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PREFACE.

This volume of “Verslagen en Verhandelingen” {= “Reports and Trans-
actions”} of the “Nationaal Lucht- en Ruimtevaartlaboratorium” (N. L. R.)
(== “National Aere- and Astronautical Research Instituie”) contains a selec-
tion of reports by the N.L. R, completed in recent years. As sueh, it is
a logical continuation of the series up to Volume XXI of “Verslagen en
Verhandelingen”, which was published in the end of 1959, containing treatises
on houndary layer theory, lifting surface :theorj' and’ non-stationary aero-
dynamics. The preceding Volume XXII, published in the course of 1959,
eontained one comprehensive report, entitled “Boundary values in lifting
surface theory”, by E. van Spiegel, whieh served the author as a thesis
for the degree of doctor of the technical scicnces at the Technologiedl
University, Delft.

The printed reports of the N.I1. R., which are collected at more or less
regular intervals in the volumes of “Verslagen en Verhandelingen”, form
only a part of the publications issued by thée N.L.R., A scries of multi-
graphed reports and of publications in scientific and technical journals on
research subjeets studied by N.L.R. is continuously growing. Both the
multigraphed reports and the preprints of the reports meant for bound
volumes of “Verslagen en Verhandelingen” are distributed as soon as they
become available.

A list of all printed and multigraphed papers, eovering the period from
1956 up to the end of 1960 is included in this volume of “Verslagen en
Verhandelingen’, The coni!plcte list of publications issued between the years
1921 and 1956 is available upon request.

Amsterdam, July 1961. C A, J. Marx

Director of the
“Nationaal Lucht- en Ruimtevaartiaboratorium”,
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_ Theoretical determination of the power efficiency and overall
flow behaviour of free jet wind tunnels with
special emphasis on transonic wind tunnels

by

. F. VAN DER WALLE

Summary.

The power efficiency and the overall flow characteristies are theoretically derived for a free jet transonic wind
tunnel. The derived formulae appear to he applieable to all types of wind tunnels (sub-, trans- and supersonic; with and
without free jets).

" It is found for the ease of a transonic free jet wind tunpel that the results are in good accordance with experiments,

The theory given in this report is an extension and modifieation of the theory given by R. HERMaNN in ref. 4 and 5.
In contrast to the theory of HERMANN a loss factor A is introduced which describes the combined influence of mixing losses
in the fres jet boundaries, tunnel wall frietion drag, drag of model support and the re-entry losses of the air flowing
through the permeable test section walls,

Because of the introduction of the factor A it is possible to treat the cross section of the diffuser entry as an inde-
pendent variable. As a consequence a hlocking phenomenon with respect to this cross section is found that is analogous to
the blocking phenomenon due to a too small diffuser thrort in the case of closed wall wind tunnels.

In scetion 3.2 of this report & comparison is given of the measured and caleulated power efficiencies for the fransonic
free jet wind tunmel of the NL.L. together with an estimatc of the permissible model drag coefficients,
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this way particular properties of iree jet tunnels
can be explained at least qualitatively. For in-
stance HERMANN cites in ref. 4 page 34 that it
was only possible to achieve pressure equilibrium
in the Peenemiinde tunnel, if the diffuser intake
area was enlarged above the value mostly em-
ployed in free jet wind tunnels. This enlargement
was necessary when large models at low Mach
numbers were tested. This can be explained by
the present analysis. The analysis shows also that
the effeet of the re-entry in the diffuser of the
mass of air flowing through the permeable test-
section walls is analogous to the effects of model
drag, wall friection drag and shear stresses along
the free Jet boundaries. The influence of all these
effects is deseribed by one parameter A, called the
loss faetor. As a consequence the application of
the analysis is not limited to transonic wind tunnels
but ean also he extended to supersonic and subsonic
wind tunnels with and without free jets,

The influence of the parameter A is largest, how-
ever, for test section Maech numbers close to unity.

A schematic drawing of a free jet transonie
wind tunnel, on which the analysis ig based, is
given in figure 1. -

The characteristic properties of this {ype o
tunnel are mainly determined by the flow-pheno-
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Fig. 1. Sketch of transonic semi free jef windtunnel.

1 Introduction.

The theory given by HErMANN- in ref. 4 and 5
explains some fundamental properties of free jet
supersenic wind turnels. In a discussion on the
applicability of the results of Huwmann to the
N.L.IL. transonie free jet wind tunnel, it he-
came apparent, however, that in order to deseribe
the special characteristics of this tunnel type some
modifieations and extensions would be necessary.
A closer examination revealed that the fixed
relationship between free jet length and diffuser
intake cross section had to be revised and in ad-
dition that the effect of the re-entry in the diffuser
of the mass of air flowing throngh the permeable
test section walls had to be taken into aceount.

The subsequent analysis will show that in

mena oceurring between the cross sections 1 and 2
{see fig. 1).

The air flowing through the test section will he
partly deflected outward and will flow through
the permeable tunnel walls because of model block-
age, This small mass flow of air will he denoted
by wm,; from this air practically all kinetic energy
will be transformed into heat. Experience with
transonic test seetions indicates that this mass of
air will not flow back again through the test seetion
walls behind the model but has to be induced in
the flow again at the diffuser entry.

Along the free jet houndaries mixing takes place
between the main flow and the air in the plenum
chamber. Because of this mixing and its associated
impuls losses in the main flow the free jet will
expand. The expansion angle ¢ is dependent upon




the pressure difference p.— p, and the shape of
the model support that will be loeated mostly in
the free jet. In addition the angle ¢ varies slightly
with Mach number (see ref. 2),

The first part of the diffuser consists of a -paral-
lel section. In this part the {ransition oeeurs
from the non-homogereous velocity distribution at
the entrance to a homogencous one at the end.

On the model, model support and the tumnnel
walls are acting vespeectively the drag D and the
friction force F. Along the free jet boundaries
work shearing stresses, denoted by +.

In the next chapter the equations will be derived
that govern the hehaviour of the air within the
dotted lined control surface in figure 1.

The total pressure ratio Pas
1

M, in the diffuser intake and the stability of the
solutions will he determined as a funetion of the
test section Dach number M, the tunnel con-
figuration, and the loss factor A. Just as is done
normally in the derivation of the normal shock
wave equations, only the state of the homogeneous
flow in eross seetion 2 will be determined. Apart
from the introduction of the loss faetor A, the
detatied flow phenomena between the cross sections
1 and 2 will not be considered.

, the Mach number

c. Conservation of energy.

i L)
iy

L 21-}--.}2&12: Y
y—1 pm Y

The following assumptions have been made:

1. AN changes of state are adiabatic.
2. All transverse velocities are neglected.

The righthand sides of the equations (1), (2) and
(8) are identieal to those of the normal shoek equa-
tions. Because of this it can he expected that the
equations (1}, (2} and (3} will yield two solutions
for the state of the flow in cross section 2 one with
a subsonie and one with a supersonic Mach number.
The two solutions are related to each other in the
same way as the two solutions of the normal shock
equations.

In appendix A it will be shown that from the
equations (1), (2) and (3) the following expres-
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sions can be derived for the Mach number M, and }
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In chapter 3 the results are diseussed and ap- 1-£yM2
plied to the case of the N.IL.L. transonic wind v—1 % -
tunnel. i, (1 + 12 Mﬁ)
= - (4)
s . f — — z
2 Derivation of the equations. and bt (R — 1)+ y(I— M)A,
Pat
2.1 Determination of M,, = and L, 1 20y —1)
P a8 14+ X Mt
The following conservation laws are valid: Pu __ M, oz (5)
p{g }?ﬁl} ] T—"l
. 1+ M2
a. Conservetion of mass. k )
puSiUy == p,8,U, (1) The symbols uged are defined as follows:
where p is dénsity, § is the cross sectional arca and . .
U is the axial velocity. The indices 1 and 2 are joooSs  Qiffuser intake area (6)
related to the eross sections 1 and 2 in figure 1, S, test section exit area
5§ PP pressure differential between pressure chamber and test-section D
- p test seetion pressure '

b. COouservetion of impuls.

— D Fy—m, — f +.d8 + .S, +
jet
pc(Sz'”‘Sl) =+ S1P1U12: pzsz + S2P2U22 (2)
where p is the static pressure.
The assumption is made that the wall frietion
forece F iz composed of the following parts:

1. The friction F, in ease m,=={.

2. The additive frietion foree wm. U, in case a
mass flow m, is deflected through the perme-
able walls,

This assumption seecms realistic as practically all
kinetic energy of the mass flow m, will be trans-
formed in heat during passing through the perme-
able walls.

D+F0+J1’ds

jet

Uy

i, )
A== —m—m—  with m, =m, +

S-1P1U1 ,.

(8)

A will be called the “loss factor”.
With equation (4) the two values of M, can
he determined for given values of h, M, 8, ¥
and A, where-after with equation (5) the two

values of P can be ecaleulated.
1

2.2 Delermination of the stability of the solutions.

3 Pt

D1 ..
53 directly

determines the statie stability of the solutions,

It will be shown that the quantity



If in a eertain tunnel set-up. h and M, are
fixed, the eonly parameter than can vary under
the influence of disturbances is the parameter
8___p c— P

A
on the parameter A i3 assumed to be zero.

Suppose now that an eguilibrium condition is
disturbed in such a way that the plenum chamher
pressure p. is enlarged above its equilibrium value.

The equiltbrium condition can only be restorved
in "case mote air eseapes through the diffuser
than enters through the test seetion. The vatio
mass flow through diffuser , I to Dot - Sy
mass flow through nozzie 5 equa Pre Sy
where 8, = diffuser throat area and §;, = nozzle
throat area. Therefore, for a given tunnel geo-
metry a necessary condition for this to happen,

. The influence of the disturbances

is that the parameter —ﬁﬂ must become larger
1

because of the increase of p, (and of §).
The criterion for static stability is then:

3 Doy

Pa
35 T 0. A9

In Appendix A the following expression will be
derived :

: %
o P2 B TRE
. p'l!, . PQt (h——'l) }[2 2
TR i, 71
1+ M2
\\ B b }
(10

Prom equation (10} it follows that the stability
criterion is satisfied for every value of M, and M,
it h>1,

As this is normally the case in free-jet wind
tunnels both solutions of the equations (4) and
{5) will be stable in normal cases.

2.3 Comptability of the solutions with the second
" law of thermodynamics.

It may be possible that not all solutions of the
equations (4) and (5) can be rvealized physieally,
The condition imposed by the second law of thermo-
dynamics on the solutions is, that a decrease in

entropy is forbidden. For the entropy S per unit .

mass the following expressmn is valid:
8 = — Rlnp,+ € ) (11)

where R == gasconsiant,
pr== stagnation pressure,
C = mtegratmn constant.

" From equatwn (11) and the second law of
thermodynamies it follows that always the ratio
Pt

1.

It can be shown, however, that a more severe

[h

restnntmn is placed on the ratio Pa

should be smaller than 1.

. A consider-
|
ation of figure 1 revedls namely that several losses

are 1ntroduced in the air flow Lefore the trans-

formation to a homogeneous veldeity distribution
takes place in the diffuser intake section.

All of these losses are accompanied by entropy
increases and are related to the following pheno-
mena:

@¢. The re-entry of the mass flow m, in the

diffuser intake.

b. The drag D of model and model support.

¢. The friction force F on the tunnel walls.

d. The shearing stresses 7 along the free.jet

boundaries.

The entropy inerease between the sections (1)
and (3} is dependent upon the detailed flow dis-
tribution. 'When some crude assumptions are made,
howaver, the following approximative eriterion can

be derived for the parameter—}—jjei (see‘appendix B):
1t

~ Ay
P ( y—1 r-1
o= = 2
= 1 5 M, ) . (12)

On the basis of the assumptions made in appendix B

the upper hound ( L

Pt M limit
ed -by the Mach number M,, the “loss factor”
A and y.

is completely determin-

§ Discussion of the results.
3.1 Results for erbitrary values of M, and h.

From equations (4) and (5) it ean be seen that
A and A are the only parameters that take into
account the free jet character of the wind tunnel,
whereas also other factors contribute to the value
of A. The loss-factor A is built up in the following
way (see equation 8):

u. The influence of the re-entry of the mass

flow m, (characteristic of transonie wind

tunnels).
b. The wall-friction force F, (charaeteristic
c¢. The drag of model and of any

model support tunnel type).

d. The shear stresses r along the free jet bound-
aries (characteristic of free jet wind tunnels).

This means that the present analysis is valid for
all types of wind tunnels; only in the ecaleulation
of A and h the specific character of the tunnel
has to be taken into aeccouht.

The parameter § will be token equal +o zero
in the remainder of this chapter, as pressure equi-
librinm will be preseribed for flexible wall transonie
wind fonnels and is mostly desired for sapersonie
wind tunnpels. The influence of & has been des-
cribed in detail by HErmawn in ref. 5.

" In figure 2 the solutions for M, are given for
h=1.25 as a funetion of A and M,.

As remarked already, for most combinations of
A and M, two real solutions are found for M,,
a supersonic and a subsonic one. This - stems
from the faet that in equation {4) the gquantity

1 %
M, (1 +7—2“5122)

1+ yMS?
{see figure 3).

has a maximum for M, =1




o

test scetion Mach humber. The Mach number A,
equals 1 for A =Amax. Amsy indicates the maximum
allowable value for the drag, friction forees, ete.,

There is an upper bound for A above which no
real solutions for M, are found (see figure 2).
This maximum value Apa. is a function of the

M2
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Fig. 2. The Mach number M, as a funection of A aund M,
for h=1.20 and 3 ==0.
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above which no real solutions for the tunne! flow
will be found. The curves for M, shift to smaller
values of A when M, inereases from M,=10 and
also when M, diminishes from M,=—ow . There i
a Mach number (3,)cr¢ for which the eurve Ilies
most to the left.

This Mach number is somewhat larger than.1l
and it represents the most eritical operating con-
dition of the wind tunnel as for this Mach number
the maximum allowable value for A, Ap.., is the
smallest, (M) is dependent upon the parameter
hos diffuser intake area

" test section area

For h==1 this eritical Mach number also cgquals
one and the associated value for A is zero, This
can bhe seen easily from equation (4) by introducing
M,==1 and h==1. With increasing values of h,
(M) erie and Ayax also inerease (see figure 4).

Figure 2 shows that the influence of A is largest
at Mach numbers somewhat greater than 1. This
is aggravated by the fact that A will tend to be-
come relatively large at these Mach numbers (high
drag coefficients’ for model and model support in
transonie flow).

In figure 4 Amax is given as a funetion of Maeh
number for §==0 (pressure equilibrium) and for
some values of h.

From figure 4 the conclusion can be drawn that
for a given value of 2 a lower bound, Ay, for I
exists. The parameter b (or the diffnser -intake
height) ean only be deereased until Ama., equals
the given value of A. If the diffuser intake height
is decreased to values below hnyn no real solutions
for M, for § = 0 will be obtained. This phenomenon
is analogous to the blocking of the flow in closed-
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wall wind tunnels when the diffuser throat area
is deereased below a certain minimum value. In
the case of free-jet wind tunnels, however, this
blocking by the diffuser intake area does not lead
to a complete flow bread-down but to an increase
of the chamber pressure p,. This can be seen in

figure 5 where A is plotted against § = pc;——pl
1
for A= 10 and M, =12
A
= T 1]
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Fig. 5. The parameter Ap as a function of 3
for A=_10 and M,=—1.2.

The parameter hgn is deereasing steadily when
§ is inereased. This means, when A is deereased
with constant values for A and M, , that the para-
meter § will have to increase as soon as h becomes
smaller than hgi,.

This behaviour explains completely the pheno-
mena mentioned by HERMANN In reference 4. Aec-
cording to HrrMaNN it was impossible in the Pene-
miinde wind tunnel to obtain pressure equilibrium
with the original diffuser intake dimensions when
large models at Mach numbers around 1.5 were
tested. As the analysis prediets, pressure cqui-
librium could only be obtained in this wind tunnel
when the diffuser intake height was enlarged. It
is especially noteworthy that this phenomenon only
occurred with large models (large A) and at Mach
numbers around 1.5. At these low Mach numbers
the influence of X is relatively large as is shown
by figure 2.

The quantlty —— is plotted in figure 6 against
P1e
A for some values of h dlld M,
Only those values of T are plotted that are

1t

lower than the limiting value (;)2’) (see
1t 7 limit

section 2.3).
For each Maeh number and diffuser intake

height the enrve of bat
1¢

branehes; the upper branch is related to the super-
sonie solution (3, > 1); the lower branch to the
subsonie one (M, < 1). The two branches have
the peint for A=—=Au. in common, The following
observations can be made:

against A consists of two

a. Part of the supersonie solutions are permitted
by the second law of thermodynamics. Fx-
periments have to show, however, whether
these supersonic solntions really eocenr. As
shown in seetion 2.2 both solutions are stahle.
The supersonie solutions lead to a higher

efficiency (greaterﬁ%'-) of the transform-
1t

ation proeess than the subsonic ones.

This does not mean, however, that the
overall flow efficiency is better for these
supersonie solutions. The deceleration in the
diffuser from the supersonic flow at Maech
number M, to a subsonic flow will often have
an efficiency that is somewhat lower than the
efficiency of a normal shock at the super-
sonic Mach number M, so that normally
the subsonic solution has the highest overall
efficiency. This will probably eause the sub-
sonie golutions to prevail in experiments.

b. The influence of A is large for Mach numbers
somewhat above 1 a5 Amay 15 very small there
(see also fig. 4).

¢. The influenee of kb diminishes rapidly with

inereasing Mach number but is very high for
small Maech numbers.

The influence of the diffuser geometry can

be seen from figure 7. In this figure the
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The important diffuser dimensions are: 1oz W
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a. The diffuser intake arca S, (h == 3?3—) - - - : B
’ S]_ 100 » ]
b. The diffuser throat area S4.
“ . . ao Stn : s‘!’ 4
The pressure ratio P iz determined by this '
. Py . aos 4
throat area according to the equation: 7
nozzle throat a n
P __ ! roat area hof! s 094 1 / L
Py, diffuser throat area Sea A
This relation stems from the fact that the mass- ose / h=
flows through neozzle and diffuser are equal and 060 7 ::;
proportional to respeetively Py, . Sy and Py . i / / // 125
the proportionality tactors being the same in both css sl _AT |
cases, due to the constaney of the stagnation fem- !
perature. | 086
From figure T it follows that at a fixed value J I l
of A a decrease in %ﬁ(larger throat area) results OB 5 o4 03 -08 01 0 tor os os o4 o5

1t
in a decrease of § (decrease in chamber pressure]
and viee versa. An inerease in A (inereasing in-

{ake area) leads at a constant value of Pt to a

1t

farger value of § (increasing chamber pressure).

Thus the influence of the diffuser geometry can
be summarized as follows:

. A decrease in throat area leads to an increass
in the chamber pressure.

b. A decrease in intake area leads to a decrease
in chamber pressure,

A requisite is, however, that A is essentially
independent of 8. This theoretically predicted

6
Fig. 7. The pressure ratio P2 gs a funetion of J
p1

t
and kb for M, = 1.0 and A ==.04.

hehaviour of the chamber pressure p. has heen
confirmed by some preliminary experiments at a
Mach number of 1.5 in the 17 X 1.5” supersonic
wind tunnel of the NL.I.. (National Aeronautical
Research Institute),

3.2 Application to the case of the N.L.L. transonic
wind tunnel,

The N.L.L. transonic wind tunnel, further de-
noted by H.8.T, is a continunous eclosed-cirenit



wind tunnel for Mach numbers up to 1.3. The
test-section size is 2 X 1.6 m? (6.7 X 5.3 sqft.).
The value of & for the H.S.T. is 1.17.

As is seen from figure 4 the most eritical operat-
ing Maeh number with respect to Ams: for this value
of h is 1.24. -

In figures 8 and 9 plots are given of M, and

" respectively as a funetion of A for some Mach
1¢

numbers.
In the figures the limite imposed by the second

Bar

law of thermodynamies upon M, and are in-

. De
dieated. In Appendix € an estimate is made of
the value of X for the H.B.T, as a funetion of
the Mach number M, .
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Fig. 8. The Mach number M, as a function of A
and M, for h=1.17 and 3 = 0.

The following values of A are considered:

a. The value for the wind tunnel without model
but with model support, denoted by Ar.

b. The additional value for the model alone,
denoted by Am.

The value of Ar is indicated by the dotted line
in figure 9.

Without model there is ample margin between
Ar and Apa., the most eritical Mach number being
about 1.24,

The largest permissible value for A, iz limited
for two reasons:

0.20

a. The value of An., is an upper limit for
Am + I\T.

b. The pressure ratio required to drive the
wind tunnel is limited.

In figure 10 the pressure rati

2t
against the Mach number .The following eurves
and data are given:

a. The ealculated pressure ratio for A =2xr (no
model).

b. The pressure ratio as measured in the H.8.T.
(no model). :

¢. The available pressure ratio across the driving
fan corrected for the losses in the return-

cireuit.
d. The necessary pressurg ratio as calculated
for A== Ampx .
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Fig. 9. The quantity P2 49 a funetion of A
pit
and M, for A—=117 and § = 0.

The caleulated pressure ratios agree with the
measured ones within the measaring aceuraey.

The curve for the reguired pressure ratio for
A== Amax and the curve for the available pressure
ratio cross each other at a Mach number of 1.1
(see figure 10). This means that for Mach numbers

-
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below 1.1 the permissible model drag is limited by
the available pressure ratio and for Mach numbers
above 1.1 Apg i8 the limiting faetor.

In figure 11 the resulting maximum permissible
value of Am iz plotted against Mach number.
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Fig. 10. Comparison of calenlated, mensured and available
pressure ratio for the N L. transonic windtunnel.

Aw ean be written as (see Appendix C):

Cpmy Sw
Ap =t u=c¢ .=
- 5 H=Com, 57 +op
where Dy, == drag coefficient based on test section
area
Co,, = drag coefficient based on wing area
g = model blockage coefficient
Sy = model wing area.
Typical values for p and gl are .005 and 20
W
respectively, For these values of w and 5 the

Sw
maximum permissible value of o, iz also plotted

in figure 11.
The permissible value of €,  SEEMS to be well

above the drag coefficients that can be expeeted.

This means that the available pressure ratio is
larger than is necessary, which can lead to the
following possibilities:

a. The Mach number can be inereased above 1.3,
The theory predicts a possible increase to
M =15 without a model.

b. At the high Mach numbers the stagnation
pressure can be raised. A requisite is, how-
ever, -that the fan ean absorb the maximum
horse-power at the lower pressure ratio.

It must be kept in inind, however, that the
numerieal results of the theory ean not yet be
checked sufficiently.

4 Conclusions.

With the theory derived in this report the
overall flow characteristics of free jet wind tun-
nels can be analysed. The power efficiency of
these wind tunnels can be caleulated with a good
degree of accuracy. In addition to the variation
of the chamber pressure with the diffuser throat-
area, that has been found first by R. HeErmanx in
ref, 5, a variation of this ehamber pressure with
respect to the diffuser intake area has been pre-
diected. This predieted behaviour has been con-
firmed by some preliminary experiments.

A Dblocking phenomenon with respeet to the dif-
fuser intake area has been found that is of speeial
importanee for transonic free jet wind tunnels,

b Acknowledgements,

The author wishes to0 express his sincere thanks
to Dr. 8, F. Eromaxy for his many helpful sug-
gestions and to Messrs. B. vay Assmur and W,
BEcraavs for the informations they have given.

c
(hm,max ' { DMw)mnx
o Lt
0 T 1T 7T 1 7
Cp., =DRAG COEFF BASED ON WING
00¢f—— My  AREA Sy FOR .55_' 120 0
W
Qos = [+X-
0.07 \ o8
006 ’S“PZ (CDMw)max—' o7
aos ] 0.6
004 0.5
Qo3
s ,___.—-tk&nn}mux
Qo2 —— 1 gt
DETERMINED BY THE OETERMINED BY
AVAILABLE PRESSURE A max-
+0.01L Pas :
RATIO ET::luv N (R""max' Mmax A1
{(Am) Aop “Ay
ol mex (Fﬁ")uv (SEE FIG.9) ]
[SEE FIG. 9 AND 10}
- 0.01 l l 1 | i } |
05 07 08 09 10 U 12 13 e

My

Fig. 11, The maximum sallowable model drag and blockage
coefficients for the H.8.T. as a function of the Mach number.

6 References.

1. TourLsiEN, W. Caleulation of turbnlent expansion pro-
eesses, N.A.C.A, T.M. 1085, September 1945.

2. GooperuM, P. B. Investigation with an interferometer
of the turbulent mixing of a free supersonic jet,
N.A.CA. T.R. 963, 1950,

3, Sprxrer, J. R. On the application of transonie similarity
rules to wings of finite span. N.A.C.A. T.R. 1153,
1953.

4, HeemawN, B, Diffuser efficieney and flow process of
supersonic wind tunnels with free jet test section, United
States Air Force A. ¥, Technical report 6334, December
1950, .

HErMANN, B. Diffuser efficiency of free jet supersonic
wind tunneis at variable test chamber pressure. Journal
of the Aeronautical Sciences, June 1952, page 375—384.

[



APPENDIX A.

Derivation of the formulas for

Py
P P
M,, —— and .
T Py a8

The basic eguations are {see page 3)

pS Uy = p.8, 1, (1)

— D —~F,—ml,— [ .48 +p,8 +

J

et
Pe(S; — 81) + Sip, U =0,5;, + 8,007 (2)
I BeyupaTo Boague @)
v—=1 m y—1 p

The flow is assumed to be adiabatic.
The following parameters will be substituted.

3,
b= < (4)
pc—-pl
=, )
o (5)
D+F,+ [ r.dS
My == m, + U:‘”‘ (1))
My,
NS )
T .
sz_—r“—‘— (8)
I/Ypl
2%
M= — -T2 (9
l/7p2
f2
Equations (1); (4); (8) and (9) yield:
— M, '
W Vodm =57 B (10)

Equations (2), (4), (58), (6), (7), (8) and (9)
can he combined to:

f; [{h+ 8(h—1)} + y(1—A) M2 =
* =R {1+ yM2). (11)

The substitution of (8), (9) and (10) in (3} gives:

U
1+ Y*z“l i )

—1 (12)

\ 1+ M2 }
Elimination of Py from the equations (11) and

2
(12) gives the following relationship between the
Mach numbers M, and M,.

10

— a
My (1+ YL )
1+ yM2
1 %
o (1+ = Mf’)
T RESA—1)+ y(1— MM

(13)

The ratio between the stagnation pressure p:
and the static pressurc p in a stream with a Mach
number M is:

,_' yly-1
%:(1 + X 1 Mz) . Q8)
From {(14) and (12) it follows:
¥4+1
2(¥—1)
(e 11 M ) ,
P ___l M, 2 (15)
Pue Tk M2 vy—1 . '
k 1+ M, /,

The gquantity 9 %5 can be derived in the follow-
1t

o
ing way:
Pae
i P —
From eq. (15).;—-—an

FPar [ (y - 1)M, 1 ]
=P UM 2] 16
Pl R e 7 e T A
- &0
From eq. (13): L =
%
r—=1 s )
Com R
T R y—1 ;2
. \1 -+ ——'2 *Mz )
- . 2
g (M
Yy T T T TEE (i7)
1+ X =—u2 g
2 .
From equations (16) and (17) it follows:
5 Pa Py
P P aMz__‘
3 oM, 88
— I "
1+ M2
Pu (h—1) AMfz 2 - (18)
P i [ Aty T

as can be shown with some simple algebra.




APPENDIX B,

Determination of the upper bound for P
1

As remarked already in seetion 2.3 the following
sources of losses are introduced in the flow between
the cross-sections (1} and (2) (see figure 1).

g. The re-entry of the mass flow m. in the
diffuser intake.

The drag D of model and model support.
¢. The friction force F, on the tunnel walls.

d. The shearing stresses r along the free jet
boundaries.

All these phenomena are the results of irrever-
sible processes that are accompanied by entropy
inereases. The magnitude of the entropy increase
is, however, not determined hy the magnitude of
the forces ete. alome, but also hy the detailed
velecity distribution in the flow,

In order to get an estimate of the order of
magnitude, the entropy increase will be ealeulated
for a schematized case.

Just as is the casge with foree (a) the forees (h),
{e) and {d) are thought to result in a deceleration
at constant pressure of a mass flow m at velocity
U, to a negligible velocity. The total effeet of
the phenomena denoted above under (a) through
{d) is thus that a mass flow of air m; + m, is
decelerated at constant pressure from the un-
disturbed stream veloeity U, to a negligible veloeity.

11

A simple impuls analysis shows that

D+F,%fﬂs
jet

U,

My, == s le my + me==m,.

The entropy § per unit mass can be calenlated
with

S8 =-—~RInp;,+ C where p, == stagnation ];ressure.

The inerease in entropy AS between the cross-
sections (1) and (3) is thus:

AS=m.B{Inpy—1Inp,}.
The second law of thermodynamics requires that

P1S1U1 ("_ Kin p2l) = P1S1U1(““ Eln pit) +
m, {RInpy,—Rlnp, }
or: ’

—Inpy=—Inpy + AMInpi —Inp,)

o )
P
-2

—_ ¥-1
L4 5 ! Miz) .

which leads to:

i (

‘;j:)é)&_ln (

or:

P <1+
Pie

APPENDIX C.

Estimation of A for the N.L.L. transonic wind tunnel,

The following data apply to the N.L.L. transonic wind tunnel,

Test section height

Test section width

Total slot area

Total length of test section wall
Free jet length

Diffuser intake width

Diftuser intake height

Shape of model support segment
Maximum Maeh number

Maximum stagnation pressure at M =1
Maximum expected model blockage

The parameter A is defined by

o [+.48 .
= t 7t & + .
* §,p 05" Sip Uy Sip, Uy S,p, U2

Two values for A will be considered; one for the
wind tunnel without model but with model support,
denoted by Ay, and an additional one for the model
alone denoted by Am.

From the definition of A it follows that:

[r.a8 -

‘ Da jet &
Apms ot S + :
T S:P1U12 SLP1 U'12 SlPl U‘ll

and

1.6 m (53 i)

2 m (6.7 ft)

5 m? (53.8 sq.ft)
3 m (10 ft)
24 m (8 ft)

2 m (6.7 ft)

187Tm (6.2 ft)
see figure 12

13
11 ata
1%
D, "
A M
8, Uy S.p, Uy -

where D), =model drag and I}, =—model support
drag.

C.1 Estimation of Ar.

ftw

Dy

Ap = + + ey =
’ SIPIU12 Sip U2 SimU?
_ ch ' S" cfjer 'Sjet cfw _'gg
28, 28, 28,




D,
T IS
R

e = tpl?

7 is mean value of shearing siress r.

- P,

O™ 1l Be .
The * total drag of the model support, consisting
of segment and sting support, is assumed to be

twice the drag of the front wedge of the model
support segment (see figure 12).

Cp

A SOmm

260 mm

Fig. 12, Dimensions of model support segment,

The tollowing drag coefficients for a wedge were
taken from ref. 3.

p,.8, ¢ .8
M c 508 wedge we&Lﬁu
' P wetge 28, 8,
0.8 {0340 00442
0.9 0773 L0100
1.0 © 1138 0154
1.1 T.1403 0182
1.2 1615 0210
1.3 1694 0220

Swedge is the area on whieh c¢p g 38 based;
Suedge = 26 X 1.6 = 416 m>.

As the guantity m, is normally very small, the .

parameter ¢, in a first approximation is equal

to the mean friction coefficient along the stream-
line A— A (see figure 1). From reference 1 it
can be concluded that €ty in an incompressible
flow is independent of free jet length and is equal
to 022,

The measurements from ref. 2 indieate that the
mixing phenomena are quantitatively about equal
for an ineompressible flow and for a compressible
flow at M,=2.9.

As in general also the wall friction coefficients
tend to vary only slightly with Mach number the
value .022 is assumed to be valid in the whole
Mach number range from .8 to 1.3.

The jet boundary is composed of:

a. The free jet boundary aft of the test seetion
(9.6 m2).
b. The slot area.

[T A -
The quantit et et pocomes then :
y

1

oSt 022 X 146
28, ~  2xX32

over the whole Mach number range.

=.0502

The quantity _c-}w'is evaluated for a flow at Mach
number 1 along a flat plate of 3 m length at a
stagnation pressure of 1 atmosphere absolute.

In a first approximation the wall friction coeffi-
gient ean be taken egual to the inecompressible
one, $0:

, o1, =074 (Re) .
K. is equal to

U, .1 310(m/sec) . 3(m)
v 2210~ (m?/sec)
o, =074, (£,09.10°)~ * = 00224,

= 409107,

The surface area S, is composed of:

a. The side wall surface up to the diffuser intake
about 2 X 54 X 1.6 =17.3 m®.

- b. The surface of lower and upper test section
walls minus the slot area about 3.2.2 —5 ==
7 m® The surface area of the diffuser walls
has been neglected as the flow velocities are
much smaller there.

From this it follows that:

oS 00224 X 243
28, 2X32

As this quantity results only in a small contri-
bution te Ar and as the friction coefficient will
not vary much with Mach number this value of
(.0085 is assumed to be valid in the whole Mach
number range,

In the next table the total value of Ay is given
as a funetion of the Mach number M, .

= .0085.

1 28, 28, 28, T
.8 0044 0502 .0085 .0631
9 0100 . 0502 .0085 0687
1.0 0154 0502 0085 .0741
1.1 .0182 0502 0085 .0769
1.2 0210 .05062 0085 0797
1.3 0220 0502 ..0085 .0807
C.2 Estimation of Am.
D, e
Amzs o+ ————
‘ S1P1U12b Slpll/:\
In near sonic flow the quantity e is equal

. S}PlUi
to the percentage model blockage p in a good ap-
proximation,.

Dy can be written as: Dm==¢a,.4pl0". 5,
where ¢p,, is the drag coefficient based on the
test section area S,.

Cﬂml

2

The value of €D, depends to a large extent on
the size and the shape of the model

So Am I3 equal to Am == + .
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Determination of the stresses in a spherical shell with a hole,
due to an axial force, a bending moment and a transverse force

P. J. ZANDBERGEN,

Summary.

In chapter 3 of this report, the stresses occurring at the edge of a hole in a sphere with a radius not small compared
to the radius of the sphere are determined for the cases of introduction of an axial foree, a bending moment and a trans-
verse foree, This is dope by using an asymptotical bending theery, originally developed by A. HavErs. This theory ig
reviewed in chapter 2. Numerieal results for some cases are given in chapter 4.
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2 tables.

9 figures.

List of symbols,

@ =radius of the sphere,
a, = goefficient in the expansion of z,.
b = damping coefficient occurring in ex-

ponential funetions,

b; = integration constants, to be deter-
mined from the edge conditions.

€ = integration econstants, to be deter-
mined from the edge eonditions.

h == thickness of the shell,

h—=h, or h,=see for definition eq. (2.41).

3 1 ( R )2

T 12\ a

# ==quantity taking the values 1.2.3....
— and se¢ on.

7 == guantity taking the values 1.2.3....
— and so on.

£ = separation constants,

" == displacement of the shell in radial
direction.

v = displacement of the shell in tangen-
tial direction,

w = displacement of the shell orthogonal
to # and v,

T == independent variable,

17 =solution of the differential equation
given by eq. (2.22a).

Yn = function of 5.

Zn = hypergeometric function defined by
eq. (2.27).

4 = constant, defining elastic properties

of the shell.

=Tfactor of a particular integral of
eq. (2.15).

= constant, defining elastic properties
of the shell.

= integration constants,

=faetor of a particular integral of
eq. (2.15).

== integration constants.

=={ransverse force.

=Youxa’s modulus.

=operator of the spherical functions.

Moy, Mss, Mes, Msg moments occurring in the

shell {(fig. 3b}
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Neg, Nez, Npy, Ney membrane forces occurring
in the shell (fig. 3a).

Qzt, Qpt shear forces occurring in the shell
(fig, 3a}.

S S solutions of the equation H(y)=70.

s5ind @ 1 o0

T =V—uit 2 375_(31113 EE; )

Ty, Togs Tnyy T, solutions of the equation
H(T) = sT. .

v = defined by eq. (2. 103)

W, == defined by eqg. (2.10b).

alf) — function of £ which must be small

compared to h.

|

— and so on,
8 = quantity taking the values 1, 2, 3
-— and go on.
__ b
a7
= quantity taking the values 1, 2, 3
— and so on;

L f = strains ocecurring in the shell.

B
Y
S = angular coordinate defined in fig. 2.
3
Sy =angle defined by eq. (2.44a),

%

=3, oOr §,.
Fp, Ty, YESP. Ta, Ot tangentlal and axial stresses
occurring in the shell (flg 6).

Toy —=shear stress oceurring in the shell.
2

v == PorssoN’s ratio.
m
2

p_ . - —angular coordinate defined in fig. 2.
g¢ = funetions of S defined by eq.-(2.44),

Ny, Ay = function given by the first relation
. of eq. (2.44a).
0 = function defined by eq, (2.12).

1 Introduction,

It is well known that in spherieal shells very
high bending stresses due to local variations of
stiffness or due to local loading may occur. These

“stresses deerease very rapidly as the distance from

the disturbance inereases. The problem which led
to this investigation is the following one. Consider
a pressure vessel, which consists of a cylinder
closed by two half spheres. In one of these half
spheres there is a hole which conneets a pipe
to the pressure vessel (see figure 1;. The bending

Fig. 1. The actual structure.

‘stresses whieh oceur in the shell of the sphere

due to an axial force ¥ and a transverse force I,
and due to a bending moment M exerted by the
pipe on the sphere; form the subject of the present
paper.

14

= quantity taking the values 1, 2, 3

For a shallow sphere it is possible to make
approximations which give rise to differential
equations of BESSEL’s type. By this metbed it is
possible to find the stresses if the radius of the
hole is small with respect to the radins of the
sphere.

In 1935 A, Havers succeeded in finding the
solution of the general problem of edge loading
{ref. 1) *) by making use of an operation dis-
eovered by A. v. . Neur (ref. 2). However, it
seems to the anthor that this work has not become
generally known. It is therefore his intention to
give a sketch of the work of Havmrs and there-
upon to use the results for the solution of the ahove
stated problems.

It is assumed that the pipe is attached to the
sphere by means of a so-called “neutral hole” re-
inforecement. Thiz is a heavy circular frame
which makes the membrane stresses due to the
pressure not to he disturbed by the hole. In
general there will oceur some hending stresses,
but, as ean he proved, these stresses always remain
very small,

The report consists of three parts (chapters
2 3 and 4). In the first part the theory of
Havers will be reviewed. In the second part the
application to the problems of an axial force, a
transverse force and a bending moment will he
given, while the third part is devoted to the
numerical evaluaiion of stresses and displacements
due to these loadings for the case of the pressure
vessel and attached pipe of the supersonic wind
tunnel to be built for the N.L.L.

2 Review of the solution of Havers.

2.1 Derivation of the differential equations.

Consider - a part of the sphere as given: in
fig, 2 and denote by %, v and w the displace-
ments of a point of the shell as indicated in

dpcosd

dwsino/

9]

BN

A

Fig. 2. Orientation of angles and displacements,

the figure. We now make the usual assumptions.
Denoting by ¢ the distance of a point above the

*) The author’s attention was drawn to this paper by
Prof. A. v, . NEUT. |




middle surface of the shell and by ysg, vep and
7 the shear strain components, it is assumed that

crE:O
YSE::YGPE:O

and %, v and w are small compared to the thick-
ness h of the shell
According to ref. 3, p. 47

1 w

%
=i oo T ave W
1 dv U W
S WrHsms % ati avg O
(2.1b)
r_ 1 ov
T TR T G as T
v 1 dw
= P ————, 2.
o+ & cotg 3 + (a+&siny 8’ (2.1¢)

where a denotes the radius of the middle surface
of the shell. The assumption that ysg =vygzr=

=0 implies that all points lying on a normal of .-

the undeformed shell will remain on a normal of
the deformed shell. If u,, v, and w, are the dis-
placements of the middle surface, a simple geo-
metrie investigation will learn that

. U == U, (2.2a)
_f+a ¢ du, 0
P YT Gens e (2.2b)
£+ £ du, .
W= a We — T’.l- ‘a—s—- . (220)

On substituting these results in

the egs. (2.1a),
(2.1b) and (2.1c) one obtains

1w, g u,., %
BT s a(a + ¢y 897 + o+ £ (2.3a)
_ 1 oy - & P*u, n
T wsind B a(s + £)sin’y  O?
My W, £ ouy
-+ PRy -— COth—%a(a-i-S) —,éngOtbS
(2.3h)
_ 1 oy, 2feos 2u, .
TS T Y B8 ale + &) mnts g
2£ P, 3,
GaTHsnS s e 82T
1 o,
wsin® B¢ (2.3¢)

These strains are related to the stresses by means-
of Hooxr’s law

E
ﬂ'ep = —1‘—_-—”‘2_ {E(P + v Bs.) (2.43)
K
Tg =— ‘1:—1;; (85 + Vscp} (24b)
E
Ttp& = m T(pt?' (240)
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We will now ealeulate the forees and moments thau
oceur in the shell and which are defined in figures
3a and 3b. We have

A SRt

~

Fig. 3a. Fig. 3b.

Forces and moments acting on an element of the shell

Ty :
y
Nog= f op— - JP R (2.52)
A
k
+? N
Npy == f oy o . £ ag (2.5b)
| ry
Nag == Nos = f g0 “‘:‘fdg (2.5¢)
and
+
Mw———' f rq)& aa‘f‘fd‘f:-—hﬂfss
_h (2.6a)
Moo= [ o tiea (2.6b)
h
)
Mys = f o “‘;fgdg. (2.6c)

h
T

By making use of the equations (2.4a), (2.4b),
(2.4c) and (2.3a), (2.3b), (2.3¢), we get, with

Eh Eh3
B=q—m ad Ad=g5a— 5
B 1 o
Npgem 2. )1 0%
¥ Usiny 3 +

+ 4, +w, cotg S+ » %—9 + vy ¢ (2.72)
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B Bwﬂ oY, z
Neg = R +oauy, Sllls 3 + v, + v,y eotg 8 (2.7b)
. _ B 1—v oy, 1 B,
Npp = Mogrme 22 20 1200 cotg S + T A | (2.7¢)
A 1—v (3, ,_ ZesS ou 2 1 aw
Mogoemo— -~ )¢ 4 07 0 2 . el
WETGE TZ U35 T s B smS agas | et goe t Mss (27d)
Af 1 2w 1 o u, dw 0%y
M —___ 0 0 0 @ _— 0
le=— G s % TS g T ORI — 3 FER T O (2.7¢)
A | ow o*u v FPu, - v 3%y, du,
Mop— . 2 15%a T o . e
W= 13 e T smS By s ap T VW oolI—y o coted [oem
It is our purpose to derive three differential equations for the unknown quantities u,, v, and w, To
obtain these equations we make use of the equilibrium of an clement of the shell,
We find
“ ?igﬂ dpdd + a PLMﬂgg___IE_%)_ dodS + o Ny cos S dodS + a QcpzsinS dody == 0 (2.8a)
a ﬂs’g—’ﬂ dedS + a al;I *2 GpdS — a Noo cos SdpdS + @ Qspsin SdedS =0 (2.8b)
¢
Qs;;m ) dsodf} +a 89‘05 dedS — @ Nyp sin Sdpd3 — a Nes sin SdedS =0 {2.8¢)
P
a i’i‘;—?ﬁ dods + a ﬂ%"ﬂl 7) dpdS —a My eos SdedS + @ QosdydS sin S — 0 (2.84)
o EQL*;SS-‘“S ) dpds — aM ‘PS dodS — a Map c0s SdgdS — a Qi dpdS sin S =0 (2.8)
a Massin 3ded3 + a Mgy sin Sd«pdf} ~— 6 Nog 8in 3dpd?d + a Nossin Sdedd == 0. {2.8f)

Since Ty = Tog) equation (2.8f) is satisfied identically. There remain five equations. If we elimin-
ate the quantities Qqy a,nd'Qq,E from the equations (2.8a), (2.8b) and (2.8¢) by means of (2.8d) and
(2.8¢), three equations result. Now on substituting the equations (1.7) into these three equations we

2
find the following differential equations, where % stands for L ( h)

i3
o [ (G s o SRy B T
+ E‘—z"—" %f cotg I + (1 + v) %":"J k [2;;; + s@gg cotg S + 2 g:f + siszs %J:o (2.92)
(@+h [1;-1, _g:i%_ 3;1, aa: colg >+ 2&2 sin 3+ gs €08 3 — oo cos23f;;;sin23 +
+ 3—‘2;" Eﬁ? aa“;" + (1+v)sing 2;] k [Z;" sing + 2t Seos 9 + (2 51323) By 9+
s
s s~ ar o= (2.9b)
—( R [(1'+ W) (g:" + g;" sin S + o, cos 9 i+ 2uusin.9}J +
+k [%Sﬂ_z_ ai;‘;bot S+ g (2+ Shis) 'sir}zs %;‘;" + Lon SEsin S+ 2 152 cos § +
~ 5" fi’ii (24 )3 4 sis o %‘* s
—k [Z;ti“ sin % ¥ 2 853 Le0sd-—(1+ v +e0tg23) asz sin & + (1——1: + si“S) gg céosS +
—2(1% v)uysin? + sifs‘ ajzgsnz —2 af%s :iorii SR Zﬁfgﬂ"” a;;o +
S ' ' -g;‘i Si;ss]=0. (2.9¢)




2.2 Reduction of the differential equations,

The problem has now been reduced to the solution
of the three differential equations (2.9a,b,c). We
will only give the main poinis of view that lead
to the solution,

We introduce the following operations diseover-
ed by A. v. o, Nevr (ref. 2):

- 1 oV

Uy = Gin S _é?— (2.103)
and
oW
o= g~ - (2.10b)

Furthermore, we introduce the operator H of the
spherical funection

2% 21 1 0%
H(y) = as"i + —J—eotgf} 2yt a¢J

(2.11)

It is known that for a spherieal funetion y, of
the #-th order

H(yn) =—

(n(n'+ 1) —2] yn
n=0, 1, 2, 3, ete.
On introducing now

V—W=g {2.12)

the system of differential equations can be brought
info the form

1 ag)

s ) 2.13

H(sins s ) =0 (2.13)
1+k

HH (T)~ 2 H(T)+(1—v*) =

P=0 (214)

where T is written for
siny 9 ( 1 o0 )

V=, + 2 39 \sins 2y

and )
H{u) = (+E [ (1+nT —H(TY]. (2.156)

Eguation {2.14) ean be spllt into two eguations
by writing

H(T) =3sT. (2.16)
Inserting this in equation (2.14} one obtains
H(T)=:5T and H(T)=sT {217)

%
31=1+l/1-—(1-—~v2) 1+
3

szr_lvl/l_(l_-pz) 1;:]‘

Eguation (2.15) can be reduced to the general
equation H{u,) =0 by assuming a particular so-
Intion of the form

u,=AH(T)+ BT. (2.19)
We then find by making use of eq. (2.14)

where

and

L {2.18)

k ‘—B 2k——(1——v)(1+k)

1T—w’ 1—y

A=

(2.20)

The solution of the problem has now heen reduced
to the solution of the equation

H(y)=2xy. (2.21)

2.3 Solution of the differential eguation.

We have to solve the equation
1 oy

o'y By
+ cotg 3+ 2y + —— P 5_7

FREEMFTS =ry

(2.22)
We introduce

y == 2 Ya () { ;’fj:: f n=1,23. (222)

Inserting this in equation (2.22) we find the dif-
ferential equation for 4,(3)
8% Yn
092 T 3

sin%s
(2.23)
Using the following transformations

_ 1—eos3 . (1+cos3)%
=Ty BT Ty ) G

1+ eos S
2

equation (2.23) becomes a hypergeometric differ-
ential equation

az,,

o ==1n (———1“‘”’63 )7’5 (2.25)

= 1+ cosl

2z —1)

+ [(a+ E'+ 1z — ] %-ii F =0  (2.26)
with
‘ 2—A=p(pt1)
B=p+1 y=14+n
The solution of equation (2.26) is
zn.—F(a,,B, y#) =14+ 3 aar  (227)

re=1i

——u

with

a{at+1)...(a+r—1). B(B-F1)...(B+r—-1)
12 .ry(y+ 1)yt 1),

y —

(2.28)
For A=0 —» p=1 and

~ 2
F(qur?rm)-‘—‘—l—‘

I+n
This gives with the equations (2.24) and (2.25)

. {2.29)

. n-f—cosS(L——cos.S)%

VA= \TFemss) 290
- n~cos£‘r(1+ coss)g-

g = 231
Yy n+ 1 1—cosd (2:31)

These solutions are independent for n > 2,

2 |
eotg 3+ 9, (22— o) =o.



For n=0 and n==1 the solutions are depen-
dent. For the independent solutions in this case,
the reader is referred to the original paper by
Havers, The whole system proves fo be

n=0 g ==cosd (2.32a)
‘ o 1l—cos2
* —
Yo, =cos ,hl T T e § + 2. {2.32b)
n=1 'yﬁ =gin % (2.33a)
. __ .- . 1 -—*— COS. -9
Yz == sin & In -—-———1 T oos S — '(2.33}))

The equations (2.30), (2.31), (2.32a), (2.32h),
{2.332) and (2.33b) give the solutlon of equation
(2.23), except for constant factors, in the case that
A=0.

We now turn our attention to the case that
A=s, or A=s,. Sinee s, and s, are complex
numbers, computation of the coefficlents @, (see
eq. 2.28) would be very cumbersome. There is,
however, another fact that makes it 1mp0331b1e to
use the expansion given by eq. (2.27). That is the
faet that we have assumed the thickness of the
shell to be small compared to the radius of the
sphere. This causes, however, that s, and ¢, and
thus p too, are la.rge It is then to be expected
that the convergence of the expansion is very
slow. This would mean that a very complicated
numerical . apalysis would be needed for every
practieal problem.

Therefore Havers foliowed another way, 1nsp1red
by the work of BrumentaAL. He so sueceeded in
finding asymptotically correct solutions.

Natice that equation (2.23) can be written as

P | W g (;t+___)_o. (2.34)

asr | 3% 25
Here
L—'?z!=-1+%[/(1—v")

if ?L_—.S‘l (2.35a)
L ' %
h:hz:—l-—il/(l-——v‘*‘)l—; —1

it A==s,. (2.35D)
In hoth cases
|y Y= h, | = l/(l—--—v $ 1. (2.36)

We will now try to bring eq. (2. 34) in the fol-

lowing . form
o*n
8

It a(f) is small compared to #, the solution of
eq. (2.37) will be approximately

— [+ a(£) ] n=0. (2.37)

Vit

m=6" " and g, =e
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In order to transform eq. (2.34) into eq. (2.37)
we introduce a new independent varlable §=f(3).
This gives rise to

ot )2 P (2 B 2
BEN Y (5
(% e\ T ”gs_') T

2
—r {1+ = ) =0. 2.38
( R ginS Yo ( )
It we take
3 1 [/ ey W
= S ,S +
03 sin 8 h
eq. (2.38) gives
a2y, L _
agg + ‘“’355“13 L;? —Ty=0. (239
(s nzy + o )Y
ho
On introducing a new dependent variable
Un = ‘-——1?_—__———__;—’“ (2.40)

& z
l/ sin2s +
h

the second term in eq. (2.34) vanishes and the
result is eq. (2.37).
In our case we have to solve eq. (2.37) for two

values of A, Remembering that & is assumed to

he small compared to unity, we may write
h, = 1b?

1+k
P

b= (1—2) (241}

On introducing 3 =P and assuming that |a]

. may he neglected with respect to 0% we obtain
the following solutions (see eq. 2.40).
In the case that h=h,
' 141 14i
v STt
Ym V¥ sinzd —4p Yo ¥ sin2S —ip ( )
in the ease that h=h,
Qai = fmi =
v TRt
== oo = —z 2.43)
I Vs T ip Visines +4p (

Here, the bar above ¢ means the conjugate complex
value of £ £ as a fanetion of 3 can be calculated
from the relation

B
2% sin 3
Now, the eqs. (2.42), (2.43) and (2.22a) give the
general solution of eq. (2.14) a_r_ld therefg_re any
linear combination of Yu,, Ynss ¥n, and Yy, is @
solution of this eguation too. We will use this to
obtain a set of real functions. This can bhe done
by taking

V/sin?s —p. (2.44)
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1 —_ = ﬁE:
C T = ) (Yng + Yna) T = ¢ A eos (B, —x) (2.45a)
i — C
Thy= 5 (Yny — Yrg) ] Ty = A sin (BE, — x) (2.45b)
1 _ - et PE,
Toy= 5 G+ | . TS cos (BT x) (2460
i — et P )
Thy= — a3 ¥y — Ym)- ‘ To,= A Sl (Bg2 X)) (2.46b)

_ ) . As Havers has proved, this solution yields asymp-
By introducing the following notations :

totically correct results. Only if y = 7.~ > 85°

A% ==sint9 + g%, 1g4X = P Bg= _b__ (2.44a) and at the same time p ‘<'0,5,' the error will be in-
5in%3 V2 creasing rapidly,
The values of ¢, and £, as functions of p and ¢

and have been tabulated by Havers (see ref. 1) and
) arec here reproduced in tables 1 and 2.
(L +4) f==¢ + 1§, Having solved the differential equation we can
now caleulate the displacements and the moments
one ohtains: and forces oecurring in the shell,

2.4 Determination of the displacements and the forces and momenis.

We start with the determination of «. From egs. (2.15), (2.17) and (2.19) it follows that u is deter-
mined by the general solution of H (1) =10, together with the solutions of A (¥} =43P and I (T} =s.T.
On expanding % in a Fourier series 'u,')=2u,.:_g :ﬁf:’;i

equations (2.18), (2.19), (2.30) and (2.31):

s we find for the eoefficient u,, using the

Uy =B, Y% + Byt + (A 5,4 B) {Cottn,+ Cotn,} + (A5, +B) { Cyttn, + Cuyn, ). (2.47)
) in$ @&
Denoting —Sl—nlg gg— by @, and recalling that 7' =— V—!”o -+ El—%—— 2—3% we have
1. o .
V=T+ Uy — -2*— sin 3 —a'§ - (2.48)

sim %

By expanding v, in a Fourier series V=23 ¥y % cos g

% we get (the upper sign refers to T v, sinng):

. (As+B+1) (As, + B,+1) . . — | . —
Up== F A ——- sin 9 { Oiyﬂ, + Czy”:} +a sin S { Ca?/n. + C.;ﬂn,} +
n - . 1 T yn o
— -+ —Z™ AL &
Fimy (Byn +Bn ) E 5 nng a5 T Bgs (249)
The displacement w, can be found from eq. (2.10b) and eq. (2.12)
oW v ) '

W, = 55———6:37—“(:)81115. (250)

cosn B

Introducing again the Fourier series w, = Zuw, % sin 1 3; we get (using the equation H{w) =0)

_ _ Yn o — —_ B it
wom= (s, + B+ 1) 10, o0, Wl @+ B 1) 0, e g, el
Yoy v _ (B + B ' 9.51)
thigy T Bigs ~ ey (Bt Ban). *

It should be noted that in \this way it i3 assumed that the solution of H{u) =20 is
5 cOos 7t

_ '“':.E (B:l p.gy;] +‘B2ny:e). sin n:

and the solution of H{w}) =10 is

w =

oM

cCos v
(BSnyxl +-_-B4_ny:ﬂ) sin n:
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For the sake of simplicity the suffix n has been omitted in the integration constants.
With a view to obtaining a result which is in accordance with Havers' result we put

— — : 1 ) — = 1 .
(As,.+B+1)G,:§(T:;)_{c3—zc,}(A32+B+1)03:m{c3+@c43
(2.52)

—~ - 1 . — . . 1 .
(A.Sl‘i‘B“l-l)Czﬁm{cl‘i"‘cz}(A—Sz'f'Bl'i'l)C;*—m{Cﬂ—"cz}

and .

. b—nb, byt mb, . —2b, _ — 25,
T an—1Q—) "’ B.= w(n—1)(1—v)’ By = nin—1)(1—v) ' Bi= w(n-—1)(1—v) (2.53)

Denoting " Vo by Sa,,

1
(n—1)
and introdueing ¢ = %_B, we obtain (this is done for m_>2; for n < 2, the definitions of 8,, and
Sa, are given by egs. (232a/b) and (2.33a/b) and B,—=h,—nb,, B,=b,+nb,, B,=—25b, and

34:— 4)

1 .
m Yne DY Ss, and differentiation with respect to 9 by a dot,

{ & Tyt €3 Ty + €3 Ty + € Ty, + by Sp + b S,,) +

Wy, == -
R (1_:”') csg LT T 0T, + 6o Toy & 6Ty + B, 80, + b, 8,) +
Up = l_ijz {—¢,TW, +¢,Ts, toeg Ty, —e, Ty} +
+ g (b8, + by Su,— b n S, + 5,08, ) (2.56)

We will now establish the formulaec whieh give the amplitade of the forces and moments peeurring in
the shell, as excited by the displacements

08 1 sin c0s
P g, * and w, - °
sin n ¢ Cos 7 sin % ¢

n

Using the eq. (2.7a/f) and eq. (2.8d) and (2.8¢) and neglecting & against unity we arrive at

Ny =, % %tgsb’;‘"m-—-—'ag% Ca,— V10 ] + cz—{':— :tgqli'n,f?% T,, - b2 Tnlt +
+ 63% 1tg¢j’ﬂ3—-&% Ty + 0T, + c,—-:i Vg g T, — ‘c':?.,u‘ T, — b2 1| +
_51% (8 + 8n) —B, —aff- (8, + 8a,) —b, »lg-n } (8p,+ 8,) + 1 (c_fa_” (2.57)
Nyy ==, _f_ ?a%{; T, -—tgy&f’mz + czé ?E&% T,, -—tggbf’ﬂ,f +
+ ¢, _f_ ?Eg—'p« Ty —tgg&i’na}" .+ c‘,% }Eolls;;/_ T, —fgsfme +
b G Su) b o (@b S0+ 0 | Gyt 8. 4 (oer)l e

o= Mo = o (G o () o () o (G o o ()

S,
COS

EEAT RPRPEN |

+ 3, ( cos ¢




M,

=c, B )va——

+c¢, B sz,,"‘-

+ %BlvTh‘l‘ ——bz_v[tgl;’j‘n‘—- v+

1— .
+ ¢, B ;vTﬂ4———b—2—[tg¢Tnl—(v+

+ b, Bk (C—i;'?’_) + b, W Bk (-S—"—) | (2.60)

1—v

M 5

Jpn

=¢, B IT,,I-F

0B {To,—

:Tu3 -

"’i‘GaB

+c¢, B

T,, +

S,

¢
: ) | (2.61)
Moy —— s, =2 08 o [ 25 (oY 4w (G e |- 2 () e () [+

R R R S I A e e R N B
= bynk B (8, 4 8,) = b nk B (8, + 9.) (2.62)

B 7t
Uekn ™= % s "

—b,n*Bk (

(e Ta, + ¢, Ty, F ¢, Ty +¢,T,) (2.63)
B . . . .
Qop, = — - (€, Ty + €y Ty + € Ty + ¢, T, (2.64)

It should he observed that only b, and b, give rise to membrane stresses. The term with b, in Nog,.,

Nsg, and Ng, vanishes except for n=1

et

2.5 The arbitrary constonts. 2.6 Concluding remarks of chapter 2.

As ean be seen from the foregoing review, the
solntion is determined by eight eonstants. Now,
in general, there are two edges where we can
preseribe 4 independent edge conditions, viz. .,
Oty
il
the edge forees, as conditions to determine the
constants. Since there are five edge forces at.each
edge, and we have only four constants, we replace
the moment My, by a system of forces tangential
and normal to the shell,

Ingtead of the force N, Son W€ find in this manner-

1
iquB‘ﬂ + 'E‘Mssn

Uy, W, and It is, however, possible to give

?

Ni

n (2.65)

and instead of @y, we have

K]

Q;sn = stn + W

Mg, . (2.66)

With the results derived here for the state of
stress and strain in a not shallow spherical shell,
we will analyse in chapter 3 of this report some
technieally important cases of -sphere loading. It
will be seen that the formulae derived here give

~rise to a very eclegant analysis, which yields the

results ‘in a relatively simple way.

3 Application to the problem of an axial force,
-8 trangverse force and a bending moment,

3.1 Introduction of an azial force.

The actual strueture is sneh as given in figure 1.
For. the sake of simplicity, however, we consider
the strueture given in figure 4. This simplification

is perfeetly acceptable, since we are mainly in-

terested in the additional bending stresses oceurring
at the junction of pipe and sphere, and we may

_assume that the edges are located so far .apart

that they do not influence each other.



Having thus symmetrized the congtruction and
its loading with respect to y =0, it will be clear

that the stresses and dlsplacements will be gwen

by symmetric funections.

L

z
tetrt
Tt

|

Fig. 4. Symmetrieal loading by normal forees,

Now for n =10, the case of rotational symmetry
which we are considering here,

f§i=&=y and x=0 A=‘VCDS¢ l{3.1)
8, =siny (32) -

1 siny

S, =singln gt
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Introducing this in eq. (2.55) for example and
using the eqs. (2.45a/b), (246a/b), (3.1) and {3.2)
we get

'
1

b? e B‘l‘smﬁ-,b
,uﬂﬁ 11— r ¢ Veos y
e e” cosﬁz,b +e sm,Ga,b e e‘g‘Pcosﬁt,b'f
% 205 ¥ ]/eos\!: ! Veos\;;
1 .sinzp |
+t_——bsmlp+b (Slngﬁlnm'*‘?-){
(3.3)

To make u, symmetric we have to choose

6, =—1C, b,=0
i. (3.4)

= &

The constants b, and b, do not oceur for n=0.

We have thus reduced the problem {o finding the three coefficients ¢,, ¢, and b,.

Now, as mentioned in the introduetion, at the junetion of pipe and sphere there is a heavy frame;
the neutral hole reinforcement. We assume that this frame can be considered as rigid.

Denoting by. ¢, the ¢-ecoordinate of the edge, we have the following edge conditions (see fig. 5):

Fig, 5. Displacements and forces along the edge.

: ot
' =0 {3.5a)
(33 )¢=¢.
(1) g, €08 o F (wo) g, 8IN ¥y =0 (3.5b)
(Nsao)% COS o — (Qe,",),}',u sin ¢, =N (3.5¢)
where N is the load per unit of length of the circumference of the hole
Using eq. (2.66), (2.58), (2.64) and (3.4), eq. (3.5¢) becomes
B . ]
b, ry (Sn, + So,) cosp, =N
or
! N cos a
e - (3.6)
We introduce the abbreviationg
Ay= Vcos Yo
2
a, =T, + T, = — cosh By, cos 8¢,
1 ] AO

2 . .
’ a, = TU! — To4 = —A—-o sinh 8¢, sin By,
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ey =Ty + To,= —--2{1 sinh B¢, cos By, + —iﬁ cosh By, sin By, —
' 0 0

= fi‘oz —_— 1.‘0‘ =+ ZT\E cosh By, sin By, + %‘E sinh B¢, cos B¢, + tgA% sinh By, sin 8¢, .
0 0 0

Then the solution of the egs. (3.5a2) and (3.5h) proves to be

8% sosh By, cos B,
Ay

. 14w . ) 2
az—b 1+ v Sg’(a’.z{_‘.OSl!J(,-—Tﬂ!aSln!‘bo _HCOSlpﬂ LA (37)
=h, z .
b (@, — aya;) co8 ‘pu ! ! + ——(a? + *) sin Yo
: b 1+v . 2
1+, So, (dl cos IPU + -——b—,‘,—a‘i sin l!ln) —_ py ‘&O oy

SR LA R _ e
ey, — atyr;) €08 o, + T(aaz + a2) sin

N o
where So, =2tgy—cosyln —%_%%.

The forces and moments acting on the edge are given by egs. (2.57), (2.58), (2.60) and (2.61).
Using the above mentioned abbreviations they give

B 2
(N‘P?o)\0=4fo [ (0{3 tg ¢'0—b az} + t, (‘-’fa te o, + b3 1.) + b W’] (3.9)
L]
B 2
(N390)¢=¢o:_'7 Coa W2 Yy + Co, K2 ¢, + bz W (3.10)
M 1—v _ 1—v
(Msgg)p=y, =B | ¢, ja, + e (o tg g + o) + ¢y { oy = (o t8 Py + ) i (3.11)
1—v 1—v |
(M?&o)dfa-%:B [01 ’“1 — (o 18 ¢p — axp) l + e, ) vay + T(“s tg o — vay) ” . (3.12)
The stresses occurring in the shell at the edge are given by .
{(Vos,)y, 6
Tqg — ‘*—}?o—‘—o = '?LT (MS'@D),‘[,O (313)
and
1 6
o= — (Nogoly, = 77 (Mas,)y, - (3.14)
The + sign refers to the inner side of the shell, the — sign to the outer side. The stresses

are defined as in fig. 6.

We thus have solded the problem of finding the stresses due to -an axial force 27 @ cos ¢, N, introduced
through a rigid pipe at the section y=y,.

Fig. 6. Orientation of the stresses oq eén oy, Fig. 7. Symmetrical loading by bending moment,

3.2 Introduction of o bending moment,

Here too, we symmetrize the construetion and its load as shown in figure 7. We assume that the
displacements can he expressed by:

Uy = U, COS ¢ Vo ==, 8in ¢ W, == W, COS ¢. (3.15)

This means that the’ bending moment is apphed as a linearly varying load along the edge. This is the
usual assumption in hending theory.
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Since, for instance, v, must consist of symmetric functions, the eoefficients ¢,, ¢,, ¢, ¢,, by, by, by
and b, have to obey certain conditions. To find these conditions we make use of eqs. (2.55), (2.45a/b},
((2.46a/b), and of the fact that

-8, == cos ¢ : ‘ o SY“ =sin \p
— sin ¢ - Y —siny
S,=cos¢ln 1+s g —21tgy Su-—- :,lr ml+sm¢
We get '
: 1 1
S R P —gE, —§E,
Y1 11—y [Acc:s v ;e (cos BE, cos x + sin B&; sin x) + e,0 "% (sin BE, cos x +

~— 008 ﬁéz giny)} + c,e +65, {eog B, cos x — sin B¢, siny) + c4e+‘35:. {sin B£, cos x + cos BE, sin y) ( +

l—sing )
s g{ zb cosy + b, (cos¢:ln T T smy 2tgy E-f-
sin ¢ 1 ( 1—sinyg )J
+ b, {siny—1}+ 0, %( +2+sm¢ln——~——p—-—1+sm¢)+ cos 9 cos ¢ ln ———1+Sin¢-—~—2tg¢ ‘ .
e {3.16a)
Sing:e £ and £, arve asymmetric and x is symmetrie, we find that
o= o =0 1 (3.16b)
¢, =—20C, b4-ﬁ_—-bz

Thus, we have reduced the problem to the determination of the four constants ¢, ¢,, b, and b,.
1+ To do this we use the edge conditions.
First we have the conditions that there is no displacement of the edge in its plane
(uy) g, cosy, + (w,) g, 8i0 ¢ == 0 _ (3.17a)

(v)y, =0. (3.17b)

Fuither we have the condition that the angle between the shell of the sphere and the pipe must
remain the same after the deformation

i(‘aul ) _ (ul)‘;,_sin%d {w,) g, €08 o

), oo (3.17¢)

At last, we have the condition that the resultant of the forces and momenis working along the edge
must ‘be equal to the applied moment M.
Dencting the amplitude of the linearly varying load by g, we have

M —=nRg R=acosy,.
Now the resultant of the force Ngy=Ngs cosp is RN e €08 ¢,
the resultant of the foree @3z= Q3; cosy is — ml*Qyz siny,
the resultant of the moment qu,: My, cosg is —aR M Yo, -

This gives for the last condition
M3y,

weosgy = (3.17a)

Nas, €08 g — @3z, sin g —
Introduce the following abbreviations

B="T,+T.= 7\2— cosh B¢, eos BE, cos x, —‘—A%—sinh BE, sin B, sin x,
i 3

. 3 i )
ﬁz == T12 — T14 = -—-Az ginh J8£1 s1n ﬂgz €os X, — T cosh Bfl CO0S ﬁfz 810 x;
1 ‘ 1
'+ 1 2bA; o .
By=Tu+Tp=— cos fE, cos (x1- 7}) ~ oo 'p: _cosh B¢, sin €, sin (X1 — T) +
in 2 ' gin 2
—_ S];A;Q cosh B, cos BE, eos 5 x; + 5 % sinh Bt sin B, sin 5 x,
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. . 204, T 2
B,=Ty— Ty = Py cosh BE, sin B, cos ()h —_ E_) ~ eos % sinh B&, cos B&, Sm (Xl — %)4—
sin 2 ¢, sin 2 ¢,

S—22 ginh B, sin B&, cos Hx, + cosh B£, cos BE,8in b Xu

TA,5 a0
h

P _— e
eos® P 2aV3(1~—v2)

where A f==cos®y, + p%, tgdy =

It is assumed that in the above abbreviations ¢ and £, have values belonging to y,.
The eqgs. (3 17a/d) hecome

. bt . , b2 .
6 {Busingo— T Breos | + 6 | Busingyt o Bieosd | F b —bSutey=0 (3)5a)

2

b? ] b : b? .
c, ?—H,Ba cos«,bo-—m,sgsm ¢, = Bieos, l + ¢, g—ﬁg‘cos;boﬁ-l—_{-_?,@l sin ¢, -+

2

-1 Bacosdy ‘ —— b, sin g, 008 P + b8, =0 {3.18b)

B e B b e
s 7 R e i + by~ bSp=0 | (3.18c)
clk sin ‘Po (ﬁa - ﬁl t-g "!’0) + czk Siil .'ffo (484 — :82 tg ‘1"’0) - 4(1 + k)bz =g % (!082!}'0:: —1}% . (318d)

This system can now be simplified in a rather remarkable way.
Multiplying eq. (3.182) with cosy, and adding to it eq. (3.18b) multiplied w1th siny, and sub-

traeting from the result eq. (3.18¢) multiplied with cos®y, gives

2 bt .
¢, ; 1 I:_ " (184 sin Yo COS Yy — Bz) - 131 cosz'po t_"",cz ’T_i'__:f (}33 COS ¥, 81N ¢y — 181) + !82 COSE‘;’U i +
4 b8 costy, == 0. (3.19a)

Multiplying egs. (3.18a) and (3.18¢) -with cos g, and subtracting yields

c, , (B, cos v, sin ¢, — B,) — b Bz cos%y, 2 + ¢, ‘ (B, sin o COS gy — Bz) b ,31 cos ‘}:’o

4
€08 Yo

by = 0. (3.19h)

The solution of the egs. (3.19a) and (3‘19b is:

Sﬂ eosy, [,82 _— 31 (3052410}4‘ [ b’ 31 + Bz cos %}

= : o8 ¥, |
T e %] o 5_31 cos'to| + |75 B + 6, eosz%][ﬁ; R (8.20a)
Sy cos? Yo [181 i ,Gz cos Sf’ol —6%%— [TE;T B8, — B, 0052%]

¢, =+ b, (3.20b)

2

[1 ?: By — B, cos %Hﬁe i B cos %} [ %E + 8, coszn,ero-”h: — l—i—vﬁz coszq'/oJ

where B, = 8, c0s y,, Sin Yo — B, , By=B, cosfosingo—p,.
b, can bhe determined by using the following eguation which is a resuit of adding eq. (3.18a) multi-

plied with cosy, and eq. (8.18b) multiplied with sin ¢,.

2

T Ber— o Baca T by cosigy =0, ' (3.20¢)

b, follows from eq. (3.18d) whieh ean be written as

, M
LB+ Bueosth] + e Rt fueoso] — (L + b= (3:204)

Thus, the unknown quantities ean be determined.
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We will now give the forces and .moments occurring in the shell at the edge, as derived from the
eqs. (2.57)—(2.62),

. B 1 — . 2 B . 2 B 1 :
Nog, ==c, C—OS—% (B VBucostol + 63 o it (B DB cos™ge] + 40,0 (3:21a)
1 = B 1 '
Nog = —¢, = - B — =2
9, & osz% 8, — o ooy B.—4b, & oosy, (3.21b)
— — B — B siny,
Nosy. = —_——% B LU D B + 241 ol Ve
L2 NB’(P; TSN g 008, @ 1By + B, cos®y,] SiN Yo COSYy @ (B2 1 B, cos®y,} 4b, a  cosy,
(3.21¢)
¢,B ; 1—v — 1—v  —
Mo, — (10;2‘;;0 {vﬂl eosty, — T{ 8. — vB, costy, }] + @%\E [,82 costy, + 5 { B, —vB, cos?y, }] +
4
— bkB (:083!,’1 . (3.21d)
1—v ,—
Sy = vy 2!# [Bl 032500 bz { Bz + 182 GOSEI)}O }] C()Szv,b [ﬂz cos 5&0 {B1 + .'81 0052% }]
OB : . (321e)
08", _
M. M aB__ _Jl—v g+ 2, ) + & {8y + :
Py = —— M3g, = SID ¥y O, { 8, + B, cos?y, } {8, ﬂ1|‘303 Yo )+
c,B [_l—v_ — . FEIE . } 4s1np0‘
ST g0 cOY, (Bt Bueos'nn} + E (By+ pcostys ) |+ 0B S0l (aon)
The highest bending stresses occurring in the shell at ¢=0 and ¢ =180° are given by
' ' Nag ]
Og == hli‘ FM.&:PI . (322)
1 6
o= 71—- Nq;¢1 = P_ Mq)&l . (3.23)
The highest shear stress occurring in the shell at p==—90° and ,=190° is given by '
1 1
=~ Nes, + ‘,‘,}:M'?'Sx' (3.24)

To obtain the stiffuess parameters of the sphere under this loading we will derive formulae for the
displacement and rotation of the edge relative to the section ¢ =20,
This displacement is given by (u,)y_, This yields per unit of moment

—_ u b? 2 sin y* 2 cos x* 1

o (Weno { okt SO S SR S (3.25)
M Ma—w»y (V112 Vit (Y —)M

where )

tgdx* =

{1,) &y sin g, — (w,) ¥, €OS ¥o

. This gives per unit of moment
G €03 ¢,

The rotation is given by

1 o bR b, . :
’“'Z"W(ﬁ;)%:_m[“%*%ﬁd+ms‘”ﬁ" o (a2)

3.3 Iniroduction of a tramsverse force.

In order to reduce the problem of the intro- 2
duetion of a trangverse force to the simplified . (I DM"'D""%
problem for the sphere, anti-symmetrically loaded,

we have to add a hending moment at each edge

{see fig. 8). Then we may conclude that, for in-

stance, the function w will be antisymmetric with Fig. 8, Asymmetrical loading by transverse forces

Tespect 1o ¢y =0, combined with bending moments,
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‘We assume that the displacements can be ex- To determine the four remaining constants, we
pressed by use the edge conditions. Again assuming that the
— - attached reinforcement is rigid, we have the dis-
W==1, COS ¢ U=, 8l ¢ placement conditions (see e.g. cq. (3.17a), (3.17h)
W == 10, COS ¢. (3.27) and (3.17¢), which are similar)
To find the conditions for the coefficients ¢, (1) g, €08 o T (Wy) g, 90 Yo =10 (3.29a)
s, G, Co, by, by, by and B, in order that e. g. v, o —

is aﬁtisymm:atri(f, we make use of eqgs. (2.556), (1) g4 0 (3.29b)

(2.46a/h) and of the eqs. given for 8y, Si2, Su 14 /9w _ (1) o S — (t?}l)% €08
and 8. The result has already been established (—at) (_é';q)d« = Py .
as eq. (3.16a). We see that in order that v», be 0 (3.29¢)

antisymmetrieal with respect to y=190,
We assume that the distribution of the trans-
Cy=—10 b, =0 verse force D) along the edge is sinusoidal with

28 —
(3.28) ampiitude ¢. The resultant of the forces along

04 — Cy, 63 =1 bl
the edge in transverse direction must be equal to D.

The resultant of the force Nag =_f\? 99,008 ¢ s — nRNgg sinv,.
The resultant of the force QF, ::E;E cos p is —-wﬁﬁgé COS ¥y .
- 1 1

The resultant .of the force Yv‘;(P :F;%simp is =R ﬁf,"%.
Thus we get .
_ — — . — D ,
,. N3, — Q9£1 cos %—N_%I sin ¢, =g = - (3.294d)
The equation giving the eguilibrium of the moments is satisfied identically (except for terms
of order k) by virtue of eqs. (3.28) and egs. (3.29d) and (3.17d). To solve the system of equations
(3.29a/d} we first introduce the following abbreviations :

2 ) 2 . .
B =— A sinh 84, cos B£, cos x, + - cosh B¢, sin BE, siny, =T,,— T,
1 N ,

2 . . ‘ :
B,* = T\T cosh B¢, sin B, eos x, + rf— sinh B¢, cos g€, siny, =T, + T,,
i |

. . 2bhA i i ]
B* =Ty —Tiz= cos y’l: ! eosh B¢, cos BE, cos (X1 — E_) + sinh BE sin B, sin (X: - %) i +
+ %23%- { sinh B¢, eos B¢, cos 5 X, ~ cosh g%, sin B¢, sin 6 y, } - o
1
. o 2bA L . Ll I z
Br=Ty + Tu=— €08 ¥, 1 sinh B£, sin 8%, cos (X1_‘ ?) — cosh B¢, cos B, sin (Jh T —iﬂ)] *
Sl2n/\21§(0 { cosh BE, gin .B‘fz cos § X1 + sinh BE, cos Bgz sin § X1 } .

Here A,, x, and p are the same as for 8, B., 8, and B,.
The equations (3.29a/d) now become

' . b* . b? :
Gy 3,83*sm.|,bo—-—m 85" cos ¢, r + ¢, ;B*'sm%-k T B,* cos ¢ % + b, siny, +
b { 8,c089, + Spsing, } =0 (3.302)
B.* B.* : S 3.30h
£ P + ¢, w05 7, + b, sin g, + b, cos gy {3.30h)
¢ 2_‘8'603"" — B.*siny, + r B cosy l-i—c 3-——,8"‘00s¢ + o B,* sin g, +
- 3 0 14 72 o 14+ ©* ¢ 2 * ¢ 14, M7 0
b2 _ .

aal e Breosy,  —bieosg, + b, { 8,sing, —28mcosy, ) =0 {3.30¢)
and by == — I?r-é %cos e = — %B— (3.30d)

Thus the value of b, is determined directly.
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We will solve the three remaining constants ¢,, ¢, and b, as a funetion of b, from the three equa-
tions (3.30a/c¢) by proceeding as follows.
Multiply eq. (3.30a) with ¢, and eq. (3.30c} with sin¢,. Adding this together we .find

I b = S
C, —11—; B.*—c¢, fﬁ-T B.* b, { Su — 8 sin o OBy, } =0 (3.31a)
where
Ex. == B,* cos o sin ¥y — g.* Ezt = ﬁ‘i* o8 g sin Yo — !32*-

Multiplying egs. (3.30a) and (3.30b) with eos ¢, and subiracting we get

— b2 - . : .
¢, | B — I B.* cos®, ( + e, ? B.* -l— 61 eosty, ¢ T b, {8, cos?y, + Sasin g, cos § — S, } =0
(2.31b)
Now since _
S, — S"n sin ¢, eos ¥, == cos™y, 8, —4tg ¢,
we have
Sy, sin*y — S1ysin Yo COSfr, =— 4 12 ¥, .
The solution of the equations (3.31a) and (3:31b) is therefore
_ b2 ‘ BT
1 4 v {‘00521;10 SJQ—4tg l1!10} tﬂ2 + 1+ IBI 0052';'0 g + 4tg l}ro ﬁ“—v— '81*
¢y = 5 b, — 5 — — X (3.32a)
* ’ B — ﬁ‘: B.* cosPyy [ + B, B+ 1+ B.* costy, {
2 S. 4 to e # ool I 4 ta b* e
144 { eos™y, 81— ta'af’o}f)a1— 333 eogsy, | — to¢°1+vﬁz
¢, =+ 5 b, , (3.32b)

B B et ! B | B o Bt o5t |

b, ean now be determined by using eq. (3.30b).

We will now give the forces and moments occurring in the shell at the edge as derived from the
. (2. 57)——(2 62).

B 1 —~ B 1 - B siny,

N — p—— ¥ __ h2ho * 4 . 20 % 2 =
Moo =60 o (L — VB cosn] + ey o 1B+ DR eofy) +4b, oo 330
. =, B 1 _E_?_ 8Ny,
N‘a"l =Tay cos2y, - Bt —c o cos?u,lr,, Bt — 10, @ eos’y, (3.33b)
— —_ . — B .- . c B -
N o — —__ 6 B o« *oaely 1o — 2 2 [ow * ool
o N&qgl SN ¢, COS°d, @ {B* 1+ B,* eos?y,] SiN Yo cOSTYy @ (8% + B, eos’y,] +
. g 1
—4 b2 —(&_— FOST% (3.330)
— B le—y . : ¢,B 1—v =
M?i’: = (50;25('10 ["'Bl* oS, — _‘bE‘y {B.* "‘ vB.* cos?y, }] + E&? ["’Be‘ cos®y, + _E)TV_{ B* +
— vBy* eos®P, } ] : (3.33d)
M, — 2 Y (3% 4 3% cos? ¢, B * noa? 1—v (o4 * poyt
'9?1 - (3032!;( ﬂl cos ¢0 bz { )82 52 €08 ¢0} (30321# ﬁz cos ’,!/D % '{"}8.1 + .Bl £OS '1b0 }
. {3.33e)
= . ¢.B i— — i _
'M(Pq’l = M&‘al = sin l,lr:GOS?y'lu ’: ’ { ﬁz. + 2" eos®e, } +k { ﬁ!* + !31* 00324’0} ] +
GB [ 1—v . * ool R * ot .
o ~ S5 (B F %oty ) + R {0+ B eosty, } | _ (3.331)

sin ¢, eos?y,
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The highest stresses occurring at the edge are given by

N, 6 _

ga:%i — Wy, (3.34a)
1, 6 -

o == Nog 2= -2 Mo, (3.34b).
1= 1

T‘=~4~Nq,3l + _E{Maal. (3.34e)

To obtain the stiffness parameters of the sphere under this load, we determine the displacement and
the rotation of the cross section ¢ ==y, Since the load is antisymmetrical, we have for y=0: u, =10
and v, =0, Hence the displacement per unit of transverse force is given by

-I; - (a)l)\[;:(l sin Yo

6= D
or
R 2on[ (o= =)+ casin (e — )] sin ¢y
b= D ireesx— + ¢, 8in {x —3 sin ¢, + A—nD (b, + 48,]
where x* is given by tg4 x* =p and A, by [’/1 + 2 (3.35)
The rotation per unit of transverse force is given by
1 (), sinyg, — (w,)y, cos (w,} g = 1 /bu, ~
ppm g TN Wiy 8o | (osme LBy
i I €03 ¥, Da aD N9y 7y
or
by 0 L otepr+ et + LR
PE T ey AT T AR T Gp iy OB
1 ZbKD[ ‘(* LS .(* 'n')} 1
o SR o o (xt — 4)+czsm =T ey [ e (3.36)

3.4 Concluding remarks of chapter 3. The radius of the sphere ¢ =200 ¢m. The thieck-
ness of the shell A=2.2 em. The three cases to

As has been shown, the solution of the three be caleulated are cosy,= 03; cosy, =04 and

problems given in this part, with the aid of
Havers’ theory, is exceedingly simple and elegant.

Closed expressions are obtained for all the dis-
placements, moments and forees in terms of rather
simple funetions. Onee these expressions are esta-
blished, the numerical work needed to caleulate
the stresses and stiffness parameters is not very
elaborate. In chapter 4 of this report we will use
the solution of chapter 3 for some practical ap-
plications. ‘

4 Numerical solution for some cases.
41 Introduction,

Asg already explained in the infroduction, the
problems investigated in chapters 2 and 3 origin-
ated from the question, what -bending stresses
. oeeur in a sphere attached to a pipe if an axial-
and a transverse force and a bending moment are
applied. This question arose in connection with
the design of the pressure vessel and attached pipe
to be built at the National Aeronautical Research
Institute (N.I.I.) as elements of a supersonic
windtunnel. The numerical caleulations given in
this chapter are based on the actual dimensions
of this construction. However, for the purpose of
giving an idea about the influence “of the radius
of the hole (viz. the value of ¢,) three cases are
given,

cos y, = 0.43511 giving for the radius of the hole
R =60 cm; R=2380 em; R =875 cm, respectively.
Here the value R =875 em refers to the aetual

construetion.

42 Cdlculation for the case of exial load.

We will make these caleulations for the cases
specified above, It is assumed that the magnitude
of the axial load is 1000 kg

We get
1 cosy,=03 E=60cm
b, =—15184X10~ ¢ = 21551X10-%
£, == — 4.BB70X 10+
ot =-— 4742 kglem® ot =— 1298 kgfem®
o=+ 10259 kglfem? o,— = + 2.842 kgfem?
2 cosyg,=04 E=280cm
b, = — 15184 %10~ e, = 2.7829X10-13
£, = 4.8538 X102
ot —— 2.811 kg/em? ot = — 0.770 kg/em?
o— =+ 6204 kglem*  o—= + 1.720 kgfem?
3 ecos g, = 04351 E=875em

b, = — 15184 X10-°

ot = —2.411 kgfem?®
o = + 5.344 kg/em?

¢, = 3. 7547103
¢, — 6.4264 <10
ot = — 0.661 kg/em?
o— = + 1.482 kgfem?




Ay will be seen from these results the stresses
are very low, though increasing rapidly with de-
creasing radius.

It is seen that considerable normal forces can
he withstood, without the oceurrence of dangerous-
ly high stresses.

4.3 Cdleulation for the case of a bending monient.

It is assumed that the applied bending moment
is M=10F kgem. Application of the formulae
derived in part 2 of this report gives

1 cos¢,=03 R =060e¢m
b, =--1.4844X10-+ ¢, = 4.0934X10-3
h, = —17.8933X10-° €, =— 2.2111X10-**
oot =— 18.409 kgfem? o, T =-— 5.210 kgjem?

o~ = + 36.241 kg/em®
+ — 8.149 kg/ecm®

o— == -+ 10.203 kgjem?

hy = 9.4987 10— radian/kgem
by = —2.0616 X10-* em/kgem

R =80cm

e, = 6.6833 X 10

¢, = T7.0504 X106~
a:t — — 2 487 kgjem?®
ei— — + 4.845 kglem?

2 cosy,=04

b, = — B.6567 X1(0-°
b, = — 7.8935 X10-¢
vt =— 8.7% kgfem®
o— = + 17.214 kgjem?
7 =—3.643 kg/em?®

kye = 6.347 X 10~ radian/kgem
Fyy = — 1.2023X10-° em/kgem

BR=2875em

¢, = 3.7913X10-*
¢, = 1.2443 X102
g+ = — 1.9305 kgfem?®
g— =+ 3.8177 kgjem?

3 cosy,=0.4351

b, = — 7.4429X10-°
b, == — 7.8934 X10-°
ot =— 6.820 kglem?
o, =+ 13.564 kgfem?®
7= 2.850 kgfem?

ky = 46721101 radian/kgem
Ty = — 1.0337X 10~ emfkgem

These stresses are fairly large, a moment of the
order of 50 X 10° kgem not bheing extraordinarily
high, for the structure considered.

44 Caleulation for the case of a iransverse force.

It 1s assumed that the applied force is D=
1000 ke.

Using the formulae derived for this case in part 2
of this veport, we get

1 cosy,=03 R =1%0cm
b, = — 3.8268 10—+ ¢, =— 85908 X 10—
b, =—1.5874X10-* 6, = + 40778 X101
g, ——41.151 kgjem®? o, =— 11.166 kg/em?

a— = -+ 74.666 kg/fom?
7=+ 17.676 kgfem?

o— =+ 21.034 kgfem?

kp= + 3.3883X10-® radian/kg
kp —=—5.9113X10-" em/kg
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o ="+ 0.713 kgjem?

2 cosy,=04 R =280¢cm

b, =— 2418610 ¢, =— 1.2306 X102
b, =-- 1587410~ c, =-—1.3502X10-**
oot =—17.107 kgfem? g+ =-—- 4711 kgjem®
a— ="+ 32524 kgfem? ¢—= + 9.027 kg/em®
r = + 8.459 kafem*

Ep=1.2452X10-* radian/kg
Tpe——3.8870X10~ em/kg

3 eos ¥, = 0.4351 R-—=875em

b, =——2.1182X 10+ ¢, — —- 6.5106X10**
b, =— 15874 X167 ¢, = — 2.3207 X102
g F = —13.151 kgjem®  o,F = — 3.620 kglem®
o=+ 25273 kgjem® o;— =+ 7.015 kg/em®
7=+ 6.770 kg/ecm?

kp=9.0460X10-° radian/kg
kp=--3.4430X10-" cm/kg

The stresses in this case are rather high teo.
As ean be seen, however, hy comparing these
results with those for the case of a bending mo-
ment, the bending moment, applied together with
the transverse force in order to give equilibrium,
is the main eause of these stresses.- This will be
demonstrated by computing the stresses for the
loading speecified in fig. 9 and for the edge loaded

Ms2aD sin $o D /I:D "
< ()

Fig. 9. Deecomposition of the case of a transverse force
along one edge into already considered cascs.

hy the transverse foree only. We will limit our-
selves to the case of cosy,= 04351
We then find

o, =— 0.793 kg/cm? gt =-—1.215 kgfem?®
o— = -+ 2114 kgjem?

7 = 3.299 kg/em?

As follows from these [igures, the stresses result-
ing direetly from a transverse force are very low
indeed.

4.5 Estimation of the error involved in the results.

Dhue to the fact that the theory is only asympto-
ically correct, an error is involved in the results,
In ref. 1 HavErs has determined the order of this
error for different angles ¢,. For small values
of p, as is the ease here, he has found that the
order of the error ranges from 0.5 % to 1% for
the angles ¢, considered -here.

Another error is due to the fact that the values
of £ and §, have been interpolated from the tables
1 and 2. Since these quantities have to be multi-
plied with the large quantity 8 to form the ex-
ponent of an exponential function, e.g. B,, rather




largeé differences can be expected in the numerical
results, when only small differences oceur in the
values of £, and £,.

In order to obtain a reliable impression about
this error, a completely independent calculation
was made for the cases presented by the “Instituut
T.N.O. woor Werktuigkundige Constructies”.

As a result of the comparison of the two cal-
culations, it can be stated that the mazimum error
due to interpolating iz of the order of 5%.

The total error involved in the results, there-
fore, is of the order of 6 %.

5 Conclusions.

By using the asymptotic bending theory of
Iavers, which is reviewed in chapter 2 of this
report, the stresses occurring at the edge of a cir-
eular hole in a sphere are determined in chapter 3
of this report for the following econditions.

The hole is reinforeced by a heavy cireular frame,

_ which can be eonsidered to be rigid.

The radius of the hole is not small compared
to the radius of the sphere.

The thickness of the shell is small compared to
the radius of the sphere.

The latter two assumptions are essential for the
applieability of the theory of Havers,

The cases considered are:

Introduction of an axial force.
Introduction of a bending moment.
Introduction of a transverse foree,

The analysis leads to very elegant expressions,
which are in faet not muech more complicated than
the expressions oceurring in the analysis of edge
bending of a cylinder.

In chapter 4 of this report, the resnlts of part 3
are used for the numerieal evaluation of some cases.
The case eos y, = 0.4351 refers to the actual struc-
ture of a pressure vessel and attached pipe, to be
built as an element of the supersonic windtunnel
of the N, L. L. The numerical results indicate that
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rather high stresses occur in the case of a bending
moment.

The stresses inerease rapidly in all cases \&hen
the radius of the hole deecreases.

To gain an insight in the stiffness of the shell,

the stiffness parameters ky, kyx, ks and ks as de-
fined in chapter 3, are also given in part 4.

These parameters can be useful for an analysis
of a more complicated structure, where they enable
the substitution of the sphere by a system of springs
{see e.z. ref. 4).
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TABLE 1.

£, as a funetion of ¢ and p.

| X J.,»::lm

200 | 30° 40° | 50° ( 60° ‘ 650 | 700 750 80° 85°
0.00 | 01745 | 0.3491 | 0.5236 | 0.6981 | 0.8727 \ 1.0472 | 11345 | 1.223 | 1309 | 1.396 | 1.484
001 | 0.1754 | 0.3509 | 0.5265 | 0.7024 | 0.8787 | 1.0559 | 11453 | 1236 | 1.328 | 1425 | 1.544
0.02 | 0.1763 | 0.3527 | 05294 | 0.7066 | 0.8847 | 1.0647 | 1.1563 | 1.250 | 1.347 | 1455 | 1.604
0.03 | 01772 | 0.3546 | 0.5323 | 07109 | 0.8908 | 1.0736 | 1.1674 | 1.264 | 1366 | 1485 | 1661
0.04 | 01781 | 0.3564 | 0.5353 | 0.7152 | 0.8969 | 1.0826 | 1.1786 | 1.278 | 1.385 | 1.516 | 1.716
0.05 | 01790 | 0.3583 | 0.5382 | 0.7195 | 0.9031 | 1.0916 | 11899 | 1.293 | 1405 | 1.547 | 1.770
0.06 | 01799 | 03602 | 0.5412 | 07238 | 0.9092 | 1.1007 | 1.2012 | 1.308 | 1.425 | 1578 | 1.821
0.07 | 01808 | 0.3620 | 0.5442 | 0.7281 | 0.9154 | 1.1099 | 12126 | 1.893 | 1445 | 1608 | 1871
0.08 | 01817 | 0.3639 | 0.5472 | 0.7325 | 0.9217 | 1.1191 | 1.2941 | 1338 | 1465 | 1.639 | 1918
0.09 | 0.1826 | 0.3658 | 0.5502 | 0.7369 | 0.9280 | 11283 | 1.2356 | 1.353 | 1485 | 1.668 | 1.964
010 | 01836 | 0.3677 | 05532 | 07413 | 09343 | 11375 | 1.9471 | 1368 | 1505 | 1697 | 2.009
015 | 01883 | 0.3773 | 0.5685 | 0.7636 | 0.9663 | 1.1847 | 1.3059 | 1.443 | 1.605 | 1.837 | 2.919
0.20 | 01930 | 0.3871 | 0.5841 | 0.7865 | 0.9990 | 1.2329 | 1.3657 | 1.519 | 1702 | 1.960 | 2.409
0.25 | 01978 | 03970 | 0.5999 | 0.8098 | 1.0321 | 1.2816 | 1.4259 | 1.504 | 1.797 | 2.086 | 2.583
030 | 02027 | 04071 | 0.6159 | 0.8333 | 1.0656 | 1.3303 | 1.4858 | 1667 | 1.888 | 2202 | 2746
035 | 02076 | 04173 | 0.6321 | 0.8569 | 1.0992 | 1.3787: | 1.5448 | 1.739 | 1.977 | 2.318 | 2.903
040 | 02125 | 04276 | 0.6484 | 0.8806 | 1.1329 | 14267 | 1.6026 | 1.810 | 2.063 | 2431 | 3.054
045 | 02175 | 0.4379 | 0.6648 | 0.9043 | 1.1666 | 1.4742 | 1.6592 | 1.874 | 2148 | 2541 | 3.201
0.50 | 0.2225 | 04483 | 0.6813 | 0.9281 | 12002 | 15212 | 1.7148 | 1.946 | 2.230 | 2.649 | 3.342
055 | 02275 | 04586 | 0.6978 | 0.9519 | 12336 | 15677 | 1.7695 | 2.0123 | 2.3101 | 2750 | 3.479
0.60 | 02325 | 04689 | 0.7143 | 0.9757 | 1.2667 | 1.6136 | 1.8234 | 2.0772 | 2.3881 | 2.848 | 3.611
065 | 02375 | 04791 | 0.7307 | 0.9994 | 12995 | 1.6589 | 1.8766 | 2.1408 | 2.4642 | 2.944 | 3739 .
0.70 | 0.2424 | 0.4893 | 0.7470 | 1.0230 | 1.3320 | 1.7036 | 1.9291 | .2.2032 | 25386 | 3.037 | 3.862
075 | 02473 | 04995 | 07632 | 1.0464 | 13642 | 1.7477 | 1.9808 | 2.2643 | 2.6114 | 3127 | 3.982
0.80 | 0.2522 | 0.5097 | 0.7793 | 1.0696 | 1.3961 | 1.7912 | 2.0318 | 2.3242 | 26826 | 3.215 | 4.097
085 | 02572 | 05199 | 0.7953 | 1.0925 | 14276 | 1.8341 | 2.0821 | 2.3830 | 2.7523 | 3.300 | 4.209
0.90 | 0.2622 | 0.5301 | 0.8112 | 1.1152 | 14588 | 1.8764 | 2.1317 | 2.4407 | 2.8206 | 3.38¢ | 4.318 -
095 | 02672 | 05403 | 0.8270 | 11376 | 1.4897 | 1.9181 | 2.1805 | 2.4074 | 2.8876 | 3.466 | 4.423
1.00 | 02722 | 0.5505 | 0.8426 | 1.1598 | 15203 | 1.9592 | 2.2286 | 25532 | 2.9532 | 3.5461 | 4.5268
1.05 | 02771 | 0.5605 | 0.8581 | 11818 | 15505 | 1.9997 | 2.2748 | 2.6081 | 3.0175 | 3.6249 | 4.6287
110 | 02819 | 0.5704 | 0.8735 | 1.2035 | 1.5804 | 2.0396 | 2.3204 | 2.6621 | 3.0806 | 3.7023 | 4.7291
115 | 0.2866 | 0.5801 | 0.8887 | 1.2250 | 1.6099 | 2.0789 | 2.3658 | 2.7152 | 3.1427 | 3.7784 | 4.8981
1.20 | 02913 | 05897 | 0.9038 | 1.2463 | 1.6390 | 21177 | 2.4103 | 27674 | 3.2039 | 3.8532 | 4.9957
125 | 02959 | 0.5992 | 0.9187 | 1.2574 | 1.6677 | 21559 | 2.4543 | 2.5198 | 3.2642 | 3.9268 | 5.0219
1.30 | 0.3005 | 0.6085 | 0.9335 | 1.2883 | 1.6959 | 2.1935 | 2.4078 | 2.8694 | 3.3237 | 3.9903 | 51167
135 |.0.3051 | 0.6179 | 0.9481 | 1.3000 | 1.7237 | 2.2306 | 25400 | 2.9192 | 3.3824 | 4.0707 | 5.2102
140 | 0.3096 | 0.6272 | 0.9526 | 1.3295 | 1.7511 | 2.2671 | 2.5835 | 2.9683 | 3.4403 | 41410 | 53023
145 | 03141 | 0.6364 | 0.9769 | 1.3498 | 1.7781 | 2.3030 | 2.6256 | 3.0167 | 34975 | 42103 | 5.3931
150 | 03185 | 0.6455 | 0.9911 | 1.3698 | 1.8047 | 2.3384 | 2.6672 | 3.0644 | 3.5530 | 42786 | 5.4825
155 | 03229 | 0.6545 | 1.0051 | 1.3896 | 1.8310 | 2.3733 | 2,7082 | 3.1115 | 3.6096 | 4.3460 | 5.5706
160 [ 03272 | 0.6634 | 1.0190 | 14092 | 1.8570 | 24078 | 2.7486 | 3.1580 [ 3.6654 | 44125 | 5.6574
1.65 | 03317 | 0.6723 | 1.0328 | 1.4286 | 1.8828 | 2.4419 | 2.7884 | 3.2039 | 3.7186 | 4.4781 | 5.7428
170 | 03360 | 0.6811 | 1.0464 | 1.4478 | 1.0084 | 2.4757 | 2.8276 | 3.2493 | 37719 | 45428 | 5.8268
175 | 0.3403 | 0.6898 | 1.0599 | 1.4668 | 1.9338 | 2.5002 | 2.8663 | 3.2041 | 3.8244 | 4.6066 | 5.9094
180 | 03445 | 0.6984 | 1.0733 | 1.4856 | 1.9500 | 2.5424 | 2.9044 | 3.3384 | 3.8761 | 4.6695 | 5.9907
1.85 | 0.3487 | 0.7069 | 1.0865 | 1.5042 | 1.9840 | 2.5753 | 2.9420 | 3.3821 | 3.9271 | 47315 | 6.0706
1.90 | 03527 | 0.7153 | 1.0996 | 15225 | 2.0088 | 2.6079 | 2.9791 | 3.4253 | 3.9773 | 4.7926 | 6.1492
1.95 | 03568 | 0.7237 | 1.1126 | 1.5406 | 2.0334 | 2.6403 | 3.0156 | 34680 | 4.0267 | 4.8528 | 6.2264
200 | 03609 | 0.7320 | 1.1255 | 1.5585 | 2.0578 | 2.6724 | 3.0516 | 3.5102 | 4.0753 | 4.9121 | 6.3022




33

TABLE 2.

£ as a function of ¢ and p.

A fy=100| 200 [ s0° | s00 | 500 | e0° | e | 70° | 750 | goo | g5 | 900
0.00 ’ 0.1745 ‘ 0.3491 | 0.5236 | 0.6981 | 0.8727 ’ 1.0472 | 11345 | 1.222 ’ 1.309 | 1396 | 1484 | 157
0.01 | 01736 | 0.3472 | 0.5207 | 0.6939 | 0.8667 | 1.030 | 1.124 | 1.208 | 1292 | 1.369 | 1430 | 1468
0.02 | 01727 | 0.3454 | 05178 | 0.6898 | 0.8608 | 1.030 | 1113 | 1.195 | 1.273 | 1.343 [ 1390 | 1.410
0.03 | 01719 | 0.3436 | 05150 | 0.8656 | 0.8550 | 1.022 | 1103 | 1.182 .| 1.256 | 1.320 | 1.357 | 1.374
0.04 | 0.1710 | 0.3419 | 0.5122 | 0.6815 | 0.8402 | 1.013 | 1.093 | 1169 | 1240 | 1.298 | 1.320 | 1.345
005 | 01701 | 0.3401 | 05094 | 0.6775 | 0.8434 | 1.005 | 1.083 | 1157 | 1.224 | 1277 | 1306 | 1.320
0.06 | 0.1693 | 0.3383 | 0.5066 | 0.6734 | 0.8377 | 0.997 | 1.073 | 1.145 | 1.209 & 1.258 | 1.285 | 1.299
(1007 | 01684 | 05366 | 0.5035 | 0.6694 | 6.5321 | 0.989 | 1.063 | 1.133 | 1.196 | 1.240 | 1.266 | 1.279
i1 008 | 01676 |.0.3348 | 05010 | 0.6654 | 0.8265 | 0.981 | 1.058 | 1121 | 1181 | 1223 | 1249 | 1.261
1009 | 01667 | 03331 | 0.4983 | 0.6615 | 0.8209 | 0.973 | 1.044 | 1310 | 1168 | 1208 | 1233 | 1244
010 | 01659 | 0.3314 | 04956 | 0.6575 | 0.8154 | 0.965 | 1.035 | 1.098 | 1156 | 1193 | 1.218 | 1.228
015 | 01618 | 0.3229 | 0.4822 | 0.635¢ | 0.7887 | 0.928 | 0.991 | 1.046 | 1.09 | 1126 | 1.148 | 1.155
0.20 | 01579 | 0.3147 | 0.4604 | 0.6199 | 0.7633 | 0.894 | 0.951 | 1.001 | 1.041 | 1071 | 1.089 | 1.095
0.25 | 0.1541 | 0.3068 | 0.4571 | 0.6024 | 0.7393 | 0.862 | 0914 | 0959 | 0994 | 1025 | 1.030 | 1.045
0.30 | 01504 | 0.2992 | 0.4453 | 0.5857 | 0.7166 | 0.832 | 0.881 | 0922 | 0953 | 0984 | 0996 | 1.001
| 035 | 01469 | 02919 | 04339 | 0.5697 | 0.6952 | 0.804 | 0.850 | 0.888 | 0918 ( 0.946 | 0.957 | 0.962
L 040 | 01435 | 02849 | 04230 | 05544 | D.6750 | 0779 | 0.822 | 0.858 | 0.886 | 0912 | 0922 | 0.927
045 | 01402 | 02782 | 0.4125 | 0.5398 | 0.6560 | 0.755 | 0797 | 0.831 | 0.858 | 0.880 | 0.891 | 0.895
050 | 01370 | 02718 | 0.4025 | 0.5260 | 0.6381 | 0733 | 0773 | 0.806 | 0832 | 0851 | 0.862 | 0.866
055 | 01340 | 02657 | 0.3929 | 0.5129 | 0.6213 | 0.7133 | 0.7507 | 0.783 | 0.808 | 0.824 | 0.835 | 0.839
0.60 | 0.1311 | 0.2598 | 0.3837 | 0.5005 | 0.6055 | 0.6945 | 0.7301 | 0.762 | 0.785 | 0798 | 0.810 | 0.814
0.65 | 0.1283 | 0.2542 | 0.3750 | 0.4887 | 0.5906 | 0.6786 | 0.7108 | 0.742 | 0.764 | 0775 | 0.788 | 0791
0.70 | 01256 | 0.2488 | 0.3667 | 0.4775 | 0.5766 | 0.6601 | 0.6927 | 0.723 | 0.744 | 0753 | 0.766 | 0.770
075 | 0.1230 | 02436 | 0.3588 | 0.4669 | 0.5634 | 0.6443 | 0.6757 | 0705 | 0725 | 0.734 [ 0747 | 0750
080 | 0.1206 | 02387 | 0.3514 | 0.4568 | 0.5509 | 0.6293 | 0.6597 | 0.688 | 0.707 | 0.716 | 0.729 | 0.732
0.85 | 0.1183 | 0.2340 | 0.3444 | 0.4473 | 0.5390 | 0.6150 | 0.6446 | 0.672 | 0.601 | 0.699 | 0712 | 0715
0.90 | 0.1161 | 0.2296 | 03378 | 0.4383 | 0.5277 | 0.6014 | 0.6304 | 0.656 | 0.675 | 0.684 | 0697 | 0700
095 | 01140 | 0.2254 | 0.3316 | 0.4298 | 0.5169 | 0.5885 | 0.6171 | 0.642 | 0.660 | 0.671 | 0.682 | 0685
1.00 | 0.1120 | 02214 | 03275 | 0.4218 | 0.5065 | 05762 | 0.6046 | 0.628 { 0.647 | 0.658 | 0.668 | 0.671
1.05 | 0.1100 | 0.2175 | 0.3201 | 0.4141 | 04966 | 0.5646 | 0.5928 | 0.615 | 0.63¢ | 0.646 | 0.655 | 0.658
110 | 01081 | 02188 , 0.3147 | 0.4066 | 0.4872 | 0.5536 | 0.5816 | 0.603 | 0621 | 0.633 | 0.642 | 0645
115 | 01063 | 0.2102 | 03095 | 0.3994 | 0.4783 | 05432 | 0.5700 | 0591 | 0.601 | 0621 | 0630 | 0.633
120 | 0.1045 | 0.2067 | 0.3044 [ 0.3925 | 0.4698 | 0.5334 [ 0.5607 | 0581 | 0599 | 0.610 | 0.619 | 0622
125 | 01028 | 0.2034 | 0.2995 | 0.3859 | 04617 | 0.5242 | 0.5510 | 0570 | 0.588 | 0.599 | 0.608 | 0.611
130 | 01012 | 0.2002 | 0.2947 | 0.3796 | 0.4541 | 0.5157 | 05417 | 0.561 | 0578 | 0.589 | 0.597 | 0.600
135 | 0.0996 | 01971 | 0.2901 | 0.3736 | 0.4469 | 0.5076 | 0.5328 | 0.552 | 0569 | 0.580 | 0588 | 0590
140 | 0.0981 | 01942 | 0.2856 | 0.3679 | 0.4401 | 0.4998 | 05243 | 0.543 | 0560 | 0.571 | 0.578 | 0581
145 | 0.0967 | 0.1914 | 02812 | 0.3625 | 0.4337 [ 0.4923 | 05161 | 0.535 | 0551 | 0562 | 0.569 | 0.571
150 | 0.0954 | 0.1888 | 02772 | 0.3575 | 04277 [ 04851 | 0.5083 | 0.528 | 0543 | 0554 | 0560 | 0.562
155 | 0.0942 | 0.1863 | 0.2732 | 0.3527 | 0.4220 | 0.4782 | 0.5008 | 0.520 | 0.535 | 0.546 | 0.552 | 0554
160 | 0.0930 | 01839 | 0.2694 | 0.3451 | 0.4165 | 04716 | 0.4936 | 0513 | 0527 | 0538 | 0.544 | 0546
165 | 00918 | 01815 | 0.2657 | 0.3436 | 0.4112 | 0.4652 | 0.4868 | 0506 | 0520 | 0531 | 0.536 | 0.538
170 | 0.0907 | 01792 | 0.2622 | 0.3302 | 0.4060 | 0.4590 | 04803 | 0.499 | 0513 | 0.524 | 0529 | 0530
175 | 0.0896 | 01770 | 0.2588 | 0.3349 | 0.4009 | 0.4530 | 04739 | 0493 | 0507 | 0517 | D521 | 0.523
1.80 | 0.0885 | 0.1748 | 0.2556 | 0.3306 | 0.3958 | 0.4472 | 0.4678 | 0486 | 0500 | 0.510 | 0.515 | 0.517
185 | 0.0874 | 01727 | 0.2525 | 0.3264 | 0.3907 | 0.4416 | 04618 | 0480 | 0494 | 0504 | 0508 | 0510
190 | 0.0364 | 0.1706 | 0.2495 | 0.3223 | 0.3857 [ 0.4361 | 0.4561 | 0474 | 0488 | 0497 | 0502 | 0504
1.95 | 0.0854 | 0.1685 | 0.2466 | 0.3183 | 0.3807 [ 0.4307 | 0.4507 | 0.468 | 0481 | 0491 | 049 | 0.498
200 | 0.0844 | 0.1665 | 0.2439 | 0.3144 | 0.3756 | 0.4254 | 0.4456 | 0462 | 0475 | 0485 | 0490 | 0492
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Bending at the oblique end section of cylindrical shells
by

A. VAN DER NEUT.*)

Summary.

The investigation refers to the stress problem at the intersection of cylindrical shells, loaded by membrane stresses,
The interseetion i3 uspally reinforced by an elliptic frame. The required compatibility of straing of cylinder walls and
frame induces bending stresses over the thickness of the ehell in the vicinity of the intersection. The paper establishes
this bending effect near the obligue end section for edge loads econsisting of hending moments m, and shear loads g,
normal to the shell. ' -

As p preliminary step the exact solution is given for the cylindrica] shell bounded by an infinite helieal edge under
constant edge loads (Part I). .

The fact that the stresses are neglipibly small already at a short distance from the edge- suggests that the stresses
near the oblique end section and the stresses near the helical edge will differ only slightly, if the helix is tangent to the
oblique edge in the region under conmsideration. It is shown in Part IT that this concept is correet up to an error of the
order (h/a)"t. A further vesult is that the edge load for which the stresses vanish at a short distance from the edge i3
composed of the bending moments =, and the shear loads g, mentioned before and in addition of edge loads I, T,
proportional to g,, in the plane tangential to the shell. The resultant of gq,, L, T lies in the oblique end section; its
reaction upon an obligue frame is equivalent to that ef a frame flange with the eross section 8§, This quantity is
established. § represents the effective shell section which cooperates with the frame when it is being deformed.

Contents, . List of symbols.
List of symbols. a = radius of the eylinder,
1 Introduetion. b = ¢ tan ¢ (see fig. 1).
C = tan ® sin ¢ — { .
Part I, The cylindrical shell loaded along its — . ¥ an f
- . h = wall thickness.
helieal edge by eonstant bending mo- 1 k2
ments and shear forees. k =9 g wall thickness parameter, sup-

2 The differential eguations. posed to be of the order = 10-4.
3 The solution of the differential equation. mi; = moment per unit length of the wall, act-
4 The stresses, ing upon a section normal to the axis 1,
5 Summary and interpretation of results, ttfs Vecstor 33 g; the direction of the axis j
L ig. 5 an .
PartII. The oblique cylindrical shell loaded m, = hending moment per unit length at the
along its edge. oblique edge.
6 The approach to the problem. qii = shear force per unit length of the wall,
7 The stresses. ~where 1 and j have the same meaning
8 The additional load system I. as with mi; (fig. 5, 6). .
qe = ghear force per unit length at the obligue
9 The load system II. edge (fig. 15, cq. 29)
10 The solution of the oblique eylinder problem. r — radial coordinate.
11 Some characteristics of the edge load. s = coordinate along the oblique edge (fig. 1
12 References. - and 8). _
. . . s == eurvilinear coordinate of an arbitrary
Appendix A, ((;.epmletll'lynof the oblique cylin- point of the shell (fiz. 8).
' rical shell. U = radial displacement eomponent (fig. 3).
Appendix B. Summary of formulae for use v,w = displacement components in the plane of

in applications. the shell (fig. 3).

16 figures. v,w = displacement components in the plane of

the shell (fig. 7).
*) Profssor of Aircraft Structures at the Technologieal ny = coordinates in the nOI_'mal seetion (ffg' 1).
University of Delft. Yy = » »  Oblique ,,  {(fig. 1).




z .. . .
a— dimensionless eoordinate normal to

the edge of the shell,
axial coordinate (fig. 1).

coordinate normal to the edge of the shell

{fig. 2,.8).

= ghear forece in the cross section of the

oblique frame (fig. 16).

modulus of elastieity,

longitudinal edge load concurrent with g,

{fig. 15, ea. 28a).

bending moment in the cross section of

the oblique frame (fig. 16).

normal force in the eross section of the

oblique frame (fig. 16, eq. 32).

= normal edge load, resulting from ¢, and
L (fig. 15, 16, eq. 30).

= radins of the cylinder in the plane of

the oblique edge (fig. 10),

radius of the cylinder in the plane per-

pendicular to the oblique edge (fig. 12}).

equivalent flange seetion (eq. 33).

tangential edge load coneurrent with g,

(fig. 15, 16, eq, 28h).

= displacement potentials, defined by eq. 4.

—_—i\ %
(l—‘“;i—) cos B.

angle hetween the tangent to the edge
and the normal section of the eylinder
(fig. 2). '

gpecific shear.

speeifie strain.

angular coordinate in the normal section
{fig. 1).

= angular coordinate in the oblique end
section (fig. 1).
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s .. ] .
- dimensionless coordinate along the

edge (fig. 2 and 4),

radiug of eurvature of the edge (fig. 1).
membrane normal stress.

membrane shear stress.
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2 . . .
s dimensionless coordinate normal to

the edge (fig. 2 and 4).
= angle between the oblique end section
and the normal seection (fig. 1).
g — angle between the normal to the cylinder
and the oblique end seetion (fig. 15).
2 (
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&
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1 Introduction,

The problem of shell bending at oblique end
sections of eylindrical walls relates to the inter-
seetion of tubes of equal diameter. This investig-
ation was carried out in eonnection with the design
of the variable pressure windtunnel of the National
Aercnautical Research Institute (N.L.L.), where
the problem oceurs at the rectangular corners
(®@=mn/4). This report deals with the problem
of edge bending for an arbitrary value of &.
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The total problem of the stress distribution near
the intersection of tubes involves more than the
problem of edge bending, since it includes the con-
dition of the compatibility of the deformations of
the two shells and of the frame in the plane of
intersection, The deformations of the frame and
those of the shell under its undisturbed membrane
stresses do not fit together. As far as the edge
strain of shell and frame is eoncerned, the com-
patibility of these straing is established by bending

Tig. 1. Notations of the oblique eylinder.

moments m, and shear forces g, at the edge of
the shell, which restriet their influence to the im-
mediate vieinity of the edge. The' problem, in-
vestigated in this report, is how to determine the
stresses and deformations due to these edge loads.

The line of thought leading to the solution has
been as follows, Kdge bending restriets itself to

& depth of shell, which is of the order (ah)® and
b
therefore small of the order (%) compared to

the eircumferential dimension, Geometrical con-
ditions, e. g. curvature and edge angle g (fig. 2),
change “slowly” along the oblique edge, since the
derivatives of these funetions to the edgewise

wa

EDGE

Fig. 2. The ecylinder developed upon the flat plane.

coordinate g =s/a are of the order of magnitude
of these functions themselves. Then, if we confine
ourselves to the case in which the edge loads
(m,, q,) are changing slowly too along the edge,
it may be concluded that the derivatives of dis-
placements to the edgewise ecoordinate s will be
small compared to the derivatives to the coordin-
aie z normal to the edge, This statement suggests
that in this case the strains and stresses in the
point (9, 2) (fig. 2) will depend almost completely
on the pgeometrical conditions and the edge load
in the point 4 of the edge.




If this idea is correet the solution of the pro-

blem would be obtained by solving the problem of -

the edge effect of a cylindrical shell, where the
edge angle 8 is constant and the edge loads m,,
g, are constant. This problem of the eylindrical
shell bounded by a helix is solved rigorously in

Part I; the usual assumption is made that 1
is negligible to unity.

The applicability of this solution fo the problem
of the cylinder with obligue edge under edge loads,
varying with %, is investigated in Part TL. Tt ap-

pears that its error is of the order . An im-
portant result of the investigation is that the edge
load, pertaining to the solution, consists not only
of my, q,, but in addition of a memhrane load,

— normal to the edge the component L, tangential
to the edge the component T, (fig. 15) —, which
is proportional to ¢,. The total load in any point
of the edge is parallel to the plane of the oblique
section. If the reaction of these edge loads is
taken by a frame, it exerts upon the normal

seetion of the frame a normal forece N aecting in

the point of intersection of frame and shell,

The effect of the shell upon the frame is eqgui-
valent to that of a flange with the cross section S.

The conelusions are indicated by marginal lines
in chapters 5, 10 and 11.

Appendices A and B contain the formuiae relat-
ing to the geometry of the obligue cylindrical shell
and a summary of formulae for use in applications
respectively.
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PART L < o

| The cylindrical shell ioa.ded along its ﬁelica.l edge by constant bending moments and shear forces.

2 The differential equations. due 0w ( dz ) + o (@;_) .
. ‘ . o dy 0z Ndplt de Vdy/t
The equation of  the helieal cdge is, since ‘ e S o : 1
jz_ :——tanﬁ—';—c (flg’ 3, Z‘l‘C(LqJ:A (see Z.Ezpk'(lz_i_cz)‘/z ?(14‘02)%-
fig. 4). L. Hence' )
The helix is infinitely long and every point is 3 ”
loaded in the same way. Hence, after rotating the a‘% ac o
2
u Putting @ —g-g;zu’ we have ai: ci’. (2a)
SRIGUE. ——— Then
CYLINDER au _ d’b& (az ) _'__BE‘(E) .
g ds \d¢ 'y d¢ \NdZ 4
Tig. 3. Helieal edge tangent to the edge of the obligue — 1 (a@— +e %_) — (1 + cg) ) . (2D)
cylinder in P. (1-{*62)% d2 de

an

//
aw!;/Z
/

The differential equations of the eylindrical shell
are given in ref, 1, Chapt. VI, 21, eq. 10. After
substitution of {2a) and without the external loads
they become

ut e+ +k [(1 + )2 + 2t + u—

3 —_V " ( 1 — v2 ) ”
Fig. 4. The helical strip developed upon the flat plane, - Cv_ + 2 ¢t—1)w”| =0 (3a)
L . ' 1—. I

eylinder about its axis, thereby moving it longi- cu’ + (cz -4 3 Y )v + 3 Y oew” +
tudinally such that the edge passes through a fixed '3
point in space, we find that the eylinder and its [__ 3—v e 3 L ,,] .
load in the final position are identieal to what +k 2 ™ + 9 (1 —w") =0 (3b)
they were in the original position, This involves N 1 :
that the same conelusion applies to the strains and v’ + 1ty cv” + ( — Ve ) w” +
gtresses. Therefore the clastic displacements u, v, w 2 o
are functions of the coordinate ¢ only, they are 1-—v ” — L,
constant along any helix parallel to the helical edge. + k{( 5 ¢ — 1) w” + cw"” | =0,
The partial differential eguations in z and ¢ as ' (3e)
independent variables ean be transformed into h? . ) -
ordinary differential equations in ¢{. where k= T2az " Since k is negligibly small eom-

The eguation of the helix { == constant i3
2 + cap = B (fig. 4).
The transformation formnlae follow from fig. 4.

pared to unity ku ean be neglected in (3a). Cor-
responding neglections apply to (3b,e).

We replace in these equations v and w by V
and W, defined by

. i
ziﬂfef’sﬂ"“ﬂsmﬁ:a(ﬁdcn)W,(la) v:—gr——_—cV’ w::a%lz:W’. (4)
ag=agsin @ + an cos f =a(cl +"‘7)a$)74-(1b) Then integrating (3b,¢) once, we obtain
Sinee u,»,w are functions of ¢ only u—=k 3;1» w"” +
duz%dgmg—:dz-k%d% # e+ 250y 2w =c, ob)




1-—=»
2,
1

vu-f—k( Gl ) wr+

+_,_1;” c2V'5J}(

Y et 1) W” =C,, (5¢)

which yield

1 . - 1—v
TTGT[c(5b)+(5c)]=(1 1T s )u+
— ku” + VT WY = (¢*C; + C,) = C
1+ | )
li [(56) —v(5b)J=k(c2—2 + v)u" +

+ (E—)V" + {2+ 2+ YW =
2
1—v
From (3a) and (4) follows
(1 + )2 + 2 ke + w4 V7 —

—p iz = ) LT

(C*—v0) =C,. (6c)

1—v
2

Solving (6h,e) for W”, V" and substltutmg
them in (7) we find :

e+2+v 2k

+ &( —1)w”=0. (1

e e e e U A CD)
(et 2+ C,—C,
where (', = RIS
’” f—v 1'— ? u"”
where Cy= — (et —»)0C, + &G,
S

(e® + ) (1 F c)

o —_ 2
];_(1 o+ Cz)z’tt"” 4 2151!-" 92t 4 %ﬁi)ﬁ} +
1

+ﬁ—+'TM+GC +VC =0 (88)
So far, the only assumption of this analysis is
that the helical strip is uniformly loaded at its
edge. Thercfore the analysis applies not only to
edge load, consisting of bending moment and shear
foree normal to the edge, but also to membrane
loads: normal force ozh and shear force along the
edge op,h. From now on we will restriet ourselves
to foad systems, which yield stresses in the vicinity
of the edge only. So we put the condition that
the stresses vanish for £ —o0. Hence u, v, w and
their derivatives must vanish at = o . Then
{8b, ¢} yield €, = C, = 0 (consequently C, =
C,=(C, = C,==0) and (8a) becomes

E(A+ e, 2
N I i

- (1 +¢?) [26(1+¢)+

+ (4 v)(1—e)] kw” + u=0,

After substitution of (2b) this equation becomes
a differential equation in the independent variable {
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k(14¢2)? diy p) D
N d—?—-{- Jp— (2c2(1+e)+
+ ()1 —e)k dc +u=0  (9)

3 The solution of the diffe'rentia.l equation,

The general solution of this equation is
—

vielding the characteristic equation

2 r
4 2 2 2 PSS DN
R T [2c2(1+e2) + (2 Fv) (L — e}t +
11— 1
TaTer %
This equation has the form

m#zmwf—:o,_

=0.

where A and B are of the order of unity.
The roots are, when we neglect & agamst unity,

o= () D= (5 = i ()]

Sinee £ ¢ 1 we will neglect terms of the order
of k®. Hence

+ ( B )'h 1+ (10)
M= = H ( —_— 1’):

which are the roots of the characteristic equation
o+ 1-—v2 l_ -0
AL+ ek !

pertaining to the differential equation

k(14 ) du

A g = - (1)

d*u
The term 2 Ak —— e

to 2 Akp2u=+ 24AB% % v, is of the order k*
compared to the other terms. Therefore it is
negligible,

The golution of eq. {11) for whick the strains
vanish at {= w0 is

w=e % (4, cosaf + A, sin e}, (12a)

of eq. (9), which is equal

where
C e \B
— 2 '14( e
= [3(1 — )] (1+02)h) . (12b)
4 The stresges,

| The membrane strain components relating to the
normal coordinates are

1 v U 1 .
—_— — —_—== V” 4+ u v
? G Oy a a (e )
W N
gy = Y A v .
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___Bv

o 1 dw 1
Y =% o

e(V” + W),
@ Op o

The strain components relating to the ¢, p-axes
are (ref. 1 Chapt. I, 10 eq. 3)

ey = ¢ cos*8 -+ 2y sin*f + ysin fcos B =

-y L oy [t (L) @V 4 W)
&y == £: 8I0°B + £, c0s"f — y 8in f cos f =
1
TN

yor=—2(es—eg) sinBeos B +
+ y{cos?f —sin B) =
c

—_—— 2 T A%
=i [2%+ (14 ¢ (V W 1].
Substituting from (8h,e) we find
- 1 23 Toa st
_ 1 .
AT R
4 '’
-yg,,"——'zku'.

The stress components are

E ” __E( w
ST g ——v"’)ku’c”_? TW'J_
v ” _ 7
+ e ),Tg,,_————za(lh) ckw”.  (13)

Since ku” is of the order k* .u the membrane
stresses are composed of the first order stresses

E.u

o‘é’[ =0, 0'#[ = m, Tt’fl = { (133) and
stresses of negligible magnitude
E ”
ECI TG g— "y oy = vy, Toy, =
1—v
== ey, (13b)

which are of the order k* as compared to the
first order stresses. '

The lateral load components are (ref. 1 Chapt.
VI, 21 egs. 6 and 9) (see fig. 5)

. = ih E(1—v)a (_ ai;*z + g:_) _
mq:z=‘“—1’£_'h-v; (%-}-va%-{-u) —
aq”____a_r%?_a Fa—aﬂzﬂ —
= _

As appears from (8b,cy ¥V and W” are of the
order u, whereas %’ is of the order k™% u. Since
we neglect terms of the order k” the terms u,

Moo

Fig. 5. The lateral load components with reference to
th z-¢-axes.

V” and W” are negligible as compared with w”.

- Hence
m, = —7 _E_hvz E(l—v)eu”
Mg == fh;, E(1 + ve?)u”
Mg, = — ihvz k(v + e2)u”
Mgy = : i _Pihvz E(l —v)ou” e
g, = — Iihvz k(1 + cHw”
0= — i :E_hvz ke(1 + c?yu™, ’

The lateral load components with respeet to the
{-p-axes can be computed from fig. 6.

2328
i“‘an sinp
Mz

Fig. 6. The lateral load components with reference
to the {-y-axes.

fg_h,,z k(lr—-v)c(_ W+ V)
1 ﬁkvz E[(1 + ve2)a” — ve? V" — W)
- f_h,,z E[(v + c®)u” + u]
l?vz E(1—v)e(w” + 3 W” —3 V")
= g b T S 4 W)
— T ke[ (1 G+ ol (1) 7).




Mgy == Mgz cos®8 + ni.p cos B gin 8+
+ My, sin 8 cos B + mge sin*g
My, == — M, c08 B sin f + M.p cos®S —- _
— M 8in%B -+ mee sinf cos B
My g === — M, SI0 B €OS B — Mg SIN*B -+
+ mg, cos?f + mop cos Bsin B
y = Mz SIN*A — Mg sin B cos B —
— Mg, cos f 5in § + mepcos’B

1y

Qrr =(urcos f + gp, sin g
Qyp =—Gor sinB + pr COS B.

Suhstitution of (14) yields

me= 0 Eh

my, = — E(1+ et)u”

M,y = = Ij‘hvz k(1 + ¢y’ (15)
My, = 0

aggr= — uE_hvz E(1+ 02)3” u'”

qa, = 0

5 Summary and interpretation of results.

The differential equation (11}, its solution (12},
the membrane stresses (13a) and the lateral load
components (15) can be obtained in a straight-
forward manner by assuming that the strains and
stresses in the cylinder bounded by a helix are
identical to those in a straight edged cylinder
having the radius equal to the radius of the ¢ylinder
in the plane through the tangent to the helix and
through the normal to the eylinder. This radius
is B,=a(l + ¢?) (see Appendix A). This con-
clusien can he obtained when we transform the
derivatives to 2z into derivatives of the linear

coordinate z==a¢ by means of (2b) and when we

1

replace « by

1+¢°
The differential equation (11) becomes
hiR* d*u

— + u=0,. (D
12(1 —v?) de?

which corresponds to the differential equation of
the straight edged cylinder with radius R, for
axially symmetrical deformation (ref. 1, Chapt.
VI, 19 eq. 9).

The membrane stress (13a) 18
L

R,
(compare ref, 1, Chapt. VI, 19 eq. 1) (1D

Ty =K

The bending moments and shear force (15) are
Eh? d*u
My, == o
12(1 —»?)  de?
(eompare ref. 1, Chapt. VI, 19 eq, 17)

(I

Tyl = VLY
{compare ref. 1, Chapt. VI, 19eq. 4)  (IV)
Eh? g

=" Ta - @

(ecompare ref. 1, Chapt. VI, 19 eq. 17) (V)
So far the correspondance between the straight
eylinder concept and the helical theory is perfect.

The straight eylinder eoncept fails to give an equi-
valent for the membrane stresses (13b). However,

these stresses are of the order k" small eompared
to o, and to the bending stress following from mg,
The hending stresses are

Eh d*u

op =—————— ——, Whereas oy =
2(1 —+v*)  dz® 2

_h Eh d*u
6, 2(1—7) dot

Another discrepancy relates to the displace-
ments v, w

v _a+ey® o(l+en” o,

— and
dz a a

2y Ve
==(1+c) ¥

a v
d

@

The displacement components v, w with respect to
the {-y-axes are (see fig. 7)

e

H

ap¥

/

/ !

Fig, 7. Transformation of displacement components.

v=-+ veos g —wsin B, w=wvsin B + weos B.

Using 8b, e and neglecting thereby terms of the
order k* we obtain

dv __ few dw (@ nE g
dz E, dz R,

The straight eylinder yields

dog o MWe ____ vie an
dz dz B
which seems not to be in agreement with v and w.
However vg, we are not physically identieal to

- - o — dw —

v, w, sinee the vectors v + Eg—dz, w+ —dz

z dz

dz.sin B
a

are rotated through the angle with res-



o dvg —
pect to the vectors v, w, whereas vg + e dz,
' : dz
dwg .—
we + E_R dz are parallel to vg, wr. If we ac-

count for this fact the relation between wu, v, w
and wug, vy, Wy must be

dug dv v
== — —~— o8 Bsin f — ;.‘smz
dz dz [ & 8
dve  dv | u
— = —F »—smﬁcosﬁ
dz dz @
dﬁk = @L +— smzﬁ
dz dz @
yielding, when we substitute from (16),
2
Ve P8 e 2y
dz? dz? R?
dvg L .
dz B .
dwg __ LT
dz R
: : %
Since —— the second

_?j is of the order k™
2 :
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4
term in the first oné of these equations is negli-
gible. Hence

d’UR Cilg dwR Ur !
Up=U, — = ——, —=—V ——.
dz R, dz R,

‘We obtained from the straight eylinder coneept
the equations (17), which appear to be in error
as far as vx is eoncerned. This, however, is not

a grave failure since the displacement v is of the

order k" small compared to w.

So we may conclude that the straight cyhnder
concept is correet apart from’ its description of
the displacement eomponent wve. It yields the
correet answer for the stress distribution.

The recipe for establishing,the stresses in a
eyhinder with radins ¢ and wall thickness' h loaded
by constant hending moments mg, and shear for-
ces ggr along ifs helical edge, the piteh of the
helix being 2 wac, is:

The actual eylinder is replaced by a straight
edged cylinder with radius R, =a(l + ¢*) and
wall thickness h; the loads my,, qgr are applied

to the straight edge of this eylinder. 'Then the
deflections % and the stresses established for the
straight eylinder (formulae I through V) are
identical to those for the eylinder bounded by the
helix with the same edge load.
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The oblique cylindrical shell loaded along its edge.

6 The approach to the problem.

The edge of the eylinder is the line of inter-
section between the eylinder and a flat plane, which
makes the angle @ with the normal section (fig.1).

The problem to be investigated is the stress dis-
tribution in and distortions of the shell near its
edge for edge loads, eonsisting of bending moments
and shear forces normal to the shell, together with
other load components required for equilibrium. |

It is known from hending theory of straight
edged cylindrical shells that the deflections » due
to these edge loads damp out very rapidly in-axial

1 H . 1 it
direetion, ﬂ heing of the order % W ® . We
dz _ a

ou
os
(s being the coordinate along the edge) is much

smaller than 2% 2™ Wil be of the order of —.
9z as . a

This involves the restriction that the variation of
the edge loads shall be slow. Se¢ we assume that

shall suppose that the edge loads are such that

the derivative of the ecdge load with respect to %

is of the order of the edge load, and we intend
to solve the shell prablem for this type of edge load.
au du
25 ¢ 92
stresses )depend mainly on the derivatives of the
displacements to 2. This suggests that strains ob-
tained for edge eonditions, whieh do not vary with
s, might be a good approximation for the strains
oceurring at edge conditions varying with ¢.

Applying this approach to the oblique eylindrie-
al shell we assume that the deflection % and the
stresses in points along the line s — constant, per-
pendicular to the edge, may be computed from
the edge load in s by means of the theory for the
eylinder hounded by a helix, developed in part 1.
The tangent to the edge in s is continued in a
helix (fig. 3), this helix forming the edge of the
substitute eylinder, and the helieal edge is loaded
hy constant edge loads equal to these in s. In the
edge points adjacent to s the actunal edge loads
are different and so is the angle 8 of the tangent
helix., Thus there are two reasons by which the
exact solution differs from the assumed approxim-
ate solution.

We will investigate the error of the approxim-
ation by establishing the additional loads which
are required to maintain the assumed deformation
and by estimating the efféet of these additional
loads. o ' ' o

Sinee the strains (and thereby the

7 The stresses, - )

An arbitrary point P of the shell is denoted hy
its coordinates s—ayn and z=uwaf, where s is the

coordinate along. the oblique section and z is the
distance to the edge. Developed upoen the flat
plane, the ecylindrical shell and its coordinate
system is as indicated in fig. 8. In this way the
point_Q is adjungated to the point P of the edge,
where on the developed cylinder the normal from @
to the cdge ecuts the edge.

It is assumed that the displacements u, v, w
in @ are equal to the displacements in @, as ex-
cited by constant edge loads along a helical edge
through P tangent to the curve s, the edge load
being equal to the actual edge load in P. Then @

is the solution of equation I, Chapter 5 and v, w
follow from eq. (16). .

The membrane stresses oceurring with these
displacements ean be computed from the speecifie
deformations (see fig, 8).

Fig. 8. Orthogonal coordinates », { shown when the shell
, is developed wpon a flat plane.

(18)

du Bw U
—=——+ — 1 d2SiHﬁCOSB.
TET S 9s a -
]

These formulae follow from the general strain
component formulae given in Part 1, Chapter 3.
The stresses thus established differ from the stress-
es oceurring in the helieal eylinder under constant

edge load by an amount which is of the order kT
small compared to those in the helical eylinder,
This will be shown for the stress o-.



Substituting (16) into (18), using (see fig. 8)

ds = ady (1+%’3—g)

and taking into account that for z =—=c0 v =w =0,
we find

o;=KE [%(3082}3 + livz .
Tz e [
d’q F

The first term is identical to v, according to
{13a), the second term is a consequence of the
fact that w and B vary with 4, which is not present
with the problem investigated in Part I. Expres-

sions of the same type apply to o7 and 7.,
u is given by (12)

Uw=2e¢"% (A cosx + A,sinz),

z
where p—a - and

a== [3(1— )] (%)Kﬁf_&)? —

1T —?

= (:Tk_ﬁ)lh cos 8.

A, and 4, follow from the bending moment m,
and the shear force ¢, at the edge, as given by
form. IIT and V of Ch. 5.

1 1——[}2 % 1
4= (127) __mzﬁ{mﬁ
(Y e ]
1—»%, cosﬁ'q”
- 1 (1—~v2)'/= 1
Az ———ﬁ T mmo.
Then
Ao 1—v V% 1 _m[ ‘
u_—ﬂ( k ) cosaﬂe my(eos x — sin x) -+
4:k )'“ o . ]
_(1_,,-.4 wos g Jooos® (19)
and
wu i~ 1 1 — 2\ 1 _E[ ]
Jad— Eh( 4k) cosf’ 2m,sing +
z

4k )”* ¢
t+ (1—-:2 cosg

When differentiating to » one should take into
account that x is a funection of 5

{cos x —sin 1) } . (20)

2 da 1—2\% ., _d8 2z
~e E,T":‘(_W) P T =

= —x tan ® sin B cos*B cos p.
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i
7/
Then '
o sns s [ £ ] -
3 schosB_ i dz | =
' z
. 1 (lw—v” e . [ dm, .
=—E \ ik ) ¢ ’2———dﬂ sinz +
4k W@ dq, ) }sin B
+(1—~v2) cos B8 dy (cos 5—sin ) eos’

-+ 2my [ (2 — cos?B) sin x — sin?B & (cos x —
+ sinz] tan® eos ¢ +

_ 4k )"* @

+ ~(‘1—-v2 cos 8

— sinx) + 2sin?8  cos &) tan P cos p.

ol (3 —2 cos®B) (ecos x +

diry ) dq, are of the ovder m, g,. Then the

dyg ' dqy

second term in ¢ is of the order o (my +
hi™

+ k'Me ¢,), whereas the first term is of the order

{m, + ' aq,). Therefore, when we put

ahk”

oﬂ?:a”le%—coszﬂ, (21}
the error is of the order k™,

A similar conclusion holds for the lateral load
components.

Since v, w are of the order %" 4 their contribution

to the lateral load components is of the order i
compared to those of «. Then they are negligible

and
_ Ew ( L am)
e V- —
BTT19(1—?) N B pe
3 F 2 2
S Eh ( a_u L, B_u )
12(1 — v7) \ g 9z
3 2,
m*:—**“‘—nl'zzz—Eh— (1—1’) 31:1,_
5 12(1 —?) dsoz
o — R ( Pu_, o )
T 19(1— ) N85z e
o ER? ( 03w o )
O 12(1 —+?) ‘s 9502 |
Since ra:u = ———-ITB— —g%‘— is of the order
AT )
dy
X and aTu is of the order &k~ 2 we find,
@ 0z a

neglecting again k" to unity,
Eh? -

91— o
Mo =—m; is of the order k""m;




Eh? 2%
12(1—»?) 22°
gz, is of the order k gz

(22¢)

47 =

Therefore, when the stresses are taken from
eq. II to V inel. of Ch. 5 the error is of the

order L.

8 The additional load system I.

The element dz, ds of the shell is not in equi-
librium when the membrane stresses o, given by

(21) and the lateral load components m_, mg,
g7, given by (22a, b, e) are applied, and o, 7

EER
Ty, Mz, ¢ are assumed to vanish. The reason

- is that the coordinate system z, s differs from the

corresponding coordinate system 2, ag used with
the helical eylinder. We will establish the external
load system, required for equilibrium at the assum-
ed state of stress. This load system will be cailed
“additional load system I”.

This external load consists of (see fig. 9) forces

f?ﬁ
o0
47 ” — E
G bl ;‘813
%P; m 6q %gdi r:" e
£ 3 . 2 oz
R 0 |
o o ! megPaz) [ = o
L] L
$ gy . =\
5N
g
h(“‘gadn)

_ - {
Fig. 9. Element dz, ds with elastic stress components and
additional loads p,t,lim, , m, per unit area.

l,, t,, p, and moments m,, m, per unit arca.
They can be established by considering the equi-
librium of an clement of the shell,

For the sake of simplicity of notation we put
ey =0, mg=m, g-=4q. The equations of equi-
librium of the element are

k«% —ha(2 +~gfn£ )+
—q(1+ —g% ¢)sin?p=—0  (23a)
(1 +%:ig) +

d,
+g (1 t)sinpeosp=0 (230)

h%-{-tla

oh g i o

Flrgrg-t -4
—p1(1+g’:ig),_o
—vgqm#ma(1+%?_;-);o (23d)
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——vmﬂe—+aiﬁ+mﬂ+
dy 0z dn
g ) ( a8 .y
+qa(1+En—§ + ma 1+&ﬂ_g’)_o.

Since o, m and ¢ are the exaet solutions for the
helieal cylinder, where

b
the third and the fifth equations yield in this case
oh oq
R %
a %?;_i + ga=0

Subtracting these latter equations from those
for the oblique ecylinder. and eliminating ¢ we
ohtain :

ap G dg
7"j_‘?-[(1—v)m——a—;ﬂzi_;‘] +m2a(1 +En_ 5)’—‘0-'

{23e)

The equations (23a/c) establish the additional
load required for equilibrium: forees I,, t,, p, and

" moments m,, m, per unit area.

In order to simplify this sysiem we decompose
M, , M, in statically equivalent forces. Adding these
forces to !, n,, p, we obtain a load system, con-
sisting of forees per unit area 1, £, p.

Fig. 10 shows how m, can be decomposed in

Fym 98 d2
d2 mdi my el

m,%’: d2
Ry

N
Fig. 10. SBtatic equivalent of the moment m,.

statically equivalent forces.” Combining the edge
loads of 2 consecutive elements ds (see fig, 11)

(ml"?.ﬂn!d‘l)di ‘%ﬂ-ld'qdi
\ T,di ‘;
\, Ao =,
N m@a X

Fig. 11. Combined load upon 2 consecutive elements ds.

we find that m, is equivalent to a tangential load ¢,
and a normal lead p, per unit area.

t. dsdz=—= "1 dsda
2 i R1
pe dsda= ™ 4, da.
dn

m, has been defined by (23d), henee
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The same proeedure is applied to m, in figs, 12
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Fig. 12, Static equivalent of the moment m,.
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and 13; m, proves to be statieally equivalent to
a longitudinal load I, and a normal load p, par
unit area. ‘
PR
1, d§d5=_%‘i dsdz

2
J

# )

hence

\ d:s_dz_z—adq—:a—[mz (1 +
. 0z
my; has been defined by (23e),

L (1+3f ¢) = fz? df (1 )m—?afg}

2
-{2ba)
(1) - ) o

The total additional load components are

Fig. 13. Combmed load upon 2 consecutive elements dz. I=1 +‘12’ t=t +t, p=p +p,+p,
d h 1 in?
l(1+f’ﬁ—g)=ijg)+ [(1_v)mﬁ——a:} 98 )M
‘ dy - 7 ' a ak, dyg o
4B de h . v om dﬁ ) smﬁ cos B
t —_ e —
(1+d1] g) oy a+aR1 o) +a 1+ ¢ ’
p(1+ B ) 9B (p 2 gy (1_") a§)+ (26)
dy dp * R, -G
d*g ¢
4 v @*m _ em  dn*
ap ) on? dy a8
1+ — 1+-=¢
( dn ¢ \ - dn ._ )
Having thus established the load components I, z
¢, p we will investigate their order of magnitude. g=ua_=af
Since we have already neglected stresses of the N " 5 .
order k"™ ¢, we have to do so everywhere and hence Then = =% —ai,, where “% is of the order
to neglect loads which give rise to stresses of that 92 e B 0%
order. After substraction of these negligible loads of u as well as ou
the remaining load system forms the load system I 9y
required for equilibrium. Finally we introduce
We substitute ¢ and m from (21) and (22a),
then I, #, p are expressed in . So as to establish = _,E_, — _._a__ )
the order of magnitude of the addltmnal loads it i cos“',B sin?g

is useful to take instead of the variable 2z

z(1+ g C)% Eh{d,é

= Ti;—?(?oszﬁu—l-%('

(v =2

i }—% (cos’B u) + %(

k )54 - . [ &%
T—j SlnﬂCOSB (I—V) _BF

k Y ) (
——— 2 I
1—v2) vicosﬁlaq e

Then we obtain
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cos®g sin®f dp Eo\odu ]
+ ——— {14+ =
g ( dy C) ( 1_v2') da®
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: U g3
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- cos*B sin B
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p(l‘“%s’\):(l‘l_kvz)um—;:i%}ﬂeosﬁp[4m+(1;,_,)g;_§_x %:‘—} +
: , ©B '

4k " v E-_ 23_8_23"_ _ 4k % dq : i . 3u .

+ (1-—1’2) 1_{_,_%:15 a'f (OOS axz) (lfl'ﬁvz ( d}e g) r a‘!r) ( COSIB e )g

The functions of # and B oecurring in these
expressions are of the order w. Therefore neglect-

ing terms of the order k' to uﬁity, we find

dg Eh dg
l(1+ O C_) pe Eﬂ——cos Bu
’ En @
t(1+_§£ ): a; T(cosgﬁ’u)
- d ) :
p(1+ g t)=
4%k N ER 48 [
—(1__1,2) i ——cos’f [4zu +
u otu
The normal load p is of the order k™= u It
k'hFir_

causes membrane stress of the order 'p—h—

which is of the order k™ o. As has already beun
ohserved we have to neglect stresses of this order
of magnitude. This means that the additional load
p is negligible, Then the remaining additional load
components are just { and ¢ and we conclude that
the additional loads required for equilibrium in
the assumed state of deformation are

A (1 + —g£ ) == Eaf' i’f cos?f u (27a)
d h
(1+ £ g)=— E;z %(eosﬂ(?u) (27h)

This load w111 he called “load I7.

9 The load system II

Since the shell is in faet not subjected to external
load along its surface the load system I has to
be compensated by an equal load system of op-
posite sign {(—¢{, —¢)}. This load system forms
part of “load 1I”, which eomprises in addition
forees along the edge of the oblique cylinder. These
edge forees L and T are chosen such, that the load
system II it self equilibrated and restriets its in-
fluence to the vicinity of the edge. The distribut-
ed load I, £ is important only in a narrow strip
along the edge, since 4 damps out rapidly with
inereasing 2z, Therefore, if the loads —1I, —¢ of
the element dn, 0 < 2 <{ o find their reaction in

z=10 (fig. 14), the load system composed of —1,

— ¢ and these edge forees will confine its influence

oh the ghell to the vicinity of the edge.
Therefore we take {see fig. 14)

Fig. 14. Load system II.
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henee
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From {20} follows that :

S
2 —_ —_— o —
cos’f Oj ¢ dz Eh cos2g e

l];z

« LA
Eh qo:

yielding (see App. A eq. 8)

L= £ go=tandcosfeoseq, (28a)
a d'q
_ a(R, q,)

The stresses imposed by the load system II are
mainly membrane stresses since; 1° the width of
the shell strip in which —1?, —1# are not negligible
is of the order a k"™ and the width is of the order

i small compared to the radius; 2° the lead
system consists merely of tangential components.
Then the membrane stresses are of the order of
L/h and T/h, and according to (28) of the order
of go/h.
{22¢} yields

4%
1—*

Y Pu
3

) cos®B ( P

Therefore g,/h is' of the order lf—k”‘u, whiel is

(see 21) of the order k”‘a-,,. So the membrane

stresses by load system II are compared to those,
pertaining to the edge load m,, q, together with

load system I, of the order k', Since we have

neglected stresses of the order k' the stresses by
load system II should be neglected likewise.

). (29
0



The membrane strains caused by‘ load system II
u

are of the order k™ — . Therefore they are like-

wise negligible to those pertaining to the edge
loads.m,, g, plus the load system I, which are
given” by eq. (16).

We conclude that the effeet of load system II
can be neglected completely,

10 The solution of the oblique cylindef problem.

We found so far: 1° that the solution of the
problem of an obligne eylinder under edge load
mo{n), g,(n) together with the load system I, con-
sisting of l(n,_é), t(n, 2) is given with an error E'
by the solution for the helical eylinder under con-
stant edge load m.(5), g.(y); 2° that the load
gystem 1I, composed of —1I{y,z), —i(y,2) and
the edge load L(g), T(y), defined by eqs. (28},
yield stresses which are of the order k™ compared
to those pertaining to m,, g, plus load system I.

Adding m,) g, , load system I and load system IT
the resulting load consists merely of the edge loads
mo(n), quln), L(q), T(nI). We call this the “total
load”.

For this total load the stresses are the sum of
those for m,, g, + load system I and those for
load system II, which are with an error of the

order k' equal to the stresses in the helical cylin-
der under constant edge load m (%), g.,(3). So
we have obtained this important conclasion:

The solution for the oblique cylinder under edge
loads mo(q)c,l q‘;(/q),, L)(q) — tan & cos 8 ¢S ¢ q,,

[ aos?

T(y) =— Ld_ﬁ
gi
the order k" by the solution of the differential
equation (see Ch, 5 eq. 1)

h2g? 1 dhu
12(1—+?) cos*B det
with the boundary conditions (see Ch. b, aqs. III

and V)
_ Eh? ( du
12(1 —v2) \ dz? )0’ :

ig given with an error of

+u=0

2==0,7: m,(y)

o) = — ER? (dﬁu
" a1 e )0
7= :uzd—i_bz(),

dz
which is (see eq. 19)
— 1 1-—-23\% 1 .
uiz, ) ZH(T) EBSTFe_m [mo(n) {cosz +

. 4k Yh e
—gina) — (—1—__—‘,;) mqn(q) eosx],
where
12

ty ?
m‘—( ik ) cos f -

The displacement components in the plane of
the shell are given by (see Ch. 5 egs. 16)
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w==[1-~(1—v) cos*8]

The membrane stresses are (see eg. 21)
U
Ty =E0082‘8—E, o =00 T;”::O.

The lateral eIasﬁc load components are {see
eqs. 22)

mey, == _____iEh“ —F—-aiu M~ = ~— vii=
Y 12(1—~—v2) dzt ’ ez !
En 0*u :
T T T 0 e e T R e =0

We can give this eohclusion alse in the wording:
The stresses and deflections of an oblique eylin-
der under edge loads

my(n), ¢u(7), L('?) =

__ d(g,/cos’8)
dn
are in the point », z with an error of the order k'

identical to those in the point z of a straight eylin-
der, with equal wall thiekness and radius a/eos?s,
under constant edge load m(3), gu{y).

=tan®cos Beoseq,, Tin) =

11 Some characteristics of the edge load.

The load components ¢,, L, are situated in the
plane normal to the edge (fig. 15). The angle 4

QBLICUE EDGE

Tig. 15, The total edge load, seen in the plane
perpendicular to the edge of the eylinder.

between ¢, and the plane through the edge is given

by (see App. A, eq. 3)

cos
0s 3

Then the load normal to the oblique plane is

cos § = , 8in# —=sin ¢ cos ¢,

—g,8ind + Lecosd=
=q,sin® (—cose + cosg) =0.
So the resultant of g, and L falls in the oblique

plane along the normal to the edge and its magni-
tude is (see fig. 15 and App. A egs. 1)

Q=gqg,cos0 - Lginf—=

— o 2 in? 2 2.0y — GOSB
= s Boosd (cos?® + sin®® cos®B cos?p) _q°cos=1>
(30)




| The load
g — . Han/eosB)

: dn
is tangential to the edge.

When edge bending of the shell is caused by
an oblique frame the reactions of ¢ and T form
the load of this frame. The type of frame load
shows the characteristic of heing merely normal
force upon the ecross-section., This appears from
the conditions of equilibrium of the element ds of
the frame (fig. 16)

D-db
Mch/
N.aN‘\{ a

[+]
M
] N

Fig. 16. Frame load by edge load of the obligue cylinder.

_g_ + D+ Tp=0
%?-—N + Qp=0 (31)
%‘1& + Dp=0
The firs't two equations yield
3;‘? + D+ dfi?&”) + Tp=0.

Since (see App. A eq. 5, 6)

St e |G r]=
= (o 525 o) (g )l =0
is D=0, M=0
a (32)

N'__ql) C()Szﬁ
a solution of the equations (31},

So the conelusion is:

The load applied to an oblique frame by edge
bending of the eylindrical wall is a normal foree
upon the cross section of the frame tangent to the
line of intersection of frame and cylinder and its
magnitude 1is
* cos?f’

This effect of the shell upon the frame is equi-
valent to that of an inner flange, which is added
to the frame, loaded hy a compressive foree N.
Since the strain of this inner flange would be,
due to the compatibility of strains of frame and

=q

shell, ¢, = %ﬂcoszﬂ {see eq..18), the cross seetion
of this equivalent flange is
—N

Eé‘s

q,0°

8= = Buycosg
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Using (29) and (18) we find

C o o*u
4% )*f« (’a_x?)
1—+2 %
1

__ah (
8= 4cos B

__ah ( 4k _y
T 2cosfB F0

11—

So the coneclusion is:

The effeet of the shell, to one side of an
oblique frame, on the frame is equivalent to that
of a flange having the cross section §, given by
eq. (33).

Note

Afier completing this investigation the anthor
got notice of a recent Polish paper

Alexander Kornecki, The state of stress and
strain in a thinwalled tube rigidly fixed in
an oblique cross section,

Rozprawy Inzynierskie LX—LXVI 1957,
which deals with the same subject.I The approach
is different: oblique eoordinates are used and an
asymptotic golution is obtained, which again accepts
errors of the order k™. The results eomply com-
pletely with those obtained in chap. 10. However,
since terms of the order & are neglected rigorous-
ly no mention is made of the membrane loads L (%),
T{(n), which have great importance for the frame
load eaused by edge bending. Therefore the paper
does not include the eonelusion of chapter 11.
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APPENDIX A.

Geometry of the obligue cylindrical shell,

The equation of the edge of the cylinder is
(fig. 1)
2,=Dbeosg=—atan ®eosy,
where @ is the angle hetween the obligue end-
seetion and the normal section of the eylinder.
The tangent to the edge makes the angle 8 with
the normal section of the eylinder (fig. 2)

tan § = _ag:() =1'-3:11¢’81'11<p=c, COSﬂ=
c
=——0 sinf— ———. (Al)
(1+e)* »B (1+ ey

The radius of curvature of the cylinder in the
plane through the tangent to the edge and through
the normal to the cylinder is

a
b=

The radius of curvature of the cylinder in the
plane normal to the edge of the cylinder is

== g1 + ¢?). (A, 2q)




e cb(l + c2)
2T Sinig | &

The angle 0 between the normal to the cylinder

and the pIane through the edge is established by

projecting ‘a line element of the normal to the

eylinder having unit length upon the plane through

the edge. Its projected length is cosd  (fig. -1).

The ends 1 and 2 of the line element have the
coqrdinates

(A.2b)

= ¢ CO8 g, y1_—a,sin'<p, 2, —=becosg;
T, (a—i—l) cos¢, ¥,= (@ + 1} sing, 2,="bcose.

The coordinates in the plane of the oblique
section follow from (see fig. 1)

z —=zxeosd + zsin ®, y:y.
Hence

7, —a B¢ Y —asi
— [ — 10 ¢ 5
1 cos d Yy ¥3

o . - .
@, = (m + cos tI)) cosp, Y,= (& + 1} sin ¢.
Then '

€058 — (Eg —1_1?_1)2 + (az_ ?.71)2 =

. 052
= cos%® cos’p -+ sin®p — cos® §1 + ¢ty = ¢ R’
sin?f = sin®® cos®y. (A 3

The equation of the elliptical edge is (fig. 1)

a? 1 cosy — .
2h —— et = — .
cos’® o + po I, z=a vt Yy=gasing
(A.4)
Henece
r 1y tan
tan ¢ —= — — == Y f =
d cos’® | =z cos ¢
. ¢
sin® (1 —¢2 eotan?®) ™ '
, ¢ sin
Sln\;(:: - y= - B ,
: gin® (1 +¢*)™ sin®
- 1 —c?eotan’® )Y-'
— {2 T T T ) —cos £ cos ¢ A4
cos ¢ ( 1+ ¢ feose (_ )

The radius of eurvature is

_ [ (dygdn ™

- :acos‘b(1+c2)s‘r“:=
d2y /dx?

© o :
=a o8 . (A.5)

The line- element, ds of the edge i (fig. 2)

J— —_— ad(P —— 2 ] —_
ds‘_Aa,dr;_ wos f =a(l + e?)* do=pdy. (A.6)
"Then _ :
- dy _ cogB 1 '
dp  cos®  cose {1+ ) (4.7
%g__-= eosdidﬂ. ds;;’e —%— — tan & eos’8 cos ¢.

‘ (A.8)

APPENDIX B,
Summary of formulae for use in application,
Geometry.
.o . ) 1
c=tanf=—tanPsing, co8 f—=——,
' T (e
| L ¢ !
sin = —8m8 Al
AR &
[ ' ) . a ' .
v (A.2a)
cos P . .
e 9:—(3&?—‘(?—.,.,811‘19:3111@008? {A.3)
sin B
SINY = e
dy  ecos’B
cos p ==cos B cos p T cosd (A4, T)
a8 = tan & cos®B cos ¢ (A.8)
dy
cos & ad ¢
p=2a 03%3' ds_‘a'd”~9 '1b= OSJB (A5:6)
Edge load. :
My, o, L—=tan ® ecos B cose¢q,,
a2
P d{g,/cos’B) (28)
dn
Displacements. -
1 (1 \% 1 w[ .
uMEh( % ) ey e~ F|my{cos x —sin z) +
4k ¥ a
(i) s a0
‘J:sinmfid;j
J e
I o
o [1—(1—v) cos?8] f—;i dz. (16
_z_ 1— 2\l
pma b= (G) s )
Stresses.
or =0, o-=E ;‘— cos?8, 7_=0  (13a,21)
En? d*u m "
m- = = M =V,
.zs ‘ 12(1_V2) dz? 3T 5
== Ew du M=M= =0
q” - 12(1_72) d;a ' iz qsr
(22)
Frame load.
; cos 8 .
= 3
9= cos® ’ (30)
a
= 32
%o cos?3 (82)
S‘_ ah ('41& )“* 1 :
T 2eo8?g\1—2/ . (.1—1»2 Y my,
1— ih ) eos 8 v
33
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The reduction in stiffness of combinations of rectangular plates

in compression after exceeding the buckling load

J. P. BENTHEM.

Summa.ry.

The combination may be a plate with stiffeners, a U-section member, panels that change in thickness discontinuously,
ete. It is supposed that the buekling mede is already known (exaetly or approximately). Formulas, based on the proper
differential cquation and well suited to numerical integration are derived for the reduction in stiffness (tangent modulus)
for loads in small excess of the buckling load. Some numerical examples arc given. These examples clearly show the in-
fleence of the boundary conditions for the membrane stresses which arise in the pauels after buekling. '
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elasticity modulus,

Poisson’s ratio.

plate thickness.

width of the panel (strip).

bending stiffness #A%/12(1-—v?).
deflections from the plane of the plate.
coordinate axes, ¥ in longitudinal, y in
transverse direction; z perpendicular to
the plate (fig. 2). The z and y axes
are taken in the middle plane of the
plate.

membrane stresses.

compressive stress (o =— o.).

mean shortening per unit of length.
stress function of Airy for the mem-
brane stresses,

strain energy.

parameter indieating the strength of
the buckling mode and the membrane
stresses due to buckling.

indicates the wave length of the buck-
ling mode, w = ¢f(y) sin px. Wave-
length is 2 x/p.

half wave length, A ==/u.

Y, 2

% indices indieating panel number,

where 2 indices are used, sometimes se-
. parated by a comma, the second one
(]

S refers to the panel number.

ratio between increment of mean com-
pressive stress and mean shortening
per unit of length, E*=ds/de.

Introduction, .
Trerrrz and Mareurrrn (ref. 1, 2) and Korrer

(rel. 3), derived exaet solutions for the membrane
stresses that arise in a compressed panel immedi-




ately after cxcess of the buekling load, as well as
expressions for the ratio between the increment of
the load (beyond the buekling load) and the incre-
ment of the mean compressive strain,?!)

Such derivations are not yet available for
eombinations of reetangular panels, Such a com-
bination may be a U-section member, a plate with
stiffeners, panels that change in thickness dis-
continuously, ete.

At the start of the present analysis the buck-
ling mode is supposed to be known, exactly or
approximately. The membrane stresses which arise
immediately after excess of the buckling load are
derived with the aid of the proper differential
equation. Hitherto, thizs was econsidered to be
highly impraectieable in view of the large number
of (though elementary) integrals that would be
met, especially in the determination of the strain
energy corresponding to these stresses, However,
if the funetion, describing the buckling mode, is
used in tahulated form and all further neces-
sary differentiations and integrations are carried
out numerieally, the proeedure can very well he
applied.

The proeedure iz illustrated by application to
a U-seetion member, a square tube and some
other examples. These examples clearly show the
influenee of the boundary conditions for the mem-
brane stresses.

Caleulations of the load at which buckling Of
some combinations of rectangular panels starts
have already been performed in refs, 4, 5, 6 and 7.
Experiments of the post buckling behaviour of
panels that ehange in thlcknesc. dlqcontmuously are
deserihed in ref. 8,

2 The von Karman equations for large deflections
of plates and the expreggion for the strain
energy.

These equations (see for example ref. 9, page
343) read for flat plates of constant thickness
(external load perpendicular to the plate being
ahsent)

k(Y Pw v 0w
Adw =<5 ( yr ox? Bt oyt
321{/ o%w )
9xdy  oxdy (2.1)
_ 0w )2 Cw ow
ady=1E j(axay i g Y

where the # and y axes are in the middle plane

of the plate and
w = deflection of plate perpendicular to the plate
E = modulus of elasticity
D = hbending stiffness of plate == Eh*/12(1—s?)
h == plate thickness
A == 0%/0x? + @*/oy?
¢ = Airy’s stress funetion for the membrane
stresses or, oy and 7,
9%y 9%y ]
SOz _pﬁ H O'y-—‘ﬁwT, T aﬂ}ay . (23)
Uy This ratio is often indicated with the aid of the
notion ‘“effeetive width?”,

1f the plate is compressed in z direction hy a
uniform stress o (o, has a negative sign, when
compressive) a possible solution of (2.1), (2.2) is

w=Ay+ A,, y=4oy*+ By + B, {24)
if the plate is free to expand in y direction and

w= Ay + Ay, g =3 oy + vt

By -+ B, (2.5)
if this expansion is completely suppressed. In
(2.4) A, 4,, B, and B, are arbitrary integration
eonstants which do not enter into the formulas
(2.1) ... (2.8), but nevertheless it will prove to he
convenient in the further work not to put B,
and B, cqual to zero (A, and A, deseribe a rigid
hody displacernent).

At the onset of buckling, whieh starts for all
panels of the combination at the same compressive
strain, the solution (2.4) (or (2.5)) is no longer
stahle. Suppose the buckling mode for a panel is

w =gty (&, ¥) (2.6)

where ¢ is a parameter increasing from zero to
a small value. Due to the smallness of the dis-
placements w at the onset of buckling, the fune-
tion w4 may be determined from the differential
equation (2.1) only (ey=0)

jb_ azwi
D 7

Alw, = (2.7)

together with the appropriate boundary conditions
for w,. These conditions are coupled with the
conditions for the defleetions w, of other panels
of the combination, which deflections are described
with the ald of the same parameter p.

For loads in small excess of the huckling load
it may be assumed that the deflections w remain
aceording to the funetion w (x,y) of (2.6) %).

Equation (2.7), which determines this funection
w, {2, y), is written in the form
h  9*F. 0%,
where
Fo=—3%0y*+ By + B, (2.9)

and e, is the compressive stress at buckling.
The membrane stresses must be a solution of
{2.2).

2y )2 3w,  0%uy
— R b
by =l }( 30y oy (219)
In (2.10) the siress funetion ¢ is soparated into
y=F+ G (2.11)
with
F=3Cy*+ By + B,. (2.12)

In (2.12) the constant € is chosen in such a
way that the stress o, following from (23), i.e

¥ In the yight-hand side of equation {2.1) the neglected
terms are now of order g¢' compared with the first term.




o, = (!, cquals the stress which would eorrespond
to the eompressive strain if buekling would not

take place. 1f the shortening in z direetion per
unit length is e, this stress ar would be oy =—=—eE,
hence € =— ek (it is still supposed that the plate,

is free to expand in y direction). If one of the
edges, parallel to the x direction, remains straight,
the stress

or==C0=—¢kK {2.13)

actually occurs and is called the edge stress.

If (2.11) is substituted intoe (2.10), the fune-
tion F drops out and
LT )2 Py, 0%y
= ¢l L) — 14
AAG =¢'E g(axay, o oyt { (2.14)
Substitution of
G =2, (2.15)
into (2.11) and (2.14) gives
y=F + 7, (2.16)
2fw, 2 %%y, dw
p— ( 1 . 1 1 .
AAG, a axay) ox? oyt ; (2.17)

together with the appropriate boundary conditions.
The parameter ¢ still remains undetermined.

To find the load-compression relation the poten-
tial energy P (of all the panels of the combination)
must be determined. Then the wvalue of the para-
meter ¢ follows from the condition that P is a
mlmmum 1. e,

=0 (2.18)

The potential energy P equals the strain energy
U7 if the compression (overall shortening) is con-
sidered to be preseribed, i e. if the differential
quotient

1 @ c

T = E (2.20)

to be derived from (2.12}, has a prescribed value.

{see (2.13)). .
The equation (2.18) may thus be replaced by

9o (2.21)

If U is the mean strain energy per unit length,
and e the mean shortening per unit length, the
compressive force K is

— =F, (2.22)

The expression for the strain energy for one
panel bhecomes

By putting 8l7/0¢ =0 it might seem that the
theorem of the ‘minimum potential energy is not
used correctly, since the correet use of this theorem
allows only a variation of displacements or eom-
patible strains. Though a stress function ¢ oceurs
in {2.23), all varying membrane stresses corres-
pond with eompatible strains, because they satisfy
equation (2.2), which is in fact a compatibility
equation, The only defeet of these membrane
stresses is, unless the parameter ¢ has the proper
value of (2.21), that equilibrium in the direction
perpendicular to the plate is not preseni.

It may thus be stated that the application of
{2.21) implies that the displacements w, perpendi-
cular to the plate and the displacements % and v,
in the plane of the plate, are varied in such a
way that the exact equation (2.2) is satisfied.

In prineiple, it would be possible to disregard
eq. (2.2) and make independent assumptions for
u, v and w. However, it is to be strongly recom-
mended to use the procedure adopted here. It is
relatively easy to choose a huckling mode (for
the displacements w) by Intuition {(at least for a
simple combination of a few panels), hut it is
much more difficult to do so for a mode of the
displacements w and v (i.e. for the membrane
stresses) which arise after buckling.

It may be noted that the equation (2.1) may
be derived from the expression for U in (2.23)
by the calenlus of variations. In that case the
functions w and ¢ must be varied in such a way
that the compatibility equation (2.2) is satisfied.

3 Application of the von Karman equations to
a combination of rectangular panels,

31 The combination,

Figs, 1a ... 1le show cross sections of different
combinations of long rectangular panels, or strips,
which will be considered to be of infinite length.
In fig. 1la two of the strips have a free edge.
Figs, 1e and le may represent an infinite sequence
of stiffeners on a flat plate.

The following different boundary conditions for
a strip may he distingunished (fig. 1):

(1) @ corner, i.c. a sharp bend befween two ad-
jacent strips.

(2) @ transition. The two adjacent strips, unequal
in thickness, lie in the same plane,

(3) o free edge.

(4) @ hinge. Two adjacent strips in the same
plane, equal or unequal in thickness, are sup-
ported by a hinge, or there is a hinged edge.
A hinge may be either such that it cannot
absorb shear stresses in longitudinal direction,
or sueh that the eompressive strain along the
hinge is constant.

(D 82w dhw \? P W
U**m'z* (—ax— +(v) Vo e T 20— )(axaj)“
vy oy

) (22;’}) —2v ox®

5 T2t )(32"’ )2”dwdy.

Sey (2.23)




(5) & clamped edge.

(6) & bremch poini,

(7) on infinite repetition of a configuration (figs.
1c¢ and 1le).

In the analytical derivations of this paper only
houndaries mentipned under (1), (2) and (3) will
be considered. Thus, there is 'a finite number of
strips linked in series, and the combination has two

CORNER

such ealenlations have been performed in refs. 4,
5, 6 and 7. Especml]y ref. 5 gives a practlcal
pmeedure ‘

In the deuvatlons it Wlll be supposed that the
buckling mode is known exactly, If only an ap-
proximate solution, obtained with the aid of the
potential cnergy theorem, is available some minor
alterations in the derivations are necessary. These
alterationz are indicated in the diseussion of eq.
(4.19), but all final formulas remain the same.

In order to obtain the boundary conditions in
a proper form for each strip a coordinate system

Zi, ¥i, & is introduced. The subseript ¢ refers
to the i-th panel. The coordinate in longitudinal
direction, z;, iz equal for all panels and hence
#; =2x. The transverse coordinate y¥;, in the middle

{
FREE EDGE

L
CORNER
Q.

FREE EDGE
TRANSITION

L

. BRANCH POINT

1L

&

fe

I—_..-—l_—'s
e.

Fig. 1. Several combinations of strips.

free edges, unless the first and the last strip are
again linked together. In that case there are
only corners and transitions. If the combination
is compressed BHelow -the buckling load the strips
are free to expand in transverse direction.

It is not diffieult to adapt the formulas of the
present cases to the ‘other boundaries mentioned
under (4), (5), (6) and (7) if they would oceur.
The numerical example of seetion 7.2.1 contains
a case meant under (7).

All panel widths, panel thicknesses and elasticity
moeduli must be of the same order of magnitude
respectively. At a eorner, the angle between two
panels may not be almost 180°.

3.2 The buckling load and the mode of buckling.

The analysis of the. buckling of combinations of
strips like fig. 1 is closely connected with the well-
established theories of buckling of single plates.
Determination of the exact 'buekling load and

mode of a uniform panel results in the solution of -

a homogeneous linear differential equation of the
tourth order (2.7); for combinations like fig. 1
it results in the golution of a set of such equations
with eoupled boundary conditions. As meniioned,

plane of the plate, is direeted from the (i —1)th
towards the (i + 1)th panel. The coordinates z;
are then determined by assuming that all systems
are righthanded.

Fig. 2 shows such coordinate axes =z, vi, %
for some adjacent strips. The boundary conditions
for the deflections w at a corner between the 1-th
and the j-th strip are)

w; = constant (3.3)
w; = constant (3.4)
ow, dw;
o oY (85)
02w 0%w; 8% 0%w;
D ( ‘):D Sy ﬁﬁi)
W o d ( e 0z
or (3.8)
oPw; azw,-
D, — = —_—
oyt L Ayt 5
%2 X3
A2 Z "
r s
tXf/y a 3 24
1
Ya
7 ()
) Xg .
//zs
LT v
DIRECTION OF
CONTOUR INTEGRAL
A —
“LEFT FREE EDGE"”

"RIGHT FREE EDGE™

Fig. 8. Systems of coordinate axes in the strips of the
combination.

Equations (3.3) and (3.4) express that the
corners remain straight,cquation (3.5) expresses

") It is assumed that PoIssoN’s ratio, v, is the same
for all strips,




the continuity of the geometry and equation {3.6)
expresses the fact that the bending moments M,
at hoth sides of the eorner are equal.

The boundary conditions at a transition (fig. 1d)
are

wW; = wj (3.7)
=D, {-g_?:’—; +(2—v) —81%11 (3.10)

Equations (3.7) and (3.8} result from the re-
gquirement of geometrieal continuity, (3.9) from
the equality of bending moments M, and the equa-
tion (3.10) from the continuity of the reduced
shear foree @Q,— 0o M,/9x (8, shear force, M
twisting moment).

The (only two) bhoundary conditions at a free
cdge are

azwi BEwi s

e T =0 . (3.11)
o as‘ll)s . .
e + {2 —v) T == 0. (3.12)

The defiection surface of the +th panel be
(compare (2.6))

w; = piwy; + terms linear in y (3.13)
in which '
wy == fi(y) sin pr (3.14)

is the buckling mode for the i-th panel. The half
wave length in 2 direetion, whieh is the same for
all strips, is of course =/u. Each fi(y) is the sum
of four (real or complex) exponential funetions.
Even if they are known exaetly, these exponential
funetions will not he wused, in spite of the fact
that in the further work only elementary integrals
would he met. Their huge number would lead to
very laborious computations. The funetions fi{(y)
will only be used in tabulated form.

If the buckling mode is known, the following
formula for the compressive strain at buckling ecr
can be used (eompare ref. 10, page 326, formula

(211)), ;
= [ (52

2 azwl 2
) +(B-y2 ) +ay

3.3 The membrane stresses.

The stress function ¢ for the membhrane stresses
in a strip is from (2.11), (2.12) and (2.15)

¢ = F+ @ (3.16)
F=131Cy+By+B, . (317
G = oG, .- (3.18)

The constant € for any strip 18 determined hy
its shortening, which has the same prescribed value
for all strips.™)

Into the differential cquation for the stress
funetion G, , equation (2.17), the expression {3.14),

w, = f sin px,

is substituted {the linear terms of (3.13) do not
play a role). The result becomes

AAG, = E 12(f"? eos®px + ff sin®ux) (3.19)
or
AAG, =3 E p* {A(y)+ H(y) ecos2 px } (3.20)
where
Ayy=[=+ff" (3.21)
Hy) =f*—ff". (3.22)
The solution of (3.20) has the form

G2=§pﬁ [Q(y) + K(y)eos2 px ]. (3.23)
Tn. (3.23) Q(y) is the solution of
:;_;Q —4 (3.24)
and K(y) the solution of
K ﬂ:f{. (3.25)

AR 2
16 K —8 1 7+

The solution of (3.24) is
Q=@Q,+ U, + Uy + Uy + Ugy®, (3.26)

where @5 is a particular solution and U, ... U; are
integration constants.

The particular solutions @, will always be
taken as

Q= [([ tay) av. (3:27)

1) The strips may have different values for € if they
have different elasticity moduli,

Cor =

_—EEh_/fwl

2w, 9w, (’azw1 2 ‘
o Tt e—w (5 V1 dady
2w
ax; dxdy

where the = sign refers to a summation over all panels.

With the substitution (3.14)

3D [{pf? ()7 —2pdff” + 20— ) () } dy

Ber —

w2 B [ oy

(3.15)




That (3.27) indeed is a particular solution of
{3.24) is easily verified with the aid of (3.21).
The solution of (3.25) is

K=K, +(T,+yT,) cosh2uy +
(T, +yT,)sinh2 py (3.28)

where K, is a particular sclution and T,... 7T,
are integration constants in the complementary
funetion.

The funetion K, may be calculated from the
following integral

K== -3 3fH(s ) (—sinh2u(y — &)+

+2#(J—-£)cosh2,u (y—&) yde (3.29)

where the lower boundary e, is an arbitrary con-
stant.. In (3.26) the integration constants &/, and
U, have of course no meaning for the derivation
of the membrane stresses, as this is done by.a
two-fold differentiation, Nevertheless it will prove
useful, see (4.5) ... (4.8}, to give them special
values. The integration constants U, and U, are
determined from the requirement that the mean
shortening, due to membrane siresses stemming
from &, {(eq. (3.23)) and the deflections w, is
zero, this shortening being caused by stresses
corresponding with F {eqs. (2.31), (2.12)) only.
Thus, integration of the partial differential quo-

tient
STNY 8 S A N
s T\ /T E \ay T U e
ow, \2
—34 (—'axl ) (3.30)

over a wavelength must deliver zero for all values
of y, ie.
2%[u 5
i
f a—ﬂ}dx:O.
]

The solutions of (3.23) and (3.14) are substi-
tuted into (3.30) and in its turn (3.30) inte (3.31).
If use is made of the fact that

27l
f cos2 prdr=>0

0

(3.31)

the resulf is

wlu

fpp

an:

+2U2+6U3y)—-

— 3 472 cos? pﬂi‘ =0 (3.32)
or
@y 2
62+2U +6Uy—}f 0. (3.33)
Now, since from (3.27)

an

s =11*

the integration constants ¥/, and U, are zero.
Hence
2*Q
2

—1ir

where ¢ is the solution (3.26).

For each strip the integration eonstants T, ... T,
oceurring in (3.28) are to be determined from the
boundary eonditions which are valid for the mem-
brane stress funetions .

These bhoundary conditions at a corner between
the 4-th and the j-th strip are

(3.34)

2%
= (3.35)
0%
= 3.
Py 0 (8.36)
i oy
i 2y 7 axdy, (3.37)
L( Py a2¢.-)_ 1 32%)
E; ayﬁ ot - Ej ( By;” 83:]2
or (3.38)
R )
Ei aJa Ej a'yjz

Equations (3.35) and (3.36) represent the re-
quirements that the normal stresses perpendicular
to the boundary arc zero. Strictly taken these re-
quirements are incompatible with the requirements
(3.3) and {3.4) which express that corners remain
straight. Thus it seems as if from a plate stresses
and displacements normal to the boundary are
preseribed, which is of eourse impossible. ‘Although
it ean be reasoned by intuition that no signifieant
crror will arise from this incompatibility, a refined
analysis of the boundary eonditions at a corner
has been made. This analysis, given in Appendix
A, indeed leads to the conditions (3.3), (3.4) and
(3.35), (3.30). .

Fquation (3.37) ensures cquality of the shear
flows at the boundary and equation (3.38) means
that the normal strains in the direction-of the
houndary are equal.

The boundary conditions at a transition (fig. 1d)
are

a2 5!!-; 824,
iy o = hy E“—L {3.39)
il %5
= 3.40
M s M aady; (3.40)
1 (awi B2 1 (a2 aw;)
—r = 41
T‘j; Ay v axz) £, (ay,-"‘ ¥ et (3.41)
]. 835!;. oM E.d_
By +(2+ ) =T _
. ]' ‘ a l)b‘] 1';;] i
AR RECROL { (3.42)
The equations {(3.39), (3.40), (3. 4]) and (3.42)
ensure continuity of the normal stress flows per-

pendienlar to the boundary, the shear flows, the
normal strains in the direction of the boundary
and the displacements perpendieular to the boun-
dary respectively,




The (only two) boundary conditions at a free
edge are

The part F of ¢ automatically satisfies all

the eonditions (3.35) ... (3.44). Thus, all these

e formulas are also valid for the funetions ¢ and

E (343) G The partial differential quotients which then
s ‘ occur in {3.35) ... (3.44) become
= (3.44)
0xY
g, E , ‘ ]
et —— 2 { Ky + T, cosh2 py + T,y ecosh2 py + T, sinh 2 py + Tysinh@pay } (—4pleos2uz) (345
"G, }b K,
ay2 [§f2+, L (4 w2y eosh 2 py -+ 4 psinh 2 py) + T, 4 42 a,th#J-i-
+ 7T,(4 p¥y sinh 2 py + 4 cosh 2 py) ; cos 2 ;Lzr:] (3.46)
Z nd
ST% _ ’; I aa? 7,9 sinh 2 gy + TL(2 oy sinh 2y + cosh 2 ) + 7,2 ucosh 2 py +
+ T, (2 py cosh 2 py - sinh 2 ay) ‘ (—2 psin2 pr) (3.47)
3 d 3
gﬁz — % i [ff’ + | 8 j{" + T, 8 a3 sinh 2 uy + T, (12 p® cosh 2 wy 4+ 8 pdy sinh 2 uy) +
+ T, 8 p?cosh 2 py + T,(12 42 sinh 2 py + 8 p?y cosh 2 py) ! cos 2_!;;:1:] (3.48)
oG, - FE oK. . e C1 p - ‘
axﬂa;_ =5 W a_y" + T,2 psinh 2 py + T, (2 py sinh 2 gy + cosh 2 py) + 7, 2 peosh 2 py +
+ T,(2 pyecosh 2 py + sinh 2 py) } (— 4 p? cos 2 px). (3.49)

Substitution of (3.45) ... (3.49) into the eon-
ditions (3.35) ... (3.44) gives the desired equations
for the coefficients 7', ... T, of the strips. In these
equations the terms 4 2 of (3.46) and ff* of (3.48)
will drop out in view of the houndary conditions
for w, given in the formulas (3.3) ... (3.12).

The relations bhetween the coefficients Ty ;...

the eocefficients 7Y
given in table 1.

Ty at a free edge are

4 Integration of the strain energy.

The formula for the strain energy (2.23) can
-be evaluated with the aid of the following for-

Ty, Trj-.. Tsj of two adjacent strips or between mulas for each strip (see for example ret. 11,
page 13)

[f dxdj - .(f 9’ ' %) dy (4.1)

[ff ag dﬂsde—f(q%—— —2%)1,5 (4.2)

/[9 a?:gyd J=‘U‘f aaé’ da:dJ+%j§( B‘rf_ )dj—{f( - — %%)dm (4.3)

With the orientation of the x and y axes according to fig. 2, the contour integrals
cloekwise. 1)
All integrations have beecn carried out for one wavelength and in view of the periodicity all eontour

f are to be taken

integrals .. dy vanish.

The result then is

_.[D / h f )
U= [ 5 / whaw dady + [ $a0y dady + - | —
e Jw 0w ) f Pw o P f a“w
— _ —_— — —w | 1— ——dx | +
f(ayz 3 wW— " dr — (61;2 2 w 507y ) dr + ( v) 2w Sy x‘
*y a*a,b f aﬂp Bz,b Py f oty ”
dr + v d 1 de | (44
5E | f(aJ oy ‘”ay * "”aaﬁaj) e P2y g, do | (44)
s 2w o2 32y 9y 2y 37 2w 32 ey a2
y In (223) the terms 2v 3_:’ WJ‘:{ and —2v 5aE éy_z arc separated into v S—L: ﬁ v S_yTw Q:c_L:' and — v 5
oy I
and — v respeetively,

Jyz e




The % sign refers to summation over all strips.
It is seen from (3.13) and (3.14) that the “linear
terms” mentioned in -(3.13) drop out from the
above formula, because of the periodicity of w;.
From the boundary conditions (3.3) ... (3.12) it
follows that, for all the strips, contour integrals,
containing w vanish by periodicity or canecel each
other,

There is a good reason now to choose the still
undetermined integration constants of both parts
of ¢, viz. the constants B, and B, in (3.17) and
Uy, and U, in (326) in such a way that at a
eorner
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tions (3.35) ... (3.44), and accounting for the fact
that 8°G,/0z® is periodie, the expression (4.4)

reduces to .
U= 2[ f wAAwdde+ fu,!/AA¢rdxdy
h F*y 8¢r ]
— 55 2wt By dx (4.12)

In (4.12) the contour infegral is only to be tuken
along corners and free edges (where 9%¢/0x* = 0)
and not olong trensitions, Note that the sum of
‘a pair of integrals

Ggi': sz=0 or Q'L:Q}::O (4,5) . f 8’¢ a ¢ ) ¢
and Fi=F=>0 t)E axz ay
and at each transition (fig. 1d) ca i
. along a transition is zero.
hiGo=h;Gy or B hQ: = E;l¢; In (4.12) is substituted we=¢w, and y =1 +
and W F; = hF, (4.6} g6, Then
hy 8—sz =h % or E;h; 0Q: = =73 [9921— ff w,AAw, dzdy -+
o oy, o 2
Q aF; h [ f
— Ehy; hi — =hy —= . + op? FaaG dzd),
h 3 h o oF
and at a free edge + ¢t SE [ G,AAG, dﬂ?dyﬁg—Ef oy @—dw
Gr=0or Q;=0 and F;=0.  (48) ., h [ ®F 3G, , b { G, oF
— ¥ ¥ o A
At corners the functions 2B ) oyt oy EEREET T
G oGy w2 2Q; 2Q; —t ;E ¢e, 96, dx] . 1)
h; —h £ B2 oy o
i oy 2 (Eh v Eh dy; ) . o
and (4.9) In the term o £y / f FAAG, dxdy is substituted
p O o BF (4.10) the expression for AAG, of (2.17). This term then
" dy F ’ becomes
are constanis, [[ j azw1 Pw,
At free edges the funetions sy J dxoy
oy . Ei_p.‘z aQ, oF; —13 ( o* w,) 0%, -—i‘ ( 02 '!/UI) de
Bys 2 o and Wi (4.11) ox* /oyt oyt / ox? ‘
: (4.14)
are constants.
With (4.5) ... (411) and the boundary condi- © With the integration formulas (4.1) ... (4.3} the
: expression (4.14) is transformed into
¢* 5 E f FAAG, dedy =
aF 2w, Sw, . oF dw, |, OF Pw, \
_— — 1 - 1 dod
'y Uf “”1 dr7oy or'dyt . Gxdy omey | om  oady ) ey
2F w, dun oF T, )
— — ] dxd
i f [ ( 5w T Gty oy actoy) Y
i QT o*uy oF  Puy
—1 ]f b (ﬁ aETS 9270y Bz dxoy® ) dady
8 wl s, ( aF  9%w, 7w, ;
—_ —_ _— 1 d
5 f aw "\ sy . .awzag;] L
8w1 ow, ( BF G, aﬂwl)t dm]_
oy *\dy o grfay /) T ,
R *F “w, , B oF D, -
s ——1 —_— — - d
p?—— ff W s drdy — ¢ 1 3 Wy > G, {4.15)




Tn (4.20)
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The eontour integral of (4.15) only remains.at
free edges. With the substitution w, =fsin px
this contour integral becomes

2h, oF
A S .
g ol f2 dzx. (4.16)
The contour integral in (4.13)
h 3, oF
—® — . T2 7 -
¢ 57 f s (4.17)

becomes with the substitution (see (3.23) and
{3.34))

BG

%f :
{the periodie part need not he considered)
Y
g ;* a_ p2feds (4.18)

and the integrals (4.16). and (4.18) cancel cach
other,

In the term ¢? —;)—U w, AAw, dedy of (4.13)
is substituted the expression for Aaw, of (2.8),

which gives
2
U *F, BwjL dudy,

If the deflection surface tw, is an approximate
solution obtained by means of the potential energy
theorem, it may happen that the functiong wy; do
not satisfy the boundary conditions (3.3) ... (3.12)
as far ag they ensure equilibrium. Not all contour
integrals in (4.4) containing w will then vanish,
Tn that case it is better not to apply the formulas
(4.1) ... (4.3) to that part of the function (2.23)
which contains w,. Then the term

(4.19)

2 —é)-f wn AAw, dady

of (4.13) preserves its original form

82 ) w,  dfuy ( 0w
o? + 2 dad
aJ T2y om0 gy ) | dody.
Now, according to ref. 10, page 325, formula (2.10)
D (Eﬂw1 E}zw, 2 4w,  d%w, 02w, \2 .
St ff] 83}2) Tev g L a(l—) (Bmay) | dody =

g h [{ aw(awl’ dnty =z g [f oI l_aj:_,dmdy,

which is identical to (4.19).

The expression for the strain energy, for exact as well as approximate solutions w,, now reads

with (4.15) ... (4.19)

rmsfet

s - dady —

R F [ 3G,
Y e ) oy

(R

The three contour integrals of (4.20) must not
be carried out along transitions (see (4.12)).
Nevertheless two of them

hf—-—dx and hjﬁa‘?zdm
oy

may be. carried out along all transitions since then
they will drop out again, because at a transition

A oF
T )
3Gy 1, 26 see (4.7)
"o -

1 ?F; 1 oF,
_E,T; a—y?— _E—] W ; 8S€C (2.20).

hooo f[ aw,
d ;
— T e [ e Y
h &F [ oF
3E a7 ] 3y

) G, 6, l
PR . 4.20
= Yo @ (4.20)
72 sin? pr da dy = — 2 7 f 172 dy. (.21)
Thus for every strip
ar 2 [ BF 2n OF
By T g W T
: (4.22)

it b is tho width of the strip, and in view of
(3.23) and (3.34).

3G, o - faQ P
oy

wap/‘;‘f dy=—nby [ 310y (429)

Furthermore, from (3.17)
?Fe 2R
oy® = Cers By

=C. (4.24)




Substitution of (4.21) ... (4.24) into (4.20) yields
the expression

U"‘:'«S. |:'_¢2 'g— Gcr2 T?Hf &fzd'y +

+ot g G2 [ yrdy

h
2K

4 gt ff@zmaz dody + = 270
2E n

o[ 9°C, 80, ]

[ R -2 2
C o5l 3 o W
(4.25)

3
+ 49272-07#[%1”039‘

which ecan be rewritten in the form

U=z [%;’- T2+ pth (OHCC,)WL[ 3 f2dy
p .

h [/ h f 926, 00, }

4 PR —_
+ ¢ 5 G AAMG, dady — ¢ 35 5 3y dx
(4.26)

where it must be remembered that the contour in-
tegral is not to be taken along transitions.
At a corner (see (3.39) and (3.38))

16 1 PGy
E; oy K oyt
and according to (4.9)
by 0Ga: , 0G2;
GIE o ‘
. aG‘Zi
is a constant. At free edges (sce (4.11)) 3
is constant. Henee, in the contour integral
092G, G, .o G,
—= d
Y % the periodic part of o need

not he considered.
Thus with (3.23) and (3.34)

0,
9y

a6,
oyt

_E zf oG, 4.

E2ut , 3Q

4

Sinee this contour integral vanishes at all eorners
{f =0) it only remains at free cdges.

Now
h '«
E p

+ 4,7% f f GANG, dedy —

5o fargpa)

U=3% [ C2b + ¢*h{C — Cpr)mp [ % frdy +

(4.27)

— g
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1

In eppendiz B o verification of this formula is
given by means of Golerkin’s principle.

For free edges the contour integral is further

simplified into -
P22
ay free edge

Eh pir (
8
where the plus sign is to be chosen at a “right
tree edge” (fig. 2} and the minus sign at a
“left free edge”.
In order to evaluate the integral

f f 4,00, dady

the expressions (3.20) and (3.23) are inserted

o= et

(4.28)

g2 .3
ffezm;z dady — 2 b [(AQ + 3 OR)dy
(4.29)

and

o L o harp f .
U_z[f "0+ FT (00— G [ iy

477 3
+ L8 I”Z”” }f (4Q +

- dQ
+ $ HE)dy = 2=
) J % (f dy)fr'ee edge
The mean shortening per unit length is e, the
value of this shortening at the initial buckling
load is &q. Thus, (see (213))

C=-—¢ekl, Copp=—¢.FB.

” (4.30)

- (4.31)

The expression (4.30) gives the strain energy
for one wave length 2 7/x. The mean strain energy
per unit length hecomes

2 2.2
U=£2_2Enb + L= (eor—0) 3 B [ ray +

+ “’4;4 SE (432)
with
R=Eh U(AQ +
4 Y HE)dy =} (F%%)P . { . (433)

5 Stiffness after buckling,

From the condition 8l//3p—0 with U acecording
to {4.32) the solutions for ¢ become =0 and
(6 — e)3ER [ fry
P A— .
¥ = wER -
The compressive force acting on the configuration
of strips is '

2 2 "
k=20 —oxmib— T smh [pay  (52)

(5.1)

or with the solution (5.1) for ¢%




o—e (SER [ frdy)?
4 IR
The mean ecompressive stress for all the strips is

SEhb € Cer (EEh_f f*dy)?
“Shh T 4 SR(ShD)

The mean elasticity modulus is defined by K, =
ERD/ZRD, The ratio between inerement of mean
compressive stress and mean shortening per unit
of lengih is E*c—=dos/de. The ratio E*/K., be-
comes 1)

K= Bthb —

(5.3)

(5.4)

o (SEh f fedy)
— I (5.5)
En 4(3R)(ZEhD)

The expressions (5.2), (5.3} for the force K

may also he obtained by integration of the mem-
brane stresses o, in the strips.

For a strip
d#y
Oy == ay? .
With (211), (2.12), (2.13) and (2.16)
020,
gr=—¢ell + ¢* T
with (3.23)
3,2 b3 2
g, = —ek + ?2%[% gylf— eos‘&,um}
and with (3.34)
7.2 .2
ar=—=—eol + fpsz'uJ%fz + (?yf( cosQ,ua;J .

The compressive force 1is
K= ethb —

2.2

_ﬁi 7 /‘z gk
1 EEh. f2dy — 5

oy | K
cos 2 ;szbkf e dy.

: o (5.6)
By partial integration of the integrals

a*i

it will be observed that the sum of all these in-
tegrals vanishes since at all corners and transitions

dK; dK;
I’;i;.,~'4~——1 - h ———j—
l dy; Hiks dy;
and at free edges
dK;
7 =0,

Then indeed (5.6) is identical with (5.2),

The compressive force acting on the i-th strip
is also obtained by integration of the membrane
stresses ¢., which delivers

2,2
K= ¢Ehb; — if— Eh; f fidy —

2.2

i
2

2

cosZ,umEihi.[ PR dy;.

a7 (5.7)

') This ratio is identieal with the ratio &‘y/0 of ref. 12,
b'm being defined in (5.8) of ref. 12,
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In view of the last term this foree iz not con-
stant in z-direction. The mean value is

2\‘}12
K= 3Eihibi“%Eihiffizdy {5.8)
or with the solution (5.1} of ¢*

Eihs [ fitdysEh ffzdy

&— &er
K= eEihb; —

(5.9)

The mean compressive stress in the 4-th strip
becomes

e—ee Fi [ fodySERf2dy
4 bZR

U’i‘“—_'BEi,——

(5.10)

The ratio between increment of mean compres-
sive stress and mean shortening per unit of length
of any strip is E;*=de;/de and the expression
for the ratio E;*/E; becomes

[fedy  SEb [ pdy
T T 4b iR

E*
E;

1 de
_Ei dc

(5.11)

Tt must be emphasized that if the buckling mode
{i.e. the function f} or its wavelength (i.ec. the
quantity p) is varied in the region where the
buckling load has its minimum value, the ratio
E*/E., of (5.5} does not take an extreme value %)
like the expression for e, in (3.13). Thus, an
error in the bueckling mode, thongh of little in-
fluenee on the buekling load, ean have a relatively
large influence on the ratio E*/E,. 1f an ap-
proximate solution for the deflections w of the
buckling mode is used, it is neeessary to he only
content with a very good approximation.

6 Review of the final formulas.

The final formulas are (5.11), giving the ratio
E;*/E; for the ¢-th strip of the eombination, and
(0.5), giving this ratio for the eombination as a

whole, The Z-sign refers to summation over all
strips. Under the Z-sign the index -i has been
omitted.

In (5.11) and (55) f is defined by (3.14).
£ follows from (4.33) where

A 18 given in (3.21).

¢ is given in (3.26) and (3.27),
where U,=U,=0 and U, and ¥/, are such
that at all corners and free edges @ =—=0. At
transitions (fig. 1d) the functions @ must
satisfy the expressions given in (4.6) and
(4.7).
is given in (3.22).
is the solution {3.28) of (3.25) where K,
may be ealeulated from (3.29) and where the
constants T, ... T, are such that they satisfy
the equations of table 1.

For the =

sign in the expressionn for & of

*) This will he demonstrated in the numerical example
of scetion 7.2.1.




(4.33), the + sign is to be chosen at a “right
free edge” (fig. 2) and the —sign at a “left
free edge”.

The value for the strain at which buckling starts
does not occur in the final formulas, only know-
ledge of the (exact or approximate) buckling mode
is necessary. If desired, formula (3.15) offers an
expression for the strain at bueckling.

7 Numerical examples.

7.1 Caleulations for a U-section member (fig. 3).

The width of the web 18 @, the width b of the
flanges 0.3576Ta. The. thickness of the web and
flanges is h. Poisson’s ratio v=—=10.2. Coordinate

[+]
i Z2
- Y2 ' Z3
I 2 L o A e,
4 y
h f
i ¥ b=
7] THE x-AXES ARE- - 135
% DIRECTED UPWARDS 035767
— ]A

Fig. 3. Dimensions and coordinate axes of the U-profile
of scetion 6.1,

axes are chosen as indicated in fig. 3. The exaet
buckling mode in the three parts is ’

Wy, (1) =f2(y,) sin pz

U o (Ya) =f2(Y,) sin pz

’ w‘l,a(ys) - fs (ya) sin IS8

The half wave length A —=#/p=11410 ¢ (p=
2.7534/a). Tt was supposed that the wavelength
had the freedom to take any desired value to make

the potential energy a minimum,
The critical buckling stress is

0or = 40701 Zf

(7.1)

(7.2)

% .
A= [ f2dy = 0.39902
0

'y’ .
B,— [ 4,0 dy = 011942 ¢°

0
yz A
Co=4 [ HKdy==0024i2 o®
0

R,=B, + C,=0.14353 ¢*

==40.710 —D—

Ty (7.3)

=k E 77 with k, == 3.6786. (74)
a

The flange width/web width-ratio o= 0.35767
has been chosen in sueh a way that, at buckling,
no moments occur at the corners between the
flanges and the web.?)

Due to the symmetry of the U-section member
and of its buckling mode, the caleulations need
only be performed for the web ¥, > 0 and the
flange %, > 0.

The funections f,{y,) and f,(y,;) are

’ £, (1) = — 1.236336 a cos i’gi

f5(ys) =0.16537 asinh 5.0032 L2 + e sin v v(’: ,

For the web the functions f2, f.% as well as the
functions A,, H,, @p2 and K,» from (3.21),
(3.22), (3.24) and (3.25) are given in table 2.
The same funetions for the flange are given in
table 3. K3 was computed from (3.29), but Ky
was not.

The particular solutions @,2 and ) p3 are ang-
mented with the complementary funetions of
(3.26) so that (3.34) and (4.3) ... (4.8) are satis-
fied. The particular solutions Kp» and K3 are
augmented with the eomplementary funetions of
(3.28), where the constants Tia, Tae, Ths, Tag
Ti3, Tas, Tys and T3 are such that the equations
of table 1 are satisfied. From symmetry it follows
that Tpe=7T32 =0. The eguations and their
solutions are presented in table 4. Numerical
values of the right-hand sides of these equations
were caleulated by numerical differentiation (see
for example ref. 13} of the functions K,» and Kps.

The result, the functions ,, K, and @Q,, K;
are given in table 2 and 3 as well as some other
functions which are necessary in the final for-
mulas.

From fables 2 and 3 have been ecaleulated, by
numerical integration and differentiation,

2.35707
a,= [ fry=o. 23044 @
0
0.35767
B,— A,Q,dy = — 001625 ¢°
o - .
(_).3576’.'
C,==14 j H K. dy = — 0.00019 ¢°
0

D=1t S2)

R,=B, + €, + D,= 0.06592

"= 10.08236 "
y =0.35767

1y KM (ref. 4) computed buckling loads for U-sectiou
members with different ratios w, Indeed, in fig. 10 of ref. 4,
the peint kg == 36786, » = 0.35767 lies on the curve ¢ for
exact solutions, The present author provisionally chose the
values w == 0.375, ka=23.615 (or in (6.2) rer = 4 7* Djeh),
for which solution Kivw states that the buckling mode is

such that no moments oceur 2t the corners (page 163, ref. 4).
Obviously, ‘this is the solution where the half wave length
would be A =a =267 b, Prof. Korrer drew the attention
of the author to the faet that the latter solution eannot be
the proper dne if the half wave length A has the freedom
to take any desired value, which iz alse assumed in ref. 4.




The final result for the web is from (5.11)

E* 4,4, + 4,
21 = 04004, (7.5
7=l X 05 a(R, + B) . (7.5)
The final result for the flange is from‘ (5.11)
Ez* A, (4, + A)
Pa g MM TS ns1R9 (1.6
E ! 1b(R, ¥ Ry) 0.5 (7.6)

The final result for the complete member is from
(8.5)
B* (4, + 4,)°

= =1 4(05a + b) (R, + R,)

== 0.4486. (7.7)

7.2 Caleulation for some other cuses. )

7.2.1 Infimite sequence of panels supported by
hinges.

Also for the sake of eomparison with the results
(7.5) and (7.6) some simple cases are dealt with.

It is obvious that the present formulas may be
applied to one panel of an infinite sequence of
equal panels supported by hinges in longitudinal
direction at distances a. The hinges are such that
they cannot absorb shear stresses. The panels are
‘free to expand in transverse direction, hut at the
hinges there may be transverse membrane stresses
oy, wWhose resultant is zero. The boundary con-
ditions for the membrane stresses at a hinge are
those of a transition (3.39) ... (3.42).

It is well known (ref. 1, 2, 3} that for the half
wave length A=—ga

Toy —

while the ratio E*/E then hecomes
E*/E =105, (7.9)
If the wavelength is forced to have another

value the defleetion surface of the buekling mode
beecomes (— Yo a <y < 1% a)

w, == f(y) sin px, p=mu/A,
7 {y) = a cos =y /a.

The functions 4, H, ¢ and K of (3.21}, (3.22),
(3.26) and (3.28) respeectively hecome

A= ntcos2ay/a
H=nx* .

2
Q=0 - y>— lgWQ o8 2:”_ + (U, + U] -
: (7.10)

In (7.10) the integration constants U, and U,
of the panels require no further aitention, hecause
they drop out again of (7.11).

H=7%/16 pt.

) In the cases of this section the buckling modes
are simple and the integrations have been carried out
analytically.

Further
%u
[ AQ dy — 3 a’
| Aedr=—
]
3«
R (7:11)
21 64 o
1]
ba
(f f‘zd-l)g——]—a“‘
4 ) = 16

Application of (6.5) and (4.33) gives

1

i * 16
E ..-—_—1—‘ 3 1 A.4 1:—1—-————2A4.
et ey 3t

Indeed at A =a, E*/E =0.5. If the wavelength
iz foreed to have the wvalue A =1.1410¢, i e. the
value for the web of the U-seetion member of
section 7.1, then

A
B oss (7.12)

B
The huekling stress for A=11410¢ is

kw®D
—ih k=4.070. (7.13)

Ty —

The faet that the result (7.12) is so remarkably
different from the result (7.5) can he explained
by the fact that for the weh of the U-section
member at the corners all membrane stresses oy
must be zero (compare appendix A on the boun-
dary conditions at a  corner). :

Note that a echange in wavelength from A=—¢
to A=11410¢, only changes k from k=4 in
(78) to £=4.070 in (7.13). The value of the
ratio E*/E is, however, changed much more, viz.
from E*/E =05 to E*/E=0574, This is due
to the faet that the ratio E*/E| in cobtrast to the
buckling load, does not show an extreme value at
A =« {compare discussion at the end of section 5).

Also for changes in the function f(y), indicating
the buckling mode in y direetion, the ratio E*/E
does not take an extreme value, Take for example
rA=a, pr==/a and add to f(y)} the deviation
ceos 3 wy/a, thus

f(y) =acos =y/a -+ ¢ cos 3 myt/u.

Application of the proper formulas delivers

B . 31+(%)212
T B vl

which result does not take an extreme. value at
e =10.




7.22 Sides of o compressed thinwaelled square
tube.

The sides have the width e (—ie <y <ia)

(fig. 4). Poisson’s ratio v==0.3. The buckling
mode is
=
‘h ¥y
ya 7 77
i J
¢ a
h
)’4 ]
g
a =
Z4
¥y,
‘
Z oz =
Y3

-

Fig. 4. Coordinate axes of the square tube of section 7.2.2.

wyy = f,(y) sin px

wig = f,(y) sin px, ete, pe==n/A, A=a
fuly) = acos =y, /a

fo(y) = — @ cos =y, /a, cte.

The functions 4, H, @ and K, of (3.21}, (3.22),
(3.26) and (3.25) respectively become

Ay = A, —=—a*cos 2 ny/a
B =H, =%

? cos 2wy
16 =* @

— (Elg + f[ﬁl'u"2 )!

Kp;] = Kp‘g = a*/16 r?

1
Qh':’Qz:*az ?‘g Yt —

%a ' %a

3
[ AGydy = (f A,Q.dy = n o

6
3a ba
1 . 1 1
?f H‘IKP,1 dy = E HzKp‘gd-y.': _674:— °?
o !
te a
(f fzdy)g'—_(f f2dy)2=)—a"’
P 1 " y 2 16 .

From symmetry considerations it follows that of
the constants 7' of (3.28) Toy=T31 =Ty =
Tyr=10

For the remaining constants P44, Thi, T2 and

Ts» the equations (1), (2), (3) and (4) of table 1

are valid. It proves that these equations can he
reduced to

64

T1a="T2
Tag="T4,

Tyy coshr + Ty S— sinh = = — 0.00633257 a*

Tiq 2wsinh o -+ Tyy a(er cosh = + sinh #) == 0.

I'rom the latter equation it follows that there
are no shear stresses r at the corners.
The solutions are
744 = — 0.0022169 ¢
Ty1 = 00033537 a®

and

1
H, =Ky Tigeosh2n 2+ Ty y,sinh 27 20
o
,lé, a

1
5 [ H K dy = 0.0059427 o,
§

Applieation of (5.5) and (4.33) gives

1
IR J6
I_;;: =1—— 16. - = 0.4083. ‘
4 (2 4+ 0.005 )ﬁ
(64 + 00059421 ) -
(1.14) |

Cox, ref. 15 also obtained this result (plate with
at the bhoundaries w=10, o=0, r=0, A=aq,
v=103). The fact that the result (7.14) remains
about 20 % below 0.5 must again be explained by
the faet that the membrane stresses oy are zero
at the corners (compare appendix A on the houn-
dary conditions at a corner).

7.2.3 Plate with one hinge and one free edge.

The width of the plate is b. It is supposed that
hoth at the hinge and at the free edge the mem-
brane stresses o, and + vamish. It is further sup-
posed that the half wave length A is forced to have
the value,

A= =2319009b,
I

= 0.98480/b,

of the flange of the U-section member of see-
tion T.1.

For the deflection surface of the buckling mode
is now taken the approximate solution

w, = f(y) sin px.
fy)=w.

'The funetions 4, I, Q and K, of (3.21), (3.22),

(3.26) and (3.25) respeetively become

4 =1
=1
¥t b
Q@ =55~ 34
- 1



The equations for T,, T,, T, T, of table 1
and their solutions are given in table 5.

K =K,+ (T, +yT,) cosh 2 py+ (T,--yT,) sinh 2 py

V]
1y dQ) 1
2 — 5
2 (f dy /y=t 16 b
b
f AQ dy o= L g
J Y= a0

b b
—;— f K dy = -% f Ky == 0.0005725 b°
b D

1
7 # )
‘P? —1 ”‘T”i——_f”mo'%m‘
4(-87’ + 0.0005725 + 1‘6)
(7.15)

The result (7.15) is less than the result (7.6)
for the flange of the U-section member. The reason
is that in the latter the ghear stress - at the corner
is not zero.

8 Conclusions.

The present method to determine the reduction
in stiffness of combinations of rectangular plates
in compression at loads slightly above the buckling
load, could he very well applied to numerical
examples.

For complex configurations, though the method
remains straightforward, the aid of an electronic
digital eomputer may he desirable, bhut only routine-
programmes {solution of linear egyuations, numerie-
al integration) will he necessary.

It the exaet solution for the buckling mode is
used in the ealeulations, the results are also exaet,
apart from errors due to numerical integration and
differentiation, but these errors can easily be made
as small as desired.

Since the minimum theorem of the potential
energy i used, solutions for the load derived, for
a given compression, from the present formulas
will be too large if an appreximate solution for
the buckling mode is used.®) This is also the case
if the exaet mode of buckling is used and the
present formulas are applied {for leads in large
excess of the buckling load.

The numerical examples clearly demonstrate the
influence of the wavelength of the huekling mode
and, especially, the great influence of the houndary
conditions of the membrane stresses. One of the
remarkable results was that the sides of an in-
finitely long, thinwalled square tube showed a
ratio E*/E = 04083 in stead of the value of 0.5
ohtained for the well-known ecase of an infinite

) Strictly, this is only true for the work done during
the eompression.

sequence of simply-supported panels, which have
the same buckling mode.

In view of the great influence of the membrane
stresses on the final result, it 8 desirable that
they are derived from the deflections of the
buekling mode with the aid of the proper differen-
tial equation, as is done in the present work, the
more so, since it is mueh more diffienlt to choose
a pattern for these stresses by intuition than to
do so for a buckling mode.

Furthermore, it should he emphasized that if
the buckling mode in transverse direction or its
wavelength is varied in the reglon where the
huckling load has its minimum valoe, the ratio
E*/E does not take an extreme value. Hence, if
an exact buckling mode is not wvsed, one should
only be content with a very good approximation
ot the buckling mode.
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APPENDIX A,

"Refined analysis of the boundary condilions ai
4 EOYNer,

A, More freedom for the. varying membrane
siresses,

In the main text of this paper the boundary
conditiong at any corner have been given as eqs.
(3.3) ... (36) and (3.35...(3.38). Hence, eight
houndary conditions are available for the dis-
placements w and the membrane stresses, derived
from the functions ¢. )

Strictly, four of them, viz. {3.3), (34}, (3.35)
and {3.36),
w; — constant
w; = constant
J—) (A1)
ayi =0

are ineompatible, since it is impossible to prescribe,
along the boundary of a plate, displacements as
well as stresses normal to the houndary.

In order to perform a refined analysis of these
boundary conditions it is necessary to allow for
more freedom in the variations of the displace-
ments w and the membrane stresses, stemming
from y. Suppose, in stead of (2.6),

) — E&) + ( ow
T,U(m,’y,ﬁp) _11 ( aqp 9=0 21 asoz )'P=0+ "t
=g, + ¢2w, + ¢, + ...... {A2)
In (A.2) the functions w,, W, . W ...... are of

the order b, where b is the order of the panel
width. An n-th derivative is of the order b'-# for
example

w, =5 (sin =y/b) (sin =x/b).
Suppose, in stead of (2.16)
y=F + 62,9, 9)
where
Gz, y,¢) =9, + ¢*G, + qaan +tG, + ... (A3)

The compatibility-felation (2.2) between ¢ and w
is written in the form

AN =] [w.w], (A4)
where J{p.q] means '
2 2
Jp-al= (aa;gj azzaij 721‘ %a?g gyg -
2 2
~ 3wt o) (49)
Brom (A.2) ... (AB) it follows by equating terms
of the same power of ¢ that
AAG =10 - (A.6)
AANG, = J[w, . w,) (A7)
AAG, =2 F[w,. w,] {A.8)
AAG, =2 J [, w,) + Jw,.w,). (A9

66

From (A.7)...(A.9) it follows that the order
of G,, G,, G, is

G,==0rd (Eb?)
G, =0rd (Eb?)
G, ==0rd (Eb?)

if B denotes the order of elasticity meduli and b
the order of panel widths,

The expressmn for the strain energy (2.23) is
written in the form

(A.10)

U=3(L[w.w] + 1,[y.¢]) (A.11)
where ’
Lipea =2 [ (72 Toy Fe
a;cz Ba‘,? @7 oy®
Lo Pa ., ¥p g
T "aJ 22
’p  oq )
2(1— 1
+ 2( V) S5y ety dzdy  (A12)
aﬂp Bq ¥ ¥q
Llp .4l » 2E aar; 8:62 y: ot
Pp g a%p ﬂ
TV T | o o
o? 'p o%q
21+ ) i 29 edy.  (A13)
After substitution of (A2) and (A.3) into
{A11) the result is : '
U =3(U, + oU, + ¢'U, + U, + g4l + .....)
T (A1)
where
U,=1,[F.F] (A.15)
U, =2LIF .G} (A16)
U, —=1,[w,.w,]+ LIG, . 6.1+ 2L[F.G,] (A17)
U,=21,[w, . w,]+2L[6G,.G,]+
QLIF. G (A18)
U,=211w,.w]+ I,[w, w]+
LIG,. G+ 21,[6,. G,]+ 2L[F.G]. (A19)

For an infinitely long configuration, reversal of
the sign in ¢ cannot change the strain energy and
thus (A.14) reduces to

U=3(U, + U, + ¢'Us+ ...... Y. (A20)
The parameter ¢ must obey the conditions

U 5260, + 44T, + ...00).

G

There ig always a solution ¢ =0, which is not
stable beyond the buckling load.

If the configuration is not infinitely long it
may behave if it were infinitely long. But if,
for example, a short U-profile is compressed such
that at the ends the displacements in the y direc-
tions are suppressed, curvature of the elements of

{A21)




the U profile will oceur at all loads. Then in
(A.14) the coefficlents of the uneven powers of ¢
are not zero and the U-profile has not a weli de-
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From (A27) and (A29) follows

2%

) oy
tined buckling load. ox*  ox ' oy axt By, (A.30)
A2 The boundary conditions. With the substitution
—2(1 + D%y
~ For the sake of convenicnce, it is supposed that vi= ——EE,—AL) 3 xal‘b’_
the panels bounding the corner are at a right angle. ! Yi
The final conclusions, however, are also valid for 10y 9%
other angles. PR (_635_ 7 )
The houndary conditions (A.1) are now replaced ? !
by the proper ones (fig. 5) eq. (A30) becomes
i tv},.i
- N
Y
i-th STRIP
j-th STRIP
¥
Fig. 5. Forees aeting on an clement at the eorner,
w; = — Uy (A.22) LA 1 4@ n,tr, F (24 ) b o® gb; .
‘ ai‘w- ow;
ow — = !
— oy.ihi + oy shy ‘afyjli:*“vy.f (A.24) By
7
oy g oy s Sy Vi (A25) Thus boundary condit-ion {A22) becomes,
oy Pwi 1 LY By,
In (A24), V,; is t‘he reduced shear force pet I g ] x20Y 5
(Qy—0oM,,/3z) in the j-th strip at the corner. Pwy  dw
Equation (A.22) is reduced to a relation between oy (A.31)
¢, wi and w; in the following way /
In condition (A.24) is substituted
T P e eq. (A22)
G = a0 S 0 S N
PP et T TRt
__ By oy ow;  owy (A.26)
"%y e B By : V.o p YW, 8wy
. Wi— " i ay:; + ( —v) axg-au
;i 8wy ;| w;  dws O .
aﬁz 22y ; Foct 2wt By, which results in '
ow; PPy 0% oy By
s . —h, O g M
& 0xdy; (A27) da? Ry Fr T
Py Py \* — Ow; 0*w; }
sz,f=~—ax’ + 3 ( ax‘") (A28) D; 7l + {(2—v) 550y, (A.32)
Ve _ % % 8w (A.29) With the aid of
oYy X8 ox  Oxdyy yi=F;+ G, ¢yy=F+6G,;




the boundary conditions (A.31), (A.32), and along
the same lines (A.23), (A.25), become

62w-@ _ 1 1 BaG; o G azw,- %
aer -~ E; Ly Bwtdyy Az Oy;
{A33)
azu}b 1 aag'z
e gyt @ ]
aiw,- awi
—_——— A3d
2xr O ( )
aEGi a';wr 3s’w; g
j —— == — D; et NN
s ox? ke LG )axzay,-
5 Swy
h —1 A.35
Ty 5, (A.35)
a G] aa,wl aswt i _
hy =D T + (2 —v) szfiy,:;
. aaGi aw,:
—h ¥ —a—y-T {A.36)
where
a_wi _ awj
dy: oy

Substitute in (A33) and (A.35) the expressions
(A2) and (A3),

we=pw, + W, T ...,
G=p@, + *@, + ...... '

Separate the ohtained equations inte parts of
egqual powers of . Some resulis, to be used
further, are

a;f;);a=i | ‘""‘G;f‘+ 2+ ) .j;f;ji (, (A37)
and
hi%%§§=5_1y jf;?¥+<2-_@ ag; |
+ By a;gﬂ %‘;:’ . (A.39)

From (A.6) did not follow an order of &,, but
from (A.38) follows the order of G/4; for- the
whole panel,

Gy; == Ord (Eh?), (A.40)

if B denotes the order of panel thicknesses.
But then, see (A.37), at a corner

Pwy (h,z
M = 0nd )

while the normal order for a second derivative
of wyy is 1/b. It is thus allowable, in view of

the smallness of the ratio 2/b, to put as houndary .

condition for w,

Biw“
ox?

=0, (A.41)
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From (A.39) it follows

3 t=ond (557

while from (A.10) it is obvious that the normal
order of a second derivative of Gy; I8 E. It is
thus allowable, in view of the smallness of the

h -
ratio 5 to put as houndary condition for ¢y

2Ga;
da?
Tn the expressions U, U,, U, of (A15) ... (A.19)
terms, which are an order h%/b* lower than the
others, are neglected and (A.20) becomes (F is
of order Eh?)
U2 {(I{F.F|+ ¢*(I,[wy . w,] +
2LIF.G)+ o L[G,.G,]F ... ] (A43)
The fact, that in (A43) only w,, ¥ and ,

remain, justifies the supposition, made in (2.6),
{2.11) and (2.15), namely

=0 (A.42)

w(z, Y, p) = pw, (A.44)
g==F 4 G(z,10) =F + ¢G,. (A45)

Thus (A.43) is the expression used in the eal-
culations of section 4.

Sinee, as honndary eonditions, (A41) and {A.42)
were already aceepted, it is allowable to put

Bzwi
ox*®
a.zl[-ji
oxt

=0

and likewise
Bzw-,- _
ox?

Gy
il LA
ox?

which was to be proved,

APPYNDIX B.

Verification of the derived formaula (4.27) for
the strgin energy.

In section 5 a golution for the parameter p has
heen obhtained by integrating the strain energy U,
and the preper value of ¢ has been determined
by putiing :

The solution of ¢ can alse be obtamed by
following Galerkin's method (see e. ref. 14,
page 137). With this method also displacements
are varied which, of course, {the proper solution




excluded) do not satisfy cquilibrium conditions.
However, the equilibrium conditions can he satis-
fied it additional surface and mass forces are
introduced. Galerkin’s method requires that the
work, done by these additional forces through their
displacements, vanishes, In the present ease thesc
additional forees consist only of forees perpendi-
cular to the plate. Per unit of surface area the
expression for these forees reads

oy *w o 0w
oy ox® | 9zt owt

82!‘5, 82
S} R S
Buxdy  oxdy ) (B.1)

After substitution of

q:DAAw——h(

W == Uy ,
¢=F+¢2G2,
and
b ., w,
Muﬂlh_ﬁ A
& F, 0w W, Tw
— h 1 K3 2 1
1= —a s (af o
G, uy 9 2*G, 0w, ) .
gr*  dy® dxdy  dxoy
2F  phaw,

Aceording to Galerkin’s prineiple (the Z-sign
refers to integration over all panels)

3 ({ quy, diedy =0

and together with
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- 8“w5
S5 / 6, A0 ilrdy — Sh [ [ f 1, aJ e+

a4w1 azgz aewl 392 awj
? 8z°dy* dxdy  dudy * % oY ) dady

aZG w, a4,
—1 U 22 + Gy Dyt +

9 BGZ Puy
oy 0%y

' °G, o'uy ghw,
—3 u/:/ Wy ( ) ay* + G, dray*

+ G

)dx.;

T 2

—ifle g S (G Gt
+Gz%>;dw

nflate a2
+Gﬂ%){ d$]=

—=[nff vl G -

‘ j; P o, 80 T g
thy —4 Ggﬁxay ox Y Tr Budy

Py Bw, 06, 82%) d ]
+{;§ 2o —wlwry o asg .

O, eF (B.5)
ay CCT: ayz —‘C
) 2
Sh{Cer — ) f[ w, —%g)zldxd-y
[P
»G, ow, | 06, ow 2, pw
Y ff \ z 1 2 1 g PH2 1 ) i
shff e aE T ae e amey amy ) Y
and with {4.21)
Shap(C — Cu) f fdy
o — _ | (B.3)
) PG, 0w, |, 06, o, 76, vw, ),
26, _ d
h ﬁ w { o e e ey oy ) dsdy

The result {(B.3) can also be obtained from
(4.26) by following another line. In the form
GAAG, is substituted the cxpression for AAG,
in (217)

I, s V3 2,
2—1% /‘GZAAGQd-xdy:S.h]”( ’ ——~a wl)_.ﬁa Wi __

* owdy/ dxdy
2w, ( a-"wl) %,
_%( aar) oyt —i\ 3y / ot 2da:dy
(B.4)

o (B.4) the integration formulas {4.1)...(4.3)
are applied. The result is

Now at all corners §,=0, w, =0. At the frec
edges G,==0. At transitions (fig. 1d) (see (4.6),
(47), (3.7) and (3.8))

hi GQ,‘:ILJ' GQJ
BG:;- BGQ
B, 222 p ST
Ty (B.6)
Wep==Wqj

aw“_ aw”
oys oy
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From the four contour integrals in {B.5) only the last one remains at free edges, and thus

h f - [ f (aea 9w 26, w, 24, aw
= G G dxdy — 11"z 1
2"E LAGOTdY =1 [h / oxdy  Oxdy i dy®  ox® —i 5 ox? )ddy
| 3G, P, ]
For the contour integral in (B,T) holds the equality
PR, _' _— f . ¢
,%hf w0, ay e d={Fhet § 1 (B.8)
The substitution of (B.7) and (B.8) into equation (4.27) delivers
U3 |5 20+ (@ Cum | 470y
m ff G, ow, ¥G, tw, | ¥6, Pw, ] -
+ aa:ay oy %aJ Frat i e )dmd”' (B.9)
Putting v =0 gives
Op .
2200 — Cdm [ 470y =
__44,% ff Fw, O, o, 6, Pw
aan iy Y TaE P o o )de
from which is again found
Shor (€ — Clor) f fdy
— B.10
¢ :h j f a(a azw, ¥G, ow, o6, o, ) s (B10)
e | @ o 3oy dady y

The reason that in the present caleulations no use is made of the Galerkin method lies in the
faet that the form

[ [ GAAG, dady

was easier to integrate numeriecally than the form

. SRy 02, BE, Awy
f [ ( 5 * e @ 2 mey  dady ) dady.




TABLE 2.

Funetions which refer to the web of the U-section member of section 7.1 and fig. 8.

&y, /e f./a f2/a® A, I, 100 @,/ | 100 K, 2 /0t 100 @./a* [ 100 K, /a* 100 4,9Q./e* | 50 HK,/a*
0.00 — 1.26336 1.59608 —-15.7527 15.7527 — 1.01073 1.71299 —- 7.00021 1.00862 110.41398 7.94424
0.05 —1.24781 1.55703 —— 14,9818 15,7527 —-(.91138 1.71299 . — 6.90986 0.99544 103.52214 7.84044
0.10 —1.20153 1.44367 — 12.7442 157527 — 0.61819 1.71299 —- 6.61667 0.95594 84.832417 7.52933
0.15 — 1.12567 1.26713 — 9.2593 15.7527 — 0.14520 1.71299 — 6.14368 0.89032 56.88618 7.01246
0.20 — 102208 1.04465 — 4,8679 15.7527 (.48570 1.711299 — 5.51278 0.79920¢ 26.83566 6.29475
0.25 — {0.89333 0.79804 0 15,7527 1.24694 1.71299 — 475154 0.68409 0.0 538812
0.30 — 0.74259 0.55144 48679 15.7527 2.10743 1.71299 — 3.89055 0.54817 —18.93881 431761
0.35 -—0.673565 0.32896 9.2593 15,7527 3.03810 1.71299 --—2.96038 032744 —27.41106 3.13039
0.40 — 0.395040 0.15241 12.7442, 15.7527 - 4.00086 1.71299 — 1.98862 0.24240 — 25,34337 1.50923
0.45 — 0.19763 0.03806 14.9818 15.75627 5.00134 1.71299 — 099714 0.10056 — 14.93895 0.79203
0.50 —0 0 15,7527 15,7527 5.99848 1.71299 0 0 0 0
TABLE 3.
Functions which refer to the flanges of the {-section member of section 7.1 and fig. 3.
—y /b= |—yfe=| f/o= fi%/a% = A, = Hy= 100 @, 1/a*=| 100 K, s/a*=| 100 @,/a*= | 100 K,ja* = (100 4,Q,ja* == | 50 H, Q. fa* =

¥/ .l fa/a f2/6? A, | H, 100 Gy pjot 1 100 Ky 5 fa* | 100 Q,fa* 100 Kyfa* | 100 A,Q fa* | 50 H K o
0.00 0 0 ] 15.75271 15.7527 0 0 0 O 0 0

0.10 0.035767 | 0.1418800 | 0.0201299 | 1564957 | 15.7523 | 0.00010737 | 0.00010770 | —0.103925 | ~—0.0296810| — 1.62638 — 0.23377
0.20 0.071534 | 0.2833010| 0.0802594 | 15.35707 157458 | 0.00171567 | 0.00173652 | — 0.206349 | — 0.0334935 | -— 3.16892 — 0.26369
0.30 0.107301 | 0.4238525 | 0.1796509 | 14.92578 | 157173 000866705 | 0.00890494 | — 0.303431 | —0.0239661 | —4.525894 — (18834
0.40 0.143068 | 0.5632218 | (.3172188 | 1443968 | 15.6399 0.02731314 | 0.028656300 | — 0.388817 | —0.0099452 | — 5.61439 — 007777
0.50 0.178835 | 0.7012450 | 0.4917445 | 14.01605 154741 0.06644674 | 0.07157398 | — 0.453716 | + 0.0026964 | —6.35931 + 0.02086
0.60 0214602 | 0.8379096 | 0.7021762 | 13.80629 | 15.1673 | 013722549 | 0.15259527 | — 0.486970 | -+ 0.0105673 | — 6.72325 + 0.08014
0.70 0.250369 | 0.9736619 | 0.9480175 | 13.99863 14.6511 | 0.25310665 { 0.25204651 | — 0475121 4+ 0.0124458 ] — 6.65106 + 0.09117
0.80 0286136 | 1,1089678 | 1.2298095 | 14.82420 | 13.8401 0.42981791 | 0.51706690 | — 0.402442 | -~ 0.0091201 | — 5.96589 + 0.06311
0.90 (.321903 | 1.2448796 | 1.5497253 | 16.56848 | 12.6293 0.68539519 | 0.86341911 | —0.250898 | + 0.0033598 1 — 4.15699 + 0.02122
100 035767 | 1.3828608 | 1.9123040 19.59115 | 10.8916 | 1.04032550 | 1.37779569 0 0 0 0

T



TABLE 4.

Equations of table 1 for the U-section member of section 7.1 and fig. 3.

Coefficients of the unknowns known right From (...)
Ths aTaz Tig s Ths aThs hand sides of table 1
1, . a
cosh pa 3 sinh po 0 0 0 0 —Hpq (?) (1)
. ) a
2 pa sinh ua @ cosh pa 0 ‘ -—1 —2pa G —aKpz (T‘z‘) (3)
+ sinh pa + aK p5 (0)
4 e’ cosh pa 2 o sinh pa — 4 pfe? 0 0  —dua — et () 4
: +4 ua cosh ue \ + @K,5 (0)
: =1
(1]
0 : 0 : . 1 0 0 0 —HK,3 (0) (2) l
| b b :
0 0 ‘ cosh 2 b — cosh 2 ub sinh 2 b ~ sinh2 b — K5 (b) 1)
0 0 2 pe sinh 2 ub 2 pbsinh 2 ub 2 pa cosh 2 pb 2 pbcosh2 ub —alyh (B) {7
+ cosh 2 pb + ginh 2 pb
Equationg with numerical values of the coefficients:
7.87981 T2 + 3.90805 a T's2 : = — (.0171299 o*
43.0417 T2 + 295124 a Tsz — aT23— 5.50680 T34 =0
288,954 T4ye + 205296 @ T'sp — 30.3248 Ty 5 — 11.0136 53 =0
Ta,a =

3.60373 T3 + 1.30683 ¢ T'y 3 + 3.51421 Ty3 + 1.25693 ¢ Ty3=— 6.0137780 ot
19.3521 Ty 5 + 10.5754 ¢ T'a 3 + 20,1203 Ty3 + 10.7106 ¢ Ty 3— — 0.172573 o*

Solutions Tﬂz:—’—- 0.0D704369 a* Ti,ﬁ =10 T3,3=-‘ + 000930013 a*
Tso= + 0.00981898 a3 =~ .0646051 &* Tya—= + 0,030206 a*

= _"
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TABLE 5.

Equations of table 1 for the plate with one hinge and one end free of section 7.2.3.

Coetficients of the unknowns known right From (...)
h .

7, b, 7, b7, and sides of table 1

1 0 0 0 — K, (1)

0 1 2 b 0 0 )

cosh 2 pb cosh 2 pb sinh 2 pb sinh 2 ub — K, (1)

2 wh sinh 2 ub 2 ub sinh 2 pb 2 ub eosh 2 b 2 ub cosh 2 ph 0 (1)

“- cosh 2 pb + sinh 2 ub
With u==0.98481/b
T, = — (.066448 v+
bT, + 1.96960 T, = 0

3.65366 T, + 3.65366 bT, + 3.51415 T, + 3.51415 b7,

== — (.066449 b+

6.92147 T, + 105751 bT, -+ T.19625 T, + 107104 T, = 0

The solutions are

T, = — 0.066449 b*
T, == — 0.063333 b*
T,= 0032155 b
T,—= 0.083870 b
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