 
0.4694 
0.4571 
0.4453 
0.4339 
0.4230 
0.4125 
0.4025 

0.6384 
0.6199 
0.6024 
0.5857 
0.5697 
0.5544 
0.5398 
0.5260 

0.7867 
0.7633 
0.7393 
0.7166 
0.6952 
0.6750 
0.6560 
0.6381 

0.928 
0.894 
0.862 
0.832 
0.804 
0.779 
0.755 
0.733 

0.991 
0.951 
0.914 
0.881 
0.850 
0.822 
0.797 
0.773 

1.046 
1.001 
0.959 
0.922 
0.888 
0.858 
0.831 
0.806 

1.096 
1.041 
0.994 
0.953 
0.918 
0.886 
0.858 
0.832 

0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.1340 
0.7311 
0.1283 
0.1256 
0.1230 
0.1206 
0.1183 
0.1161 
0.1140 
0.1120 

0.2657 
0.2598 
0.2542 
0.2488 
0.2436 
0.2387 
0,2340 
0.2296 
0.2254 
0.2214 

0.3929 
0.3837 
0.3750 
0.3667 
0.3588 
0.3514 
0.3444 
0.3378 
0.3316 
0.3275 

0.5129 
0.5005 
0.4887 
0.4775 
0.4669 
0.4568 
0.4473 
0.4383 
0.4298 
0.4218 

0.6213 
0.6055 
0.5906 
0.5766 
0.5634 
0.5509 
0.5390 
0.5277 
0.5169 
0.5065 

0.713 
0.694 
0.678 
0.660 
0.644 
0.629 
0.615 
0.601 
0.588 
0.576 

0.7507 
0.7301 
0.7108 
0.6927 
0.6757 
0.6597 
0.6446 
0.6304 
0.6171 
0.6046 

0.783 
0.762 
0.742 
0.723 
0.705 
0.688 
0.672 
0.656 
0.642 
0.628 

0.808 
0.785 
0.764 
0.744 
0.725 
0.70i 
0.691 
0.675 
0.660 
0.647 

1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 

0.1100 
0.1081 
0.1063 
0.1045 
0.1028 
0.1012 
0.0996 
0.0981 
0.0967 
0.0954 

0.2175 
0.2138 
0.2102 
0.2067 
0.2034 
0.2002 
0.1971 
0.1942 
0.1914 
0.1888 

0.3201 
0.3147 
0.3095 
0.3044 
0.2995 
0.2947 
0.2901 
0.2856 
0.2812 
0.2772 

0.4141 
0.4066 
0.3994 
0.3925 
0.3859 
0.3796 
0.3736 
0.3679 
0.3625 
0.3575 

0.4966 
0.4872 
0.4783 
0.4698 
0.4617 
0.4541 
0.4469 
0.4401 
0.4337 
0.4277 

0.564 
0.553 
0.543 
0.533 
0.524 
0.515 
0.507 
0.499 
0.492 
0.485 

0.5928 
0.5816 
0.5709 
0.5607 
0.5510 
0.5417 
0.5328 
0.5243 
0.5161 
0.5083 

0.615 
0.603 
0.591 
0.581 
0.570 
0.561 
0.552 
0.543 
0.535 
0.528 

0.634 
0.621 
0.601 
0.599 
0.588 
0.578 
0.569 
0.560 
0.551 
0.543 

1.55 
1.60 
1.65 
I .70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 

0.0942 
0.0930 
0.0918 
0.0907 
0.0896 
0.0885 
0.0874 
0.0864 
0.0854 
0.0844 

0.1863 
0.1839 
0.1815 
0.1792 
0.1770 
0.1748 
0.1727 
0.1706 
0.1685 
0.1665 
__ 

0.2732 
0.2694 
0.2657 
0.2622 
0.2588 
0.2556 
0.2525 
0.2495 
0.2466 
0.2439 

0.3527 
0.3481 
0.3436 
0.3392 
0.3349 
0.3306 
0.3264 
0.3223 
0.3183 
0.3144 __ 

0.4220 
0.4165 
0.4112 
0,4060 
0.4009 
0.3958 
0.3907 
0.3857 
0.3807 
0.3756 

0.478 
0.471 
0.465 
0.459 
0.453 
0.44i 
0.441 
0.436 
0.430 
0.425 

0.5008 
0.4936 
0.4868 
0.4803 
0.4739 
0.4678 
0.4618 
0.4561 
0.4507 
0.4456 

0.520 
0.513 
0.506 
0.499 
0.493 
0.486 
0.480 
0.474 
0.468 
0.462 

0.535 
0.521 
0.520 
0.513 
0.507 

0.494 
0.488 
0.481 
0.475 
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Bending at the oblique end section of cylindrical shells 
by 

A. VAN DER NEUT..) 

I Summary. 

. .  

i? *.,F 

The investigation refers to the stress problem at the intersection of cylindrical shklls, loaded b y  membrane stresses. 
Tlie intersection i8 usually reinforced by an olliptio frame. The rcquired compatibility of strains of cylinder walls and 
frame induces bending 8tresxs over the thiekncss of the shcll in the vicinity of the interscction. The paper establishes 
thia bending effect near the oblique end section far edge loads consisting of bending moments mo and shear loads 9. 
normal t o  the ahell. 

As e. preliminary step the oxaet solution is given for the cylindrical shcll bounded by an infioite helied edge under 

The faet  that  the stresses arc negligibly small already at a short distance from the edge-suggests that  the stresses 
near the ohlique cnd Beetion and the stresses near tho helical edge will differ only slightly, if the helix is tangent t o  the 
oblique edge in the region under considerstion. It is  ahown in Part I1 that this concept is correct u p  t o  an error of the 
order ( , /a )%.  A further result is thnt t,ho edge load for which the stresses vaniah at a short  diatanee from the edge is 
composed of the bending moments m. and the ahear loads Po mentioned befox  and iQ addition of edge loads L ,  2, 
proportional to q u ,  in the plane tangential to  the shell. T h e  resultant of q a ,  L, T lies i n  the oblique end section; its 
reaction upon an obliquc frame is equivalent to  that of a frame flange with the cross section S. This quantity is 
rstnhlished. S represents tho effective shell Seetion which cooperates with tilo frame when it is being deformed. 

I constant edge loads (Part I). 

Contents. 

List of symbols. 
1 Introduction. 

Part 1. The cylindrical shell loaded along its 
helical edge by constant bending mo- 
ments and shear forces. 

The solution of the differential equation 

Summary and interpretation of results. 

Part I I .  Thc oblique cylindrical shell loaded 

The approach to the problem. 

2 The differential equations. 
3 
4 The stresses. 
5 

along its edge. 
6 
7 The stresses. 

List of symbols. 

a = radius of the cylinder. 
b = a tan (see fig. 1). 
C = tan Q sin 'p = tan p .  
h = wall thickness. 

IC 1 v 
12 aa ' - _  - - wall thickness parameter, sup- 

posed to be of the order 
= moment per unit length of the wall, act- 

ing upon a section normal to the axis i, 
its vector is in the direction of the axis j 
(fig. 5 and 6). 

= bending moment per unit length a t  the 
oblique edge. 

= shear force per unit length of the wall, 
where i and j have the same meaning 

le4. 
m,, 

na, 

q,,  

as with mij (fig. 5, 6). 

edge (fig. 15, cq. 29). 

8 
9 The load system 11. 
10 
11 
12 References. and 81. 

The additional load system I. 

The solution of the oblique cylinder problem. 
Some characteristics of the edge load. 

40 = shear force per unit length at  the oblique 

= radial coordinate. 
= coordinate along the oblique edge (fig. 1 S 

- 
S = curvilinear coordinate of an arbitrary Appendix A. Geometry of the oblique eylin- 

drieal shell. U = radial displacement component (fig. 3) .  
Appendix B. Summary of formulae for use = displacement components in the plane of 

in applications. 

point of the shell (fig. 8). 

w,w 
the shell (fig. 3). 

16 figures. 
- _  
u,  w = displacement componcnts in the plane of 

the shell (fig. 7 ) .  
z, y = coordinates in the normal section (fig. 1). 

University of Delft. 2, Y = ,> ,, ,, oblique ,, (fig. 1). 
") Profssor of Aircraft Structures at the Technological _ _  
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5 - -“7 dimensionless coordinate normal to  

the edge of the shell. 
= axial coordinate (fig. 1). 
= coordinate normal to the edge of the shell . 

(fig. 2, 8). 

oblique frame (fig. 16). 
= shear force in the cross section of the 

= modulus of elasticity. 
= longitudinal edge load concurrent with qo 

(fig. 15, eq. 28s). 
= bending moment in the cross section of 

the oblique frame (fig. 16).  
= normal force in the cross section of the 

oblique frame (fig. 16, eq. 32). 
= normal edge load, resulting from qa and 

L (fig. 15, 16, eq. 30). 
= radius of the cylinder in the plane of 

the oblique edge (fig. 10). 
= radius of the cylinder in the plane per- 

pendicular to the oblique edge (fig. 12). 
= equivalent flange section (eq. 33). 
= tangential edge load concurrent with qo 

(fia. 15. 16. eo. 28b). , I ., 
V .  W = disilacement potentials. defined by eq. 4. 

1 - Y Z  

= (-q 4 k, cos p. 
= angle between the tangent to  the edge 

and the normal section of the cylinder 
(fig. 2 ) .  

- - specific shear. 
= specific strain. 
= angular coordinate in tbe normal section 

= angular Coordinate in the oblique end 
(fig. 1). 

section (fig. 1). 
S 

a 
- - _  dimensionless coordinate along the 

edge (fig. 2 and 4).  
= radius of curvature of the edge (fig. 1). 
c membrane normal stress. 
= membrane shear stress. 

- - _  dimensionless coordinate normal to 

= angle between the oblique end section 

= angle between the normal to the cylinder 

- 
2 

a ’  
the edge (fig. 2 and 4). 

and the normal section (fig. 1) .  

and the oblique end section (fig. 15). 

1 Introduction. 

The problem of shell bending at oblique end 
sections of cylindrical walls relates to the inter- 
section of tubes of equal diameter. This investig- 
ation was carried out in connection with the design 
of the variable pressure windtunnel of the National 
Aeronautical Research Institute (N. L. L.) ,  where 
the problem wcnrs at the rectangular corners 
( + = ~ / 4 ) .  This report deals with the problem 
of edge bending for an arbitrary value of a. 

The total problem of the stress distribution near 
the intersection of tubes involves more than the 
problem of edge bending, since it includes the con- 
dition of the compatibility of the deformations of 
the two shells and of the frame in the plane of 
intersection. The deformations of the frame and 
those of the shell under its undisturbed membrane 
stresses do not fit together. As far  as the edge 
strain of shell and frame is concerned, the com- 
patibility of these strains is established by bending 

Fig. 1. Notationa of the oblique cylinder. 

moments m, and shear forces q. at the edge of 
the shell, which restrict their influence to the im- 
mediate vicinity of the edge. The problem, in- 
vestigated in this report, is how to  determine the 
stresses and deformations due to these edge loads. 

The line of thought leading to the solution has 
been as follows. Edge bending restricts itself to 
a depth of shell, which is of the order (ah)’ and 
therefore small of the older (:)’ compared to  
the circumferential dimension. Geometrical con- 
ditiom, e. g. curvature and edge angle p (fig. 21, 
change “slowly” along the oblique edge, since the 
derivatives of these functions to  the edgewise 

Fig. 2. The cylinder developed upon the flat plane. 

coordinate 7 = s/a are of the order of magnitude 
of these functions themselves. Then, if we confine 
ourselves to the case in which the edge loads 
(?no, go) are changing slowly too along the edge, 
it may be concluded that the derivatives of dis- 
placements to the edgewise coordinate s will be 
smll compared to the derivatives to the coordin- 
ate normal to the edge. This statement suggests 
that in this case the strains and stresses in the 
point (7,;) (fig. 2) will depend almost completely 
on the geometrical conditions and the edge load 
in the point 7 of the edge. 
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If this idea is correct the solution of the nro- - normal to the edge the component L. tanpential 
blem would be obtained by solving the problem of 
the edge effect of a cylindrical shell, where the 
edge angle /3 is constant and the edge loads i n o ,  
qo are constant. This problem of the cylindrical 
shell bounded by a helix is solved rigorously in 
Part I; the usual assumption is made that k” 
is negligible to unity. 

The applicability of this solution to the problem 
of the cylinder with oblique edge under edge loads, 
varying with q ,  is investigated in Part 11. It ap- 
pears that its error is of the order An im- 
portant result of the investigation is that the edge 
load, pertaining to the solution, consists not only 
of m e ,  q o ,  hut in addition of a memhrane load, 

to the edge the co&onent T,-(fig. 15j  -,-which 
is proportional to  qo . The total load in any point 
of the edge is parallel to  the plane of the oblique 
section. If the reaction of these edge loads is 
taken by a frame, it exerts upon the normal 
section of the frame a normal force N acting in 
the point of intersection of frame and shell, 

The effect of the shell upon the frame is equi- 
valent to that of a flange with the cross section S. 

The conclusions are indicated by marginal lines 
in chapters 5, 10 and 11. 

Appendices A and B contain the formulae relat- 
ing to the geometry of the oblique cylindrical shell 
and a summary of formulae for use in applications 
respectively. 
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PART I. 

The cylindrical shell loaded along its helical edge by constant bending moments and shear forces. 

, I  

. ,  

2 The differential equations. 

The equation of the helical edge is, since 

- _  dz -_ t a n p A - c  (fig. 3) ,  z + cav,=A (see 

fig. 4). 
The helix is infinitely long and every point is 

loaded in the same way. Hence, after rotating the 

EDGE OF 
OBLIQUE 

Fig. 3. Hclieal edge tangent to the edgo of iho  oblique 
cylinder in P. 

Fig. 4. The helical strip developed upon the flat plane. 

cylinder about its axis, thereby moving it longi- 
tudinally such that the edge passes through a fixed 
point in space, we find that the cylinder and its 
load in the final position are identical to what 
they were in the original position. This involves 
that the same conclusion applies to  the strains and 
stresses. Thcrefore the elastic displacements u, li, w 
are functions of the coordinate L' only, they are 
constant along any helix parallel to the helical edge. 
The partial differential equations in z and Q as 
independent variables can be transformed into 
ordinary differential equations in I. 

The equation of the helix 5 = constant is 
z + c a ~ = B  (fig. 4).  

The transformation formulae follow from fig. 4. 

Since u, v, tu are functions of 5 only 

au au 
a, az: - = a c - - .  

(2a) 
au au 
az ap 

Putting a -= u' we have - = cu'. 

Then 

The differential equations of the cylindrical shell 
are given in ref. 1, Chapt. VI, 21, eq. 10. After 
substitution of (2a) and without the external loads 
they become 

u + c v ' t v d + k  (1")~u""+2C'u"+U- 

) = O  (3a) 3--v 1 - "2 ___ 
2 

I-" 1 + " cw" + cu' + ( cz + -) 21" + __ 

f k [ - 2 GU" + - 

"ut +- I + "  2 c l i " + ( + c * + l )  w"+ 

2 2 
3-"  3 

2 

where k = - Since k is negligibly small eom- 
pared to unity 7cu can he neglected in (3a). Cor- 
responding neglections apply to (3b, e). 

We replace in these equations v and w by V 
and W, defined b j  

12 a2 ' 

a w av 
39 as w == a - = 11". 

Then integrating (3b,c) once, we obtain 

21" + u - k -  

(4) 21 = - = GV' 

3-" 
2 

f ( C 2 + T ) V N + ~ W r ' = C ,  I--" (5b) 
2 
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yu + k ( * C L l )  u"+ 

I-" l + V  + -c2V" + ~ 

2 

which yield 

1 + c* 

- ku" + c'V" + W" = __ ( c ' C ~  + C,) = C, 

" ' ( 

b )  + ( 5 c ) l  ~ ( l - - - - - - ) u +  I - "  

c* + 1) W"= c; , ( 5 c )  

- [ c 2 ( 5  1 
1 + ca 

1 
1 + cz 

(6b) 
- [ ( 5 c ) - - " ( 5 b ) ] ~ k ( C ~ - 2  + v)u"+ 

2 
1-" 

+ (C2 - ") V" + (c2 + 2 + v )  W" = 

=- (C2-vC, )  = C , .  (6c) 
1-" 

' From (3a) and (4) follows 

k (1 + c') *u"" + 2 kCW' + u + CZV" - 

cq7!,tfl + "Wff + -k- 3-" 
2 

+ k(-2cZ-1)1Y""=0. 1-" (7) 

Solving (6h, e) for W", V" and substituting 
them in (7) we find 

2 k  u" + C,, (ab) U ' +  __ c2 +, 2 f " 
(1 + C Z ) *  

V" - 
1 + cz 

( C ~ + 2 + " ) C 3 - C ,  
(c' + ") (1 + c') 

where C,= 

u" + C, (Sc) 
c 2 - y  1 - ca 17" = u + k -  

1 + c2 (1 + c 2 p  

- (C' - ") c, -t CXC, 
(c' + ") (1 + CZ) 

where C , =  

I+ ( C ' +  . ) ( l - C Z )  

1 + c2 
IC( 1 + C Z )  *u"" '+ 2 kll" [ 2 c* + 

1 - "2 u + c*C, + vC, = 0. (Sa) 
+ (1 + c?)' 

So far,  the only asnmption of this analysis is 
that the helical strip is uniformly loaded a t  its 
edge. Thercforc the analysis applies not only to 
edge load, consisting of bending moment and shear 
force normal to the edge, hut also to membrane 
loads: normal force U ~ J L  and shear force along the 
edge ur,h. From now on we will restrict ourselves 
to  load systems, which yield stresses in the vicinity 
of the edge only. So we put the condition that 
the stresses vanish for  < = m . Hence u, u,  w and 
their derivatives must vanish a t  [= m . Then 
(Sb, c )  yield C, = 6, = 0 (consequently C, = 
C, = C, = C ,  = 0) and (Sa) becomes 

(1 + c2) [2c*( l+c ' )+  ,L"" + __ 
1 - "2 l-!? 

2 k ( l +  e*)' 

+ ( C * + Y ) ( 1 - C ~ ) ] k u " + U = 0 .  

After substitution of (2h) this equation becomes 
a differential equation in the independent variable b 

2 [Z C ' ( l + C * ) +  
k(l+C*)Z d'u -+- 

1 - " 2  a54 1,va 

+ (9) 

3 The solution of the differential equation. 

The general solution of this equation is 

u = & ,  

yielding the characteristie equation 

[ Z c ~ ( l + C ~ ) + ( C ~ + Y ) ( 1 - c * ) ] j * * +  
2 

p4 + (1 + cZ)*  

. ,  1-9 1 
(1 + C * ) Z  k -=0. + 

This equation has the form 

B 
p' f 2 ApZ + - k 0, 

where A and B are of the order of,,unity. 
The roots arc, when we neglect k against unity, 

Since k l i  < 1 we will ncglect terms of the order 
of k". Hence 

which are the roots of the characteristie equation 

1-"2  1 
-=O, 

p4 +, (1 + CZ)2 k 
pertaining to the differential equation 

dZu 
aiz The term 2 Ak- of eq. (9), which is equal 

to  2 AkpZu= f 2 iAB" k" ti, is of the order k" 
comnared to  the other terms. Therefore it is 
negligible. ' 

The solution of eq, (11) for which the strains 

a =  [ 3 ( 1 - ~ V ' ) ] ' " (  ' a )". (12b) 
(1 + C * ) h  

4 The stresses. , 

I 
normal coordinates are 

The membrane strain components relating to the 
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au 1 aw 1 As appears from (ab, e)’ V” and W” are of the 
az a a, a order u, whereas u” is of the order k-’ u. Since 

y = - + - - = - c(V” + W ” ) .  

The strain components relating to the [, 7-axes we neglect t e T s  of the order k K  the terms 
are (ref. 1 Chapt. I, 10 eq. 3) 

k (1 - ”) cu” Eh 
mzz =-- I - “2 

T’P - __ 1-9 
Eh 

m r p s = - -  1 - ”2 

$9 1 - ” 2  

1 - ”* 

Eh k( l  + d ) U ”  

k ( v  + c2)u” 

k(l-”)cu” 
! Eh m =  __ 

aq =-- Eh k(1  + C*)U”’ 
SI 

E C  =e, cos*/3 + e? sin’p + y sin p cos p = 

- - [c*u + (1  + c2) ( C V ”  + IV”)] 
a ( 1  + C Z )  

t = E~ sin2/3 + E coszp - y sin p cos p = 
‘p 

- 1 mvv - 
a ( 1  + cz) Fig. 5. The lateral load components with reference to 

y r , , = - 2 ( ~ z - c ’ P )  s inpeosp  + th a.’p axe& 

(14) 

+ y(cosZ/3-sinp) = 

[ZU + (1 + c*)(V”- W ” ) ] .  c - - 
a ( 1  + C Z )  

Subst,ituting from (ab, e) we find 

[- Y U  + (1 + C 2 ) l i U ” l  
1 “r  = 

u ( 1  + c‘ )  
1 

a(1 + c‘: e* = 

y < y = - k u .  c N 

a 

The stress components are 

: E ku”, 
a(1 - v * )  

cku“. (13) E + 2 ku”), 1 - “2 T v =  2 U ( l +  ”) 

Since ku“ is of the order k K  .u the membrane 
stresses are composed of the first order stresses 

The lateral load components with respect to the 
C-T-axes can be computed from fig. 6. 

~ E . u  , y,,, = 0 (13a) and 
a ( 1  + c’) us, =o, Wy1 = 

stresses of negligible magnitude 
E 

ur = 2 a( l -? )  k ~ “ +  cy, = w r 2 ,  r rvz = 

I - v  
( 1 3 ~  =- 2 % ?  

which are of the order k’ as compared to  the 
first order stresses. 

The lateral load components arc (ref. 1 Chapt. 
pig. 6. The laterd load components with reference 

to the s-v-area. 
VI, 21 eqs. 6 and 9) (see fig. 5)  

=- Eh k ( l - ” ) c ( - u ”  + V”) 1 - v2 

au Eh 
az 1 - ”2 -a  -) = - k ( l -  .)C(U“ + 4 W”-& V“) 

kC[(l+ c’)u”’+u’-(1-”)~”’] Eh 
1-9 

=_ - 
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my< = mrr coszp + mSp cos p sin p + 

mr, = - m,, cos p sin p + mzp cosY3 - 

mar = - mrr sin p cas p - mgrP sin'p + 

m,, = mzg sinZ@ - msq sin 

+ "pa sin p cos p + -7 sin2/3 

- mps sinZp + mw sinp cos p 

+ mpl coszp + mw cos p sin p 

- mTp. cos p sin p + WLW eos'p 
cos ,B - 

qr=q4 . , cosp  + qp,s inp 

%,, = - qzr sin p + qq. cos P. 
Substitution of (14) yields 

myr= 0 I ,, 

my,,= __ Eh k ( 1  + CZ)U" 1 - "2 

I ya = 0 
*T 

5 Summary and interpretation of results. 

The differential equation (11), its solution (12), 
the membrane stresses (13a) and the lateral load 
components (15) can he obtained in a straight- 
forward manner by assuming that the strains and 
stresses in the cylinder bounded by a helix are 
identical to those in a straight edged cylinder 
having the radius equal to the radius of the cylinder 
in the plane through the tangent to  the helix and 
through the normal to the cylinder. This radius 
is R,=a( l  t- c') (see Appendix A). This con- 
clusion can be obtained when we transform the 
derivatives to z into derivatives of the linear 
coordinate ;=a% by means of (2b) and when we 

replace a by ~ 

Rl 
l + C Z '  

11 The differential equation (11) becomes 

which corresponds to  the differential equation of 
the straight edged cylinder with radius R, for 
axially symmetrical deformation (ref. 1, Chapt. 
VI, 19 eq. 9 ) .  

The membrane stress (13a) is 

U - a,,, - E  - R. ' 
(compare ref. l,, Chapt. VI, 19 eq. 1) (11) 

The bending moments and shear force (15) are 

I/ (compare ref. 1, Chapt. VI, 19 eq. 17) (111) ' 

mVr I - vmc, 

(compare ref. 1, Chapt.VI, 19 eq. 4) (IV) 
d8u 

12(1- 2)  dz3 
- - .  E ha 

q r = -  

(compare ref. 1, Chapt. VI, 19 eq. 17) (V) 
So far the correspondance between the straight 

cylinder concept and the helical theory is perfect. 
The straight cylinder concept fails to give an cqui- 
valent for the membrane stresses (13h). However, 
these stresses are of the order k" small compared 
to u,, and to the bending stress following from mr,, 
The bending stresses are 

Eh , whereas ur2=  ab = 
2(1-?) d P  

h Eh d2u 

6R, 2(1-?) d 2  ' 

Another discrepancy relates to the displace- 

=- 

ments u, w 

-= du (1 + c")" IJ' = c ( l +  C Z )  34 v,, and - 
dz a a 

dw (1 + c')" Tv,. 
dz a 
_ _  

The displacement components v,, w with respect to  
the i-q-axes are (see fig. 7) 

V 

Fig. 7. Transformation of displacement components. 

- - 
u = +  ueosp-wsinp,  w = u s i n p  + wcosp.  

Using 8h, c and neglecting thereby terms of the 
order k" we obtain 

(16) 
2cu dw (c' + .)u -=__ _=_ , -  il : R, dz R, 

The straight cylinder yields 

which seems not to he in agreement with 
IIoweJer z . ~ ,  wE are not physically identical to 

and 

_ -  - - & -  
PI, w, since the vectors IJ + :dz, w f T d s  

dz dz 

with res- d i .s inp 
are rotated through the angle a 
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d V R  - pect to the vectors w, w., whereas un + -dz, 
dz 

w E  + dzu, are parallel to ua , wn . If we ac- 

count for  this fact the relation between u, w, w 
and uX,, u s ,  w n  must be 

.: -~ 

_ _  & 

4 - - 
1U cos p sin p - - sin2p dllR du 2) 

d x  dz a a 

dvII du u _- ~ -- - +-s inpcosp  
dz dz a 

_- _ _ _ -  - - 
- - 

yielding, when we suhstitute from (16), 

the second d% , u Since - IS of the order k-" - 
dz2 RZ 

term in the first one of these equations is negli- 
gible. Hence 

We obtained from the .straight cylinder concept 
the equations (l?), which appear to be in error 
as far as on is concerned. This, however, is not 
a grave failure, since the displacement is of the 
order IC'!' small compared to u. 

So we may conclude that the straight cylinder 
concept is correct apart fro'm' its description of 
the displacement component W E .  It yields the 
correct answer for the stress distribution. 

The recipe for establishing, the stresses in a 
cylinder with radius a and wall thiekne&h loaded 
by constant hending moments mcq and shear for- 
ces qc. along its helical edge,, the pitch of the 
helix being 2 mc, is : 

The actual cylinder is replaced by a straight 
edmd cvlinder with radius R. = a ( l  + c z )  and - 
wall thickness h;  the loads m c V ,  qc. are applied 
to  the straight edge of this cylinder. 'Thcn the 
deflections u and the stresses established for the 
straight cylinder (formulae I through V) are 
identical to  those for  the cylinder bounded by the 
helix with the same edge load. 

I 

I '  
I 

0 . '  
, ; ,  ' i ,  . 
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I 

PART 11. 

The oblique cylindrical shell loaded along its edge. 

. The approach to the problem. 

The edge of the cyliiider is the line of inter- 
section between the cylinder and a flat plane, which 
makes the angle @ with the normal section (fig. 1). 

Thc problem to be investigated is the stress dis- 
t,ribut,ion in and distortions of the shell near its 
edge for edge loads, consisting of bending moments 
and shear forces normal to the shell, together with 
other load components required fo r  equilibrium. 

I t  is known from bending theory of straight 
edged cylindrical shells that the deflections u due 
to these edge loads damp out very rapidly in. axial 

. We du dircction, - being of the order k-"< - ax a 

shall suppose that the edge loads are such that - 
(s being the coordinate along the edge) is much 

au au . u 
smaller than -, -will be of the order of -. 

as as a 
This involves the restriction that the variation of 
the edge loads. shall bc slow. So we' assume t.hat 

the derivative of the cdge load with respect to a 
is of the order of the edge load, and we intend 
to solve the shell problem for this type of edge load. 

Since - <( - the strains (and thereby the 

stresses )depend mainly on the derivatives of the 
displacements to x. This suggests that strains ob- 
tained for edge eoditions, which do not vary with 
s, might bc a good approximation for the strains 
occurring at  edge conditions varying with ~p. 

Applying this approach to the oblique cylindric- 
al shell we assume that the deflection u and the 
stresses in points along the line s = constant, per- 
pendieul+r to the edge, may be computed from 
the edge load in s by means of the theory for the 
cylinder hounded by a helix, developed in part I. 
The tangent to the edge in s is continued in a 
helix (fig. 3),, this helix forming the edge of the 
suhst,it,iite cylinder, and the helical edge is loaded 
hy constant edge loads equal to those in s. I n  the 
edge points adjacent to s the actual edge loads 
are different and so is the angle ,I3 of 'the tangent 
helix. Thus there are two reasons by which the 
exact solution differs from the assumed approxim- 
ate solution. 

We will investigate the error of the approxim- 
at,ion by estahlishing the additional loads which 
are required to maintain the assumed deformation 
and by estimating the effect of these additional 
loads. I 

U 

at& 
as 

8 

au au 
as as 

, ,  

7 The stresses. ' *  I 

An arbitrary point P of - the shell is denoted h) 
its coordinates s=av and z=a& where s is the 
coordinate along the oblique section and is the 
distance to the edge. Developed upon the flat 
plane, the cylindrical shell and its coordinate 
system is as indicated in fig. 8. I n  this way the 
point & is adjungated to  the point P of the edge, 
where on the developed cylinder the normal from Q 
to the cdge cuts the edge. 

It is assumed that the displacements u, v,  w 
in & are equal to the displacements in &, as ex- 
cited by constant edge loads along a helical edge 
through P tangent to the curve s, the edge load 
being equal to the actual edge load in P. Then II 

is the solution of equation I, Chapter 5 and w ,  l(i 

follow from eq. (16). 
The membrane stresses occurring with these 

displacements can be computed from the specific 
deformations (see fig. 8). 

- _  

_ _  

Fig. 8. Orthogonal coordinates u, T shown when the shell 
is developed upon a flat plane. 

- 
av 

9- = + -cosy 
' a s  a *  

These formnlae follow from the general strain 
component formulae given in Part I, Chapter 3. 
The stresses thus established differ from the stress- 
es occurring in the helical cylinder under constant 
edge load by an amount which is of the order k"' 
small compared to those in the helical cylinder. 
This will be shown for the stress trT. 



Substituting (16) into (18) ,  using (see fig. 8) 

- -  
and taking into account that for  ;= m v = w = 0, 
we find 

The first term is identical to  cy, according to 
(13a), the second term is a consequence of the 
fact that u and p vary with 7, which is not present 
with the problem investigated in Part I. Expres- 
sions of the same type apply to and r_. 

u is given by (12) 

u=e-" (A,cosx + A,sinz),  

2 where z = OL - and 
a 

= (+)"' 1-  cosp. 

. .. 

A ,  and A, follow from the hnd ing  moment m, 
and the shear force qo at the edge, as given by 
form. 111 and V of Ch. 5. 

When differentiating to 7 one should take into 
account that z is a function of 7 

Then 
m a U -  

- [sin p cos p J a a,] = 
a7 - 

+ 2 m , [ ( 2 - c o s 2 p )  sinx-sinZps(cosx- 
+ sin z] tan Q cos Q + 

- sin z) + 2 sinzp z cos x] tan * cos Q. 

diu, _ _  dqo are of the order m,, go. Then the 
d7 ' d7 

I 
second term in ua is of the order __ (7% + 

ahk"' 
+ k' ' 'aqJr whereas the first term is of the order 

2 (m, + kli4 ago). Therefore, when we put 
ahk' 

(21) 
U 

q = = u  % - E - c d P ,  - a 

the error is of the order klh. 

A similar conclusion holds for the lateral load 
components. 

Since u, w are of the order 1 ~ ' ' ~  u their contribution 
to  the lateral load components is of the order ky. 
compared to those of u. Then they arc negligible 
and 

_ -  

aU . is of the order au 1 Since = = 
as a ( l + g c ) '  

U au . U 
- and I S  of the order k-"' - we find, 
a as a 

neglecting again k' to unity, 

x tan Q sin f l  cm*p cos v. - -- 



q, is of the order k"'qz?. 

Therefore, when the stresses are taken from 
eq. I1 to V incl. of Ch. 5 the error is of the 
order L " ~ .  

8 The additional load system I. 

The element d z  ds of the shell is not in equi- 
librium when the membrane stresses o;, given by 
(21) and the lateral load components mG, m,, 
q6, given by (22a, b, e) are applied, and ai, T ~ ,  

m z ,  mz,  q,? are assumed to vanish. The reason 
is that the coordinate system z, s differs from the 
corresponding coordinate system i, a7 used with 
the helical cylinder. We will establish the external 
load system, required for  equilibrium at the assnm- 
ed state of stress. This load system will he called 
"additional load system I". 

This external load consists of (see fig. 9) forces 

_ _  

- 
i 

Fig. 9. Element &, ds with elastic stress components and 
additional loads p,t,l ,m,, m, per unit ares. 

I , ,  t , ,  p ,  and moments m,,  m, per unit area. 
They can be estahlisbed by considering the equi- 
librium of an clement of the shell. 

For the sake of simplicity of notation we put 
cT=a, m:=ni, .s qi,=q. The equations of equi- 
librium of the element are 

4 i  

Since V ,  m and q are the exact solutions for the 
helical cylinder, where 

the third and the fifth equations yield in this case 

Subtracting these latter equations from those 
for  the oblique cylinder. and eliminating q we 
obtain: 

(234 
Tho equations (23a/c) establish the additional 

load required for equilibrium: forces I , ,  t, , p, and 
moments m,, m, per unit area. 

I n  order to simplify this system we decompose 
m, , m, in statically equivalent forces. Adding these 
forces to l , ,  m, , p l  we obtain a load system, con- 
sisting of forces per unit area 1, t, p. 

Fig. 10 sliows how ml can be decomposed in vy m, d 3  d i  m a 2  

d l  

Fig. 10. Statio equivalent a i  the moment m, 

statically equivalent forces. Combining the edge 
loads of 2 consecutive elements (see fig. 11) 

Fig. 11. Combined load upon 2 eonaeeutive elements &. 

we find that m, is equivalent to a ta.ngentia1 load t ,  
and a normal load pz per unit area. 

m1 has been defined by (23d), hence 
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' (24b) 
The same procedure is applied to m, in figs. 12 

Fig. 12. Static equivalent of the moment m, . 
ad8 m 2 1 1 . s ? ( )  

Fig. 13. Combined load upon 2 eonseeutiva elements &. 

and 13;  m, proves to be statically equivalent to 
a longitudinal load 1, and a normal load p 3  par 
unit area. 

.! 
m - -  

R, 

_ -  
I 1, dsdD=-> dsdz 

m2 has been defined by (23e), hence 

The total additional load components are 

z=z, + l , ,  t = t, + t,, p = p ,  + p ,  + pa 

- Having thus established the load components 1, 2 x=o( -=.& t ,  p we will investigate their order of magnitude. 
Since we have already neglected stresses of the 
order k"+ u, we have to do so everywhere and hence 

a 
au a az au . Then = - -, where - is of the order 

to neglect loads which give rise to  stresses of that a2 au ax 
order. After substraction of these negligible IoadP 
the remaining load system forms the load system I 

then 2, t, p are expressed in u. 

of as well as - au . 
a, 

required for equilibrium. Finally we introduce 
We substitute CT and m from (21) and ( Z a ) ,  

So as to establish 
the order of magnitude of the additional loads it 
is useful to take instead of the variable; 

a a 
R,= __ eoszp I "'=-. 

Then we obtain 

I 



The functions of u and p occurring in these 
expressions are of the order u. Therefore neglect- 
ing terms of the order k''4 t o  unity, we find 

t ( l + r ' ) = - -  dP E h  a2 - a9 a (cosppu) 
9 

a3u "C] 
ax4 . + (l-") -- ax3 

Eh 
a2 

The normal load p is of the order 1 ~ " ~ -  u. It 
a 11 causes membrane stresa of the order p -  - k"'E- h -  a '  

which is of the order k " ' ~ .  As has already hem 
ohsewed we have to neglect stresses of this order 
of magnitude. This means that the additional load 
p is negligible. Then the remaining additional load 
components are just I and t and we conclude that 
the additional loads required f o r  equilibrium in 
the assumed state of deformation are 

This load will he called "load I". 

9 The load system 11. 

Since the shell is in fact not subjected to external 
load along its surface the load system I has t o  
he compensated by an  equal load system of op- 
posite sign (-t, - t ) .  This load system forms 
part of "load 11", which comprises in addition 
forces along the edge of the oblique cylinder. These 
edge forces L and T are chosen such, that the load 
rystem I1 it self equilibrated and restricts its in- 
fluence to the vicinity of the edge. The distrihut- 
ed load 2, t is important only in  a narrow strip 
along the edge, since u damps out rapidly with 
increasing z. Therefore, if the loads - 1, - t of 
the element dv, 0 < z < m find their reaction in 
z = O  (fig. 14), the load system composed of - 2 ,  
- t and these edge forces will confine its influence 
on the shell t o  the vicinity of the edge. 

- 

- 

Therefore we take (see fig. 14) 

Fig. 14. Load system 11. 

m 

T Bd7) + 1 t adr) (1 + ;t- dP 6 )  a;= 0, 
9 0 

hence 

From (20) follows that 

yielding (see App. A eq. 8) 

The stresses imposed by the load system I1 are 
mainly membrane stresses since: lo the width of 
the shell strip in which - 2, - t are not negligible 
is of the order a 7 ~ ' ' ~  and the width is of the order 
All4 small compared to the radius; 2O the load 
system consists merely of tangential components. 

Then the membrane stresses are of the order of 
L / h  and T/h,  and according to  (28) of the order 
of qdh. 

(22c) yields 

E 
a Therefore qo/h is' of the  order-k%, which is 

(see 21) of the order ,k''+r*, So the membrane 
stresses by load system I1 are compared to those, 
pertaining to  the edge, load m, , qo together with 
load system I, of the order k'I4. Since we have 
neglected stresses of the order k'l4 the stresses by 
load system I1 should be neglected likewise. 



The membrane strains caused by load system I1 

are of the order k'!' e. Therefore they are like- 
wise negligible to those pertaining to  the edge 
loads,m,, q. plus the load system I, which are 

U 

given by eq. (16). 
We conclude that the effect of load system I1 

can be ncglected completely 

10 The solution of the oblique cylinder problem. 

We found so f a r :  lo that the solution of the 
prohlem of an oblique cylinder under edge load 
m,(q), go(?) together with the load system I, con- 
sisting of 1 ( ~ , < ) ,  t(7,;) is given with an error klk 
by the solution for the helical cylinder under con- 
stant edge load mo(q), q o ( T ) ;  2" that the load 
system 11, composed of - t ( q , z ) ,  -t(q,;) and 
the edge load L(q) ,  T ( v ) ,  defined by eqs. (28), 
yield stresses which are of the order k'" compared 
to those pertaining to m,, qo plus load system I. 

Adding m, , I&, load system I and load system I1 
the resulting load consists merely of the edge loads 
m,,(T), q o ( q ) ,  L ( v ) ,  T ( q 1 ) .  We call this the "total 
load". 

For this total load the stresses are the sum of 
those for m o r  go + load system I and those for 
load system SI, which are with an ermr of the 

- 

order kti4 equal to the stresses in the helical cylin- 
der under constant edge load %('I), no(?) .  So 
we have obtained this important conclusion: 

The solution for the ohlique cylinder under edge 
loads m,(d, q d d ,  L( ' I )  = tan @ cos P cos v q O r  

d(qJcos2P) is given with an error of U'I) =- 

the order k"( by the solution of the differential 
Equation (see Ch. 5 eq. I) 

d? 

hzQ2 1 d'u 
12(1-?) c d j 3  dz4 

-+u=o 

with the boundary conditions (see Ch. 5, aqs. I11 
tnd V) 

Eh3 

- dv $=a : u=-- 
dz 
- 0, 

which is (see eq. 19) 

4 k  a 

where - 

The displacement components in the plane of 
the shell are given: by (see Ch. 5 eqs. 16) 

m 

The membrane stresses are (see eq. 21) 
U 

a 
U n  = ECos*p-,  e; =o, r y n  ==0. 

The lateral elastic load components are (see 
eqs. 22) 

We can give this conclusion also in the wording: 
The stresses and deflections of an oblique cylin- 

der under edge loads 

%('I), %('I), L ( 7 )  = 
d (q.dcos2j3) 

h =tan@ccospeospq,,  T ( v ) = -  

are in the point ,,;with an error of the order k"' 
identical to those in the point; of a straight eylin- 
der, with equal wall thickness and radius a/cos2p, 
under constant edge load mo(q),  no(?).  

11 Some characteristics of the edge load. 

The load components q o ,  Lo are situated in the 
plane normal to the edge (fig. 15). The angle 8 

Fig. 16. The total d l g e  lasd, seen in the @am 
pcrpcndieular to the cdge of tho oylinder. 

between go and the plane through the edge is given 
by (see App. A, eq. 3) 

cos @ 
COS 8 = - sin 8 =sin @ cos p. 

cos p ' 
Then the load normal to the oblique plane is 

-qosin8 + Lcos8= 
=g , s inq ( -cosp+  cwp)=0. 

So the resultant of qo and L fa lb in the oblique 
plane along the normal to the edge and its magni- 
tude is (see fig. 15 and App. A eqs. 1) 

Q = qo cos 8 + L sin 8 = 
cos p 

(cosza + sinzq eoszp cos*?) =go- cos p cos eo8 Ip 
(30) 

- - 
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1 The load 
d ( 40/eosZP 1 

T=- 6 
is tangential to the edge. 

When edge bending of the shell is caused by 
an oblique frame the reactions of Q and T fonn 
the load of this frame. The type of frame load 
shows the characteristic of being merely normal 
force upon the cross-section. This appears from 
the conditions of equilibrium of the element a2 of 
the frame (fig, 16) 

Fig, 16. Frame load by edge load of the oblique cylinder. 

-+Dp=O. dM 
d+ 

The first two equations yield 

+ Tp=O. ~ ( Q P )  + D + -  &D 
&F d* 

Since (see App. A eq. 5, 6) 

d(Qp) + T p = p  [ __ d;;; + T ]  = 

= p [ k $ b o  izz ~ k & + 3 ) 1 = 0  

d+ 
eosp cos* d 

is D=O, M = O  

a (32) N=qo __ 

a solution of the equations (31). 
So the conclusion is :  
The load applied to an oblique frame by edge 

bending of the cylindrical wall is a normal force 
upon the cross section of the frame tangent to the 
line of intersection of frame and cylinder and its 
magnitude is 

e0Szp 

a N = g o -  cosy3 . 
This effect of the shell upon the frame is equi- 

valent to that of an inner flange, which is added 
to the frame, loaded by a compressive force N .  
Since the strain of this inner flange would be, 
due to the compatibility of strains of frame and 

shell, E.  = 2 eos*p (see eq.. 18), the c r w  section 

of this equivalent flange is 

U 

a 

S=-=- - N  %aa 
E€# Eu0c~' ,E ' 

Using (29) and (19) we find 

So the conclusion is : 
The effect of the shell, t o  one side of an 

obliaue frame, on the frame is eauivalent to that 
of a flange having the cross & i o n  S ,  given by 

lleq. iz3). 

Note ' 

got notice of a recent Polish paper 
After completing this investigation the author 

Alexander Korneeki, The state of stress and 
strain in a thinwalled tube rigidly fixed in - .  
an oblique cross section. 
Rozprawy Inzyniemkie LX-LXVI 1957, 

which deals with the same subjeet.1 The approach 
is different: oblique coordinates are used and an 
asymptotic solution is obtained, which again accepts 
errors of the order k'I4. The results comply eom- 
pletely with thwe obtained in chap. 10. However, 
since terms of the order k'" are neglected rigorous- 
ly no mention is made of the membrane loads L ( T ) ,  
T ( v ) ,  which have great importance for the frame 
load caused by edge hending. Therefore the paper 
does not include the conclusion of chapter 11. 

12 References. 
1. Bm"0, C. B. and G r w a r ~ m ,  R. Teohnische Dpamik. 

Springer, Berlin, 1939. 

APPENDIX A 

Geometry of the oblique cylindrical shell. 

The equation of the edge of the cylinder is 
(fig. 1) 

zo = b cos yl= a tan @cos?, 
where @ is the angle between the oblique end 
section and the normal section of the cylinder. 

The tangent to the edge makes the angle p with 
the normal section of the cylinder (fig. 2)  

- d2, 

aalll 
tanB=-- - tan sin 'p = e,  cos P= 

(A. 1) 
C sin p = 

1 - - 
(1 + C ' ) % '  (l+c')%' 

The radius of curvature of the cylinder in the 
plane through the tangent to the edge and through 
the normal to the cylinder is 

(A. 2a) (1 R,= =a(l + c'). 
cos P 

The radius of curvature of the cylinder in the 
plane normal to the edge of the cylinder is 
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. (A.2b) a a ( 1  + c') R,=--,= CP sin p 
The angle 9 between the normal to the cylinder 

and the plane through the edge is established by 
projeeting'a line element of the normal to the 
cylinder having unit length upon the plane through 
the edge. Its projected lanigth is cos0 (fig. ,l). 
The ends 1 and 2 of the line element have the 
coordinates 

x,= a e o s y ,  y,=asinq,  z , = b e o s ~ ;  
x , = ( a + l ) e o s ~ ,  y , & ( a + l ) s i n p ,  z , = b e o s ~ .  

The coordinates in the plane- of the oblique 
section follow from (see fig. 1) 

- - 
x = x c o s @ + z s i n * ,  y=y.  

- COS? - 
x,=a-  

a .  + cos 

Hence 

yI = a  sin y ; cos* ' 

1 L~ = ( cos Q, Y, = ( a  + 1) sin y. 

Then 
- -  - -  

C O S ~ ~ =  (x3-xl)* + (y2-y1)*= 
eosw = cos2* cos2q + sin'q = cos2@ (1 + c2) =- cosy  ' 

sinZ8 = sin2@ cosz'p. (A. 3) 
The equation of the elliptical edge is (fig. 1) 

- - 
c o s y  - , x=a:  cos^ , y = a s i n p  x* yz 

COSZQ. - + - = 1 
az a2 

(A. 4 )  

cos p cos 'p. (A. 4) 

The radius of enmature is 

(A. 5 )  

The line-element ds of the edge is (fig. 2) 

ds=adq=-=a( l  ad q + ~ ' ) ~ & = p d $ .  (A.6)  
cos p 

Then 

APPENDIX B. 

Summary of formulae for use in application. 

1 
Geometry. 

. .  
c = t a n b =  tan Q sin Q, eosp= 

I , ,  , (1 .+ c')" ' 
(A. 1) 

, ' ' (A.2a) 

CW8=- I .sinB=sin*cosrp (A.3)  

.. C I 
' . . m p =  

(1 + c')" 
! I  

a 
cos p , ,  R,A7 

cos * 
cos P 
sin $ = 

sin p 
sin@ ' 

(A. 4,7) 

(A. 8) 

a$ eos*p cos $ = c m p  eos'p - = __ a, cos* 
dP 
a ?  
- =tan @ c0s3,R cos Q 

ds = a  dq z p  d$=- (A.5 ,6)  
cos a' 

P = a a '  cos p 
Edge load. 

m,, q o ,  L = tan Q eosp cos yl q o ,  

' (28) a(a0lcos'P) - 
4 

T=- 

Displnciments. 

?'=-(7) Eh 

- 
1 l-? ' 1 

~ cos2p e - z [m, (cos  x-sin x) + 
,,cMxJ (19) 

m 
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The reduction in stiffness of combinations of rectangular plates 
in compression after exceeding the buckling load 

by 

J. P. BENTHEM. 

SUmmary. 
Thc combination may be k plate with stiffeners, a U-wction member, panells that change in thickness discontinuously, 

ete. I t  is supposed that the buckling mode is  already known (i.xnet,ly or appmximntely). Fomulns, ,based on the propcr 
differential cquntiou and wcll suited to numerical integiation arc dorived for tho reduction in s t i f fnm (tangent modulus) 
for loads in small excess of the buckling load. Some numerical examples arc given. These examples clearly show the in- 
flueneo of the boundary conditions f o r  the menrbme stmsses which arise in the panels after budding. 
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List of symbols. 

elasticity modulus. 
Poisson's ratio. 
plate thickness. 
width of the panel (strip). 
bending stiffness Eh3/12(1--vP). 
deflections from the plane of the plate. 
coordinate axes, j: in longitudinal, y in 
transverse direction; z perpendicular to 
the lp1a.te (fig. 2).  The 2 and y axes 
are taken in the middle plane of the 
plate. 
membrane stresses. 
compressive stress (U = - vZ); 
mean shortening per unit of length. 
stress function of Airy for the mem- 
brane stresses. 
strain energy. 
parameter indicating the strength of 
the buckling mode and the membrane 
stresses due to  .buckling. 
indicates the wave length of the buck- 
ling mode, w = qf(y) sin p~5. Wave- 
length is 2 r/,p. 
half wave length, X = m/p. 
indices indicating panel number. 

...... 1 1 where 2 indices are used, sometimes se- 
parated by a comma, the second one 
refers to  the panel number. 
ratio between increment of mean com- 
pressive stress and mean shortening 
per unit of length, E' c &/de. 

? ...... 
......, i 
......) j 
E* 

1 Introduction. 
f i m z  and IyLzRmm (ref. 1, 2) and KO- 

(ref. 3), derived exact solutions for the membrane 
stresses that arise in a compressed panel immedi- 
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ately after cxcess of the buckling load, as well as 
expressions for the ratio between t,he increment of 
the load (beyond the huckling load) and the incre- 
ment of the mean compressive strain. ’) 

Such derivations are not yet available for 
combinations of rectangular panels. Such a com- 
hination may be a U-section member, a plate with 
stiffeners, panels that change in thickness dis- 
continuously, etc. 

At the start of the present analysis the buck- 
ling mode is supposed to he known, exactly or 
approximately. The memhrane stresses which arise 
immediately aft.er excess of the buckling load are 
derived with the ai,d of the ,proper differential 
equation. Hitherto, this was considered to be 
highly impracticable in view of the large number 
of (though elementary) integrals that would be 
met, especially in the determination of the strain 
energy corrsponding to these stresses. However, 
if the function, describing the buckling mode, is 
used in taljulated form and  all further neees- 
sary differentiations and integrations are carried 
out numerically, the procedure can very well be 
applied. 

The procedure is illustrated by application to 
a U-section member, a square t.ube and some 
ot,her examples. These examples clearly show the 
influcnee of the boundary conditions for the mem- 
lirane stresses. 

Calculations of the load a t  which bueklinz of ” 
some combinations of rectangular panels starts 
have already been performed in refs. 4, 5, 6 and 7. 
Experinients of the post buckling hehaviour of 
panels that change in thickness discontinuously are 
described in ref. 8. 

2 The von Karman equations for large deflections 
of plates and the expression for the strain 
energy. 

These equations (see for example ref. 9, page 
343) read for flat plates of constant thickness 
(external load perpendicular to  the plate being 
ahsent) 

h a%+ a x w  a*$ a x w  
u at/ a x 2  ax2 a l p  

AAw=-( ,  -+ -  -- 

where the x and y axes are in the middle plane 
of the plate and 
w = dcfleotion of plate pcrpendicular to the plate 
E = modulus of elasticity 
D = hending stiffness of plate c Ehq/12(l--v2) 
h = plate thickness 

$ ,= Airy’s stress function for the membrane 
A = aZpx2 + a s p y z  

stresses u=, q, and 7, 

If the plate is compressed in x direction by a 
uniform stress uG (uz has a negative sign, when 
compressive) a ,possible solution of @I), (2.2) is 

w = A,y + A , ,  $ = + uay2 + B J  + B, (2.4) 

if the plate is free to expand in y direction and 

W = ~ Y  + A , ,  +=+osyZ $-+PU&’+ 

BJI + Bz (2.5) 

if this expansion is completely suppressed. I n  
(2.4) A , ,  A , ,  B, and B,  are arbitrary integration 
constants which do not enter into the formulas 
(2.1) ... (2.3),  but nevertheless it will prove to be 
convenient in the further work not to put B,  
and B,  cqual to zero ( A ,  and A, describe a rigid 
body displacement). 

At the onset of ‘buckling, which starts for all 
panels of the combination a t  the same compressive 
Wain, the solution (2.4) (or (2 .5 ) )  is no longer 
stahle. Suppose .the buckling mode for a panel is 

. 

w =,fw(s, Y) (2.6) 

where is a parameter increasing from zero to 
a small value. Due to the smallness of the dis- 
placements w at  the onset of buckling, the  func- 
tion u,$ may he determined from the differential 
eqnat.ion (2.1) only (ug= 0) 

together with the appropriate boundary conditions 
for w,. These conditions are coupled with the 
conditions for the deflections w, of other panels 
of the combination, which deflections are described 
with the aid of the same parameter 9. 

For loads in small excess of the buckling load 
it may be assumed that the deflections w remain 
according to the fuuotion wl(x,y)  of (2.6) ’). 
Equation (2.7), which determines this function 
wL(x, y), is written in the form 

where 

P,, = - + ucyz + B,y f B,  (2.9) 

and uc is the compressive stress at buckling. 
The memhrane stresses must be a solution of 

( 2 . 2 ) .  

I n  (2.10) the stress function $ is separated into 
+ = F + G  (2.11) 

(2.12) 

In  (2.12) the constant C is chosen in such a 
way that the stress uz following from (2.3), i.e. 

with 
F=+ C y 2  + B,?) f B,. 

I )  This iatio is oftcn indicated \\ith the aid of the 
notion “cffeetivo widtli”. 

’) In the right-liansl side of equ%tion (2.1) the negleotd 
t e r m  are I I O ~ T  of order q,’ compared with the first term. 
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ca= G ,  equals the stress whieh would correspond 
to the compressive strain if buckling would not 
take place. If tlie shortening in 5 direction per 
unit length is e ,  this stress c2 would be uG=-eE,  
hence G =- eE (it is still supposed that the plate. 
is free to expand in y direction). If one of the 
edges, parallel to the IC direction, remains straight, 
the strew 

us = C = - eE (2.13) 

actually occurs and is called the edge stress. 

tion 8' drops out and 
If (2.11) is substituted into (2.10), the func- 

Suhsbitution of 

G = ~ $ 6 ~  (2.15) 

into (2.11) arid (2.14) gives 

+==F + v2G2 (2.16) 

together with the appropriate boundary conditions. 
The parameter 7 still remains undetermined. 

To find the load-compression relation the poten- 
tial energy P (of all the panels oi the combination) 
must he determined. Then tlie value of the para- 
meter ? follows from the condition that P is a 
minimum, i. e. 

The potential energy P equals the strain energy 
U if the compression (overall shortening) is con- 
sidered to be prescribd, i.e. if the differcntial 
quotient 

to he derived from (2.12), has a prescribed value 
(see (2.13)).  

The equation (2.15) may thus be 'replaced by 

- = 0. au 
a? (2.21) 

If zi is the mean strain eiiergy per unit length, 
and e the mean shortening per unit length, the 
compressive force I< is 

au 
ae 
- = K .  ( 2 . 2 2 )  

The expression for the strain energy for  one 
panel heeomes 

By putting aU&= 0 it might seem that the 
theorem OS the 'minimum potential energy is not 
used correctly, since the correct use of this theorem 
allows only a variation of displacements or eom- 
patible slrains. Though a stress function p occurs 
in ( 2 . 2 3 ) ,  all varying membrane stresses corres- 
pond with compatible strains, because they satisfy 
equation (2.21, which is in fact a compatibility 
equation. The only defect of these membrane 
stresses is, unless tlie parameter 'p has the proper 
value of (2.21), that equilibrium in the direction 
perpendicular to tbe plate is not present, 

It may thus be stated that the application of 
(2.21) implies that the displacements w, perpendi- 
cular to the plate and the displacements u arid w, 
in the plane of the plate, are varied in such a 
way that the exact equation (2.2) is satisfied. 

I n  principle, it would be possible to disregard 
cq. (2.2) and make independent assumptions for 
u, w and w. However, it is to be strongly recom- 
mended to use the procedure adopt.ed here. It is 
relatively easy to choose a buckling mode (for 
the displacements 20) by intuition (at  least for a 
simple combination of a few panels), but i t  is 
much more difficult to do so for a mode of the 
displacements u and w (Le. for the membrane 
stresses) which arise after buckling. 

It may be uoted that the equation (2.1) may 
he derived from the expression for U in (2.23) 
by the calculus of variations. I n  that ease the 
functions w and $ must he varied in such a way 
that the compatibility equation (2.2) is satisfied. 

3 Application of the von Karman equations to 
a combination of rectangular panels. 

3.1 The combination. 

Fi,gs. l a  ... l e  show cross sections of different 
eomhir~ations of long rectangular panels, or st,rips, 
which will be considered to 'be of infinite length. 
I n  fig. l a  two of the strips have a free edge. 
Figs. l e  and l e  may represent a.n infinite sequence 
of stiffeners on a flat plate. 

The following different boundary conditions for 
a strip may be distinguished (fig. 1) : 
(1) a corner, i.e. a sharp bend between two ad- 

(2) a tramition,. The two adjacent strips, unequal 

( 3 )  a free edge. 
(4) a kinge. Two adjacent strips in the same 

plane, equal or unequal in thickness, are sup- 
ported by a hinge, or there is a hinged edge. 
A hinge may be either such that it caunot 
absorb shear stresses in longitudinal direction, 
or such that the compressive strain along the 
hinge is constant. 

jacent strips. 

in thickness, lie in the same plane. 

(2.23) 



(5) a clamped edge. 
(6) a branch point. 
( 7 )  an infinite repetition of a configuration (figs. 

l e  and le) .  

In  the analytical derivations of this paper only 
houndarics mcntiond under ( I ) ,  (2) and (3) will 
he considered. Thus, there is a finite number of 
strips linked in series, and the combination has two 

C0,RNER 

CORNER 
b. - 0. - 

FREE EDGE 
TRANSITION 

BRANCH WINT 
d. - C.  - 

e. . - 
Fig. 1. Sol-era1 combinations of st+. 

free edges, unless the first and the last strip are 
again linked together. I n  that case thcrc are 
only corners and transitions. If the combination 
is compressed below .the buckling load the strips 
are free to expand in transverse direction. 

It is not'difsicult to adapt the formulas of the 
present cases to the 'other' boundaries mentioned 
under (4),  (5), ( 6 )  and (7)  if they would occur. 
The numerical example of section 7.2.1 contains 
a case meant under (7) .  

All panel widths, panel thicknesses and elasticity 
moduli must be of the same order of magnitude 
respectively. At a corner, the angle between two 
panels may not be almost N O 0 .  

3.2. The buckzing land and the mode of buckling. 

The analysis of the buckling of combinations of 
strips like fig. 1 is closely connected with the well- 
estahlished theories of buckling of single plates. 
Determination of the exact buckling load and 
mode of a uniform ppnel results in the solution of 
a homogeneous linear differential eqiiation of the 
fourth order (2.7); for combinations like fig. 1 
it results in the solution of a set of such equations 
with coupled boundary conditions. As mentioned, 
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such calculations have been performed in refs. 4, 
5, 6 arid 7. Especially ref. 5 gives a .practical 
procedure. 

In t.he derivations it will be supposed that the 
buckling mode is known exactly. If only an ap- 
proximate solution, obtained with the aid of thc 
potential energy theorem, is available some minor 
alterations in the derivations are necessary. These 
alterations are indicated in the discussion of eq. 
(4.19), hut all final formulas remain the same. 

I n  order to  obtain the boundary conditions in 
a proper form for each strip a coordinate system 
x i ,  v i ,  zi  is introduced. The subscript i refers 
to the i-th panel. The coordinate in longitudinal 
direction, zi, is equal for all panels and hence 
5i = z. The transverse coordinate v i ,  in the middle 
plane of the plate, is directed from the (i-1)th 
towar& the (if 1) th  panel. The coordinates z ;  
are thcn determined by assuming that all systems 
:ire ' righthanded. 

Fig. 2 shows such coordinate axes zi, v i ,  zi 
for some adjacent strips. The boiindary condit,ions 
for the deflections w at a corner between the i-th 
and t,he j-th strip are1) 

wi = consta.iit (3.3) 
wi =constant (3.4) 

or 

(3.5) 

DIRECTION 0; . 
ZONTOUR INTEGRAL P 

L-LEFT FREE EDGE" 

. .  
"RIGHT FREE EDGE- 

Fig. 2. Systems df coordinate axes in the strips of the 
combination. 

Equations (3.3) and (3.4) express that the 
corners remain strdight,'.cquation (3.5) expresses 

I) It is assumed that Po~ssoh-4 ratio, V ,  is the S B ~ C  

for all sti-ips, 



the continuity of the geometry and cquation (3.6) 
expresses the fact that the bending moments H, 
at both sides of the corner are equal. 

The boundary conditions at a transition (fig. Id)  
are 

(3.7) wi c w, 

(3.8) 

a3wi 
ax*auj 

+ ( 2 - v )  -1. (3.10) 

Equations (3.7) and (3.8) result from the re- 
quirement of geometrical continuity, (3.9) from 
the equality of bending momcnts Mg and the cqua- 
tion (3.10) from the continuity of the reduced 
shear force &,-a &/ax (Q, shear force, M, 
twisting moment). 

The (only two) lioundary conditions at  a free 
cdgc arc 

(3.11) 

(3.12) a.wi a 3 W i  -+ (z- ” )  -- - 0. 
ayi3 ax*a?li 

The dcfleetion surface of the i-th panel hc 
(compare (2.6)) 

W’. , - - pwli + terms linear in y (3.13) 

in  which 

wli-fi(y) s i n w  (3.14) 

is t,lie buckling mode for the i-th panel. The half 
wave length in x direction, which is the same for 
all strips, is of course nip. Each f i (y) is the sum 
of four (real or complcx) exponential functions. 
Even if they are known exactly, these exponential 
functions will not be used, in spite of the fact 
that  in the further work only elementary integrals 
would be met. Their huge number would lcad to 
very laborious computations. The functions f i ( y )  
will only be used in tabulated form. 

If the buckling mode is known, the following 
formula for the compressive strain at buckling ecr 
can lie used (compare ref. 10, page 326, formula 
(211)),  
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3.3 The mestbrano stresses. 

The stress function 9 for the membrane stresses 

+ = P f G  (3.16) 

in a strip is from r2.11), (2.12) and (2.15) 

P = + c y2 + B1v + B,  . (3.17) 

G = pzGz. .  (3.18) 

The constant C for any strip is determined hy 
its shortening, which h a s  the same prescribed value 
for all strips. I)  

Into the differential cnuation for t,he stress 
function G , ,  equation (2.17), the expression (3.14), 

w l  = f sin px, 

IS substituted (tho linear terms of (3.13) do not 
play a role). The result bccomes 

M G , = E p 2 ( p ’  cos2px + ff”sin*pz) (3.19) 
or 

AAG,=&E$ ( A ( y )  f I I ( y )  cos2 p x )  (3.20) 

where 
A(y)  =p’ + f f ”  (3.21) 

I I ( y )  =f”-ff”. (3.22) 

The solution of (3.20) has the form 

E 
G ,  = fi2 [ Q ( y )  + K ( y )  cos2 px 1 .  (3.23) 

In (3.23) Q(v) is the solution of 

(3.24) 

and K ( y )  the solution of 

The solution of (3.24) is 

Q = Qp + U ,  + U,y + U# + U,u’, (3.26) 

whcre Qb is a particular solution and U ,  ... U ,  are 
integration constants. 

The particular solutions Qp will always bc 
t&en as 

(3.27) Qn = I( 1 4 PdY) 0. 

I )  The strips may hmo diffcrent rallues for  C if  they 
have diffcitnt  elasticity moduli. 

where the S sign rcfcrs to a summation over all panels. 
With t,he subst,itution (3.14) 

(3.15) 
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That (3.27) indeed is a particular solution of 

The solution of (3.25) is 
(3.24) is easily verified with the aid of (3.21). 

K=K,  + (T, + 2/ T , )  cosh 2 p~ + 
(T, + 1~ T,) siiih 2 pg (3.28) 

where K ,  is a particular solution and T ,  ... T,  
are integration constants, in the complementary 
function. 

The function K,  may be calculated from the 
following integral 

Y 

+ 2 p ( 1 / - < ) e o s h 2 / ~ ( 2 / - ~ )  ) a [  (3.29) 

where the lower boundary c, is an arbitrary con- 
stant. I n  (3.26) the integration constants U ,  and 
U ,  have of course no meaning for  the derivation 
of the membrane stresses, as this is done by a 
two-fold differentiation. Ncvertheless it will prove 
useful, see (4.5) ... (4.8), to give them special 
values. The integration constants U ,  and 17, are 
determined from the requirement that the mean 
shortening, due to membrane stresses stemming 
from G, (eq. (3.23)) and the deflections w, is 
zero, this shortening being caused by stresses 
corresponding with P (eqs. (2.31), (2.12)) only. 
Thus, integration of the 'partial differential quo- 
tient 

over a wavelength must deliver zero for all values 
of y, i. e. 

2 d U  

(3.31) 

The solutions of (3.23) and (3.14) are suhsti- 
tuted into (3.30) and in its turn (3.30) into (3.31). 
If use is made of the fact that 

cas 2 px&= 0 
0 ru 

the result is 

(3.32) 

or 

- + 2 77, + 6 U,y - f f = 0. . (3.33) au* 
Now, since from (3.27) 

the integration constants U ,  and U ,  arc zero. 
Hznce 

(3.34) 

wherc Q is the solution (3.26). 
For each strip the integration constants T, ... 2; 

occurring in (3.28) are to be determined from the 
boundary conditions which are valid for the mem- 
brane stress functions +. 

These boundary conditions at a corner between 
the i-th and the j-th strip are 

(3.35) 

or k3.38) 

Squations (3.35) a.nd (3.3G) rcprcscnt the re- 
quirements that the normal stresses perpendicular 
to the boundary arc zero. Strictly taken these re- 
quirements are incompatible with the requirements 
(3.3) and (3.4) which express that corners remain 
straight. Thus it seems as if from a plate stresses 
and displacements normal to the boundary are 
pracribed, which is of course impossible. 'Although 
it can bc reasoned by intuition that no significant 
error will arise from this incompatibilit,y, a refined 
analysis of the boundary conditions at a corner 
has been ,made. This analysis, given in Appendix 
A, indeed leads to the conditions (3.3),  (3.4) and 
(3.35), (3.36). 

Equation (3.37) ensures equality of the shear 
flows at the boundary and equation (3.38) means 
that the normal strains in the direction' of the 
boundary are equal. 

The boundary conditions at a. transition (fig. Id) 
are 

(3.39) 

The equations (3.39), (3.40), (3.41) and (3.42) 
ensure continuity of the normal stress flows per- 
pendicular to  the houndary, the shear flows, the 
normal strains in the direction of the boundary 
and the displacements pcrpcndiciilar to the houn- 
dary respectively. 
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The (only two) 1,oundary coiiditioiis a t  a free The part F of + automatically satisfies all 
edge aro tho eonditiorls (3 35) ... (3.44). Thus, all these 

formulas arc also valid f o r  the functions G and 
G, , The uartial differential ouoticiits which then (3.43) 
occur in 13.35)  ... (3.44) become 

(3.44) 
azIli  
axall, 
~- - 0. 

1 + 2',(4p2ysinh2py + 4 p c o s h 2 p y )  I cos2ps 

azG, E _- _ -  p' ] 3 + TI 2 p sinh 2 py + T, ( 2  py sinh 2 py + eosh 2 pyj  + 2: 2 p cos11 2 py + 
axau 2 av 

a q  E [ 1 a 3 ~ ,  

a y  2 

+ T, ( 2  py cash 2 py + sinh 2 by) 1 (- 2 sin 2 &c) 

- v2 f f '+  y + T,8p3s inh2py + T,(12pZcosh2py'+ 8p:'ysiiihZpy) + 
+ T, 8 p'cosh 2 py + 2',(12 pz sinh 2 py + 8 p'y cosh 2 p i )  I cos 2;px 1 

+ T, 2 p sinh 2 py + T , ( 2  py siiih 2 py + cosh 2 py) + 2 p cosh 3 py t 
3'G, ' E -~ - -- 

+ T 4 ( 2 p y c o s h 2 p y  + sinh2py) 1 ( -4p2cos2pz) .  

PG, E 

a 2 6 ,  E: aZK, 
ay2 - 

- p* ( I(,  + Z', cosh 2 py + 2',y cosh 2 (3.45) 

!I' [Si. + !a,- + T, 4pZeosh 2 py + 2',(4pzy cosh 2 py + 4 p sinh 2 pyj  + T, 4 pzsinh 2 p~ + 
(3.46) 

+ 2', sinh 2 py + T,+y sinh 2 py ) (- 4 p2 cos 2 p ~ )  ax2 

(3.47) 

(3.48) 

(3.49) 

Substitution of (3.45) ... (3.49) into the con- the coefficients T<,i . . ,  T4.i a t  a free E :e are 
ditions (3.35) ... (3.44) gives the desired equations 
for the coefficients 2', ... T, of the strips. In these 
equations the terms 1 f of (3.4G) and ff' of (3.48) 
will drop out in view of the houndary conditions 
for  w, given in the formulas (3.3) ... (3.12). 

l'&,i, T1.j ... T&,j  of two adjacent strips or between 

givcn in tablo 1. 

4 Integration of the strain mergy. 

Tho fonmnla for the strain energy (2.23) call 
Thc relations hetween the coefficients  TI,^... be evaluated with the aid of the following for- 

mulas for each strip (see For example ref. 1 1 ,  
page 13) 

a/ ao (4.1) 
a 2 f  a g o  

" / I D  dzdu =JIif a22 dxdu + f (D - f  =) dY 

(4.v 

With the orientation of the x and y axes according to  fig. 2, the contour integrals are to he taken 

All integrations have hecn carried out for oiie wavelength and in view o l  the periodicity all contour 
clockwise. ') f 
integrals f ... dy vanish. 

The result then is 
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The X sign refers to summation over all strips. tions (3.35) ... (3.44), and aecouiiting for the fact 
It is seen from (3.13) and (3.14) that the "linear that apGJax* is periodic, the expression (4.4) 
terms" mentioned in .(3.13) drop out from the reduces to 
above formula, because of the periodicity of W I ; .  

From the boundary conditions (3.3) ... (3.12) it ~~2 [+ // w ~ y w y  + - / / $ M + d x d y  follows that, for all the strips, contour integrals, 

(4.12) 
containing w vanish hy periodicit,y or cancel each 
other. 

There is a good reason now to choose the still 
undetermined integration constants of both parts In  (4.12) the contour integral is only t o  be taken  
of  +, viz. the constants B ,  and R, in (3.17) and along CoTneTs and free edges (where a2$/ax2=O) 
U ,  and U,  in (3.26) in such a way that at a and n o t  along tmnsi t ions.  Note that the sum of 
corner 'a pair of integrals 

(4.5) 

2 E  
h 

h Ga = Gzj = 0 or Qi = Qj - 0, 
andFi-FI,=O 

and at each transition (fi,g. Id) 
along a transition is zcro. 

hiGzi= hjGq or EihiQi = EjhjQj In  (4.12) is substituted w=+u, and +=F + 
and hiPi c hipj '(4.6) $GI. Then 

- hj - ac, or Ei7ci - a Q i  - - a*?< h ; - -  

- hj - api (4.7) and h, - - aQi = Ejhj - 
a y i  ay i a y j  

and at a free edge 

U = 2 [ F ~ +  /I w,MW, d x d y  $- 
ay auj  ayi 

+ +2 h /"/ FAaG,dxd!, 
2 E .  

api 

h 

h a*G, ap 
At corners the functions Z E  ay* ay 

dx- v2- # - - d x  

h - 3 ds] . (4.13) 

I n  the term p* - /"]iFMG, dxdy is substituted 

the expression for M Q ,  of (2.3.7). This term then 

Gei=O or Qi=O and . .  P--O, I - .  (4.8) 

2 E  aGzi hi - -h, - 
ayi a Y j  2 

(4.9) 
and 2 E .  

ap, aFj h i  --hi- 
(4'10) becomes alli aui 

are constants. 
At free edges the functions 

(4.35) 
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The contour integral of (4.15) only remains a t  
free edges. With the substitution zul = f sin px 
this contour integral becomes 

The contour integral in (4.13) 

becomes with the substitution (see (3.23) and 
(3.34)) 

(the periodic part need not he considered) 

and the integrals (4.16) and (4.18) cancel each 
other. 

I n  the term 'p* 2 [ q M w l d x d y  of (4.13) 

is substituted the expression for AAw, of (2.8), 
which gives 

2 .  

'p2 1% u$ w, dxdy. (4.19) 

If the dcflection surface w1 is an approximate 
solution obtained by means of the potential energy 
theorem, it may happen that tlie functions w,, do 
not satisfy the boundary conditions (3.3) __. (3.12) 
as far  as they ensure eqnilibrium. Not all contour 
integrals in (4.4) containing w will then vanish. 
I n  that cme it is better not to apply the formulas 
(4.1) ... (4.3) to that part  of the function (2.23) 
which contains wl. Then the term 

of (4.13) preserves its original form 
+ 2 v >  a2w % + 2 ( 1 - v )  (%;)'I dxdy. 

ax2 ayz 
D 

9z 

Now, according to ref. 10, page 325, formula (2.10) 

D 

2 /"/" w, 3 dxdy,  
h 

2 TL/"%($) dxdy=$'p2- - 
2 j J  a p  a% 

which is identical to (4.19). 

with (4.15) ... (4.19) 
The expression for tlie strain energy, for exact as well as a;pproximate solutions w,, now reads 

+ q4 z// G,MG, dxdy - - 2 E  

(4.20) h - azG, - d z ]  ac, 

In  (4.20) 

* = a  

The three contour integrals of (4.20) must not 
be carried out along transitions (see (4.12)).  
Nevertheless two of them 

may be carried out along all transitions since then 
they will drop out again, because at a transition 

Thus for every strip 

z T  a v  
I* 

dye-- - 

(4.22) 
if b is the width of the strip, and in view of 
(3.23) and (3.34). 

E 

- T E ~  /, azQ dy I- ~ E p / 4  f' dy. (4.23) 

Furthermore, from (3.17) 

(4.24) sap,, - a v  --G, - =c. 
ay* ayz 



Substitution of (4.21) ... (4.24) into (4.20) yields 
the expression 

(4.25) 

which can be rewrittcii in the form 

(4.26) 

whcre it must he rcmemhered that the contour in- 
tegral is not to  he taken along transitions. 

At a corner (see (3.35) and (3.38)) 

and according to (4.9) 

3 6 2 ,  is a constant. At free edges (sce (4.11)) ~ a!,. 
is constant. Hence. in the contour integral 

~ 

need dx the periodic part of - a 2 6 ,  ac, 
a v  

not, he considered. 
Thus with (3.23) and (3.34) 

Since this contour integral vanishes at  all corners 

Now 
(f = 0) it only remains at free edges. 

GO 

ITL append& B n z'erificutwn of this fovntula is 
given by nieans of Galerkin's principle. 

simplified into 
For  frec edges the contour integral is further 

where the plus sign is to be chosen a t  a "right 
free edgc" (fig. 2) and the minus sign at  a 
"left free edge". 

I n  order to evaluate the integral 

// G&G, dxdcdl, 

the expressions (3.20) and (3.23) are inserted 

~ [G,AAG,  dxdy = __ (AQ + 4 l iK)dy  2 .  
(4.29) 

and 

The mean shortening per unit length is e,  the 
value of this shortening at  the initial buckling 
load is ecr. Thus, (sce (2.13)) 

C = - ex, C,, = - e,,E'. (4.31) 

The expression (4.30) gives the strain energy 
for one wave length 2 r l p .  The mean strain energy 
per unit length becomes 

ez 'P2YZ U=-XEhb + - ( e , , - - )  2 Eh / p d y  t- 2 4 

+ *X It! (4.32) 
8 

with 

R = E h  / / " ( A & +  

5 Stiffness after buckling. 

From the condition aula? = 0 with u according 
to (4.32) the solutions for  y become 9-0 and 

( e  - ~ , , ) x , E ~ L  jpdy 
q 2  = (5.1) 

p2XR 

The compressive force acting on the configuration 

K = -  au = e 2  Eh b -- "'* X E h J ' p d y  

of strips is 

(5.2) ae 4 

or with the solution (5.1) for pz, 



The mean compressive stress for all the strips is 

c = e - - -  . (5.4) 

The mean elasticity modulus is defined by E ,  = 
XEhbIIhb. The ratio between increment of mean 
compressive stress and mean shortening per unit 
of length is E ' c d u l d e .  The ratio E*/&, he- 
comes I) 

13hb - ecr ( I E h  \ fzdy 1 
Xkb 4 1zii171b) 

("/ f*dy)* 
(5 .5 )  4(ZR)(XEhb) ' -1-  

E' 
Em 
_- 

The expressions (5.2), (5.3) for the force K 
may also he obtained by integration of the mem- 
brane stresses uG in the strips. 

For a strip 
d' $ 
dU2 ' 

cz = - 

With (2.11), (2.12), (2.13) and (2.16) 
azG, 
a p  o z = - e E f y z -  

with ( 3 . 2 3 )  

and with (3.34) 

The compressive force is 

K c eXBhb - 

(5.6) 
By partial integration of the integrals 

it will be ohserved that the sum of all these in- 
tegrals vanishes since at  all corners and transitions 

d K j  - - Ejh, - dKi  Eih, - 
d!/i d!Jj 

and at  free edges 

Then indeed (5.6) is identical with (5.2). 
The compressive force acting on the i-th strip 

is also obtained hy integration of the membrane 
stresses u s ,  which delivers 

K,= eE,h,b,--E,h,/ 4 f ,%- 

I) Wis mtio is ideentietrl with the n t i o  b', , , l l~ of rof. 12, 
b" being defined in (5.8) of ref. 12. 

I n  view of the last term this force is not eon- 
stsnt in s-direction. The mean value is 

K i =  eE;h;bi--Eih+ Q"P' /f j2dy (5.8) 
4 

or with the solution (5.1) of (p2 

K j =  eEihib;- __ - ' 

e -e,, Eih  / fiZduIEh, / f l d v  

(5.9) 
4 XR 

The mean compressive stress in the i-th strip 

e - err E ;  / fi2dyXElLffi2dy 

becomes 

e.  - e E j  - __ (5.10) 
4 biIR I -  

The ratio hctwecn inercmcnt of menn compres- 
sive stress and mean shortening per unit of length 
of any strip is E;*=doi/de and the expression 
for the ratio E j " / E ;  becomes 

/fj2d!, IEh. { f*dy 
_=- _ _  -1- __ E;* 1 duj 

Ei E L  de 4 bj  XR 
(5.11) 

I t  must he emphasized t h a t  if the buckling mode 
(i. e. the function f )  or its iTavelcngth (i, c. the 
quantity :p) is varied in  the region where the 
buckling load has its minimum value, the ratio 
E*/E, of (5.5) does not take an extreme value *) 
like the exprcssion fo r  e,, in (3.15). Thus, an 
error in the buckling mode, though of little in- 
fluence on the buckling load, can have a relatively 
large influence on the ratio E.13,. If an ap- 
proximate solution for  the deflections w of the 
buckling made is used, it is necessary to be only 
content with a very good approximation. 

6 Review of the final formulas. 

The final formulas are (5.11), giving the ratio 
E;*/& for the i-th strip of the combination, and 
(5,,5), giving this ratio for the combination ar a 
whole. The I-sign refers to summation over all 
strins. Undcr the I-sim the index .i has been 

~ 

omitted. 

R follows from (4.33) where 
I n  (5.11) and (5.5) f is defined by (3.14). 

d is given in (3.21). 
Q is given in (3.26) and (327),  

whcre U ,  - U ,  = 0 and U ,  and U ,  arc such 
that a t  all corners and free edges & S O .  At 
transitions (fig. I d )  the functions Q must 
satisfy the expressions given in (4.6) and 
(4.7). 

N is given in (3.22). 
K is the solution (3.28) of (3.25) where K ,  

may be caleiilated from (3.29) and where the 
constants TI ... T, are such that they satisfy 
the equations of tahle 1. 

For the i- sign in the expression for R of 

'1 This will be demonstrated 1 n  the numerical example 
of Scetion 1.2.1. 



(4.33), the f sign is to be chosen a t  a “right 
free. edge” (fig. 2) and the -sign a t  a “left 
free edge”. 

The value for the strain a t  which buckling starts 
does not occur in the final formulas, only know 
ledge of the (exact or.approximate) huckling mode 
is necessary. If desired, formula (3.15) offers an 
expression for the strain at buckling. 

7 Numerical examples. 

7.1 Calculations for a U-section member (fig. 3) 

The width of the web is a, the width b of the 
flanges 0.35767a. The. thickness of the web and 
flanges is h. Poisson’s ratio Y = 0.3. Coordinate 

Fig. 3. Dimensions and coordinate axes of the U-profiic 
of w t i o n  6.1. 

axes are chosen as indicated in fig. 3. The exact 
buckling mode in the three parts is 

~ ~ , ~ ( u , )  = = f , ( u J  s i n w  
% . 2 ( ~ J  = f h )  s i n w  (7.1) 
wl,8(uA = f s ( u 3 )  8iny.z. 

The half wave length h=?r/p=1.1410 a (a=  
2.7534/a). It was supposed that the wavelength 
bad the freedom to take a.ny desired value to make 
tlie potcntial energy a minimum. 

The critical hnckling stress is 
T‘D 
nzh vcr = 4.0701 - (7.2) 

YI 

A, =. / f;dy - 0.39902 a‘ 
0 
y. 

B, = /’ A , Q & ~  = 0.11942 as 
6 

C,  - 1 ,” H,K& - 0.02412 u5 
6 

ZI, = Bz + C,  F 0.14353 as 

I)  RIMM (ref. 4) computed buckling loads for G-seatioa 
membcrs nith diffcrent ratios LU. Indceed, in fig. 10 of ref. 4, 
tho point IC. = 3,6780, m = 0.35iG7 lies on the curve o for 
exact solutions. The present author proridonally eliose the 
d u e s  a = 0.375, /car= 3.615 (or in  (6.2) rep = 4 n’D/a’/t), 
far \t,bich solution Ilr~.lar states that  the buokling mudc 1s 

D =40.710 - 
a2h (7.3) 

h 2  

a2 = kaE -, with k,  = 3.6786. (7.4) 

The flange width/web width-ratio o = 0.3.5767 
has been chosen in such a way that, a t  buckling, 
n o  moments occur at the corners betveer, the 
flanges and the web.’) 

Due to the symmetry of the U-section memher 
and of its hnckling mode, the calculations need 
only be performed fo r  tlie web v9 > 0 and the 
flange vI-> 0. 

The fnnctions f , ( l ~ , )  and f,(y,) are 

nu9 f,(y,) =- 1.236336 a cos - 
a 

u3 + a sin T - 
a ‘ a  fB(ya )  - 0.16537 a sinh 5.0033 

For the web the functions f,, f,‘ as well as the 
functions A , ,  H , ,  Qr.r and K,.z from (3.27), 
(3.22), (3.24) and (3.25) arc given in tahle 2. 
The Sitme functions for the flange are given in 
table 3. Zip,3 was computed from (3.29), but K,,z 
was not. 

The particular solutions &p,2 and QP.3 arc aug- 
mented with tlie complementary functions of 
(3.26) so that (3.34) and (4.5) ... (4.8) arc satis- 
fied. Thc particular solutions I<,.Z and Kp,3 arc 
augmented with the complementary functions of 
(3.28), where the constants T,,2, Tz.2, T3,*, T4.2, 

T,,3, 21,;3, T3,3 and T4.3 ‘are such that the equations 
of tahle 1 are satisfied. ,From symmetry it follows 
that T Z , ~  = T Z , ~  = 0. The equations and their 
solutions are prescnted in tahle 4. Numerical 
values of the right-hand sides of these equations 
were ealculated by numerical differentiation (see 
for example ref. 13) of the functions Kp,2 and If,.?. 

The result, the functions Q2, K, .and Q3, K, 
are given in table 2 and 3 as well aS some other 
functions which arc necessilrv in the final for- 
mulas. 

numerical integration and differentiation, 
From tables 2 and 3 have bccn calculated, by 

E,  c B, + C, + D, - 0.06592 as 

such that no  moments a c u r  st the corners (page 163, ref. 4). 
Obviously,:this is the solution nhcrc the half wave length 
would br. A = a =  2.67 b .  Prof. K o m n  ,drew t h e  attention 
of the author to tho fact  that  the latter solution cannot be 
the proper bnc if the half wam length A has the frcedom 
t o  take any h i r e d  vnluc, which is a h  assumed in ref. 4. 
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The final result for the web is from (5.11) 

-%(A, '+ 4) == 0.4004. (7.5) E,* - = 1 -  
E 4 X 0.5 u(R,  + E,) 

The final result for the flangc is from (5.11) 

The final result for the complete member is from 
(5.5) 

-1- + ")* c 0.4486. (7.7) E* 
E 
_ -  

4(0.5 a + b )  ( R ,  + R,) 

7.2 Calculntion for some other c(18cs. I) 

7.2.1 Infinite sequence of pcnels swpported by 
kinges. 

Also for the sake of comparison with tlie results 
(7.5) and (7.6) some simple ernes are dealt with. 

It is obvious that the, present formulas may he 
applicd to one panel of an infinite sequence of 
equal .panels supported by hinges in longitudinal 
direction at  distances a. The hinges are such that 
t h y  cannot absorb shear stresses. The panels are 
free to expand in transverse direction, hut at  the 
hinges thcre may be transverse membrane stresses 
q ,  whose resultant is zcro, The boundary con- 
ditions for tlie mcmhrane stress= a t  a hinge are 
those of a transition (3.39) ... (3.42). 

It, is well known (ref. 7, 2, 3) that for the half 
wave length h = a 

mtiile the ratio E*/E then becomes 

E'/E = 0.5, (7.9) 

I€ the wavelength is forced to have another 
value the deflection surface of the hnckling modc 
bceomes (- ?Lt a < y < Yz a )  

w, = f ( y )  sin p z ,  p = n/h, 
f (y) = a cos q / n .  

The functions A, H ,  Q and K of (3.21), (3.22), 
(3 .26)  and (3.28) respectively become 

A = - d cos 2 ry / a  

li = 7 2  

I n  (7.10) tlie integration constants U ,  and U ,  
of the panels require no further attention, because 
they drop out again of (7.11). 

K = a2/16 p4, 

I )  ,In the cases of this ReOtion tho bueklhg modes 
are simple s,nd the integntions have brou esrried out 
malyticnlly. 

Further 

Application of (5.5) and (4.33) gives 

Indeed at  h =a, E" /E  = 0.5. If the wavelength 
is forced to have the value h = 1.1410 a, i. e. the 
value for the web of the 7,-section member of 
section 7.1, then 

(7.12) E' - - 0.5i4. E 

The buckling stress for h = 7.1410 a is 

(7.13) 16 772 u 
a% , IC = 4.070. UC, = ___ 

The fact that the result (7.12) is so remarkably 
different from the result (7.5) can be explained 
by the fact that for the web of the U-section 
member at  the corners all membrane stresses (ry 

must be zero (compare appendix A on the boun- 
dary conditions at a- corner). 

Note that a change in wavelength from X=n 
to X=1.1410 a, only changes k from l i = 4  in 
(7.8) to k r 4 . 0 7 0  in ( i . 13 ) .  The value of the 
ratio E'IE is, however, cha.nged much morc, viz. 
from E"/E=00.5 to E ' l E c 0 . 5 7 4 .  This is due 
to tlie fact that the ratio E*/>;, in contrast to the 
huckling load, does not show an extreme value at  
A =: (I. (compare discussion at the end of section 5 ) .  

Also for changes in the function f ( y ) ,  indicating 
the buckling mode in y direction, the ratio E'IE 
does not take an extreme value. Take for example 
A = & ,  p-=/a and add to f ( y )  the deviation 
c cos 3 ny/a,  thus 

f ( y )  =a cos r y / a  + c em 3 .?//a. 

Application of the proper formulas delivers 

-1-  2 
E" 
E 
_ -  

2 + 2 - + -  c a 476 25 (G) + 42 (2)' Q 

which result does no t  take an extreme. value a t  
c=0 .  
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7.2.2 Sides of a conipvessad tki?twcilZad square 

The sides have the width a ( -&a  < y < f a)  
(fig. 4 ) .  Poisson's ratio v = O . 3 .  The huckling 
mode is 

tube. 

Fig. 4. Coordinate 8x8 o f  the squu'wc tubc of section 7.2.2. 

w1.i = f ,  (Y)  sin PSC 

w , , ~  =fz(y)s inpx ,  etc., p-rr/A, A = a  

f f (y)  = a c o s n y , / a  

f, (y) = - [k cos 7?Jz/a, ctc. 

The functions A,  If, Q and Ku of (3.21), (3.22), 
(3.26) and (3.25) respectively become 

A,  = A ,  = - 2 ~ 0 s  2 =y/a 

H ,  ,= II, = n2 

From sym,metry considerations it follows that of 
the constants 1' of (3.28) T2,, - T3,, Ta,a = 

For the remaining constants l ',,~, Ta.,, T , , l  and 
T*.a the equations (l) ,  (Z), (3) and (4) of tahle 1 
are valid. It proves that these equations can be 
reduced to 

T3.2 = 0. 

T3.i = Ti,2 
T4,I T4,2 

a .  
2 

T1.i eosh 7 + T4.1 - smh 7 = - 0.00633257 a' 

Ti,, 2 T sinh 7 f T4.i a(* cosh 7 + sinh 7 )  c 0. 

From the latter equation it follows dhat there 

The solutions arc 
are no shear st,resses T a t  the corners, 

T1,+ = - 0.0022169 a' 
Tb, j  = 0.0033537 a3 

aria 

!I, V I  - + To.* yl sinh 2 'X  - 
( I  a 

K ,  = K , ,  I- T,,i oosh 2 

1 y II,K,dy = 0.0059427 a6. 

-h u 

d 

Application of (5.5) and (4.33) gives 

1 - 
= 0.4083 

E,* 16 -=I-- 
E 

4 (& i 0.0059427) 1 

(7.14) 

Cos, ref. 15 also obtained this result (plate with 
at the houndaries w = 0, q, c 0, r = 0, A = a, 
v = 0.3). The fact that the result (7.14) remains 
about 20 % hclow 0.5 must again be explained by 
the fact that the  membrane stresses vu are zero 
a t  the corners (compare appendix A on the houn- 
dary conditions a t  a corner). 

7.2.3 Plate with one hinge omd one free edge .  

The width of the plate is b .  It is supposed that 
both at the hinge and a t  the free cdge the mem- 
Iirane stresses vu and 7 vanish. It is further sup- 
posed that the half wa.ve length A is forced i o  have 
the value, 

7 A=-- - 3.19009 6, 
P 

p = 0.98480/6, 

of the flange of the U-section memher of sec- 
tion 7.1. 

For the deflection surface of the buckling mode 
is now takcn the approximate solution 

w , = f ( y )  singz. 
f ( Y )  =?I. 

The functions A,  II, Q and KO of (3.21), (3 .22 ) ,  
(3.26) and (3.25) respectively become 

A = l  
W - 1  

y4 vi13 Q C--- 

24 24 



The equations for Ti, T,, T,, T, of table 1 
and their solutions arc given in table 5 .  

K = K , +  ( T , + y T , )  cosli 2 fiy+ (T,+yZ',) sinh 2 p!, 

j fZdu= + bS 
0 

li 
r 

D b 

The result (7.15) is less tha.n the result (7.6) 
for the flange of the U-section memher. The reason 
is that in the latter the shear stress T at the corner 
is not zero. 

8 Conclusions. 

The present method to determine the rcductiori 
in  stiffness of eomhinations of rectangular plates 
in compression a t  loads slightly above the buckling 
load. could be very well applied to numerical .. 
examples. 

For complex configurat,ions, though the method 
remains straiehtforward. the aid of an electronic 

~ 

digital computer may he desirable, but only routine- 
pwrammes  (solution of linear equations, numeric- 
al integration) will be necessary. 

If the exact solution for the buckling mode is 
used in the calculations, the results are also exact, 
apart from errors due to numerical integration and 
differentiation, but these errors can easily be made 
as small as desired. 

Since the minimum theorem of the potential 
energy is used, solutions for the load derived, for 
a givcn compression, from the present formulas 
will be too large if an approximate solution for  
the buckling mode is used. ') This is also the case 
if the exact mode of buckling is used and the 
present formiilas are applied for loads in  large 
excess of the buckling load. 

The numerical examples clearly demonstrate the 
influenee of the wavelength of the buckling mode 
and, especially, the great influence of the boundary 
conditions of the membrane stresses. One of the 
remarkable results was that the sides of an in- 
finitely long, thinimllcd square tube showed a 
ratio Eb/E=0.4083 in stead of the value of 0.5 
obtained for the well-known case of an infinite 

') Strictly, this is only true for the work donc during 
the compression. 

sequence of simply-sopported panels, which have 
the same buckling mode. 

I n  view of the great influence of the membrane 
stresses on the final result, it is desirable that 
they a.re derived from the deflections of the 
huckling mode with the aid of the proper differen- 
tial cqua.tion, as is done in the present work, the 
more so, since it is much more difficult to choose 
n pattern for these st,rcsses by intuition than to 
do so for a buckling mode. 

Furthermore, it  should be cmghasized that if 
the biickling mode in t,raiisve~sc direction or its 
wavelength is varied in the region where the 
huckling load has its minimum d u e ,  the ratio 
#'/E does not take an extreme value. Hence, if 
an ex& huckling mode is not uscd, one should 
only be content with a very good approximation 
of the buckling mode. 
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APPENDIX A 

Kefiibed andysis of the boundary wnditwm at 

A.1. More freedom for the,  varying niembrane 
stresses. 

I n  the main text of this paper the boundary 
conditions at any corner have been given a eqs. 
(3.3) ... (3.6) and (3.35 ... (3.38). Hence, eight 
houndary conditions are available for the dis- 
placements w and the membrane stresses, derived 

Q C O Y W T .  

from the functions $. 

and (3.36), 
S t r i d y ,  four of them, viz. (3.31, (3.41, (3.35) 

wi =constant \ 

%, = 0 I 
are incompatible, since it is impossible to  prescribe, 
along the boundary of a plate, displacements as 
well as stresses norma1 to the boundary. 

I n  order to perform a refined analysis of these 
boundary conditions it is necessary to allow for 
more freedom in the variations of the displace- 
ments w and the membrane stresses, stemming 
from $. Suppose, in stead of ( 2 . 6 ) ,  

W=qW1 + q2WZ f Q'W, + ._.._. (-4.2) 
I n  (A.2) the functions tul,' w, I wa ...... are of 

the order b, where b is the order of the panel 
width. An n-th derivative is of the order bl-", for 
example 

w ,  =b (sinaylb) ( s i n d b ) .  

Suppose, in stead of (2.16) 

$ = B +  G ~ Z , V , Q )  
where 

G(%, y , p )  Z Q G ~  + p2G2 + ~~6~ +p4G, + ... (A.3) 
The compatibility-relation (2.2) betaem $ and w 

is written in the form 

M$ = J [ W . W ] ,  (A.4) 

where J[p.y] means 

From (A.2) ... (A.5) it,follows by equating terms 
of the same power of that 

. .MG,= 0 (A.6) 

MG,=J[w, .w, ]  (A.7) 

M G a  = 2  J[w, . w,] (A.8) 
AAG4=2J[w,.tu,J f J[W,.W,]. (A.9) 

G6 

From (A.7) ... (A.9) it follows that the order 
of G,, G , ,  G, is 

G, = Ord ( E b 2 )  

G, = Ord (Eb*) (A.10) 

G, c Ord (Eb2j 

if E denotes the order of elasticity moduli and b 
the order of panel widths. 

The expression for the strain energy (2.23) is 
written in the form \ 

U=Z(I,[W.WI + I A + . + I )  (h.11) 
where 

After suhstitutiori of (A.2) and (A.3) into 
( A X )  the resnlt is 

U = Z ( U ,  + pUj + p21Jr + p3Us + p4U4 + ...... ) 
(h.14) 

u, = 1 2 [ F .  PI ( A X )  

,U,  = 2  I , [ P .  GI] (A.16) 

~ J , = I , [ w , . w , ] + I , [ G , . G , ] f 2 ~ , [ ~ . G , ]  (8.17) 

ivhere 

U ,  = 2  I , [ w l .  w,] + 2 &[GI. G,] '+ 

u, =z r , [ w , .  W,I + r I [w , .  W,I + 

, .  
'2I , [P.G,]  (A.18) 

I , [ O , .  G,] + 212[G,.  G,] + 2 1 2 [ J ' .  G , ] .  (A.19) 

For an infinitely long configuration, reversal of 
the sign in Q cannot change the strain energy and 
thus (A.14) reduces to 

U = Z ( U ,  + + Q4U4 f ..,... ). (A.20) 

Tho 'parameter Q must obey the conditions 

. Z = X ( 2 p 7 J 2  f 4Q3u4 f ...... ). (A.21) aQ 
There is always a solution p = 0, which is not 

stable heyond the 'buckling load. 
If the configuration is not infinitely long it 

may behave if it were infinitely long. But if, 
for example, a short U-profile is compressed such 
that at the ends the displacements in the y direc- 
tions are suppressed, curvature of the elements of 
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tho U profile will occw at all loads. Then in 
(A.14) the coefficients of the nneven powers of p 

From (A.27) and (A.29) follows 

. (A.30) a g o j  a y j  a2wj awj are not zero and the U-profile has not a well de- 
fined buckling load. as2 a s  ' ay j  w ay, 

_- - - _ _  - - - 
With the siihstitution A.2 The boundrwn conditions. 

For the sake of convenience, it is supposed that 
the panels bounding the corner are a t  a right angle. 
The final conclusions.' however. are also valid for  - " . r l  other angles. E 2.I . -  - \m - - Y  +) 

The boundary conditions (A.1) are now replaced 
hy the proper ones (fig. 5) cq. (A.30) becomes '. 

F'ip. 5. Foxes acting on an element at the comer. 

-- Vq,i.  (A.25) - U&j - Uv,;hi - - 

I n  (A.24), Vw,j is the reduced shear force 
(Qq-aJf&z) in the j-th strip at the corner. 
Equation (A.22) is reduced to a relation between 
+ j ,  wi and wj in the following nay 

awi 
aYi 

Thus boundary condition (A.22) becomes, 

-+ (2 + ") __ I _ = _  

(A.31) a*wj awi 
azz a l l j  

a%)i a+j axz , UW.J = - ascz 

+ -  -. 

I n  condition (A.24) is substituted 

uv,< = - 

which results in 

, With the aid of 
_=- 

+i =Fi + Gi , +it== Fj + G, (A.29) aez,j azui awi azwj 
ay ,  azayj a% aXa!lj ' 

+ -  __ 
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the boundary conditions (A.31), (A.32), and along 
the same lirles (A.23), (A.25), become 

(A.33) 

(A.34) 

I where 

Substitute in (A.33) and (A.35) the expressions 
(A.2) and (A.3), 

W = y W ,  + Qzw2 f ...... 
G=yG, + Q’G~ + ...... 

Separate the ohtained equations into parts of 
equal powers of 7. Some results, to  be used 
further, are 

azGli __  
- ax*aYj ax2 

aSwlJ + (2-”)-/ a3wl (A.38) hi __ 

and 

(A.39) a w i i  aw,j 
ax* auj  +hj- -. 

From (A 6) did not follow an order of G , ,  but 
from (A.38) follows the order of GI, for the 
whole panel, 

C,, - Ord ( E h Z ) ,  (A.40) 

But then, see (A.37), at a corner 
if h denotes the order of panel thicknesse?. 

while the normal order for a second derivative 
of w l i  is 1/0. It is thus allowable, in view of 
the smallness of the ratio h/b, to put as boundary 
condition for tu, 

(A.41) 

From (A.39) it follows 

while from (A.10) it is obvious that the normal 
order of a second derivative of Gzi is E. It is 
thus allowable, in view of the smallness of the 

ratio -, t o  put as boundary condition for Gni  h 
b 

(12.42) 

I n  the cxpressioiis U,, U,, U ,  of (A.15) ... (A.19) 
terms, which are an order hz/bv lower than the 
others, are neglected and (A.20) becomes (P is 
of order Eh*) <. 

u=x { I , [ F .  PI + qP’(Z,[w1. w,] + 
2 I , [ P  . G , ]  f y4 I , [ G , .  G , ]  t ... } (A.43) 

The fact, that in (A.43) only w,, P and G, 
remain, justifies the supposition, made in (2.6), 
(2.11) and (2.15), namely 

42, Y, P) =w, (A.44) 

$ = F  + G ( ~ , g , q )  = P  + qzG2. (A.45) 

Thus (A.43) is the expression used in the eal- 
culations of section 4. 

Since, as boundary conditions, (A.41) and (8.42) 
were already accepted, it is allowahle to put 

and likewise 

which WBS to be proved. 

APPENDIX €3 

Verificntwn of the deriued formuh (4.27) for 
the strclin mergy. 

I n  section 5 a solution for the parameter ‘p has 
been obtained by integrating the strain energy U, 
and the proper valiie of Q has been determined 
by putting 

- 0. 
a 7i 
a, 
_-  

The solution of ‘p can also he obtained by 
following Galerkin’s method (see e. g. ref. 14, 
page 137). With this method also displacements 
arc varied which, of course, (the proper solution 



excluded) do not satisfy equilibrium conditions. 
However, the equilibrium conditions can be sa& 
fied i f  additional surface and mass forces are 
introduced. Galerkin’s method requires that the 
work, done by these additional forces through their 
displaccmcnts, vanishes. In  the present case these 
additional forces consist only of forces pcrpendi- 
cular to the ,plate. Per unit of surface area the 
expression for these forces reads 

(4.26) by following another line. I n  the form 
G,MG, is substituted the expression for MG, 

Aftel. substitution of 

*=Q% t 

+ - F  f ‘pzG2, 
and 

Now a t  all corners G, = 0, w, = 0. A t  the frec 
edges G,=O. At trsnsitioiis (fig. Id)  (see (4.6), 

According to Galcrkin’s principle (the X-sign 
refers to integration over all panels) 

2 ,(/ qui dzdy = 0 

and togctlier with 

and with (4.21) 

(B.4) 
To (B.4) the integration formulas (41) ... (4.3) 

are applicd. The result is 

w, ;=w, j  



70 

From the four contour integrals in (B.5) only the last one remains at free edgcs, and thus 

For the contour integral in (B.7) holds the equality 

The substitution of (B.7) and (B.8) into equation (4.27) delivers 

+ q2h(C-CC,,)rp / 4f2dy 

au 
aQ Putting - = O  givw 

from which is again found 

S h r p ( C  - Oc,) 1 f'dg 

+ -  - 
,$ = - (B 10) azG azw, 

axay say 
sh ~ l i  w1 ( a z c r ,  azw, a w ,  a*w, - 2 L  __ 

a g  a x 2  azz a u 2  

The reason that in the present calculations no use is made of the Gslerkin method lies in the 

/"( G,MG,dxdy 

fact that the form 

.. 
was easifr to integrate numerically than the form 



TABLE 3 

Functions which refer to the flanges of the U-section member of section 7.1 and fig. 3. 
I 

- y J b =  -->/a= fJu= f;'/a'= A,  = 100&p,&4= 1001ip,,/a4= 100&,/a'= 100K,/a4= lOOA,Q,ja'= 50H,&,/a'= 
y J b  d a  f.la f,'/a' A, Ha 100 Qp,a/a' 100 K,s/a '  100 QJu4 100 K,/a4 100 A,&&' 50 HaIfaja' 

' I  I I I I 1 I I 1 1 
0 
0.00010770 
0.00173652 
0.00890494 
0.0'2865300 
0.07157398 
0.15259527 
0.29204651 
0.51706690 
0.86341911 
1.37779569 

0 0 
- 0.103925 - 0,0296810 
- 0.206349 - 0.0334935 
- 0.303431 - 0.0239661 
- 0.388817 - 0.0099452 
- 0.453716 f 0,0026964 
- 0.486970 f 0.0105673 
- 0.475121 + 0,0124458 
- 0.402412 + 0,0091201 
- 0.250898 + 0.0033598 

0 0 

15.7173 
15.6399 
15.4741 
15.1673 
14.6511 
13.8401 
12.6293 
10.8916 

0.00866705 
0,02731314 
0.06644674 
0.13722549 
0.25310665 
0.42981791 
0.68539519 
1.04032550 

TABLE 2 .  

Functions which refer to the web of the Ti-section member of section 7.1 and fig. 3. 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

- 1.26336 
- 1.24781 
- 1.20153 
- 1.12567 

. -  1.02208 
- 0.89333 
- 0.74259 
- 0.57355 
- 0.39040 
- 0.19763 
-0  

1.59608 
1.55703 
1.44367 
1.26713 
1.04465 
0.79804 
0.55144 
0.32896 

- 15.7527 
- 14.9818 
- 12.7442 
- 9.2593 
- 4.8679 

0 
4.8679 
9.2593 

15.7527 - 1.01073 
- 0.91138 
-0.61819 
- 0.14520 

0.48570 

1.71299 
1.71299 

1.00862 
0.99544 
0.95594 
0.89032 
0.79920 
0.68409 
0.54817 
0.3 9 7 44 
0.24240 
0.10056 
0 

110.41398 1 
103.52214 

7.94424 
7.84044 

- 7.00921 
- 6.90986 
- 6.61667 
- 6.14368 
- 5.51278 
- 4.75154 
- 3.89055 
- 2.96038 

15.7527 
15.7527 
15.7527 
15.7527 
15.7527 
15.7527 

1.71299 
1.71299 

84.32417 
56.88618 
26.83566 

7.52933 
7.01246 
6.29475 
5.38812 
4.31761 
3.13039 
1.90923 
0.79203 
0 

1.71299 
1.71299 
1.71299 
1.71299 
1.71299 
1.71299 
1.71299 

1.24694 
2.10793 - 18.93881 

-27,41105 O'O I 15.7527 
~~~ 

3.03810 
4.00986 
5.00134 
5.99848 

0.15241 
0.03906 

12.7442 
14.9818 

15.7527 
15.7527 

-25.34337 1 
- 14.93895 

- 1.98862 
- 0.99714 i 0 75.7527 15.7527 

I - 

0.00 1 0 I 0 

0 1 15.75271 I 
0.10 0.035767 0.1418800 0.0201299 15.64957 
0.20 0.071534 0.2833010 0.0802594 15.35707 

15.7527 I 0 0 
- 0.23377 
- 0.26369 
- 0.18834 
- 0.07777 + 0.02086 
f 0.08014 + 0.09117 + 0.06311 + 0.02122 

0 

0 
- 1.62638 
- 3.16892 
- 4.52894 
- 5.61439 
- 6.35931 - 6.72325 
- 6.65105 
- 5.96589 
- 4.15699 

15.7523 1 0.00010737 
15.7458 0.00171567 

0.50 
0.60 0.214602 0.8379596 1 0.7021762 13.80629 1 
0.70 1 0.250369 , 1 0.9736619 0 9480175 13.99863 
0.80 0.286136 1.1089678 1 1:2298095 I 14.82420 1 
0.90 0.321903 1.2448796 1.5497253 16.56848 
1.00 1 0.35767 1 1.3828608 ~ 1.9123040 ~ 19.59115 1 

O I  I I I I 1 



Coefficients of the unknowns 

alb.3 1 T3,3 aT4.3 

0 

I Tt,3 j j Tg.2 

n 

sinh pa 0 To 1 .  cosh p a  

2 pa sinh pa pa cosh p a  0 -1 - 2 p a  
+ sinh pa 

4 p2az cosh pa 2 p'a* sinh pa - 4 pzaz 0 n ' -4pa 
+ 4  pacmh pa 

known right From (...) 
hand sides of table 2 

- KP.2 (;) (1) 

-aK,I (+) (3) 

- a2Kp,; (%) (4) 

+ axp,$ ( 0 )  

/I 

+ a2Kp.i ( 0 )  

cosh 2 p b  

0 0 2 pa sinh 2 pb 

O I  
0 

I 

-Kp.3 ( b )  (1) 
b . ;  
- sinh 2 pb a 

b 
- cash 2 p b  a sinh 2 p b  

2 p b  sinh 2 p b  
+ cosh 2 p b  

2 pa cosh 2 p b  2 p b  cosh 2 p b  
4- sinh 2 pb 

-aK,,> (6) 
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TABLE 5. 

Equations of tahle 1 for the plate with one hinge and one end free of section 7.2.3. 

known right 
hand sides 

Coefficients of the unknowns 
Fpom (...) 
of tahle 1 

O 1 
eosh 2 p11 

2 p71 sinh 2 p b  

I 

cosh 2 p b  

2 f i b  sinll 2 ph 
'+ cosh 2 pb 

0 

sinh 2 p71 

0 

0 

sinh 2 pb 

2 pb cosh 2 p11 

+ sinh 2 p b  

With p = 0.98481/b 

T, 
bT, + 1.96960 T ,  

0.066449 11' - _- 
- 0  

3.65366 T, + 3.G5366 bT, + 3.51415 T ,  i- 3.51415 bT, = - 0.066449 7)' 

6.92147 TI + 10.5751 bT, + 7.19625 T, $. 10.7104 bT, c= 0 

The solutions are 

T ,  = - 0.066449 b' 

T, = - 0.063333 bS 
T ,  = 0.032155 b 4  

T ,  = 0.083870 b8 
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