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Summary. 

Existing methods to analyse discontinuous aircraft wing struot&es 
(discrete-rib theories) usually start with the assumption of the only-shear 
carrying plate, which means that the spar- and rib webs as well as the skin 
panels are supposed to carry only shear stresses along their edges. If con- 
sidered necessary, their normal stress-carrying capacity is added to the 
adjacent booms and flanges. In this way, the wing structure is made finite- 
fold statically indeterminate and the exact solution for this simplified 
structure can be obtained by various methods of analysis, which, of course, 
all yield the same answers. This method is correct in general for rectangular 
o r  nearly rectangular panels. It appears however that this method yields 
erroneous results if applied to oblique panels, like those occurring in swept 
wings with ribs parallel to the flight direction. 

infinitely stiff in their planes and where these ribs are assumed to be 
continuously distributed along the span. This schemeproves to be inadequate 
when applied to swept wings with ribs in flight direction. 

In the present work discrete deformable ribs are assumed and the 
stress-strain relations of the oblique skin panels are not o r  hardly sim- 
plified. The structure then consists of a great number of structural ele- 
ments, in which the state of stress is either one-dimensional (only normal 
force carrying sparbooms and rib flanges, only shear carrying spar- and 
rib webs) or two-dimensional (the oblique skin panels together with the 
continuously distributed stringers). The latter skin panels make the 
structure infinitely-fold statically indeterminate and only approximations 
f o r  the displacements, strains and stresses can be obtained by means of the 
principles of variational calculus (minimum of the complementary energy and 
minimuin of the potential energy). The type of the structure asks for a 
special form of application of these principles, where the use of oblique 
coordinates and matrix notation is of great importance. 

their results for a five-cell swept box beam clamped at one side. Besides, 
for important displacements upper and lower bounds between which the exact 
answers must lie are determined. 

With the object to establish an elementary theory for swept beams 
corresponding to the elementary theory f o r  straight beams the relations 
between stress, curvatures and load are determined for the infinitely long 
beam under constant shear load. In addition, the root effect for the clamped 
semi-infinite swept box beam has been established. 

Xethods exist for non-swept wings where the ribs are considered to be 

Both the variational principles mentioned are used in order to compare 
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Notations. 
E 
3 

Q=& 

sx-h TX- s1 

8 -h Y Y  P s2 

- . -  

oordin 

Elasticity modulus . 
Poisson ratio. 
Shear modulus. 

Coordinates in an oblique pl ne gste 
Coordinates in a right handed oblique coordinate 
system. The z-axis is perpendioular to the x and the 
y-axis. 
Angle between x and y axes . 
Plate thichess . 
Stress oomponents in an oblique coordinate system 
rcI is also a shear stress (in a rectangular system) 
in rib- or spar webs. 
Stressflow components. In an oblique syatem, ex 

and 8 are called "axial strsssflows", t"tangentia1 
stressflow". - A "shear stresaflow" t may also occur 
in rib or spar webs. 

Force with its components in the oblique system 

Y 

x,y,z (fig. 3.lb). 
Displacement with its orthogonal projections on the 
oblique coordinate axes x,y and z ( f ig .  3.3d)  . 
Righthanded moment with its projections (fig.3.M). 

Righthanded rotation with its components (fig.3.lb). 

Strain components in an oblique coordinate system 
x,y. The components and E are called "axial X V - 
strains" and Y "tangential strain". In spar booms 
0 is a normal strain and in rib booms E is a 
normal strain. 

Y du 
Y-(- d", + 3) =E3 

dy 

Also shear strain in a rib web . du 

and 

Also shear strain in a spar web . dux &z r 4 r  + -1 dx 



ai j 

V* 
V 

2 

Stiffness matrix of the stress-strain relations t 
+ a  E + a  Y allEx 12 y 13 

= a21Ex + a22Ey + a23Y Y 

+ a  Y 
a a316x + a32Ey 33 

e 

aij aji * 

Flexibility matrix of the strain-stress re- 
lations : 

= %lSX + 52sy + '13 

E * A  8 + A  8 +A23t y 21 x 22 y 

Y ' = A ' s  + A  8 + A  t 31 x 32 y 33 

Aij = Aji , 

Complementary energy, defined by (6.1) . 
Potential energy, defined by (6.27) . 

'or the dimensions of the swept-back box see also the notations 
of section 7.2  and 7 . 3 .  
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- 1 In t roduc t ion .  

The c h a r a c t e r i s t i c  f e a t u r e  of the  planform of an a i r c r a f t  wing, 
c a l l e d  swept wing, is such t h a . t h e  l ead ing  edge makes a l a r g e  angle  wi th  

the  l a t e r a l  a x i s  of t h e  a i r c r a f t ;  i n  f l i g h t  d i r e c t i o n  the  wing t i p  i s  a f t  

of t h e  wing r o o t .  The s t r u c t u r a l  consequence is t h a t  the spars  a r e  no t  

normal or approximately normal t o  the  plane of symmetry of t h e  wing, which 

in t roduces  a d i s t i n c t  obl iqueness  of t h e  s t r u c t u r e .  The s t i f f n e s s  of t h e  

s k i n  takes p a r t  i n  t h i s  obliqueness.  A6 far a s  t h e  r i b s  are concerned t h e r e  

a r e  two p o s s i b i l i t i e s ;  t h e  r i b  planes can be e i t h e r  approximately normal 

t o  .the spars, or  they  can be plaoed p a r a l l e l  t o  t he  p lane  of symmetry. 

I n  the  first case the  structural problem d i f f e r s  from the  problem 

w i t h  the  s t r a i g h t ,  i . e .  non swept wing, only by the  fact t h a t  t h e  a n a l y s i s  

has t o  account f o r  t he  s t r u c t u r e  of t r i a n g u l a r  pianform between t h e  r i b  

a t  t he  r o o t  of t h e  swept p a r t  of the wing and the  plane of symmetry. This  

monograph dea l s  wi th  the  structure where the  r i b s  are p a r a l l e l  t o  t he  

plane of symmetry. Then the  angles  between the  r i b s  and t he  spars or t he  

s k i n  s t i f f e n e r s  d i f f e r  considerably from the  r i g h t  ang le  and t h e  s k i n  

panels  between the  ribs-'and t h e  spare  a r e  d i s t i n c t l y  obl ique.  Consequently 

t h e  methods of a n a l y s i s  f o r  s t r a i g h t  wings a r e  not s p p l i c a b l e  t o  the  swept 

s t r u c t u r e .  

For s t r a i g h t  w i n e  t h e r e  a r e  two methods of stress ana lys i s .  The first 
method starts from the  we l l  known t h e o r i e s  o f i t h e  c y l i n d r i c a l  beam loaded 

by a bending moment, by a t o r s i o n a l  moment (De Sa in t  Venant, r e f .1 )  and by 

a shear  f o r c e  (De S a i n t  Ve-t, re f .2) .  For th inwal led  cy l inde r s ,  where a 
cross s e c t i o n  may c o n s i s t  of more than one ce l l ' ) ,  loaded i n  bending a 

e p e c i a l i z a t i o n  is superf luous.  For t o r s i o n a l  load the s p e c i a l i z a t i o n  w a s  
given by Bredt, ref .3;  f o r  shear  load s p e c i a l i z a t i o n s  were given by V a n  de r  

Neut, ref.4, Leibenson, ref.5 and Koi te r ,  re f .6 .  Ref.  4 is v a l i d  f o r  t h e  

case where a continuum of r i b s  i n f i n i t e l y  stiff i n  t h e i r  plane i s  p resen t  

(or i f  Poisson 's  r a t i o  9 = 0).  Ref. 5 is v a l i d  f o r  t h e  beam without  r i b s .  

Ref. 6 a p p l i e s  t o  both cases. 
The, u s u a l l y  so c a l l e d ,  engineer ing theory cons iders  any c ross  of  a 

non-cylindrical  beam t o  be t h e  c ros s  s e c t i o n  of a c y l i n d r i c a l  beam, carry-  

ing the  same load (bending moment, t o r s i o n a l  load or shear  f o r c e ,  accom- 

1) Such c e l l s  a r e  separa ted  by w a l l s  i n  the  long i tud ina l  d i r e c t i o n  O f  

the  cyl inder .  I n  s e c t i o n  7 and t h e  subsequent s e c t i o n s  t h e  name Cell 

is used f o r  t h e  p a r t  of t h e  s t r u c t u r e  between two successive r i b s .  
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panied by a linearly varying moment) along its entire length. This assumpt- 
ion yields quite accurate results, except for the part of the structure 
close to clamped root, or more in general near a cross section where warping 
of the normal plane cannot occur freely due to discontinuity of torsional 
moment o r  shear load, or in the geometry of the structure. However, addi- 
tional corrective computations or considerations can account with fair accu- 
racy for the compatibility of warping to either side of the discontinuity. 
For a special caee of non cylindrical beams, the conical one, Hadji-Argyria 
and hurne have extended the theories of the thinwalled cylindrical tubes 
(ref.7). 

Koning and Van der Neut (ref. 8, 9, 10 and 11) developed a method for 
tapered box beams with two parallel spars, shear resisting skin and a con- 
tinuous system of infinitely stiff ribs. Koiter and Van der Neut (ref.12) 
extended this -ark so as to incorporate rib deformation in shear. 

With the second method for straight wings discrete ribs form part of 
the structural scheme. To make such a structure amendable for analysis the 
rib webs as well as the skin panels are assumed to carry along their edges 
shear stresses only. The capability of these elements to carry normal 
stresses may be accounted for by adding their longitudinal stiffness to 
that of the adjacent spar booms, ribflanges, or stringers or by concentrating 
it linewise, so as to represent the longitudinal stiffness by a number of 
stringers, which are not actually present. 

A finits-fold statically indeterminate structure results and the 
exact solution for this scheme as to displacements, strains and stresses 
under a given load can be established, whatever method of solution is used 

provided the redundancy of the structural scheme is fully taken into account. 
This schematization gives in general reliable results and is able in 

particular to predict stresses at the root or in general the stresses affect- 
ed by discontinuities, which cannot be established by the engineering theory 
of bending and torsion. However, the applicability of the method is subject 
to the condition that the skin panels are about rectangular. 

Van der Neut and Plantema (ref.13 and 14) dealt with the box bezm with 
two not necessarily parallel spars, with discrete ribs deformable in shear 
and with shear resisting skin, such that planes parallel to the ribs carry 
shear stresses only, whereas the normal strain in rib direction is considered 
to be zero. Also in this case a finite-fold statically indeterminate 
structure remains. 

Both methods have been extended to swept wings with ribs in flight 
direction by several authors. Fliigge, ref.1' and 16, deals with the mono- 
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cell thin-walled cylinder, infinite in length, with a continuum of oblique 
ribs infinitely stiff in their planes and loaded by a moment cr a shear 
,force. Wittrick and Thomeon, ref.17 to 21 give the theory of mono-oell and 
multi-cell thinwalled cylinders and cones, again with a continuum of 
oblique ribs infinitely stiff In their planes. The stiffness of the skin 
and of the continuized and discrete stringers may vary exponentially along 
the generators, ae well a8 the bending o r  torsional moment. An additional 
method to establish perturbation stresses, which occur if an oblique section 
is prevented,from warping, is also given. However, this additional method 
proved to be of little practical uee. 

It will be shown that the oontinuum of infinitely stiff ribs intro- 
duces a aevare deviation from the actual behaviour of the structure. 

Hemp, ref.22, continuizes the oblique ribs as well,,but takes their 
proper bending and shear atiffness into account. However, his structure 
has been greatly simplified. It consists of a box beam with rectangular 
o r  nearly rectangular cross section with spar booms at the corners. "he 

top and-bottom skin a r e  stiffened with continuized stringers. The spar 

webs a r e  carrying only shear. Solutions for constant moments and constant 
shear force a r e  given-together with an exact as well as an approximate - 
and more practical - method for calculation of perturbation stresses in the 
region where an oblique section ie prevented from warping out of the plane 
and from distortion in its plane. This approach has over Wittrick's and 
Thomaon's method the advantage that it accounts for finite rib stifness, 
but it remains questionable what the consequences are of continuizing 
widely spaced ribs. Besides'the method must still be considered to be little 
suitable for wings where successive ribs are loaded quite differently due to 
inhomogenity of the structure (e  .g. discontinuity of angle of obliqueness) 
or due to discontinuity of the lateral loads (e.g. ribs introducing large 
shear loads in the beam). 

! 

In order to take into account discrete.ribs,'the same supposition could 
be made as f o r  beams with ribs normal to the webs, the oblique skin panels 
are capable only to carry shear stresses along their edges, whereas again 
their stiffness with respect to normal stresses is carried over to the 
stiffeners by increasing their stiffness with m'appropriate additional 
amount. Such a supposition was used by.Levy, ref.23, but it fails to pre- 
dict an important aspect of the root perturbation stresses. This would also 
be the case if it would be tried to apply the already mentioned schema- 
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tization of ref.13 and 1 4 .  1) 

In the present work the stress-strain relations ique skin 
panels are not violated, but this introduces particular difficulties. The 
structure conrists 
the state of stress is one-dimensional (only normal forces carrying spar 
booms, rib flanges o r  other stiffeners, only shear carrying spar and rib 
webs) or two-dimensional (the oblique skin panels). These skin panels 
make the structure infinitelyfold statically indeterminate. Therefore 
solutions can be obtained only by introducing approximations for the dis- 
placements and strains o r  for the stresses. The use of the principles of 

of a great number of structural elements, in which 

variational calculus is required (minimum of the potential energy and mini- 
mum of the complementary energy), but the type of the structure asks spe- 
cial forms of application, which are examined in detail. It has been the 
purpose not to be satisfied with approximate answers only, but to get 
upper and lower bounds for some important displacements. Determination of 
these bounds is only possible if the stress-strain relations of the 
structure are not,, o r  hardly, simplified. 

For the present oblique structure, use of oblique coordinates is very 
fruitful and there is a better correspondence with the methods used for 
straight wings. 

For the development of the theory and for performing numerical cal- 
culations, matrix notation and matrix calculus are of invaluable impcr- 
tance. In recent years a great stimulus to the use of matrix calculus in 
the'stress analysis of aircraft structures was given by Langefors, ref.25 
and Hadji-Argyris (ref.26 and 27). The structures considered in these refe- 
rences are finite-fold statically indeterminate and only consist Of ele- 
ments in which the state of stress is one-dimensional. Then the solutions 
obtaj-ed are exact solutions for the schematized structures. 

Xatrix calculus is the mora important, since the number of unknowns 
t o  be solved from linear equations will be &eater than in calculations 

for straight wings. Using an electronic computer a great number of un- 

horns is no longer prohibitive. Results can get every desired accuracy, 
which accuracy may be estimated by determining upper and lower bounds. 
It is therefore bel'ieved that the significance of the present methods may 
be not confined to oblique wing structures. They may enable to refine the 

.. 

1) The work on swept wings hitherto mentioned is summarized and 
discussed by the author in ref.24. 
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a n a l y s i s  of s t r a i g h t  wings, or t he  methods may be appl ied  t o  the  t r i a n g u l u  

r o o t  s t r u o t u r e  of ewept wings w i t h  r i b s  normal t o  the  spar webs (ref .24). 

Everywhere i n  t h e  numerical  work the  u n i t  of fo rce  is t h e  l b ,  t h e  u n i t  

of l ength  the  inch. The reason for t h e  adapt ion of these  units is t h a t  t h e  

numerical app l i ca t ions  refer t o  a s t r u c t u r e  (ref.36,37), the  da ta  of which 

were given i n  these u n i t s .  

I 2 The t h i n  i s o t r o p i c  p l a t e  i n  orthogonal coordinates. 

The two-dimensional problem of the  p l a t e  loaded i n  i t 8  plane i s  go- 

verned by t h e  fol lowing 6 conditions:  

(1) The geometry of t h e  p l a t e .  

( 2 )  The prescr ibed  f o r c e s  of s t r e s s e s  along t he  boundary of t he  plate. 

( 4 )  The equi l ibr ium equat ions,  which read  

' ( 3 )  The p resc r ibed  displaoements. 

..0 - dsx d t  
dx + z  
d+- 0 0 ds d t  
dy dx 

w i t h  

and 'I: are s t r e s s  components and h - p l a t e  th ickness .  The "$ where 6,' 
q u a n t i t i e s  sx, s 
normal s t r e sa f lows ,  t is a shear  s t ress f low.  

(5 )  The s t r a i n - s t r e s s  r e l a t i o n s  which read  

and t a r e  c a l l e d  e t r e s s f low components, sx and s 
Y Y 

a r e  

9 
8 - - E  

1 
x E h y  

1 s + - s  
9 

E = e - -  Y Eh x Eh y (2.4) 

or i n  a general form t o  use l a t e r  
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- - E .  3 0 1 
Eh 

0 3 1 
-5E Eh 

0 0 

where the symmetrical matrix A = 
ij 

?(1+3) 
Eh 

Ex = $IS, + 52"y + 

(2.6) 

E ..A s + A  8 +A23t y 21 x 22 y 

A is called the flexibility matrix. 
With the notation 
ij 

I "  

E x  = El 

ey = €2 sy = 82 

Y = E 3  t = s3 

(2.5) can be written 

3 

j=1 
E = (2.8) 
i Aijsj 

o r  with the summation convention 

E = A . s  . i ij j (2.9) 

The inverse relations of (2.4), the stress-strain relations, are 

Eh 3 Eh 
8 = - - - E  + - E  

X 1-92 1-92 9 

9 1-3 1-3 y 

Eh Eh 
8 = - E  + - E  

or, in a general form 
s = allex + a12Ey + a13Y 

s = a21bx + a22Ey + a23Y 9 
+ a E '  ' = a31Ex 32 y + a33y 

X 

(2.10) 

(2.11) 



with 

aij - 

9 

Eh 3Eh 
2 

-- 
1-92 1-3 

1-92 1-3 
0 3Eh Eh 

- I _  2 

E h '  
0 0 5 - 0 -  

is called the stiffness matrix. 
ai 3 
With the notation (2.7) and the summation convention the equations (2.11) 
,cake the form 

si =, aijEj . (2.13) 

The oymmetriaal matrices (2.6) and (2.12) are inverse to each other. It is 
noted that 

-1 A;: I aij or A i j  - aij . 
(6) The compatibiIity condition for the strains 

2 d e  d2 Y 
2 d C  

A++ * - dy2 dx dx ds 

which ia obtained from the requirement that it must be poseible to derive 
the strains from the (small) continuous displacement components ux and 
u 

. 
(respeatively, in x and y direction) as follows: P 

% 
E = -  x dx 

(2.16) 

dux du 
dY +2 * Y a -  

The equilibrium equations (2.1), (2.2) are satisfied when Sx, 8 
a r e  derived from Airy's stress function ?y: 

d2W 

and t 
9 

s a -  

dY2 X 

A2 ?y 
" I  

8 = -  2 dx 
d2 "Y t a - -  dxdy 

(2.17) 

After substitution of (2.17) in (2.5) and thereafter of (2.5) in 
(2.l5), it follows with h a constant and A is con-tant, that the compa- 

ij 
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tibility condition expressed in the stress function is 

- 

When A is taken according to (2.6) the equation (2.18) yields 

d 4 y  d4Y ' 

iJ 

4 dx 

The expression for the strain energy per unit of plate area is 

1 A = 2 (sXCx + s E + ty) 
Y Y  

(2.19) 

(2.20) 

and after substitution of (2.5) 

2 2 + 243sxt + A 8 + 2A B t + A3)t ) (2.21) 
22 Y 23 Y 

o r  with, the notation (2.7) 

'A . s s  

Substitution of (2.11) in (2.20)' yields 
iJ i j * 

(2 -22 

or with the notation (2.7) 
1 A = - a  . € . e .  . 2 i J 1 J  

- 3 
- -  3.1 

The thin plate in oblique coordinates. 
Forces, stressflows, displacements and strains. 
-31 oblique system of coordinates x, y (fig.3.1) is introduced as 

was done by Hemp (ref.22) when investigating the swept wing structure. 
The distances between point x = 0, y v 0 and the points x = 0 ,  y P 1 
and x s 1, y = 0 respectively, are  both the unit of length. Fig. 3.la 

shows the coordinat'es of a point P i  fig. 3.lb the components Kx and K 
of the force K. 

Y -c - 
The magnitude of K, expressed in its components, is 

= / K  + K + 2K K cos €+ '. 
X Y X Y  

A force (Kx,O) is a force i n  the direotion of the x axis of magnitude 
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a force (0,K ) is a force in the direction of the y axis of rragni- 
KX Y 
tude K 

Y. 
Fig.3.l~ represents the stressflow components s s and t for an x' Y 

oblique element with the sides dx and dy. On the righthand side of this 
' parallelogram acts a force per unit of length, whose components are sy 

and t, on the lower side a force per unit of length with the components 
t and s From equilibrium of moments it follows that the two components 
t are identical. However, they do not represent the total shear stress- 
flows along the boundaries of the parallelogram, because the stressflows 
s and s contribute as well since they are not normal two the surfaces to 
which they are applied. Therefore, the stressflow t will be designated 
as "tangential stressflow". The stressflows s and s will now be called 
"axial stressflows". 

Y' 

X Y 

X Y 

The displacement vector t is not expressed by its components in the 
way as is done with the force 7, but by means of its normal projections 
u and u 

4 

(fig.3.ld). The magnitude of u expressed in its projections is 
I Y \Iux2 + u 2 -2u u CO8~ e 

Icy IT1 = 
1 - 1  sin 0 

( 3 . 2 )  

A displacement z(u ,O) is a displacement perpendicular to the y-axis 
X 

with a magnitude u /sin 0. A displacement Z(0,u ) is a displacement per- 
pendicular to the x-axis with a magnitude u 

X Y 
sin 8 .  y/ 

In agreement with (2.16), strains are again defined as 

Y = dY 

du 
dy dx 

y = -  + Y , 

( 3 . 3 )  

Then the physical meaning of the strain sx is the specific extension 
ds-dso 

of a line element dx (side of the oblique element, fig.j.lc), 

where ds is the length in the strained state and dso the length in the 
unstrained state of the line element. The same is true for E and a line 
element dy. The strains E and E are called axial strains. The Y compo- 
nent has no simple geometrical meaning. For sake of uniformity with the 
name tangential stressflows, the strain component Y will be called tan- 
gential strain. 12 Y '  represents the decrease of the angle between dx 

dSO 

Y 
X Y 
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Y' 
and dy ( the  s i d e s  of  the  obl ique element) ,  t he  r e l a t i o n  between Ex,  ci 

Y and Y '  is 

(cx + E ) c t n  e . ( 3 . 4 )  
Y Y ' = - -  

s i n  e Y 
If a r ec t angu la r  coordinate  system 5 ,  7 i s  assumed i n  f i g u r e  3.1, eo 

t h a t  t h e  x and X coordinate  axes co inc ide ,  t he  t ransformation formulas 

for t h e  coord ina tes  are 
- -  - 

x = x - y c tn  0 a x + cos e 
- 

y a ?/sin e y = y s i n e  . (3.5) 

.-c 
The fo rce  K w i t h  the  components Fx and ? i n  t h e  rec tangular  system has 

i n  the  obl ique system the components K and K and the  r e l a t i o n  is analo- 

geoue t o  (3.5). 

9 

X 9 

- - - - K c t n  e Kx = K + K COS e 
Kx = Kx y X Y  

o r  ( 3 . 6 )  
- 

K~ = F p i n  e K = K  s i n e  . 
Y Y  

4- - - _  
A f o r c e  X(Kx, K9)applied a t  the  po in t  (r,y) y i e l d s  a moment M w i t h  Cespect 

t o  t h e  o r ig in .  This moment i s  a vec to r  perpendicular  t o  the  x,y plane,  

henoe wi th  one component Mz = M, if the  z -ax i s  i s  normal t o  the  x,y-plane. 

I ts  magnitude is  

- -  

- -  - -  
KXY 

M - K x -  
Y 

which becomes i n  obl ique coord ina tes  x,y 

b! = (KYx- K g )  s i n  e . (3.7) 
- 

The r e l a t i o n s  between t h e  s t r e s s f l a w  components Ex, a t i n  t h e  
Y' 

r ec t angu la r  eystem and the  s t r e s s f l c w  components s 8 t i n  the  obl ique  

system become 
x' y' 

- 
8 = s s i n  e + B COS e c t n  e - 2T COS e 

s =  s / s in  e 

t =  - s c t n  e 

X X Y 

Y Y 
- 

- 
Y 

o r  
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- 
s = sx/sin e + s COS e ctn e + 2t ctn e 
X Y 

(3.9) 
- 
s r  B sin 0 
Y Y 

s cos e + t  . Y T =  

-v 
The displacement vector u with components Lx and u in the rectan- Y 

gular system (they are also the projections) has, in the oblique system, 
the projections ux and u Y 

(3.10) 1 - 
u - u  

X X X X u = u  
o r  

u P -u ctn 0 + u sin e y/ 
- - 

X u = u COS e + ii sin e 
Y X  Y Y 

The strain components rx, 
means of (3.101, (3.5) and (3.3) 

and 7 are  expressed in cX,  C and Y by Y' Y' 

- 
E = e  
X L 

2 2 - 
E - e ctn e + € p i n  0 - Y ctn e/sin e 
Y X  

or, when inverted 

f = E  
I X 

- 2 2 
E = E cos e + F sin 0 + 7 sin 0 cos B 
Y X  Y 

(3.11) 

(3.12) 

Y ij 2rx cos e + 'i sin e 
- -  --  - 

With (small) displacements u(ux,uy), the rotation 'p in the x,y plane is 
given by 

(3.13) 

- -  
If the small rotation cp is constant throughout the x,y plane,-for 

example by rotation over the small angle 'p about the origin, the displa- 
cements in the x,y plane are - - 

I "* = - VY 
( 3 . 1 4 )  
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The corresponding relations for the oblique system x,y follow from the 
relations (3.13) and (3.14) by meane of (3.10) and (3.5) 

u = qx sin 0 
Y 

(3.16) 

- 3.2 Equilibrium equations and compability condition. 
The equations of equilibrium in the oblique system are  identical 

with (2.1) and (2.2) 

ds dt - x + -  = o  

2 . 2  = o  

dx dy 

ds 
dy dx 

(3.17) 

The equilibrium conditions a r e  satisfied when s x ,  s t are derived Y' 
from a stress function like that occurring in (2.17) : 

d2 'Y s = -  
dY2 X 

d2 Y 
2 dx 

8 ' =  - 

d2 'Y t = - -  dxdy * 

(3.18) 

Even the overall static equilibrium conditions remain applicable, 
that is the sum of the external force components in x direction, the sum 

of the external force components in y direction and the sum of the exter- 
nal moments (to be computed with (3.7)) must be zero. 

< '  

Since the relations between strain and displacement components for 
rectangular and oblique coordinates are identical (equations (2.1.6) and 
(3.3)), the compatibility condition must be likewise identical 

2 2 

(3.19) 
d2Y d e  

dy2 dx dxdy 
J' 
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- 3.3 Stress-strain relations for the isotropic plate. 
The definitions for coordinates, forces, stressflows, displacements, 

and strains a r e  chosen such that the equilibrium equations have the same 
form. The compatibility condition remains in the same form, and the strain 
components E* and E 

stiffness and flexibility matrices a and A are different for oblique 
and rectangular coordinates. 

have still a clear geometric meaning. However, the 
Y 

ij ij 

Xaintaining the definition of these matrices in the form (2.5) and 

(2.11), one obtains from (3.12), (2.4) and (3.9) 

2 2 
COS e -?sin e 2 - ctn e Eh sin e Eh 

- ctn e 
Eh . 

I 

2(i+cos 2 e+$sin 2 e l  2 - ctn 6 Eh Eh sin e 

( 3  I 
and from (3.8), (2.10) and (3.11) 

Eh 
2 3  ai j' 

(1-3 )sin e 

- COS e 

1 - COS e 

2 2 1 COS e+9 sin e 
2 2 00s e +3sin 0 

2 2 .  
' l+ooa 6- $sin 6 

2 -cos e -cos e 

(3.21) 
These matrices A 

diagonal. Hemp (ref.22) computed the elements of the matrix a,. by 
means of vector calculus, but the derivations can a l s o  be obtained by 
means of tensor calculus. A note on the tensor calculus derivation of 
( 3 . 6 )  and (3.8) t o  (3.11) i n c l .  is given in appendix B of ref.24. (For 
detailed treatment see, for example, ref. 28). 

and a are symmetrical with respect to the main 
ij ij 

1 J  

Stress-strain relations for a continuously stiffened plate. 
Fig.3.2 represents a grid of stiffeners R in the direction of the 

y-axis and stiffeners S in the direction of the x-axis. The'stiffeners 
a r e  closely spaced. The distance measured in x direction of the stiffen- 
ers R is a*, the distance measured in y direction of the stiffeners S 
is as. The area of the normal cross section of a stiffener R is %, 
and of a stiffener S is AS. The stiffeners carry only normal forces and 
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have no stiffness with respect to other loads. Both systems can be idealized 
to systems of continuously distributed stiffeners. Then the stiffeners are 
made equivalent to an anisotropic plate whose stress-strain relations with 
respect to the oblique x,y-system are 

*% s = - E  x as x 

8 s  
Y 

t a  

of this plate is By (2.11) the matrix a ij 

0 - EAR 0 

0 0 0 

"R 
(3.23) 

The grid - hence also the anisotropic plate - is then considered to be at- 
tached to an isotropic skin in order to serve as a system of stiffeners. 
The matrix a of this isotropic plate is (a. ) and is given by (3.21). 

t (forces per unit 
iJ lj 2 

In view of the meaning of the quantities sx, 8 Y' 
of length) the addition of the stressflow components in the skin and in 
the anisotropic plate yields the stress flow components of the stiffened 
skins and the same holds for the addition of the stiffness matrices 
(aij)l and (aij)2. Then the matrix a. 
combination of the isotropic skin and the anisotropic plate equivalent to 

of the composite plate (that i s  the 
1j 

the stiffeners) is 

a i j  = (aijIl + (a. 1J . I  2 ' 

Eh 
2 . 3  

'J (1-3 )sin e 
a. .= 

where 

-COS e 
B --cos e 

2 2 P COS e +3sin @ 

2 2 
COS e + 3 a i n  9 

-cos e 
2 2 i+cos @-$sin e 

2 -cos e 

(3.25) 



and 

1 A .  .= - 
laijl 

1 7  

%(I-$ 2 3  ) s i n  e 
(3.27) 

a R h  
Q -  1 +  

*om (3.25) ...( 3.27) follows t h a t  t h e  parameters t h a t  govern the  

aniaotropy o f  the composite structure are AS/aSh, AR/aRh and t h e  

a23a31-a21a33 a21a32-a31a22 

2 
I 

a22a33’a23 

a13a32-a12a3j a11a33-a13 a12a31-alla32 
2 

a12a23-a22a13 a13a21-a11a23 alla22-a12 

2 2 2 - COS e(-cos e -3s in  0 +P+Q) 
I 

If t h e  system of s t i f f e n e r s  R i s  missing (bl) t h e  elements A . .  1.3 of 
(3.29) become 

1 = 
*11 AS 

E ( r  + h s i n  0 )  

= All(cos e - 3 s i n  e )  
S 

2 2 
A12=*21 

( 3 . 3 0 )  

A -A = 2All C O S  e 
13- 31 
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I 18 
I 

I AS(l+S)sin 0 2 
I A22 p( %1 {I+ (l+cos e -$sin 

ash 
AS(l+S)sin e 

2As(l,:Lein e 
A23"A32 a 2A11{ ash 

+ z(l+cos2e  sin 
I 
I A3 3 = ( 3 . 3 1  1 

Lewis (ref.29) gives numerical values of the matrix A for different 
ij 

Bngles 0 and several stiffness ratios for system S, system R and the iso- 
tropic skin (with3 = 0.3). 

The matrices a (3;25) and A (3.29) are symmetrical and remain so 
ij ij 

when a transformation into another oblique or rectangular system of axes 
takes place. 

isotropic plate and of the matrices (3.25), (3 .29 )  for the composite plate 
in comparison with the matrices (2.6) and (2.12) is, that the axial stress- 
flows s and 8 

as well on the tangential strain Y .  Likewise, the tangential stressflow t 
depends cn the axial strains E X  and 6 
of the elements a13, a23, A13 and A2, not being zero. 

Appendix E of ref.24 deals with the transformation of the matrices 
A and a. for an arbitrary'anisotropic plate from one arbitrary, reo- 
tangular or oblique system of coordinates into another by means of tensor 
calaulus. If this is dons such that a13=a23=A13=A2j=0 is obtained, the 
directione of the new coordinates represent the principal directions of 
anisotropy. For a plate with two perpendicular systems of stiffeners, the 
directions of the stiffeners a r e  obviously the principal directions of 
anisotropy. Such a stiffened plate is called crthotropic. 

The characteristic feature of the matrices (3.20), (3.21) for the 

are dependent not only on the axial strains Ex and E but 
X Y 9' 

9' 
This is the direct consequence 

ij 

The directions of the stiffensrs of the continuously stiffened iso- 
tropic plate in fig.3.2 are not principal directions of anisotropy, nor 
will they become so if one or both systems of stiffeners is infintely 
rigid. 

If the stressflow components ex, s t of a composite plate are known Y' 
the computation of the stressflow components in the separate parts requires 
to,calculate first the corresponding strains with the matrix Aij. These 
strains together with the matrices a,. of the skin and of the plate, which 
is equivalent to the stiffeners, yield the stressflows in the separate 
parts. If a stressflow component in the composite plate happens to be 
zero, it does not imply that the corresponding stressflow components in 

1.l 



the separate,parts are zero.  
Not much is lolown about the accuracy of the calculations if the dis- 

crete stiffeners are replaced by continuously distributed stiffeners. For 
example, with the rectangular plate in fig.3.3 of width c and loaded at 
the sides x = 0 
average extension in x-direction depends on the distance aR of infinitely 
rigid stiffeners in y-direction. The relation for continuously distributed 
stiffeners is according to (3.25) or (3.29) with P = 1, Q*mand 9 = 90' 

and x = b by a stressflow s x ,  it is not known how the 

s = - - E  2 x .  1-3 - 
X (3.32) 

However, for widely spaced stiffeners sx will be a function of x and y 
if the width c is finite. The stress distribution near the edges y = 0 and 
y = c is complex and comprises components s and t as well as ax. Only 
when - goes to infinity (3.32) is again valid. Obviously the replacement 

Y C 

by con 2 inuously distributed stiffeners is better for larger,ratios between 
the length of the stiffener8 and their distance. 

Differential equations for the stress function y . Strain energy. 
For orthogonal coordinates, the compatibility condition (2 .lS) was 

derived from (2.171, (2.5) and (2.15). From (3.181, (2.5) and (3.19) 
follows the same equation as (2.18)t 

(3.33 1 d4Y d4 Y d4 W d4 d4 ?y -2A -+%1 - =  0 - -2A - 
dY4 A22 dx 4 23 dr3dy +(2%2+A33) dx 2 dy 2 13 dxdg 

which is valid for the isotropio plate and the continuously stiffened 
plate both. 

The expressions for the s t m i n  energy (2.20) to (2.24) also remain 
applicable, if A is considered as strain enerw per unit rhomb, that is R 

rhomb with sides 1 in the directions of the coordinate axes and an area 
sin 8. This appears when (3.9) and (3.11) are substituted into (2.20) 

(3.34) 1 
2 i i  A = - s  E 

1 
2 i j i j  A = - A  . s .  s 

. (3.35) 

(3.36) 

The quadratic forms (3.35) and (3.36) a r e  positive definite, that means 
that A 8 8 and a E c .  never become negative ?or whatever values of ij i j ij i J 
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A22A23 

A A  32 33 

s s t o r  E ~ ,  E Y are taken. This yields for the elements A (and of 
a 
coordinate system the requirements (ref .30, page 30)  

XI y’ Y’ ij 
ij 

) of an arbitrary continuously stiffened plate in an arbitrary oblique 

%lA13 

31 33 
+ + > o  

A21A22 ’ A A  
(3.37 1 

and 

Dependent on these conditions are the conditions that ‘the separate 
terms in the inequalities of (3.37) are greater than zero. 

In some indealisations to be used some of the forms (3.37) are 

zero.  

- 3.6 Affine tr‘ansformaticn of a plate. 
Suppose that the (two-dimensional) state of stress in an isotropic 

plate is known. The geometry of the plate, the forces and stressflows are  
known in orthogonal coordinates. Then visualize in an oblique system of 
coordinates an isotropic plate of the same thickness and elasticity con- 
stants, the geometry,forcea and stresses of which are described with’ the 
oblique coordinates in exactly the same way (coordinates for boundaries, 
force and stressflow components have the same numerical values) as f o r  the 
orthogonal coordinates. Then equivalent moments differ by a factor sin 0 
(aocording to (3.7)). It can then be said that the first plate with forces 
and stressflows is affinely transformed into the second plats. 

It appears from (3.17) that in the oblique plate the equilibrium con- 
ditions are satisfied again. The state of stress thus obtained is however, 
in general, not attainable because the strains are different from those of 
the orthogonal case due to the alteration of the matrix Aij. These strains 
do in general not satisfy the compatibility condition (3.19), since the 

stress functions are identical and their differential equations (3.33) 
are not identical. The compatibility condition is a second order partial 
differential equation in the strains, hence in the stressflows. Therefore 
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if in the untransformed and also in the transformed plate the stressflovrs 
a r e  linear functions of the coordinates, the stressflows in the transform- 
ed plate do 
stressflows is attainable in the oblique plate. Nevertheless, corresponding 
displacement projections and strain components have no longer the same 
value in both plates. 

not violate the compatibility condition and the system of 

A plate can also be affinely transformed with its displacement pro- 

jections and strains. All rotations in this process are multiplied by the 
factor l/sin 0 ,  (compare (3.15)). .Of course the compatibility condition for 
this plate is then satisfied but the stresses in the transformed plate de- 
duced from the strains by means of the matrix a are in general not in 
equilibrium. Even stressflows may occur along boundaries whioh are stress- 
free in the orthogonal case. 

ij 

3 
'&e oblique system is right-handed, the positive x and y axes include 

the angle 0 ,  while the z-axis is perpendicular to the x-y plane (fig.4.l). 

Some relations for a three-dimensional oblique coordinate system. 

Stresses and strains in this three-dimensional oblique system can be 
defined also in such a way that equilibrium and compatibility equations 
preserve their shape, but this will not be discussed here. 

The ooordinates of the point P are given in fig.4.1. The transformat- 
ion formulae between these coordinates and those of the orthogonal system 
I, y, z a r e  z = z together with ( 3 . 5 ) .  
- - -  - - 

A force K is expressed by its components Kx, , K, (fig.4.l). 
+ 

The magnitude of the force K is (compare ( 3 . 1 )  

2 + K + Kz2 + 2K X cos 9 '  . Y X Y  - -  
. The relation with the components Ex, K K of the orthogonal system - Y' 2, 

is KZ I KZ together with (3.6). 
The displacement vector u 18 represented by its projections ux,u 

(fig.4.l). The relation between these projections and the projections (that 
in the orthogonal system is u = u together with 

+ .  u 
9' z 

- - -  - 
x) uy' uz z z -is components) u 

(3.10). 
The magnitude of a displacement is (compare ( 3 . 2 ) )  
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The righthanded moment vector Id is also represented by its projections 
Ex, Xy, b! in just the same way as is done for<. If, in the orthogonal 
system the projections (= components) are equal to Ex, Ey, E z ,  the trans-. 
formation formulas are 

Z 

and in analogy to (3.10) 

the 

( 4 . 3 )  
M 

M = Z cos e + E sin e or E -M ctn e + . Y X Y Y‘ = X - 
In the righthanded oblique system of axes, a force K(Kx, K 
oint I, y, z gives the righthanded moments, with respect to the 

Ke) at Y’ 

origin 
M X = (K~Y-K,~) sin 8 

M Y = ( K ~ z - K ~ ~ )  sin e (4.4) 
M = (K x-Kxy) sin e . 

Z Y 
+ 

The magnitude 

(4.5) - 
The moment N ( 0  0 Mz) is perpendicular to the x,y plane, its magnitude is 

&de is Mx/ein 0 ,  see fig.4.2. A moment U(0,Y 

x,z plane, its magnitude is X#in 8, see fig.4.3. A rotation vectcr7 
is expressed by its components T ~ ,  9 , 9 in the same way as a force K 

-cy 
(fig.4.l). If small displacements u(u u ,uz) occus in the righthandad 
oblique system x,y,e, the rotation components are 

‘2 “e The moment M(?Ax,O,O) is perpendicular to the y,z plane and its magni- 
0) is perpendicular to the 

Z. & 

Y’ - 
x’ Y 

du 

‘x (dy - dz 
du 

‘y 2 dz dx 
du du 

‘ z  2 dx dy 

1 

z 1 dux = - (- - -)/sin e 

= - (2 - >)/sin e 1 

(4.6) 

If the small rotation vector T ( v X , p  ,1p ) is constant throughout, 
Y Z  

for example by a rigid body rotation about an axis through the origin, 
the displacements are 



- - -  
If ‘p , ‘p , ‘p, are the components of the r o t  tion in the or 

system x, y, z of figure 4.1, the transformation formulae are 9, 

together with ( 3 . 6 ) .  

u(ux,uylu Z ) amounts to 

gonal - x- fY - 
= ‘pz z 

+ 
The wcrk done by the force K(Kx,K K ) through the displacement Y’ 

1 
* 

-.+ 
K.u = K u + K u + Kzuz 

x x  Y Y  (4.8) 

I 

and the work done by the moment M(Mx,M ,E ) through the rotation 
* Y Z  
‘p(””py’~z) a”nts to 

-+ 
K . ~ I  = M 9 + M y ‘p y + Mz’pz * (4.9) x x  

I 

I ’  gonal coordinates. 
Ths expressions (4.8) and (4.9) are identical with those for ortho- 

2 Discussion of the shear-field scheme for skin panels. 
Rectangular panels. 
Consider the rectangular isotropic skin (fig.5.1), which is pro- 

vided with stiffeners S parallel to the x-axis on a pitch ss and with a 
cross sectional area AS per stiffener. The stiffeners R parallel to the 
y-axis are spaced at distances aR and have a cross sectional area AR. 

The stiffeners of both groups are preliminary assumed to be conti- 
nuously distributed. The stress-strain relations of the composite plate 
can be determined according to section 3.4 .  

The stiffness matrix ( a .  . )  for the plate that is equivalent to the 
1.l 1 

etiffener systems S and R is given by ( 3 . 2 3 ) .  The stiffness matrix (aijl2 
is given by (2.12). 

Then according to (3.24) the stiffness matrix a.. of the composite 
1 .l - 

plate is 11 

_. + - SE’h 0 
S a 

ZAR 
E’h + -. 0 

‘h 

I1 
1-9 E - 
2 0 I1 

(5.1) 

E 
1- 0 

where Es = . 
The inverse matrix of a . .  the flexibility matrix A , .  is 

13’ 1.J , 
-~ 
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(5.2) 

If the rectangular skin plate of fig.5.1 is slender in the direct- 
ion of x it can be expected that, if the sides along y = & c are free 

which must be zero at y = 5 c, will remain small. Thus the influence of 
the stressflows s on the strains c X  may be neglected and in (5.2) and 

or  provided with flanges which carry normal forces, the stressflows 8 Y' 

Y 
may be put zero without serious error. The stressflows sx have their 

influence on the strains f 
strains, however, contribute little to the displacements in y direction, 
since the dimensions in this direction are small. Therefore also the 
element A21 may be neglected. Besides, generally numerical values of 

are small with respect to All (for the isotropic plate A21/A11 = 

*12 
by means of the element A21 in (5.2). These 

Y 

A21 
= -3). 

Then the inverse matrix of the in this way simplified matrix A , .  1J is 

a. .> 
1J 

EAS (3E'h)' 0 ' h +  - - 
E'h+E - 

"R 

0 

0 

0 
1- 3 - E ' h  2 0 

Xatrices of the general pattern Of (5.3) 

0 0 

0 

all 

a22 0 

33 
0 0 a 

(5.3) 

(5.4) 
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can also be obtained along other, lnss'reasonable lines, by puttlrlg 

A12 = 
= a21= 0 in the matrix of the isotropic skin o r  of the composite plate. 
Numerical differences with the result (5.3), however will, in general be 
small. 

12= = 0 in the matrix of the isotropic skin, o r  by putting a 

A composite plate with matrix of the pattern (5.4) can be visualized 
as pertaining to two systems of continuized Stiffeners, the equivalent 
plate of which has the matrix 

( 5 . 5 )  

toffether with a skin that can merely take shear stress, the matrix of 

Next the equivalent plate, with matrix a of ( 5 . 5 )  is replaced by 
ij 

a finite number of "replacement" stlffeners, which not only represent the 
actual stiffeners but ae well the stiffness (with respect to stressflows 

and s ) of the skin. The replacement stiffeners are preferably situat- 
ed along actual stiffeners, but they may be more in number (e.g. if there 
are no actual stiffeners but only an isotropic plate) o r  less in number 
(if there is a great number of closely spaced actual stringers). The 
stiffness of the replacement stiffeners is such that, if continuized, 
their matrix a.. is (5 .5) ,  where all and a 
( 5 . 3 )  or reduced values which account for post-buckling behaviour of the 
skin panels. 

stresses only remains (shear field scheme). Its matrix a,. is (5.6) 
where t h e  element a 

ing occurs. 

Y 

are given the values of 
1.l 22 

Between the replacement stringers a skin capable of carrying shear 

1 J  
has the value of ( 5 . 3 )  o r  a reduced value if buckl- 3 3  

The property of a plate to carry shear stresses only, sx=O, 8 ' 0 ,  Y 

becomes 
t f 0 is confined to a special system of axes. If the property is valid 
f o r  a certain orthogonal system of axes x,y, the matrix a. 

I j  
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a. .= 
1J 

0 0  0 

0 0 0 

0 0 Oh 
and after transformation to the system of orthogonal axes, rotated 
through 45' with respect to the former, the matrix a becomes 

ij 

This means that t 

The equilibrium equations (2.1) together with sx = 0 ,  ey = 0, 
t 4 0 yield that in such a plate the shear stressflow between two 
stiffeners of the system R and of' the system S (fig.5.1) can only be 
constant . 1) 

In a structure consisting of such panels and of a finite number of 
stiffeners, only a finite number of stress systems satisfying the con- 
ditions of equilibrium conditions are possible. Thus the structure is 
made finite fold statically indeterminate and all methods of analysis 
give the same - and for the idealized structure - exact answers. 

Oblique panels. 
Bot it will be examined whether the shear field scheme is applicable 

to oblique panels. Again there may be two systems of stiffeners R and S 

(fig.5.2). The stiffness matrix a 
(3.25) and the inverse 'matrix A 

of the oomposite panel is given by 
ij 
is given by (3.29). These matrices 

ij 
and A are such that not a single element is zero. 

ij 
Again considering the general strain-stress relations in their 

ai j 

general form 
E - Allax + A S + A t 
X 12 y 13 

E = A  8 + A  8 + A  t y 21 x 22 y 23 

Y = A  8 + A  8 + A  t , 31 x 32 Y 33 

(5.7) 

1) Garvey, ref.31 establishes by means of equations of equilibrium 
3 stress distribution within an arbitrary quadrilateral plate field, 
that carries only shear stressflow along its edgas.  Compare foot- 
note p.27. 
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l 

it is seen that a diagonal matrix 

could be obtained by putting A,2=A21=0 as with the rectangular plate and 
in addition A13=Ajl=A2jaA32= 0. 

The negleckion of A12=A21 can be justified by the eame reasoning as 

used in section 5.1 for the rectangular plate ( s  is emall and has little Y - 
influsnoe on e s has influence on t but these strains m e  not im- 
portant for overall displacements). But, generally stressflows t are not 
small, nor their influence on the strains cx .  The stressflows sx contri- 

I’ I Y’ 

bute to the strains Y ,  and these strains are important f o r  overall dis- 
placements. These facts are the reason that it is quite inadmissible t o  

put Al3=AJ1=0, the more since the ratio A13/A11 is not small. For exam- 
ple, the isotropic plate has with $ -  0.3 and 6 = 45 0 the matrix 

1.414 0.495 2 

0.495 1.414 2 1 
A i j ’  5 

2 2 4.667 
Since the matrix A ,  cannot be reduced to the form (5.8), it is 

1.i 
not possible to split up in parts pertaining to two systems of stiffen- 
ers with a matrix like ( 5 . 5 )  and a shear field with a matrix like (5.6). 
In other words it is impossible t o  represent the kehaviour of an oblique 
panel adequately by two systems of stiffeners and an oblique panel that 
can carry only shear stresses along its edges. 

put A12-A21-A13-A31=A2~-A~~-0 in the matrix of the isotropic skin’) o r  
to put a12=a210a13=aj1=a23=a)210 in the matrix of the isotropic skin 
or of the composite plate. Xumerical results will often be quite dif- 
ferent, and neither will give useful results. 

, 

The other still le66 reasonable attempts that could be made are to 

Eethode will be developed where the stress-strain relatione Will 
not, o r  only little, be simplified. Instead of an exact solution for a 

1) In Levy‘s work, ref.23, a supposition was made which is equivalent 
with this attempt. Garvey (raf.31) extends the supposition of Levy 
to the arbitrary quadrilateral plate field, but this Supposition 
seems only useful if the platefield is close to rectangular. 
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simplified s,txucture approximate solutions for a non- (or slightly) simpli- 
fied stsucture w i l l  be obtained; and it will be possible, by means of dif- 
ferent types of solutions, to derive upper and lower bounds for the nume- 
rical results. These approximate solutions will be obtained by means of 
the energy theorems of the theory of elasticity, 

- 6 
- 6.1 .. 6 1 1  

in the following way (ref.32, page 286). 

The variational principles of elasticity theory. 
IJinimum of the complementary energy. 
Determination of stresses. 

The theorem of the minimum of the complementary energy can be stated 

Of all states o r  stress satisfying the conditions of equilibrium in 
the interior and on that portion of the surface where the surface forces 
are  prescribed, the aotual state of stress i s  such as to minimize the ex- 

pression for the complementary energy1 

- -  
TI*, $/S.R dv - f k.u df . 

U 
The scalar product S.R is the sum of the scalar produots of the 

stress components S acting on the volume element dv and the strains R of 
the volume element. The product T S.R dv is called the strain energy of 
the volume element dv and the first integral of (6.1), which extends 
over the whole volume of the body, the strain energy of the body. 

1 

Further, care the forces (per unit area), acting at the surface f 
of the body and the displacements through which these forces act. The 
symbol u at the integral sign means that the integral extends only over 
that portion of the surface where the displacements are prescribed. I 1) 

It must be kept i n  mind, that applying the minimum principle to 
(6.1) primarily only the state of stress is varied and that the strains 
R in (6.1) follow from the stresses, which are  subject to variation, by 
meads of the stress-strain relations. Therefore the expression (3.35) 
will be used for a unit rhomb (of the oblique coordinate system) of an 
anisotropic plate. Unless V* is indeed the minimum, the strains R do not 
satisfy compatibility conditions. 

The state of stress S, together with its external forces k, is now 
considered to be the sum of a number of states of strees each with their 

-+ 

1) The refinemeqt where at a surface element df only one or two pro- 
jections of u are prescribed together with two or one force compo- 
nent of course does not introduce any special difficulty. Nor the 
introduction of prescribed mass forces, which are excluded here. 
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external forces 

s = so + x.s l i  

- 
The state of stress So, together with its external load ko and which 

is called the "basic stress system", satisfies the equilibrium conditions 
everywhere. Where the external load is prescribed, ko is equal to this 
preroribed load. A state of stress Si, together with its external loads 
tii, oatisfies the equilibrium conditions everywhere. Since k(=.ko+Xiki) 
for sake of equilibrium must be,equal to the prescribed loads in any point 
of the surfaoe where the external load is prescribed, ki (of every system 
Si) vanishes in that part of the surface. However, where the displacements 
are rescribed k 
Si) on the whole body vanishes for sake of equilibrium. The stress systems 
S., which are to be linearly independent, are called "supplementary stress 
systems". In an n-fold statically indeterminate structure n such systems 
may be constructed, and in (6.2) the unknowns Xi are the statically inde- 
terminate quantities, which have to be determined with the aid of the mi- 
nimum theorem (6.1). This "minimum theorem of the complementary energy" 
will be called here for the sake of brevity and so as to indicate that 
stresses are  varied, "minimum principle for the stresses". 

4 

+ - +  T 

-c 

4 * 
I may be non zero.  The resultant of ki (of every system i 

, , 1 

I 

The quantities Xi can alac be called the participation factors of 

The usual terminology with statically indeterminate -- structures ori- 
the supplementary stress systems Si. 

&nates from considerations on (finite fold) statically indeterminate 
structures, such as trusses o r  beam systems, the members of which can 
carry only one o r  a small number of load types (normal'force, bending mo- 
ment). Part of the members, called redundant members, may be removed or 
bcreaT-ed of the capability to take a certain load (a bending moment), 
thereby leaving the remaining etructure capable to carry the load in a 
statically determinate way. 

called redundant forces (moments) or redundancies. 
In the present work the participation factors of the supplementary 

stress systems take the place of these redundanciea. The notions redun- 

dant member and redundancy are not used here because the supplementary 
stress systems relate t o  plates with non-simplified stress-strain rela- 

tionfi, which carry an infinite number of statically indeterminate stress 

?he loads that occur in these members in the actual structure are 

, 
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systems becauss their state of stress is two-dimensional. Besides removal 
of such a plate may possibly make the structure kinematically undetermined. 
Such an element can hardly considered to be redundant in the strict sense 
of the word. 

Coming back now to the application of the minimum principle for the 
stresses the equations (6.2) are substituted in (6.1) 

+ -  
V*= L/(So+XiSi).(R 2 0 +X j j  R )dv-/(G+Xiki).u df 

- - + *  
V Y = +X.h + - 1 X X A - f (ko+Xiki).u df 2 00 i O i  2 i j i j u  

where 
A,, = f So.Rodv 

Since V* must be minimal the equations 

- -+ - dV* =Aoi + Xdhij- p i . u  df = 0 
dXi 

must he satisfied. 
The solution f o r  the, unknowns X. is 

J * *  
X D ( A .  .)-'(-Aoi+ /ki.u df) * 0 
j 1 J  U 

(6.4) 

(6.7) 

-1 . where ( A .  .) is the inverse matrix of the matrixAij. 
1 J  

With the solution of X. the stress distribution is known. If the 
J 

structure ie infinitely fold statically indeterminate, usually only a 
finite number of internal systems of stress will be introduced and the 
solution is only an approximate one. That means that the stresses do 
not yield completely compatible strains, which consequently are not 
integrable to displacements in a completely unambiguous way. In section 
6.1.3 displacements are determined without integration of strains. 

In choosing the basic stress system So, there is of course a good 
reason to take it as simple as possible. Values ofXOi are then simple 
to compute. However, there may be also a reason to choose it such that 
.it resembles as much as possible the solution f o r  the actual state of 

stress S which is to be expected. Such a system So could f o r  example 
be achieved by deriving it by means of engineering methods of stress 
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analysis. Then So has the significance of a first approximation and the 
statically undetermined analysis yields a corraction to this first approri- 
mation. With such basic stress system the values of the unknowns Xi are  

small and may be computed with less accuracy. Beside6 eome of the unknowns 
even may be put zero,  which means that the number of  supplementary stress 
systems is reduced. 

The possibility to use this refined type of basic stress system de- 
pends largely on the possibility which 
ing offer for an approximate analysis of straightforward methods. 

the structure and its type of load- 

If the structure is loaded merely as a result of its prescribed dis- - placements, ko vanishing throughout, the most simple basic stress system 
is Eo = 0. There is however in this case 
t a k e  So such that it approaches S as much as possible. This basic stress 
system may be, though not necessarily, a linear combination of the adopted 
eupplementary stress fiystems. 

no objection, if desired, to 

For the actual state of stress, therefore the state that yields com- 
patible strains and uniquely determinable displacements, the theorem of 
elasticity (ref.32, p.90) states, that the strain energy is equal to the 
externally applied energy 

+ *  T / S . X  dv = L/k.u 2 df . 
In contrast to (6.1) the integral on the right hand side of (6.8) 

extends over the whole surface. Substitution of the equation (6.8) into 
(6.1) yields another expression for the complementary energy 

and the' symbol k at the integral sign means that the integral extends 
only over that part of the surface, where the external load is pres- 
cribed . 

The unknowns X. in (6.4) are for future use eliminated by means 
J 

of (6.6). This yields 

---.. + -  * 1  1 
V = T A ~ ~ .  + XiXoi - X J k. .u df - f ko.u df . (6.10) 

U 
1 ' 

For the sake of simplicity when forming the equations (6.7), it is 
in general deaira>le that as many supplementary stress systems Si as 
possible be orthogonal, which means that 

A , .  =jsi.R. clv = 0 (6.11) 
1J J 



3‘2 

for as many i, j ( i f j )  as possible. Bon-overlapping supplementary stress 
systems are, of course, always orthogonal. 

Suppose that a certain problem in rectangular coordinates has been 
solved by a suitably chosen set of stress systems So...Si, then in the 
affinely transformed struoture (see par .3.6) the stress systems So.. .Si 
satisfy the conditions of equilibrium as well. Only the constants Xi 
assume different values. 

Initial orthogonality between the systems Si is usually lost in the 

have assumed different values. The Orthogonality of systeme not over- 
affinely transformed structure, because the matrix Aij and consequently 
R 
lapping each other is of course maintained. 
j 

I . ,  

- 6.1.2 Complementary eneray at combination of two loading cases. 
Suppose the loading case A 

SA = s +x s A0 Ai i 

- - D e  

kA = kAo+Xiiki 

and B 
s +x s ‘B = BO Bi i 

for the same structure and assume that for both cases the unknowns XAi, 
respectively XBi have been,solved by the minimum principle for the 
stresses. In both problems the surface region where forces and where 
displacements are prescribed @re the same and the same supplementary 
stress systems have been used. The complementary energies for the two 
cases are VA and VB respectively. 

prescribed forces, prescribed displacements, stresses and strains are 
the sum of the88 quantities of the separate cases), the total comple- 
mentary energy 

from (6.3) 

* #I 

If both stress systems are present simultaneously (that means 

% 
in general does not equal vA + V: tmt follows 

’;+B” i / ( s A O  +S BO +X A 1  . S. 1 +XBiSi 1. (RAo+RBo+XA jR j+XB jR )dv - 
- L -  - 1 (~Ao+XAiki+kBo+Xsi~i). (zA+$)df 

U 
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4 

where u A a n d  uB a r e  the  prescr ibed  displacements f o r  the twc cases  respec- 

t i v e l y .  , 
With the  no ta t ion  ( 6 . 3 )  

+ XAi(hBOi- /3 U z B d f  + 

- - - -c  J ki.UA af + x a ) + 
+ X B i G \ A C I -  A 3  i j  

-2-r - /kAo.uBdf - l k g g . u A  df . 
U 

I n  (6.14) the  form --. - f ki.uAaf + x ~ ~ A ~ ~  = 0 
U 

A O i  

because of (6.6), t he re fo re  

(6.14) 

* +  

* * /  U U U 

Y 
VA+B, = VA+VB+ SAO.Rmdv + XAi(Xmi- 

(6.15.') 
or 

i A f u r t h e r  expression f o r  VA+B can be der ived  us ing  (6.9) 

* - c  1 ---,  + *  
J(zA+cB).(uA+uB)df- 7 f U (kA+kB).(uAyB)df = 

1 + - + +  
z/(kA. u +k B. u A )df = (6.17) 

* - D * - c  

= Vl+V;+ 3 [(kA.uB+kB.uA)df 
U 

(6.18) 

The r e c i p r o c a l  theorem of B e t t i  and Rayleigh ( re f  .32, p.297) states 

* *  + * * +  - t - * - c  

= VA+VB+ $1 ( kA .uE +kB . uA )df- l ( k A  .ug+kB. uA)df . 
.. 

that 
4 -  --e 

JkA.uBdf = j k B . u A  df c r  

*I *I - 1  

[kA.uBdf + LkA.u,df = [zB.Gf + f U %.uAdf (6.19) 

and t h i s  s i m p l i f i e s  (6.17) t o  
-.* * = v*+v*+ f ZA.TBdf - JkB.uAdf 

'A+B A B U 
(6.20) 
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(6.21) 

The equations (6.15) and (6.21) will be used for the determination of dis- 
placements. - 6 1 3 Determination of displacements. 

The' displacement vector 5 of the surface element df, where the ex- 
\ 

ternal load is prescribed is to be determined for a given loading 
case A : 

SA = SA0 + XAiSi 
(6.22) 

-. -c 4 

kA =. kAO + 'Aiki 

This will be done by means of the formula (6.15). Take an auxiliary 
system B 

'B = 'BO + 'BiSi 

+ - c  -0 (6.23) 
kB = kBo + XBiki 

as described in section 6.1.2. The external load of system B is taken 
zero everywhere, where the loads are prescribed, except in the element 
df where the external load is a vector K of magnitude 1. The prescribed 
displacements may be arbitrary. 

-9 

Equating the right hand sibs of (6.15) and (6.21) the result 
is 

The integrand of the left hand side vanishes except for the *,r 
-c 

surface element df where the displacement uA is to be determined. The 
external load of the system B was taken such that 

4 

kB df = 5 
wa3 a unit  vector. 

With (6.25) and (4.8) equation (6.24) becomes 

.I. 

(6.25) 
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(6.26) 
By tak ing  success ive ly  th ree  a u x i l i a r y  systems E, with on t h e  su r face  

--c -c --c 
element df fo rces  KB(l,O,C), K B ( O , l , O )  and KB(O,O,l), t he  displacement 

p ro jec t ions  u 
and 'p of t h e  sur face  element df  l i n e s  the r o t a t i o n  components vAX,  vAy 

a r e  found i f  t h ree  a u x i l i a r y  systems B a r e  taken wi th  on the  su r face  

element ,df  u n i t  moments (compare ( 4 . 9 ) )  MB(l ,0 ,o) ,  ~~(O,l,o) and EB(O,O,lj. 

Bote t h a t  i n  applying (6.26) i t  i s  not  requi red  t o  determine t h e  

unknowns XEi '). Only t h e  bas i c  s t r e s s  system SBo and load kgo e n t e r  t h e  

equation. With any o ther  bas i c  s t r e s s  system, say SAo, kio y i e l d s  i n  

(6.26) t h e  same r e s u l t ,  provided S i o ,  k i o  is  a l i n e a r  combination of  

'237 kBO 
(6.23). If the  number of poss ib l e  supplementary stress systems is  larger 

than  the number of t h e  systems used, Sio,  k i o  could be adopted i n  such 

a manner t h a t  they a r e  not  r e l a t e d  t o  Sm, kBo by equat ions s imilar  t o  

(6.23). Then the  systems SEo, kBo and S i o ,  Tio would y i e l d  when app l i ed  

t o  equation (6.26) d i f f e r e n t  r e s u l t s  f o r  TA (however usua l ly  only s l i g h t l y  

d i f f e r e n t ) .  T h i s  i s  a consequence of t he  fac t  tha t  t h e  s t r a i n s  of t h e  

s t r e s s  system A a r e  not  completely comyatible. 

and uAz are obtained separa te ly .  Along t h e  same 

A 2  

Ax' uAy 

- + + ,  

4 

+ 

4 - 
and the supplementary s t r e s s  systems Si used i n  (6.22) and  

4 - 
* 

I 6.2 Einimum of t h e  p o t e n t i a l  ene rm.  - 
I 6.2.1 Determination of t he  s t r a i n s .  

, The theorem of the  minimum of the  p o t e n t i a l  energy can be s t a t e d  
- 
i n  t he  foliowing way ( r e f  .32, page 281) 

1 j O f  oourse a l s o  -- KE.uA = j A . R B d v  - I<.< df . 
U 

This formula i s  very e a s i l y  der ived by s t a r t i n g  from the  r e c i p r o c a l  

theorem 

kB.uAdf = / A * .  S R dv 1- - 
i n s t ead  of t he  r e c i p r o c a l  theorem (6.19) .  
Further s u b s t i t u t i o n  of SA = SAo + XAiSi and Rg = RBO+ XBiRi 

l e ads  a l s o  t o  (6.26). 

2 )  This is a l s o  t h e  reason why t h e  prescr ibed  d i s p l a c m e n t s  of system B 

may be taken a r b i t r a r y .  Prescr ibed  displacements only a f f e c t  t h e  

i '  unknowns XB 
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Of all states of strain satisfying the compztibilityconditions and of 
which the displacements satisfy prescribed boundary conditions at the sur- 
face, the actual state of strain ie such as to minimize the expression f o r  

the potential energy 

V = $ / S . R  dv - k.u df . r-- (6.27) 

In (6.27) the stresses S follow by means of the stress-strain rela- 
tions from the strains which are subject to variation. Them stresses do 
not satisfy equilibrium conditions unlees V is indeed the minimum. The 
minimum theorem (6.27), usually called the "minimum theorem of the poten- 
tial energy" will be called here fo r  the sake of brevity and in order to 
indicate that the strains are varied, "minimum principle f o r  the strains". 
Note that the starting point as well as further developments of this 
section show remarkable parallelism with section (6.1). In fact in all 
corresponding formulas the symbols k and u are interchanged and s o  are 
S and R. To distinguish further the two minimum principles, the symbol X 
f o r  the unknovins in section 6.1 is changed in the symbol Y here. 

. The state of strain R, togsther with its displacements ? is consider- 
ed to be the sum of a number of  states of strain, each with their compa- 
tible displacement8 

R - Bo + YiRi 

- +  9 u = uo + Y . U .  
1 1  

The state 'of strain Ro, which yields the displacements yo, complies 
with the presoribed displacements at the boundary and it is called 
"basic strain system". With the other systems of strain R the displace- 
ments ? are zero  where displacements are prescribed. These systems are 
called "supplementary strain systems". The unlmowns Yi may be called the 
participation factors of the supplementary strain systems Ai: 

i 
i 

The analogy of the deviation from (6.1) to (6.6), obtained by inter- 
changing S,R and k,u yields the equation for the unkncwns Yi 

When the unknowns Y. are solved the complete solution for the state 
J 

of strain is established, and with the strain-stress relations also the 
state of stress. If due to a limited number of unknowns Yi the solution 
is not exact, the state of stressdoesnot satisfy the equilibrium con- 
di tions . 
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For an n-fold statically indeterminate structure of the type t o  be con- 
. .  

sidered generally more than n linearly independent Supplementary strain 
systems can be constructed.'This number may even be infinite. For this rea- 
son the minimum principle for the strains is not suitable for structures 
which are finite-fold statically indeterminate and which have an infinite 
number of d.egrees of freedom for the strains . But also in structures which 
are infinitely-fold o r  many-fold statically indeterminate the use of the 
minimum principle for the strains has a disadvantage. It will be confirmed 
in the following chapters that in order to obtain an equal degree of accu- 
racy a much larger number of supplementary strain systems than of supple- 
mentary stress systems are required. Usually the forces are prescribed over 
the greater part of the surface of the structure (be it that these forces 
are often zero-forces ), whereas t.he displacements are prescribed usually 
in a limited area of the surface. This fact reduces the freedom for stress- 
es,  which are subject to variation, more than the freedom for displacements 
(strains), which are subject to variation. 

- 

Also when using the minimum principle f o r  the strains there is a rea- 
eon to choose the basic strain system Ro as simple as possible. Often there 
are only forces and zero-displacements prescribed. Then Ro may be such that 
it gives ze ro  displacements (and strains) everywhere. However, (again in 
order to reduce the required number of supplementary strain systems)it may 
be advantageous to choose Ro such that it approaches as much as possible the 
expected solution for R. (Compare the discussion of the systems S o  given in 
section 6.1.1). 

For the actual state of strain another expression for the potential 
energy is derived from (6.27) and (6.8) 

-c+ -+  
V - $ /k.u df - L [  2 k.u df . 

U 

By comparison of (6.30) and (6.9) it appears that for the exact solutions 
V and V x  holds 

- V = V  *1 . (6.31) 

In analogy to (6.10) another expr,ession f o r  V is 

V = ~h,, 1 + 5 1 Yihoi - $ Yi [k.uidf --t- - /k.uodf + +  . (6.32) 
k 
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6.2.2 P o t e n t i a l  energy a t  combination of two loading cases.  

Suppose the  loading  cases  A 
RA = RAO + YAiRi 

- c +  --t (6.33) 
A i  i UA = UAO + Y u 

and B 

RB i RBO + YBiRi 

- c +  t (6.34) 
UB i UBO + YBiUi 

f o r  the  same s t r u c t u r e  and assume t h a t  f o r  both cases  the  unknowns YAi, 

r e s p e c t i v e l y  YBi have been solved by t h e  minimum p r i n c i p l e  for t h e  s t r a i n s .  

In both problems the  su r face  reg ions ,  where fo rces  and where displacements 

a r e  prescr ibed ,  a r e  the  same and the  Same supplementary s t r a i n  systems 

have been used. 

Following the  derivation; of (6 .12)  t o  (6.16) the  analogous r e s u l t s  

k .u df- J- k .u - df . (6.36) 6 < < 0  k A BO 

According t o  (6.30) (compare the  de r iva t ion  of (6.17) and (6.18)) 

1 - - c  - -  - *  -b-- 

= VA+VB+ F/(kA.uB + kB.uA)df - f (kA.uB + kg.uA)df 

and from the  r e c i p r o c a l  theorem of B e t t i  and Rayleigh (6.19) 
k 

The equat ions (6.35) and (6.39) w i l l  be used f o r  the determinat ion of 

e x t e r n a l  loads .  

6.2.3 Determination of ex te rna l  loads .  - 
-c 

The e x t e r n a l  load k a t  the sur face  element df, where the displaoe-  A 
ment i s  p r s sc r ibed  i s  t o  be determined f o r  a given loading  case A 

R = R + YAiRi A A0 
- c  - 
UA = UAO + YAiUi 
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The s o l u t i o n  i s  r e a d i l y  obtained from t h e  s o l u t i o n  f o r  the s t a t e  of 

s t r a i n  which g ives  s t r e s s e s  a l s o  a t  the  su r face  element df .  If,  however, 

t he  s o l u t i o n  f o r  t he  s t r a i n s  i s  no t  t he  exact  one, t h e  method presented  

i n  t h i s  s ec t ion  g ives  usua l ly  more accura te  r e s u l t s .  

Take an a u x i l i a r y  system B 

RB = Rm + YBiRi 

a s  descr ibed i n  s e c t i o n  6.2.2. A s  f a r  ,as t h e  displacements a r e  p re sc r ibed  

those of the  system B are taken zero everywhere, except  i n  the  element df 

considered where the  displacement i s  a vec tor  of magnitude 1. The 

I 
I 
I 
I 
I 

I 
I 

prescr ibed  ex te rna l  fo rces  may be a r b i t r a r y .  

( a l so  if the prescr ibed  ex te rna l  fo rme  of system P a r e  not  zero) 
Equating the  r i g h t  hand s i d e s  of (6.35) and (6.39) the  r e s u l t  i s  

I 

The in tegrand  of the  l e f t  hand s i d e  vanishes  except f o r  t he  s u r f a c e  
- +  

element df where the  ex te rna l  load KA= kAdf i s  t o  be determined. 

Equation (6.42) now becomes 

+ - +  
S dv + YAihBOi -[zA.um&f . KA'uB = K  Ax u Bx +I( Ay u By + KAzUCe i / .AO* BO 

(6.43) 
By t ak ing  success ive ly  t h r e e  a u x i l i a r y  systems B, wi th  a t  the  sur- 

f a c e  element df t he  prescr ibed displacement v e c t o r s  $(l,O,O), cB(O,l,O) 
and zB(O,O,l) the  fo rce  components Kk, K KAz a r e  e s t ab l i shed  eepa- 

AY' r a t e l y .  Along t h e  same l i n e s  t h e  e x t e r n a l  moment p ro jec t ions  Lth, I5 

BAZ a c t i n g  a t  t h e  su r f ace  element df  can be e s t ab l i shed  i f  t h r e e  auxi- 

l i a r y  systems B a r e  taken wi th  a t  t h e  su r face  element df p re sc r ibed  

un i t  r o t a t i o n  components G(I,O,O), ;bg(0,1,0) and ;b(0,0,1) r e s p e c t i v e l y .  

Like i n  s e c t i o n  6.1.3 i t  is n o t  necessary t o  so lve  the  unknowns YBi. 

Only t he  bas i c  s t r a i n  system RBO,uBO is  needed i n  t h e  equat ion.  f i e r y  

o the r  zero system R i g ,  uh0 y i e l d s  t h e  same r e s u l t s  provided Bb is  a 

l i n e a r  combination of  t h e  system Rm and the  supplementary s t r a i n  

sya t ems R . 

AY' - c - -  

-.c 

s 

- - 
1. 
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- 6.3 
- 6.3.1 Displacements. 

Enclosing numerical results between bounds. 

In section 6.1.3 is shown how, for a loading case A, the three dis- ' 

at a surface element df, where the ex- uAy' UAz placement projections uAx, 
ternal load is prescribed, are determined by means of an auxiliary system E. 

The only prescribed external load of system B consists of the unit forces 
KB(l,O,O), i?(O,l,O) and <(O,O,l) at df. 

the ways to get the expression f o r  the complementary energy of the structure 
if indeed the loading case A and loading case B a r e  present simultaneously 
is formula (6.21) 

- 
B 

U s e  of KB(KBx = 1,0,0) gives the displacement projection uAx. One of 

I 

'T+B = v x +  A v*+ B uAx (6.44) 

provided the prescribed displacements 
to calculate VA and Vg by means of (6.10), the ~ n h o l o t f f n ~  XBi must now be 

solved. 

are taken equal to zero.  In order 
* 

If all stresses, forces and displacements of loading case A are mul- 
tiplied by a ,  and those of loading caee B by p, the expression f o r  the 
complementary energy becomes 

2 VI= a2 V* + p V* + ap uAx . A B 

With the notation 

V takes the form 
2 '  2 v"= P ; ~  a + 2pi2 up + P ; ~  p . 

(6.45) 

(6.47) 

If the number of redundancies of the structure is larger than the * 
number of supplementary stress systems which are used, the value of V is * 
for arbitrary values of a and p larger') than the exact value Ve. If the , 
exact values of Pil, Pi2 = P,jl, P;2 are respectively pl;; p12 = P~~ and 
P22 it is obvious that the quadratic form 

1) For a special ratio a/p an exact solution may be achieved, because 
the participation factors of all stress systems not used are in 

fact zero for that special ratio a / @ .  Then of course V = V z .  Conpare 
also section 0.2.6.3. 

* 
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4 1  

* 2 2 
v - V" e = (pil - Pll)a + 2(pi2 - Pl2)ap + (pi2 - P 22 )p is p o s i t i v e  

d e f i n i t e ,  and the re fo re  (page 30, r e f  2 0 )  

and 

or 

'ii - '11 p'12 - p12 
*i1 - p;2 - p22 

> O  

'Next the  loading  cases  A and B w i l l  be analyzed a l s o  by means of t h e  

minimum principlefor  t he  e t r a i n s .  For t h e  combination of the loading  case 
A and the  loading  case B the  p o t e n t i a l  energy i s  according t o  (6.39)' 
thereby again t ak ing  the  prescr ibed  displacements 3 equal t o  zero and 
reminding t h a t  t he  prescr ibed  force o f  loading  case 3 is a fo rce  

. 
+ 
XB (1,0,0) 

(6.51) A x '  v v* + VE - u 
where VA and VB have t o  be ca l cu la t ed  from (6.32) a f t e r  so lv ing  for 

YAi and YEi . 
p, expression (6.51) becomes 

If the  loading case  A is mul t ip l i ed  by a and t h e  loading case B by 

2 2 V = a  V A + p  V B - o p u h .  

With the  n o t a t i o n  

(6.52) 

V t akes  the  form 

(6.54) ' 2  2 
11 -V a P" a + 2PY2 ap + P;2 p . 

In general  t he  s o l u t i o n s  f o r  t h e  loading  c a s e s  w i l l  be approximations 

and t he re fo re  the  va lue  f o r  V i s  too l a r g e ,  and t h e  value for -V i s  
smal le r  than  t h e  exac t  value -'Ve for a l l  values  of  a and p .  According t o  

(6.31), which must be hold for any s e t  of parameters a,p, t he  exact  
s o l u t i o n s  of  PI1 are t h e  same as those of P!. i n  (6.47). Hence 

i j  13 
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Pll - PYl>0 
p22 - P'i2 > 0 

pll - p';l 

p12 - p';2 

p12 - p';2 

p22 - p;2 
> O  

F!i2 - R < P12 < PY2 + R . 
I <P" (6.60) and (6.61) yield If P12 12 

(6.62) 

and if Pi2>P;12 
P i 2  - R<P <P" + R . \ (6.63) 12 12 

The bounds for P12 are according to its definition also the bounds 
1 for uax . 

the rotation components of the surface element df. 
Again the present procedure can be extended to the determination of 

Likewise upper and lower bounds for the differences in displacement 
projections of two points may be determined by suitably choosing two 
auxiliary forces in the two points. If the distance between these points 
goes to zero these displacements get the character of strain components. 
So by applying the same principles it is possible t o  determine upper and 
lower bounds for strains and stresses. 
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The method descr ibed here  i s  e s s e n t i a l l y  t h e  same as a l ready  used by 

Weber, ref.33. Cooperman, ref.34 and Synge, r e f .  35 have given a gene ra l  

scheme f o r  f ind ing  l o c a l  bounds for the  s o l u t i o n s ,  and t h e i r  d e r i v a t i v e s ,  

of boundary value problems of mathematical physics,  of which t h e  problems 

of e l a s t i c i t y  theory a re  s p e c i a l  cases .  

* 

- 6.3.2 External  loads. 
I n  s e c t i o n  6.2.3 i t  has been shown how, for a loading  case A, t he  

a t  a su r face  element df ,  where t h e  Ay' KAz t h r e e  fo rce  components Kk, K 

displacement is prescr ibed,  a r e  determined by means of an a u x i l i a r y  e p t e m  

B, where t he  prescr ibed  displacements a r e  confined t o  u n i t  displacements 

uB(l,O,@) , uB(O,l,O) and- fg (@,@, l )  r e s p e c t i v e l y  a t  t h e  element d f .  The 

disp lacement tB( l ,O,O)  y i e l d s  the  fo rce  component Kk. 
The expresaion for the  complementary energy of t h e  s t r u c t u r e  under 

t h e  combined loading cases  A and B is  formula (6.21) 

--L 

*I a 
'A+B 51v A + v ; -  KAx 

and the  expression for the  p o t e n t i a l  energy is formula'(6.39) 

'A+B = V A + VB + KAx (6.65) 

if t h e  prescr ibed e x t e r n a l  loads of aystem B a r e  taken zero. 

I n  the  same way as i n  s e c t i o n  6.3.1, where (6.44) and (6.51) were 

used t o  e s t a b l i s h  the  bounds for uAx,the equat ions (6.64) and (6.65) 
y i e l d  the  bounds for Kk. 

With the  no ta t ion  
Y * 

VA = Pi1 , VB = P&, and KAx = -2 P i 2  = -2P' i n  (6.64) 21  

and 
V - -P;2 and KAx = -2 P" = -2P51 in (6.65) 1 2  v* = -P" 11' B -  

' <P" if p12 12 t he  bounds for P12 are, 

- R<P <PI  + R pj12 1 2  1 2  

and i f  Pi2>Pj12 

- R<P t P "  + R '$2 12 1 2  

where R = d ( P i l  - py1)(P;2 - P Z 2 i > 0  . 
The bounds for P12 a r e  a l s o  the  bounds for - 

(6.64) 
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- 7 Deformation and stress analysis of a 5 cell clamped swept back box beam 
with ribs in flight direction. 
- 7.1 Introductionl 

Lang and Bisplinghoff (ref 2 6  and 37) give results of experiments on 
'a mept box with ribs in "flight direction". It was decided to apply the 
variational principles of section 6 to this swept box, in order to make a 
comparison with the experimental results. The swept box was 'clamped at the 
root and had 5 ribs, the rib at the Ree end included, thus there were 5 
cells (a cell is the space between two rib planes). Also Lang and Bispling- 
hoff made calculations, but in these calculations they took the ribs nor- 
mal to the spars instead of in flight direction, which seems to be a 
rather crude assumption more in particular f o r  the region near the root. 

ing point was the schematieation of Lang and Bisplinghoff (of course ex- 

cept for the position of the ribs). However, after completion of the oal- 
culations, the schematization of Lang and Bisplinghoff proved to be not 
sufficiently correct. The moment of inertia of the cross seotion AA (fig. 
7.1) with respect to the xy plane used by Lang and Bisplinghoff is 25.7 
inch 
inertia, calculated from the actual structural dimensions proved to .be 

In sohematizing the structure for the present calculations, the start- 

4 (a value also following from fig.7.5 of ref.  36); The moment of 

28.7 inch4, which is a difference of more than 10 "/o 1) . 
Since the calculations of Lang and Bisplinghoff and equally the 

present ones do not r e f e r  to the actual structure on which the experi- 
ments were carried out it had t o  be concluded that it was not worthwhile 
to compare the results of .the present calculations. with the experiment6 
described in ref.36 and 37. To meet this disadvantage another swept box 
beam was built and tested at the National Aeronautical Research Institute, 
Amsterdam. The dimensions of this structure were taken such that they 
correspond as good as possible with the schematization of the calcula- 
tions. Another reason to replace Lang and Bisplinghoff's tests was that - 

the root restraint in these tests was not completely rigid. The N . A . R . I .  

test specimen was a double swept box loaded symmetrically so as to pro- 
vide rigid root restraint*). This experimental investigation and its 
l r  This differenoe stems from the fact that in the calculation which led 

to the results of 25.7 inch4 all upper- and lowereide material is .con- 
sidered t o  be at a distance of exactly 3 inch from the neutral plane. 
However, only the innersides of the top and bottom plates are 3 inch 
from the neutral plane, and all the material of top and bottom 
plates, stringers and especially of the spar booms has greater 
distances. 

2 )  Lang and Bisplinghoff incorporated. measured displacements at the root 
in their calculations. Nevertheless these displacements obscure to a 
certain degree the results; The special state of stress near the r o o t  
becomes less pronounced. 

_I 



45 

i n t e r p r e t a t i o n  were c a r r i e d  out by Van Grol,  Hakkeling and Schuerman 

( re f .38) .  Also Briihl ( re f .39)  made experiments on a swept box beam and 

compared measured s t r e s s e s  w i t h  s t r e s s e s  computed according t o  t he  theory 

of s ec t ion  7.4.2, which w a s  made a v a i l a b l e  t o  hi$.  The r e s u l t s  of t hese  

comparisons proved t o  be q u i t e  s a t i s f a c t o r y .  

The schematized s t r u c t u r e  w i l l  be analysed f i r s t  by applying the  

minimum p r i n c i p l e  f o r  the  s t r e s s e s ,  t ak ing  10, 15 and 20 supplementary 

s t re ' s s  systems r e spec t ive ly .  Subsequently the  s t r u c t u r e  i s  analysed by 

applying the  minimum p r i n c i p l e  f o r  t he  s t r a i n s  tak ing  i n t o  account 50. 

supplementary s t r a i n  systems. 

- 7.2 Dimensions. 

by f i g .  7.1 and 7.2. The angle of sweep is  (90" - e )  = 45'. There a r e  

two p a r a l l e l  spa r s  of equal and oonstant c ross  s e c t i o n  along t h e  span. 

The th ickness  of the  spar  web p l a t e s  hs i s  0.051 inch and the  c r o s s  

s e c t i o n a l  a r e a  of each spar  boom is 0.3819 inch  

boom). Top and bottom s t r u c t u r e s  a r e  i d e n t i c a l  and c o n s i s t  of a s k i n  p l a t e  

of th ickness  h = 0.032 inch and 3 s t r i n g e r s  of cross s e c t i o n a l  a r e a  

The planform and cross  s e c t i o n  o f  t he  swept-back box a r e  i l l u s t r a t e d  

2 ( s e c t i o n  normal t o  the  

LI 0.059 inch2 each. Their d i s t ance  as measured along a r i b  is 3 f ?  inoh. 

The webs of a l l  f i v e  r i b s  have a th ickness  of  0.051 inoh,  and t h e  upper and 

lower r i b  f langes  0.0255 inch have cross ' s ec t iona l  a r e a  each ( s e c t i o n  nor- 

m a l  t o  t h e  r i b ) .  The modulus of e l a s t i c i t y  E i s  lO.5xlO 
Poisson 's  r a t i o  4 = 0.3. (Shear modulus G'= 4 . 0 3 6 5 ~  10 

handed obl ique coordinate  system x,y,z  a s  i nd ica t ed  i n  f i g .  7.1 i s  used. 

The swept box is  clamped a t  t he  r o o t  a t  s e c t i o n  x = 0. 

2 

6 lbs / inch2  and 
6 2 Ibs/ inch ). A r i g h t  

The cross s e c t i o n a l  a r ea  o f  t he  upper spa r  booms i s  1.36~ t h e  c ros s  

s e c t i o n a l  a r e a  of upper sk in  and s t r i n g e r s .  I t  i s  t o  be expected t h a t  t he  

p a r t i c u l a r  s t r e s s  d i s t r i b u t i o n  near  the  clamped roo t  i s  more pronounced 

the  l i g h t e r  the spa r  booms a r e .  I t  may then be necessary t o  use i n  t he  r o o t  

region s t i l l  more supplementary s t r e s s  o r  s t r a i n  systems than are used i n  
t h e  present  ca l cu la t ions .  Some calculations f o r  a box beam wi th  l i g h t e r  

spar booms were c a r r i e d  out by the  author i n  ref.40. Experiments w i th  t h i s  

box beam a r e  under progress.  

. 7 . 3  - The s t r a i n - s t r e s s  r e l a t i o n s .  

The s t r u c t u r e  discussed i n  s e c t i o n  7.2 is schematized i n  the  follow- 

i n g  way. 

The s t r i n g e r s  a r e  continuously d i s t r i b u t e d  to  form an a n i s o t r o p i c  



plate only capable of carrying normal stresses in stringer direction. To 
this purpose the cross sectional area of each spar boom was diminished 
with an amount equal to 1/2 of the cross sectional area of a stringer and 
this area was added to the anisotropic plate consisting of the skin and 
the coatinuized stringers. 

normil stress carrying capacity is added to spar booms and rib flanges 
respectively. 

The spar and rib webs are assumed to carry shear stresses only. Their 

The applied loads give in all spars and ribs stresses which 
are antisymmetrical with respeot to the x,y plane. If it is supposed that 
the normal stresses in a cross section are proportional to the distance 
to the x,y plane (the bending stress distribution of engineering theory), 
the normal stress carrying capacity of the webs is properly taken into 
account by adding 1/6 of  the sectional area of the weba to each spar 
boom o r  rib flange (by doing s o ,  the moment of inertia of the spar re- 
mains unchanged). 

The CSOQE sectional area of the idealized a p e  boom becomes now 

1 2 A = 0.3819 - 1/2x0.059 + gx6xO.051 = 0.4034 inch , 
that of the idealized rib flange 

1 2 

The strain-force relation of a spar boom is 
0.0255 + x x 6 x 0 . 0 5 1  = 0.0765 inch . 

P 

6 where EA - 4.2357 x 10 

and of a rib flange 
lbs 

P = = z  
6 where EA = 0 . 8 0 3 2 5 ~  10 lbs. 

The spar and rib webs carry only shear stressflows and their 
strain-stress relation is 

t y e -  Ch 

(7.1) 

( 7 . 3 )  
6 where Ch = 0.205963 x 10 lbs/inch. 

2 With the numerical values 0 = 45O, h _i 0.032", AS = 0.059 inch I 
and as = 3\1;i1inch, the stiffness matrix (3.25) of the 

takes the value 

composite plate 
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1 .I903 0.6788 -0.7385 

a i j" lo6 0.6788 1.0443 -0.7385 

-0.7385 -0.7385 0.7049 

lbs/inch . ( 7 . 4 )  

J& Analysis with the minimum principle f o r  the stresses. 

10 Supplementary stress systems. 
A load in the direction of the positive e axis of 1 lb will be 

placed successively in the stations 1,2...10 (fig.7.1). These states of 
loading, will be called "loading case l", "loading case 2", ete. For 
each loading case the stress distribution and the vertioal deflections 
of the stations 1...10 will be established. The calculations follow the 
lines of section 6.1.  

&om symmetry coneiderations it follows that, in the lower akin, 
the projections of the displacement vectors, the strain components and the 
stress components have always the opposite sign as those in the upper 

skin. 
The figures 7.3 and 7.4 show the two types of supplementary stress 

systems, admitted in this analysis. Each syetem only extends along two 
consecutive cells. In addition the cell next to the root carries stress 
systems, which consist of the right part of the two types of systems. 
Fig.7.5 gives the position of each system within the structure. (The 
systems number 11...20 are introduced in section 7.4.2 and 7.4 .3) .  If 
the region of a system is not bounded by the root, the structure beyond 
the bounds of the region is free from stresses and forces. If the root 
is a part of the bound of a system, the structure may exert forces on 
the root the resultant of which is zero& this applies to the stress 
systems 1,6,11 and 16 .  

The systems of f i g . 7 . 3  (type 1 )  are the only supplzmentary stress 
systems when the structure is made 5-fold statically indeterminate by 

supposing that the skin bays ban carry only shear stresses along their 
edges. These systems account for the capability of the ribs to carry 

2.6068 0.9124 3 -6866 

Aij= 0.9124 4.0127 5.1594 

3.6866 5.1594 io. 6853 

inch/lbs . (7 .5 )  
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shear stresses. 
The adaition of the systems according to fig.7.4 (type 2 )  presents 

the first step towards refinement of the behaviour of the skin. It allows 
the composite plate to carry longitudinal stress sX. Strictly, each of 
these systems consists of two independent systems, cns in the upper plate 
and one in the lower plate. Because it is known that stresses in upper and 
lower plate will be reversed in sign, they a r e  taken together. 

The limitations to which the state of stress in the oomposite plate 
is subjected are1 
1' The axial stress flow sX is constant over the width of the skin (in y- 

direction), it varies linearly between two successive ribs (in x- 

direction). 
2' The axial stress f l o w  s is zero throughout. 

fiom the equilibrium conditions then follows that the shear stress 
Y 

flow t is a linear function of y. 

With the supplementary stress systems to be used later, fig.7.7 an8 
7.8, the axial stress flow 8 

f l o w  s still varies linearly between 2 successive ribs, but it is being 
admitted that sI is a quadratic function of the chordwise coordinate. 

the strain-stress relations of section 7.3 and are tabulated in table 
7.1. Values not given are obtained by observing that A 
culating the integrals a table given by Van Beek, ref.41, was used. 

still remains zero and the axial stresa 
Y 

X 

The coefficients A defined by (6.5) have been calculated with 
ij 

- hji. In cal- 
ij 

In struotures were in a l l  elements the state of  stress is one 
dimensional (trusses, structures with only shear oarrying plates) the 
computation of the elementsh 
matrix multiplication of three matrices (ref.26). The first and third 
matrix represent the supplementary stress systems, the second one the 
flexibilities of the elements. The presence of elements in which the 
state of stress is two-dimensional gives complications, but the proce- 
dure can be adapted. For the present structure, whioh consists of 
equal cells it was considered not necessary to use the matrix procedure 
in question. 

can be very well systematized to a 
ij 

It may cause surprise that for exampleX for j = 1 and i = 6 
and 7 does not vanishi j = 1 pertaining to the type 1 systems which 
zre "anti-symmetriaal" to the axis of x, whereas i = 6 and 7 pertain- 
ing to the type 2 systems are "symmetrical" with respect to the axis 
of x. The reason for the fact that they nevertheless couple in the 

ij 

dv is that the element A13 of the flexibi- 
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l i t y  matrix of  the  composite p l a t e  is not  ze ro . ( i . e .  t he  expression f o r  

t he  s t r a i n  energy contains  a term 2 A  5 t ) .  13 x 
For each loading case,  t h e  bas i c  stress system was chosen a s  simple 

a s  poss ib le .  They occurred only  i n  t h e  spar  connecting t h e  loaded s t a t i o n  

wi th  the  r o o t  and a r e  given i n  fig.7.6. 
The te rmshoi  of t h e  equat ions (6.6), for t h e  10 l oad ing  cases  

m = 1...10 i nd ica t ed  byXmOi, are given i n  t a b l e  7.2, forming a non-sym- 

met r ica l  matrix, which is only square by chance (because the  number of 

supplementary s t r e s s  systems happens t o  be t h e  same a s  t h e  numbers of sta- 

t i o n s  i n  which a v e r t i c a l  uni t  load i s  placed) .  No non-zero displacements 

are prescr ibed.  So the  termjuki.uidf does no t  p lay  a role. 

m b l  ... lo), i nd ica t ed  by X ,, are given i n  t a b l e  7 2 .  

--t 

The s o l u t i o n s  of t he  unknowns X j = 1...10 f o r  t he  loading cases  
j’ 

mJ 
Consider now the  case ,  where t h e  load i s  placed i n  s t a t i o n  m, and l e t  

be asked the  v e r t i c a l  d e f l e c t i o n  i n  s t a t i o n  n. 

According t o  (6.26), t h e  displacement ind ica t ed  by t h e  symbol Cm - 
which i s  an in f luence  c o e f f i c i e n t  s i n c e  i t  i s  t h e  displacement f o r  a 

u n i t  load - . i e  
, 

Smo i n d i c a t e s  t he  bas i c  e t r a s s  system for loading  case m ,  Rno t h e  s t a t e  of 

s t r a i n  corresponding w i t h  t he  bas i c  s t r e s s  system S 

The m a t r i o e s ~ m O . R n O d v  and Cm a r e  given i n  t a b l e s  7.4, and 7.5 
r e spec t ive ly .  

It is easy t o  compute s t r e s s e s  o r  s t r a i n s  i n  the  s t r u c t u r a l  members, 

for loading  case  n. nO 

once the  unknowns Xi have been solved. 

1...12 of the  spar  booms, i n  the  spar webs and i n  the  r i b  webs. 

Table 7.6 g ives  s t r e s s e s  for t h e  10 l oad ing  cases  i n  t h e  s t a t i o n 8  

In s e c t i o n  7.6.2 f i g u r e s  w i l l  be produced where s t r e s s e s ,  a l s o  i n  

t h e  akin,  a r e  p l o t t e d  f o r  some loading  cases .  

2 Supplementary s t r e s s  systems. 

A t h i r d  type of supplementary s t r e s s  systems was assumed and is  shown 

i n  fig.7.7. Again, ea& system corresponding t o  fig.7.7 c o n s i s t s  of two 

independent p a r t s  f o r  upper and lower sk in ,  but a s  s t r e s s e s  and displace-  

ments i n  upper and lower s k i n  a r e  reversed  i n  sign, t h e  two p a r t s  a re  
taken toge the r .  Fig. 7.5 gives  the  pos i t i on  of the added systems nr. 

11.. .15. 

/ 

With respec t  t o  the  type 2,  t he  present  type o f f e r s  the refinement 

t h a t  t he  s t r e s s f l o w s  sx may vary l i n e a r l y  i n  y-direct ion.  
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I n  view of t he  equi l ibr ium condi t ions  (2.11, (2.2) the  s t r e s s f lows  t 

a r e  now quadra t i c  func t ions  o f  y. 

lnith the  t h r e e  types of 'supplementary s t r e s s  systems the general  fo r -  

mulas f o r  t he  s t r e s s f l o w s  i n  a composite p l a t e  a r e  

4 xy + c2x + c y + c sx = c1 3 

s = o  (7.7) Y 
2 

5 .  t = -  ; c1 y - c2y + c 

Only apparent ly  these  formulas o f f e r  5 degrees of freedom per c e l l .  

However, t h e  s t r e s s f lows  s t o  e i t h e r  s i d e  of a r i b  must be i n  equi l ibr ium. 

Since s a long  a r i b  i s  a l i n e a r  func t ion  of y two c o e f f i c i e n t s  f o r  t he  

n-th c e l l  depend on t h e  Coef f i c i en t s  f o r  t he  n-lth. In  add i t ion  sx must 
vanish a t  t h e  f r e e  end of  the  beam. Then only 3 degrees of freedom per  

c e l l  remain. 

X 

X 

I f  no spar  booms would be present  i n  the  structure t h e  supplementary 

s t r e s s  systems f i g .  7.3, 7.4 and 7.7 could no t  e x i s t  because normal f o r c e s  

a r e  r e q u i r e d  along t h e  boundaries y = cons tan t  of t h e  s k i n  panels .  However 
systems fig. 7.3 and fig. 7.7, taken toge ther  i n  t h e  appropr ia te  r a t i o ,  

form a system of  stress without fo rces  i n  the  spar  booms. 

The computation f o l l o w s  f u r t h e r  q u i t e  the  same l i n e s  a s  i n  sec t ion  

7.4.1. The range i and j, however, i s  1...15, i n s t ead  of  1...10. 

Table 7.7 g ives  the  a d d i t i o n a l  va lues  of t he  c o e f f i o i e n t s  1. . of t h e  

Table 7.8 g ives  the  a d d i t i o d a l  va lues  of t he  terms homi of the  equa- 

Table 7.9 g ives  t h e  s o l u t i o n s  X . of t h e  equat ions f o r  the  m loading  

1 3  
15 unhoms. The o t h e r  values  were a l r eady  given i n  t a b l e  7.1. 

t i ons .  The o t h e r  va lues  were a l r e a d y  given i n  t a b l e  7.2. 

m 3  
cases (Compare t a b l e  7.3). 

Table 7.4 s t i l l  holds  f o r  t he  c a l c u l a t i o n  w i t h  15 unlcnowns. 

Table 7.10 g ives  the  matrix of i n f luence  c o e f f i c i e n t s  (compare 

t a b l e  7.5). 
Table 7.11 g ives  stresses i n  the  s t r u c t u r e  (compare t a b l e  7.6). For 

f u r t h e r  d i scuss ion  of stresses see a l s o  s e c t i o n  7.6.2. 

7.4.3 20 Supplementary stress systems. 

Fig. 7.8 shows t h e  f o u r t h  type of  supplementary stress systems. Note 

t h a t  no f o r c e s  i n  the  spa r  booms occur i n  the  s t r e s s  systems of t h i s  type. 

So these  systems can be used i f  no spa r  booms a r e  p re sen t  ( toge ther  w i t h  

t h e  appropr i a t e  combination o f  type 1 and 3).  
This type o f f e r s  t he  refinement that the  axial s t ress f lows  sX may 
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va ry  q u a d r a t i c a l l y  i n  y -d i r ec t ion ,  but they s t i l l  va ry  l i n e a r l y  i n  x d i r e c t -  

ion.  The s t r e s s f lows  s remain zero.  Consequently, t he  s t r e a s f l o w s  t are 
now cubic func t ions  of y. 

Y 

With the  four types of supplementary s t r e s s  systems t h e  genera l  for -  

mulae f o r  t h e  s t r e s s f l o w s  i n  a composite p l a t e  a r e  

xy 2 + c 2 y 2 + c  X y + C X + C Y + C 6  
= 4 3 4 5 

e = o  
Y 

(7.8) 

t = - $ c l y  ' T C 3  y 2 - c y + c  4 7 
3 1  

Apparently these  formulas now o f f e r  7 degrees of freedom per  c e l l ,  But 

t o  e i t h e r  s i d e  of a r i b ,  t h e  s t r e s s f l o w s  ax, which a r e  t h e r e  q u a d r a t i c  

func t ions  of  y, must be t h e  same. This means t h a t  t h ree  c o e f f i c i e n t s  f o r  

t he  n-th c e l l  depend on t h e  c o e f f i c i e n t s  for t he  1-n th. I n  a d d i t i o n  sx 
muet vanish a t  t he  f r e e  end. This l eaves  only  4 degrees of freedom per  

c e l l .  
The computation fol lows q u i t e  t he  same l i n e s  as in  s e c t i o n s  7.4.1 and 

7.4.2. Matrices are given in t a b l e s  7.12...7.15, cu t  of which table 7.14 
g ives  the  matr ix  o f  i n f luence  c o e f f i c i e f l t s  and 7.15 t h e  s t r e s s e s .  For fur- 

t h e r  d i sauss ion  of  s t r e s s e s  s e e  a l e o  s e c t i o n  7.6.2. 
Inspec t ion  of t a b l e s  7.6, 7.11 and 7.15 a l r eady  l e a r n s  t h a t  i n t r o -  

duc t ion  of t he  p o s s i b i l i t y  for t h e  s t r e s s f lows  sx t o  v a r y  q u a d r a t i c a l l y  

i n  y -d i r ec t ion  does n o t  o f f e r  very  much improvement. A first impression is  
t h a t  t he  uss of  only t h e  first t h r e e  types of supplementary stress systems 

g ives  a s o l u t i o n  s u f f i c i e n t l y  accu ra t e  for p r a c t i c a l  purposes.  

Anslysis w i th  t h e  minimum p r i n c i p l e  f o r  t he  s t r a i n s .  

The a n a l y s i s  a p p l i e s  again t o  a swept back box of s e c t i o n  7.2. 

It is t he  a i m  t o  assume such a combination of types of supplementary 

s t r a i n  systems, t h a t  an accuracy can be expected of t h e  same order  as achiev- 

ed with the  minimum' p r i n c i p l e  f o r  t h e  s t r e s s e s  and 15 supplementary s t r e s s  

systems. It was d iscussed  t h a t  t h e  general  formulae for t he  s t r e s s f l o w s  i n  

the sk in  i n  t h a t  case were (7.7), i n  which 5 cons tan ts  occur though t h e  

ac%ual number of  degrees  of freedom f o r  t h e  s t r e s s e s  were only  3 pe r  c e l l .  

O f  cour8e the  formulas (7.7) were n o t  t he  r e s u l t  o f  t he  use o f  t h e  

3 typ3s of supplementary stress systems, bu t  i n  r e v e r s e  were the  s t a r t i n g  

poin t  i n  ccnnt ruc t ing  these  systems. Without any change i n  the  f inal  r e s u l t  

t hese  formulas could have been given a somewhat more gene ra l  shape, V i Z .  
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9 
1 2 

8 ~ c x y + c x + c y + c  x 1  2 3 

Y 7 s 3 cgxy + c x + cay + c 

5 '  - c 2 y - F c g x  - c x + c  t J - CIY 1 2  
8 

(7.9) 

Such an approach could be made by supposing that two stressflow com- 
ponents are arbitrary functions linear in x and linear in y. These two 
stressflows can only be s and s Thereupon the shape of the formula for 
the stressflow t follows from the equilibrium condition (3.17). 

X Y' 

Since the stressflowe s must be zero at the spar booms, it followa Y 
0 and again (7.7) remains. c7 a c8 = c9 = 

immediately that c6 P 

with the assumption that two strain components are arbitrary functions 
linear in x and linear in y. Next the shape of the formula for the third 
strain component follows from the compatibility condition (3.19). 

In constructing supplementary strain systems, one can likewise start 

A set of formulas to start with may be for example the formulas 

4 
c = c x y + c x + c y + c  

B - c x y + c x + c y + c  8 (7.10) 

12 

x 1  2 3 

Y 5  6 7 

r = c9x + cl0x + olly + c Y + c 

e = c x y + c 2 x + c y + c  
x 1  3 

5 6 7 

2 2 I 

13 * 

Another set is 

(7.11) 

Y = c x y + c x + c y + c 8  (7.12) 

4 

(7.13) 
E = - C x 2 + C x + C  1 y 2 
Y 2 5  9 10 + C r l Y  + c12 * 

The set of formulas (7.11) ... (7.13) eesms t o  have a minor advantage 
vary only l i n e a r l y  over the set (7.10). In the set (7.10) the strains E 

in x and y-direction. This means that if an infinite box beam with normal 
cr oblique ribs is loaded by a moment, the strain E must be the same 

linear function of y in all cells. Then the discrete character of the ribs 
is lost. 

Y 

Y 

The set of formulas (7.11) ... (7.13) does not show this defect and 
was chosen as starting point. 

Before constructing the supplementary strain eystems the number of 
such systems required to guarantee the freedom expressed by (7.11) ... 
(7.1)) will be established. 
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Again use is made of the fact that strains and displacements of the 
lower skin are  reversed in sign as compared to strains and displacements 
of the upper skin. 

Suppose the strains in a skin panel are those of (7.11) ...( 7.13) and 
those of the consecutive skin panel by (both panels have same x- and 
y axes) 

E '  = c( xy + 05, x + c' y + c@ 
X 1 3 4 . (7.14) 

where of course the coefficiente ci ... ci2 have, in general, other values 
than the value8 c 1...012 of (7.11) ... (7.13). 

Along the intermediate rib flange, with x coordinate xr, the displa- 
cement projections u and u of both panels must be the same. If for both 

I Y 
panels is put 

dE ux dY 
2 dy dr 

2 '  
- =-..-x 
dY 

du 
2 = E  
dy 9 ,  

the compatibility conditions at the rib flange are 

(7.17) 

E P E '  (7.20) Y Y 
cir 

c7 - c9 51 c i  - "j, 
1 2 2 2 
2 5 r  9 10 11 

(7.21) 

clx + o f x  + CI y + tip+ ci2 . 12' T 5 r 9 r 10 - c x  + c x r + c  y 2 + c  y + c  

(7.22) 
Since (7.22) must hold f o r  any value of y 

2 c'x + c'x + c @  1 
9.r 12 

- c x 2 + c x  + c  
2 5 r  9 r  1 2 = 1  5 r  (7.23) 
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Though the strains (7.11) ... (7.13) for a panel have, by means of their 
12 values c1...c12, 12 degrees of freedom, the actual number of degrees of 
freedom for each panel in the structure is only 8, because of the four rela- 9 

tions (7.211, (7.231, (7.241, (7.251. 
The spar and rib webe a r e  still considered to be of a material that is 

only able to carry ehear-atresses and thus the strain energy of such ele- 
ments is a function of the shear strain only and not of the normal strains 
which may be present. It is possible to assume a system of a non-constant 
shear strain (of zero mean value) to one spar o r  rib web. As such a 
system, superimposed on a constant shear strain, always augments the po- 
tential energy, it needs not to be taken into account. So in the soh- .  
tion, the shear strains and shear stresses will be constant within a 
bay, and so it is sure that the equilibrium 'conditions within an only 
shear carrying bay will not be violated in the approximate solution. 

. .  

Though there are three webs per cell (two spar webs and one rib web), 
there are not 3 degrees of freedom fo r  the constant shear strains of these 
webs. If the 
of a rib web cannot be varied without imposing shear strains in the spar 

webs of the two adjoining cells. Reversely, again leaving the skin and 
booms unstrained, one cannot apply unequal shear strains to the spar nebs, 

without affecting the shear of en adjoining rib and of the spar webs of 
the cell at the other side of this rib. Equal shear of the two spar webs 
is, however, compatible with absence of shear in the ribs and of spar 

web shear in other cells. Therefore the degrees of freedom for shear of 
the three webs comprises one system in which the rib is affected and one 
'with equal shear in the two spars. So the webs add per cell two degrees 
of freedom:to those of the skin and a number of 8 + 2 = 10 supplementary 
strain systems per cell must be taken. The total number of unknowns, 50, 
is remarkably large, compared with the. 15 unlmowns, which were required 
if f o r  the stresses 'a similar: freedom of distribution is supposed. 

skin an& spar booms are kept unstrained, the shear strain 

. 

:,, 

From (7.24) and (7.25) ?allow that the coefficients ole, as well a8 
the coefficients ell, far all cells are equal to each other. 

panel and thus a13 cl0 and cll are zero and need not further to be taken 
into account in constructing the suppl&mentary strain systems. 

The 10 supplementary strain systems are developed along the follow- 

First of all systems are established which occur only in on'e cell 

= 0 for the first .skin 9 1  Since at the clamped root E = 0 and cl0 = 
Y 

ing systematic lines. 
9 

and leave the two rib planes which bound the cell undeformed and undis- 
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placed. Suoh systems a r e  type 1, 2,  3, 4. The b a s i c  formulas for t h e  s t ra ins  
i n  the upper ekin a re r  

3 f o r  type 1, f i g .  7.9, 10 e x  = x - 6 

3 
type 2,  f i g .  7.10, 10 Y 

3 
t n e  3 ,  f i g .  7.11, 10 ex = y(~-6)/8.4852 

3 type 4, f ig.  7.12, 10 Y = y(x-6)/4.2426 . 

x - 6 
(7.26) 

The compat ib i l i ty  equation (2.15), the  requirement t h a t  t h e  sparwebs 

a t  upper and lower s i d e  must fo l low the  displacements o f  the  s k i n  and the  

f a c t  t h a t  t he  r i b  webs a t  t he  bounds of the  o e l l  may not d i s p l a c e  require 
for some of t he  types s t r a i n s  i n  the  spar webs and some f u r t h e r  s t r a i n s  i n  
the  sk in ,  which obey l i k e  those of (7.26) the  genera l  shape of (7.11) ... 
(7.13). 

Subsequently supplementary s t r a i n  syetems a r e  e s t ab l i shed  which also 
oucur only i n  one c e l l ,  but where the  r i b  plana a t  the  right hand side 
t r a n s l a t e s  o r  r o t a t e s  wi th  r e spec t  t o  the  o the r  r i b  plane which is no t  dfs- 
placed (both r i b  planes remaining undeformed). The ou te r  p a r t  o f  t h e  box 

beam then a l s o  t r a n s l a t e s  and r o t a t e s  a s  a rigid body. Suoh types  a r e  

type 5,6 and 7. These r i b  displacements o r  r o t a t i o n s  were: 

for type 5 ,  f i g .  7.13, t r a n s l a t i o n  in z-direct ion 

type 6, fig. 7.14, r o t a t i o n  about y -ax i s  

type 7, f i g .  7.15, r o t a t i o n  about x-axis 
and t h e  s t ra ins  belonging t o  these  types obey t h e  shape of (7.11). .. 
(7  -13 1. 

t he  formulas (7.11). ..(7.13) a r e  now exhausted. The types 8, 9 and 10 

o r i g i n a t e  from t h r e e  kinds of r i b  deformation which must, o f  course, 

d i s t o r t  two c e l l s .  

The p o s s i b i l i t i e s  t o  aons t ruc t  s t r a i n s  i n  one c e l l  only, which obey 

These r i b  deformations are:  

for type 8, fig.7.16, warping out  of t he  plane 

type  9,  fig. 7.17, uniform shear  

type 10, fig. 7.18, uniform bending , 
and the  s t r a i n s  belonging to  these  types obey the,shape of (7.11) ... 
(7.13). 

Prom the  shape of t he  formulas (7.26),  and from t h e  way i n  which the  

systems type 5...type 10 have been constructed,  i t  is c l e a r  t h a t  t h e  

l i n e a r  undependenoy of t he  10 types is f u l l y  guaranteed. 



56 

Each of the types ocours 5 times in the structure. Fig. 7.19 locates 

the position of each system. 
Of course, any other set, mutually independent, combinations of the 

systems used, may serve the purpose. It is, however, desirable that in the 
first place the strains of each system affect only a small part of the 
structure. Less important, but still desirable is that also the displace- 

Table 7.20 gives stresses as calculated from the superposition of the 

menta, belcnging to each system are non-zero only in a small part of the 
structure. Of course the displacements are non-zero where the strains are  

so, but they may be non-zero, in regions where the strains are zero. The 
set of 10 systems used, fits the afore mentioned requirements reasonably 
well, but of courss there may be mors or less different combinations 
which equally or still somewhat better do. 

The vertical displacements in the stations 1, 2...10 (fig.7.1) 
caused by the supplementary strain systems n r .  1, 2...50 are  tabulated 
in table 7.16. 

The matrix of the "coefficients of the unknowns"h from (6.29) is 
ij 

Ten loading cas88 are considered: Vertioal load of 1 lb in station 1 
given in table 7.17. 

in station 2, eta. lo basic strain systems need to be used since the 
prescribed displacements at the root are zeros so in (6.29)AOi P 0 and 
only m(m-l,..lO) sets of(km.uidf have to be computed. Since k D -1 in one 
station only and vanishes in the other stations the values given in 
table 7.16 represent the integrals ,f%Tdf for the 10 loading cases 
m-1, ... 10. In order to solve the 50 equations use was made of the fact 
that the Coefficients of the unhoamsh 
. .35 m e  concerned, form a matrix which can be divided into 7 x 7 unit 
sub-matrices, each multiplied with a scalar number, or with zero. The 
inversion of this 35 x 35 matrix can easily be done by inverting the 
7 I 7 matrix of the scalar multipliers of the afore mentioned unit sub- 
matrices. Moreover, the inversion of this 7 x 7 matrix simplifies into 

++ 

k 

as far  as p = 1...35, q = 1.. 
P9 

the inversion of a 3 x 3 matrix knd a 4 . x  4 matrix. By some further opera- 
tions, the number of equations was reduced to 15. The solutions 
Y.(i = l..5O) for the m loading cases ("1 ... 10) are'given in table 7.18. 
From these solutions the matrix Cm of influence coefficients for the 
displacements in table 7.19 is easily computed by means of 

1 

'mn 'mihiin 
where E is the matrix of table 7.16, if the index m is changed to n. 
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0 strain systems. In this oase, the values of the stresses in the spar 

booms do not refer to the stations 3...12, but to points just outside these 
stations. 

Table 7.21 gives in addition the calculated stresses just inside the 
stations 1...10. The faot that the caloulated stresses to either side of the 
stations 1...10 are not equal is not astonishing8 the solution is not exaot 
and the stresses which follow from the minimum principle for the strains 
do in general not satisfy equilibrium conditions completely. 

7.6 Mscussion of results. 

7.6.1 Msplaoements. Determination of upper and lower boundaries. 
Table 7.22 repeats in 4 ooluums the main diagonal elements of the ma- 

trices of influence coeffioienta from table 7.5, 7.10, 7.14 (obtained with 
the minimum principle for the stresses with respectively 10, 15 and 20 un- 
knowns) and 7.19 (obtained with the minimum prinoiple for the strains with 
50 unknoan~). 

If at the stations 3...10 (fig.7.1) the vertical forces K1...KIO are 
applied, it follows from (6.9) since um = CmKn that the complementary 
energy of the struoture is 

(7.27 1 * 1  V = - C K K (n,m P 1...10) 2 m n m n  

and the potential energy follows from (6.30) 

(7.28) 1 
2 m n m n  v = - - c K K (n,m = I...~o) . 

If Cm is the (unknown) exaot matrix of influence coefficients, then 
I . 

(Cm-C,,)KmKn is a positive definite quadratio form if Cm is one of the 
matrices established with the minimum principle for the stresses since 
V > V  and (C,-Cm)KmKn is a negative definite quadratio form if Cn, is 

the matrix determined from the minimum principle for the strains, sinoe 
V<?. Also (C&-C;;m)KmKn is a positive definite quadratio form if Ch 
and Clh, a r e  both determined with the minimum principle for the stresses, 
C' 
umed for C&, are available among those used f o r  Ck. 

of numbers Cm, decmasing in value and the (unknown) exact values E,,,,,, 
lie betweon those of the third and fourth oolumn. Also for the other 
elements of the exact matrix of influence coeffioients upper and lower 
bounds can easily be computed. As to obtain these bounds for an element 

- - 

with a lower number of unknowns than C&, provided the stress systems 

In accordance with these statements the rows of table 7.22 consist 

mn 

C. the 2 x . 2  submatrix 
1j' 



is extracted from the tables 7.14 and 7.19 and the procedure on the ma- 
trices P of section 6.3.1 is applied. 

ij 
In using 10, 15 and 20 supplementary stress systems respectively, there 

eeems to be a fairly rapid convergence of the values given in the tables 

7.5, 7.10 and 7.14. This convergence is not necessarily directed towards 
the exact solution, because the three types of supplementary stress systems 
(fig.7.3, 7.4 and 7.7) have one defect in common: that the axial strese- 
flow s 
systems with a ncn-eero stressflow 8 

in the composite plate is zero. In secticn 8.3 eupplementary stress Y 
will be introduced. Y 

7.6.2 Stresses and strains. 

station 3), fig.7.20 gives the normal stresses in tha upper spar booms. 
Fig. 7.21 gives the shear stresses in the spar and rib webs. Fig.7.22 
the stressflows sx and t for the composite plate (combination of skin and 
equivalent stringer plate). 

Figures 7.24, 7.25 and 7.26 are similar to figs. 7.20, 7.21 and 7.22 
respectively, but f o r  loading caae m = 4 (load of 1 lb in station 4). 

For loading case m = 3 (that means a vertical load of 1 lb in 

Aa to the curves obtained with the minimum principle for the stress- 
es with 10, 15  and 20 unknowns respectively it is seen from the figuree 
7.20 and 7.22 and 7.24 - 7.26 that there is again a fair convergence. 
Therefore, there seems to be little need to use the last 5 supplementary 
stress systems. It could be expected 
stressflows ex would mainly affect the stresses in the skin (fige.7.22 
and 7.26) and indeed a noticeable improvement has been obtained. However, 
it is unlikely that further improvement would be obtained by taking a 
more refined distribution-function for the stressflows sx in y-direction, 
thereby maintaining 8 0. 

that the addition of parabolic 

Y= 
If it had been supposed that the oblique skin fields could carry 

only shear stresses along their edges, the resulta f o r  the loading cases 
m 3 and m = 4 would have been such that in figures 7.20 and 7.21 the 
plots for the front spar were identical to the plots for the rear spar in 
the figures 7.24 and 7.25 respectively. It is seen that this supposition 
would have led to highly misleading results. 

The tables 7.23 and 7.24 give again results of stresses like tables 
7.6, 7.11, 7.15, 7.20 and 7.21. Eaoh of these two tables only refers to 
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one loading case, but gives results f o r  all the ways by which the compu- 
tations were made. 

In the case of table 7.23, vertical downwards directed loads of 1 lb 
at all stations a r e  present. The agreement between the different columns 
is satisfactcry. In the case of' table 7.24 vertical downwards directed 
loads of 1 lb are  placed at the stations of the rear spar, and upwards 
directed loads at the front spar. The absolute differences between the 
respective columns are generally not greater than those of table 7.23. 
The relative errors are somewhat greater. 

figures 7.23 and 7.27 give for the 2 loading cases the strain EX in 
the spar booms and in the skin immediately adjacent to the spar booma, 
which must be equal for the exact solutions. The calculations were per- 

formed with the minimum principle for the stresses with 20 unknowns. The 

solution is not exact and some inaompatibilitiea have to be expected. The 
strain in the skin (a I 0) follows f r o m  the stresaflors by Y 

or with ( 3 . 3 1 )  
sx/sin e + 2t ctn e 

h+ assin e 
(7.30) As E E X  = 

(for the meaning and the numerical values of e, h, % and as see 
section 7.2). 

It is Been that there a r e  large discontinuities in both figures at 
the station where the load is applied and in the rear spar at station 9. 

These discontinuities correspond to the disc6ntinuitiee of the term 

(7.31) 2t ctn e 
*s 

as sin e h +  

in ( 7 . 3 0 ) ,  since only t, and not sX, is discontinuous at the intersec- 
tions of the ribs and the skin. So at a rib the discontinuity is 

( 1 . 3 2 )  2(At)ctn e 
% 

h+ as sin e 

E A €  = 
X 

This discontinuity of t, for which already a very good CQnvergence 
is achieved after applying respectively 10, 1 5  and 20 unknowns (figs. 
7.22 and 7.26) and which would not be present in the exact solution is 
caused by the fact that the stress systems used do not allolv t to vary 

in x-direction within a skin field because 8 = 0. The discontinuity 
Y 
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can be diminished by allowing s 
vary in x-direction (whereas of course sY remains zerc at the spar boom, 
which has no bending stiffness). However, a complete removal of the dis- 
continuity of t along the spar boom cannot be obtained by such means. The 

reason is that the exact solution for the present schematized structure 
will have in general stress sinylarities in the corners (intersections 
of rib flanges with spar boom). See also the discussion in section 10. 

to have non-zero values by which t may 
Y 

In section 8.2.6 discontinuities in strains along rib flanges, 
which will prove to be still more severe, will be discussed. 

7.6.j Comparison with h!orley's work. 
h'orley, ref. 42, analyses a similar swept box, but his method is quite 

different. This method allows for a completely arbitrary distribution of 
the axial stressflows s+ in the composite plate along the ribplanes and 
supposes that the stressflow s is zero. Simultaneous differential equa- 
tions for the distributions of sx along the rib planes are formed. The 
rib flanges, however, are considered to be infinitely stiff with respect 
to normal forces and later, in the numerical work, the rib webs are 
taken infinitely stiff with respect to shear stresses. 

Y 

1) 

For two sets of concentrated loads at the tip (which may be replaced 
by any other statically equivalent load in the tip rib plane, because the 
rib web in its plane is infinitely stiff), Korley performed calculations. 
The figures 7.28...7.31 are derived from figures of Xorley. The figures 
7.23 and 7.27 are to be compared with the figures 7.28 and 7.30. They show 
quite the same type of disorepancy between the strains E of the spar 
booms and the adjacent skin. The disoontinuities are  again large in the 

X 

1) It is also possible to obtain along the lines of the present method 
such a set of simultaneous linear differential equations for the 
distributions of sx along the rib-planes (s =O), even if the rib 
flanges and rib webs are allowed to have a finite stiffness. Supple- 
ment& stress systems of the type 7.3 and of a type similar to fig. 
7.4, 7.7 or 7.8 are to be used. However, in the 5 systems Oi' the 
latter type for the distribution of sx along the rib planes 5 diffe- 
rent unknown arbitrary functions f (y) ... f (y)  are to be taken. These 

1 5 
5 arbitrary functions replace the 5 quadratic functions, which in fact 
are used when the 20 supplementary stress systems were applied. The 
minimum principle for the stresses and the application of the prin- 
ciples of variational calculus then lead to the coupled differential 
equations for f (y) ... f5(y). 

Y 

1 



neighbourhood of the point of the application of the loads and at the inter- 
sections of the rib next to the root and the rear spar. 

Two sets of plots for the streseflows t between the ribs are repro- 
duced in the figs. 7.29 and 7.31. They correspond to the lower parts of the 
figs. 7.22 and 7.26. Most of the c w s s  in the figures 7.29 and 7.31 

could be fairly w e l l  approximated by 3rd degree curves, which in fact the 
c w e e  f o r  t in figs. 7.22 and 7.26 actually are. 

LIorley derives his eolution with much more trouble than attendant on 
the present method. Even, if the ribs had been suppoeed to be infinitely 
stiff in their plane, it is questionable whether Morley's solution would 
be muah better than that according to the present method. The inacouraoy 
resulting from the assumption that the ribs are  infinitely stiff in bend- 
ing and ehear presumably overrides the slight improvement resulting from 
Morley's more accurate treatment of the stresses in the skin. 

- 8 a Introduction. 
section 7 yield when applied to a box beam of infinite length, consist- 
ing of equal Cells with oblique ribs. The method8 are not particularly 
suitable for a box beam of infinite length (i.e. a box of m cells, where 
m-cdo), since they would lead to 2 m, 3 m, 4 m and 10 m equation8 with 
as many unlmoms if the supplementary stress systems of section 7.4.1, 
7.4.2 and 7.4 .3  or the supplementary strain systems of section 7.5 were 
used respectively. 

loading by a constant moment or a constant shear forbel) is practioathe. 
In the following numerical application the dimensions of the c e l l  of the 
swept box are equal t o  those of the 5 c e l l  swept box of Section 7 .  The 
moment vector is parallel to the xy-plane and the shear force is parallel 
to the axis of z. For these loads, like in section 7, the stresses in top 

1) With loading by a constant moment (or .constant shear force) is meant 

'Application to the infinitely long swept box. 

It is interesting to study the reaults which the methods of 

However, if the cells a r e  identical, the eolution f o r  the caee of 

.a loading case where in every crose section the moment (or  shear 
force) has the same value. The external load 13 thought to he 
applied at both ends which are supposed to be infinitely far 
f rom each other. 
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and bottom composite plate are of equal magnitude and opposite sign. 

valent of the elementary beam theory (the so called engineering theory), 
f o r  the oblique beam, which takes the form of simple differential equations 
for the relations between displacements, flexibilities and loads. Like the 
engineering theory for straight beams this theory for oblique beams might 

be used for the practical analysis of finite non-prismatio swept box beams 
where moment and shear load are functions of x, and the results 80 obtained 

would be slightly in e r r o r  only, if the dimensions and the loads would vary 
sufficiently slowly along the longitudinal axis. 

The main purpose of the present investigation is to obtain the egui- 

Results of this section (upper and lower bounds for the flsxibilitiss 
are established) will be compared with the results obtained by other authore 
from equivalents of the elementary beam theory for the oblique beam. 

Section 8.2 gives the calculations for constant moment and constant 
ehear force~acoording to the minimum principle f o r  the stresses. Three 

types of supplementary stress systems are used (see fig.7.3, 7.4 and 7.7). 
It proved to be possible to find general formulae, which are applicable 

to any combination of angle of sweep and structural dimeneione, provided 
of course that the cel la  are equal. 

In seotion 8.3 the oaloulations are repeated (only for a constant 
moment) after the introduction of two more types of supplementary stress 
systems: that of fig.7.8 and a new type. It rill appear that the addition 
of the type of fig.7.8 only, yields the 6ame results as section 8.2 (their 
ooefficients Xi becoming zero). 

force are performed according to the minimum principle for the strains. C o w  
parisons are  made with the numerical results of section 8.2 and 8.3. The 
seotione 8.1, 8.2, 8.3 and 8.4 have in common the exact solution for a con- 
etant moment M(M,, M = F, mC,),S having a particular value . 

In seotion 8.4 the oalculations for oonstent moment and constant shear 

c 

Y 
In section 8.5 the obtained flexibilities are compared with those, ob- 

tained from other methods. 

8.2 Calculations according to the minimum principle for the stresses with - 
3 types of supplementary stress systems. 

The systems of supplementary stress systems used (figs.8.2, 8.3, 8.4) 
.. 8 2 1 The supplementary stress systems. 

are of the same type as those given in figs. 7 . 3 ,  7.4 and 7.7, however they 
a r e  generalized to arbitrary dimensions of the cell. The 3 types will be 
indicated by the suffices I, 2 or 3. The stress system applying to the cells 
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n and n+l obtains as a seoond suffix n. 
The symbol Zn relating to cells n and n+l (see f i g . 8 . 3 )  denotes the 

column matrix of the multiplication factors of the supplementary stress 
systems ocourring in these two cells I 

I 

SO the unknoms of the problem a r e  x P' 
p = ... 3.(nd), l.(n-l), 2.h1-11, 3.b-11, l.n, 2.n 9 

3.n, i,(n+l), 2.(n+l), 3.(n+l), l.(n+2), .........-. . (8.2) 

If no non-zero displacements are  prescribed, the equations (6.6) 
take the form 

'where p and q have the values of (8.2). 
Furthermore, section 6.1.1 gives 

i.e. the work done by the stresses of the supplementary stress system 
number p through the (incompatible) strains of the supplementary streee 
aystem number q, and . 
i.e. the work done by the basic stress system (a system satisfying the 
external load and internal equilibrium conditions but not the oompati- 
bility conditions) through the strains of the supplementary stress 
system number q. 

It is obvious from fig.8.1 that for the infinite box beam with 
equal cella only a limited number of values> have to be calculated, 

because the supplementary stress systems in the cells pertaining to Zn 
do not interfere with the supplementary stress systems pertaining to 

P9 

and Zn+3. The numerical values of are given in table 8.1 and 
'n-3 PP 
taken together in square matrices D, C, B, C' and D'. (In general 
matrix K t  i s  the transposed of matrix M). They refer to an infinite 
box beam with cell dimensions corresponding to those in figa.7.l and 

7.2. Therefore they could be selected from the tables 7.1, 7.7 and 

7.12. 
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- 8.2.2 Constant moment (M~,o,o). 
8.2.2.1 Solution of the unknowns. 

The moment has projections Nx, M -0,  M =O and thus has its vector 
parallel to the x,y plane and normal to the y-axis (see fig.4.2). This 
vector is the load upon the cross section, which forms the right side 
of a part of the box beam. 

Y 2 

The basic stress system occurring in each cell is given in fig.8.5. 
The values 'x 
a column matrix E 

from (8.5) are equal for all cells. They are combined in 
oq 

6526 0 -3 84 6 

F = lov6 0 7 509 0 

The infinite set of simultaneous equations (8 .3)  now reduces to 

(8.10) 

DZn,2 + CZn-l + BZn + C'Zn+l + D'Zn+2 I -E . 

2 g a  c 
3EA - 3 

16 & 0 

0 16 ac(ql + % 
100 

3 0 2 40 a c 

F =  

(8.7) 

(8.11) 

Since any cell of the infinitely long beam must have the same 
P ... by which (8.7) takes the form 'n+l state of stress ... 2, = 

FZn 5 -E 
with 

F = D +  C + B + C' + D' . 
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with i3A and All as given in section 7.3. F is not affected by the stiff- 
nesses of the ribflanges and rib webs, though these stiffnesses are repre- 
sented in the elements of D, C, B, C' en D', 

The solution for 2, from (8.8) now takes the form 

x1 .n 

= 
zn * '2 .n 

3 .n X 

0 

dbxA13 
16 bc sin O(ql+c/EA) 

0 

(8.12) 

8.2.2.2 Determination of stresses. 
To the stresses of the basic stress system, fig.8.5, only stresses 

proportional to those of the supplementary stress systems type 2, fig. 
8.3,  are to be added, because Xlan P X 

to (8.12). 
Stressflow in the top 'skin 

= 0. 3 .n 
The stresses of fig.8.3 are to be multiplied with XZsn according 

The results a r e  then 8s follower - 

C 
"",A13 e I -  

= 8 bo sin e(%,+ =) , 

rs = 0 
Y 

Mx 
bc sin e t " 8  

Shear stressflow in front spar web (y= -c) 

M* 
bc sin e t = ' B  

Shear stresaflow in rear spar web (y=c) 

X 
M 

bc sin 0 t'E 

Normal force in upper spar booms 

(8.33) 

R i b  flanges and rib webs remain unstressed. 

indeed, a moment M(Mx,O,O). The axial stressflows ex in the skins are 

It can easily be verified that the resultant of these stresses is, 
+ 
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= E .  (8.16) * 

i n  equi l ibr ium wi th  t h e  normal forces of t h a  spar booms. If t h e  l a t t e r  would 

have been absent  (A-0)  sX would vanish and the  s t r e s s e s  would be t a n g e n t i a l  

s t r e s s e s  t only. This suggests  that the  loading case (Mx,O,O) may be 

chasao te r i z sd  a8 " t o r s i o n a l  load". 

For a f u r t h e r  d i scuss ion  of the  r e s u l t s  r e fe rence  is made t o  s e c t i o n  

8.2.6 . 

3 .n 

'n '2.n 

8.2.j Constant moment (0,Y ,a). 
8.2.3.1 Solu t ion  of t h e  unknowns. 

p a r a l l e l  t o  the  x,y plane and normal t o  t he  x a x i s  (see fig.4.3). This 
vec to r  is t h e  load  upon the  oross s e c t i o n  which forms t h e  r i g h t  s i d e  of 
a p a r t  of t h e  box beam. The type of loading  could be cha rac t e r i zed  as a 
"bending load".  

Y 

The moment has p ro jec t ions  Ex a 0, My, ]Iz - 0 and thus  has i t s  vec tor  

The baa ic  stress system occurr ing  i n  each cell is given i n  fig.8.6. 

The c a l c u l a t i o n s  follow t he  l i n e s  of s e c t i o n  8.2.2. The matrix E becomes 

0 

-x 
= Bb(EAAll+c)sin e 

0 

Of oouree t h e  matrix F remains the  same and the  s o l u t i o n s  become 

. (8.17) 

8.2.3.2 Determination of  s t r e s s e s .  

To t h e  s t r e s s e s  of t he  b a s i c  stress syetem fig18.6 only  the s t r e s s e s  

of t h e  supplementary s t r e s s  systems, type 2, fig. 8.3, m u l t i p l i e d  by 

X 
\ 

accord ing  t o  (8.17) a re  t o  be added. 

The r e s u l t  i s  for t h e  upper sk in  
2 .n 

-A! 
a =  x 4b["&IAl1+c)sin Q) 

s = o  

t 3 0  
Y 

(8.18) 
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The normal forces in upper booms are 

- +(EMll+c) %1 
Spar webs, rib flanges and rib webs are unetreesed. , ,  

(8.19) 

8.2.q Mean complement- energy per unit of length of box beam under 
constant moment (M ,M ,0) and equations for displacements. 

X Y  
This energy a n  be expressed in the form 

(8.20) 

If the loading case (Mx,O,O) is called case A and loading ca8e 
( O , $ , O )  case B, the expression (6.15) gives the complementary energy 
for eimultaneous application of the tmo loading oases, 

(8.21) 

R d v +  *- V *  + Vg* +/8Ao.Bmdv + XAihBoi P VA * + V + SAo. Bo 
‘A+B A 

+ ‘Bi’AOi ’ 
% where Vi and VB are the complementary energies for the two loading oases 

separately. Thus accordinglf (6.10) 

* l h  + L x  >\ 
’A ADO 2 Ai AOi 

* 1  

If the expressions (8.21) and (8.22) a r e  applied t o  the energy of 
one cell only, and aubsequently to the mean value of the energy per unit 
of length (along the x axis), it follows that in (8.20) the coefficients 
ss,&12 = &21,$2 have the values from 

$IM: = P A 0 0  + ’1 ’An] (8.23) 

wherehAOO =/sAo. RAOdv for one cell, and EA and Zh are E and Z from 
(8.6) and (8.12) respectively, 

wherehBOO =km. R Bo dv for one cell and EB and Zh from (8.16) and 
(8.17) respectively, 
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where the integral proves to be zero. 

The result for the coeffioients Qij is 

13 
8b sin 0 ( U l l + o )  

-A 

912 - 2 2 

822" 2 2 
All 

4b sin e ( u l l + o )  

(8.27) 

(8.28) 

where hs is the thickness of the spar web, A the cross sectional area of 
the spar bocm and the coefficients A. a r e  defined by (3.31). With the 
numerioal values of (7.5), which are based on cell dimensions given in 
figs. 7.1 and 7.2, the numerical values for the coefficients Q become 

lj 

ij 

%1 = 0.015474 X 

q2 0 -0.005244 X (8 .29 )  

0.007417 X 10 -6 
Q22 

Though, by lack of compatibility, displacements cannot be oomputed 
in a unique way from the approximate solution a reliable way was dis- 
cussed in section 6.1.3 which is based on the expression for the oomplemen- 
tary energy of two loading cases. 

One of the ribs will be supposed to be not rotated nor translated. The 

rotation and translation of another rib plane n aells to the right hand 
side of  this fixed rib will be computed. Though both ribplanas actually may 

show dietortion in and warping from their plane, the notion "rotation and 
translation of one rib plane with respect to another rib plane" does not 
raise any difficulty if the two rib planes are situated at large distance 
from each other. The rotation and translation in question then become 
large and rib distortion and warping of rib planes have negligible effect 
on the result. * 

Suppose the box beam is loaded by a moment M(Mx,My,O). This is now 
the load system A of  section 6.1.3 for which the unknovms (the partici- 
pation factors of the supplementary stress systems) have already been 
computed. In order to compute the rotation component ~p, of a "right"- 
rib-plane situated n ce l l s  from the ncn rotated "left" rib-plane, an 

auxiliary load system B consisting of  a constant moment M(l,O,O) is taken 
* 
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Then ' px  is equal to the right hand side of (6.26), where the stresses per- 
taining to system €3 have to satisfy only the equilibrium conditions and as 
such the system of fig.8.5 with Mx = 1 can be taken. 

It is now easily found that the rotation becomes 

(8.30) 

If it is imagined that this rotation 'px occurs due to a constant cur- 
' vature dqx/br this CUNatWe is 

, 

In order to obtain an expression for the rotation component an ami- 
liary system B corresponding to fig.8.6 (M -1) yields 

Y 
Y 

dq 2 = Q12Mx + %2"y * (8 .32 

The relations (8.31) and (8.32) are confirmed by noting that the 
mean oomplementary energy per unit of length is 

( 8 . 3 3 )  

and again (8.20) is obtained. 

tions" qx and 'py. Then the relations (8.31) and ( 8 . 3 2 )  are obtained by 
equating (8 .33)  and (8.20). 

In reverse ( 8 . 3 3 )  could have been used to define "specific rota- 

Also the vertical deflection w of a rib plane at the distance x=na 
from a non rotated and non translated rib plane w i l l  be determined. The 

auxiliary system B la a load system where the rib n is loaded by two 
downward directed forces 1/2 at its ends, whereas this load is carried 
at the rib 0 by two upwards directed forces 1/2 and an appropriate 
moment. 

The result is 

1 2 2  w = - n a (\2Mx + %2My)sin 9 . 
If it is imagined that the deflection w follows from a constant cur- 

vature of the elastic line, which in undeflected state, is situated along 
the x axis, this curvature is 

2 7 d w  = -(S2Mx + &22Uy)sin e 
dx \ (8.34) 
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and from (8.32) 
2 drp - 3 sin e . d w  
2 dx ax - =  

Integration yields 
dw - = -py sin 0 ax 

since the integration constant is zero 

the two spar webs is zero. 
3oause I mean E 3ar angle of 

8.2.5 Constant shear force ( O , O , K Z ) .  

8.2.5.1 Solution of the unknowns. 
--c 

Suppose the box beam (fig.8.1) carries a constant shear force K with 
components Kx = 0, Ky = 0, K acting upon the .cross section which forms 
the right side of a part of the box beam. The shear force Kz is acoom- 
panied by a linearly varying moment (0,M ,O) 

z 

Y 

M =xKZ sin 0 + constant . I 
This moment is taken zero in the point y = 0 of the rib 0 (fig.8.1). 

The basic stress system in the environment of rib n is given in fig.8.7. 
'he infinite set of equations (8.3) reduces to (compare (8 .7))  

DZnW2 + CZn-l + BZn + C'Zn+l + DlZn+2 - 4  (8 .37)  

where the meaning of D,C,B,C',D' and Zn is that of section 8.2.2.1. The 

Suppose Zn is of the form 

2 = n U + L ,  n 

w h r e  U and Y are unknown column matrices. 
Equation (8 .39)  substituted into (8 .37 )  yields 

p (n-2)U + L (n-1)U + L + B nU+L + I 1 1 1  
or  

nFV - CU + FL + nR = 0 

(8.38) 

(8.39) 

(8.40) 
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where F ie a8 defined in (8.11) and 

2 0 + C - C' - 20' . (8.41) G = I  I 
Numerical values of matrix G are computed from table 8.1 

C = 2X10-6 

0 0 1502 

-1502 0 -1770 

0 0 1770 

C = 

(8.42) 

0 8 ac Ajl 0 

G 2  - 3 c A31 -8 ac AJ1 0 

c2A 0 0 

(8.43) 

The assumption (8.39) gives the solution if it applies to any value of n, 
which requires that 

F U + R = O  

C U - F Z = O  
(8.44) 

From the two matrix equations with the unknonn column matrices U and E 
the solutione f o r  U and L are obtained. 

They are  

- 3 ~  A K 
31 2 

40b A ~ ~ ( E A A ~ ~ + c )  

(8.45) 

8.2.5.2 Determination o f  stresses. 
Herewith the participation factors of the supplementary stress 

systems are known and stresses can easily be computed. If the plane x=o 
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ooincides with rib 0, the stresses in the upper reinforced skin are . 

8 - 0  Y 

J 
The shear stressflows in the  spar webs are: 

e K 
t - z .  

The normal force in the upper front spar at y = -0 is 

and at the upper rear apax at y = +o 

(8.47) 

(8.48) 

8 . 2 . 5 4  Equations for displacements. 

ing relatione are established (by means of the same auiliary stress 
eys tens ) 

be i n  section 8.2.4 and along the lines of section 6.1.3 the follow- 

where 
Y = Kz x sin 8 . (8 .53)  

The differential equation for the line of vertical deflections of the 
9 

centres of the  r i b  planes w(x) becomes (compare (8.35)) 

Integration of (8.54) yields 
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where the integration conetant is the angle of shear of the spar webs 

at x = 0 when 9 = 0). Z 
K dw 

Y 

8 2 6 Discussion. .. 
8.2.6.1 Degree of compatibility. 

It is worth mentioning that in all foregoing solutions the stiffneaees 
of rib flanges and rib webs-drop out and that rib flanges and rib webe are 
unstressed. 

The solutions will therefore also hold for vanishing rigidity of the 
ribs, i.8. for a hollow box beam. In accordance with this fact, all 
stresees m e t  be continuous at the r ib  webs. For infinitely long hollow 
beams exact solutions for the loading cases "constant moment" o r  "con- 
stant shear force" a r e  available, and indeed, as will be shown in section 
8.2.6.2, the present approximate solutions for the box beam with oblique 
ribe are  identical to the exact solutions for the hollow box beam. 

It would have been useless to try more supplementary stress system 
which allow ex to be a more general function of y, as long as s 
eumed to be zero. The final solutions will not depend on the stiffnesses 
of rib flanges and rib webe and these elements remain,unatressed. However, 
the solution which made the complementary energy in the remainder of the 
etruoture a minimum was already obtained, because it was the exact eolu- 
tion for the hollow box beam. Therefore the additional systems could not 
offer  any improvement and their participation factors would become zero. 

is as- Y 

It may be proved that the stress system in the composite skin, the 
spar booms and the spar webs form a oompatible eptem. Only the unstress- 
ed rib8 with their webs and flanges do not fit to the deformed system of 
spare and skin, 

Two examples of the compatibility of the system of spars and skin 
will be given. 

acoording to (8.13) 
For the load(Mx,O,O)the stresses in the composite upper skin a r e  

E =  -'x43 
8 bc sin B(All+ & ) 

% t ' 8  bc sin e 
The strain ex of the skin along a spar boom is 



(8.56) 

or 

(8.57) ax!11%3 + M A 3  c n  
X 8 bo sin e(%,+ 8 bc sin 8 

From (8.15) follows the strain in the upper 8~ boom 

(8.58) f n  %3 
X 8b sin e(Enq,+c) 

and (8.57) and (8.58) prove to be identical. 

the front spar y = -a are frm (8.47) 
For the load (O,C,KE) the stresses in the upper reinforoed sk in  at 

- 2 4 1 ~  Kz+30 A lKZ 
B r a  

8b ~ l ( ~ l + o )  
X 

-2KSa 4 
t = =  . 

8b AII(EAAll+c) 

The strain Ex is with (8.56) 

The strain EX i n  the upper spar boom at y = -c is  

Substitution of (8.49) yields that this result is identical to (8.59). 
In a l l  oases the strains in the skin are only linear functions of 

the coordinates and thus compatible. 

8.2.6.2 Solution for oblique ooordinatee as derived from the exact eolutions 
for the hollow box beam. 

The faot that the best solution, obtainable with 8 "0, equals the Y 
exact solution for the hollow box beam of course discloses other more 
eimple waya to obtain this solution in terms of normal or oblique coor- 
dinates. The method of the preceeding sections has been used however, 
not only to study the results to which the methods of section1 7 lead 
when applied to an infinite box beam, but also  because it will be the 
basis of further refinements to be oonsidersd in seotion 8.3 and of 
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the investigations of section 9 .  
Some of the obtained formulas applying to loading by a constant 

moment will now be verified by the elementary bending theory and element- 
ary torsion theory (the Bredt theory). 

z axes being along the axes x and a of the oblique system, and the 7 axes 
perpendicular to the and axes (fig.8.1). A moment with components 
(= projections) px, E ,O is applied to the right end. 

- - -  
The righthanded orthogonal coordinate system be x, y, z, the xaand - 

Y 
The shear flow in the spars and the skin follows immediately from 

the Bredt-formula - 
X 

M 
t =  

8bc sin e 
If the box is loaded by moments (Bix,O,O) and ( O J  ,0) then zx 

and according to (8.13), (6.14) and (8.18) the same value for t as above 
is found. 

Mx Y 

The normal force in the upper spar booms is 

M A  
N = -  

2b(2A+2c h sin @ +2c As/as) 
* 

By substitution of E 
this value is equal to the sum of (8.15) and (8.19) if in the latter ex- 

pressions ( 3 . 3 1 )  is substituted. 

= M s i n  @ - Mx ctn 8 it can easily be shown that 
Y J '  

The stresses in the upper skin, 
._ 

X 
hi - -E h 

Y 
2b(ZA+2c h sin 9+20 As/as) 't=Ezzx 

- 
s =  

must be transformed to oblique coordinates to find s and t as given by 
the sum of (8.13) and (818). A more convenient way, however, is to oon- 
sider a cross section parallel to the yz-plane.(fig.8.1). Once N and t in 
the spars are known, the constant stressflows sx and t follow from equi- 
librium considerations. 

x 

With regard to the stiffnesses, the Bradt-torsion theory and the 
elementary bending theory yield 
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7 

J 

where 

(8.65) 

612 = $1 = O 

. . 1 4 hb hec sin e 
5=611= 1 6  Gbc sin 8 
1 -  

(8.62) 

( 8 . 6 3 )  

. (8.64) 1 1 -  1 = - =  - 
A EI Q22-  

4Eb c(- +h sin e + 7) 'b 
as 

The transformation formulae for monrent projections (4.3) and for 
rotation components (the aame as (3.6)) yield that the transformation 
formulae fo r  the coefficients Q,, for oblique coordinates, which must 

- - cos e + q2 
Q12 = Q21= 4 2 2  - 2 sin e sin e 

Substitution of (8.62). . . (8.64) yields 

1 - 
2 l +  

ctn 8 hb ha: sin e 
%l= m h o  sin e 2 %  A 

+ 
4 ~ b  c(- +h sin e + C) 

as 

-cos e 
612 = Q21 = 2 *S A 4Ebosin e(-+ h sin Ae -) C 

a.5 
2 

CBC e 
622 = 

2 AS A 4Eb c(- +h sin 0 + 7) 
aS 

Since according t o  (3.31) 
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1 
AS 41 = 

as 
E(- + h s i n  e )  

2 AS(l+3)sin e 2 +2(1+cos e+S s i n  
A33 kll ( ash 

i t  follows t h a t  the  equat ions (8.26) ...( 8.28) and the equat ions (8.66) 

are i d e n t i c a l .  

It is a l s o  i n t e r e s t i n g  t o  no te  the  r e l a t i o n  between the  formulae 

der ived by Hemp, r e f .  22 and the  present  formulae. Hempassumes cont i -  

nuously d i s t r i b u t e d  r i b  webs, which remain uns t ressed  i n  the  present  cases, 
and cont inuised r i b  flanges which con t r ibu te  t o  the  c o e f f i c i e n t s  A 

t h e  r e in fo rced  skin.  This method is of course app l i cab le  to  the  hollow 

box beam. Hemp a l s o  ob ta ins  the  formulae (8.33), (8 .32)  and (8.51) ... 
. . (8 .53)  but, as mentioned, t h e  elements A 

of 
i j  

have a somewhat d i f f e r e n t  i d  meaning. 1) 

8.2.5.3 An exact  so lu t ion .  

It w i l l  be c l e a r  from s e c t i o n  8.2.6.1, t h a t  for l oad ing  by a moment 

M(M M ,0) the  s o l u t i o n  i s  exact  if along the  r i b  f l anges  the  s t r a i n  E 

i n  t h e  s k i n  is zero. I n  t h a t  case the  r i b  planes f i t  t o  the  o the r  s t ruc -  

tural elements. I t  w i l l  bo i n t e r e s t i n g  t o  i n v e s t i g a t e  a f te rwards  whether 

t h e  minimum p r i n c i p l e  f o r  t h e  s t r a i n s  y i e l d s  t h e  same exact  s o l u t i o n .  

Y x’ 9 

The s t r a i n  E a long  the  f l a n g e s  then must be 
Y 

t = A  s + A t = O  . y 21 x 23 (8 .67 )  

Suppose Mx = L My. 
Summation of  t he  s t r e s s e s  s and t of (8.13) and (8.18) thereby 

X 

1) Hemp de f ines  h i s  moments i n  a somewhat d i f f e r e n t  way. Therefore some 
formulae w i l l  d i f f e r  a f a c t o r  s i n  8 .  In some cases  t h e r e  is a l s o  a re-  

v e r s a l  i n  sign, because Hemp d i r e c t s  the  z -ax is  upwards, and gives  

s t r e s s s a n d  s t r a i n s  i n  the  upper sk in .  Hempqe coordinate  system is ,  

as i n  t h i s  paper,  r i g h t  handed. 



78 

introducing (8.68) and substitution of these stresses into (8.67) yields 

or 
2A12C 

E'yA23 0 (8.69) + 8bc sin e 

For the cell dimensions of fig.7.1, 7.2 the value of I becomes 

I = 0.1792 . (8.71) 

- 8.3 

8 3 1 Introduction. 

Calculations according to the minimum principle for the stresses 
with 5 types of supplementary stress systems. 

It was Bean in section 7.6.3 that when the stressflow sx is allowed 
more degrees of freedom, very little improvement is  obtained as long as 
the stressflow a is assumed to be zero. Y 

In the calculations of section 8.2 it was already mentioned that the 
supplementary stress systems of type 4 (see fig.7.8) would have vanished 
when introduced without the addition of other new types. The same conclu- 
sion holds for a l l  other types with the stressflow 8 -0. Therefore, in- 

troduction of new types, such as type 5 fig.8.8 and type 6 fig.8.9, is 
necessary if further improvement is desired. In type 5 6 is symmetrical 
in y, in type 6 s is antisymmetrical in y. However, in the loading cases 
of constant moment (Mx,O,O) or (0,Y ,O), t ype  6 will vanish again because Y 
of symmetry conditions, but type 5 fig.8.8 and now also type 4 fig.7.8 
will Fticipate. Of course, further extensions with types similar to 
figs. 8.8 and 8.9 a r e  possible. Much extension along this line does not 
seem practical because there w i l l  remain stress singulrrities in the cor- 
ners of the parallelogram shaped plate fields. See also tha discussion at 
section 10. 

Y 

Y 
Y 

In this part of the investigation it is no longer possible to per- 
form the analysis partly in terms of arbitrary c e l l  dimensions, but 
everywhere numerical dimensions (figs.7.l and 7.2) have to be taken. Of 
course the calculations follow 
The internal load systems a r e  type 1 (fig.7.3), 2 (fig.7.4), 3 (fig. 

precisely the methods of section 8.2. 

7.71, 4 (fig.7.81, type 5 (fig.8.8). 
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- 8.3.2 

pare table 8.1). The matrices E, F and Zn of (8.6). (8.10) and (8.12) now 

Constant moment (Mx= 1,0,0). 
Numerical values of the coefficiente 'x are given in table 8.2 (00- w 

become 

Ea 

I 

+6526 0 

0 +7 509 

-3846 0 

0 0 

0 -3494 

Xl .n 

'2 .n 

' 3  .n 2 . .  n 

X 

X 

4 .n 

5 .n 

0 

20 .a546 

, o  

0 

-2 6.4088 

-3846 

0 

+11112 

10'6 

0 

0 

0 

0 +7645 

0 -594 f 

0 

-2394.75 

0 

+63 .a986 

+a21 .84 

0 

-3494 

0 

-594 

+21998 

(10-6 . 

(8.72) 

(8.73) . .  

(8.74) 

It is easy to determine the stresses and strains in the cells from the 
participation factors (8.74). From these stresses were computed strains 
E 

Both strains (multiplied with E) a r e  plotted in fig.8.10. It is seen 
that, though the mean values of these strains are about the same, there 
is an incompatibility. Such incompatibility was not present in the solu- 
tion which was obtained by using only the supplementary stress systems, 

in a spar boom and in the skin immediately adjacent to the spar boom. 
X 
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types 1 to 3 incl. (fig.7.3, 7.4, 7 . 7 ) .  But then the h c o m ~  
the rib flanges was very severe. 

tibility along 

With the use of only the first three types and the load Mx= 1, M -0 Y 
the strain E in the skin along a rib flange is ) Y  

E E = 0.3230 Y 

whilst the rib flange itself remains unatrained. 
Inoorporation of the 4th and 5th type of fe r s  already a great reduct-, 

ion of this incompatibility, which is shown in fig.8.11) it has almoet 
completely vanished near the middle of the rib flange. 

8.3.3 Constant moment (0,M =l,O). 
Y 

The matrices (8.16) and (8.17) become now 

E 3  

% 

0 

+22.6645 

0 

0 

-7.55482 

0 

-3086 3 0  

0 

- 11.4476 
-147.236 

x10-6 

x 10-6 . 

(8.75) 

Fig.8.12 gives the strain in a spar boom and in the skin immediately 
adjaoent to the spar boom. For this more important moment (0,1,0) the dis- 
crepancy is much smaller than in fig.8.10 for the moment (l,O,O). This 
discrepancy is aaused by the supplementary stress system type 5 .  Indeed 
its participation factor in (8.76) is much smaller than in (8.74). If the 
ordinates of fig.8.11 are multiplied by -0.1792 (i.e. the value 4 of 
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section 8.2.6.3.) it holds for the moment (0-N =l,O). 
I 

Y 

8.j.4 Mean complementary energy per unit of length. 
The numerical values for the coefficients Q which occur in (8.20) 

ij 
a r e  

Calaulations according t o  the theorem of minimal principle 
for the strains with 10 types of supplementary strain systems. 

u 
The supplementary strain systems. 

The environment of the ce l l  n of the box w i l l  be considered (fig. 
8.13). The systems of strain are the types 1 to 10 given in figs.7.9- 
7.18. The strain systems l.n...7.n are confined to cell n, the systems 
8.n, 9.n, 10.n apply to the 2 cells n and n+l. 

The symbol 2 (see fig.8.13) denotes the column matrix of the mul- n 
tiplioation faotors of the supplementary strain systems with index n 

z =  n 

1 .n 

'2 .n 

3 .n 

4 .n 

Y 

Y 

Y 

'5 .n 

' 6  .n 

Y 7 .n 

Ya .n 

9 .n 
Y 

y l c  .n 

(8.78) 
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P' So the unknowns in the problem are Y 

p ... i~.(n-i), 1.n , 2.n ...lo. n, ~.(n+l). , z.(n+l) ... (8.79) 

The basic strain system is taken zero evergwhere. 

If in the problem' no non-zero displacements (?io=O) are prescribed, 
the equation '( 6.29) becomes 

. 
k 

For the infinite box beam with equal cells again only a limited number of 

values)\ 
n+l do not overlap> 
square matrices o f X  

TI. The left hand side of the equations (8.80) for p - l.n, 2.n,. ..10n 
can then be written i n  matrix form 

have to be computed. Since the systems with indices n-1 and 
P4 

vanishes for Ip-ql>l. This reduces the number of 
to 3 ,  these matrices will be denoted by T, V and 

P4 
PQ 

The numerical values of a r e  given in tables 8.3, 8.4 and 8.5; they 
a r e  the elements of the matrices T, V and l". The numerical values of 

PP 

needed no computation since they could be selected from table 7.17. 
P9 

8.4.2 Constant moment (i?x,~,~). 
8.4.2.1 Solution of the unknowns. 

Like in section 8.2.2,la 
* 

constant moment X(Ux,0,O) is applied to the 
structure. 

I 
The moment M(Kx,O,O) to the right end is supposed to be applied ac- 

cording to fig.8.14. None o f  the supplementary strain systems gives any 
displacement at the left end of the swept-back box. 

The integral k.u df of (8.80) applied to the right end of the box, 

takes f o r  q = l.n, Z.n..,lO.n the values 
L--9 

i = 1...10 k 
(8.81) 
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The equations (S.80) for p = l.n, 2.n...10.1 are written in matrix 
notation 

T Zn-l + V Zn + T 'zn+l = K . (8 .82)  

These equations are satisfied for all values of n by 

= z = 2n+l = .... n .... - - 'n-1 
* 

Then Z is the solution of H Z = K, where P n 

H = T + V + T' 

whioh is given in table 8.6. 
The solution is 

1 .n 

2 .n 

3 .n 

4 .n 

5 .n 

Y 

Y 

Y 

Y 

Y 

'6 .n 

7 .n Y 

8 .n Y 

Y 
9 .n 

'10 .n 

'c' 
= 10% 

(8.83) 

(8.84) 

I t  can be proved that any other statically equivalent way of applying 
the end forces of fig.8.14, does not alter the solution for which 

= 2 = 2 = .... For instance when instead of the foroes P 
forces  are applied in the direction of y along the upper and lower skin 
the column matrix K is t he  same as given by (8.81). 

'n-1 n n+l ... * 

If the box beam would be finite Zn for cells near the end would not 
be constant and the manner in which M 0 0 would be applied to the end 
section would affect the participation factors for the cells near the 
ends. 

x' ,:I 

In practice, however, the solution for the parts at some distance 
from the ends, remain those of (8.84) (Principle of De St.Venant). The 
same consideration holds for sections 8.4.3 and 8.4.4. 



8.4.2.2 S t r e s s e s ,  s t r a i n s  and displacements,  

The normal force  i n  the  upper f r o n t  spar  boom a t  y = -0 i n  a point  

immediately t o  the r i g h t  of a r i b  plane i s  ( see  fig.7.9 ... 7.18) 

E = ~ o - - ) E A ( - ~ Y  1 .n + 6yj .n + 3ygen ) - 0.038128 Mx . (8.85) 

The normal f o r c e  i n  the  upper f r o n t  spa r  boom a t  y = -c i n  a point  imme- 

d i a t e l y  t o  t h e  l e f t  of a r i b  plane is 

(8.86) 

There is a f a i r l y  l a r g e  d i f f e rence  between these  two r e s u l t s  

- 
A N = -0.012780 Nx (8.87) 

on a mean value 

N = 0.044518 M x  . (8.88) 

The mean va lue  i s  i n  f a i r l y  good agreement w i t h  t he  numerical value 

of  (8.15) (according t o  the  minimum p r i n c i p l e  f o r  the  s t r e s s e s ) ,  which is 

N = 0.047122 Kx . (8.89) 

The shear  s t r e s s f low i n  the  f r o n t  spar  web a t  y = -c is 

t = 10-3Ch(4Y 1 .n - 4YjSn + 1CT 5 .n - l0Y7 .n + 8Y8.n) (8.90) 

o r  

which complies w i t h  (8.14). This value Can a l s o  be found from an elementary 

reasoning,  which proves the  co r rec tness  of the  ca l cu la t ions .  
, 

The s t r a i n  of a r i b  f lange  is 

= 0.023470 X ~ O - ~ K ~  . * 
The d e r i v a t i v e s  t o  x of t he  mean r o t a t i o n  components,are 

'(8.92) 
-3 

'10 .n 6 5 4 x 1 0  Y 
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The average of the second derivative to x of the vertical deflection 

8.4.3 Constant moment (O,K ,o ) .  
8.4.3.1 Solution of the unknowns. 

Y 

I 

A constant monent U ( O , K  ,0) is applied to the structure. The moment Y 
to the right end is supposed to be applied according to fig.8.15. 

The matrix K of (8 .77)  now becomes, 

The solution f o r  Zn is 

'1 .n 

Y2.n 

3 .n Y 

Y 4 .n 
Y 5 .n 
Y 6.n 

7 .n 
Y 

'6.n 
Y 9 .n 

'10 .n 

, 

( 8 . 9 7 )  
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8.4.3.2 S t r e s s e s ,  s t r a i n s  and displacements.  

Since (8.97) and (8.84) have zero elements a t  the corresponding 

p l aces  of t h e  matr ix  the  formulas of  s e c t i o n  8.4.2.2 a r e  v a l i d  as we l l  

i n  t h i s  case.  The normal f o r c e  i n  t he  upper f r o n t  spa r  boom a t  y= -c i n  
a po in t  immediately t o  the  r i g h t  of a r i b  plane is 

N = -0.065040 lf (8 .98)  Y 
The normal f o r c e  i n  t h e  upper f r o n t  spa r  boom at  y = -c i n  a poin t  imme- 

d i a t e l y  t o  t h e  l e f t  of a r i b  plane i s  

N = -0,067332 . (8.99) Y 

The d i f f e rence  i s  only 

A N = 0.002292 B ” ~  ( 8  .loo 1 
and the  mean va lue  is 

N = -0.066186 M ( 8  .lo11 Y 
which corresponds very wel l  w i t h  t he  numerical value of (8.19) 

N = -0.066640 Id . ( 8  . lo2 1 
Y 

The shear  s t r e s s  i n  the  spar  webs i s  zero.  

The s t r a i n  of a r i b  f l ange  i s  

E = -0.0042063 x I O m 6  Ei . (8.103) 
Y Y 

The d e r i v a t i v e s  t o  x of the  mean r o t a t i o n  components a r e  

and t h e  second d e r i v a t i v e  t o  x of the  v e r t i c a l  d e f l e c t i o n  i n  y = 0 

The requi red  r e c i p r o c i t y  between (e.94) and (8.104) checks completely. 
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8.4.4 Constant moment (Mx,M , O )  

8.4.4.1 F l e x i b i l i t i e s .  
Y 

The d i f f e r e n t i a l  equat ions of the swept box a r e  f o r  constant moment 

dq X 

= Q l P x  + %2YY 

dx = Q21'x + Q22Ey 

- 
dx 

dg 

2 
-F d w  = -(%1 Y .x + Q22Ky)sin e 
dx 

(8.107) 

(8.110) 

Q22 = 0.007366 X10-6 

The va lues  of (6.110) a r e  ind ica t ed  by Q. .". The values Q. of ( 8 . 7 7 )  
1 J  ij 

as der ived by us ing  5 types of supplementary s t r e s s  systems a r e  ind ica t ed  

by Qi j ' .  The p r i n c i p l e s  of s e c t i o n  6.3.1 a r e  now app l i ed  t o  de r ive  bounds 

f o r  Q. . ( read  Q. i n  s t e a d  of P.  .) .  
1 J  ij 1 J  

Prom (6.48) and (6.55) 0.013843 ~ 1 0 - ~ <  C$l< @.@14329y10-6, 

from (6.62) and (6.59) -0.00:034 x10-6< Q12< -0.004961x10-6, (8.111) 

from (6.49) and (6.56) 0 . 0 0 ~ 3 6 6 ~ 1 0 - ~ <  Q22< 0.007379% 19-6. 

These limits are f a i r l y  c lose  t o  each o ther .  

8.4.4.2 An exact  s o l u t i o n ,  

I t  appea r s  from (8.92) and (8.103) as could be expected wi th  the  

systems of s t r a i n  used t h a t  t h e  s t r a i n  of t h e  r i b  f l ange  is cons tan t .  This 

means t h a t  the  normal fo rce  i n  the r i b  f lange  is cons tan t ,  which is in- 

cons i s t en t  with the  f a c t  t h a t  no ex te rna l  load  is appl ied  t o  t h e  ends of 

t h e  r i b s .  If ,  however, E of t h e  flange would be ze ro ,  t h i s  v i o l a t i o n  of 

the condi t ions  of equi l ibr ium vanishes .  The r i b s  n o t  being a f f ec t ed  i n  

t h i s  case can be removed and t h e  so lu t ion  then obta ined  a p p l i e s  t o  the  

hollow box beam. The systems of s t r a i n  which have been used conta in  

enough degrees of freedom t o  descr ibe  the exact  s o l u t i o n  f o r  the  hollovr 

box beam) therefore  they a r e  s u f f i c i e n t  t o  d e s c r i b e  the exact  so lu t ion  

f o r  t h e  box with obl ique r i b s  i n  the case t h a t  E = 0 .  

Y 

Y 
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If i =O i t  fo l lows  from (8.92) and (8.103) t h a t  
Y 

0.023470 ~ 1 0 ’ ~  4 My - 0.0042063 K = 0 ’ 
Y 

5 = 0.1792 . (8.112) 

This r e s u l t  corresponds t o  t h a t  o f  s e c t i o n  8.2.6.3 f o r  t h e  given d i -  

mensions which w a s  of course t o  be expected.  

Some o t h e r  numerical  r e s u l t s  confirm t h a t  t he  s o l u t i o n  f o r  t h e  l o a d  

r; M M ,O is exact. Y’ Y 
The d i s c o n t i n u i t i e s  A N  of (8.87) and (8.100) d i sappea r ,  because 

-0.012780 M xC.1792 + C.002292 Ity s 0 . 
Y 

The s t r a i n  components a r e  c o n s t a n t ,  s o  t h e  supplementary s t r a i n  systems 

of t ypes  1, 2,  3 and 4 must have vanished .  This has a l r e a d y  been obta ined  

w i t h  r e s p e c t  t o  type 1 and 2 f o r  a r b i t r a r y  moment Itx, K ,C. Fur ther ,  

indeed  

0.1792 ( Y j S n  of (8.84)) + Y j S n  of (8.97) = 0 

Y 

0.1792 (Y4,., of (8.84)) + Y4.n of (8.97) = 0 . 
The formulae (8.107) and (8.108),  w i t h  < = 0.1792 and Q.. from 

12 
(8.110) o r  from (8.77)  y i e l d  t h e  same r e s u l t s ;  from (8.110) 

= 0 .013843~0 .1792  - 0.004955 = -0.002474 lo6  - dqx 
M d x  
Y 

6 dv 
Max lo 2 = - 0 . 0 0 4 9 5 ~ ~ 0 . 1 7 9 2  + 0.007366 = 0.006478 , 

Y 
and from (8.77) 

Constant s h e a r  f o r c e  (C,O,KZ) 

8.4.5.1 So lu t ion  of t h e  un!aov.ms. 

Like i n  s e c t i o n  8.2.5.1 t h e  box beam c a r r i e s  a cons t an t  s h e a r  f o r c e  X 
w i t h  components Kx = 0,  K 

forms t h e  r i g h t  s i d e  of a p a r t  of t h e  box beam. The shea r  f o r c e  KZ i s  

accompanied by a l i n e a r l y  va ry ing  moment (0,K , 0 )  Y 

= 0 ,  K a c t i n g  upon the  c r o s s  s e c t i o n  which Y Z ’  
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b: = x KZ s i n  e + oonstant . 
Y 

:' ( 8 .113 ) 

T h i s  moment i s  taken zero i n  the  point  y = 0 of t h e  r i b  0 which is now 

considered a s  t he  l e f t  end of t he  beam. The shear  force  and the  moment a r e  

supposed t o  be appl ied  a t  the r i g h t  end a s  given i n  f i g .  (8.16) and f i g .  

(8.15) r e spec t ive ly .  

Then i n  the  equat ions (8.82) 

K = n R + S  

where 

R =  

' 0  

0 

0' 

0 

0 

-0.144 Kz 
0 

0 

0 

0 

0 

0 

0 

0 

.12 Kz 

.072 K 
2 

0 

0 

0 

0 

Suppose the  genera l  s o l u t i o n  f o r  2, to be 

Z = n U + L  . (8.116) n 

The,,equation (8.82) becomes a f t e r  s u b s t i t u t i o n  of (8.114) and (8.116) 

(n-l)"U + n W  + (n+l)T'U + (T+'J+T')L = nR + S 
or w i t h  (8.83) 

nHU - (T-T ' )U + EL = nR + S . (8.117) 
If (8.117) s h a l l  hold for .any value o f ' n ,  t h e  two unknown matr ices  U 

and Y must s a t i s f y  

H U = R  (8.118) 
-(?-TV)U+RL = S , 

R and S a r e  given by (8.115), the ma t r ix  H is g i v e n  i n  t a b l e  8.6 and the  

matr ix  ( T - T t )  i n  t a b l e  8.7. 
The s o l u t i o n  f o r  U from HU = R i s  



-6 -U = 10 K z 

The matrix (T-T')U i s  

z (T-T')U = K 

99 

0 
0 

-0.382 
-0.696 

0 

+44 .I97 
+25.224 

+\l.339 
0 

+8.923 

+0.@098678 
-0 .@lo73 51 
+0.02F.2750 
-C .0162352 

0 

+0.0251910 
+@ .0111682 
-0.0 505 50 

0 

+0.@210138 
and t h e  so lu t ion  f o r  L from HL = S +(T-T')U becomes 

-6 L = 10 Kz 

-11 .a32 
-14.673 
-0.191 

+44.873 
+22.098 
+12.5 12  

-0.348 

0 

C 

0 

(8.120) 

(8.121) 

8.4.5.2 S t resses  and displacements. 

flow i n  both spar webs i s  KZ/4b = KZ/12, which was also found i n  (8.48). 

s t r e s s f l o w  i n  the f r o n t  spar  web of t h e  c e l l  n ,  i n  which the  supplementary 

s t r e s s  systems with p a r t i c i p a t i o n  f a c t o r s  Y .. .Y occur (fif?.8.13), 
i s  ( s e e  f i g .  7.9 ...7. 18) 

I t  f o l l o w s  a l r e a d y  from elementary cons idera t ion  t h a t  the  shear  s t r e s s -  

The present  c a l c u l a t i o n s  must a l s o  l ead  t o  t h i s  r e s u l t .  The shear  

1.n 7.n 



where Yl,n...Y8.n follow from (8.116). (8319) and (8.121) and Y8.(n,l)= 
= -31.339(n-1)10'6 KZ. 

I 

In the r e s u l t  n falls out and 

t = 30-jCh 404.602 X10-6K z . (8.123) 

With Ch = 0.205963 x 

(8 .I24 ) Z 
K 

t = 0.08333 KZ = 2 

which again confirms (see also (8.48)) the correctness of the calculations. 
d9 

and 2 , again 1168 is made of dv X For the differential quotients 

(8.93) and (8.94) 

The second derivative of w becomes with ( 8 . 9 5 )  
2 d w  
2 dr 
- 

= 10-3y6 .n 

After substitution of. Y and Ygnn. together with 7 .n 

1 
2 a(n- -) = r 

""3 
K x sin '8 = z 

the equations (8.125) y i e l d  

(8:126) 

(8.127 1. 

( 8.128 ) 

where Q12 and Q22 have again the values of (e.llG). 

and (8.54). By integration of (e.129) is obtained 
The fo rm of (8.127) ...( 8.129) is the same as that of (8.511, ( 8 . 5 2 )  

I 
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dw X * 2  
'Q22KZ 7- s i n  e + cons tan t  . -- = 

dx (8.130) 

The cons tan t  is ( i f  t h e  l e f t  end a t  a r i b  of the  box beam i s  no t  r o t a t e d )  

10-3(4Yl.n + 1OY 5 .n ) = 0 . 4 0 4 6 0 2 ~ 1 0 - ~ K ~  

which is equal t o  the  numerical va lue  of t he  i n t e g r a t i o n  constant  of 

(8.131) 

(8.55). 

E l a s t i c  energy e l l i p s e s  f o r  cons tan t  moments. 

8.5.1 Box beam wi th  obl ique  r i b s .  

The e l a s t i c  energy, s t o r e d  i n  one c e l l ,  i n  t he  case o f  a cons tan t  

moment M ,BE ,O i s  
X Y  

a(b: - dqX + E  3) 
x d x  Y dx 

3 , -  

or  

1 
E = - 2 a ( Q  11 b! x * + 2Ql2MXMy + Q22My2) . (8.133 1 

The e l l i p s e s  i n  fig.8.17 give t h e  end po in t s  of a l l  moment vec to r s  

s t a r t i n g  i n  0 which cause ' a  s t r a i n  energy of 12  lbs inch  i n  each c e l l .  

The p ro jec t ions  on t h e  obl ique axes Id and M of a vec to r  from 0 t o  
X Y 

a p o i n t  on an e l l i p s e  t h e r e f o r e  s a t i s f y  t h e  equat ion 

(8.134) 
- 2x12 = 2 = &IIMbx + 2Q12MxMy + Q22My 2 . 
a 

The e l l i p s e  1 is t h e  r e s u l t  of t he  minimum p r i n c i p l e  f o r  t he  s t r e s s -  

es w i t h  3 types of supplementary s t r e s s  systems as der ived  from t h e  nume- 

r i c a l  va lues  given i n  (8.29). Since t h e  use of t he  minimum p r i n c i p l e  f o r  

t h e  stresses es t ima tes  the  complementary energy t m l a r g e ,  and i n  t h i s  case  

a l s o  t h e  s t r a i n  energy, t h e  l eng th  of a vec to r  from 0 t o  a poin t  of a 
e l l i p s  i s  too  small. The e l l i p s e  1 is  a l s o  the exact s o l u t i o n  f o r  t h e  

hollow box beam. The p r i n c i p a l  axes of  t h i s  e l l i p s e  a r e  r e s p e c t i v e l y  per- 

pendicular  and p a r a l l e l  t o  the  d i r e c t i o n  of t he  beam (x-axis).  

E l l i p s e  2 fol lows by means of t h e  minimun p r i n c i p l e  f o r  the s t r e s s e s  

and 5 types of supplementary s t r e s s  systems i n  which case the  numerical 

va lues  a r e  given by (8.77). The over-estimation o f  t he  s t r a i n  energy is  

l e s s ,  and e l l i p s e  2 l i e s  ou t s ide  e l l i p s e  1. The unknown e l l i p s e  fo r  t h e  

exac t  s o l u t i o n  must of course l i e  ou t s ide  e l l i p s e  2.  

E l l i p s e  3 fo l lows  from Ql l ,  %2, Q22 according t o  (8.110) obtained 

wi th  t h e  minitnun. p r i n c i p l e  f o r  t he  s t r a i n s .  This theorem e s t i m a t e s ' t h e  

p o t e n t i a l  energy too la rge  and i n  t h i s  case t h e  s t r a i n  energy too  small. 
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Thus the  length  of a vec tor  from 0 t o  a . p o i n t  of  t h i s  e l l i p s e  i s  too  l a rge .  

I t  is  c e r t a i n  t h a t  t h e  unknown e x a c t . e l l i p s e  l i e s  between e l l i p s e s  2 and 3 ,  
t he re fo re  a f a i r  enclosure is reached. 

The th ree  e l l i p s e s  touch each o ther  i n  t h e  po in t s  where M = 0.1792 Vcy, 
X 

which is  the  load f o r  which the  so lu+ions  a r e  exact  ( s e e  sec t ion  8.2.6.3,, 

8.4.4.2). 
I t  i s  i n t e r e s t i n g  t o  cons t ruc t  t h e  e l l i p s e s  fol lowing from other  

methods. I t  was a l r eady  mentioned t h a t  Hemp cont inuises  r i b  f l anees  and 

1 

r i b  webs ( these  webs do not play a r o l e  f o r  t he  i n f i n i t e  beam loaded by 

a cons tan t  moment). Txact values  of Qll, %2, Q22 of (8.26) ...( 8.28) w i l l  

be t h e  r e s u l t  of t h i s  schematisation. However, the c o e f f i c i e n t s  A , .  refer 

now t o  an an i so t rop ic  p l a t e  f i e l d  which comprises the  cont inuized r i b  

f langes .  O f  such a sk in  the matr ices  a .  . and A .  . become 

I J  

1 3  1 J  

a .  . = 
1 3 .  

1.19036 0.67882 -0.73846 

(8.135) 
6 0.67882 1.11128 -C.73846 x ~ C  

-0.7 3 846 -0.73846 c.70493 

A . .  = 
1 J  

2.56291 0.71921 3.4382) 

0.71921 3.16308 4.06695 x (a.136) 

3.43823 4.06695 . 9 28074 

Q12 = Q21 = -0.004938 ~ 1 2 - ~  (8.137) 

Q22 = 0.007362 x ~ C - ~  

?he values  d i f f e r  only s l i g h t l y  from those of (8 . l lC) .  
I f  i n  the ca l cu la t ions  based on the  minimum p r i n c i p l e  f o r  t he  

s t r a i n s ,  the systems of type 3 and 4 ( f ig .7 .11 and 7.12) would have been 

omit ted,  t he  s t r a i n s  would hav'e been constant  i n  the s k i n ,  and there-  
Y 

f o r e  a l s o  i n  the r i b  f langes .  I f  t he  c ros s  sec t ion  of the r i b  f l anges  

would have been f o r  example only ha l f  t he  a c t u a l  value,  but t he  r i b  

d i s t ance  a l s o  h a l q t h e  a c t u a l  va lue ,  t he  so lu t ion  according t o  the  mini- 
1 

' mum p r i n c i p l e  of t he  s t r a i n s  would have been q u i t e  t he  same. I t  is  thus  

c l e a r  t h a t  a t  omission o f  systems 3 and 4 only a mean s t i f f n e s s  of  the 

ril f langes  per  c e l l  i s  taken i n t o  account and the so lu t ion  t h a t  would be 

obtained i s  the exact  so lu t ion  i f  t he  r i b  f langes a r e  a c t u a l l y  cont inuized.  
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It can thus  be concluded t h a t  the  e l l i p s e  f o r  Iiemp's s o l u t i o n  ( e l l i p s e  

4 )  is  the e l l i p s e  t h a t  would have been obtained i f  systems 3 and 4 would 
have been omit ted when axplying the minimum pr inc ip l e  f o r  the  s t r a i n s ;  

s o  the  e l l i p s e  f o r  Hemp's s o l u t i o n  must l i e  ou t s ide  e l l i p s e  3 .  

Wit t r ick ,  Thompson and Flugge ( r e f  .15. .21) assume continuously 

d i s t r i b u t e d  r i b s ,  i n f i n i t e l y  stiff i n  t h e i r  plane. I n  t h i s  ca se  the ma- 

t r i x  a , .  o f  t h e  sk in  becomes (compare (8.135) and (8.136)) 
13 

11 1.19036 0.67882 0.73846 . 

A .  . = 
1J 

11 -0.73 846 -0.73846 0.70493 

2.39938 0 2.51350 

0 0 0 

2.51350 C 4 .@5164 

wi th  r-oo 
The inverse  m a t r i x  i s  

6 
% 10 

x 

(8.138) 

(8.139) 

The corresponding e l l i p s e  5 i n  fig.8.17 l i e s  oonsiderably ou t s ide  

the  e l l i p s e s  2 and 3, which form bounds f o r  t h e  reg ion ,  i n  which t h e  

exact  e l l i p s e  must l i e .  

Prom the  a n a l y t i c a l  geometry o f  e l l i p s e s  f o l l o w s  t h a t  i n  a poin t  of  

I L K  + Q  X 2 = C  
the  e l l i p s e  

2 
Q l P x  + *Ql2 x y 22 y 

t h e  x and y components of a vec tor  normal t o  the  e l l i p s e  have the  pro- 

po r t ion  dCc/dMx t o  dC/dN . From ( e m ) ,  (8.31) and (0.32) follows 
Y 

- 
The  vec tor  - belonging t o  a c e r t a i n  moment I! i s  perpendicular  t o  t h a  

tangent  of t h e  e l l i p s e  at  the end point  of t h e  moment vec tor .  
dx 
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From (8.132) follows 

(8.141) 

Sox beam -uith normal r i b s .  

I n  fig.8.18 similar e l l i p s e s  1, 4 and 5 a r e  drewn as i n  fig.8.17 f o r  

t he  case t h a t  t he  r i b s  a r e  perpendicular  t o  t h e  spars .  The r i b  spac ing  w a s  

assumed t o  be 12 inches and the  cross-sect ional  a r e a  of the r i b  f l ange  
2 .  AR = 0.0765 inch 

webs, which a r e  only ab le  t o  ca r ry  shear  does not  e f f e c t  t he  r e s u l t .  
l i k e  i n  the  swept case.  Again the s t i f f n e s s  of t h e  r i b  

E l l i p s e  1 is  the  so lu t ion  f o r  t he  hollow box beam where the  presence 

of r i b  f l anges  i s  lgnoredi  t h e r e f o r e - t h i s  e l l i p s e  i s  i d e n t i c a l  t o  t h e  

e l l i p s e  1 of fig.8.17. E l l i p s e  4 i s  t h e  so lu t ion  according t o  Hemp where 

r i b s  a r e  continuouely d i s t r i b u t e d .  

Both e l l i p s e s  l i e  very c lose  toge ther  and the d i f f e rence  cannot be 

shown i n  the  f i g u r e .  

E l l i p s e  5 i s  the  ao lu t ion  f o r  continuously d i s t r i b u t e d  r i b s  which are 

i n f i n i t e l y  stiff i n  t h e i r  plane. Such r i b s  prevent l a te ra l  con t r ac t ion  of 

t he  sk in .  

Calculat ions a r e  not  given, they fol low from t h e  elementary bending 

and t o r s i o n  theory. Calculat ions f o r  e l l i p s e s  similar t o  2 and 1 of f i g .  

8.17 were not  made a t  a l l ,  but they must aga in  l i e  between t h e  e l l i p s e s  1 

and 4.  It appears t h a t  i n  fig.8.18 a l l  e l l i p s e s  l i e  much more c l o s e l y  

toge ther  than i n  fig.8.17. By comparison of  t h e  two f i g u r e s  i t  appears  

t h a t  t h e  assumption of cont inuized ( i n f i n i t e l y )  s t i f f  r i b s  is much more 

u n r e l i a b l e  f o r  t h e  obl ique box than f o r  t h e  s t ra ight  box, 

, ,  

- 8.6 Attempt t o  an elerrentary theory for e s t a b l i s h i n g  the de f l ec t ions  

of t h e  oblique box beam. 

The elementary theory f o r  s t r a i g h t  beams i s  used i n  p r a c t i c e  a l s o  

when the  assumptions upon which i t s  v a l i d i t y  i s  based a r e  not  s a t i s f i e d ,  

e.g. v a r i a b i l i t y  of t h e  load  along the  beam, non-prismatic s t r u c t u r e ,  

r e s t r a i n t  aga ins t  warping of t he  end sec t ions .  Under such condi t ions  the  

elementary beam theory usua l ly  y i e l d s  f a i r  approximations f o r  t h e  deform- 

a t i o n  of the  beam. The r e l a t i o n s  between de f l ec t ions  and loads  of t h i s  

elementary theory a r e  ( i n  orthogonal coord ina tes )  

, 



where lrYl is the torsional stiffness, lfi22 the bending stiffness &d 

Sd the shear stiffness. The sections = constant have rotations 'p with 
components and . 

* 

X Y 
The object of this paragraph is to establish for swept box beams a 

method analogeous to the elementary theory for straight beams, which like- 
wise can be applied in order to asses8 approximately the deformation of 
swept box beams. The relations (8.142) for the straight beam are to be 
replaced by those established in the paragraphs 8.3 and 8.4 for the 
oblique coordinate system x,y, 

dw 

In order to check the reliability of this approach the deflections 
following from these relations will be determined for the clamped box 
beam of finite length which was analysed in section 7 .  At a clamped 
section the boundary conditions are, as with the straight box beam 

m x = O  P y = O .  

A vertical unit Load is placed at x = p, y = q. The vertical displa- 
cement in a point x,y is to be determined. 

In  the sections x = constant for x < p  

K = q sin e 

b: = -(p-x)sin e . 
X 

Y 
(8.146) 

I 

Formula (e.14,) gives, after substitu'tion of (e.146) and integration 

(rPX(O)  = 0)  
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~'px = 412 sin.@ + x(-Q12p + Qllq) sin .9 . (8.147) 
. : .  . > ,  . 

j 
Formula (8.144) gives after substitution of (8.146) and integration, .. . 

" 

= 3 ~ ~ & 2 ~  sin 8 + x(-Q,~P + Q21q)sin e . 
(pY 

Formula (8.145) gives 

- dw = - 3 x2Q22sin 2 8 - x(-Q~~P + Q21q)sin 2 e + 1 
ax 

Since in x = 0, w = 0 integration of (8.149) yields 

which is the vertical deflection of the line y = 0. For points y j6 0 the 
vertical deflection (8.150) has to be augmented by the amount ' 

vXy sin e . 
So the total vertical deflection w of a point x,y(x<p) is 

For x>p, Kx = 0 and 
sidered to be unstressed. 

= 0 and the part of the box beam for x)p is,con- 
\ Y 

The rotation components, of the rib. plane at x = p and of the 'box beam 
outside of this plane are obtained by substituting x = p into (8.147) and 
(8.148) : , .  

(8: 152) 
1 2  

( q x l p  = (pq Qll - T P. Q12) sin e 

(8.153) 

The vertical deflection w of the rib plane at x = p is found by sub- 
stituting x = p into (8.150): 

(8.154) 

and so the vertical deflection w of the point x,y (x7p) becomes 

o r  

(8.155) 
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By means of (8.151) and (8.156) f o r  x<p and x>p r e s p e c t i v e l y  t h e  de- 

f l e c t i o n s  i n  the poin ts  1 ,2  ... 10 were ca l cu la t ed  f o r  v e r t i c a l  uni t  loads,  

placed i n  t h e  points  1,2....10 (fig.7.1).  For t h e  values  of Q . .  were taken 

those of (8.29). 
I J  

Like i n  t ab le  7.5, 7.10, 7.14 and 7.19, a matr ix  of in f luence  coef- 

f i c i e n t s  Cm i s  obtained ( t a t , l e  8 . 8 ) ,  which is  aga in  symmetrical. Compa- 

r i s o n  of  t a b l e  8.8 wi th  the  o the r  t a b l e s  shows t h a t  t h e  success  is only 

moderate. 

I n  o rde r  t o  make a f u r t h e r  comparison between displacements cal- . . 

cu la t ed  w i t h . t h i s  elementary theory f o r  t he  obl ique beam and ca l cu la t ed  

by a more accura te  theory , tab le  

wi th  two loading  cases  which may be e n t i t l e d  as "shear force" and 

"torsion"') r e s r e c t i v e l y ,  t he  loads  being appl ied  t o  t h e  s t a t i o n s  2 

and 3 .  

8.9 has been formed. This t a b l e  dea l s  

The f l e x i b i l i t i e s  8 . .  used i n  the  elementary theory a r e  those 

based on the  minimum p r i n c i p l e  f o r  t he  s t r e s s e s  (with 4 types of supple- 

mentary stress systems).  (These f l e x i b i l i t i e s  are those of t h e  hollow 

box beam, but  i n  oblique coordinates) .  It is  the re fo re  reasonable  t o  

compare the  displacements with those obtained by applying t h e  minimum 

p r i n c i p l e  f o r  t he  stresses and us ing  20 supplementary s t r e s s  system. 

1 J  

Applicat ion of  t h e  formula's  (8.143) ...( 8.156) f o r  an i n f i n i t e  beam 

means i n  f a c t  t h a t  of t he  i n f i n i t e l y  long  deformed beam, a c e r t a i n  

(obl ique)  r i b  plane (which i s  d i s t o r t e d  i n  and warped out  of i t s  o r i g i n a l  

p lane)  is brought by a r i g i d  body displacement in such a pos i t i on  t h a t  i t  

coincides  as good as poss ib le  wi th  the (non-deformed) r o o t  plane (see f o r  

shear  f o r c e  loading  fig.8.19). 
Addit ional  r o t a t i o n s  of f r o n t  and r e a r  spa r  which are necessary t o  

conpensate f o r  warping of t he  roo t  r i b  (fig.8.19) a r e  no t  included. Such 

r o t a t i o n s  would increase  t h e  v e r t i c a l  d e f l e c t i o n s  of. t he  f r o n t  ' spar  ( a t  

l e a s t  i n  ' the  r o o t  r eg ion )  and decrease the  d e f l e c t i o n s  of t h e  r e a r  spar .  

Such d i f f e rences  i n  de f l ec t ions  a r e  indeed observed i f  the  def lec t -  

1) In t h e  sense  of t h e .  theory of non swept beams. Thus n o t  in t he  sense 

of t he  d iscuss ion  a t  the  end of s ec t ion  8.2.2.2. 



ions calculated by means of the elementary theory are compared with the 
deflections following from the minimum principle for the stresses (loading 
case A ,  table 8 .9 ) .  

Similar considerations can be given for the torsional load. The ele- 
mentary theory neglects the prevention of warping at the root plane. The 
additional rotations of front and rear spar which are necessary to keep 
the root section plane are opposite in sign to those of case A .  In the 
root region these rotations will 
of the deflections. This explains the differences appearing in table 8.9 
for loading case B. I 

I 

I 

I 

I 

I 

induce a decrease of the absolute values 

The stresses following from the formulae of section 8.2 for the in- I 

I finitely long beam deviate very much from those of section 7 more in par- 
ticular at the Concentrated load and, which is more important, near the I 

clamped end at x = 0. I 

2 Stress analysis of a semi-infinits swept-back box for moment 

end loads. 
9.1 Introduction. 

The methods of section 7 have proved to predict adequately the 
stresses in the more concentrated structural elements, like spar booms 

and only shear-carrying spar and rib webs, as well as the stiffnesses 
to be used in aero-elastic problems. However, an important question re- 
mains with' respect to the analysis of a swept beam of finite length, 
viz. whether it is necessary to apply the supplementary stress systems 
to all the cells. This would give rise to a great number of linear simul- 
taneous equations. It is likely, however, that, in certain parts of a 
fairly long beam, some of o r  all the supplementary stress systems can 
be neglected o r  determined in a simplified way. For instance, it is cer- 
tain that for cells far from the root the partioipation factors of the 
various supplementary stress systems can be found from the analysis of 

the infinite beam (chapter 8.2. ..8.4) where only  a small number of si- 
multaneous equations have to be solved (equal to the number of system 
types used), provided that no concentrated loads occur in this region. 
In the region near the root additional loads are required to keep the 
root section undeformed (compare the discussion at fig.8.19). The resul- 
tant of these loads is zero and it is well knoam that stresses stemming 
from such a load are confined to the root region itself. 

So as to investigate this problem of root restrain, the box beam of 

section 8 is again analysed by means of the minimum principle for the 
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stresses with the 5 supplementary stress systems given in section 8.3, 
but n o r  one end is clamped whereas the external load, a moment (Xx,O,O) 
and a moment (0,M ,0) resp., is applied in x = w  . Y 

Starting from the root, the participation factor of every t ype  of 
supplementary stress system approaches the final value for the infinite 
beam as obtained in (8.74) and (8.76). This however will appear not to 
occur according to a simple law, but as 

where n is the cell number, counted from the root. The ooefficients 
cl.. .e9 are a set of constants depending on the load. The quantities 
?\,...A9 are the roots (some of them complex) with modulus (1 of a reci- 
procal algebraic equation of the 18th degree. 

9.2 Constant moment (~l;~=l,o,O). ~ 

Fig. 9.1 is a figure similar to fig. 8.1 and gives the numeration of 
the sets of supplementary stress systems which starts at the clamped root 
of the beam. The infinite set of simultaneous equations (8.7) now takes 
the form 

(9.1) 
** * B Z0 + C*%Z1 + E'Z2 = -E 

= -E (9.2) 3 C*Zo + BrZ, + C'Z2 + D ' Z  

n 2  3 9 DZn,2 + czn,l + BZn + CfZn+l + D'2n+2 = -E . (9.3) 

The matrices 2 .  are 
I 

zi = 

'2.i 

3.i 

4 .~i 

5.i 

X 

x 

X 

The matrices D,C,B,Cs and D' are already given in table 8.2 and 
the matrix E by (8.72). 

The equation (9.3) has the general form but the first two (9.1) 
and (9.2) are distorted by the structural irregularity caused by the 
presence of the clamped root. The matrices B**, C*', C *  are Given in 

table 9.1. A s  far as the first four types of supplementary stress 
systems are concerned, numerical values could be taken from tables 7.1, 
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0 +10.3193 

-13.0957 . -18.1900 

-E - + 1.3765 x loe6 -E*= 0 1 -  
- 1.7142 1.71469 

21.0759 26.4088 

7.7 and 7.12. * 
The matrix E is for the loading case (Xx=l,O,O) 

xlo-6. ( 9 . 5 )  

+15.048 0 

-6 0 
G2 = 

-2.665 + 2.668 

-1.715 
G1 = - 1.377 X 1 0  

. + 1.714 
40-6 . (9.11) 

+ 5.333 0 
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From equation (9.8) on = 0 satisfies of oourse the equations but 
in addition these homogeneous equations have a number of solutions, the 
characteristic functions 

\ = R A n  (9.12) 

where R is a column matrix and A is a (real o r  complex) number, the 
characteristic value. 

So as to obtain the characteristic values together with the correspond- 
ing column matrices R ,  (9.12) is substituted into (9 .10 )  

( D  + Ch+ E X 2  + C I A 3  + D 1 ’ X 4 ) R  = 0 . (9.13) 

The existence of a non-zero column matrix R requires the following 
determinant to be zero : 

The determinant (9.14) is o f  the 5th order, so having 5 :  = 120 terms 
each consisting of a product of five 5-term polynomials. An equation i n 1  
of the 20th degree can be expected 

19 2 a %20 + a19h + a18118 + ...+ a21 + a I +  a. = o . (9.15) 20 1 

This equation is reciprocal, i.e. a20 = a I a19 = ai, etc. because 
if ll is a root also l,hl is a root. This latter conclusion is obtained 
by transposing the determinant ( 9 . 1 4 )  which leaves its value unaltered 
(note that B is a symmetrical matrix). 

I D *  + C I A +  B A ~  + c13 + D ~ 4 1  = o 
o r  (9.16) 

\ D + C -  1 + B - + C ’ - + D ’ - - ) = O  1 1 1 . 
A ’A2 1 2  3 4  

Since [ D ’ [  = I D  1 = 0, the coefficients a20 and a. vanish. There re- 
mains an equation of the form 

;\I1 + a 1’’ + :lo 19 + a12 11 

a 
all% = o . (9.17) 
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The solution of the roots proceeds with the usual substitution for 
reciprocal equations 5 = A +  l/hl). Of course, half of the roots have 
moduliC1. They are given in table 9.2, in the sequence of decreasing modu- 
lus, together with their characteristic solutions, the column matrices R. 

A l l  columns R are  normalized in such a way that the fifth element is 1. A 

state of stress S in the box beam, consisting of supplementary stress 
systems with participation factors according to the solution of (9.12) 
(or a proper combination of two of these solutions in order to avoid oom- 
plex numbers f o r  the stresses) claims to ba compatible everywhere in the 
structure and should actually be so, if not a limited number of types of 
supplementary stress systems had been used. However, at the root of the 
beam they do not comply with the prescribed displacements and it is there- 
fore necessary t o  combine the systems S so a8 to satisfy this condition. 
It is seen from (9.12) that the 9 roots of 
for long beams as a participation factor zero,  since the stresses following 
from these solutions would increase exponentially with n. 

with modulus >1 must have 

It does not seem possible to attack a particular mechanical meaning 
to the column matrices R and the solution (9.12) following from them. This 
means that it seems impossible to predict which of the stress systems 

(9.12) will prevail when a clamped beam is loaded by a moment. 
In order to obtain the required combination of the remcining 9 

states of stress S, the 9 solutions (9.12) are substituted into (9.6) and 

ai The 9 resulting column matrices C* and C2 forming together. the 1 
matrices V1 and V2 respectively are given in tables 9.3 and 9.4. 

follow from the equations ( 9 . 6 )  and ( 9 . 7 )  r 
"he multiplication factors w1...w9 of the 9 states of stress S1...S 9 

X 

1 

2 

W 

W 

w5 
I) A substitution F; = A +  l/h already in (9.14) is of no use, because 

D f D f  and C f C'. 



The solution is 

1 

2 

W 

W 

w3 

w5 

"7 

w9 

4 

w6 

W 

-612.842 - 361.438 i 
-612.842 + 361.438 i 
+524.700 + 103.255 i 

+3 59.3 69 
+ 49.9688 

+524.700 - 103.255 i 

- 69.4195 
+ 4.3882 

- 3.7185 

'IOe6 = matrix I!! . (9.21) 

Then the solution s, satisfying all the equations (9.6), (9.7), 
(9.8) ... is (Ri andXi from table 9.2). 

(9.22) n n 
= wlRIA1 + w ~ R ~ ~ ~ ~  + ...+w R 9 9 9  ' 

C$ is a column matrix 

R =  

q1 .n 

q~ .n 

'3 .n 

'4 .n 

'5 .n 

. (9.23) 

where e . g .  q is the participation factor of the supplementary stress 
system type 3 (fig.7.7) in the n and (n+l)th cell from the root (aee 
fig.9.1), as far as root-pertwrbation stresses are concerned. The total 

3 .n 

participation factors 

5 =  

X 1 .n 

2 .n 

3 .n 

4 .n 

X 

X 

X 

x5 .n 

( 9  2 4 ' )  

are obtained by adding to the factors (9.23) the values (8.74) for the 
infinite beam under the same loading (Ex = 1, E 

- 
= 0 ,  A! = 0 ) .  Y e 

. Numerical values for (9.24) are given in table 9.5. Some stresses, 

following from the total participation factors (9.24) and. the basic 
stress system, fig. 8.5, have'been plotted in fig. 9.2. 
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It is remarkable that stresses stemming from systems Y R?: , which n =  

r a p i d l y  tend t o  zero (the systems for the small values of 'h) have generally 
small participation factors (oolumn matrix (9.21)), i .e. these stresses are 
already small in the first cell from the root. 

From table 9.5 it appears that from the 5th cell of the root onward 
the stresses are almost those of the infinite beam. The stresses in the 
spars are already from the 4th cell on practically those of the infinite 

beam (fig.9.2). 
The fact that in the root region the stresses in the front spar 

booms decrease and in the rear spar booms increase is confirmed by simple 
mechanical considerations like those given when discussing fig.8.19. 

E* 3 

Constant moment ( 0 ,  E = 1,0) Y 
, This section follows quite the same lines as section 9.2. 

0 

+11 A322 
0 x 10-6 . 
0 .  

- 7.5548 

+ 8.7131 
-10.8562 

-E = - 0.2466 ~ 1 0 ' ~  -E2= 1 
+ 0.3071 
+ 8.5123 

- 8.713 
- 0.476 
- 0.307 
- 0.957 

G =  + 0.247 x ~ O - ~  G*= 1 

(9.26) 

0 

-23 .I458 
0 

- 0.3072 
+ 7.5598 

0 

+ 0.481 

+ 0.307 
0 

0 x10-6 (9.27) 

1 
2 

W 

W 

w3 
4 

VJ = W, 

w6 

W 

.? 

w7 
w8 
~9 

(9.28) 

306361 + 277.497 i 

306.761 - 277.497 i 
-137.081 - 110.253 i 

-137.081 + 110.253 i 
+ 62.380 X d  . 
- 3.2666 
+ 36.1482 
- 2.9200 - 0.5138 



Final  r e s u l t s  a r e  given i n  t a b l e  9.6 and f ig .  9.3. with r e spec t  t o  

t he  s t r e s s e s  neap the  r o o t  t he  same remarks as a t  the  end of s ec t ion  9.2 

can be made., . .  

There does not  e x i s t  a l i n e a r  combination of t he  two column matr ices  

( 9 . 2 1 )  and ( 9 . 2 8 )  such t h a t  t h e  r e s u l t  i s  a zero column matrix.  So the re  i s  

no moment (I,? ,Ky,O) which would no t  cause per turba t ion  e t r e s s e s  a t  the 

r o o t .  Also t h e  moment (h;x,K = 5 l L i , O )  defined i n  sec t ion  E.2.6. j  w i l l  

cause per turba t ion  stresses near  t h e  root, which can be ca lcu la ted  only 

approximately, while t h e  soluti 'on f o r  c e l l s  far from the root  i s  exact .  

X 

Y 

- 10 Final  cons idera t ions .  

The present  i nves t iga t ions  have shown t h a t  t h e  methods used a r e  ade- 

quate  t o  analyse swept box s t r u c t u r e s .  O f  c o k s e  some f u r t h e r  adapta t ion  

may be des i r ed  i n  p r a c t i c a l  cases?  f o r  example i f  the  shape of t h e  sk in  

pane ls  i s  only  nea r ly  a parallelogram. 

It seems t h a t  t he  use of t he  minimum p r i n c i p l e  f o r  t he  s t r e s s e s  is t o  

' be prefer red  t o  the minimum p r i n c i p l e  f o r  t h e  s t r a i n s .  For a c e r t a i n  requi red  

accuracy the  minimum p r i n c i p l e  f o r  t he  s t r e s s e s  genera l ly  r e q u i r e s  less un- 

knowns t o  be solved.  However, t he  amount' of numerical 'work depends not only 

on t h e  number of unknowns. If the ca l cu la t ion  o f  t h e  c o e f f i c i e n t s  of t he  

equations is automatized the  number of s t r u c t u r a l  elements and the  number of 

t h e  p o s s i b i l i t i e s  f o r  t h e i r  s t a t e  of s t r e s s ,  r e spec t ive ly  s t a t e  of s t r a i n ,  

a t t r i b u t e d  t o  these elements i s  poss ib ly  t h e  most important f a c t o r .  Also t h e  

type of computer used may a f f e c t  t he  comparison. I t  be remembered t h a t  i n  

t h e  present  work both p r i n c i p l e s  a r e  used, s o  a s  t o  compare r e s u l t s  and t o  

enclose r e s u l t s  f o r  displacements between bounds. The l a t t e r  procedure may 

a l s o  have i t s  importance f o r  p r a c t i c a l  appl ica t ion . '  

methods w i l l  tend t o  t h e  exact  so lu t ion  i f  the number of unknowns is  ever- 

more increased. I t  w a s  s l r e a d y  mentioned t h a t  the exact so lu t ion  f o r  t he  

inves t iga t ed  schematized s t r u c t u r e  ( spar  booms and r i b  f langes  t h a t  have 

no bending s t i f f n e s s )  w i l l  have s t r e s s  s i n g u l a r i t i e s  a t  t h e  i n t e r s e c t i o n s  

of r i b  f langes  with spa r  booms (corners ) .  That means t h a t  s t r e s s e s  or t h e i r  

first d e r i v a t i v e s  may become i n f i n i t e .  I n  the  corner ,  t he  two shear  s t r e s s -  

It may be questioned whether the so lu t ions .ob ta ined  by the  present  

' flows t of one sk in  panel a c t i n g  on the  spa r  boom and on t h e  r i b  f l ange  

r e spec t ive ly  need not t o  be equal o r  they may equal ly  tend t o  i n f i n i t y .  I f  

among the  adaptea supplementary s t r e s s  ( o r  s t r a i n )  systems none contains  

the  type of stress s i n g u l a r i t y  which occurs the  r e s u l t s  obtained f o r  t h e  
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s t r e s s e s  near the  corner by means of i nc reas ing  the number of s t r e s s  (or 

s t r a i n )  systems w i l l  converge v e r y  badly.  
S t r e s s  s i n g u l a r i t i e s  occur r ing  i n  corners  of sk in  panels  may be s t u d i e d  

a long  the  l i n e s  of ref .43 and 44. The s t r e s s  s i n g u l a r i t i e s  disappear  or 

become l e s s  severe i f  bending s t i f f n e s s  i n  the  plane of t he  panel is a t t r i -  

buted t o  t h e  spar  booms (rez.45) .  
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1 2  Summary i n  Cutch. - 
Over d'e berekening van v leugelcons t ruc t ies  met p i  j l s t e l l i n g  

Het kenmerk van de v l ieg tu igvleugel  met p i j l s t e l l i n g  i s ,  d a t  de voorz i jde  
een c o t e  hoek maakt met de langsas  van h e t  v l i eg tu ig ;  i n  v l i e g r i c h t i n g  gezien 
i s  de v l e u g e l t i p  ach te r  de vleugelwortel .  Hierdoor s taan  ook de l i g g e r s  n i e t  
loodrecht  of ongeveer loodrecht  op het  symmetrievlak van de vleugel .  De in -  
vloed hiervan op de spanningsverdeling is groot .  

Wat de r ibben b e t r e f t  z i  j n  er twee mogeli jkheden, deze kunnen nagenoeg 
loodrecht  op de l i g g e r s  s t a a n  of deze kunnen evenwijdig z i j n  aan de lengte-  
a s  van het  v l i e g t u i g .  I n  het  l a a t s t e  geval bevinden zich parallellogramvor- 
mige huidplaten tussen de r ibben en de l i g g e r s .  Deze verhandel ing gaat over 
v leugelcons t ruc t ies  met r ibben  evenwijdig aan de langsas van he t  vl iegtuig.  

thoden. I n  de e e r s t e  p l a a t s  i s  e r  de methode welke u i t g a a t . v a n  de t h e o r i e  
van de pr ismatische b a l k , b e l a s t  d o o r  een buipend moment, een wringend moment 
en een dwarskracht. Een s p e c i a l i s a t i e  voor dunwandige cy l inde r s  b e l a s t  
door een wringend moment i s  be end. De dunwandige cy l inders  kunnen h i e r b i j  

dunwandige cy l inder  waarin z ich  een continuum van i n  hun v l ak  oneindig 
s t i j v e  r ibben  bevindt en welke cy l inder  door een dwarskracht b e l a s t  wordt. 
Deze r ibben z i j n  g e p l a a t s t  loodrecht  op de l e n g t e r i c h t i n g  van de cy l inder .  
Koiter  (lit .6) behandelt  eveneens d i t  geval te rwi  j l  he t  continuum van 
r ibben  ook afwezig kan z i j n .  Verder i s  h e t  mogelijk rekening t e  houden met 
ger inge tapshe id ,  zowel van huiddikte a l s  van de vleugelafmetingen, ger inge  
p i j l s t e l l i n g  en belammering van welving. I%r z i j n  ook u i tbre id ingen  voor 
kegelvormige schalen ( l i t . 7 ) .  

I n . d e  tweede p l a a t s  bes t aa t  e r  de methode waarbi j  de cons t ruc t i e  viordt 
geaoht t e  bes taan  u i t  elementen d i e  meestal QQn soort  of een beperkt a a n t a l  
soor ten  van belast ingen kunnen opnemen. 50 wordt van l i gge r -  en r i b l i j f p l a -  
t e n  meestal  veronders te ld  d a t  deze langs hun randen s l e c h t s  schuifspanningen 
opnemen. De l iggergordingen en de r ib f l enzen  worden dan geacht s l e c h t s  nor- 
maalspanningen t e  kunnen opnemen. Cok van de ongeveer rechthoekige huid- 
velden wordt dan verondersteld d a t  z i j  l angs  hun randen s l e c h t s  schuifspan- 
ningen opnemen. Het normaal-spanningsopnemend vermogen van l igger -  'en r ib -  
l i j f p l a t e n  zomede van huidvelden en eventuele  l angeve r s t i j ve r s  kan gevoegd 
worden b i j ' d s  aangrenzende l iggergordingen of r ib f l enzan ,  De a ldus  geydeali-  
s ee rde  cons t ruc t i e  i s  eindig-voudig s t a t i s c h  onbepaald. Iedere  oplosmethode 
d i e  deze s t a t i s c h e  onbepaaldheid vo l l ed ig  i n  rekening brengt l e v e r t  dan het-  
ze l fde  r e s u l t a a t  op, t e r w i j l  d i t  r e s u l t a a t  voor de geidealiseerdecconstructie 
exact  i s .  S p e c i a l i s a t i e s  gaven b i j  voorheeld Van der Neut en Plantema 
( l i t . 1 3  en 1 4 1 . .  

I n  de l i t e r a t u u r  z i j n  beide methoden u i tgeb re id  voor v l eupe l s  m e t ' p i j l -  
s t e l l i n g .  Es,is werk waarbi j wederom een continuum van r ibben oneindig s t i j f  
i n  hun v l ak  i n  cy l inders  g e p l a a t s t  wordt. Deze r ibben s t a s n  dan n i e t  meer lood- 
r e c h t  op de lengte-as van de cy l inder .  S p e c i a l i s a t i e  voor kegclscbalen 

B i j  v leugels  zonder p i j l s t e l l i n g  bestaan verschi l lende  berekeningsme- 

u i t  meer dan QQn c e l  bestaan. 1? Van der .Neut ( l i t . 4 )  behandelt  zu lk  een 

1) Zulke c e l l e n  z i  jn  gesckeiden door vianden i n  l sn ,ysr ich t ing  van dea cy l inder .  
Elders  wordt i n  d i t  vierk met c e l l e n  meestal  bedoeld de ruimte tussen  
twee opeenvolgende r ibben .  
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z i j n  ook bekend. In deze verhandel ing wordt aangetoond d a t  d i t  ui tgangspunt  
t o t  fou t ieve  r e s u l t a t e n  l e i d t .  

Ook van de thans parallelogramvormige huidvelden tussen  l i g g e r s  en 
r ibben  i s  we1 veronders te ld  d a t  z i j  langs hun randen s l e c h t s  schuifspannin- 
gen opnemen (Levy, l i t . 2 3 ) .  Deze ve ronde r s t e l l i ng  l e i d t  eveneens t o t  fou t ieve  
r esul t a  t en. 

I n  he t  thans ondernomen werk worden de spanning-rek r e l a t i e s  van de 
parallelbgramvormige huidvelden n i e t  vereenvoudiEd. S lech t s  de l a n g s v e r s t i j -  
v e r s  van de huid  worden cont inu vardeeld geacht.  De cons t ruc t i e  b l i j f t  daar- 
mede oneindigvoudig s t a t i s c h  onbepaald en de p r inc ipes  van de var ia t ie-reke-  
n ing  e i j n ,  nodig om t o t  p r a c t i s c h  bruikbare oplosmethoden t e  komen. 

De twee gebru ik te  v a r i a t i e - p r i n c i p e s  lu iden  a l s  V O l g t :  

"Van a l l e  spannings-systemen d i e  aan de evenwichtsvoorvraarden voldoen, 

"Van a l l e  rek-systemen d i e  aan d e  aansluit ingsvoorwaarden voldoen is  d i e  

B e t  gebruik van i ede r  dszer  p r inc ipes  a fzonde r l i j k  l e i d t  t o t  een oplos- 

i s  d i e  de j u i s t e ,  welke de complementaire energ ie  minimaal maakt!' en 

de j u i s t e  v e l k e  de po ten t ig l e  ene re i c  minimaal maakt." 

s ing .  Het gebru.ik van deze p r inc ipes  is welbekend. De onderhavige cons t ruc t i e  
v r a a a t  ech te r  spec ia l e  vormen van toepassing welke i n  d i t  rappor t  behandeld 
z i j n .  H ie rb i '  i s  gebruik gemaakt van scheefhoekige co6rdinaten z o a l s  ze door 
Iiemp ( l i t  .22 b i j  de behandeling van scheve v l euge lcons t ruc t i e s  ingevoerd 
z i j n .  Voor zu lk  een scheefhoekig co6rd ina tens t e l se l  z i j n  de spanningen en 
rekken zodanig gedefinieerd d a t  veel r e l a t i e s ,  g e l d i g  b i j  or thogonale .co6r-  
d ina ten ,  hun vorm behouden. Bet equivalent  van een normaalrek i s  thans even- 
we1 n i e t '  a l l e e n  a fhanke l i jk  van he t  equivalent  van twee normaalspanningen, 
maar ook van h e t  equivalent  van de schuifspanning. 

Eet ve rge l i j ken  van de r e s u l t a t e n  met behulp van de beide p r inc ipes  ver- 
kregen g e e f t  een f r a a i e  gelegenheid om de mate van nauwkeurigheid t e  beoor- 
delen.  Voor belangr i jke  uitkomsten kunnen z e l f s  onders te  en bovenste grenzen 
worden aangegeven waartussen h e t  sxac t  antwoord van de nog a l t i j d  en igsz ins  
ge idea l i s ee rde  cons t ruc t i e  met zekerheid moet l iggen. 

p i j l s t e l l i n g  m e t  5 ce l l en .  E i e r b i j  is onder een c e l  t e  ve r s t aan  de ruimte 
tussen  2 opeenvolgende r ibben  of tussen  een r i b  en de inklemming. De belas-  
t i n g  bes t aa t  u i t  v e r t i c a l e  krachten t e r  p l a a t s e  van de bevest igingen van de 
r ibben  aan de l i g g e r s  (de  punten 1 t / m  lC, f i g .  7 .1) .  

maal gemaakt wordt is een "bas is  spanningssysteem" aangenomen, hetwelk i n  
evenwicht is met de uitwendige be l a s t ing ,  op welk systeem worden gesuperpo- 
neerd  "aanvullende spanningssystemen" , d i e  geen uitwendige belast ing ve re i sen  
en voldoen aan de evenwichtsvoorwaarden. Onbekende mul t ip l i ca to ren  van laatst- 
genoemde systemen z i j n  de,onbekenden welke moeten worden opgelost  door t e  
e isen, , .dat  de complementaire energie  minimaal i s .  

b ru ik  werd gemaskt van 2 ,  J en 4 types van "aanvullende spanningssystemen" 
pe r  c31, waarb i j  dus achtereenvolgens I C ,  15 en 20 onbekenden op t e  lossen  
waren. 

maakt ivordt geschiedde op overeenkomstige wi jze  door  invoering van een "bas i s  
reksgsteem" en van "aanvullende reksystemen". Ten einde t o t  ongeveer dezelfde 
nau%keurigheid t e  komen a l s  b i j  de eerstgenoemdd berekeningen werd he t  nodig 
geoordeel? 10 typos van "aanvullende reksystenen" per  cel t e  gebruiken; het  
vraags tuk  leverde  dus h i e r  50 op t e  lossen  onbekenden o r .  De onderl inge over- 
eenstemming tussen  de d ive r se  uitkomsten van de v i e r  ver!u-egen oplossingen was 
bevredigend. 

lange  doosbalk ( m e t  ovkrigens deze l fde  afmetingen a l s  van de 5-cel l ige doos- 
b a l k )  voor de be las t ingsgeval len  constant  moment en cons tan te  dwarskracht. 
N i e r b i j  werden 5 types van "aanyullende spanningssystemen" pe r  c e l  gebru ik t  

j ' . .  

0 Numeriek wordt behandeld een aan QQn z i j d e  ingeklemde doosbalk met 45 

S i j  he t  toepassen van de methode waarb i j  de complementaire energie  mini- 

Voor de doosbalk werden achtereevolgens oplossingen verkregen waarbi j ge- 

Iiet toepassen van de methode waarb i j  de p o t e n t i s l e  energ ie  minimaal ge- 

Beide methoden werden ook toegepast  op de naar  beide z i jden .  oneindig 
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en weer 10 types "aanvullende reksystemen". Deze analyse voe r t  t o t  r e l a -  
t i e s  ( i n  scheefhoekige cdbxlinaten) tussen moment en spec i f i eke  hoekver- 
d r a a i i n g  van de balk,  Voor d e  cogff ic ignten,  voorkomende i n  deze r e l a t i e s  
worden onderste  en bovenste grenzen bepaald welke b e t r e k k e l i j k  d i c h t  b i j  
e lkaa r  l iggen.  Bedoelde r e l a t i e s  zouden kunnen dienen t o t  een equiva len t  
van de zogenaamde elementaire balkentheorie  voor balken zonder p i j l s t e l l i n g .  
D i t  komt neer  op  h e t  g e l d i g  verk laren  van bedoelde r e l a t i e s  i n  geva l len  
waarb i j  de dwarskracht, haar werk l i jn  ten opzichte  van de  doorsnede (even- 
tuee l  wringend moment) of de afmetingen i n  l e n g t e r i c h t i n g  veranderen, of 
wanneer de balkeinden n i e t  v r i j  kunnen welven. Sen poging om op b a s i s  van 
zulk een elementaire t heo r i e  de v i j f c e l l i g e  doosbalk te behandelen had 
s l e c h t s  een matig succes ,  doordat de afvrijkingen van d i e  t heo r i e  i n  de buurt 
van de inklemming van de ba lk  t e  e r n s t i g  z i j n .  

Om de u i t g e s t r e k t h e i d  van de stoorspanningen i n  de nab i jhe id  van een 
inklemming t e  onderzoeken ward, u i t s l u i t e n d  met minimal i sa t ie  van de com- 
plementaire energ ie ,  een half-oneindige doosbalk (overigens weer met de- 
ze l fde  afmetingen) onderzocht voor h e t  belast ingsgeval  constant  moment. De 
stoorspanningen dempen vanaf de inklemming s n e l  u i t  ( n i e t  volgens een een- 
voudige wet) en z i j n  van de v i e rde  cel af verwaarloosbaar k l e in .  

t e  leveren.  Z e  z i j n  evenvel moei l i jk  t o t  convergentie n a a r  8en exact resul- 
taat t e  kr i jgen .  D i t  zou sturlie vragen van de b i jzondere  spanningstoestand 
i n  de hoeken van de parallellogramvormige p l a t en .  D i t  h ee f t  s l e c h t s  z in  wan- 
neer  de l iggergordingen en r ib f l enzen  vinder  s t e r k  ge idea l i s ee rd  zouden 
worden. Want j u i s t  i n  de hozken k r i j g t  de eigen b u i g s t i j f h e i d  en a fschui f -  
s t i j f h e i d  van zulke elementen betekenis.  

De gevolgde methoden worden geacht voor de p r a c t i j k  goede r e s u l t a t e n  



1 of the 10 supplementary stress ij Table 7.1 Values of 10 

systems h . .  = x ji 
1J 

The 1 I, are the "coefficients of the unknowns". 

j-1 
2 

3 
4 
5 
6 
7 
8 

9 
10 

- 
2 

-4952 
16926 

8 9 10 

15677 



Table  7.2 Nalues of -lo6 h of .the basic ;tress systems and t h e  10 supplementary stress Oi 

4 

4556 ,, aao 
+ai5.921 
t543.941 
t271.914 
- 12.934 
t352.577 
~ j 7 6 . 9 ~  
t384.629 
t192.315 
c 32,052 

6 systems for the m loading cases (-10 A moi)o 

The 1 oi are t h e  "known terms" of the equations ( 6 . 6 ) .  

5 6 7 

-420. a94 +420.894 -2a4.906 
-543.947 + 5 1 3 m 7  -211.974 
-271.974 +271.914 + 12.934 
+ 12.934 - 12,934 0 

0 0 0 

+256.420 +256.420 +160.262 

+192.315 +192.315 +'32,052 
+3a4.629 +304.529 +192.315 

+ 32.052 + 32,052 0 

0 0 0 

3 

-5 55.880 
-815.921 
-543 0947 
-211.914 
+ 12.934 
+3 52.5 77 
+576.944 
+384.629 
+192.315 
+ 32.052 

10 

+ua.920 
- 12.934 

0 

0 

0 

t 64.105 
t 32,052' 

0 

0 

0 



5 Table 7.3 Values of 10 X The values X are the solutions X of the 10 unknowns 
mj' mJ j 

3 4 

-10900 +18793 
-11416 +12468 
- 8890 + 7540 
- 5145 + 3500 
- 1549 + 561 

+ 6868 + 9563 
+ 3974 + 6886 
+ 1390 + 3998 
- 60 + 1432 

+ 8894 +11336 

for the m loading C B B B B ~  

5 6 

-8055 +13257 
-7603 + 7985 
-4838 + 3688 
-1671 +, 629 
- 434 - 27 

+4119 + 6644 
+1652 + 4051 
+ 8 + 1591 
- 242 + 347 

+5969 + 8368 

- 
2 

44338 
+17027 
+11658 
+ 7134 
+ 3081 
+14258 
+12419 
+ 9696 
+ 6759 
+ 3520 

' 8  

+7835 
+3824 
+ 722 

- 3 8 -  
- 13 

+5274 
+3667 
+1563 
+ 385 

9 10 

-2190 +2959 
- 714 + 641 
- 218 + 33 

7 - 1 8  
- 52 - 40 

+ 771 +2118 
+ 167 +lo76 
- 68 + 305 - 56 + 43 

+ 3 8 - 1 9 -  6 

- 
i - 

-5135 
-3846 
-1395 - 422 - 88 
+3125 
+1674 
+ 185 
- 188 - 109 - 



lip1 

2 

3 
4 

5 
6 
7 
a 
9 
10 

7 

Table 704  Values of the eymmetriaal matrix /S &. R dv 

multiplied by 10 6 

a 9 M 1  2 3 4 

992.905 0 703.666 0 

992.905 0 703.666 
522,35C 0 

5220350 

5 5 

437-091 0 

0 43T0091 
335.102 0 

0 33>o102 

233.111 0 

233.111 

0 62.594 

0 

17-265 

10 

0 

62.594 
0 

51,261 

0 

39 -929 
0 

28.591 
0 

17.265 

2 



Table 7.5 .Influenoe coefficients Cm (Cm -Cm) of the swept box 
multiplied by 10 6 and expressed in inoh/lb. Computed with 
the minimum principle for the atreasee with  10 supplementary 

93.35 

74.17 

533a 

106.11 

87-76 

68.62 

stress systems. 

97.48 

80.83 

64.17 

64.30 

47.71 

31.53 
46.66 

- 
5 

181.25 
120.70 
146.30 
86.60 

- 

110.5~ 

a - 
39. LC 
51.87 
32-22 

45.28 
24.99 
38.69 
16.63 
31,23 

- 
9 

33-47 
20.92 
28.60 
16.04 

- 

23 0 77 
11.22 
18.91 
6.618 

13 -55 

I__ 

- 
10 

7.783 
15 $43 
6.852 

14-56 
5.867 
13 o 73 
40609 
1 2 ~ 7  
2.622 

11.24 



Table 7.6 Values of s t resses  i n  lbs/ inch2 f o r  t he  m loading  casee. 

Computed w i t h  t h e  minimum p r i n c i p l e  f o r  t he  stresses w i t h  10 supplementary 

~ ~ 

m= 1 

'0 
0 

+ 6.735 
+ 2.282 
+ 2.955 
+ 3.965 
+ 4.376 
+ 4.978 

+ 4.976 
+ 11.660 

+ 6.718 

+ 3.188 
+ 2.361 

+ 0.891 

+ 0.751 

+ 3.560 

+ 0,907 - 0.016 

+ 0.907 
+ 2.376 

+ 2.517 

+ 2.837 
+ 0.431 

- 0.292 

- 0.140 - 0.321 - 0.723 

stress systems. 

2 3 4 5. 6 7 s 9 10 

0 0 0 0 0 0 0 0 0 
0 Q 0 0 0 0 0 0 0 

to.352 -0.896 -0.269 -0.156 -0.162 70.007 70.051 ,+0,00?1 -0.008 
+i.544 +0"946 -0.936 +0.360 -0.130 +0.098 +0.019 40.012 40.014 
+1.400 +1,312 +0.400 -0.998 -0,295 -0.172 -0.170 -0.008 -0.042 
+2.828 <.2.476 +1.193 +Om990 -1.043 +0.330 -0,154 +O.O55 +0.006 
+2.857 +2.955 +1,589 +lo385 +0.490 -0,907 -0,228 -0.101 -0.109 
+3.858 +3.617 +2.533 +2.183 +1.059 +0.751 -1,087 +0.15,8 -0.148 

+d0478 +3.902 +30433 +2.790 +2.370 +la585 +1-141 +0.355 -0.834 
+8.482 +9.505 +5,412 +7.570 +4.367 +5.547 +2..143 +3.330 +0.869 

+4.905 +5.192 +3.395 +3.659 +1.956 +1.965 +0.732 -0.495 -0.071 

+4.312 ,+2.744 +3.882 +2.282 +3.466 +1,740 43.035 +0.978 +2.306 
+0.604 -0.304 +o.i io  -0.085 -0,005 -0.017 -0.011 -0.001 -0.004 

+2.473 +0.705 +2.692 +0.243 -0.129 +0.065 -0.009 +0.009 +0.=004 

+2.381 +0.734 +2.475 +0.621 +2.668 +00191 -0.11ta +0.033 -0.014 

+1.$34 +30369 +1.240 +3.179 +1.033 +3,016 +0.786 +2.979 +0.454 

-0.604 +0.304 -0.110 +0.085 +0.005 +0.017 +o.oii +O.OO~ +0.004 
-0.191 +0.402 -0.466 +0,158 -0.134 +0.048 -0.020 +0.008 +0.001 

+2.664 +0,304 -0.110 +O.O85 +0.005 +0.017 +0.011 +0.001 +0.004 
+O.795 +2.563 +0.576 -0.243 +0.129 -0,065 +0.009 -0.009 -0.004 

+(?.E87 +2.534 +0.792 +2.647 +0.600 -0,191 +0.144 -0.033 +0.014 

+1,053 +2.773 +O.9!% +2.726 +0,8$3 +2.787 +0.608 -0.097 +0.119 
+2.215 +0.495 +2.30l +O.5$2 +2.425 +0.$81 +2.660 +0.097 -0.119 

+1.834 -0.101 +2,028 +O.O89 +2.235 +0.252 +2,482 +0,289 t2.814 

-0.093 +0.029 -0.216 +0.378 -0.471 +0.125 -0.135 +OoO24 -0.019 
-0.156 -0.239 -0.174 -0.079 -0.243 +0,290 -0.464 +00065 -0.105 
-O,3el -0.596 -0.274 -0.453 -0,191 -0,229 -0.178 +0.192 -0,335 

- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  

-3 
-4 
-5 
-6 
-7 
-8 
-9 
!-l( 
'-11 
1-12 

-2 
-4 
-6 
'-8 
'-1t 

- 

- 

- 



. 

13 
0 - 641 - 2564 - 641 
0 

. o  
1770 
0 

- 1770 
0 
a0 

321 
10310 

6 Table 7 .1  Additional values o f  10 A 

= 2 . For the other values o f .  

of the 15 supplementary 
ij 

stress  systems 2 Li 3 

14 
0 
0 - 641 - 2564 - 641 
0 
0 

1770 
5 

- 1770 
0 
80 
321 

10310 

of A ,  . see table 7@1. 
1 J  

i- 
i-ll 
-1282 

4 
5 

10 9 1 :  
11 I 4994 
12 

- 
I2 

- 641 
-2564 - 641 

0 
0 

1770 
0 

-1770 
0 
0 

10230 

- 

482 

15 
0 
0 
0 - 641 - 2564 
0 
0 
0 

,1770 
0 
0 
0 

80 
321 

10310 



Table 7.8 Pdditlonal values of -106Aoi of the basic  stress system and the 1 5  

supplementary stress systems for the m loading cases (-10 

For the other values see table 7.2. 

6 

f 

, W l  a 3 2 

i-11 +373.944 -373.944 +293.813 -293.813 
12 +641,046 -641.046 +480.785 -480.785 
13 +480.785 -480.785 +320.523 -320.523 
14 +320.523 -320.523 +160,262 -160.262 

15 +160.262 -160.262 + 26.710 - 26.710 

5 

t213.682 

+320.523 
+160,262 

+ 26.71C 
0 

6 .7 I 8 
~ 

-213.682 

-3 20 .'523 
-160.262 

- 26.71'2 
0 

9 10 

+133.551 
+160.262 

+ 26.710 
0 

0 

-13J0551 +53.421 -53.421 
-160.262 +26.710 -26.710 

- 26,710 0 0 

0 0 0 

0 0 0 



Table 7.9 Values of X ( j  - 1...15) . 
mj 

The values X . are t h e  solutions of  the 15 unknowns for the m loading oases. 
mJ 

j=1 
2 

3 
4 

5 
6 
7 
8 

9 
10 

11 

1 2  

13 
14 
15  

4 

m=1 

-13342 
-1523C 
-13561 
- 9852 
- 5015 
+1171E 
+lo232 

+ 5954 
+ 3479 
+ 843 
+ 1511 
- 82 

- 1386 
- 1475 
- 846 

2 

+24301 
+15617 
+lo876 
+ 6247 
+ 2497 
+l4650 
+I2906 

+LOO08 

+ 5728 
+ 3207 
+ 353 
- 656 
- 1511 
- 1789 
- 1633 

,12862 
+ 73 54 
+3073 
+ 237 
- 177 
+YO63 
+6854 
+3931 
+I33 1 
+ 166 
- 690 
-1104 
-1206 
- 613 
- 229 

3 4 5 

-10682 +18566 -7971 
-11555 +11912 -7814 
- 9445 + A789 -5330 
- 5763 + 2842 -2127 
- 1892 + 236 - 629 
+ 8949 +11912 +6129 
+ 7352 + 9940 +4495 
+ 4268 + 6979 +1808 
+ 1295 + 3779 - 162 
- 311 + 1144 - 459 
+ 1139 - 175 + 707 
- 270 - 913 - 396 
- 1311 - 1485 -1150 
- 1304 - 1340 - 983 
- 741 - 619 - 221 

'-5130 
-4042 
-1712 
- 632 
- 149 
+3292 
+1901 

194 
- 348 - 215 
+ 398 - 401 
- 824 
- 316 

0 

+ m 3  
+3289 
+ 355 
- 192 

+j902 
+3682 

+ 214 

- 51 
-1040 
- 973 
- 527 
- 251 

- 113 

+i370 

-2193 + 2703 
- 790 + 397 
- 304 - 103 

- 91 - 93 

+ 838 + 2423 
+ 231 + 1028 

- 2.03 - 25 
- 39 - 35 
+ 218 - 784 
- 259 - 340 
- 180 - 169 
- 25 - 65 

- 13 - 30 

- 95 + 206 

- 6 5 + 1 1 -  6 



- 
n-1 
2 
3 
1 

5 
6 
7 
8 
9 
10 

- 

Table 7.10Jnfluence coefficients Cm(Cm =Cm) of the swept-box 
6 multiplied by 10 

the minimum principle for the- stresses with 15 supplementary 
stress systems, 

and expressed in inch/lb. Computed with 

377.73 242034 
240.93 

3 

273 .E3 
178.42 
213 * 4 5  

i 
161.73 
168.09 
123035 
131.34 

5 
178.02 
117.07 
143.38 
83.56 
108.27 

- 
6 

91.28 
02.79 

72,02 
84.51 
51-98 
55.95' 

7 

95.83 
62.50 
79.29 
45.05 
62.87 
30.30 

45 .81 

- 
a - 

38.511 
50.34 
31.53 
43.57 
24.23 
35.96 
16.06 
29.81 

- 

- 
9 

33.06 
20.50 
28.22 
15.52 
23 .<3 
10.8' 
18.65 
6.425 

13 -4.1 

10 

70948 
15.04 
6 856 

5.763 

1. 503 

13.99 

13.06 

12.2% 

l@.P 

2.6C1 
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6 
Table 7012 Additional values of 10 A .  . of the 20 

aystems/I. . = A . . .  For the other values of/\. . see 

supplementary stress 
1 J  

1 J  J 1  1 J  
table  7.1 and 7.7. 

0 

0 

0 

0 

0 

1 522 

- 3827 
6611 

- 3827 
b 522 

- 2123 

t 2123 
o 

0 

0 

t 348 
- 1609 
t10167 

j=1 
2 

3 
4 

5 
6 

7 
a 
9 

10 

11 

12 

13 
14  
1 5  
15 

17 
l a  
19 
20 

0 

0 

0 

0 

0 

o 
+ 522 

- 3827 
+ 6611 

- 3827 

o 

o 
+ 2123 

0 

- 2123 

o 
+ 348 
- 1609 
+lo167 

1-16 

0 

0 

0 

0 

0 

12262 

-2784 
522 

- 

0 

0 

0 

12123 
0 

0 

0 

43ae 

- 

17 

0 

0 

0 

0 

0 

- 

-2781 
b 6 ~ a 9  

-3821 
t 522 

0 

-2123 
0 

t2123 
0 

G 

- 913 
1.9819 

20 

0 

0 

0 

0 

0 

0 

0 

t 522 

t 6611 
- 3827 

0 

0 

0 

- 2123 
0 

0 

0 

+ 348 
-2609 

-1016 7 



Table 7.13 Values of lo6 X (j- 1.,,20) mJ 
The values are the solutions of the 20 unknowns for the m loading 08se8, 

YIP 1 2 

-132900 +243344 
-152072 +166197 
-135396 +loa710 - 98570 + 62503 - 50312 + 24979 
+I19161 +147969 
+lo1654 +128705 
+ 68702 + 99280 
+ 35764 + 66988 

+ 16192 + 3540 

- 14004 - 15484 - 15316 - 19326 

+ 7998 + 34392 

+ 837 - 5474 

- 8677 - 16168 
l - 5368 - 3709 

1 + 4427 + 3200 
-t 2379 + 1571 

j + 126 - 274 
+ 1405 - 6433 

j= 1 
2 
3 
4 
5 
6 
7 
8 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

9 

3 4 5 6 

-115245 +119139 -77843 +73658 
-106305 +la5753 -79181 +12861[ 

- 94176 + 67995 -53088 +30936 - 57648 + 28434 -21234 + 2495 - 19065 + 2325 - 6378 - 1724 
+ 91152 +120187 +62817 +91240 
+ 72965 + 98912 +44680 +68211 
+ 42206 + 69365 +17424 +39604 
+ 13487 a 38531 - 1818 +12765 
+ 11305 - 2174 + 6860 - 7917 
- 12810 - 15018 -11051 -11338 - 13286 - 13425 -10691 - 5811 

- 3775 A 10987 - 3106 + 1690 

- 1085 - 8488 - 2238 -10449 
- 7932 - 6008 - 2751 - 2599 - 5157 - 3333 - 5161 - 3656 
+ 3799 +. a36 + 4348 - 836 
+ 1622 + 382 + 999 - 1480 
+ 1914 - 1534 + 2796 + 1960 
+ 2763 + 723 - 1108 + 798 

-50837 

-16980 - 6329 - 1603 
-40280 

+34727 
+I8567 
+ 757 - 2500 - 1906 
+ 3922 - 2405 - 8555 
+ 44 

+ 1769 
+ 4511 - 1044 - 899 

- 4016 
- 5008 

+74036 -21780 +27236 

+ 3819 - 3005 - 791 - 1724 - 965 - 839 - 1114 - 162 - 307 

+33062 - 7881 + 4075 

+59816 + 9700 +26220 
+37077 + 1336 + 9345 
+12726 - 695 +1736 
+ 2214 - 808 + 35 - 177 - 423 - 256 
-11974 + 2453 - 8821 - 8311 - 2199 - 2061 - 4392 - 2239 - 1515 
- 864 + 182 - 76 

- 3031 + 2529 + 279 
+ 2175 + 200 + 1071 
+ 1062 - 551 - 107 - 182 - 168 - 130 

- 2733 - 385 - 801 

- 56oa - 2496 - 6823 

In SQlVing the unknowns X . the matrix -Imoi i s  used which follows 

from tables 7.2 and 7.8 and by adding 5 row8 of 5e1-08. 

mJ 



6 Table 7.14 Inf luence c o e f f i c i e n t s  Cm (Cm"Cnm) of the  swept-box mul t ip l i ed  by 10 

expressed i n  inch j lb .  Computed wi th  the  minimum p r i n c i p l e  f o r  the  stresses w i t h  

and 

38.549 
50,251 
31.415 
43.510 
24.0aa 
36.865 
15.960 
29.651 

n= 1 
2 
3 
4 

5 
6 
7 
8 

32.985 
20.435 
28.163 
15.588 
23.378 
10,867 

18.583 
6,436 

13.381- 9 
10 

20 81 

m a 1  

371.452 

plementary s t r e s s  eyEtemS. 

.2 

242.251 
?40.524 

Z73.566 
178.412 
Zl?,167 

161.657 
168.061 
123.301 
131.282 

9 

'177.799 
116 .a94 
143 158 
83.626 
108.002 

- 
6 

91.267 
.02,826 
71.972 
84,600 
51.938 
65.050 

- 

95.601 

62.295 
79.i17 
45.9?0 
62.663 
30.302 
45.580 

- 

8 I 9. 10 

7 0 816 

14.938 
60734 
13.922 
5.633 

4Q372 
12,991 

12.115 
2.549 
10.755 



2 
Table 7.15 Values of stresses in lba/inah f o r  the m loading oaeea. 

Computed with the minimum prinolple for the stresses with 20 supplementary 
stress systems. 

5 

4 Normal' stresses 5 
in upper spar 6 

7 booms at station e 
s 

1c 
11 

6 7 8 9 10 

Shear stresses 
in spar webs, 
between the 

stat ions 

0 
-0.127 
+0,439 
-0.812 
t0.965 
+1.454 
~2 ,036  
t3.483 

t7.280 
t2.309 
-0,125 
1-0.125 
-0,291 
+0.291 
k2.643 
t0.625 

t0.485 
k3.242 
d.026 

t2.673 

+2,783 

Shear stress 
es in rib 
webe between 
the stations' 

0 0 0 0 0 
-0.083 -0.017 -0.029 +0.002 -0.005 
-0.060 +0.177 +0.043 e .034 +0.026 
-0,185 -0.131 -0,100 -0.010 -0.023 
-0.889 +0.341 -0.086 +C.C78 +0.020 
+0.572 -0.742 -0.154 -0.071 -0.067 
~1.054 +0.678 -0.917 +0,130 -0.079 
+1.879 +1.867 +00699 -0,448 -0.078 

+4.091 +5.293 +2.308 +3.168 +00827 
+3.106 +1.701 +2.575 +0.974 +1.925 
-0,034 -0.031 -0.022 -0.003 -0.006 
+o.c34 +0.031 +0.022 +0.003 +0,006 
+0.083 -0.093 -0.012 -0.016 -0,010 
-0,083 +0,093 4.012 +0,016 +0.010 
+0.558 -0,209 4.109 -0.040 +0.001 
+2.710 +O.ZO9 -0.109 +0.040 -0,001 

+2.430 +0.457 +2,695 +0.096 -0.095 
+l,078 +30061 4.803 +2.995 +0.454 
+2,19O +0.207 t2.465 +0.273 +2.814 

+2.298 +1.529 +1.140 +@o336 -0,708 

+o.a38 + 2 . m  +0,573 -0,096 +0.095 

1-3 
2-4 
3-5 
4-6 
5-7 
6-8 
7-9 

8-10 
9-11 
0-1 2 

1-2 
3-4 
5-6 
7-8 

- 

-10 - 

k0.125 
t0.166 
d.333 
-0.139 
4.459 

to.374 -Ob046 

-0,040 -0.264 
t0.303 -0.466 

-0,303 -00227 
- 0 a m  -0,303 

+0.034 +0.031 +0.022 +O,OOj +0.006 
-0.117 +0.061 -0.010 +0.013 +0.004 
-0,475 4.116 -0,121 +0,024 -0.011 
-0.280 4 . 2 4 8  -0,465 +0.056 -0.094 
-0,240 -0.250 -0.230 4 .177  -0.359 



Table 7.15 Vertiaal displacements in the atations 1...10 belonging to the 
50 eupplemntary - Also, Values of m loading cases. -- 
The valu~esjk .ui  terms" of the equations ( 6 . 2 9 ) -  

k 



Table 7.17 Matrix of the values o f A  of the 50 supplementary strain systems i j  
A .  . = A m.e 1 are the "coeffioients of the unknoat~s". 
15 ji" iJ 

j-1- 

1 0  0 0 0  
0 1  0 0 0  
0 0  1 0 0  
0 0  0 1 0  
0 0  0 0 1  

1 0 '  3 0 c 
1 1  o o c  

0 0 0 0 0  
0 0  1 1 0  0 0 0 0 0  
0 0  0 1 1  0- 0 . 0  0 0 0 
1 0  0 0 0  0 0 0 0 0  
1 1 0 0 '  0 '  0 0 0 0 0  

o u - t  -u 0 

o a o  

0 -c 0 cy -2 0 

o o -a 

I 
0 0  -1 1 0  

a = 8731~9 f = 3609.4 k = 30Q7a9 P 655406 u - 283.6 @ = 65Q4,3 
b 3609.4 g 1276.1 f = 2965.9 = 5016.8 9 8187.7 Y = 3470.3 
c = 1186.3 h = 24902 m = 6193.0 r = 410.9 w 5603.8 = 368.6 
d = 3445.2 i = 8676.0 n = 3190,3 B - 1218,1 E "-~2583.9 
e 5427.7 j a 2345.9 o zero t = 2035.,8 a = 1804,7 

I., , I 



6 Table 7.18 Values of  10 %i. The values Yi are the solution8 of the 50 unknowns 

m a 1  
= 1.-. 9.2747 

2 -10.351 
3 -10.7455 
4 -10.9177 
5 -11.0590 
6 + 4.9350 
7 - 7.0796 
8 -11.4815 

10 -14.9808 
11 -24.8997 
1 2  -10.4614 
13  - 4.0816 
14 - 1.1109 

9 -13.4041 

for the  m loading o a a e ~ ~  

2 3 4 5 6 
-11.2387 - 904322 -11..3820 - 9.5930 -11,4058 
-10,7036 -10.4669 -10.7677 -30,6247 -10.7532 
-10,840: -10.8756 -10.7605 -11.2421 -10.3931 
-10.8650 -11.32.33 -10.4388 - 0.5066 + 0.4014 
-10.7107 - O,4 573 + 0.3415 - 0.1182 + 0.0612 

-16.9868 + 3.1771 -18.5865 + 1.3828 -19.8566 
-11.0136 - 8,3719 -11.7288 -10.1325 -11.5672 
-12.5372 -12.9335 -11?6485 -17.9247 - 7@5483 

-11.0233 - 5.1042 + 3,8112 - 1,3192 + 0.6826 
-13.3870 -21..0372 - 9.4683 -17.1706 - 5.3912 - 4,9153 - 8.8556 - 3.0037 - 7.2848 - 0.4270 - 0.5511 - 3.7758 + 1.1695 - 4.4093 + 5.1685 
+ 1.6857 -.3.0249 + 5,6481 + 4.2387 - 1.4030 

-12.8157 -17.9312 - 8.0585 - 5.6551 + a.4805 

I I I I I I 

7 - 9.8094 
-1 1.0412 

- 0.1157 - 0.0275 
- 1.0323 
-14.7818 
.- 4.8597 - 1.2916 - 0.3072 
-13.3675 - 6.8954 

+ 0.9621 
+ 0.2642 - 7.5353 - 5.3657 
+ 1.2419 
+ 0.3077 

- 0.4354 

+ 3.3972 

+44.8761 
+ 0.1741 
+ 0.0463 
+ 0.0110 

8, 
-1 i. 5030 

+ 0,4157 
+ 0.0729 

-19,9361 - 8.0693 
+ 4.6508 
+ 0.8133 
+ 0.0828 - a.6959 
+ 4.4702 - 1,6186 - 0.0849 

-10.4398 

- + 0.- 

* 
+ 4.3058 

1 7097 z;:;: 
+41' 53 55 

- 0,0291 - 0.0030 

- 0.1667 

9 
- 0.2928 
-10.3409 

- 0.0681 - 0,0165 - 0.0034 
- 0.9651 

- 0.7598 - 0.1843 - 0,0376 
-10 .e322 

- 3.2678 

+ 1.8612 
+ 0.4595 
+ 0.1072 
+ 0.0252 - 8.1092 
+ 009797 
+ 0.2148 
+ 0.0544 
+ 0.0160 
TmE 
+ 0,1171 
+ 0,0272 
+ 0.0066 
+ 0.0013 

.. 

+ 0.0664 
+ 0.0075 - 0.0001 

-15 7343 
+ 3,6860 
+ 0,7408 
+ 0.0836 9 

- 0.1001 13 
+ 0.0328 14 
+ 0.0154 15 
+ 7.6652 16 .~ - - 1.2148 17 1 

- 0,1321 22 - 0.0265 23 - 0,0030 24 
+ 0.000~ 25 
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Table 7.19 Influence coe f f i c i ent s  Cm (Cm 0 C,,) of the swept box 

5 multiplied by 10 

the minimum prinoiple for  the atrains w i t h  50 supplementary 
strain syatema 

and expressed i n  inch/lb. Computed with 

2 3 4 

234.90 259.22 153.88 
225.38 173.78 156.46 

200.82 117.91 
120.48 

5 
6 

7 
8 

9 
10 

5 

168.25 

113.99 
134.40 

80,65 

100.5$ 

i - 
90044 
61.01 

74032 
44.98 

29.19 
41099 

58.21 

-~ ~ 

10 

5.238 
11.82 

4.595 
11.181 

3.959 
10055 
3.321 

90938 
2.508 
9.212 



Table 7.20 Values of s t r e s s e s  in lbs/inch2 f o r  t he  m loading  cases .  

Computed w i t h  the minimum p r i n c i p l e  f o r  t he  s t r a i n s  wi th  50 

supplementary s t r a i n  systems. Compare t a b l e  7.21. 

Ill- 1 

- 
a. 

+ 1.930 
+ 2,421 
+ 3.143 

+ 1.612 
+ 4.866 
+ 5.682 

+ 3.858 

+ 4.877 
+10.153 
+ 
+ 2.272 
+ 0.995 
+ 2.357 
+ 0.911 
+ 2.549 
+ 0,719 
+ 2.985 
+ 0.283 
+ 3.971 
- 0.703 

+ 0.996 
- 0.085 
- 0.192 

- 0.986 
- 0.435 

2 3 4 5 6 7 8 
- - - - - - - - L - - - 

+0.367 -O.$l9 +0.117 -0.106 +O.OO5 -0.021 iO.002 
+1.159 +1.001 -0.245 +0.252 -0.004 +O.O5O +0.007 
+l .5l l  +1,555 +0,429 -0.497 +O.ll4 -0.108 +0.003 

+2,y70 +30135 +le607 +l.632 +Os472 -0,418 +0.131 
+3.919 +3.575 +2.622 +2.266 +1.288 +0.808 -0.307 
+$.E21 +5.lI.2 +3.275 +3.552 +1.791 +1.941 +0.550 

+2.7a9 +2.500 +1.388 +0,985 -0,264 + o . m  -0.01~ 

+1.379 + 3 . m  +3.314 +2.747 +2.2.22 +1.m + i . m  
+7.480 +8.255 + 5 . m  +6.362 + 3 . 7 i i  +1..17.1 +i.914 

2.519.+3.492 +2.079 +3.021 +1.609 +2.545 +1.135 +2.01$ 

+0.517 -0.321 +0.020 -0.080 -0.014 -0.015 -0.005 
+2.721 +0.321 -0.020 +0.080 +0.015 +C.015 +0.005 
+0.757 +2.476 +0.551 -0.259 +0.031 -0.059 -0.009 
+2.501 +0.792 +2.717 +0,259 -0.031 +0.059 +0.009 
+0.889 +2.541 +0.805 +2.570 +O.586 -0.202 + O . O 5 l  
+2.379 +0.721 +2.462 +0.597 +2.682 +0.202 -0.051 
+1.204 +2.895 +1.097 +2.796 +@.948 +2.745 +0.660 
+2.064 +0.371 +2.171 +0.472 +2.320 +0.523 +2.608 
+2.045 +3.596 +1.767 +3.118 +1.479 +30139 +1.117 
+1.22) -0.428 +l.501 -0.150 +1.789 +0.129 +2.121 

-0.517 +0.321 -0.020 +0.080 +0.011 +0.015 +0.005 
-0.220 +@.$71 -0.531 +0.179 -0.048 +0.0$1 +0.001 
-0.122 -0,068 -0.254 +0.$39 -0.551 +Os143 -0.050 

-0.811 -0.802 -0.670 -0.622 -0.530 -0.394 -0.187 
-0.316 -0.349 -0.292 -0.225 -0.363 +0.320 -0.610 

booms, immediatelyl 

normal s t r e s s e s  

i n  upper s p a r  

3 

5 

at t i p  s i d e  of 

st a t  ion  

2 10-12 

9 
9 
10 
11 

Shear s t r e s s e s  I 5:; 
i n  rib webs 
between t h e  7-8 

s t a t i o n s 1  9-’ c 
.- 

Shear s t r e s s e s  

i n  spar webs, 

between t h e  

s t a t i o n s l  

1-3 

3-5 
4-6 
5- 7 
6-8 
7-9 
8-1C 

2-5 



I Table 7.21Values of normal stresses in lbs/inch2 in spar booms for the m loading cases. 

Computed with the minimum principle for the strains with 50 supplementary 

strain systems. Compare table 7.20. I 

,2 ’ 

-0.331 

-0.532 

+0.351 
+1.208 

+1.$35 
+2.522 

t2.853 

+3.550 

+4.311 
+30763 
- 
- 

- 

I_ 

m= 1 - 
to.564 

t0.998 

t1.627 
t2.423 
t2.744 

t4.026 

+4.059 

t1.891 
t50011 
t3.518 - 
- 
_I 

3 

+Q.186 
+0.282 

-0.253 

+1..15$ 
+1.289 
+2.680 

+2.577 

+3 .GO9 

+4.416 
+?.511 

- 
- 

8 

+0.003 

+o . ooq 
+0.002 

+0.010 

-0.020 

-0.051 
-0.203 

-0.758 

+0.377 

+0.683 - 
- 

- 
7 

to. cog 
t0.013 

-0.001 

tO.083 

-0.045 

1-0.325 

4 .316  
+l. 14c 

+ l e 5 5 4  
+I.. 584 

- 

- 
- 

9 

+o.ooi 
+o . 001 

0.000 

+0.008 

-0.003 

+0.030 

~ -0.021 

+0.159 
-0.129 

+0.6y4 
- 
- 

- 10 

+0,001 

+0.001 

+0,001 

+o.oo: 
-0.002 

+0.010 

-0.032 

-0.05) 
-0.220 

-0.761 
- 
- 



I 
I 
I 
I 
I 
I 

I 
I 
I 

I 

I 

I 
I 

213.45 
65-95 
45.81 
29.84 
13-44 
10.90 

Table 7.22 

213.167 200.82 
6 5 . 8 5 8 .  58.03 
45.580 41.99 
29.651 25.05 
13.387 12.465 
10.775 9.212 

element 1.1 
2.2 
3.3 
4.4 
5.5 
6.6 
7.7 
8.8 
9.9 
10.11 

Comparison of the main diagonal 
elements Cm of the matrices of 
influence coefficients of tables 
7.5, 7.10, 7.14 and 7.19. Elements 

6 multiplied by 10 and expressed in ,inch/lbs. 

From min Porn minimum theorem ther. fo, 
for the stresses the 

s t r u  
0 unkn. 

able 7.1 

382.86 
248.52 

110.58 

58.62 
45.66 
31.23 
13-55 
11.24 

135.74 

217.44 

table 



. 

Normal  
s t r e s s e s  
i n  upper 

booms 
a t  

s t a t i o n :  

2 
Table 7.23Values of s t r e s s e s  i n  lbs / inch  at  s e v e r a l  s t a t i o n s  

Sor v e r t i c a l  loads of  1 l b  i n  a l l  s t a t i o n s .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

- - 
1.858 

I 10 

0.474 
0.811 
1.517 

Shear 
stress i n  3-5 
spa r  webs1 

between 6-8 
the  

s t a t i o n s :  8-1( 
9-11 
10-1; 

t0.865 
-0.178 
-0.643 
-2.273 
-5.707 

I 

(1) 

0 
0 

0.542 
4.309 
4.392 
10.647 
12.307 
17.902 
27.956 
24.195 
60.285 
?1.933 
2.648 
3.888 
6.127 
6.944 
9.911 
9.597 

21.050 

14.615 
11.528 

11.630 
+0.620 
-0.210 
-0.518 
-1.436 
-3.168 

Shear 
s t r e s s e s  
i n  r i b  
webs 

=t k 

( 2 )  

0 
0 

1.550 
4.188 
5.317 
10.805 
12..509 
15.911 
26.890 

58.025 
27.712 
2.232 
4.304 
5 - 724 
7.348 
9.816 
9.792 
14.935 

22.943 

11.209 
21.509 
11.171 
+l.036 
-0.224 
-0.826 
-1.850 
-3 -307 

1-2 
3-4 
5-6 
7-8 

e 9-1( 

(3 1 
0 
0 

1.469 
4.674 
5.369 
10.526 
12 .885 ’ 

17.069 
26.756 
23.481 
57.74% 
26.796 
2.222 
4.314 
5.742 
7.330 
9.842 - 
9.756 
14.930 
11.214 
21.539 
11.121 
+1.016 
-0.252 
-0.832 
-1 .820 
-3.340 

( 4 )  I (5) 

4.949 
6.134 

11.091 
19.131 
27.635 

50.897 
20.500 
2.402 
4.134 
5.847 
7.225 
9.761 
9.8?15 
15.299 

24.275 

11.498 

24.279 

10.845 

5.102 
5.359 
11.501 
12.234 
18.230 
23.747 
21 -141 - - 

Computed m i t h t  

(1) minimum p r i n c i p l e  for t he  s t r e s s e s ,  10 unknowns. 

(2) i d  , 15 unknowns 

(3 1 i d  , 20 unknowns 

( 4 )  minimum p r i n c i p l e  for t he  s t r a i n s ,  50 unknowns 
normal s t r e s s e s  i n  u p p r  spa r  booms, immediately at t i p  s i d e  
of s t a t i o n s .  

i n  upper booms, immediately a t  r o o t  s i d e  of  s t a t i o n s .  
(5) minimum p r i n c i p l e  for the  s t r a i n s ,  50 unknowns normal stresses 



Table 7.24 Values of s t r e s s e s  i n  lbs/inch2 a t  s eve ra l  s t a t i o n s  
f o r  v e r t i c a l  loads of  1 l b  at  s t a t i o n s  1, 3 ,  5, 7 ,  9 
and of -1 l b  at s t a t i o n s  2, 4 ,  6 ,  8 ,  10. 

Normal s t r e s s e s  

i n  u p p r  spar  

booms at s t a t i o n :  

Shear stresses i n  
spa r  webs, between 

the  s t a t i o n s :  

Shear s t r e s s e s  i n  

r i b  webs between 

Computed w i t h :  
(1) minimum p r i n c i p l e  f o r  the s t r e s s e s ,  10  unknowns. 

( 2  1 i d  , 15 unknowns. 

( 3  1 i d  , 20 unknowns. 

( 4 )  minimum p r i n c i p l e  f o r  the  s t r a i n s ,  50 unknowns 
normal s t r e s s e s  i n  upper spar  booms, immediately a t  t i p  s i d e  
of s t a t i o n s .  

minimum p r i n c i p l e  f o r  the  s t r a i n s ,  50 unknowns 
normal s t r e s s e s  i n  upper booms, immediately a t  r o o t  s i d e  of 
s t a t i o n s  

(5 )  



Table 8.1 Numerical values  of 10 6 A (Three types  of  P9 
supplementary s t r e s s  systems) 

p = l  (h-2 ) 2. (n-2 ) 3 (11-21 

matrix D 3 .n 

-5941 
-1502 

- 641 
q 1.n 

2,n 
3 .n 

+l5O2 -641 - 10 6 X 

matrix C -4895 -1770 
+1770 + 321 

q = 1.n 
2,n 
3 .n 

+494 
0 

0 

6 - 10 x 0 0 

+811 0 

0 +80 
matrix D' 

p=Ln 2-n 3.n 

matrix B 

+17420 
0 

-2564 

q = 1.n 

2.n 

3 .n 
I I I 



Table 8.2 
Numerical values of  10 6 kp .(Five types of eupplementary stress systems). 

~l~(n-2) 2.(n-2) g0(n-2) 4.(n-2) 5,(n-2) 

q 1.n +494 
2 .n 0 
3 .n 0 
4 .n 0 
5.n 0 

0 0 0 

+a11 0 +522 

+522 0 +3 84 
0 +80 0 

0 0 0 

q 1.n 

2,n 
3.n 
4 .n 
5.n 

p=Ln 2,n 
$ 

-5941 +1502 -641 0 -3803 
-1502 -4895 -1770 -3827 -125 
-641 +1770 +321 +2123 - l a t o  
0 -3fl27 -212) -1609 +746 
0 -1623 0 -1043 +3 24 5 . 

q l a  +17420 

-25:4 
4on 
5.n +3803 

-641 0 
+1770 -3827 
+321 -2123 

0 

+I5677 
0 

+6611 
-125 

6 0 
-1623 
-1043 

=lo  x 
m a t r i c  C' 

-2564 
0 

+lo3 10 
0 

+le40 

p = 1.n 
2.n 
3 o n  

4.n 
5.n 

0 

+6611 
0 

+lo167 
+746 

+494 0 0 0 0 

0 +a11 0 +522 0 =1c x 
0 0 +80 0 0 
0 +522 0 +348 0 
0 -1623 0 -1043 0 

6 

rratri : D' 

- 

+3 803 
-125 
+le40 
+746 
+I5507 

p=l.(n+l) 2.(n+l) 3.(n+l) 4.(n+l) 5.(n+l) 

-1770 
-3827 

6 =10 x 
matrix D 

6 =10 x 
matrix C 

6 -10 x 
matrix B 

+2123 -1609 -1043 
-1840 1 +746 1 +3245 1 

, 



6 TaSle 3.3 Numarical values of  10 2 (10 types of Bupplemntary s t r a i n  systems),  
P9 

5 V a t r i x  Tx10 . 
7.(n-l) 

0 

0 
0 

0 
0 

0 

0 

0 

0 
0 

8.h-1) 

0 
0 

-1048.7 
+1203 1 

0 

-1276 1 

+ 249.2 

- 410.9 
+1218.1 
- 283.6 

0 

0 

+1218,1 

-2552.3 
0 

+2707,1 
-3045.2 

-1218,l 

-258309 
+1e04.7 

-1105e9 
+1203.1 
+ 850.7 
-2406.1 

0 

i1658.8 
-2126.9 

- 283.6 
-180407 
+ 368.6 

1.n 

2 .n 

3.n 
4.n 
5.n 
6 a n  

7.n 

8.n 

9 Qn 
10.n 

0 0 0 0 
0 0 G 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

~ 

0 
0 

0 
0 

0 

0 

0 

0 

0 
0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 



6 Table s o $  Numerical values of 10 d 
Matrix V X l O  0 

(10 supplementary strain systems 11). 
P9 5 

2.n 

-3609.4 
+3445-2 

0 

0 

0 

0 

0 

0 

-1203,; 
0 

3 on 4 .n 

0 0 

0 0 

+5427.7 -3609.4 
-36094  +a676.a 

0 0 

i1276.1 -2345.9 
- 24902 +3007.9 
-1048.7 +1203.1 

+ 8 5 0 ~ 7  -2406.1 
-1218.1 +2552,3 

1.n 
2,n 
3 .n 
4 on  
5.n 
6,n 
7.n 
8,n 
9.n 

10.n 

8,n 

u8731.9 
-3609,4 

0 

0 

+1186.3 
0 

0 

0 

0 

+1105,9 

0 
0 

-1048.7 
+1203.3 
0 

-1276.3 
+ 249.2 
+5016.E 
0 

-283 5 .E 



6 Table 8.5- Numerioal values of 10 A 
Matrix T ~ X ~ O ~ ~  

(10 eupplementary strain systems 111). 
PP 

- 
1.n 
2.n 
3 .n 
4 .n 
5 a  
6.n 
7.n 
8.n 
9.n 
10.n 

+1218.1 - 283.6 
-2583.9 +180-4.7 
-1ao4.7 + 368.6 



5 
Table  8.6 Matrix HxlO . 

t1186.3 
0 

0 

0 

~2965.9 
0 

0 

0 

0 

0 

0 

0 

0 0 

0 
0 

+1276.1 

-2345.9 
0 

+6193.0 

-3190 a 3  

-2552.2 

0 

+3317.6 

0 

0 

0 
0 

0 

0 

0 

+3019.9 
0 

0 

0 

- 249.2 

+3007.9 
0 

-3190.3 
+6554*6 
+ 498.4 

0 

-4253 -8  

0 
+1701.5 
-4812.4 

0 

+3317.6 
-4253 .a 
-3403 -0  

0 

+7241* 5 

0 

0 

-2097.5 
+2406.2 

0 

-2552.2 

+ 490.4 
+4195*0 

0 

-3403.0 



b Table 8 0 1  10. .Matrix T - T '  0 matrix table 8.3 - matrix table 8.5 

0 

0 

0 

0 

0 

0 
0 

- 249.2 

1-3045.2 
k2126.9 

0 

0 

0 

0 

-1048.7 
+1203.1 

0 

-1276.1 
+ 249.2 

+2435.2 

0 

0 

- 
0 

0 

0 

0 

0 

0 

0 

0 

0 

,1203 o :  

- 

0 

0 

0 

0 

0 

0 

0 

1048.7 
1218,l 
850.7 

0 

0 

0 -  

0 

0 

0 

0 

-1203.1 

t2552.3 
+2406.1 

- 
0 
0 

0 

0 
0 

0 

0 

0 

0 

0 - 

0 
0 

0 

0 

0 

0 

0 

+1276.1 
-2707.1 
-1658. E 

0 
0 

+1218.1 

-255203 
0 

+270'1.1 
-304 5.2 
-2436.2 

0 

+3609.4 

-1105.9 
+1203.1 
+ 850.7 
-2405.1 

0 

+1658,8 
-2126.9 

0 

-3509.4 
0 



n = l  
2 
3 
4 

5 
6 

7 
8 
9 
10 

32.653 42,311 

26,244 36.103 
40.168 19.530 
19.831 29.696 
330760 13.122 

46.576 25.938 

13.429 23.288 
27.352 6.715 

16.880 

Table  8 - 8  Influence aoefficients C&, (Cm Cnm) of the 5 cell swept-box 
6 multiplied by 10 

simplifying assumptions of section 8,6. 
Compare table 7.14 and 7.19. 

an& expressed in inch/lb. Computed with the 

10 1 
0,307 
100472 
0,307 
10.472 
0.307 
10.472 
0,307 
10.472 
0.307 
10.472 

04.79 257.85 
244.6c i 

i ,  , 

3 

298.20 
193.46 
23~l~12 

4 

r67.83 
170.05 
129.38 
131.60 

5 

198.02 
129.08 
159-57 
90.63( 
121.13 

' G  

90.630 
.01.90 
71.406 
82.679 
52.183 
63.455 

- 

7 

iio.65 
71.100 
91,430 
51.876 
72.207 
32.652 
52.983 

; r  j 



Table 8-9  , 

S t a t i o n  

1 

$ 3  2 
fa 
E 

5 
7 

9 

9 4  
2 

c 
+ 
" 5  

i i 8  
%i 10 

Comparison between displacements e s t ab l i shed  w i t h  an elementary 
theory f o r  t he  obl ique beam ( sec t ion  8.6) and wi th  t h e  minimum 
p r i n c i p l e  for t h e  s t r e s s e s  (with 20 unknowns). 

3lementarS 
theory 

-40.35 
-40.67 
-30-49 
-20.33 

-10.16 

51.14 
$0.67 

30.19 
20.33 

10.15 

Loading case A, 
v e r t i c a l  downwardly 
d i r ec t ed  loads  of 1 lb 
i n  s t a t i o n  2 and 
s t a t i o n  3 (fig.7.1) 

for the  

1 
3 
L ? 3  

stresses 
556.05 515.82 

427.58 391.58 
288.65 260.05 

162.53 141,41 
19 1 62-04 1 48.60 

c 10 
h i v e d  

from 
t a b l e  

299.43 291.36 
173 - 3 1  171.78 

72.82 81.57 
10.78 21.57 4 7.11 

Loading case  B, 
vertical  downwardly 
d i r ec t ed  load  of 1 l b  
i n  s t a t i o n  2 and unwardly 
di.rected load of  1' 

1 D;:%,""I 8.8 
t a b l e  

-5 . Displacements i n  10 inch 

b i n  
1 t o r s ion  

Minimum 
pr inc ip le  
for t h e  
stresses 

-31.32 

-34.76 
-26.26 

-16.82 

- 7.73 
62.11 

44.7.5 
3 0 . e ~  

18.84 
8.20 

7-14 



6 Table 9.1 pumerical va lues  of 10 'x f o r  t he  s t r u c t u r e  PQ 
near  t h e  clamped root (fig.9.1)- 

q = 1.1 
201. 

P = i.0 2.C 3.0 5.0 

-4952 +1502 - 641 0 -3803 
-1502 -3272 -1770 -2784 +1498 

q = 1.0 
2.0 

9 = 1.0 
2 .o 
3 00 
400 
5.0 

1 -15021 -12821 1 1+3803 +7711 
-1502 +5216 +1770 +2262 -3370 
-1282 +1770 +4994 +18$0 

+2262 0 +4388 -1340 
+3803 -3370 +la40 -1340 +1226; 

'p = 1.1 2,1 3.1 4.1 5.1 

'4952' 
+1502 - 641 

-3 803 
0 

6 
= 10 X matrix c*' 

6 * 
= 10 X matrix C 

6 - 10 x matrix B** 

P = 1.1 2.1 3.1 4el 5.1 

6 * = 10 X matrix 3 



Table 9.2" Roots of 'x i n  (9.13) together w i t h  t h e i r  corresponding 
.column matrices R, 

' 
= 0,265022 e x p 2  0.73230 i 

1 9 2  
R 

- 0.792771 2 2.74323 i 
i 2.29316 2 2.11288 i - 2,00890 + 0,205721 i 
+ 0.141688 7 0.858861 i 
+ 1,o 

- 

= 0,010259 5 0.18617 i I % * 4  = 0.19708 2 0.17719 i ,b . 
= 0,186452 exp 2 1.51578 i 

R3 14 
+ 0.128175 5 0.478017 i 
+ 2.10405 + 0,274173 i - 2.48997 2 0,305342 i - 0.707807 2 1.53990 i 
+ 1.0 

+O 0079q97 
+s .3 5387 
-0 ~ 7 1 3 0 2  
-5.3 1741 
+1.0 

' x = =  
5 

-0.0990651 

5 
-0,253097 
+0.734260 
+O .329722 
+0,538510 
+ l o o  

R 

-0 0009523 
+2,110645 
+OD 013 8926 
-0 183 812 
+ l o o  

'x 6 = I  , 17= T7T-T- j  
-0,00986230 -0.000736414 

9 , R  



5 Table 9 4  Ysluea of the 10 column matrioas from ( 9.18 ) bftar subntltution of the 9 netnAi, Ai (i - 1...10! givan in table 9 . 2 . l h r l t i p l i . d  b, 10 . 

6 Table 9.4 Va1uea 0-  the IC column matrices C2 fmm (9.19 after subatitution 07 the 9 #eta l ,  Ri (i - 1...10! @vsn in tab:. 9.2. alltip:led by 10 . 

. 
6 - 10 x 

C*t?.* v 2 



.. 

\ 

Po 4~ Q2 

5 p u t i c i p a t i o n  fac tor .  ( u l t .  by 10 
D f  the  supp1.mmtm-y atr... WJ.taP. 

i" o e u  N 1 1-2 2-3 

n C 1 2 

+2815.42 f 984.19 +212.11 TYP rig. 7.3 q1.n 
5p. ria. 1.4 92." . 894.19 + 394.89 r211.71 

q3 ." 5p rig. 1.1 

5P ria. 1.0 q4.n 
95." 5p f i g .  8.8 

1 282.68 + 390.06 f 28.28 
- 43.91 - 34.56 +118.79 
+ 154.31 - 151.83 + 1.90 

-2394.15 

+ 63.90 
* 821.84 



e I e a P 
- 
og 

4-5 

P 

4 

e5 4 e e e, 

+ 8.43 

- 4.54 

+ 8.42 

+ 1.81 
' -  3.91 - 

P e5 4 e e I e, 

5-5 

5 

+3.13 
+1.49 

4.19 
4.9) 

e-9 9-10 6-7 7-8 

6 7 8 9 

0 
0 
0 
0 

4 . 6 3  4.03 -0.03 -0.C1 
+0.01 4.00 rO.00 r0.00 

-0.21 -0.13 -0 .04 -0.01 
+0.22 4.03 -0.00 -0.00 

-3OeS.90 

-11.4476 
-131.236 

5-5 

5 

+3.13 
+1.49 

4.19 
4.9) 

e-9 9-10 6-7 7-8 

6 7 8 9 

0 
0 
0 
0 

4 . 6 3  4.03 -0.03 -0.C1 
+0.01 4.00 rO.00 r0.00 

-0.21 -0.13 -0 .04 -0.01 
+0.22 4.03 -0.00 -0.00 

5 particip.t:on factora (mult.by 10 ) 
o r  t n e  mppiementary atr.ea axstems 

in ce l l  nr 

" 
q1.n 
92." 

%." 
41 ." 
q5.n 

?yp* I:%.?.> 

Type rlg.1.l 

3p f1g.l.l 
Type fig.7.8 
Type fLg.8.8 

1 1-2 2-3 3-4 

C 1 2 3 

-1931.18 -564.74 -103.66 * 2.08 

- 70.67 -331.61 -156.53 -44.30 

- 805.71 -196.30 + 35.13 r33.01 

- 5.19 -119.40 - 63.18 -1.13 

+ 431.19 + 51.96 - 23.13 -16.25 -0.31 4.13 4.01 4 . 0 2  +O.W 0 

Solution for the  

d4.d to a11 th. other a o l u m s  t o  obtain total 

n f i n l t .  b.m for th. 6iv.n 
load (mlt. by 10 b !. h l a  Oolumn h e  to be 

I 



FIG. 3.1 OBLIQUE COORDINATES. 

- y I  ' A  
, 

a)  COORDINATES OF POINT P 6) COMPONENTS OF E R C E  T '  
AN0 OF ROTATION 'p IN THE IN THE OBLIQUE SYSTEM x , y  

\ OBLIQUE SYSTEM ,x,y 

1 F. x 

c)  STRESS FLOW COMPONENTS d )  PROJECTIONS OF DISPLACEMENT 3 
AND OFMOMENTMI IN THE OBLIDUE 
SYSTEM x ,y  

IN THE OBLIQUE SYSTEM x,y 

'FIG. 3.2 THE CONT1"UOUSLY STIFFENED 
PLATE. 

STIFFENERS S,lN 
DIRECTION x 

?, Ak \ STIFFENERS R IN 
DIRECTION y 



I 
~ 

I 
, 

FIG.3.3 RECTANGULAR PLATE WITH A SYSTEM OF 
CLOSELY SPACE0 STIFFENERS. 

~ 

0 

C 

! 
I ![ 

FlG.b.1 OBLIOlJE_ COORDINATES OF FIGURE 3.1 EXTENDED TO 
@ENSIONS. THE z- AXIS IS PERPENDICULAR 

X . 2  -4 f A A . 1 3 .  

FIG. 4.2 MOMENT M' PERPENDICULAR 
- TO y AN0 z AXIS WITH 

FIG.4.3 MOMENT M' PERPENDICULAR 
TO x AN0 z AXIS WITH 

PROJECTIONS Mx&fy%Mz& PROJECTIONS Mx=O - r - y - z -  M . M  10 

- 
Y 

MAGNITUDE 
M, f sin 8 

7 
Y 

I 



,, 2 c  

FIG.5.1. RECTANGULAR PLATE WITH STIFFENERS. 

T 
0 

1_ 
Y 

___c 

DIRECTION OF 
STIFFENERS S 

DIRECTION OF 
STIFFENERS R 1 

FIG.5.2 PARALLELOGRAM SHAPED PLATE WtTH STIFFENERS. 

- - 
DIRECTION OF 
STIFFENERS S 

DIRECTION OF 
' \ STIFFENERS R 



FIG.Z1 PLANFORM AND CROSS SECTION OF THE 45" SWEPT 
BOX WITH RIGHTHANDED OBLIQUE COORDINATE SYSTEM, 

zi 
i= 
% SECTION A - A  

FIG.7.2 CROSS SECTION A - A  OF THE SWEPT BOX OF 
FIG. 7.1 WITH THE DIMENSIONS OF THE STRUCTURAL 

ELEMENTS. 
0.032" 0.059 INCH 0.3819 INCH' 

74-- 0.051,~7-3,, 
- 

12" 

i 
2 



F I G . 1 3  SUPPLEMENTARY STRESS SYSTEM. TYPE I. 
FORCES IN lbs. STRESSFLOWS IN lbs l inch . 

NORMAL FORCES I N  
UPPER SPAR BOOMS 
AN0 RIB FLANGES 

- 2 4  

X 

+24’  \ Y  

STRESSFLOW Sx 

STRESSFLOW S y  

STRESSFLOW t 

SHEAR STRESSFLOW 
IN  wEas 

I 



FlG.7.4 SUPPLEMENTARY STRESS SYSTEM. TYPE 2. 
FORCES IN I bs. STRESSFLOWS IN 1 bs 1 inch. 

NORMAL FORCES IN 
UPPER SPAR BOOMS 
AND RIB FLANGES 

X 

- 16.9705 \ 
~\ Y 

STRESSFLOW s x  

RIGHT SIDE 

s -- 1 1 2 - x )  I 
X x - 6  

\ 

t Y  

.- 
STRESSFLOW t 
RIGHT SIDE 
t= y / 6  

+ 1.41421 -7.41421 

‘\I - 1.41421 

SHEAR STRESSFLOW 
IN WEBS 

.. 

I \ 

Itsst LU w 

cl 



NG.7.5 POSITION OF SUPPLEMENTARY STRESS SYSTEMS. 

16 
r\ ' 11 
\. 6 

Nr I ,  2 , 3  , 4  , 5  TYPE I ,  F I G . 7 . 3  
6 ,  7 ,  8 ,9 ,10 TYPE 2, F I G . 7 . 4  
1 1 , 1 2 ~ 1 3 , 1 4 , 1 5  TYPE 3 ,  F I G . 7 . 7  
1 6 , 1 7 , 1 8 , 1 9 , 2 0  TYPE 4 ,  F I G .  7.8 



FIG. Z6 BASIC STRESS SYSTEMS FOR THE m LOAGNVG CASES. 

REAR SPAR 
m= 1 

, 
FRONT SPAR 

m, 2 

S i f A R  STRESSFLOWS I N  
SPAR WEB,; , Ibs / inch , ,'.,A 

I: :. , ,/'. ' i. i , . i .i ,' 
. _  

m.9 

1 

m=10 



FIG.7.7 SUPPLEMENTARY STRESS SYSTEM. TYPE 3 .  
FORCES I N  lbs .  STRESSFLOWS IN lbslinch 

NI 0.0081842 y 3  - 0.58926 y 

-X 

STRESSFLOW Sx 

I RIGHT SIDE 

" . 
Sx = 0.0491053 (12- X I  y 

STRESSFLOW f 
R l G H T  SIDE 

- 1.1 7852 + 1.17852 

+ 0.58926 t = 0.024552 y2- 0.58926 

- 1.1 7852 + 1.1 7852 

\ y  

SHEAR STRESSFLOW 

I 



FlG.Z8 SUPPLEMENTARY STRESS SYSTEM. TYPE 4 .  
FORCES IN lbs.  STRESSFLOWS IN l b s l i n c h .  

NORMAL FORCES IN 
UPPER SPAR BOOMS 
AND RIB FLANGES 

Irr2 
? 2  - 4.500 I o -  

X Q 
Q U  

N*-0.000868056 y 4  + 0.125 y 2  

$ Z  - 4 5  

0 %  
“ u 1  e 

\Y 

- 6  STRESSFLOW s, 

x 
x =  +0.0104167 x y2-0.125 y2 

-0.25 x + 3 

STRESSFLOW t 
RIGHT SIDE 

t = - 0.00347222 y3+  0.25 y 

\ Y  

~ SHEAR STRESSFLOW 12’. - 
IN WEBS 

I 



FlG.Z9 SUPPLEMENTARY STRAIN SYSTEM. TYPE 1.  
DISPLACEMENTS IN INCHES 

VERTICAL DISPLACEMENTS OUT OF CELL : Z E R O  
DISPLACEMENTS AT THE CORNERS OF THE CELL :ZERO 

DISPLACEMENTS W I T H I N  CELL 

- 

1 9 % -  

1 

NORMAL STRAINS IN  UPPER BOOMS D 8.4852 * 

0 

8.4852" 103Ex= X - 6  

RIB FLANGES E x = O  

STRAIN Ex I N  UPPER S K I N  

3 10 E X = X - 6  

\ y  

STRAIN E,, IN UPPER S K I N  

- - - - - c x  €y = 0 _ _ _ _ _ _ -  

/ 

\ Y  

STRAIN y I N  UPPER SKIN 

D 
Y - 0  

- X  -- 'w 

STRAINS I N  WEBS 

' SPAR WEBS 
3 1 (10 Ex 3 - 3 - xz+2zJ 

Ez = 0 

' 103y=4 



FlG.Zi0 SUPPLEMENTARY STRAIN SYSTEM. TYPE 2 .  
DISPLACEMENTS IN  INCHES 

1 VERTICAL OISPLACEMENTS OUT OF CELL:ZERO 
DISPLACEMENTS -. AT THE CORNERS OF THE CELL:ZERO 

12 " - 
,9705'' 

\ \ \  8.4852" 

Y 

DISPLACEMENTS W I T H I N  CELL 

UPPER SKIN 
LOWER SKIN 1 , ' x i o  10 uv = i x 2 - 6 x  1 REEVEiEO 

NORMAL STRAINS I N  UPPER SPAR 
BOOMS AND RIB FLANGES 

4 

STRAIN Ex I N  UPPER SKIN 

\;\Ax 

STRAIN E,, I N  UPPER SKIN 

---x " 

STRAIN Y IN UPPER S K l N  

- x  103Y = x - 6  

STRAINS IN  WEBS 

_ _ _  
\ 
\ 
\ 
\ 

Y 

I 



FIG.Il1 SUPPLEMENTARY STRAIN SYSTEM. li TYPE 3. 
DISPLACEMENTS IN INCHES 

VERTICAL DISPLACEMENTS OUT OF-: ZER 0. 
DISPLACEMENTS A T  THE CORNERS OF THE CELL: 

Y- 12” “.\ 

\ Y  

- + x  

ZERO OISPL ACEMEN TS WITHIN c E i  L 

2 
UPPER SKIN 

lo3 U x d ;  x 2 y  -6xyll8.4852 

f03Uy*k- I 3  X +3X2-12x)/8.4852 

fo3uz =& x3-x2+ 4x SIGN 

1 0 3 u x * - ~ x 2 2  +2xz 

6 

SPAR WEB 
Y -  -8.4852 

SPAR WEE y.8.4852 

NORMAL STRAINS -IN UPPER SPiR 
BOOMS AND RIB FLANGES 

SPAR BOOM y.8.4852 

103EX=X-6 
SPAR BOOM Y--8.4852 

1 0 3 ~ ~  = - x  + 6 

STRAIN EX I N  UPPER SKIN 

3 XY-6y Y ~ X - 6 1  
10 Ex = - * 

8.4852 8.4852 

STRAIN E,, I N  UPPER SKIN 

Ey = 0 

STRAIN y IN  UPPER SKIN 

-12 
8.4852 

= -1.41421 3 10 y =  

STRAINS I N  WEBS 
> 

SPAR WEE y.8.4652 I 
SPAR W E B  

REVERSED SIGN 
y= - 8.4852 

(103,  - - ~ ~ + 2 2 1  1 
x - 3  

EZ = 0 

1 0 3 ~  = 4  



FIG.212 SUPPLEMENTARY STRAIN SYSTEM, TYPE 4 

DISPLACEMENTS IN INCHES. 

VERTICAL DISPLACEMENT5 OUT OF C E L L :  ZERO 
DISPLACEMENTS AT THE CORNERS OF THE CELL:ZERO DlSPL ACEMENTS WITHIN CELL 

UPPER S K I N :  

. %  -0 
3 - X2Y-12XY xyix-12)  IO uy. 

8.4852 8.4852 

LOWER S K I N :  
REVERSED SIGN. 

I 

NORMAL STRAINS I N  UPPER SPAR 
BOOMS AND RIB FLANGES 

- -x  
8.4852 '' 

\--- - __. 

T_\.\--. 7 10 3 max=-4.24264 

STRAIN Ex I N  UPPER SKIN 

Ex =o 

STRAIN E y  I N  UPPER S K I N  

~0.717852 X(X-121 
x2- 12x fo3, = 
8.4852 

STRAIN y I N  UPPER SKIN 

8.4852 8.4852 

STRAINS IN WEBS 



FlG.Zl3 SUPPLEMENTARY STRAIN SYSTEM. TYPE 5 .  
DISPLACEMENTS IN INCHES 

SPAR WEBS 

u,=o 
10 3 UZ"X 

> 
STRAIN E X  I N  UPPER SKIN 

STRAIN EV I N  UPPER SKIN 

STRAIN y I N  UPPER S K I N  

V X  
wx J 

NORMAL STRAINS I N  UPPER SPAR 
BOOMS AND RIB FLANGES 

2 
L 3  

v) 

P 

0: 

14 
> q  

z 

\ 

2 
k! 

2 
v) 

e ru 
0 
4 

3 



FlG.7.14 SUPPLEMENTARY STRAIN SYSTEM. 
OISPLACEMENTS IN INCHES 

TYPE 6 .  

VERTICAL DISPLACEMENTS OUT OF CELL :VIDE TABLE Z16 
DISPLACEMENTS AT THE CORNERS OF T H E  CELL DISPLACEMENTS WITHIN CELL 

UPPER SKIN 

, 1 0 3 ~ x = 3 ~  
uy so 

SPAR WEBS 
i 0 3 ~ ~ = -  x Z  

NORMAL STRAINS IN UPPER SPAR 
BOOMS AND RIB FLANGES 

SPAR BOOMS 

1 0 3 ~ ~  = 3  

STRAIN EX IN  UPPER S K I N  

3 
. a x  10 Ex = 3  

STRAIN EY IN UPPER SKIN 

EY' 0 

STRAIN )' IN UPPER SKIN 

y.0 

- - s x  

STRAINS I N  WEBS 

SPAR WEBS 

( 1 0 3 ~ ~ ~ - 1 )  

Ez = 0 

Y = O  

cl 
Lu 
v) 
P 

Lu 
P 

2 

2 

% 



FlG.;!15 SUPPLEMENTARY STRAIN SYSTEM. TYPE 7 .  
DISPLACEMENTS IN INCHES 

I 

VERTICAL DISPLACEMENTS OUT OF CELL: VIDE TABLE 
DISPLACEMENTS AT THE CORNERS OF THE CELL 

SPAR WEB 

y = - 8 . 4 8 5 2  
REVERSED SIGN 

ux:o 
lo3 uz=lox 

- - \ Uy=0.0424268 72 

16.9705" 
uz.-0.120 \ ~ 

8 . 4 8 5 2 "  

NORMAL STRAINS I N  UPPER SPAR L U Q  
BOOMS AND RIB FLANGES 

B-. 
\ Y  

. x  

= t  \ Y  

+ X  

STRAIN E X  I N  UPPER SKIN 

STRAIN Ey  IN UPPER SKIN 

STRAIN Y IN UPPER SKIN 

STRAINS IN W E B S  

SPAR W E B  y . 8 . 4 8 5 2  SPAR W E 8  
y a - 8 . 4 8 5 2  I REVERSE0 SIGN 103 y =IO 



. .  

8 . 4 8 5 2  

I ' \ Y  

STRAIN Ey IN UPPER SKIN 

E y  s o  

FIG.116 SUPPLEMENTARY STRAIN SYSTEM. TYPE8. 
DISPLACEMENTS I N  INCHES 

z 
v) 
0 
a 
u 
v) a 

VERTICAL DISPLACEMENTS our OF CELLS :ZERO 
DISPLACEMENTS AT THE CORNERS OF THE CELLS 

)OISPLACEMENTS WlTHlN LEFT CELL 
,SI 

u a  
5 %  
* l G 7  
" g , $  
$ 2  
0 i 4 

J 
NORMAL STRAINS I N  
UPPER SPAR BOOMS 
AN0 RIB FLANGES '4852" 

\ 

, \ Y  

1035. = -2  + 2  1 STRAIN Ex IN UPPER SKIN 

c Y 
5 

I t :  
S T R A I N Y  I N  UPPER SKIN a 

ul 
f 

- X  103y - 1.41421 2 

STRAINS IN WEBS 

1 
' 1  

LEFT SPAR W E B  ~ ~ 8 . 4 8 5 2  
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f I G . Z l 7  SUPPLEMENTARY STRAIN SYSTEM. TYPE9. 
DISPLACEMENTS IN  INCHES 

DISPLACEMENTS W I T H I N  LEFT 
, CELL 

\ -  -- 

VERTICAL DISPLACEMENTS OUT OF CELLS :ZERO 
DISPLACEMENTS AT THE CORNERS OF THE CELLS 

12" -, 12" , 
LEFT UPPER SKIN 
ux.o 
1O3UY = J x  

CENTER RIB W E B  

1 0 3 ~ ~  .'-12= 

u p 0  

LEFT LOWER 

* SIGN 

REVERSED SIGN 
- 

l u o  

s 2 2 -  
3 2 -  I 0, 

NORMAL STRAINS IN 
UPPER SPAR:BWMS ' 

8.4852" AN0 RI8  FLANGES 
- -X 

8.48 52" 
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FIG.?. 18 SUPPLEMENTARY STRAIN SYSTEM. N P E  10. 
DISPLACEMENTS IN INCHES 

DISPLACEMENTS WITHIN LEFT CELL 1 VERTICAL OISPLACEMENTS OUT OF CELLS:ZERO 
OISPLACEMENTS AT THE CORNERS OF THE CELLS 

LEFT LOWER SKlN 

REVERSED 
SIGN 

LEFT UPPER SKIN 

CENTER RIB  W E B  

NORMAL STRAINS IN 
UPPER SPAR BOOMS 

8.4852" AND RIB  FLANGES 

CENTER R I B  FLANGE 

Ey .4  
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FIG, 7.19. POSITION SUPPLEMENTARY STRAIN SYSTEMS. 

ROOT 
SECTION 

31 
26 
21 

NR. 1--- 5 TYPE 1, FIG. 7 . 9  
E--- 10 TYPE 2, FIG. 7.10 
11---15 TYPE 3, FIG. 7.17 
16--.20 TYPE 4, FIG. 7.12 
21.-.25 TYPE 5, FlG.'7.13 
26-- 30 TYPE 6, FIG. 7.14 
31-.-35 TYPE 7, FIG. 7.15 
36K-40 TYPE 8, FIG. 7.16 
41-._445 TYPE 9, FIG. 7.17 
46--.50 TYPE 10, FIG.7.18 
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FIG. 7.20. VERTICAL LOAD OF 1 lb IN STATION 3, NORMAL STRESSES IN UPPEk‘ SPAR BOOMS. 

_ _  - - - - - - M I N I M U M  PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS -_--  MINIMUM PRINCIPLE FOR THE STRESSES, 15  UNKNOWNS 
MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS 

M I N I M U M  PRINCIPLE FOR THE STRAINS, 50 UNKNOWNS 
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FIG. 7.21. VERTICAL LOAD OF 9 ib IN srArtoN 3, SHEAR STRESSES IN SPAR AND RIB WEBS.  

1 -  

0 

2 J 

:”: t .3e3 *h14 + .374  - ,303 
- .349  + . 4 7 1  

REAR SPAR 

- - - - - - - - MINIMUM PRINCIPLE FOR THE STRESSES. 10 UNKNOWNS _ _ -  - MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS 
M I N I M U M  PRINCIPLE FOR THE STRESSES, 20  UNKNOWNS 
MINIMUM PRINCIPLE m R  THE STRAINS, 50 UNKNOWNS 

\ - . 2 3 9  
- .308 

- / 
SHEAR STRESSES IN THE RIBS IN THE ORDER OF THE 4 APPROXIMATIONS, LISTED ABOVE, 
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FlG.7.22. VERTICAL LOAD OF I fb I N  STATlON3, STRESSFLOWS ( lbs / inc l : I  I N  UPPER 
REINFORCED SKIN (COMBINATION OF SKIN AND EQUIVALENT STRINGER PLATE).  

DIAGRAMS FOR S y .  BETWEEN TWO CONSECUTIVE RIBS S x  VARIES LINEARLY WITH x .  
IO 8 6 4 2 12 

\ \  - - 
i I 9 7 5 3 1 
\ I LOA0 

SCALE FOR THE STRESSFLOWS S x  AN0 t e = 45 * FRONT SPAR I l b  
6 4 2 

l , , , \ l , , > , l  , , , I  I , , , I  1 1 , , , )  I 
- T  \ V I  -7 --, 

0 0.1 0.2 0.3 lb&Ch 

REAR SPAR sy.o 
OlAGRAMS FOR t .  B E T W E E N  TWO CONSECUTIVE RleS t DOES NOT VARY IN x DIRECTION. 

12 10 8 6 4 2 

X 

9 7 5 3 I 

M I N I M U M  PRINCIPLE FOR T H E  STRESSES 10 UNKNOWNS 
M I N I M U M  PRfNCIPLE FOR THE STRESSES 15 UNKNOWNS 
M I N I M U M  PRINCIPLE FOR T H E  STRESSES 20 UNKNOWNS 

- - - - - _ _  



FIG. 7.23. 

EEX 

ERTICAL LOAD OF 1 l b  IN STATION 3. STRAIN E x  (MULTIPLIED WITH E l  I N  UPPER SPAR 
LOOMS AND IN SKIN IMMEDIATElY ADJACENT TO THE SPAR BOOMS, AS COMPUTED WITH 
HE M I N I M U M  PRINCIPLE FOR THE STRESSES AND USING 20 SUPPLEMENTARY STRESS 

4 -  SYSTEMS. 
EEX I N  SPAR BOOMS 

- - - - - - - - € E X  IN SKIN IMMEOIATELY 
10- ADJACENT TO SPAR BOOMS. 

2 -  1 bs / inch2 . 
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6 0 
12 

ERTICAL LOAD OF 1 l b  IN STATION 3. STRAIN E x  (MULTIPLIED WITH E l  I N  UPPER SPAR 
LOOMS AND IN SKIN IMMEDIATElY ADJACENT TO THE SPAR BOOMS, AS COMPUTED WITH 
HE M I N I M U M  PRINCIPLE FOR THE STRESSES AND USING 20 SUPPLEMENTARY STRESS 

4 -  SYSTEMS. 
EEX I N  SPAR BOOMS. 

- - - - - - - - € E X  IN SKIN IMMEOIATELY 
10 ADJACENT TO SPAR BOOMS. 
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FIG.7.24. VERTICAL LOAD OF I l b  INSTATION 4 .  NORMAL STRESSES IN UPPER SPAR BOOMS 

- - - - - - - - M I N I M U M  PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS 
- -__ M I N I M U M  PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS 

M I N I M U M  PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS 
M I N I M U M  PRINCIPLE FOR THE STRAINS. 5 0  UNKNOWNS 
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FIG. 7.25. VERTICAL LOAD OF 116 INSTATJON 4. SHEAR STRESSES IN S P A R  AND RIB WEBS. r 
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FIG. 7.26. VERTICAL LOAD OF 1 lb  IN STATION 4 .  STRESSFLOWS ( Ibs  inch) I N  UPPER 
REINFORCED SKIN.(COMBlNATION OF SKIN AND EQUIVALENT STRINGER PLATE) 

OIAGRAMS FOR S x .  B E T W E E N  TWO RIB P L A N E S  sx VARIES LINEARLY W I T H  x .  
\ 10 8 6 4 2 
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12 10 6 6 4 2 

il 9 7 5 3 1 

- - - - - - - M I N I M U M  PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS __-- M I N I M U M  PRINCIPLE FOR T H E  STRESSES, 15 UNKNOWNS 
M I N I M U M  PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS 



F I G .  7.27. VERTICAL LOAD OF 1 Ib IN STATION 4. STRAIN EX (MULTIPLIED WITH E )  
IN UPPER SPAR BOOMS AND IN SKIN fMMEDlATELY ADJACENT TO THE SPAR 

-.I--- AND USING 20 SUPPLEMENTARY STRESS SYSTEMS. 

r b s / i n c h 4 Z  E t  X ~ ~ ~ P U T E D  WITH THE MINIMUM PRINCIPLE FOR THE STRESSES 
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I F16.7.28 SWEPT BOX ANALYSED BY MORLEY 
I 

I STRAIN ex IMULTIPLIED WITH E )  IN UPPER SPAR BOOMS 
AND IN SKIN IMMEDIATELY ADJACENT TO THE SPAR BOO- 
FIRST LOADING CASE DERIVED FROM REF. 34 

I 

' EE.7 ibs / inch2 
I 

1 2 3 4 RI 
DISTANCE ALONG SPAN ni 

I 
I 

I 

R I B  0 
ROOT 

2 3 4 R I B  5 
DISTANCE ALONG SPAN TIP 



FIG.129 SWEPT BOX ANALYSED BY MORLEY. LOADING CASE OF FIG. 128 
STRESSFLOW t IN UPPER COMPOSITE SKIN (COMBINATION OF 
SKIN AND EOUIVALENT STRINGER PLATE). DERIVED FROM REF. 34 

STRESS FLOW t IN BAY 

STRESS FLOW t IN BAY 4 

I I 

I- I I 

STRESS FLOW t IN 0 A  
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FIG. 7.30 SWEPT BOX ANALYSED BY MORLEY. 

AND IN SKIN IMMEDIATELY ADJACENT TO THE SPAR BOOMS. 
SECOND LOADING CASE DERIVED FROM REF. 34. 

STRAIN ex (MULTIPLIED WITH E )  IN UPPER SPAR BOOMS 
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FlG.231 SWEPT BOX ANALYSED BY MORLEK LOADING CASE OF FlG.130 

FR 

S I N  
OF SKIN AND EQUIVALENT STRINGER PLATE). DERIVED FROM REF. 34. 
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FIG. 8.1 

* I I h 

X ,  t - - - 

F GROUPS OF SUPPLEMENTARY STRESS SYSTEMS IN THE CELLS 0 
AN INFINITE BOX BEAM INDICATED BY THE COLUMN MATRICES le.!) 
OF THEIR PARTICIPATION FACTORS. 
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F I E .  8.2. ,JPPLEMENTARY TRESS SYSTEM. TYPE 1 
IN TERMS OF CELL DIMENSIONS. 

NORMAL FORCES IN 
UPPER SPAR BOOMS 
AND RIB FLANGES 
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FIG.8.3 SUPPLEMENTARY STRESS SYSTEM TYPE 2 
IN TERMS OF CELL DIMENSIONS. 

-. NORMAL FORCES IN 
UPPER SPAR BOOMS 
AND RIB FLANGES 
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FIG. 8.4 SUPPLEMENTARY STRESS SYSTEM 
IN TERMS OF CELL DIMENSIONS. 

TYPE 3 
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UPPER SPAR BOOMS 
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FlG8.5. BASIC STRESS SYSTEM FOR THE CELLS A T  L O A D  
M'r M, , My = 0, M, 0 0  I IN TERMS OF GEL L DIMENSIONS. 

\ Y  

NORMAL FORCES IN 
2 UPPER SPAR BOOMS 

AND RIB FLANGES 5 ;  
v) 
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FIG.8.6. BASIC S T R E S S  SYSTEM FOR THE CELLS A T  LOAD n( Mx = 0, My , M, = 0 I IN TERMS OF CELL DIMENSIONS. 

UPPER SPAR BOOMS 2 b z  9 ,  AND RIB FLANGES 
X WJ 

&:-A 4 b sin 8 

\ Y  
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FIG.8.2 BASIC STRESS SYSTEM FOR THE CELLS AT LOAD 
-P 

K ( O , O , K , )  IN TERMS Of CELL DIMENSIONS. 

\ RIB n \ 
X ’  

‘.\Y 

- X  

\ 

NORMAL FORCES IN 
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NG.8.8. SUPPLEMENTARY STRESS SYSTEM TYPE 5 
FORCES IN lbs. STRESSFLOWS IN l b s / i n c h  ~ 

NORMAL FORCES IN 
UPPER SPAR BOOMS 
AND RIB FLANGES 8 4852 

X _ _ _ -  

STRESSFLOW s, 
sx =E I x 2  - L x  
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FIG. 8.9. SUPPLEMENTARY STRESS SYSTEM TYPE 6 
FORCES IN lbs. STRESSFLOWS IN lb-in. 
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FIG. 6.11 STRAIN (MULTIPLIED 'WITH E I IN R IB  FLANGE ( lbs/ incn21 
AND IN THE ADJACENT SKIN PANELS OF THE INFINITE BOX 

BEAM AT LOAD Z(Mx=1,0 ,01  

EEY \ '  0.1 0.2 0.3 0.4 0.5 I b s / i n c h 2  
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YIN 
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L S T R A l N  ADJACENT SKIN 
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FIG.  8.12 STRAIN E, (MULTIPLIED WITH E )  IN SPAR BOOM 
( lbsI inch2)  AND IN ADJACENT SKIN OF INFINITE BOX BEAM 

AT LOAD Z O ,  M y = l , O )  

-0.1 

1- 
--\ -- 

SPAR BOOM 
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FIG. 8.14. APPLICATION OF A MOMENT G(Mx,O,Oj TO THE RIGHT 
END BY MEANS OF FORCES P. 

tp._M_L(_.Mx 
2 c  s i n 0  12 

t Y DIRECTION 
z DIREC TION 

FIG. 8.15. APPLICATION OF A MOMENT C(O.MY,OI  TO THE RIGHT 
END BY MEANS OF FORCES P. 

\ Y DIRECTION 
Z DlREC TION 

P-My/4b sin 9 

FIG. 8.16. APPLICATION OF A FORCE ~ ( O , O , K , )  BY MEANS OF FORCES P 
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FIG. 8 1% ELLIPSES INDICATING THE ENDPOINTS OF MOMENTVECTORS 
WHICH CAUSE A STRAIN ENERGY OF 12 lbs x inch PER 
CELL. OBLIQUE RIBS. 

SCALE MOMENTVECTOR 

- 1 DISCRETE RIBS. MIN. PRINCIPLE FOR THE STRESSES WITH 3 TYPES OF 
SUPPLEMENTARY STRESS SYSTEMS. ALSO EXACT SOLUTION FOR BOX 
BEAM WITHOUT a m .  

- 2 DISCRETE RIBS. MIN. PRINCIPLE FOR THE STRESSES WITH 5 TYPES OF 
SUPPLEMENTARY STRESS SYSTEMS. 

- 3 DISCRETE RIBS. MIN. PRINCIPLE FOR THE STRAINS. 
ALMOST THE SAME AS 4. 

- 4 CONTINUOUSLY DISTRIBUTED RIBS ( H E M P ' S  SOLUTIONI. EXACT SOLUTION. 

- 5 CONTINUOUSLY DlSTRlBUTED INFINITELY STIFF RIBS. EXACT SOLUTION. 



FIG. 8.18. ELLIPSES INDICATING THE ENDPOINTS OF MOMEMT- 
VECTORS WHICH CAUSE A STRAIN ENERGY OF 
12 lbs x inch PER CELL. NORMAL RIBS. 

SCALE MOMENTVECTOR - 
lo4 f b  m inch 

. .  

. .  

THE ELLIPSES 1 . . . . 5 .  FROM W H I C H  THE ELLIPSES 1 . . . . 4  ALMOST COINCIDE, 
CORRESPOND WITH THE S ELLIPSES OF FIG.8.18.  



FIG. 8.19. APPLICATION OF AN ELEMENTARY THEORY FOR 
THE OBLIUUE BEAM. 

ROOT PLANE 

DEFORMED RIB PLANE OF INFINITE BEAM. TOP 
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FlG.9.1. GROUPS OF SUPPLEMENTARY STRESS SYSTEMS IN THE CELLS OF A SEMI INFINITE 
BOX BEAM WITH ONE CLAMPED END. EACH GROUP 2, CONSISTS OF THE 
5 TYPES FIG. 7.3.7.4.  7.7. 7.8. A N D 8 . 8 .  

'2" 



FlG.Q2. STRESSES IN SPAR BOOMS AND WEBS AT LOAD ;( M, = I ,  My = 0. MI* 

2 4 6 8 10 12 14 16 18 



FIG.9.3. STRESSES IN'SPAR BOOMS AND WEBS AT LOAC T ( M x = O ,  -_ M y =  I, M Z- a01 
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The r i b e  a r e  placed p a r a l l e l  t o  t he  long i tud ina l  d i r e c t -  
ion of t h e  a i r c r a f t .  There a r e  obl ique panels  between 
the  r i b s  and the  spa r s .  A e t r u c t u r e  w i t h  such obl ique 
panels asks  methods of  s t r e s s  ana lyses  q u i t e  d i f f e r e n t  
from those  ueed f o r  non-swept wings. Methods based  on 
the  p r i n c i p l e s  of v a r i a t i o n  ca l cu lus ,  t h e  uae of obl ique 
coordinates  for s t i f f e n e d  s k i n  panels  and matr ix  nota- 
t i o n  a r e  developed. Applicat ion t o  a s t r u c t u r e  wi th  5 
r i b s ,  t o  t h e  i n f i n i t e l y  long beam and t o  t h e  r o o t  rest- 
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