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Summafz.

Existing methods to analyse discontinuous aircraft wing structures
(discrete-rib theories) usually start with the assumption of the only-shear
carrying plate, which means that the spar~- and Ttib webs as well as the skin
panels are supposed to carry only shear stresses along their edges, If con-
sidered necessary, their normal stress-carrylng capacity is added to the
adjacent booms and flanges., In this way, the wing structure is made finite-
fold statically indeterminate and the exact sclution for this simplified
structure can be obtained by various methods of analysis, which, of course,
all yield the same answers, This method is correct in general for rsctangular

or nearly rectangular panels, It appears however that this method yields

erroneous results if applied to oblique panels, like those occurring in swept
wings with ribs parallel to the flight direction,

Methods exist for non-swept wings where the ribs are considered to be -
infinitely stiff in their planes and where these ribs are assumed to be
continuously distributed along the span, This schemeproves to be inadequate
when applied to swept wings with ribs in flight direction,

In the present work discrete deformable ribs are assumed and the
stress~strain relations of the oblique skin panels are not or hardly sim-
plified. The structure then consists of a great number of stiructural ele~
ments, in which the state of stress is either one—dimensional (only normal
force carrying sparbooms and rib flanges, only shear carrying spar- and
Tib webs) or two-dimensional {the oblique skin panels together with the
continuously distributed stringers). The latter skin panels make the
structure infinitely-fold statically indeterminate and only approximations
for the displacements, strains and stresses can be obtained by means of the
principles of variational calculus {minimum of the complementary energy and
minimum of the potential energy). The type of the structure asks for a
special form of application of these principles, where the use of oblique
coordinates and matrix notation is of great importance.

Both the variational principles mentioned are used in order to compare
their results for a five-cell swept box beam clamped at one side, Besides,
for important displacements upper and lower bounds between which the exact
anawers must lie are determined,

With the object to establish an elementary theory for swept beams
corrasponding to the elementary theory for straight beams the relations
between siress, curvatures and load are determined for the infinitely long
beam under constant shear load, In addition, the root effect for the clamped
semi-infinite swept box beam has been established.




Notations,
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Elasticity modulus .
Roiason ratio,

Sheaf modulus,

Coordinates in an oblique plane coordinate system.
Coordinates in a right handed oblique'édordinate
system. The z-axis is perpendidulgr to the x and the
y—axié,

ingle between x and y axes .

Plate thickness .

Stress components in an oblique ooordinate syatem
T is also a shear stress (in ™ rectangular system)
in rib— Or spar websa ,

Stresaflow components, In an dbliqug system, 8.

and By are ocalled "axial stressflows", j"tangential
stregsflow"”, A "shear stressflow" t may also ocecur

in rib or spar webs,

Force with its components in the obliqus system
x,¥y2 (fig. 3,1b).

Displacement with its orthogonal projections on the
oblique coordinate axes x,y and z (fig. 3.14) . |
Righthanded moment with its projections (fig.3.1d).

Righthanded rotation with its components (fig.3.1b).

Strain components in an oblique coordinate system
x,¥. The components Ex and sy are called "axial
strains" and Y "tangential strain"., In spar booms
€ is a noimal strain_and ig rib booms sy is a

normal strain,

Also shear strain in a rib web .

Also shear strain in a spar web .,




aij Stiffness matrix of the stress-strain relations 3
Y

[ E 4+ a

8 x ¥ 1%y

x = %11 13

sy = a2lex + azzey + a23Y

1 = aBlax + a32£y + 3337

835 B3y

14 Flexibility matrix of the strain-stress re-

lations ,
ex = Allsx + AIZSy + A13 k

Ey - AElsx + AZZSy + A23 t -

Y = A8 + A
X

1 8 + A t

327 33

, Agg = A5 o
v¥ Complementary energy, defined by (6.1) .
v ' Potential energy, defined by (6.27) .

For the dimensions of the awepti-back box see also the notations
of section 7.2 and 7.3.




1 Introduction.

The characteristic feature of the planform of an aireraft wing,
called swept wing, is such that the leading edge makes a large angle with
the lateral axis of the aircrafty in flight direction the wing tip is aft
of the wing root, The structural consequence is that the spars are not
normal or approiimately normal to the plane of symmetry of the wing, which
introduces a distinct obligueness of the structure, The stiffness of the
skin tzkes part in this obliqueness, As far as the ribs are concerned there
are two possibilitiesj the rib planes can be either approximately normal
to the spars, or they can be'placed parallel to the plane of symmetry.

In the first case the structural problem differs from the problem
with the mtraight, i.e. non swept wing, bnly by the fact that the analysis
has to account for the stiructure of triangular planform between the rib
at the root of the swept part of the wing and the plane of symmetry. This
monoéraph deals with the sfructure where the ribs are parallel to the
plane of symmetry, Then the angles between the ribs and the spars or the
skin stiffeners differ considerably from the right angle and the skiﬁ
panels between the ribs and the spars are distinctly oblique., Consequently
the methods of analysie for straight wings are not applicable to the swept
‘gtructure,

For straight wings there are two methods of stress analysis, The first
method starts from the well known theories of' the cylindrical beam loaded
by & bending moment, by a torsional moment {De Saint Venant, ref.1} and by

a shear foroe {De Saint Venant, ref,2), For thinwalled cylinders, where a
croas section may consist of more than one celll), loaded in bending a
gpecialization is superfluous, For torsional load the specialization was
given by Bredt, ref.33 for shear load specializations were given by Van der
Neut, ref.4, leibenson, ref.5 and Koiter, ref.6, Ref, 4 ié valid for the
case where a continuum of ribs infinitely stiff in their plane is present
(or if Poismon's ratio V) = 0), Ref, 5 is valid for the beam without ribs,
Ref. 6 applies to both cases,
The, usually so called, engineering theory considers any cross of a

non-¢ylindrical beam to be.the cross section of a cylindriecal beam, carry-

ing the same load (bending moment, torsional load or shear force, accom-

1) Such cells are separated by walls in the longitudinal direction of
the cylinder, In section 7 and the subsequent sections the name cell

is used for the part of the structure between two successive ribs,
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panied by a linearly varying moment) along its entire length, This assumpt—

" ion yields quite accurate rasults, except for the part of the structure

close to clamped root, or more in general near a cross section where warping
of the normal plane cannot occur_freeiy dge.to discontinuity of torsional
moment or shear leoad, or in the geometry of the structure. However, addi-
tional corrective computations or considerations can account with fair accu-
racy for the compatibility of warping to either side of the discontinuity.
For a spedial case of non cylindrical beams, the conical one, Hadji-Argyris
and Dunne have extended the theories of the thinwalled cylindrical tubes
(ref.7). ?' '

Koning and Van der Neut (ref; 8, 9, 10 and 11) developed a methed for

tapered‘box.baémé;wiﬁh two parallel spars, shear resisting skin and a con=-

tinuous Byétem of’infinitely stiff ribs, Koiter and Van der Neut (ref.12)

extended this work so as to incorporate rib deformation in shear.

With the second method for straight w1ngs dlscrete r1bs form part of

the structural scheme. To make such a structure amendable for analysis the
rib webs as well aa the skin panels are assumed to carry along their edges
shear stresses only. The capability of these elements to carry normal
stresses may be accounted for by-adding their longifudihal stiffness to

that 6f the adjacent spar booms, ribflanges, or stringera‘or by concentrating
it linewise, 80 as to represent the longitudinal stiffness by a number of
stringers, which are not actually present,

A finite-fold statically indeterminate structure results and the
exact solution for this séheme as to displacements, strains and stresses
under a given load can be estabiished, whatever method of solution is used
provided the redﬁndancy of the structural scheme is fully taken into acocount,

This schematization gives in general reliable results and is able in
particular to predict stresses at the root or in general the stresses affect-
ed by dlscontlnu1t1es, which cannot be established by the engineering theory
of bending and torsion, However, the appliecability of the method is subject
to the condition that the skin panels are about rectangular;

Van der Neut and Plantema (ref.13 and 14) dealt with the box beam with
two not necessarily parallel sParé, with discrete ribs deformable in shear
and with shear resisting skin, such that planes parallel to the ribs carry
shear stresses only, whereas the normal‘sfrain'in rib direction is considered
to be zero. Also in this case a finite-fold statically indeterminate
atructure remains;

Both methods have been extended to swept wings with ribs in flight

direction by several authors, Fligge, ref,1% and 16, deals with the mono-




.
cell thirn~walled cylinder, infinite in length, with a continuum of obligue
ribs infinitely stiff in their planes and loaded by a moment or a shear
’fofce. Wittrick and Thomson, ref.17 to 21 give the theory of mono-cell and
multi-cell thinwalled cylinders and cones, again with a continuum of
oblique ribs infinitely stiff in their p;anes. The atiffnesas of the skin
and of the continuized and discrete stringers may vary exponentially along
the generatore, as well as the bending or torsional moment, An additional
methed to establish perturbation stresses, which occur if an oblique section
is prevented from warping, is alsc given., However, this additional method
proved to be of little practical use.

It will be shown that the ocontinuum of infinitely stiff ridbs intro-
duces a severe deviation from the actual behaviour of the structure.

Hemp, ref,22, continuizes the oblique ribs as well, but takes their
proper bending and shear stiffness into account. However, his structure
has been greatly simplified. It consists of a box beam with rectangular
or nearly rectangular cross section with spar booms at the corners., The
top and -bottom skin are stiffened with continuized stringers, The spar
wabg are carrying only shear, Solutions for constant moments and constant
shear force are given -together with an exact as wel& ag an approrximate - -
and more practical -~ method for caleculation of perturbation Qtresaes in the
region where an oblique section ie prevented from warping out of the plans
and from distortion in its plane. This approach has over Wittrick's and
Thomaon's method the advantage that it accounts for finite ridb stifness,
but it-rgmains questionable what the congequences are of continuizing
widely spaced ribs, Besides the method must still 59 considered to be little
suitable for wings where successive ribs are loaded quite differently due to
inhomogenity of the structure (e.g. discontinuity of angle of obliquenees)
or due to discontinuity of the lateral loads (e.g. ribé introducing large
shear loads in the beam),

In order to take into account discrete ribs, the same supposition could
be made as for beams with ribs normal to the webs, the oblique skin panels
are caﬁable only to carry shear stresses along their edges, whereas again
their stiffness with respect to normal stresses is carried over to the
stiffeners by increasing their stiffness with an appropriate additional
amount. Such a supposition was used by Levy, ref.2}, but it fails to pre-
dict an important aspect of the root perturbation stresses, This would also
be the case if it would be tried to apply the already mentioned schema-
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' make the structure infinitelyfold statically indeterminate, Therefore

tization of ref.13 and 14.1)

In the présent work the stress-strain relations of the obligque skin
panels are not violated, but this introduces particular difficulties, The
structure concists: of a great number of structural elements, in which
the state of stress is one—dimensionai (only normal forces carrying spar
boomg, rib flanges or other stiffeners, only shear carrying aspar and rib

webs) or two—dimensional (thé oblique skin panels), These skin panels

solutions can be obtained only by introducing approximations for the dis-~
placements and straine or for the stresses, The use of the principles of
variational caloulus is required (minimum of the potential energy and mini-
mum of the complementary energy), but the type of the structure asks spe-

cial forms of application, which are examined in detail. It has been the

purpose not to be satisfied with approximate answers only, but to get
upper and lower bounds for some important displacements. Determination of |
these bounds ia only possible if the stress-strain relations of the
structure are not, or hardly, simplified,

For the present oblique structure, use of oblique coordinates is very
fruitful and there is a better correspondence with the methods used for
stiraight wings,

" For the development of the theory and for performing numerical cal-

culatioﬁs, matrix notétion and matrix calculus are of invaluable impcr-
tance. In recent years a great stimulus to the use of matrix calculus in
the stress analysis of aircraft structures was given by Langefors, ref.25
and Hadji-Argyris (ref.26 and 27). The structures considered in these refe-
rences are finite-fold statically indeterminate and only consist of ele- .
ments in which the state of stress is one-dimensional, Then the solutions
obtained are exact soliitions for the schematized structures. :

Katrix calculus is the more important, since the number of unknowns
to be solved from linear equationé will be g&eater than in calculations
for straight wings. Using an electronic computer a great number of un-

knowns is no longer prohibitive, Hesults can get every desired accuracy,

. which accuracy may be estimated by determining uﬁher and lower bounds.

It is therefore believed that the significance of the present methods may

be not confined to oblique wing structures. They may enable to refine the_

1) The work on swept wings hitherto mentioned is summarized and

discussed by thke author in ref,24.




analyeis of straight wings, or the methods may Ye applied to the +riangular
root struOture of awept wings with ribs normal to the spar webs (ref 24).
Everywhere in the numerical work the unit of force is the 1b, the unit
of length the inch, The reason for the adaption of these units is that the
numerical applications refer to a structure (ref.36,37), the data of which

wore given in these units,

2 The thin isotropic plate in orthogonal coordinates,
The two-dimensional problem of the plate loadsd in its plane is go-

verned by the following 6 conditions:

(1) The geometry of the plate.

(2) The prescribed forces of stresses along the boundary of the plate,
(3) The prescribed displacements,

{4) The equilibrium equations, which read

da
p 4 dt

-a-x—-g--d-—y- = 0 (2.1)
Cw

_xr , 8t .

57 T * ° A (2.2)

with
8 = h(l'
x X
ﬂhgl 2-
SY y ( 3)
t = hT

where G;, G}, and T are stress components and h = plate thickness, The
quantities L sy and t are called stresaflow components, 8, and sy are
normal stressflows, t is a shear stiressflow,

(5) The strain-strese relations which read

E = ==— 8 4 = 8§ ' (2.4)

2(1+9

Y = =

t

or in a'general form to use later




ey = A218x + Azgsy + A23t

Y = ABlsx + ABZBy + A33t

where the symmetrical matrix Aij = -

Aij i3 called the flexibility matrix,
ﬁ%th the notation

Ex = 51 Sx = 81
Y = E t =
3 %3

(2.5) can be written

5
€, =2, A
1750

or with the summation convention

N
1373

Ei = Aijsj .

The inverse relations of (2,4), the stress-strain relations, are

Eh YEh
1-¢ X1t 7

g o L Eh,
T 1F T O1f T
t = Eh Y
211+§5
or, in a general form
Sy = 8118 * 808y * By
8 = a,.& E + a,,Y

y T %t P2y T3

1 = a..€ 4 & .6 + a,.Y

31 x 32y 33

2(1+v)

Eh

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)




with
Bh " JEh o
2 2
1-9 1~
aij . ?Eg Eh2 o ' (2.12)
1-Y 1-9
0 0 Eh
, 2(1+95

aié is called the etiffness matrix.
With the notation (2.7) and the summation convention the equations (2.11)

4ake the form

By = aijaj . (2.13)
The symmetrical matrices (2.6) and (2.12) are inverse to each other. It is
noted that
} .
-1 -1 .
Aij =8y of Aij - éij . 3 | {2.14)
(6) The compatibility condition for the strains
deax dze sz
+ - Sl - (2.15)
dyz d12 dxdy |

which is obtained from the requirement that it must be pegaible to derive
the strains from the (small) continuous displacement components u_ and

u, (respectively; in x and y direction) as follows:

du
X
‘ b 4 dx
f&l- ( 5)
1 E = 2.1
y dy -
duI du
V=23 "% -

The equilibrium eQuations (2.1); (2.2) are satisfied when Sx’ sy and +

are derived from Airy's siress function Vi

a-y

8 o e—
, X dy2

2
5, = I (2.17)
¥ dx™
R 4

dxdy °

After substitution of (2.17) in (2.5) and thereafter of (2.5) in
(2.15), it follows with h = constant and Aij is constant, that the compa-
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tibility condition expressed in the stress function is

4 4 4
g7y * Y gty d "V
A, —= ~24,, —=— +{2A +A." )—-—-—-2 - 0, (2,18)
22 o “ohey L3 A o*hy 2as? RN . A11
When Aij is taken according to {2.6) the equation (2.18) yields
4 4 4 ,
o e S (2.19)
dx dx dy dy
The expression for the strain energy per unit of plate area is
A=2(sc_ +se_+ty) | (2.20)
2 ‘Txx Yy . :
and after substitution of (2.5)
P (A .8 2 b oA .85 +2h 5t + A8 +2A, Bt 4+ A t2) (2.21)
2 A11 x A12 Ty Al} x 227y 23y 33 ’
or with the notation {2.7)
1 (2.22)

A="2"Aij513j -
Substitution of {2.11) in (2.20) yields

€ 2 + 2a.,E E 4+ 2a..E T 4 a..t 2 + 2a2

A= L (a
2 11 x 12 x ¥y 13 x 22y

2
jEyY + a33T.) (2.23)

#

or with the notation (2.7)

A=2a cce. (2.24)

3 The thin plate in oblique coordinates,

3.1 Forces, stressflows, displacements and strains,

4n oblique system of coordinates x, y (fig.3.1l) is introduced as
was done by Hemp (ref,22) when investigating the swept wing structure.
The distances between point x = 0, ¥y = C and the points x = 0, y = 1
and ¥ = 1, ¥ = O respectively, are Both the unit of length. Fig, 3.la
gshows the conginafes of a point Py fig. 3.1b the components Kx and Ky

of the force X,

The magnitude of K, expressed in its components, is
ey 2 2 !
]K‘ =\/'Kx + Ky + 2KxKy cos & . (3.1)

A force (KX,O) is a force in the direction of the x axis of magnitude
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Ky a force (O,Ky) is a force in the direction of the y axis of magni-
tude Ky' .

Fig,3,lc represents the stressflow components S s sy and t for an
oblique slement with the sides dx and dy, On the righthand side of this
parallelogram acts a force per unit of length, whose components are 8.
and t, on the lower side a force per unit of length with the components
t and sy. From equilibrivm of moments it follows that the two components
t are identical. However, they do not represent the total shear stress-
flowe along the houndaries of the parallelogram, because the stressflows
sx and s& contribute as well since they are not normal to the surfaces tq
which they are applied. Therefore, the stressflow t will be designated
as "tangential stressflow". The stressflows Sy and sy will now be called
"axial stressflows",

The displacement vector G is not expressed by its components in the
way as is done with the force f; btut by means of its normal projections

u_ and uy (fig.3.1d). The magnitude of u expressed in its projections is

i"" \[uxz + uy2 --2\1}[1.1.Y cog @
u | = . R : (3.2)
gin 8 Lo T

A displacement'ﬁ(ux,O) is a displacement perpendicular tc the y—-axis
with & magnitude ux/sin e, A displacement'ﬁ(o,uy) is a displacement per-
pendioular to the x-axis with a magnitude uy/sin 8.

In agreement with (2.16), strains are again defined as

du
b fx T Ox
: du
Ey:\gs—r‘x (3.3)

dux du
Vet

~

Then the physical meaning of the strain &, is the specific extension
ds-ds
0
ds
0

where ds is the length in the strained state and dso the length in the

of a line element dx (side of the oblique element, fig.3.lc),

ungtrained state of the line element, The same is true for Ey and a line
element dy. The strains ax and ey are called‘axial strains, The Y compo=-
nent has no simple geometrical meaning. For sake of uniformity with the
name tangential siressflows, the stirain component Y will be called tan-

gential stirain, If Y! represents the decrease of the angle between dx
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and dy (the sides of the oblique element), the relation between € Ey,
Y and Y' is '

(e

If a rectangular coordinate system x, ¥y is assumed in Pigure 3.1, so

L + Ey) ctn €, (3.4)

sin 8 ~ ' x
that the x and X coordinate axes coincide, the transformation formulas

for the coordinates are

X=X~ ; ctn © X = x4 y cos B

(3.5)
¥y = y/ein 8 ¥y=ysine |,

. _ R .
The force K with the components Kx'and Ky in the rectangular system has
in the oblique system the componente Ki and K& and the relation is analo-

goous to (3.5).

K =K -K ctn 8 E =« K 4+ ¥ cos ©
Yy X X b

x X
or , (3.6)
- X /ein 6 X =K sin © .
Ky y/a n v ¥ gin |

A force.i(fx,'i%)applied at the point f;,;) yiselds a moment E.f}th féspect
to the origin, This moment is a vector perpendicular to the x,y plans,
hence with one component Mz = M, if the z-axis is normal to the x,y-plane.
Ite magnitude is

M = ny - ny
which becomes in oblique coordinates x,y

¥ = (K x- Ky)sine . (3.7)

The relations between the stressflow components s_, E}, 1 in the
ractangular syatem and the stressflow components 8.9 sy, t in the oblique

system become
s =5 8in @ +8 cos B ¢tn © - 2% cos 6
x x y

8. = E&/sin 8 . , (3.8)

g

t = -~ 8 ctn © +
y

orT
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B =18_/sin € + 8_cos © ctn 8 + 2t ctn © )
x x ¥
B = a_ sin 6 ? .
y - (3.9)
t = s, cos © +t
J

The displacement vector u with components ;; and G& in the rectan-
gular system (they are also the projections) has, in the oblique system,

the projections u_ and uy

u = -II E =
X b 4 x x
orY (3-10)
u =u cos ® +u s8in 6 n o= - ctn 8 + u /8in ©
y " % y y - Tx y/*

The strain components E;, € _, and Y are oexpressed in E ot Ey’ and Y by
means of (3.10), (3.5) and (3.3)

E =€ )
x x
T =t otn® 6 + sy/sinze - Y ctn 6/sin © (3.11)
vy~ Cx - ' /
Y «—Re_ otn © + Y/sin 6
L
or, when inverted
CI = Ex h'
E =T cos20 + T 5in%6 + ¥ sin 6 cos © (3.12)
¥y~ 'z y ? -
Y =2t cos © + ¥ sin 8 -
x !

With (small) displacements-ﬁ(ﬁk,ﬁ&), the rotation ¢ in the x,y plane is
given by
1 du, du_ ‘
fv=§f~l -—). (3.13)
dx dy
1f the small rotation ¢ is constant throughout the x,y plane,.for
example by rotation over the small angle ¢ about the origin, the displa-

cements in the x,y plane are
£ —

ux = = QY

(3.14)

u=+CP; .
¥y



14

The corresponding relations for the oblique system x,y follow from the
relations (3,13) and (3.14) by means of (3,10) and (3.5)

du du
% (d ~ g x)
X Y

(3.16)
u_= ¢@x 8in © .

1,2 Eguilibrium equations and compability condition,

The equations of equilibrium in the oblique system are identical
with (2.1) and (2.2) -

f—%.*.g—t 0

ox dy

. (3.17)
_1+£__ =0

dy ax ‘

The equilibrium conditions are satisfied when 8.9 sy, t are derived

from a siress function like that occurring in (2.17) :

a la
«:lm
Nl

s . 9 o - (3.18)

to= = dxdy

Even the overall static equilibrium conditions remain applicable,
that is the sum of the external force components in x direction, thé sum
of the exiernal force componentgiin y direction and the sum of the exter-
nal moments (to be computed wit% (3.7)) must be zero.

Since the relations between strain and displacement components for
rectangular and 6blique coordinates are identiocal (equations (2.26) and

(3,3)), the compatibility condition must be likewise identical

d e d’e 2
x+ I:’ d Y - . (3.19)

dy2 dx2 dxdy

L
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3.3 Stress~strain relations for the isotropic plate.’

The definitions for coordinates, forces, siressflows, displacements,
and straine are chosen such that the equilibrium equations have the same
form. The compatibility condition remains in the same form, and the strain
components £ and ey have still a clear geometric meaning. However, the

stiffness and flexibility matrices a_ ., and A, . are different for oblique

ij ij

and rectangular coordinates,
¥aintaining the definition of these matrices in the form (2,%) and

{2,11), one obtains from (3.12), (2.4) and (3.9)

1 cos0 —Osinze 2_ ctn ©
Eh sin 8 Eh 8in © Eh
A = a -1 00326 -nDsin29 1 2 atn 6
13" %3 " Ensin ®© Eh ain © Bh
2 . 2
2 2 2(1+cos°0+ V8in“e)
Bn °:n ® &5 ot 8 Eh 5in 6
(3,20)
and from {3,8), (2.10) ana (3.11) '
1 poszé+i>sin29 ~ cos ©
a, .= : Eh cosze +'Dsin29 1 - cos B .
2 3 ;
(1-¥")ein"6 ‘ 1+00528—*Dain26
-~cos 6 -cos 8 5
(3.21)
These matrices A, and a; 4 ave symmetrical with respect to the main

diagongl. Hemp (ref,22) computed the elements of the matrix 8, 5 by
means of vactor calonlus, but the derivations can also be obtained by
means of tensor calculus. A note on the tensor caleculus derivation of
{3.6) and (3.8) to {3.11) inecl. is given in appendix B of ref.24. (For

detailed treatment sse, for sxample, ref. 28),

3.4 Stress-strain relations for a continucusly stiffened plate.

Fig.3,2 represents a grid of stiffeners R in the direction of the
y-axis and stiffeners S in the direction of the x-—axis, The stiffeners
are closely spaced, The distance measured in x direction of the stiffen-
ers R is ap, the distance measured in y direction of the stiffeners S
is ag. The area of the normal cross section of a stiffener R is AR’

and of a stiffener S is As. The stiffeners carry only normal forces and
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have no stiffness with respect to other loads. Both systems can be idealized
to systems of continuously distributed stiffeners, Then the stiffeners are
made equivalent to an anisotrobic plate whose stress-strain relationa with

respect to the oblique x,y-system are

Bk )

B = == £
X aS X
E .
8 = . Y8 ? . (3.22)
y . &y ¥
£ = 0
By (2,11) the matrix ayy of this plate is -
EA
__S. 0 (8]
&g
Edg
(aij)lz 0 g;- ' 0 . _ (3.23)
0 0 0

The grid - hence also the anisotropic plate - is then considered to be at—
tached!to an isotropic skin in order to serve as a system of stiffeners.
15 of this isotropic plate is (aij)Z and is given by (3.21).
In view of the meaning of the quantities s_, 8 ) t (forces per unit

of length) the addition of the stressflow components in the skin and in

The matrix s

the anisotropic plate yields the stress flow components of the stiffened
skin; and the same holds for the addition of the stiffness matrices

(aile and (aij)2' Then the matrix 2 5 of the composite plate {that is the
combination of the isotropic skin and the anisotropic plate equivalent to

the stiffeners) is

2 . 2 )
P cos 8 +Vsin“e -cogs O
Eh 0s%8 +9 8in® Q —cos @ (3.25)

a., .=
137 (1-9%)sinde ) )
1+c08“€-% 8in“@
~c0s © ~-cos © 5

where-
As(l—i?)sin3e

a_h
3

(3.26)

Px=14+
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and - A.R(l-i)z)sinBG
A= 14— | (3.27)

From (3.25)...(3.27) follows that the parameters that govern the

anisotropy of the composite structure are As/ash, AR/aRh and the

angle O,

The inverted matrix A.. = a. 1 is

ij ij
P . :
JF22337%23 223%317%21%33 #21%327%31%22
A 2 _la - a a.i -4 2 O SE - T (3,28
157 oy 132327812%33 811233783 12%317%11%32 . 3.28)
819803780087y 873801781182, 8112227272
where ‘aijl is the determinant of aij' The elements of Aij are
1 2 2 2
Ay = R (Q+Q c08“0 - QVsin“® - 2 cos“8) | ]

Ay = Ay =§1§ (coszé —\?sinze)(l—\))sinze

A13 = A31= —%‘; (—cos36 -\Js:‘m26 cos 6 + Q cos 8)

(3.29)
| Ayp = E}ﬁ (P+P cos°8 — P 8in°0 - 2 cosze) '
1 3 .2
Aoy = Aypm f (P cos & ~ cos”® -V 5in"6 cos 8)
1 2 . 2.2 :
= _— P . e e
43 2 [ Q-(cos“® +V sin“8) ] _ J
in which
R = —_—_ém;._s_.[gg (1+oos2e —\)sinee) +
(1~ )sin’0 ;
4 2 . 4
N {cos S—éﬂ sin e)'(l-ﬂ)sinz .
- cosEG(—cosge -V sin26 +P+Q) . (3.30)

If the system of stiffemers R is miesing (Q=1) the elements Ay of
(3.29) become '

. 1
A1 " Tk
E(~= + h sin 9)
a
S .
2 ., 2
A12=A21 = All(cos 8 -Vsin“8)
Al}ﬁA}l = 2A11 cos O
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A.(14V)sin @
S 2 2
Ay, = Ay {1+ ™ (1+cos“® -y sin“e)
As(lw)sin )
A23=A32 = 2A11 ‘ ash + 1 ycos B
24.(1+V)sin 8
= z z :
A33 = Ay { aSh + 2(1+cos“e +V sin“e) ¢, - (3.31).

Lewis (ref.29) gives numerical values of the matrix Aij for different
angles 6 and several stiffness ratios for system S, system R and the iso=-
tropic skin (withV = 0.3).

The matrices a, 5 (3.,25) and Aij (3.29) are symmstrical and remain so
when a transformation into ancther oblique or rectangular system of axes .
takes place,

.The characteristic feature of the matrices (3,20), (3,21) for the
isotropic plate and of the matrices (3.25), (3.29) for the composite plate
in comparison with the matrices (2.6) and (2.12) is, that the axial stress-
flows s and sy are dependent not onlyron the axial strains € and €y, but
as well on the tangential sirain Y, Likewise, the tangential stiressflow t
depends on the axial strains - and ey' This is the direct consequence
of the elements 8133 8p39 Alj and A23 not being zero,

Appendix B of ref.24 deals with the transformation of the matrices

and ay for an arbitrary anisotropic plate from one arbitrary, rec-

A
t;ggular og oblique system of coordinates into another by means of tensor
galculus. If this is done such that a13=a23=A13=A23=0 is obtained, the
directions of ihe new coordinates represent the principal directions of
anisotropy. For a plate with two perpendicular systems of stiffeners, the
directions of the stiffeners are obviocusly the principal directions of
anisotropy. Such a stiffened plate is called orthotropic,

The directions of the stiffeners of the continuously stiffened iso-
tropic plate ih fig,}.2 are not principal direciions of anisotropy, nor
will they become so if one or both éystems of stiffeners is infintely
rigid.

1f the siressflow components 8 s Sy’ t. of a composite plate are known
the computation of the stressflow components in the separate parts reguires
to calculate first the corresponding strains with the matrix Aij' These ‘
strains together with the matrices aij of the skin and of the plate, which
is equivalent to the stiffeners, yield the streasflows in the separate
parté. If s stressflow component in the composite plate-happens to be

zero, it does not imply that the corresponding stressflow components in




19

the separate parts are zero,

Not much is known about the accuracy of the calculationz if the dis-~
crate stiffeners are replaced by continuously distributed stiffeners, For
example, with the rectangular plate in fig.3.} of width ¢ and loaded at
the sides x = 0 and x = b by a stressflow S_» it is not known how the
average extenszion in x-direction depends on the distance ap of infinitely
rigid stiffeners in y—direction, The relation for continuously distributed
stiffeners is according to (3,25) or (3,29) with P = 1, Q=o0and 6 = 90°

8, = Eg e . (3.32)
-y -

However, for widely spaced stiffeners s _will be 2 function of x and ¥y
if the width ¢ is finite. The stress distribution near the edges y = 0 and
¥y = ¢ is gomplex and comprises components Sy and t as well as 8. Only
when — goes to infinity (3.32) is again valid, Obviously the replacement
by continuously distributed stiffeners is better for larger ratios between
the length of the stiffenera and their distancs.

3.5 Differential equations for the stress function Y . Strain energy,

Por orthogonal coordinates, the compatibility condition (2.18) was
derived from (2.17), (2.5) and (2.15), From (3.18), (2.5) and (3.19)
follows the same equation as (2.18):

4 4 4

ary d “F d* v aY Ad

A ~2A +(2 +A ) — 2 0 (3.33)
dx 4 23 dx dy Alz 33 dx dy dxdy3 All d

which is valid for the isotropic plate and the continuously stiffened
plate both.

The expressions for the strain emergy (2,20) to (2.24) also remain
applicable, if A is considered as strain energy per unit rhomb, that is a
‘rhomb with sides 1 in the directions of the coordinate axes and an area
sin ©, This appears when (3.9) and (3.11) are substituted into {2,20)

1 .

A= 58, £y (3.34)
1

he 5 AS 8, s, S (3.35)
1

heFag o€ . (3.36)

The quadratic forme (3.35) and (3.36) are positive definite, that means

that Aijsisj and aijeizj never become negative for whateyer values of
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Bos By’ t or €y ey,'Y are taken, This yields for the elements Aij (and of
&ij) of an arbitrary continuously stiffened plate in an arbitrary oblique

coordingte system the requirements (ref.30, page 30)

A 44 ¥4, >0

118004453

Aootoy 4183 A4 '

s + >0 (3.37)
432433 A4y, Ao1892 '

and

41404,

Aorhpoday | >0 .

Ay1h32453

Dependent on these conditions are the conditions that the separate
terms in the inegqualities of (3.37) are greater than zero,
In some indealisations to be used some of the forms (3.37) are

zero,

1.6 Affine traneformation of a plate.

Suppose that the {two-dimensional) state of stress in an isotropic
plate is known, The geomeiry of the plate, the forces and stressflows are
known in orthogonal coordinates, Then visualize in an oblique system of
coordinates an isotropic plate .of the same thickness and elasticity con-
stants, the geometry,forces and siresses of which are described with the
oblique coordinates in éxactly the same way (coordinates for boundaries,
force and stresaflow components have the same numerical vaiuas) as for the
or{hogonal coordinates, Then equivalent moments differ by a factor sin O
(aocordix:xg to ('3.7)). It can then be said that the firet plate with forces
and stressflows is affinely transformed into the second plate.

It appears from (3.17) that in the obligue plate the equilibriuﬁ cone
ditions are satisfied again. The state of stress thus obtained is however,
in general, not attainable because the strains are different from thoss of
the orthogenal case due to the alteration of the matrix Aij' These strains
do in general not satisfy the compatibility condition {3.19), since the
stress functions are identical and their differential equations (3,33)
are not idantical.'The compatibility condition is a second order partial

differential equation in the straihs, hence in the stressflows, Therefore
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"4f 4in the untransformed and also in the transformed plate the stressflows
are linear functions of the coordinates, the streseflows in the traneform-

ed plate do not violate the compatibility condition and the system of

stressflows is attainable in the oblique plate., Nevertheless, corresponding

displacement projectioné and strain components have no longer the same
value in both plates,

A plate can also be affinely transformed with its displacement pro-
jéctions and strains, All rotations in this process ara multlplied by the
faoctor 1/sin ©, (compare (3.15))..0f course the compatibility condition for
this plate is then satisfied but the stresses in the transformed plate de-
duced from'the strains by means of the matrix aij are in general not in
equilibrium, Even stressflows may occur along boundaries which are stress—

free in the orthogonal case,

4 Some relations for a three—dimensional obligue coordinate system,

The oblique system is right-handed, the positive x and y axes include.
the angle ©, while the z-axis is perpendicular to the x~y plane (fig.4.l1).

Stresses and strains in this three-dimensional oblique system can be
defined aleo in such a way that equilibrium and compatibility equations

preserve their shape, but this will not be discussed here.

‘ The coordinates of the point P are given in fig.,4.1. The transformat-
| ion formulae hetween these coordinates and those of the orthogonal system
| X, ¥y 2 aT0 Z = E’together with (3.5).

| A force X is expressed by 1ts components K_, K, X_ (fig.4.1).

| The magnitude of the force X is (compare (3 1)

- . |
IK]=\/K2+K2+KZ?+2KxKy cos 8 . (4.1)

S

The relation with the components Kx’ f&,'fz of the orthogonal system
is K = fé together with (3.6).
The displacement vector U is represented by its projections ux,uy,uz
(fig.4.1). The relation between these projections and the projections (that
~is components) ﬁ%, G&, Ez in the orthogonal system is u, = Ez together with
(3.10).

The magnitude of a d15p1acement is (compare (3.2))

=i .
—2uxu cos © 2-
l b +u’ . (4.2)
z
sin 9
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—p

The righthanded moment vector M is also represented by its projections

Mx, My’ Mz'in just the same way as is done for u. If, in the orthogonal

system the projections (= components) are esqual to ﬁ?, E}, Ez, the trans--

formation formulas are

L

]
=

and in analogy to (3.10)
(4.3)

=l

M =
X X

M
M =¥ cos 8+ ¥ sin8 or W.= -M ctn6+—.—l—.
¥ x k) y X sin 6

In the righthanded oblique system of axes, a force K(K_, Ky, Kz) at

the peoint x, y, 2z gives the righthanded moments, with respeet to the
origin
M_ = (sz-K&z) sin ©

.f My = (sz—sz) sin @ (4.4)

\

= (ny—ny) sin & .

The magnitude of a moment M(M' A . M } is (compare (4.2))

M 2 4 M 2_ 2K ¥ cos 6 ;j
J3t]- =

+ Mz {4.5)

sin e

—
_ The moment M(O, 0 oM ) is perpendicular to the x,y plane, its magnitude is
'Mz. The moment M(h ,0,0) ‘is perpend1cular to the y,z plane and ite magni-

tide is M /sin €, see fig,4.2., A moment h(O hy O) is perpendicular to the

x,z plane, its magnitude is &&/é:n 8, see fig.4.3. A rotation vector ¢
is expressed by its components wxiJ?y, 3, in the same way as a force K
(fig.4.1). If small displacements u(ux,uy,uz) occur in the righthanded

obligue system x,y,z, the rotaition componenis are

1 duz ou

° =7 (5" - g /em
1 dux duz . o

;py =3 (-a-z— - E;—)/Sln 8 | (4.6)
1 sz dux .

¢, = 3 (dx - ———0/31n 8 .

1f the small rotat1on vector w(mx,my,m ) is constant throughout,

for example by a rigid body rotation about an axis through the origin,

the displacements are
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u_ = (gyz—wzy) sin ©
u, = (wzx—wxz) sin 6 (4.7)
u, = (mxy—myx) gin © .

iS3 ¢ ' ¢ , @ are the components of the rotation in the orthogonal
system x, y, ¢ of figure 4.1, the transformation formulae are ¢, = 6;

together with {3,6).
The work done by the force K(K K& X, ) through the displacement

A(u_,u ) amounts to : )
'y . ;

K = Ku_ + K’yuy + Ku (4.8)

and the work done by the moment ﬁRMx,My,MZ) through the -rotation

y’wz) amounts to

= hs M '] L ]
Mo + Yo + Mo (4.9)

The expressions {4.8) and (4.9) are identical with those for ortho-

gonal coordinates,

5 Discussion of the shear—-field scheme for skin panels,

5,1 ZRectangular panels,

Consider the rectangular isotropic skin (fig.5.1), which is pro~
vided with stiffeners S parallel to the x-axis on a pitch 8g and with a
cros8s asctional area AS per stiffener, The stiffeners R parallel to the
y-axis are spaced at distances ap and have a cross sectional area A,

The stiffeners of both groups are preliminary assumed to be conti-

nuously distributed. The stress-strain relations of the composite plate

_can ba determined according to section 3.4,

The stiffness matrix (a ) for the plate that is equivalent to the
gtiffener systems S and R is glven by {3 .23). The stiffness matrix (a 3)2
is given by (2.12).

Then according to (}.24) the stiffness matrix 85 5 of the composite

plate is
BAq
B'h + — YE'h 0
a,
S
Bag
a5 = JE'h E'h 4 — 0 (5.1)
1-Y .,
C ] =5 Eth
where E = E
-2

The inverse matrix of aij’ the flexibility matrix Aij is
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E'h + & Eg
R ~VE'h 0
EAS EAR 2 B EAR >
(B'm—2) (B'he —)=(VE'™m)  (E'ha—>)(E'h+——HIE'})
a a. & a
o R S R
!
E'th + E f§
N -9E'h s ' ‘ o
13 B E ' EA E
(Etn+ _ﬁ%)(Eah,_fE)_(QElh)z (E‘h+——§)(E‘h+ —fg)-(OE‘h)z
a a a.
S g S : R
2
0 0 T=9JE"h
(5.2)
If the rectangular skin plate of fig.5.1 is slender in the direct-

ion of x it

or provided

can be expected that, if the sides along y = + ¢ are free

with flanges which carry normal forces, the stressflows ay,

which must be zero at y = + ¢, will remain small, Thus the influence of
the stressflows sy on the strains € may be neglected and in (5.2) and
A12 may be put zero without serious error. The stressflows s have their
influence on the strains & by means of the element A,, in (=,2). These
strains, however, contribute little tc the displacements in y direction,
since the dimensions in this direction are small, Therefore also the
element A21 may be neglected. Besides, generslly numerical values of

A21 are small with respect to A11 (for the isotropic plate A21/A11 =

= =Y).

Then the inverss matrix of the in this way simplified matrix Aij is

EA_ - 2
B —S o OBm) 0 0
8g AR
E'heE —
&g
EA SRV
1] ap AS
E'h+BE .
5 ‘
0 0 | 1;‘7 Z'h
Matrices of the general pattern of (5.3)
a11 8] Q
ayy " 0 o " ‘ (5.4)
0
© 233
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can alsc be obtained along other, less'reasonable lines, by puiting

A, =2 4. = 0 in the matrix of the isotropic skin, or by putting 3y 5=

12 21
= 0 in the matrix of the isotropic skin or of the composite plate.

= a
Numziical differences with the result (5.3), however will, in general be
small,

A composite plate with matrix of the pattern (5.4) can be visualized
ag pertaining to'two systems of continuized stiffeners, the equivalent

plate of which has the matrix

ayq 0 0
= ' 5
245 0 ap, e (5.5)
9] 0 0
together with a skin that can merely take shear stiresa, the matrix of
which is
‘ 0 0 0
= 0 .
0 0 a3y

Next the squivalent plate, with matrix 2 4 of {5.5) is replaced by
a finite number of "replacement"” stiffeners, which not only represent the
actual stiffeners but as well the stiffness (with respect to streasflows
B, and sy) of the skin, The replacement atiffeners are preferably situat-
ed along actual stiffeners, but they may be more in number {e.g. if there
are nb actual stiffeners but only an isotropic plate) or less in number
(if there is a great number of closely spaced actual stringera), The
stiffness of the replacement stiffeners is such that, if continuized,
their matrix 343 is (5.5), where ayy and a,, are given the values of
(5.3) or reduced values which account for post-buckling behaviour of the
skin panels,

Batween the replacement stringers a skin capable of carrying shear
stresses only remains (shear field scheme), Its matrix 24 5 is (5.6)

whera the element a has the value of {5.3) or a reduced value if buckl-

33
ing occurs.

The property of a plate to carry shear stresses only, san, sy:O,
t # 0 is confined to a special system of axes. If the property is valid

for a certain orthogonal system of axes x,y, the matrix aij becomes
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0 0 0

G, .» 0 0 0
1]
0 0 Ch
and after {ransformation to the system of -orthogonal axes, rotated

through 450 with respect to the former, the matrix aij becomes

Gh . =Ch 0
a. .= | ~Ch Gh ol . )
i
0 0 0

This means that the plate is anisotropié.

The equilibrium equations (2,1) together with 8. = 0, 8, = 0,

t { 0 yield that in such a plate the shear stressflow between two
stiffeners of the system R and of the system S (fig.5.1) can only be
constantl). '

In a structure consisting of such panels and of a finite number of
stiffeners, only a finite number of stress systems satisfying the con-
ditions of equilibrium conditions are possible. Thus the structure is
made finite fold statically indelerminate and all methods of analysis

give the same - and for the idealized structure - exact answers.

5.2 Oblique panels, ,
Fot it will be examined whether the shear field scheme is applicable

to oblique paﬁels. Again there may be two systems of stiffeners R and S
(fig.5.2). The stiffness matrix a4 5 of the composite panel ie given by
{3.25) and the inverse matrix Aij is given by (3.29). These patrices
and Aij are such that not a2 single element is zero,

a
i
Again considering the general strain-gtress relations in their

general form
ex = A B + AlQSy + A13t

11
Ey = A21sx + A22ﬂy + A23t (5.7)
Y = A3lsx + A328y +7A33t ’

1) Garvey, ref,}1 establishes by means of equations of equilibrium
a stress distribution within an arbitrary quadrilateral plate field,
that carries only shear stressflow along its edges, Compare foot-

note p.27.
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it is seen that a diagonal matrix

Al] 0 0

Ay 4o 0 . Ay 0 gs,s)
8 O A33
could be obtained by putting A12=A21=0 as with the rectangular plate and
in afidltion A13=A31=A23=A32= 0. '

The negleciion of A12=A21 can be justified by the same reasoning a
used in section 5.1 for the rectangular plate (sy is emall and has little
influence on e.s By has influence on ey, but these strains are not im~
portant for overall,displacements), But, generally streesflows t are not
small, nor their influence on the strains ¢_, The stressflows s_ contri~
tute to the strains Y, and these atrains are important for overall dis-—
placements, These facts are the raason‘that it is quite inadmisasibdle to
put A13aA31=O, the more since the ratioc A13/A11 is not small, For exam-
ple, the imotropic plate has with V= 0,3 and 6 = 450 the matrix

1.414 . 0,495 2
1
Aij’ 5 0.495 1,214 2 e
2 2 4.667

Since the metrix A, . cannot be reduced to the form (5.8), it ia

not poesible to split upjin parts pertaining to two systems of stiffen-

ers with a matrix like (5.5) and a shear field with a matrix like (5.6).
In other words it is impeossible to represent the fehaviOur of an oblique
panel adequately by two systems of stiffeners and an oblique'banel that

can carry only shear stresses along ils edges.

The other still less reasonable attempts that could be made are to
ppt A125A21=A13=A313A23=A32=0 in the matrix of the isotropic skinl) or
{0 put a12=a21=313=a31=a23=a32=O in the matrix of the isotropic skin
or of the composite plate. Numerical results will often be gquite dif-
ferent, and neither will give useful results, ’

Kethods will be developed where the stress-strain relations will

not, or only littls, be simplified, Instead of an exact solution for a

1) In Levy's work, ref.23, a supposition was made which is equivalent
with this attempt, Carvey {ref.31) extends the suppasition of Levy
to the arbitrary quadrilateral plate field, but this supposition
seems only useful if the platefield is close to rectangular.
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simplified structiure approrximate solutions for a non- (or slightly) simpli-

fied structure will be obtained; and it will be possible, by means of aif-
ferent types of solutions, to derive upper and lower bounds for the nume-
rical results, These approximate solutions will be obtained by means of

the energy ‘heorems of the theory of elasticity.

6 The variational principles of elasticity theory.,

6.1 Minimum of the complementary energy.

6.,1,1 Determination of stresses,

The theorem of the minimum of the complementary energy can be étated
in the following way (ref.32, page 286). | o

Of all states of stress satisfying the conditions. of equillbrium in
the interior and on that portion of the surface where the surface forces
ars prescribed, the actual state of siress is such as to minimize the ex-

presgion for the complementary energy:

- %fs.a iv - {[T:.E ar . (6.1)

The scalar product S,R is the sum of the scalar products of the
stress components S acting on the volume element dv and the strains R of
the volume element., The product % 3,R dv is called the strain energy of
the volume element dv and the first integral of (6,1), which extends
over the whole volume of the body, the sitrain energy of the dody.

Further, k are the forces (per unit area), acting at the surface f
of the bvody and'ﬁ'the displacements through which these forces act, The
symbol u at the integral sign means that the integral extends only over.
that portion‘of the surface where the displacemsnis are preacribed.l)

I+ must be kept in mind, that applying the minimum principle to
(6.1) primarily only the state of stress is varied and that the straine
R in (6.1) follow from the stresses, which are subject to variation, by
nearie of the stress-strain relatione. Therefore the expression (3.35) .
will be used for a unit rhomb (of the obliqﬁs.coordinata system) of an
gnisotropic plate, Unless v* is indeed the minimum, the strains R do not
satisfy compatibility conditions, o

The state of stress S, together with its external forces-i, is now

considered to be the sum of a number of states of stress each with their

1) The reflnement where at a surface element df only one or two pro-
jections of U are prescribed together with two or ons force compo-
nent of csourse does not introduce any special difficulty. Nor the
introduction of prescribed mass forces, which are excluded here,
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external forces

- - - : (6.2)
k =k, + Xiki . ,
The state of stress SO’ togethér with its external load EB and which
is called the "basic stress systen"”, satisfies the equilibrium conditions
everywhere, Where the external load is presoribed, i? is equal to this

preceribed load., A state of stress Si’ together W1th its external 1oads

-’
k,, satisfies the equilibrium conditions everywhere. Since k(:k k )

for sake of eguilibrium must be equal to the prescribed loads in any point
of the surface where the external load‘is prescribed,-ﬁ; (of every syastem
3 ) vanishes in that part of the surface, However, where the displacements
are prescribed ki may be non zero, The resultant of k (of every system
Si) on the whole body vanishes for sake of equ111br1um. The stress systems
Si, which are to be linearly independsnt, are called "supplementary stress
eystema", In an n-fold statically indeterminate structurs n such systems
may be constructed, and in (6.2) the unknowns X, are the statically inde-
terminate quantities, which have to be determined with the aid of the mi-
nimum theorem (6.1). This "minimum theorem of thé complementary energy"
will be called kere for the sake of brevity and so as to indicate that
stressee are varied, "minimum principle for the stresses",

The quantities Xi

the supplementary stress aysteus Si'

can also be called the participation factors of

The usual terminology with statically indeterminate structures ori-
ginates from considerations on (finite fold)} statically indeterminate
structures, such as trusses or beam aystems, the members of which can
carry only one or a small number of load types (normal'force, bending mo-
ment), Part of the members, called redundant members, may be removed or
bereaved of the capability to take a certain load (a bending moment),
thereby leaving the remaining structure capable tc carry the load in a
statically determinate way.

The loads that occur in these members in the actuzl siructure are
called redundant forces {moments) or redundancies.

In the present work the participation factors of the supplementary
stresa gystems take the place of these redundancies, The notions redun—
dant member and redundancy aTre not used here because the supplementary
stress systems relate to plates with non-simplifiéd stress-strain rela-

tions, which carry an infinite number of statically indeterminate stress
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systems because their siate of stress is iwo-dimensional, Besides removal
of such a plate may possibly make the structure kinsmatically undetermined.
Such &n element can hardly considered to be redundant in the strict eense
of the word.

Coming back now to the application of the minimum principle for the
stresses the equations (6.2) are substituted in (6.1)

* 1 ' —- - —ﬁ‘ ’
Ve -2-/(504-115.1).(RO+XjRj)dv-—ﬁ/(k0+Xiki).u af (6.3)
VoLla oaxoa + L xxo -/(fu:i)??u (6.4)
T 2700701 T 2 Ty ORE T :
where
%00 =JfSO.Rde

= L . = S.-R- [
PV I /Si.RJdv S Ryav
Since v¥ must be minimal the equations

»
dVv
— = A
dXi

must be satisfied,.
The solution for the unknowns Xj is

-1 — i
xj = (Aij) (=Pg;+ _‘[ki.u df) = O (6.7)_

+ X

o1 - ﬁ_/‘ki.u af = 0 (6.6)
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where (Aij)-l is the inverse mairix of the matrix:\ij.

With the solution of Xj the stress distribution is known. If the
structure is infinitely fold statically indeterminate, usually only a
finite number of internal systems of stress will be introduced and the
solution is only an approximate one, That means that the stresses do
not‘yield completsly compatible strains, which consequently are not
integrable to displacements in a completely unambiguous way. In section
£.1.3 displacemente are determined without integration of strains,

In choosing the hasic stress systenm SO’ there is of course a good

_ reason to take it as simple as possible, Values of)\o__.L are then simple

to compute. However, there may be also a reason to choose it such that

,it resembles as much as possible the solution for the actual state of

stress S which is to be expected, Such a system SO could for example

te achieved by deriving it by means of engineering methods of stress
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enalysis. Then S0 has the significance of a first approximation and the
statically undetermined analysis yields a correction to this first approxi-
mation, With such basic stress systemrthe values of the unknowns Xi are
small and may be computed with less accuracy., Besides aome of the unknowns
even may bs put zaro; which means that the number of supplementary stress
systems is reduced.

The possibility to use this_refined type of basic stress system de-
pends largely on the possibility whick the structure and its type of load-
ing offer for an approximate analysis of straightforward methods.

If the structure is loaded merely as & result of its prescribed dis-
placemants,‘ﬁa vanishing throughout, the most simple basic siress system
is‘SO = 0, There is howsver in this case no objection, if desired, to
take SO
system may be, though not necessarily, a linear combination of the adopted

such that it approaches S as much as possible, This basic astress

supplementary siress systems, _ .

For the actual state of stress, therefore the state that yields com-~
patible strains and uniquely determinable displacementis, the theorem of
elasticity (ref,32, p.90) states, that the strain energy is equal to the

A

sxternally applied energy

%fs.ﬂ dv = Sfkaar . (6.8)

In contrast to (6.1) the integral on the right hand side of (6.8)
extends over the whole surface. Substitution of the equation (6.8) into

(6.1) yielda another expression for the complementary snergy
v L fETar - % [¥Sar (6.9)
2 % 2 A '

and the symbol k at the integral sign means that the integral extends
cnly over that part of the surface, where the external load is pres—
cribed. ’ | |

The uhknowns Xj in (6.4) are for future use eliminated by means
of (6.6). This yields

» ] 1 1 - —_
[ Y S S Xi{ki.u af —.u/ko.u af . (6.10)

For the sake of simplicity when forming the equations (6.7), it is
in general desiraple that as many supplementary siress systems Si as

possible be orthogonal, which means that

>\..=/S..R.dv=0 ' (6,11)
ij i"3
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for as many i,j{i#j) a® possible, Non-overlapping supplementary stress
systems are, of course, always orthogonal.

Suppose that a certain problem in rectangular coordinates has been
solved by a suitably chosen set of stress systems SO"'Si’ then in the
affinely transformed structure (see par.3.6) the stress systems SO"‘Si
satisfy the conditions of equilibrium as well, Only the constantis Xi
assume different values,

Initial orthogonality between the systems Si is usually lost in the
affinely transformed structure, because the matrix Aij and consequently
R_ have assumed different values, The orthogonality of systems not over-

J

lapping each other is of course maintained.

t

6,1.2 Complementary energy at combination of two loading casas,

Suppose the loading case A

SA = SAO+XA Si
- —- — (6.12)
ky = kyottaky
and B
SB = SBO+XBiSj
(6.13)

— —
ky = kgt ¥y

for the same structure and assume that for both cases the unknowns xAi’
respectively KB have been solved by the minimum principle for the
stresses, In both problems the surface region where forces and where
displacements are prescribed are the same and the same supplementary
stress systems have been used, The complementary energies for the two
cases are V: and V; respectively,

If both stress systems are present simultanecusly {(that means
prescribed forces, prescribed displacements, stresses and strains are
the sum of these quantities of the éeparate cases), the total comple~

. *x
mentary energy VA+B in general does not segual VA + V; but follows
from (6.3)

*"
VieE" ZJf(SAO 30+ %551+%p, 8 ) o (Ryg#Rp 4k, Ro4Xg R, )av

J"(k +X K, 4k 4X ) (u ug)df

AD ALY BO B1
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whera‘ﬁf and'ﬁ; are the prescribed displacements for the two cases respec-

A
tively. ‘ ) ;

Wlth the notation (6.5)

* o
VA =.V+v +fsA0 BOdv+X (7\301 uki.u df)-l-

&>
+ xp3 Qpos™ .[ kjouy & + X A0, 4

- .

kyqeugdf - [ kgoou, df (6.14)

In (6,14) the form

—-
i~ 'u/ki.uAdf + xﬁj)ij = 0

because of (6.6), therefore

* s _.R (A )/ f g
Vaep Vi Vgt f 10°Raod + Kyg Mgoim fki.quf kAO.u df- af

(6.15)
or
» — i et —- —
vy o VA*VBf/%Ao Ry dvaXy, (3, .~ dfki.uAdf)-Jfgﬁo.quf-J’kBo.uAdf .
u u
) (6.16)
A further expression for VI;B can be derived using (6.9)
»* l - — -t - -
VieE® 3 Jr(k +kB) (uA+uB)df 5 Jf( kB)‘(“ATuB)df
“ o1 _ '/' :
- Vvl 3 jr(kA.u AT )ar - % [k, W Dar - (6.17)
L I R |
= V,+Vpe 2f(kA.u +k. .uA)df— f(lfA.uBH:B.u Jar . (6.18)

‘The reciprocal theorem of Beiti and Rayleigh (ref,32, p.297) states

that

ka.u df fk .u df or
Pty f" w.af (6
{kA.quf . {kA.quf - {kB.uAdf , kg, .19)
and this simplifies {6.17) to
: i
v v X Tar -/k Ju,df (6.20)
+ k u BT A

3

or ’ : -
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»*
VA,+ = V +V + {kB u df - /k .quf . (6.21)

The equations (6.15) and (6.21) will be used for the determination of dis-

placements,

6,1,3 Determination of displacemsnts,

The displacement vector G; of the surface element df, where the ox~

\
ternal load is prescribed is to be determined for a given loading

cese A 3
SA = SAO + XA.S
(6.22)
— — -l
ky = ko ¥ Xgky -

Thie will be done by means of the formula (6,15). Take an auxiliary
system B '

(6.23)

)
~y

K. = k X
= + gy

as described in section 6.1.2. The external load of system B is taken

zero everywhere, whare the loade are prescribed, except in the element
-

df where the external load is a vector X of magn1tude 1. The prescribed
displacements may be arbitrary.
Equating the right hand sides of (6,15) and (6.21) the result

is .
—

k;cB.uAdf on BOdv+X kaO.uAdf . {6.24)

The integrand of the left hand side vanishes except for the

S

surface element af where the displacement'ﬁl is to be determined, The

external load of the system B was taken such that
¥ — —
kp df = K (6.25)

wag a unit vector,

With (6.25) and {4.8) equation (6.24) becomes




—-
K

——

Bru:Ku + XK., u + K uz=fSAORBOdV+K7xBO fk udf
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1)
A Bx Ax By Ay - Bz A BO*7A
(6.26)

By taking successively three auxiliary syatems B, with on the surface

— - -
element df forces KB(l,O,O), KB(O,I,O) and KB(O,O,I), the displacement .,

projections u

Ax? uﬁ“y and qu are obtained separately. Along the =same

lines the rotation components P px? $Ay and LI of the surface element df

are found if three auxiliary systems B are taken with on the surface

slement df unit moments (compare (4.9)) M (1 0,0}, V. (O 1,0) and X (O 0,1).

Note that in applying (6. 26) it is not required to determine the

2
unknowns XBi . Only the basic stress systiem SBO and load kBO enter the

.
equation, With any other basic stress system, say Sﬁo, kﬁo ¥yields in

i
(6.26) the same result, provided Sio» kpo is a linear comdination of

Spos

g

5o and the supplementary stress systems S, used in (6.22) and

(6.23). If the number of possible supplementary stress systems is larger

than the number of the systsms used, SﬁO’ X' could be adopted in such

BO

a manner that they are not related to SBO’ kBO by equations similar to

(6.23), Then the systems S

-
k

BO would yield when applied

and 5! O’ iy

BO?* BO

to eguation {6.26) different results for u (however usually only slightly

different), This is a consequence of the fact that the strains of the

stress system A are not completely comratitle,

6.2 Minimum of the potential energy,

6.2.1 Determination of the strains.

The theorem of the minimum of the potential energy can be stated

in the following way (ref.32, page 281)

1)

2)

Of oourse also

- Jrk
KB'U‘A =/S Rdv— B.u af .

il

This formula is very easily derlved by starting from the reciprocal

-
jrkB.uAdf =J/SA'RB dv

ingtead of the reciprocal theorem (6.19),

Further substitution of SA = SAO + XAisi and RB = RBO+ XBiRi

theorem

leads also to (6.26),
This is also the reason why the prescribed displacaments of system B
may be taken arbitrary, Prescribed displacements only affect the

unknowns X...
Bi
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Of all states of etrain satisfying the compatibilityconditions and of
which the displacemente satisfy prescribed boundary conditions at the sur-—
face, the actual state of strain is such as to minimize the expression for

the potential energy

1 —t - 7
V = EJ/Q.R dv - / k.u df . (6.27)

In (6.27) the stresses S follow by means of the streas-strain rela-
tions from the strains which are subject to %ariation. Thess siresses do
not satisfy equilibrium conditions unliess V is.indeed the minimum, The
hinimum theorem (6.2?), ﬁsually.called the "minimum theorem of the poten-—
tial energy” will be cszlled here for the sake of brevity and in order to

indicate that the strains are varied, "minimum principle for the strains",

Fote that the starting point as well as further developments of this

section show Temarkable paralleliem with gection (6.1). In fact in all
corresponding formulas the smymbols k and u are interchanged and sc¢ are
S and R. To distinguish further the two minimum principles, the symbol X
for the unknowns in sectionm 6,1 is changed in the symbol Y hers.

The state of strain R, togzther with its diaplacements_ﬁ'ia consider-
sd to be the sum of a number of states of strain, each with their compa-

tible displacements

R = RO + YiRi

(6.28)

The state of strain Ry, which yields the displacements Upys complies
with the prescribed displacements at the boundary and it is called
"basic strain system". With the other systems of strain Hi the displace-

—

ments uy
called "supplementary stggin systems”, The unknowns Yi may be called the

are zero where displacements are prescribed, These systems are

participation factors of the supplementary strain systems Ri7
The analogy of the deviation from (6,1) to (6.,6), obtained by inter-
changing S,R and k,u yields the equation for the unknowns Y, '

Do * Yyhys - E/i:ﬁ; ar = 0 . | (6.29)

When the unknowns Yj are solved the complete solution for the state
of strain is established, and with the strain-stress relations also the
state of stress, If due to a limited number of unknowns Yi the sclution
is not exact, the state of stress does not satisfy the equilibrium con-

ditions,
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For an n-fold statically indeterminate structure of the type to be con-
sidered generally more than n lihearly independent suppléﬁentary strain
systems can be consiructed. This number may even be infinite, For this rea-
son the minimum principle for the strains is not suitable for structures
which are finite-fold statically indeterminate and which have an infinite
number of degrees of freedom for the strains , But also in structures which
are 1nf1n1tely-fold or many-fold statlcally 1ndeterm1nate the use of the
minimum principle for the strains has a disadvantage. It will be confirmed
in the following chapters that in order to obtain an equal degree of accu-
racy & much larger number of supplementary strain systema than of supple-
mentary stress systems ares required., Usually the forces are prescribed over
the greater part of the surface of the structure (be it that these forces
are often zero-forces), whereas the displacements are prescribed usually
in a limited area of the surface. This fact reduces the freedom for stress-
es, which are subject to variation, more than the freedom for displacements
{strains), which are subject to variation.

Also when ueing the minimum prineciple for the strains there is a rea-
son to choose the basic strain system RO as simple as possible. Often there
are only forces and zero-displacements prescribed, Then Ro may be such that
it gives zero displacements {and strains) everywhere, Howaver, {again in
order to reduce the required number of supplementary strain systems)it may
be advantageous to choose RO such that it approaches as much as possible the
expected solution for R, (Compare the dlscusslon of the systems SO given in
section 6,1.1).

For the actual state of strain another expression for the potential
energy is derived from (6.27) and (6.8)

V a

—~ - - - .

u
)

By comparison of (6.30) and (6,9) it appears that for the exact solutions
V and v holds

w5 v (6.31)

In analogy to (6.10) another expression for V is

1 1 1 |
V = 27\00 + 5 YiAO‘ - E'Y Jfk uy af - jfk u, ar . (6.32)
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6.2.2 Potential energy at combination of two loading cases,

Suppose the loading cases A

Ry o= By + Yy
> g (6.33)
Yy = Yo+ '™
and B
Ry = By + TRy
Uy = Ugg * Ipi%y

for the same structure and assume that for both cases the unknowns YAi’
respactively YBi have been solved by the minimum principle for the strains,
In both problems the surface regions, where forces and where displacements
are prescribed, are the same and the same supplementary strain systems
have been used.

Following the derivations of (6.12) to (6.16) the analogous results

are obtained
VA+B= VA+VB+ RAO SBOdv+YA JCKB.u df) Jrkﬁ.uAOdf—JﬂkA.uBodf - (6.35)

VB VA+VBt/FAO. BOdv+Y (kAOi 4;:.u ar) ﬁrkB uAOdf-uka.uBO . (6.,36)

According to (6,30) (compare the derivation of (6,17) and (6,18))

Vaoms VatVgt 5 Jf(kA.u + kB.u )af - / (kA ug + B.uA)df = (6.37)
- g [0 - e - /(k + Ty )ar (6.38)

and from the reciprocal theorem of Betti and Rayleigh (6.19)
Vyop= Uy + Vp+ I[kﬂ.uB af - / kg.u,df . (6.39)

The equations (6,35) and {6.39) will be used for the determination of

external loads,

6.2.3 Determination of external loads.

The external load-E1 at the surface element 4f, where the displace~

ment is preéscribed is to be determined for a given loading case A

By= Ry + T4y
- e Ly = (6.40)
Up = Yo ¥ 1™
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The solution is readily obtained from the solution for the state of
strain which gives stresses also at the surface element df, If, however,
the solution for the strains is not the exact one, the method presented
in this section gives uspally more accurate results.

Take an auxiliary system B

—
u

: o' i

ae described in section 6.2,2, As far as the displacements are preacribed

- .y (6.41)
uBO + Biu X

those of the system B are taken zero everywhere, excépt in the element af
considered where the displacement is a vectorfﬁéof magnitude 1, The
prescribed external forces may be arbitrary.

Equating the right hand sides of (6.35) and (6.39) the result ie

(also if the prescribed external forces of system B are not zZero)
k. .o R, .5 Y, ) X, .u,
kyougdf = /Ry .Spadv 4 Ty Agyy =/ kpuggdf o (6.42)
u . ' ‘ )

The integrand of the left hand side vanishes except for the surface
element df where the external load f;=-ggdf is_to.be determined,
Equation (6.42) now becomes
- ' . - -
Kyoug = Kug + K up + Ky up =J/%AO.SBOdv + YAQABOi -/ k,mpoaf .
‘ (6.43)
By taking successively three auxiliary s&stems B, with at the sur-
face element df the prescribed displacement vectors 3;(1,0,0),'3%(0,1,0)
KAy’ KAz are establiﬁﬁsd sepa-~

rately. Along the same lines the external moment projections MAx' MAy’

i
MAz acting at the surface element df can be established if three auxi-

liary systehs B are taken with at the surface element df prescribed
unit rotation components 55(1,0,0), 3;(0,1,0) and 35(0,0,1) respectively.
Like in section 6.,1.3 it is not necessary to solve the unknowns YBi‘

and E;(0,0,l) the force components K, ,

" Only the basic strain system RBO'HEO is needed in the equation, EBvery

other zero system Rﬁo, ng yields the same results provided Rﬁo is a
linear combination of the system RBO and the supplementary strain

systems Ri'
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6.3 BEnclosing numerical results between bounds.

6.3,1 Displacements,

In section 6.1.3 is shown how, for a loading case A, the three dis- -
placement projections Ly uAy’ Ly at a surface element df, where the oX—-
ternal load is prescribed, are determined by means of an auxiliary system B,
The only prescribed external load of system B consists of the unit forces
i;(l,o,o), K.(0,1,0) and K,(0,0,1) at af,

Use of KB(KBx = 1,0,0) gives the dieplacement projection U, - One of
the ways to get the expression for the complementary energy of the stiructure
if indeed the loading case A and loading case B are present simultaﬁeously

is formula (6.21)

I
#»* - » '
Vep= Va v Vg4, 7 (6.44)

i

provided the prescribed displacements up are taken equai to zere, In order

to calculate Vzéand v¥* by means of (6.10), the unknowns X

B must now be

Bi
solved, .

If all stresses, forces and displacements of loading case A are mul-
tiplied by «, and those of loading case B by f, the expression for the

complementary energy becomes

Ve o8 VI + ﬂ2V§-+ apu, . -~ (6.45)
With the notation |
v: =PI, vy = Py, and u, = 2P!, = 2P} ; (6.46)
V takes the form
v¥. Pl o 4 épiz ap + Pi, 2. - {(6.47)

If the number of redundancies of the structure is larger than the
number of supplementary stress systems which are used, the value of V*is
for arbitrary values of « and B largerl) than the exact value V:. If the |

¥ . pt ¥ : 3" -
exact values of Pll’ Pi2 = P21, P22 are raspectlvely.Pll, P12 P21 and

P22'it ig obvious that the quadratic form

1) For a special ratio a/ﬁ an-exact solution may be achieved, because
the participation factors of all stress systems not used are in

fact zero for that special ratio a/ﬁ. Then of course V= V:. Conrpars
also section 8.2,6.3. N
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b . 2 - : 2
LA N (Pi1 - Pll)a + 2(¥], Pio)ap + (Pé2 - PEZ)B is positive

definite, and therefore (page 30, ref 30) : \

P1y = B> 0 (6.48) :
Pio = Fpp”0 | (6.49)
and
- ' -
P~ P~ TP
>0
P -t Fia = Fa
or ,
2
,(Pil - Pll)(Péz - P22) >(Pi2_- P12) . (6.50)

‘Next the loading cases A and B will be analyzed also by means of the
minimﬁm}ndnc@lefor the strains., For the combination of the loading case
A and the loading case B the potential energy is according to (6.39),
thereby again taking the prescribed displacements 3% equal to zero and

reminding that the prescribed force of loading case B is a force

X5(3,0,0)

VsV e Vg mu (6.51)
where V, and Vy have to be calculated from (6.32) after solving for
Y and Y . .

Al
- If the loading case A is mu1t1p119d by « and the loading case B by

g, expression (6.51) becomes

2. 2 | '
Vo V, + 8" Vo~apu, . (6.52)
With the notation
VA = —P!l.l N VB = —P’zz and qu = 2P.I2 = 2P2’1 (6.53)
V takes the form _
|‘| 2 “
=V = Proo 4 2R), 0B + P, a? . (6.54)

- In general the solutions for the loading cases will be approximations
and therefore the value for V is too large, and the value for -V is
smaller than the exact value ~ve for all values of « and §. According to
(6.31), which must be hold for any set of parameters «,B, the exact

solutions of P;j are the same as those of P{j in (6.47). Hence
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Pyy = Py >0 . (6.55)
Py, = P30 - (6.56)
and .
Pa-Fn F2-Fpp |
. )0'-
P12 = P12 Fop = P32
orT ’
11 " 11 ?
From (6.48), (6.49), (6.50), (6.55) and (6.56) }fonows
’ [1] 14 . i V 2 .‘&:\-
(Ply = P1y)(Pgp = P3) > (B, = )
or '
~R<P, = P, <R . (6.58)
where 1
R -\/(2]; - P2y, - P3,) >0 (6.59)
and (6.58) yields for the bounds for PlZ I
Pl, - R<P,CPJ, + R, (6.60)

Likewise from (6.48), (6.49), (6.57), (6.55) and (6,56) follows

- Flo = B<Fp<Pp + R (6.61)
If P <Py, (6.60) and (6.61) yield ' ‘\,
Py = B<Py<Py + R . (6.62)
and if P} 5PY,
Flg = Mol + ¥ - v (6.63)

1The bownds for P,, are according to its definition also the bounds
for 5 Upy - | _ .

Again the present procedure can be extended to the determination of
the rotation components of the surface element d4f,

Likewise upper and loﬁer bounds for the differences in displacemant
projections of iwo points may be determined by suitably choosing two
auxiliary forcee in the two points, If the distance between these points
goes to zero these displacements get the character of stréin components,
So by applying the same principles it is possible to determine upper and

lower bounds for strains and stresses,
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The method described here is essentially the same a8 already used by
Weber, ref.33. Cooperman, ref,.34 and Synge, ref, 35 have given a general
_scheme for finding local bounds for the solutions, and their derivatives,
of ﬁoundary value problems of mathematical physics, of which the problems

of elasticity theory are spedﬁal cases,

6.3.2 BExternal loads,

In section 6.2.3 it has been shown how, for a loading case A, the

three force components KAx’ KAN,-KAz at a surface element df, where the
displacement is presdéribed, are determined by means of an auxiliary system
B, where the prescribed displacements are confined to unit displacements
AEB(l,O,O) ,'35(0,1,0) and'ﬁg(o,o,l) respectively at the element df,. The
displacement_ﬁé(l,o,o) yields the force component K,_.

The expression for the complementary energy of the structure under

the combined loading cases 4 and B is formula (6.21)

* * * :
VA+B =V, + Vg~ KAx {6.64)

and the expression for the potential energy is formula {6,39)

if the prescribed external loads of system B are taken zero,
In the same way as in section 6,3.1, where (6.44) and (6.51) were

used to establish the bounds for u, ,the squations (6.64) and {6.65)

A
yield the bounds for KAx'

With the notation

* ) * ) 2 =D PV o P! ' )
V, =P, Vg= P}, and Ky 2 Py 2p4, in (6.64)
and
" = =Pt = - " m - "
Vy= =Py, , Vg =-Pi, and K, 2 P, | 2Py, in (6.65)

+he bounds for P

12

sre, if PI <Py,

I - t
Py, = B<P  XP1, + R

4 ] "
and if P12>P12 ‘

1 Plg = RePp <P + R

1
where R::V/(Pil - PRy, - P3L) >0

The bounds for P are also the bounds for - % X .

Ax

12
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1 Deformation and stress analysis of a 5 cell clamped swept back box beam
with ribs in flight direction,

- 7.1 Introduction,

Lang and Bisplinghoff (ref.36 and 37) give results of experiments on

‘a swePpt box with ribs in "flight direction". It was decided to apply the

variational principles of section 6 to this swept box, in order to make a
comparison with the experimental results,., The swépt box was clamped at the
root and had 5 ribe, the rib at the free end included, thus there were 5
celle (a cell is the space between two rib pleanes), Also Lang and Bispling-
hoff made calculations, but in these caloulations they took the ribs nor—
mal to the spars instead of in flight directioﬁ, which seems to be a |
rather crude assumption more in particular for the region near the root,

In schematizing the Btruéture for the present calculations, the start-
ing point was the schematization of lang and Bisplinghoff'(of gourse ex-—
copt for the position of the ribs), However, after completion of the cal~
culations, the schematization of lang and Bisplinghoff proved to be not
sufficiently correct. The moment of inertia of the croms section AA (fig.
7.1) with reapect to the xy plane used by Lang and Bisplinghoff is 25.7
inch4 (a value also following from fig.7.5 of ref, 36). The moment of
inertia, calculated from the actual structural dimensions proved to ‘be
28.7 inch?, which is a difference of more than 10 °/o 17,

Since the calculatione of Lang and Bisplinghoff and equally the
present onss do not refer to the actual structure on which the experi-
ments wers carried out it had te be concluded that it was not worthwhiie
to compare the results bf.the present calculations with the eipériments
described in ref,36 and 37. To meet this disadvantage‘another swapt box
beam was built and tested at the National Aeronautical Ressarch Institute,
Amsterdam. The dimensions of this structure were taken such that they
correspond as good as possible with the schematization of the calcula-
tions, Another reason to replace Lang and Bisplinghoff's tests was that
the root restraint in these tests was not completely rigid, The N _A,R,I,
test specimen was a double swept box loaded symmetrically so as to pro-
vide rigid root restraintz). This experimental investigation and its

1) This difference stems from the fact that in the calculation which led
to the results of 25.7 inch4 all upper- and lowerside material is con-
sidered to be at a distance of exactly 3 inch from the neutral plane,
Howsver, only the innersides of the top and bottom plates are 3 inch
from the neutral plane, and all the material of top and bottom
vlates, stringers and especially of the spar booms has greater
distances, !

2) Lang and Bisplinghoff incorporated measured displacements at the root
in their calculations, Nevertheless these displacements obscure to a
cerinin degree the resulis. The special state of stress near the root
hecomes less pronounced,
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interpratation were carried out by Van Grol, Hakkeling and Schuerman
(ref.38). Also Brihl (ref.39) made experiments on a swept box beam and
compared measured stresses with stresses computed according to the theory
of section 7.4.2, which was made available to him. The results of these
comparisons proved to be guite satisfactory.

- The schematized structure will be analysed first by applying the
minimam principle for the stresses, taking iO, 15 and 20 supplementary
stress éystems respectively. Subsequently the structure is analysed by
applying the minimum principle for the strains taking into account 50.

supplementary strain systems,

7.2 Dimensions. -

The planform and cross section of the swept-back box are illustrated )
by fig. 7.1 and 7.2, The angle of sweep is {90° - ©) = 45°. Thers are |
two parallel spars of equal and constant cross section aloﬁg the span.

The thickness of the spar web plates hs is 0.0F1 inch and the cross !
sectional area of each spar boom is 00,3819 inch2 (section normal to the |
boom). Top and bottom structures are identical and consist of a skin plate

of thickness h = 0,032 inch and 3 stringers of cross sectional area

g = 0,059 inch2 each. Their distance aq measured along a ridb is 3\f§'inch.

The webs of all five ribs have a thickness of 0,051 inch, and the upper and
lower rib flanges 0,0255% inch2 have gross'sectionai area sach (section nor-

mal to the rib). The modulus of elasticity E is 10.52106 1ba/inch2 and
Poisson's ratio V = 0.3, (Sheqr modulus G = 4.0385 x 106 Ibs/inchz). A right
handed oblique coordinate system x,y,z as indicated in fig. 7.1 is used, ’

The swept box is clamped at the roet at section x = O,

The cross sectionallarea of the upper spar booms is 1,36X the cross
sectional area of upper skin and siringers, It is to be expected that the
particular strasg distribution near the clamped root is more pronounced
the lighter the spar booms are, 1% may then e necessary to use in the root
region stil) more supplementary stress or strain systems than are used in
the present caleulations. Seme calculations for a box beam with lighter
spar booms were carried out by the author in ref,40. Experiments with this

box beam are under progress,

7.3 The strain-stress relations.

The structure discussed in section 7.2 is schematized in the follow-
ing way. '

4

The stringers are continuously distributed to form an anisctropic
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plate only capable of carrying normal stresees in stringer direction. To
this purpose the cross sectional area of sach spar boom was diminished
with an amount equal to 1/2 of the cross sectional area of a stringer and
this area was added to the anisotropic plate consisting of the skin and
the continuized stringers,

The spar and rib webs are assumed to cariy shear stresses only., Their
normal stress carrying capacity is added to spar booms and rib flanges
respectively. |

The applied loads give in all spars and ribs stresses which '
are antisymmetrical with respact to the x,y plane, If it is supposed that
the normal stresses in a croéa section are proportional to the distance
to the x,y plane (the bending stress distribution of engineering thecry),
the normal stress carrying capacity of the webs iB properly taken into
acoount by adding 1/6 of the sectional arsa of the wehs to each apar
boom or rib flange (by doing so, the moment of inertia of the spar re-—
mains unchanged).

The cross sectional area of the idealized spar bpom becomes how

A = 0.3819 - 1/2x0,059 + £x6%0.051 = 0.4034 inch®,

that of the idealized rid flange

0.0255 + %x6x‘0_051 - 0.0765 inch® .

The strain-force relation of a spar boom is

€ = EEK (7.1)
where EA = 4.2357 x10° 1vs .
and of a rib flange
P .
€ = _E_.E , (7-2)

where EA = 0.80325><106 1bse,

The spar and rib webs carry only shear stresaflows and their
strain-stress relation is '

v -
YE(—}?{ (7-3)

where Gh = 0.205963><106 1bs/inch,
With the numerical values 6 = 450, h = 0,032", AS = 0,059 inoh?
and ag = 3|f2 inch, the stiffness matrix (3.25) of the composite plate

takes the value
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1.1903 0.6788 -0,7385
ay - 10°] 0.6788 1.0443 -0,7385 | 1bs/inch . (7.4)
-0,7385 ~0,7385 0.7049

It be remembered that the ridb flanges are not continucusly distri-
buted., Therefore in (3.25) @ = 1,
The inverse of matrix (7.4) is computed from (3.31)

2.,6068 0.9124 3.6866
A 1078009124 4.0127 5.1594 || inch/ibs . (7.5)
3.6866 5.1594 10,6853

7.4 Analyeis with the minimum principlé for the stresses,
7.4,1 10 Supplementary straas systsms,

A load in the direction of the positive z axis of 1 1% will be
Placed successively in the stations 1,2,..10 (fig.7.1). These states of
loading, will be called "loading case 1", "loading case 2", efc. For

sach loading case the strees distribution and the vertical deflections
of the stations 1,..10 will be established, The calculations follow the
lines of section 6.1,

From symmetry considerations it follows that, in the lower skin,
the projections of the displacement vectors, the strain components and the
stress components have always the opposite sign as those in the upper
skin.

The figures 7.} and 7.4 show the two types of supplementary stress
systems, admitted in this analysis, Each system only sxtends along two
consecutive ocells, In addition the cell next to the raoot carries stress
systems, which consist of the right part of the two types of systems,
Fig.7.5 glves the position of each system within the structure. (The
gyatems number 11.,.20 are introduced in section ?.4.2 and 7.4.3). If
the Tegion of a syetem is not bounded by the root, the structure beyond
the bounds of the region is free from siresses and forces, 1f the root
is a2 part of the bound of a system, the structure may exert forces on
the root the resultant of which is zero; this applies to the stress
systems 1,6,11 and 16,

The systems of fig.7.3 (itype 1) are the only supplementary stress
systems when the structure is made 5~fold statically indeterminate by
supposing that the. skin bays can carry only shear stresses along their

edges, These systems account for the capability of the ribs to carry
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shear stresses,

The addition of the systems according to fig.7.4 (typa 2} presents
the first step towards refinement of the behaviour of the skin, It allows
the composite plate to carry longitudinal stress B e Strictly, each of
these systems consists of two independent systems, one in the upper plate
and one in the lower plate,.Because it is known that stresses in upper'aﬁd
lower plate will be reversed in sign, they are taken together,

The 1imitations to which the state of stress in the composite plate

is suhjeéted ares

° The axial stress flow sx is constant over the width of the skin {in y-
direction), it varies linearly between two successive ribs (in xz— .
direction).

50

The axial stress flow sy is zero throughout.
From the equilibrium conditions then followa that the shear stress
flow t is a linear function of y. '
With the supplementary stress systems to be used later, fig.7.7 and
7,8, the axial stress flow sy gtil] remains zer& and the axial stress
fiow 8 8till varies linearly between 2 successive ribs, but it is being
admitted that s_ is & guadratic function of the chordwisge coordinate,
The coefficientglhij defined by (6.5) have been calculated with
the strain-siress relations of section 7.3 and are tabulated in tabls

7.1. Values not given are obtained by observing that A, . = Zji‘ In cal-

culating the integrals a table given by Van Beek, ref.;g, was uded,
In structures were in all eslements the state of sirese is ohe

dimensional (trusses, structures with only shear carrying plates) the

computation of the alements)\ij can be very well systematized to a

matrix multiplication of three matrices (ref,26), The first and third

matrix represent the supplementary siress systems, the second one the

flexibilities of the elements., The presence of elements in which the
state of stress is two-dimensional gives complications, but the procCe-
dure can be adapted, For the present structure, which consists of
equal cells it was considered not necessary to use the matrix procedure
in gquestion,

1t may cause surprise that for examplelhij for j=1and i = 6
and 7 does not vanishy j = 1 pertaining to the itype 1 systems which
are "anti-symmetrical” to the axis of x, whereas i = 6 and T pertain-
ing to the type 2 systems are "symmetrical" with respect to the axis
of x, The reason for the fact that they nevertheless couple in the

froductsJ/éi.Rjdvt//sj.Ridv is that the element A13 of the flexibi-
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1ity matrix of the composite plate is not zero-(i,e. the expression for
the strain energy contains a term 2A13th).

For each loading case, the btasic stress system was chosen as simple
as possible, They occurred only.in the spar connecting the loaded station
with the root and are given in fig.,7.6.

The terms;HOi of the equations (6.6), for the iO loading cases
m=1.,..1C indicated by)‘mOi’ are given in table 7.2, forming a non-sym- '
metrical matrix, which is only square by chance (because the number of
supplemsntary stress systems happens toc be the same as the numbers of sta-
tions in which a vertical unit load is placed), No non-zero displacements
are prescribed. So the tarm.[E;:E;df does not play a role,

The solutions of the unknowns Xj, j=1,..10 for the loading cases
m(m=1,,.10), indicated by ij, are given in table 7.3.

Consider now the cass, where the load is placed in station m, and let
be asked the vertical deflection in station n.

According to (6.26), the displacement indicated by the symbol C_ -
which is an influence coefficient eincg it is the displacement for a
unit load - is

c__ f//SmO.Rnodv + xmfani . (71.6)

Smo indicatas the basic stress system for loading case m, Rno the state of

strain corresponding with the basic stress system Sno for loading case n,

The matrice?//SmO.Rnodv and Cmn are given in tables 7.4, and 7.5
regpgctively,

It ie easy to compute stresses or strains in the structural membdera,
once the unknowns Xi have been solved. |

Table 7.6 gives stresses for the 10 leoading cases in the stations
l...12 of the spar booms, in the spar webs and in the ribdb webs.

In section 7.6.2 figures will be produced where stresses, also in

the skin, are plotied for some loading cases,

[.4.2 15 Supplementary stress sysatems,

A third type of supplementary stress systems was assumed and is shown
in fig.7.7. #Again, each system corresponding to fig.7.7 consists of two
independent parts for upper and lower skin, but as stresses and displace-
ments in upper and lower skin are reversed in sign, the two parts are
taken together. Fig, 7.5 givé; the position of the added systems nr.
11...15. .

With respect to the type 2, the pfesent type offers the refinement

that the stressflows s may vary. linearly in y-directicn,
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In view of the equilibrium conditions (2.1), (2.2) the stressflows t
are now quadratic functions of y.

With the three types of supplementary stress systems the general for-
melas for the stressflows in a composite plate are

8 = C, Xy + ¢C

% 1 X + 03y + C

2 4

5. = 0 | (7-7)

t = - % cl y2 - 02y * 05 .

Only apparently these formulas offer'S degrees of freedom per cell.
However,. the stressflows sx to either side of a rib.must be in equilibrium,
Since 8_ along a rib is a linear function of y two coefficients for the
n~-th cell depend on the coefficients for the n=lth. In addition 5, must
vanish at the free end of the beam., Then only 3 degrees of freedom per
cell remzin, _

If no spar dbooms would be present in the siructure the supplementary
stress systems fig, 7.3, 7.4 and 7.7 could not exist because normal foroces
are required along the boundaries y = constant of the skin panels, However
systems fig. 7.3 and fig. 7.7, taken together in the approrriate ratio,
form a system of streses without forces in the spar booms,

The computation follows further quite the same lines as in section
7.4.1. The range i and j, however, is 1,,.15, instead of 1,,,10,

| Table 7.7 gives the additional values of the coefficients M,y of the
15 unknowns, The other values were already given in table 7.1.

Table 7.8 gives the additional values of the terms )bmi of the equa~
tions, The other values were alrseady given in table 7.2.

Table 7.9 gives the sclutions ij of thq gquations for the m loading
cases (Compars table 7.3).

Table 7.4 still holds for the calculation with 15 unknowns,

Table 7.10 gives the matrix of influence coefficients {compare
table 7.5).

' Table 7.11 gives stresses in the structure (compare table 7.6). For

further discussion of stresses see also section 7,6.2.

7.4.3 20 Supplementary stress systems,

Pig. 7.8 shows the fourth type of supplementary stress systems, Note
that no forces in the spar booms occur in the stress systems of this type.
So these systems can be used if no spar booms are present {together with
the appropriate combination of type 1 and 3),

This type offers the refinement that the axial stressflows 8y Way
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vary quadratically in y-direction, but they still vary linearly in x-direct-
ion, The stressflows sy remain zero, Consequently, the streasflows t are
now cubic functions of y.
With the four types of supplementary stress systems the general for-
mulas for the stressflows in a composite plate are

2 2
B, = Oy Xy 4 0¥ 4 &3 X + c4x + csy + C¢

8y = o} ' (7.8)

1

m+

5
ey I =0,y 4 ¢q .

Apparently theée formulas now offer 7 degrees of freedom per cell. But
to either side of a rib, the siressflows By which are there guadratioc
functions of y, must be the same., This means that three coefficients for
the n-th cell depend on the coefficients for the l-n th, In addition 8
must vanish at the free end, This leavea only 4 degress of freedom per
cell,

The computation follows quite the same lines as in secticns 7.4.1 and
7.4.2. Matrices are given in tables 7.12...7.15, out of which table 7.14
gives the matrix of influence coefficients and 7,15 the stresses, For fur-
ther discussion of stresses see also section 7.6.2,

Inspection of tables 7,6, 7.11 and 7,15 already learns that intro-
duction of the possibility for the stressflows 8 to vary quadratically
in y-direction does not offer very much improvement, A first impreseion is
thet the use of only the first three types of sgpplementary atreas s&atems

gives a solution sufficiently sccurate for practical purposes,

T.5 Anzlysis with the minimum principle for the strains,

The analysis applies again to a swept back box of section Te2e

It is the aim to assume such a combination of types of supplementary

strain systems, that an accuracy can be expected of the same order as achiev-

ad with the minimum principle for the stresses and 1% supplementary stress
gystems, It was discussed that the general formulae for the stressflows in
the skin in that case were (7.7), in which 5 constants occur though the
actual number of degrees of freedom for the stresses were only 3 per cell,
Of course the formulas (7.7) were not the result of the use of the
3 types of supplementary stress systems, but in reverse were the starting
point in conatructing these systems., Without any change in the final resﬁlt

these formulas could have been given a somewhat more general shape, viz,
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8 = ¢

. 1XF + CoX + ey +c

4

B, = CgXY + CoX + Cgy + 09 (7.9)
t = - i c y2 - C - 1 c xz - ChX + C
z %1 2Y 77 % 8 5 *

Such an approach could be made by supposing that two stressflow com-
ponents are arbitrary functions linear in x and linear in y. These two
stressflows can only be B, and sy. Thereupon the shape pf the formula for
the stressflow t follows from the -equilibrium comdition (3.17).

Since the stressflows ey must be zero at the apaf booms, it follows
immediately that Cg = Cq = Og = 09 = 0 and again (7.7) remains,

In constructing supplementary strain systems, one can likewise atart
with the assumption that two strain componente are arbitrary functions
linear in x and linear in y, Next the shape of the forﬁula for the third
strain componenti follows from the compatibility condition (3,19).

‘A gat of formulas to start with may be for axample the formulas

€L ™ CXF + X ¥ Cyy 4 ©,

By ™ OcXY + CcX + CgY + Of | (7.10)

> 2
Vo= 0gXT 4 OygX + 0g0F + C1oF * 04

Another set is

€2 = OgX¥ + CX + CyY + 0, (7.11)

Y = SgXY + CgX + €.y + g , : ;7.12)
12 2 . '

ey= 3 csx + 0gX 4 Cia¥ + C ¥ + Cpp (7.13)

The set of formulas {7.11)...(7.13) seems to have a minor advantage
over the set (7.10)., In the set (7.10) the strains e, vary only linearly
in x and y-direction, This means that if an infinite box beam with normal
or oblique ribs is Jloaded by a moment, the strain Ey must be the same
linsar function of y in all cells, Then the discrete character of the ribs
is lost, - '

‘ The set of formulas (7,11)...(7.13) does not show this defect and
wag choseﬁ as starting poiﬁt.

Bafore constructing the supblementary strain systems the number of
such systems required to guarantee the freesdom expressed by (7.11)...
(7.13) will be established.
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Again use is mﬁde of the fact that strains and displacements of the
lower skin are reversed in =ign as compared to strains and displacements
of the upper skin.

Suppose the mtrains in a skin panel are those of (7.11)...{(7.13) and

thoae of the consacutive skin panel by {voth panels have same x- and

¥y axes)
't . a! 1 ' ' .
€y = € Xy 4 05 X 4 e} ¥y +Ac4 (7.14)
[ ? ] ¥
T'=olxy4clrechys ed (7.15)
€l m X g x% ¢! x + ¢! v+ ol y+ e! (7.16)
¥y 275 9 10 11 12 *
where of course the coefficients ci...ciz have, in general, other valuss
than the values €y eesCyn of (7.11)...(7.13}.

Along the intermediate rid flange, with x coordinate Xy the displa=~
cement projections u, and uy of both panels must be the same. If for both

panels is put

5 -
du dE
2x = %I - dI (1-17)
dy ¥
Py
dy = Sy y ‘ (7-18)
the compatibility conditions at the tib flange are
de ge !
XXX (1.19)
dy - dx dy dx! *
[ 4 = £ .20
v v | | (7.20)
or
- k-] L] hand 1 ‘ L4
c7 09 CT 09 (1.21)
l 2 2 }. 1 2 [ t 2 ? ¥
5 csxr + chr + 0¥ * Y+ 0 3 c5xr + c9xr + C{g¥ + C{{F+ Cpp o
(7.22)
Since (7.22) must hold for any value of ¥
% Cexn” + CgX + Cppy = % céxﬁ + céxr + ciz (7.23)
10 * %ip (7.24)

11 = %1 ¢ (7.25)
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Though the stirains (7.11)...(7.13) for a pesnel have, by means of their

12 values ¢,...¢ o1 12 degrees of freedom, the actual number of degrees of

freedom forleachlpanel in the structure is only 8, because of the four rela-
tions (7.21), (7.23), (7.24), (7.25).

Tha spar and rib webs are s8till considered to be of a material that is
only able to carry shear-siresses and thus the strain energy of such sle-
ments is a function of the shear strain only and not of the normal strains
which may be present, It is possible to assume a system of a non-constant
shear strain (of zero mean value) to one spar or rib wab, As such a
system, superimposed on a constant shear strain, always augments the po-
tential energy, it needs not to be taken into account, So in the soiu-.
tion, the shear strains and shear stresses will bé constant within a
bay, and so it is sure that the equilibrium conditions within an only
shear carrying bay will not be violated in the approximate solution,

Though there are three webs per cell {two spar webs and one rid web),
there are not 3} degrees of freedom for the constant shear sirains of these
wabs., If the B8kin and spar booms are kept unstirained, the shesr strain
of a rib web cannot be varied without imposing shear strains in the spar
weba of the two adjoining cells. Reversely, again leaving the skin and
booms unstrained, one cannot apply unequal shear strains to the spar wehs,
without affecting the shear of an adjoining rib and of the spar webs of
the cell at the other side of this rib, Equal shear of the iwo spar webs
ie, however, compatible with absence of shear in the ribs and of spar
web shear in ofher cells, Therefore ths degrees of freedom for shear of

the three webs comprises one system in which the rib is affected and one

‘with equal shear in the two spars, So the webs add'per cell two degrees

of freedom to thoss of the skin and a number of 8 4+ 2 = 10 supplementary
strain systems per cell must be taken, The total number of’unknowns, 50,
is remarkably large, compared with the 15 unknowns, which were required
if for the stresses a simila;ffreedom of distribution is supposed,

From {7.24) and (7.25) follow that the coefficients ¢y

the coefficients C1y? for all cells are equal ito =sach other,

o as well as

Since at the clamped root Ey = O and ¢0 = €1 = 0 for the first skin
panel and thus all %0 and Cyq 8T zZero and need not further tc be taken
inte account in conetructing the supplementary strain systems,

The 10 supplementary strainrsystems are developed along the follow-
ing systematic lines,

First of all systems are established which occur only in one cell

and leave the two rib planes which bound the cell undeformed and undis-



placed, Such syatems are type 1, 2, 3, 4. The basic formulas for the strains

in the upper skin are:

for type 1, fig. 7.9, 10°

EaI-é
x. e
. 3
type 2, fig. 7.10, 10°Y a x ~ 6

3 (7.26)
type 3, fig, 7.11, 10 € = y(x-6)/8.,4852

type 4, fig. 7.12, 103Y = y(x-6)/4.2426 .

The compatibility equation (2.15), the requirement that the sparwebs
at upper and lower side must follow the dieplacementis of the siin and the
fact that the rib webs at the bounds of the cell may not displace beduira
for soma of the types strains in the spar webs and some further strains in
the skin, which ocbey like those of (7, 26) the general shape of (7.11)...
(7.13).

Subsequently supplementery strain systems are established which also
geour only in one cell, but where the rib plane at the right hand side
translates or rotates with respect to the other rib plane which is not dis-
placed {both rib planes remaining undeformed). The outer part of the box
beam then also translates and rotatés as a rigid body, Such types are

type 5,6 and 7, These ridb displacements or rotations were:

for type 5, fig., 7.13, translation in z-direction
type 6, fig. 7.14, rotation about y-axis
type 7, fig, 7.15, rotation about x-axis
and the strains belonging to these types obey the shape of (7.11)...
(7.13). ,
The possibilities to construct‘strains in one cell only, which oley
the formulas (7.11)...(7.13) are now exhausted, The types 8, 9 and 10
originate from three kinds of rib deformation which must, of course,
distort two cells,
These rib deformations are:
for type 8, fig, 7.16, warping out of ths plane
type 9, fig. 7.17, uniform shear
type 10, fig., 7.18, uniform bending ,
and the strains belonging to these types obey the shape of (7. 11)...
(1.13). | | _
From the shape of the formulas (7.26), and from the way in which the
systems type 5...type 10 have been constructed, it is clear that the
linear undependency of the 10 types is fully guaranteed,




Bach of the types occurs 5 times in the structure. Fig, 7.19 locates
the position of sach system.

0f course, any other set, mutually independent, combinations of the
systems used, may serve the purpose, 1t is, however, desirable that in the
first place the étrains of each system affect only a small part of the
structure. Less important, but still desirable is that also the displace~

ments, belcnging to each system are non-zerc only in a small part of the

‘structure, Of course the displacements are non-zero where the stfains are

so, but they may be non-zero, in regions where the sirains are zero, The
set of 10 systems used, fits the afore mentioned requirements reasonably
well, but of course there may be more or less different combinations
which equally or still somewhat better do. _

The vertical displacements in the stations i, 2,..10 (fig.?.l)
caused by the supplementary strain systems nr,., 1, 2,,..50 are tabulated
in table 7.16. |

The matrix of the "coefficients of the unknowns"A .
given in table 7.17.

3 from (6.29) is
Ten loading cases are considered: Vertical load of 1 1b in station 1,
in station 2, etc. No basic strein systems need tc be used since the
presoribed displacements at the root are zeroj so in (6.29))\Oi = 0 and
only m(m=1,..10) sets cf{iﬂg;ﬁldf have to be computed. Since k =1 in one

‘station only and vanishes in the other stations the values given in

table 7,16 represent the integrals J’i;E;df for the 10 loading cases

m=l,...10. In order to solve the 50 equations use was made of the fact

that the coefficients of the unknowns)\pq as far as p = 1...35, @ = 1..
.»35 are oconcerned, form a matrix which can be divided intc 7 x 7 unit
sub-matrices, each multiplied with a scalar number, or with zero, The
inversion of this 35 x 35 matrix can easily be done by invaerting the

1 x‘7 matrix of the scalar multipliers of the afore mentioned unit sub-
matrices. Moreover, the inversion of this 7 x 7 matrix simplifies inte
the inversion of a 3 x 3 matrix and a 4.X 4 matrix, By some further opera-
tions, the number of equations was reduced to 15. The solu%ions |

Yi(i = 1,.50) for the m loading cases (m=1l.,..10) are 'given in table 7.18.
From these solutions the matrix Cmn of influence coefficients for the
displacements in table T7.19 is easily computed by means of

cmn = xmihin

© where ¥ is the matrix of table 7.16, if the index m is changed to n,

Table 7.20 gives stresses as calculated from the superposition of the
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50 strain systems, In this case, the valuea of the stresses in the spar
booms do not refer to the stations 3...12, but to pointe just outsiﬁe these
stations, '

Table 7.2]1 gives in addition the calculated stresses just inside the
stations 1.,.10. The fact that the calculated stresses to either side of the
stations 1...10 are not equal is not astonishingj the solution is not exact
and the stresses which follow from the minimum principle for the stirainsa

do in general not satisfy equilibrium conditions completely,

7.6 Discussion of results,

7.6,1 Displacements, Determination of upper and lower boundaries,

Table -7.22 repsats in 4 columns the main diagonal elements of the ma-
trices of influence coefficients from tadle 7.5, 7.10, 7.14 (obtained with
the minimum principle for the stresses with respectively 10, 15 and 20 un-
knowns) and 7,19 (obtained with the minimum principle for the strains with
50 unknowns), '

If at the stations 1.,,10 (fig.7.1) the vertical forces K .o K aTe
applied, it follows from (6,9) since v = C X that the complementary

energy of the siructure is

* 1 .
v = "'2- CmnKmKn (n’m = 1-.:10) ' (7027)

and the potential energy follows from (6.30)
1
2
If C . is the (unknown) exaot matrix of influence coefficients, then

- 3 C
(Cmn Cmn)!('mKn is a positive definite quadratic form if C  is one of the

V ™ e cmnKmKn (n’m = 1.-010) & (7'28)

matrices established with the minimum principle for the stresses since
V>V and (Cmn-ﬁﬁn)KﬁKn is a negetive definite quadratic form if C_ 1s
the matrixz determined from the minimum principle for the strains, sinoe.
V<V, Also (Cén"c&n)xmxn is a positive definite quadratic form if Cén

and C;n are both determined with the minimum principle for the stresses,
Cén with a lower number of unknowne than C&n’ provided the stress systems
used for C&n ere available among those used for C;n.

In accordance with these statements the rows of table 7.22 consist
of numbers Cmm’ decre asing in value and the (unknown) exact values Eﬁm
lie between those of the third and fourth column, Also for the other
elements of the exact matrix of influsnce coefficients upper and lower
bounds oan easily be computed, As to obtain these bounds for an element

C. the 2 x 2 submatrix
ij?
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is exiracted from the tables 7.14 and 7.19 and the procedure on the ma-
trices Pij of section 6,3.1 ia applied,

In using 10, 15 and 20 supplementary stress systems respectively, thers
sgems to be a fairly rapid convergence of the values given in the tables
7.5 7.10 and 7.14. This‘oonvergencq is not necessarily directed towards
the exact solution, because the three types of supplementary stress systems
(fig.7.3, 7.4 and 7,7) have one defect in common: that the axisl stress-
flow sy in the composite plate is zero, In section 8,3 supplementary stress

systems with a non-gzero stressflow sJr will be introduced.

7.6.2 Stresses and strains,

For loading case m = 3} (that means a vertical load of 1 1b in
station 3), £ig.7.20 gives the normal stresses in ths upper spar booms.
Fig. ?.2i gives the shear stresses in the spar and rid webs. Fig.7.22
the gtresaflows 8, and t for the composite plate (combination of skin and
squivalent stringer plate).

Figures 7.24, 7.25 and 7.26 are similar to figs, 7,20, 7.21 and 7.22
respectively, but for loading case m = 4 (load of 1 1b in station 4).

As to the curves obtained with the minimum principle for the stress-
es with 10, 15 and 20 unknoﬁns respectively it is seen from the figures
7.20 and 7.22 and 7.24 - 7.26 that there is again a fair convergence,
Therefore, there seems to be little need to use the last 5 supplementary
stress systems, It could be expected <that the addition of parabolic
streasflows s_ would mainly affect the stresses in the skin (figs,7.22
and 7.26) and indeed a noticeable improvement has been obiained. However,
it is unlikely that further improvement would be obtained by taking a
more refined distribution-function for the stressflows 8. in y-direction,l
thereby maintaining s v 0.

If it had been supposed that the obllque skin fields cOuld carry
only shear stresses along their edges, the results for the loading cases
m = 3 and m = 4 would have been Buch that in figures 7.20 and T.21 the
plote for the front spar were identical to the plots for the rear spar in
the figures 7.24 and 7.25 respec?ively. It is seen that this supposition
wonld have led to highly misleading results,

The tables 7.23 and 7.24 give again results of stresses like tables
7.6, ?.11, 7.15, 7.20 and 7,21. Each of these two tables only refers to




one loading case, but gives results for all the ways by which the compu-
tations were made. o ’

In the case of table 7,23, vertical downwards directed locads of 1 1b
at all stations are present, The agreament between the different columns
is satisfactory, In the case of table 7.24 vertical downwards directed
loads of 1 1b are placed at the stationms of the rear spér, and upwards
airected loads at the front spar, The absolute differences between the
resPQGtive columny are generally not greater than ithoss of tabls 7.23,
The relative errors are somewhat greater, |

Pigures 7.23 and 7.27 give for the 2 loading cases the strain £ in
the spar booms and in the skin immediately_adjacent to the spar booms,
which must be equal for the exagt solutions, The calculations were per-
fofmad with the minjimum principle for the stresses with 20 unknowns, The
solution is not exact and some incompatibilities have to be axpected The
strain in the skin (s 7" 0) follows from the stressflows by

E = Allal + A13t (7n29)

or with (3.31)
sx/hin & 4+ 2t ctn ©
Ee = % \ (7.30)

he

assln a

(for the meaning and the numerical values of ©, h, A; and ag see
section 7,2).

It is seen that there are large discontinuities in both figures at
the station where the load is applied and im the Tear spar at station 9,

These discontinuities correspond to the discontinuities of the term

2t otn © ' (7.31)

Ag

ag ®in e
in (7.30}, since only t, and not 5y is discontinuous at the intersec-

h +
tions of the ribs and the skin. So at a rib the discontinuity is

EAE% . 2(at i;n 8 | (1.32)
h+ Eg—gzzhg
~ This discontinuity of t, for which already a very good coﬁvergence
is achieved after applyiﬁg'respecti§ely 10, 15 and 20 unknowns (figs.
" 17.22 and 7.26) and which would not be present in the exact solution is
caused by the fact that the stress systems used do not allow t to vary

in x-direction within a skin field because sy = 0, The discontinuity
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can be diminished by allowing sy to have non-zero values by which t may
vary in x-~direction (whereas of course sy remains zero at tpe spar boom,
which has no bending stiffness ). However, a cpmplete removal of the dig-
continuity of t along the spar boom cannot be'obtained by such means, The
reason is that the exact solution for the present schematized structure
will have in general stress singularities in the corners {intersections
of rib flanges with spar boom), See also the discussion in section 10,
In section 8.2.6 discontinuities in strains along rib flanges,

which will prove to be still more severe, will be discussed,

7.6,.3 Comparison with Morley's work,

Morley, ref., 42, analyses a similar swept bdox, but hisﬂmethod is quite
different, This method allows for a completely arbitrary distribution of
the axial stressflows B in the composite plate along the ribplanes and
supposes that the stressflow sy is zero., Simultaneous differential equa~
tions for the distributions of 8 along the rib planes are formed. The
rib flanges, however, are considered to be infinitely stiff with respect
to normal forces and later, in the numerical work, the ridb webs are
taken infinitely stiff with respect to shear stresées,l _

For two sets of concentrated loads at the tip (which may be replaced
by any other statically equivalent load in the tip rib plane, because the
rib‘web in its plane is infinitely stiff), ¥orley performed calculations,
The figures 7.28,..7.31 are derived from figures of Morley. The figures
7.23 and 7.27 are to bé compared with the figures 7,28 and 7.30. They show
quite the same type of discrepancy between the strains ex'of the spar

booms and the adjacent skin. The discontinuities are again large in the

1) It is also possible to obtain along the lines of the present method
such a set of simultaneous linear differential equations for the
distributions of s_ along the ribeplanes (sy:O), even if the rib
flanges and rib webs are allowed to have a finite stiffness. Supple-
mentary stress systems of ﬁﬁe type 7.3 and of a type similar to fig.
7.4, 7.7 or 7.8 are to be used, However, in the 5 systems oi the
‘lafter type for the distribution of 8 along the rib planes 5 diffe=-
rent unknown arbitrary functions fl(y)..:fB(y) are to be taken, These
5 arbitrary functions replace the 5 quadratic functions, which in fact
are used when the 2C supplementary stress systems were applied. The

" minimum principle for the stresses and the application of the prin-
ciples of ‘variational calculus then lead to the coupled differential

equations for fl(Y)...fS(Y).
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neighbourhood of the point of the application of the loads and at the inter-—
sections of the rib next to the root and the rear spar.

Two sets of plots for the stressflows t between the Fiba are repro-
duced in the figs, 7.29 and 7.31, They correspond to the lower parts of the
figa, 7.22 and 7.26. Yost of the curves in the figures 7.29 and 7.31
" could be fairly welllapprbximated by 3rd degreé curves, which in fact the
curves for t in figs. 7.22 and 7.26 aétually are,

Morley derives his sclution with much more trouble than attendant on
the present method, Even, if the ribs had been supposed to be infinitely
8tiff in their plane, it is queBtionaﬁle whather Morley's solution would
be much better than that according to the pfesant method, The inaccuracy
rasulting from the assumption that the ribs are infinitely stiff in bend-
ing and shear presumably cverfides.the 8light improvement resulting from

Morley's more accurate ireatment of the stresses in the skin,

1

‘Application to the infinitely long swept box,

8
B,1 Iniroduction,
It is interesting to study the results which the methods of

seotion 7 yield when applied to a box beam of infinite length, consist-
ing of egual cells with oblique ribs. The methods are not particularly
suitable for a box beam of infinite length (i.a._a box of m cells, where
m-wco), since they would lead to 2 my 3 m, 4 @ and 10 m equations with
as many unknowns if thé_supplamentary‘stress systems of section 7;4.1,
7.4.2 and 7.4.) or the supplementary strain systems of section 7.5 were
usad respectively. |

However, if the cells are identical, the solution for the case of
loading by a constant moment or a constant shear forbeI is practicable.
In the following numerical application the dimensions of the cell of the
 swept box are equal to those of the 5 cell swept box of section 7, The
moment vector is parallel to the xy-plane and the shear force ig parallel

to the axis of z, For these loads, like in section 7, the streases in top

1) With loading by & constant moment (or -constant shear force) is meant
‘a loading case whera‘in every croesa sgection tﬁe moment (or shear '
force) has the same value, The external load i3 thought to be
applied at both ends which are suppesed to be infinitely far

from each other,
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! and bottom composite plate are of equal magnitude and opposite sign.
' The main purpose‘of the present investigation is to obtain the equi-
valent of the elementary beam theory (the so called engineering thaory),
for the oblique beam, which takes the form of simple differential equations
for the relations betwsen displacements, flexibilities and loads, Like the
engineering theory for straight beame this theory for oblique bsams might
| be used for the practical analysis of finite non-prismatic swept box beams
I where moment and shear load are functions of x, and the results so obtained
would be slightly in error only, if the dimensions and the loads would vary
sufficiently slowly along the longitudinal axie,
Results of this section (upper and lower bounds for the flexibilities
are estabiished) will be compared with the results obtained by other suthors
from equivalents of the elementary beam theory for the obliqué beam,

Section 8.2 gives the calculations for constant moment and constant

|
|
|
|
|
|
‘ shear force -.according to the minimum principle for the stresses, Three
types of supplementary stress systems are used (see fig.7.3, 7.4 and 7.7).
It proved to be posaible to find general formulae, whioch are appliocable
to any combination of angle of sweep and siructural dimensions, provided
- of course that the cells are equal,

' In section 8.3 the caloulations are repeated {only for a constant
moment) afier the introduction of two more types of supplementary stress
pystems: that of fig.7.8 and a new type. It will appear that the addition
of the type of f£ig.7.8 only, yields the same results as section 8,2 (their
coeffioients X, becoming zerc), ‘

In section 8,4 the calculaticns for constant moment and constant shear
foroe ars performed according to the minimum principle for the strains, Com-
parisons are made with the numerical results of section 8.2 and 8.3. The
sectione 8.1, 8.2, 8.3 and 8.4 have in common the exact solution for a con-
stant moment iRMx, My . Mx),i having a particular vglue'.
In section 8.5 the obtained flexibilities are compared with those, ob-

tained from other methods,

8.2 Celculations according to the minimum principle for the stresses with

3 types of supplementary siress systems,

§,2.1 The supplementary stress systems.

The systems of supplementary stress systems used (figs.B8.2, 8.3, 8.4)
are of the same type as those given in figs, 7.3, 7.4 and 7.7, however they
are genéralized to arbitrary dimensions of the cell. The 3} types will be

indicated by the suffices 1, 2 or 3. The stress system applying to the cells
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n and n+l obtains as a second suffix n.
The symbol Z relating to cells n and n+1 (see fig.B 1) denotas the

column matrix of the multiplication factors of the supplementary stress

syatems ocourring in these iwo cells .

i zZ = X . , . ) (8.1)

3.
S50 the unknowns of the problem are X

p = ..-3-(1‘1"2), 1.(!1.“1), (n"l)’ 3 (n‘-l), .n,‘z.n » (8 )
T 2

30n, 19(“‘!’1), 2-(n+1), 3t(n+1)’ 1.(n+2), St s v A BN - )

If no non-zero displacements are prescribed, the equations (6.6)

take the form '

%qup - ﬁ"?)oq ‘ : (8.3)

‘where p and q have the values of (8.,2),
Furthermore, section 6,1,1 gives

S R dv | : 8.
| Ao SR .
i,e, the work done by the stresses of the supplementary stress system

number p through the (incompatible)} strains of the supplemsntary stresas

gystem number q, and

Aoq /SO.R dv | (8.5)

i.s, the work done by the basic stress system (a system satisfying the
external load and internal equilibrium conditions but not the compati-
biiity conditions) through the strains of the supplementary stress
system number q. . _ : .

It is obviocus from fig,B.1 that for the infinite box beam with
equal cells only a limited number of values;ﬁpq have to be caloulated,
because the supplementary stress eystems in the cells pertaining to Z
do net interfere with the supplementary stress ‘systems pertaining to
Z,—y and Z, .. The numerical values of)\pq are given in table 8,1 and

. taken together ir square matrices D, C, B, C' and D'. (In general
matrix ' is the transposed of matrix M). They refer to an infinite
box beam with cell dimensions corresponding to those in figs.7.l and
7.2. Therefore they could be selected from the tables 7.1, 7.7 and

T.12, - ‘ . i




8.2,2 Constant moment (MX,Q,O).
8,2.2.1 Solution of the unknowns,

The moment has projections Mx’ My=0’ MzaO and thus has its vector
parallel to the x,y plane and normal to the y-axis (see fig.4.2). This
vector is the load upon the cross section, which forms the right side
of a part of the box beam,

The basic esiress system occurring in each cell is given in fig.8.5,
The values lbq-from {8.5) are equal for all cells. They are combined in

a column matrix E

%0; l.n 0
’Xo, 2.n s’ aAlsMx/b sin 8 = B (8.6)
‘10; 3.n . 0

The infinite set of simultaneous equations (8.3) now reduces to

DZ + 02 + BZ 4+ C'Z
n n+

n-2 n=1 _+ D'Zn+2 = -E . ' (8-7)

1

Since any cell of the infinitely 1oﬁg beam must have the same

state of stress ...2 =2 . = ... by which {(8.7) takes the form

F2 = -B | (8.8)
with
' FaD+C4B+C 4D (8.9)
The numerical values of F are (cell dimensions shown in figs.7.1
and 7.2)

6526 0 - =3846
P oa 10'6 0 7509 o (8.10)
-3846 0 11112

Recalculation of the elements of F for arbitrary cell dimensions
and stiffnesses with the figures 8.2, 8.3 and 8.4 (however with equal
front and rear spars) learns thatrthe elements of F are in terms of the

cell dimensions and stiffnesses .
3 ‘ T2

2 _40ac
16 g7 ° T3 ®
P = 0 16 ac(4y, + %K ) (8.11)
e 100 1l c
40 a A 0 =% ac (= =— + )

y
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with EA and All

nesses of the ridflanges and rib webs, though these stiffnegses are Tepre-

as given in section 7.3, F is not affected by the stiff-

sented in the elements of D, C, B, C' en D',
The solution for Z from (8.8) now takes the form

X 0

l.n
- A . '
2y = %5 = £ 2 : . (8.12)
e 16 be sin 8 (4, +c/EA
x3.n | 0

8.,2.2.2 Determination of strasses,

To the stresses of the basic stress eystem, fig.é.S, only stresses
proportional to those of the éupplementary stress systems type 2, fig;
8.3, are to be added, because Xin “-XB.n = 0, | |

- The stresses of fig.B.3} are to be multiplied with Kz.n according
to (8.12). The results are then as follows:
Stressflow in the top skin -

B =n =- Mx_ﬁ_} -
x 8 ba sin 9(A11+ %I ,

8 w0 ’ (8.13)

|4
X

LI B be sin © !

Shear stressflow in front spar web (y= -o)

M
X

== %% ein © ' *

Shear stresaflow in rear epar web (y=c) (8.14)

M _ -
X

=TT sin 8 .

Normal force in upper spar bhooms
¥ A
x 13 (8.15)

N = .
. Bb sin © (A11+ %I)

Rib flanges and rib webs remain unstressed,
It can easily be verified that the resultant of these stresses is,

indeed, a moment M(Mx,0,0). The axial stressflows 8 in the skins are
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in equilibrium with the normal forces of the spar_bﬁoms; If the latter would
have been absent (4=0) 8 would vanish and the stresses would be tangential
stresses t only. This suggests that the loading casse (mi,o,o) may be
charaoterized as "torsional load",

For a further discussion of the results reference is made to seotion
8.2.6 . '

8.2.,3 Constant moment (o,uy,o)_
8.2.3.1 Seclution of the unknowns,

- The moment has projections Mx = 0, M&, Mz = 0 and thus has its vector
parallel to the x,y plane and normal to the x axis (see fig.4,3). This
vector is the load upon the coross section whioch forms the right side of
a part of the box beam, The type of loading could be characterized as a
"ben&ing load". )

The basic stress sysfem oocurring in each cell is given in fig,8.6.

The calculsations follow the lines of section 8,2.2. The matrix E becomas

A

O31.n o
A 2 ac My
O42.n ” EA b sin @ = E . (8.16) -~
>‘0;3.1’1 0
Of course the matrix F remains the same and the solutions become
Xl .0
0 .
oM
2 =) X = - . (8.17)
n 2.n LRy EA.A11+c)sm _9
X3.n ¢

’

- 8.2.3.2 Determination of stresses.

To the siresses of the basic stress system fig:8.6 only the stresses
of the supplementary stress systems, type 2, fig., 8.3, multiplied by
X, , according to (8.17) are to be added,
The result is for the upper skin
=M
o A
x 4b(EAA11+c)§in L)

Sy = 0 (8-18)

2]

t.=¢0 .
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‘The normal forces in upper boome are

N

=M EAA ! .
T 4b sin © EAA11+c . .19

Spar webs, rib flanges and rib webs are unstresaed.

8.2.4 Mean complementary energy per unit of length of box beam under

constant moment (Mx,my,o)'and equations for displacements,

This energy oan be expressed in the form

v l (Q.uMz +2 O N szuy ) . ' (8.20)

If the loading case (M 0,0) is called case A and loading case
(o, H ,0) case B, the expression (6.15) gives the complamentary energy
for simultansous application of the two loading cases:

A+Ba V + VB +/SA0.B av + xAi%BOi = V_A + VB +/SA0.RBOdv +

+ XpMos o

where Vz and Vg are the complementary energies for the two loading cases

(8.21)

separatsly. Thus accordingly (6.10)

X A

*x 1
Vy=35A 217 401

1
4= 2%007% 72 .
B 2 BOO 2 "Bi’'BOL
If the expressions (8,21} and (8.22) are applied to the energy of
one cell only, and subsequently to the mean value of the energy per unit

of length (aléng the x axis), it follows that in (8.20) the coefficients
Q’ll'QlQ = Q‘ZI’Q22 have the values from

2 1
Q% = E'[AAOO + By Zgn] (8.23)

‘where.ﬁADO ’J/EAO' R,odv for one cell, and E, and 2

(8.6) and (8,12) respectivaly;

Y y = [BOO + By Z‘Bn] | _‘A(B'z“)

where:\Boo - SBO‘RBOdv for one cell and Ep and Zg, from (8.16) and

in are B and Z frqm

{8.17) respectively,

| 1
Q’lZMxMy' ;[fsAo Rppdy + B} An] = [/AO Bpgdv + B} zm] (8.2‘5)
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where the integral proves to be zero,
The result for the coefficients Qij is
2

| A A
S > 2 cGlh = 22 c %3 (8.26)
16 be 8in®® {~ s b(4,,+ 77)
-A
13 .
Q. = ‘ : (8.27)
12 8b231n29 (EAA11+0)
A
Q,, = 11 - / (8.28)

2 2
4b°8in“0 (EAA11+0)

where hB is the thicknese of the spar web, A the cross sectional area of
j 8Te defined by (3,31), With the

nurerical values of (7.5), which are based on cell dimensions given in

the spar boom and the coefficients Ai

figs. 7.1 and 7.2, the numerical values for the coefficients Qij become

Q‘n = 0,015474 10‘6
Qlé = ~0,005244 X 10"6 : ‘ (8.29)
-6

Though, by lack of compatibility, displacements cannot be computed
in a unique way from the approximate solution a reliable way was dis-
cuseed in section 6,1,3 which is based on the expression for the complemen-—
tary energy of twe loading cases,

One of the ribs will be supposed to be not rotatad nor translated, The
rotation and translation of another rib plane n cells to the right hand
side of this fixed rib will be computed. Though both ribplanes actually may
show &istortion in and warping from their plane, the notion "rotation and
translation of one rib plane with respeot to another rib plane" does not
raise any difficulty if the two rib planes are aituated at large distance
from sach bther. The rotation and translation in question then become
large and rib distortion and warping of rib planes have negligible effect
on the result, o ‘

Suppose the box beam is ldaded by a moment-ﬁ(mx,my,o). This is now
the load system A of section 6.1.} for which the unknowns (the partici-
pation factors of the supplementary stress systems) have already been
computed. In order to compute the rotation component Py of a "right"-
rib~plane situated n cells from the non rotated "left" rib-plane, an

auxiliary load sysfem B consisting of a constant moment.ﬁ(l,o,o) ig taken
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Then Py is equai to the right hand side of (6.26), where the stresses per-
taining to system B have to satisfy only the equilibrium conditions and as
such the system of fig.8.5 with M_ = 1 can be taken.

It ie now easily found that the rotation becomes

9 - na(Q ¥+ Qlal!y) . _ | (8.30)

If it is imagined that this rotation ¢  ocours due to a constant cur- -

‘ vature dwx/dx this curvature is

do

x . ' v
v T = Yt YoMy o o (8.31)

In order to obtain an expression for the rotation componsnt Qy an auxi-

liary system B corresponding to f£ig.8.6 (Myal) yields

do

— :

ax - oty Ry - (8.32)
The relations (8.31) and (8.32) are confirmed by noting that the

mean complementary energy per unit of length is

d .
v %- ( 3;-‘- + ¥ :—;1 ) ' (8.33)
and again (8.20) is obtained.

In reverse (B8.33) could have been used to define "specific rota-
‘tions" o_ and 9 Then the relations (8.31) and (8.32) are obtained by
equating (8.33) and (8.20),

Also the vertical deflection w of & rib plane at the distance x=na
from a non rotated and non translated ridv plgne will be determined, The
' auxiliary system B is a load system where the ribn is loadeq by two
downward directed forces 1/2 at its ends, whersas this load is carried
at the ridb O by two upwards directed forces 1/2 and an appropriate
moment., . :

The result ie

1 22
(

Wa =701 a

) Qo + QM Jsine

If it ie imagined that the deflection w follows from a constant cur-
vature of the elastic line, which in undeflected state, is situated along

the x axis, this curvature is

5 = (@l + Qi Jsin 6 . (8.34)
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and from (8,32)

2 dy
-3-4‘% --zLains . - (8.35)
X
Integration yields
%E - = sin © | (8,36)

since the integration constant is zero because the mean shear angle of

the two spar wobs is zero.

8.2,5  Constant shear force (0,0,K ).
8.2,%.1 Solution of the unknownsa,
. i
Suppose the box veam {fig.8.1) carries s constant shear force K with

components Kx = 0, Ky = O, Kz acting upon the oross section which forms
the right side of a part of the box beam, The shear force Kz is acoom~

panied by a linearly varying moment (O,H&,O)

M a2axK gin €& + constant .,
Yy 2

This moment ie taken zero in the point y = O of the rib O (fig.8.1).
The basic stress system in the environment of rib n ia given in fig.8.7.
The infinite set of squations (B,3) reduces to (compare (8.7))

+ CZ

bz -1

1 i -
2 +BZ 4 C'Z . +D'Z .= -oR (8.37)

2

where the meaning of D,C,B,C',D' and Z is that of section 8.2,2.1, The

solumn matrix R is

0
- R = ’c‘azc X (8.38)
bEA 2 * T
. 0
Suppose Zn is of the form
Zn =nU+ 1L (8.39)

jwhere U and Y are unknown column matr;ces.
Bquation (8.39) substituted into (8.37) yields
\D[(n-2)U + L}+ C{(n—-l)U +1 ] + B[nU+L] +

+ C‘Fn+l)ﬁ + L] + D‘{(n+2)ﬁ + L}+ nR = O (8.40)

or
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where F is as definsd in (8.11) and

G g'[z D+

C - C!' = 23'} . | | (8.41)

Numerical values of matrix G are computed froﬁ table 8.1

0

6

G = 2x10 ~ ||~1502

0

1502 0
0 ~1770 (8.42)
1770 e}

For arbitrary cell dimensions and stiffnesses ‘

0

G = -8 ac A31

0

8 ac A31 0
_ 40 2 h
© 304y (8.43)
40 2
T Ay 0

The assumption (8.39) gives the solution if it appliss to any value of n,

which requires that

F‘U+R=O

(B.44)

G0 - FLa O
From the two matrix equations with the unknown column matrices U and b

the solutions for U and L are obtained.

They are

~o (8.46)

-3¢ ABle
40b Ali(EAA11+cf*

8,2.5.,2 Determination of stresses,

Herewith the participation factors of the supplementary stress

systems are known and siresses can easily be computed, If the plane x=0

(8.45)
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ooincidas with rib O, the stressees in the upper reinforced skin are

L K 3f%1ylxz
x 4b!EAA11+67 &b All EAA11+0)

-

= 0 ; 8-
8, (8.47)
t = sz .
4b EAA11+0 .
The shear stressflows in the épar webs are: ﬂJ
Kz '
t = o - , (8.48)
The normal force in the upper front spar at y = -¢ is
' 2
c 4..K cx K
31z , z _}1
N = K, + - (8.49)
4b 86 A, 4b(EAA11+c) ES All(naall+éj
and at the upper rear spar ai ¥y = +C
-x c A K csz °2A31Kz
R = + T . (8.50)

= 8 All 4b(EAA11+c) + BE’A11(§3111+67

8,2,5,3 Equations for displacements,.
Ag in section 8.2.4 and along the lines of saction 6 1.} the follow-

ing relstiona are established (by means of the same auxiliary stresa

aystema)
a:lcpx ‘ : 8 '
& =4y (8.51)
dop ' 4 :
where
My = Kz xsin 8 . _ (8.53)

The differential equation for the line of vertical deflections of the

centres of the rib planes w{(x) becomes (compare {8.35))

2 do . _
i%"d—;‘ 8in © = 0 . (8.54)
dx

Integration of (8.54) yields
K

dw Z
= + le gin 8 = m*; (8-55)
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where the integration constant is the angle of shear of the spar webs
K : ' '
dw P4

(E; a ZgEE; at x = O when 9, = 0).

8.2.6 Discusszion.
B.,2,6.1 Degree of compatibility.
It is worth mentioning that in all foregoing solutions the stiffnesees

of rib flanges and ridb webs drop out and that rid flanges and rib webe are
unstreased, l _

The Bolutions will therefore also hold for vanishing rigidity of the
ribs, i,e. for a hollow box beam. In accordance with this fact, all
stressas must be continuous at the rib webs, For infinitely long hollow
beams exact solutions for the loading cases "constant moment" or "con-
stant shear force" are availaﬁia, and indeed, as will be shown in section
8,2,6.2, the present approximate solutions for the box beam with obligue
ribs are identical to the exact solutions for the hollow box beam,

It would have been useless to try more supplementary stress systeus
which allow 8, to be a more general function of y, as long as By is as-
sumed to be zero, The final sclutions will not depend on the stiffneases
of rib flanges and rib webs and these elemenis remsin unatreseed, However,
the solution which made the complementary energy in the remainder of the
gstructure a minimum was already obtained, because it was the exact solu=—
tion for the hollow box beam, Therefore the additional systems could not
offer any improvement and their participation factors would bécome zero,

It may be proved that the stress system in the composite skin, the
spar booms and the spar webs form a compatidle system. Only the unstress-—
ed ribas with their webs and flanges do not fit to the deformed éystem of
spars and skin,

T™wo examples of the compatibility of the system of spars and skin
will be given,

Por tha'load(Mi,0,0)the~stresses in the composite upper skin are

according to (8.13)

-MxA13

X g be sin (A

B8
L)
11 EA

M
X

Y = g% eind -

The strain €_ of the skin along a spar boom is
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p = Aty * gt | (8.56)
or
- ¥ |
. . P bip k) , S S (8.57)
x 8 be sin Q(All+ ﬁz) 8 b¢ s8in ©

From {8.15) follows the sitrain in the upper spar boom

i
- 13 (8.58)
X  Bb sin S(EAA11+0)

4

and (8.57) and (8.58) prove to be identical,
For the load (O,O,KZ} the stresses in the upper reinforced skin at
the front spar y = ~o are from (8,47)

.. -2A11x Kz+3° Alez
T 8b Ay, (BAk, o)
. -ZKZcAf;}

8b A11(34A11+c)

The strain €_ is with (8.56)

—2A111 +C A31
8b(EAA11+c)

K . (8.59)

2

& =
X

The strain € _in the upper spar boom at y = -c is

X BEA °

Substitution of (8.4%) yields that this result is identical to (8,59).
‘In 2}l cases the sirains in the skin are only linsar functions of

the ocoordinates and thus compatible.

8.2.6,2 Solution for obligue coordinates a8 derived from the exact solutions

for the hollow box beam,
The faot that the best solution, obtainable with ayao, equals the

exaot solution for the hollow box beam of course discloses other more
simple ways to obtain this solution in terms of normal or obligque coor-
dinates, The method of the preceeding sections has been used however,
not only to study the reéulta to which the methods of sectiom 7 lead
when applisd to an infinite box beam, but also because it will be the

basis of further refinements to be considered in section 8.3 and of
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the investigations of section 9,

Some of the obtained formulas applying to loading by a constant
moment will now be verified by the elementary bvending theory and element-
ary torsion theory (the Bredt theory),

The righthanded orthogonal coordinate system be ;, ;, E, the ;;gnd
z axes being along the axes x and z of the obligque system, and the y axes
perpendicular to the X and z axes (fig.8.1). A moment with components
(= projections) ﬁ;, ﬁ&,o is applied to the right end,

The shear flow in the spars and the skin Tollows immediately from
the Bredt-~formula l '

tom e,
8be sin 8

If the box is loaded by moments (M_,0,0) and (0,8 ,0) then ¥ = M
and according to (8.13), (8.14) and (8.18) the same value for t as above
is found,

The normal force in the upper spar booms is

¥ A
N = - P AR )
2b{24+42¢c h sin € +2c Asfas)

By substitution of E& = ¥ /ein & ~ B_ ctn & it can easily be shown that
this value is equal to the sum of (B.15) and (8,19) if in the latter ex-
pressions (3.31) is substituted,

The stresses in the upper skin,

— Mk R
°x ~ v ¥ = By ein B

2b({24+2¢c h sin 8+2¢ As/as)

must be transformed to oblique coordinates to find S, and t as given by
the sum of (8.13) and (818). A more convenient way, however, is to con-
sider a cross section parallel to the yz-plane,(fig.8.1), Once X and t in
the spars are known, the constant stressflows Sx and t follow from equi~
librium considerations,

With regard to the stiffnesses, the Bredt-torsion theory and the
elementary bending theory yield

0r o Yx 3, + T8 | (8.60)
t - X ¥y

— — —_— —

G, + ol (8,61)

w

b

| S ﬁil
»




where '512 = ﬁél a 0
= 1
1 = hb th sin 8
§"'3Q11=
t 16 Gbe sin ©
/
1_1_37 !

4Eb20(f§ +h sin © + —2)
B.S ]

(8.62)

(8.63)

(8.64)

The tranaformation formulae for moment projections (4.3} snd for

rotation components (the same as (3.6)) yield that the transformation

formulae for the coefficients Qij for oblique ooordinates, which must

lead to (8,31), (8.32) are

Q) = aii + ﬁée ctn® 6 - 25&2 ctn ©

cos € + Q12
sin26 8in ©

Qo = Wy = Sy

. T

sin @
Substitution of (8.62)...(8.64) yields

Q1 hb hB: 8in © . ctn2e
1® 18 Ghoe sin 0
‘ ' 4Eb2c(f§ +h 8in 6 + 5)
&S [+]
" —co8 O
Qo= 9y = o Ag N ’
48 Bosin6(==+ h sin 6+ 2)
as c
03626
R = .

A
4Eb20(—§ +h sin 6 + &)
a.s (]

Singe according to (3,31)

N

L (8.65)

{ (8.66)
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= 1 -
117 I
'E(E— + h 8in 8)
8

A13 = 2 Allcos 9

2 As(1+0)sin )
A =
33 All ash

+2(l+cosze+0 sinze)

it follows that the equations (8.26)...(8.28) and the equations (8.66)
are identical, _
It 1s also interssting to note the relation between the formulae

derived by Hemp, ref, 22 and the present formulae. Hempassumes conti-

nuously distributed rib webs, which remain unsiressed in the present cases,

and continuised rib flanges which contribute to the coefficients Aij of

the reinforced skin, This method is of course applicable to the hollow
box beam, Hemp also obtains the formulae (8.31), (8.32) and (8.51)...

++(8.53) but, as mentioned, the elements A, , have a comewhat different

: 1 ij]
meaning,

8.2.6.3 An exact solution,
It will be clear from section 8.2,6.1, that for loading by a moment

M(Mi,My,O) the solution is exect if along the Tib flanges the strain e

in the skin is zero, In that case the rid planes fit to the other struc—

tural selements, It will be interesting to investigate afterwards whether

the minimum principle for the strains yields the same exact solution,
The gtrain Ey albng the flanges then must be

€E = A..58 + A

¥y 217x 23

Suppose Mx = § Mj'
Summation of the stresses s_ and t of (8.13) and (8.18) thereby

1) Homp defines his moments in a somewhat different way, Therefore some
formulae will differ a factor sin 6, In some cases there is also a re-
versal in sign, because Hemp directs the z~axis upwards, and gives
stresses and straing in the upper skin, Hemp's coordinate system is,

as in this paper, right handed,

t=0 . | (8.67)
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introducing (8.68) snd substitution of these etressas into (8.67) yields
-5 M&A13A21 ¥5A21 éfiAQB

- + a 0 (8,69)
4b(EAA11+c)sin 6 8bec ein O

[+
8be sin G(A11+ EI)

or

- 2A.AC

. 12 |
Agy (BAA j40)-Eak) oA

For the cell dimensions of fig,7.l, 7.2 the value of & becomes

. (8.70)

£ = 0.,1792 . (8.711)

£

8,3 Calculations according to the minimum principle for the stresses

with 5 typee of supplementary stiress systems,
8.3.1 Introduction, _
It was seen in mection 7.6.3 that when the stressflow s, i allowed

more degrees of freedom, very litile improvement is obiained as long as
the stresaflow sy is assumed to he zero. '

In the caloculations of Becfion_B.Z it was already mentioned that the
supplementary atress systems of type 4 (see £fig.7.8) would have vanished
when introduced without the addition of other new types, The same oconclu=
sion holds for sll other types with the stressflow By=0° Therefore, in-
troduction of new types, such as type 5 fig.B.8 and type 6 fig,8.9, is
nacessary if further improvement is desired, In type 5 sy is aymmetrical
in y, in type 6 sY is antisymmetrical in y. However, in the loading cases
of constant moment (Mi,0,0) or (o,my,o), type 6 will vanish again because
of symmetry conditions, but type 5 fig.8.8 and now alsoc type 4 fig.7.8
will participate. Of course, furthgr extensions with types similar to
figs, 8.8 and 8.9 are possibls, Much extension along this line does not
seem practical because there will remain stress singulerities in the cor-
ners of the parallelogram shaped plate fields, See also tha discussion at
section 10,

In this part of the investigation it is no longer possible to per-
form the analysis partly in terms of arbitrary cell dimensione, but
gverywhere numerical dimensions (figs.?.l and ?,2) have to be taken, Of
course the calculations follow precisely the methods of section 8.2,

The internal load systems are type 1 (fig.7.3), 2 (fig.7.4), 3 (fig.
7.1), 4 (fig.7.8), type 5 (£1g.8.8).
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8.3.2 Constant moment (Ex= 1,0,0).

Numerical values of the coefficlents A are given in table 8.2 {ocom~
pare table 8.1). The matrices E, F and Z of (8.6), (8.10) and (8,12) now

become

Fal0~

6 x

+6526

-3846

AO;B.n

7‘0;1.1’1

A0y2.n

%0;4.n

xO;E.n

0

+1509

x5.n

0
20.8546
.0 x10™ (8.72)
0
~26,4088 “
-3846 0 0
0 0 | —3494
+11112 0 0 (8.73)
0 +7645 -594
0 -594 +  +21998 ”
0 |
-2394.75
- 0 <0 . (8.74)
+63,8986
+821 .84

It is easy to determine the stresses and strains in the cells from the

participation factors (8.74). From these stresses were computed strains

Sx in a spar boom and in the skin immediately adjacent to the spar boom,
Both strains {multiplied with E) are plotted in fig.8,10, It is seen

that, though the mean values of these strains are about the same, there

is an incompatibility. Such incompatibility was not present in the solu-

tion which was obtained by using only the supplementary siress systems,
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types 1 to 3 inol. (fig.7.3, 7.4, 7.7). But then the incompatibility along
the rib flanges was very severse, _ ‘ .

Witk the nse of only the first three.types and the load ”&”.1s M&ao
the strg}n ey in the skin along a rib flange is

Ee_ = 00,3230
5 = 0.323

whilst the rib flange itself remains unstrained,

Inoorporatioﬁ of the 4th and 5th type offers already a gredt reduct-
ion of this incompatibility, which is shown in fig,B8.,113 it has almost
completely vanished near the middle of the rib flange.

8.3:.3 Constant moment (o,ny=1,o).
The matrices (8,16) and (8.17) become now

A O3l.n ” ©
A 0y2.n +22,6645
E - N = 0 ST (8.75)
O33.n
AO;q..n ©
%OiS.n ~7.55482
X 0
X5 n ~3086.90
7 . X | - 0 x 1078 (8.76)
n 3.n . .
X5'n ~147.236

Fig.8.12 gives the strain in a spar boom and in the skin immediately
adjacent to the spar boom, For this more important moment (€,1,0) the dis-
crepancy is much smaller than in fig.8.10 for the moment (1,0,0). This
discrepancy is caused by the supplementary stress system type 5, Indeed
its participation factor in (8,76) is much smaller than in (8,74). If the
ordinates of fig,.8.11 are multiplied by =C,1792 {i.e. the value = of
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section 8,2.6,3.) it holds for the moment (O-My=1,@).

. f
8.3.4 Mean complementary energy per unit of length,

The numerical values for the coefficients Qij whieh occur in (8.20)-

are
Yy = 0.014§9x1o“6
Q, = =0.005040x107° (8.77)
Q,, = o,oo7379»<10"6 .

8.4 Calculations according to the theorem of minimal principle

for the strains with 10 typés of supplementary sitrain systems.

8.,4.1 The supplementary strain systems,

The environment of the cell n of the box will be considered (fig.
8.13). The systems of strain are the types 1 to 10 given in figs.7.9~
7.18. The strain systems 1l.n...7.n are confined o cell n, the systems
8,n, 9.n, 10.n apply to the 2 cells n and n+l. '

The symbol Z {see fig.B8.13) denotes the column matrix of the mul- .
tiplication faotors of the supplementary strain systems with index n

. - (8.78)
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So the unknowns in the problem are Yp,
p=..,.10,(n-1), 1.0, 2.n,..10,n, 1.{(n+1)., 2.(nse1)... (8.79)

The basiec strain system is taken zeroc everywhere,
If in the problem‘po non-zero displacements (ﬁé:O) are prescribed,

the equation (6.29) becomes
-
Y. = k af . 8.
STV ATEN (8.80)
k

For the infinite box beam with equal cells again only a limited number of
#alues>\pqrhava to be computed. Since the systems with indices n-1 and
n+l do not overlap)\pq vanishes for | p-q|>1, This reduces the number of
sguare matrices of)\pq to 3, these matrices will be denoted by T, V and
T', The left hand side of the equations (8.80) for p = l.n, 2.n,,..10n
can then be written in matrix form ‘

’ ¥
T2 V2 T,

The numerical values oflﬂpq are given in tables 8,3, 8.4 and 8.5; they -
are the elements of the matrices T, V and T', The numerical values of

qu needed no computation since they could be selected from table 7,17,

8.4.2 Constant moment (MX,O,O).
8.4.2,1 Solution of the unknowns,

_ like in section 8.2.2.la constant moment'ﬁ(mx,0,0) is applied to the
structure, . _

The momant-ﬁ(mx,o,o) to the right end is supposed to be applied ac~
cording to fig.8.14. None of the supplementary strain systems gives any
displacement at the left end of thé swept-back box,

The integra%%;itﬁqdf of (8.80) applied to the right end of the box,

takes for g = 1.n, 2,n,..,10.n the values

7(8.81)

/ k.ui .'ﬂdf =
K

i=1...10

o
N0 00000000
1]

b=t
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The equatiéns (8.80) for p = 1.n, 2.n...10.1 are written in matrix

notation

T Z + VZ & 77
n n+

n-1

1~ ¥ . ‘ (8.82)

These equations are satisfied for all values of n by

- = Z = T4 = - .
e TS B V0 BB

Then Zn is the solution of H Zn = K, where

H=T4+ V + T . (8.83)

which is given in table B,6.
The solution is _
Y G

l.n

Y2.n 0

Y}.n ~0,251438

Y4.n -0.457587 .

z_ - zs-n . 10'6M¥; . ° . (8.84)

6n , .50339

Y?.n +8,30541

Y8.n +6,04116

Y9.n ©

Ylo.n +5,86748

It can be proved that any other statically equivalent way of applying
the end forces of fig.8.14,.doea not alter the solution for which
cee = Zn_1 = Zn = Zn+1 = .... For instance when instead of the forces P
forges ars applied in the direction of y along the upper and lower skin
the column matrix K is the same as given by (8.81).

If the box beam would be finite 2, for cells near the end would not
be constant and the manner in which MX,in would be applied to the end
section would affect the participation factors for the cells near the
ends, |

In practice, however, the solution for the parts at some distance
from the ends, remain those of {8.84) (Principle of De St,Venant), The

same consideration holds for sections 8.4.) and 8.4.4.
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8.4.2.2 Stresses, strains and displacements,

The normal force in the upper front spar boom at y = -c in a point

immediately to the right of a rib plane is (see fig.7.9...7.18)

\ -3 4 -
B = 10 EA(=6Y, 4 6Y, 4 3Y6-n) 0.038128 ¥_ . - (8.85)

The normal force in the upper front spar boom at y = =0 in & point imme-

diately to the left of a rib plane is

-3 : ' ' :
N = 10 EA(+6Y1_n - 6Y 2t 3Y6.n) = 0,050908 M_ . (8.86)

3‘
There is a fairly large difference between these two resulis
AN = -0.012780 M_ - - (8.87)

on a mean value
N = 0.024518 M_ . | (8.88)

The mean value is in fairiy good agreement with the numsrical value

of (8,15) {according to the minimum principle for the stresses), which is

¥ = 0.047122 M (8.89)

The shear stressflow in the froni spar wéb at ¥y = -¢ is

-3 , ' '
t = 10 Gh(4Y1.n - 4Y3'n + 1mr5'n - 10Y7_n + 8Y8.n) (8.90)
or
MX
t = «0,006944 MX = - m (8.91)

which complies with (8.14), This value can also be found from an elemeniary
reasoning, which proves the correctness of the calculations,
The strain of a rib flange is '

6 »

, ey = 4x107 ¥, = 0,023470 <2070k . (8.92)

10.n

The derivatives to x of the mean rotation components are

X -3 | ~5 '
I = 1.66667x10 YY.n = of013843><1o ¥, (8.93)
do -3 -6 .
EEX = ~1.41421 % 10 Y6.n = ~0,004955 X1C™ " k_ . (8.94)
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The average of the second derivative to x of the vertical deflection

iny = 0 is
o »
2 d“u_(y=0) - '
d ; - 52 - 10’3Y6 . = 0.003503 «10”% .
dx dx i * x

8.4.3 Constant moment (O,My,o).
8.4.3,1 Solution of the unknowns,

A constant moment-ﬁ(o,my,o) is applied to the structure, The
to the right end is supposed to be applied according to fig.8,15.

The matrix X of (8.77) now becomes

0
[ ]
.0
0
0
0 ,
K = | -0,0169705 K .
o .
0
0
0 A
The solution for Zn ig
chn 0
Yz.n 0
‘Y3.n +0,045083
Y4.n. +0,082046
Y, o
v 7 = 5. . 10~y .
n Y Il -5.20861 \
-n X
YB.n ~3,69337
Y9.n ¢
Y ~-1.,05156

10.n

(8.95)

moment

(8.96)

(8.97)
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8.4.3.2 Stresses, strains and displacements.’

Since (8.97) and (8.84) have zero elements at the corresponding

places of the matrix the formulas of section 8.4.2.2 are valid as well
in this case. The normal force in the upper front spar boom at y= =¢ in
a point immediately to the right of a rib plane is

N = =0.065040 My . {8.98)
The normal force in the upper front spar boom at ¥ = —¢ in & point imme—
diately to the left of a rib plane is

N - -0,067332 ¥ . (8.99)

The difference is only

AYX = 0,002292 M, (8.100)
and the mean value is
N = —0.066186 " : (8.101)

which corresponds very well with the numerical value of (8.19)
N = -0,066640 My . (8,102}
The shear stress in the spar webs is zero,

The strain of a rib flangs is

€, = =0 .0042063 xlo's- My . . ' (8.103)

The derivatives to x of the mean rotation components are

/

dq}x ‘ -6.. (8 o )
= - -0.004955x‘10 My ‘ : 1 4
dCP . - _6 . . 4 8

——de = 0.007366 x 1074 | (8.105)

and the second derivative to x of the vertical deflection in y = O

== -o.oo_n,zog><1o"615¢1y . ' . (8.106)

The required reciprocity between (8,54) and (8.104) checks completely.




87

8.4.4 Constant moment (Mx’My’O)
8,4.4.1 Flexibilities,

The differential equations of the swept box are for constant moment

do :

. | _
rrali R SRV (8.307)
T = Gl ¥ G (8.108)

2
dw .

;;5 = —(Q21Mx + Q22My)31n 8 | (8.109)
and from (8,93), (8.94) and (8,104), {8.105)
Q) = 0.013843x10'6
-6 '
Qp = Gy = ~0.004955x% 10 (8.110)
q,, = 0.007366x107°

The values of (8,110) are indicated by Q; 5"+ The values Q4 of (8.77)
as derived by using 5 types of supplementary stress systems are indycated
by Qij" The principles of section 6,3,1 are now applied to derive bounds
for Qij (read Qij in stead of Pij)'

From (6.48) and (6.55) 0.013843 x107°< ;< 0.014329x10™°,

b¢ Q< ~0.004961x10™°, (8.111)

from (6.49) and (6.56) 0,007366%x10 & Q,,< 0.007379 % 10"6.

These limits are fairly close to each other.

from (6,62) and (6,59) =0,005034 x 10~
6

B.4.4.2 An exact solution,
It appears from (8.92) and (8.103) as could be expected with the

systems of strain used that the strain of the rib flange is constant, This

means that the normal force in the rit flange is constant, which is in-

'consistent with the fact that no external load is applisd to the ends of

the ribs, If, however, Ey of the flange would be zero, this violation of
the conditions of equilibrium vanishes. The ribs not being affecled in
this case can be removed and the solution then obtained applies to the

hollow box beam, The systems of strain which have been used contain

- enough degrees of freedom to describe the exact solution for the hollow

box beamy therefore they are sufficient to descfibe the exact solution

for the box with obligue ribs in the case that e, = O,




88

If ey:O it follows from (8,92) and (8,103} that

0.023470 x10"6 E My - 0,0042063 x10—6 My =0

£ = 0,1792 . | ‘ (8.112)
This result corresponds to that of section 8,2.6.3 for the given di-
mensions which was of course to be expected,
Some other numerical results confirm that the solution.for the load
4 M&,My,@ is exact, ‘
The discontinuities a N of (8.87) and (8,100) disappear, because

~0.012780 My><0.1?92 + £,002292 My =0,

The strain components are constant, so the supplementary strain systems
of types 1, 2, 3 and 4 must have vanished, This has already been obtained
with respect to type 1 and 2 for arbitrary moment MX, My,o, Further,

indeed

1]
O

0,1792 (YB.n of (8.84)) + 159

n of (8.9?)

of (8.97) =0 .,

0,1792 (Y4.n of (8.84)) + Yyom

The formulae (8.107) and (8.108), with £ = 0,1792 and Q, 5 from
(8,110) or from (8.77) yield the same results; from (8.110)

100 4oy

S 3~ = 0.013843x0,1792 - 0,004955 = =0,002474

y

106 do : .

T EEE = ~0.00495% x0.1792 + 0.007366 = ©,006478 ,
'3' .

and from (8.77)

106 dmx

i = = 0.014329%0,1792 - 0,007040 = -0.002471
y : .

106 o '

— 5;1 = =0,005040x ¢,1792 + 0.007379 = 0.006477 .
¥

8.4.5 Constant shear force (C,O,KZ)

8.4.5.1 Solution of the unknowns,.

Like in section 8.2.5,1 the box beam carries a constant shear force X
with components Kx = 0, Ky = 0, Kz’ acting upon the cross section which
forms the right side of a part of the box beam, The shear force KZ is

accompanied by a linearly varying moment (O,My,o)
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- F] 15'
E, = x K, sin 8 4 constant -(8.113)

A\
This moment is taken zero in the point y = O of the rib O which is now

considered as the left end of the bheam. The shear force and fhe moment are

‘supposed to be applied at the right end as given in fig., (8,16) and fig,

(8.15) respectively,
Then in the equations (8,82)

K=nR+S5S : (8.114)
where

"0 0
0 0
10} 0
0 o]

0 0,12 Kz . (8.115)

R = -0.144 KZ and S =(0,072 KZ *

.0 #
0 o
0 0
(o) 0

Suppose the general sclution for Zn to ba

zZ =nU+L ' (8.116)
The .equation (8.82) becomes after substitution of (8,114) and (8,116)

(n=1)TU + nVU + (n+1)}T'U + (T+V+7*)L = nR + S
or with (8.83)

nHU - (T-T')U + EL=nR + S, (8.117)
If (B.117) shall hold for any value of n, the two unknown matrices U

and Y must satisfy

HU = R (8.118)
~{(T-T)U+HL = S,
R and S are given by (8,115), the matrix K is given in table 8.6 and the
matrix (T=T') in table 8.7,
The sojution for U from HU = R is




-U = 10 K
z

The matrix (T-T')U is
=T = K

and the solution for L from HL

90

0
0]
-0.382

-0.696
0
+44.197
+25,224
+31.339
0

+8.,923

+0,0098678
-0,01073%1
+0.0252750
-0,0162352
0
+0,0251910

f0.0111682

~0,050550

0
+0,0210138
S +(T=Tt)U
~11,032
-14.673
-0,191
-0,348
+44.813
+22,098
+12,512

0

0

0

8.4.5.2 Stregses and displacements,

ecomes

(8.119)

(8,120)

(8,121)

It follows already from elementary consideration that the shear siress-

flow in both spar webs is KZ/4b = KZ/12, which was also found in (8.48).

The prasent calculations must also lead to this result., The shear

stressflow in the front spar web of the cell n,‘in which the supplementary

stress systems with participation factors Yl

is (see fig. 7.9...7.18)

A
n

T.n

occur (fig,8,13),
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t = IO—}Gh{le -4Y

" 3,n+IOY5,n-IOYT.n+4Y8.n+4y8.(n—l)) (8.122)

where Y1 n .

- -31.339(n-1)1076 K .

In the result n falls out and

«..¥g  follow from (8,116}, (8119) ana (8.121)/and YS_(n_l)z

6

t = 1073Gh 404 .602 x10™ K. (8,123)
With Gh = 0.205963 x 10"6
X
t = 0,08333 K = Ti (8.124)

2
which again confirms (see also (B.48)) the correctness of the calculations,
do do
For the differential quotients Fr and E;l s 2gain use is made of

(8.93) and (8.94)

x 6666 —y
= - 1. Tx 10 7.n
dv . (8.125)
d_x =: "‘1 .41421 x 10 Y6 .n -
The second derivative of w becomes with (8,95)
> .
4w -3 .
— = 107Y, (8.126)
dx :
After substitution Of'YT.n and Y6.n’ together with
a(a- £) - x
Kxsin® = X
z ¥
the equations (8.125) yield
dmx
T C Y | . (8.127)
= = szny ‘ (8.128)
d2W ( )
— = -}..M sin 8 8.129
i 22"y

where Q,, and Q,, have again the values of (8,110},
The form of (8.127)...(8.129) is the same as that of (8,51}, (8.52)
and (8.54). By integration of (£,129) is obtained
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x2 2 ' '
oK, 3~ 8in"@ + constant . (8,130)

dw
KR
The constant is (if the left end at a rib of the box beam is not rotated)

-3 -6
10 (4Y1.n + 1OY5.n) = 0.404602x:1o K, (8.131)

which is equal to the numerical value of the integration constant of

(8.95).

8.5 Elastic energy sllipses for constant moments,

8.5.1 Box beam with oblique ribs,

The elastic energy, stored in one cell, in the case of a constant

Y

mement ¥_,M ,0 is
ry

I s

Eaz a(kx o ¢ hy i ) (8.132)
or

! , 2 2

‘The ellipses in fig.8.17 give the end points of all moment vectors
starting in O which cause a strain energy of 12 1bs inch in each cell,

_ The projections on the oblique axes Mx and My of a vector from O to
a point on an ellipse therefore satisfy the equation

212 _2-qu’+ 2 MM+ ngmyz . (8.134)

The ellipse 1 is the result of the minimum principle for the stress-
ea with 3 typeé of supplementary strees éystems as derived from the nume=-
rical values given in (8.29). Since the use of the minimum principle for
the stresses estimates the complementary energy toco large, and in this case
also the strain energy, the length of a vector from 0O to a point of a
ellips is too small, The ellipse 1 is also the exact solution for the
hollow box beam, The principal axes of this ellipse are respectively per~ -
pendicular and parallel to the direction of the beam (x-axis).

Ellipse 2 follows by means of the minimum principle for the stresses
and 5 types of supplementary stress systems in which case the numerical
values are given by (8,77). The over—estimation of the strain energy is
less, and ellipse 2 lies outside ellipse 1. The unknown ellipse for the
axact solution must of course lie outside ellipse 2.

Ellipse } follows from @, Q12f Gy, according to (8.110) obtained

with the minimum principle for the strains. This theorem estimatés‘the

potential energy toolarge and in this case the strain energy tog small,
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_Thus the length of a vector from O to a-point of this ellipse is too large,
it is certain that the unknown exact ellipse lies between ellipses 2 and 3,
therefore a fair enclosure is reached.

The three ellipses touch each other in the points where Mx= 0.1792 My;
which is the load for which the solutions are exact {see section 8.2.6.3.,
8.4.4.2).

It is intsresting to construct the ellipses following from other
mefhods. It was already mentioned that Hemp continuises rib flanges and
Tib webs (these webs db.not play a role for the infinite beam loaded by
a constant moment). Exact values of Qll’ le, Q22_0f (8.26)...(8,28) will
be the result of this schematization. However, the coefficients Aij refer
now to an anisotropic plate field which comprises the continuized rib

flanges., Of such a skin the matrices aij andkAij become

1.19036  ©0.67882 ~0,73846
a5 " 0.67882 1.11128 ~0,73846 x 105 (8.135)
-0.73846 -0.73B46 - ©.70493
2.56291 C,71921 3.43823
k| = 0.71921 3.16308 4.06695 ||'x 107° (8.136)
. b 3.43823 4.06695 9.28074
and the ccefficients Qll’ le, Q22 are
-6
Qll = 0,013763 x10
b
Qle = Q21 = -0,0049387(1\4 {8.13?)
. . »
Q,, = 0.007362 %10 .

The values differ only slightly from those of (8,11C),

If in the calculations based on *the winimum principle for the
strains, the systems of type 3 and 4 (fig.7.11 and 7.12) would have been
omitted, the strains ¢, would have been constant in the skin, and there-
fore alsoc in the rib flanges, If the c¢ross section of the rib flanges
would have been for example only half the aciual value, but the rib
distance also half the actual value, the solution according to the mini-
" mum principle of tﬁe strains would have been guite the same. It is thus
clear that at omission of systems 3 and 4 only a mean stiffness of the
il flanges per cell is taken into account and the solution that would be

obtained is the exact solution if the rib flanges are actually continunized,
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it can thus be concluded thét the ellipse for Hemp's solution (ellipse
4) is the ellipse that would have been obtained if systems 3 and 4 would
have been omitted when ayplying the minimum principle for the strains;
g0 the ellipse for Hemp's solution must lie outside ellipse 3,

Wittrick, Thompson and Fligge (ref.15..21) assume continuously
distributed ribs, infinitely stiff in their plane. In this case the ma-
trix 8 5 of the skin becomes (compare (8,135) and (8.136))

1.15036 0.67882 0.73846
aij = || ©.67882" r -0,73846 ><106 - (8.,138)
-0,73846 =0,73846 0,70493
with Doa 0o '
The inverse matrix is
2.39938 - 0 2.51350
Aij = 0 0 0 ><:L0"6 (8.139)
2,51350C G 4.05164

and with {(8.25),..(8.27) follows
Q, = 0.007093x10‘6
Qiz = Gy = =0.003744 x10“6 (8.140)

6

Q,, = 0.007148 x1C™ .

22
The corresponding ellipse 5 in fig.8.17 lies considerably outside
the ellipses 2 and 3, which form bounds for the region, in which the
exact ellipse must lie,
From the analytical geometry of ellipses follows that in a point of

the ellipse
2 .o . 2
Gl + 29N + Qi m = O
the x and y components of a vector normal to the ellipse have the pro-
portion dC/de to dC/dMy. From (8,133), (8,31) and (8,32) follows

Yxo_o1 e %y 10
dx T2 d¥. ' dx 2 d Y
- X J
The vector %% beionging to a certain moment.ﬁvis perpendicular to the

‘tangent of the ellipse at the end point of the moment vector.
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From (8,132) follows

- dqy :
¥. E = 2 1bs . (8.141)

8.5.2 Box beam with normal ribs,
In fig.8.18 similarlellipses 1, 4 and 5 are drewn as in fig,8.17 for

the case that the ribs are perpendicular to the spars; The rib spacing was
assﬁmed to be 12 inches and the cross-sectional arsa of the rib flange

AR = 0.,0765 inch2 like in the swept case. Again the stiffness of the ribdb
webs, which are only able to carry shear does not effect the result,

Ellipse 1 is the =olution for the hollow box beam where the presence
of rib flanges is ignored} therefore-this ellipse is identical to the
ellipse 1 of fig.8,17. Ellipse 4 is the solution according to Hemp wherse
ribs are continuously distributed, .

Both ellipses lie very close together and the difference cannot be
shown in the figure, |

Bllipee 5 is the solution for continuously distributed ribs which ars
infinitely stiff in their plane, Such ribs prevent lateral contraction of
the skin,

Calculations are not given, they follow from the elementary bending
and torsion theory. Calculations for ellipses similar to 2 and } of fig,
8,17 were not made at all, but they must again lie between the ellipses 1
and 4. It appears that in fig.8.18 all ellipses lie much more closely
together than in fig.8.17. By comparison.of the two figures it appears
.that the assumption of continuized(infinitely) stiff ribs is much more

unreliable for the oblique box than for the straight box,

8,6 Attempt to an elementary theory for establishing the deflections

of the obligue box beam,

The elementary theory for straight beams is used in practice also
when the assumptions upon which its validity is based are not satisfied,
e,g. variability of the locad along the beam, non-prismatic structure,
restraint azainst warping of the end sections, Under such conditions the
elementary beam theory usualf& yields fair approximations for the deform-
ation of the beam. The relations between deflections and loads of this

elementary theory are (in orthogonal coordinates)

-
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dy o '
L . ¥ (8,142)

QE -

dx ¥y Z
where 1/611 is the torsional stiffness, 1/622 the bending stiffness and
Sd the shear stiffness.lThe sections x.= constant have rotations $pwith
components P and my.

The object of this paragraph is to establish for swept box beams a
@ethod analogeous to the elementary theory for straight beams, which like-
wise can be applied in order to assess approximately the deformation of
sweﬁt box beams. The relatione (8.142) for the straight beam are to be
replaced by those established in the paragraphs 8.3 and 8.4 for the
oblique coordinate system XY,

dg
X . . ‘
T = Q¥ + Sk, , (8.143)

dy
—
dx

]

¥y + Sl | | (8.144)

dw . . :
E; + (Py sin e = KZ/Sd - (8.145)

In order to check the reliability of this approach the deflections
following from these relations will be determined for the clamped box
beam of finite length which wae analysed in section 7. At a clamped
section the boundary conditions are, as with the straight box beam

Px =0 = O

A vertical unit load is placed at x = p, ¥ = q. The vertical displa-

cement in a point %,y 18 to be determined,
. In the sections x = constant for x<p
M_ =q sin ®

* | (8.146)
-(p~x)}sin € . ‘ /

i
y

Formula (€,143) gives, after substitution of (€.146) and integration
(v (0) = 0)

1}




9, = % x2Q12 sin 6 + x(—lep + Qllq) gin-8 . . - (8.147)
: Fol,‘;nula (8.144) gives after SUbS'?it“"?ic’.n\ of (8.146) ana intjalg;étié;ll
(v (0) =0) | | o
9, = % x2Q22 sin © + x(-QéEP : Q21Q)sin e . (5-148)

Formula (8,14%) gives

dw 1.2 . 2 . 2 1
= . - = x°Q..8in"e - xf- P+ q)51n 8 + ——_, (8,149)
dx 2 22 22 Q?l 4b Ghs _ o

Since in x = O, w = O integration of (8.,149) yields

3 2 _
o= Sinze[‘ & G2 + 7 (P - Q21qi}+ ZEEEE; , ~ (8.150)

which is the vertical deflection of the line y = O, For points y £ O the

™~

vertical deflection (8.150) has to be augmented by the amount
sin 6
?xy s51in .
So the total vertical deflection w of a point x,y(x<{p) is

3 2
2 X X S —
w = 8in“e [-<g- Uy + 5 (@, P'QQIQ)}'* 4b Gn_

© (8.151)
1

2 2
+ ¥y sin 8 [g-x le + I(—ngp + Q11Q)} .
For XD, K, = 0 and K = O and the part of the box béam for x>p is conw

gsidered to be unstressed, _ )
and of the'box:beam

The rotation components of the rib plane at x = p
outside of this plane are obtained by substituting x = p into (8.147) and
(80148) : + . B .
(9,). = (pa @, - % p° Q,,) sin @ (8,152)
x'p 11 2 Y. Me : Co ’
(v,). = (pa -+ p% Q) sin s . ‘1-(8 153)
yip = (P80 ~ 2P G < O

The vertical deflection w of the rib plane at x = p is found by sub-

stituting x = p into (8.150):

2. 41 3 1.2
w, = sin 8 (; P -5 D4 Q21) + ZER§E; . (8.154)

and so the vertical deflection w of the point x,y (x>p) becomes

W +[(mx)py-(wy)p(x—p)} sine . - (8.155)

or
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3 2 '
2 p
w=sin®e (B5qy, - 52 q) + 7% Gh_ ¥

12 .2 1 2 . 2
+¥(pg Q1= 5 P°Q,)ein"e ~(x-p)(pa Q- 5 v Rplein’e . (8.156)

By means of (8,151) and (8.156) for x<p and x>p respectively the de-
flections in the points 1,2...10 were calculated for vertical unit loads,
placed in the points 1,2..,10 (fig.7.1). For the values of Q, ; were taken
those of (8.29), ’

Like in table 7.5, 7.10, 7.14 and 7.19, a matrix of influence coef-
ficients Gmn'is obtained (tatle 8.8), which is again symmetrical, Compa—
rison of table 8,8 with the other tables shows that the success is only
moderate,

In order to make a further comparisbn between displacements cal-
culated with .this elementary theoiy for the oblique beam and calculated
by a more aceurate theory ,table 8.9 has been formed. This table deals
with two loading cases which may be entitled as "shear force" and
"torsion"l) resrectively, the loads béiﬁg applied to the stations 2
and 3.

The flexibilities Qij used in the elementary theory are those
based on the minimum principle for the stresses (with 4 types of supple-—
mentary stress systems), (These flexibilities are those of the hollow
box beam, but in obliqus coordinates), It is therefore reasonable to
compare the displacements with those obtained by applying the minimum
principle for the stresses and using 20 supplementary stress system.

Application of the formula's (8.143)...(8.156) for an infinite beam
means in faet that of the infinitely long deformed beam, a ceftain
(oblique) rib plane (which is distorted in and warped out of its original
plane) is brought by 2 rigid body displacement in such a position that it
coincides as good as possible with the (non~deformed) root plane (ses for
shear force loading fig.8.19).

Additional rotations of front and rear spar which are necessary to
compensate for warping of the root rid (fig.8.19) are not included, Such
rotations would increase the vertical deflections of the front spar (at
least in'the root region) and decrease the deflections of the rear spar,

Such differences in deflections are indeed observed if the deflect-

H

1) In the sense of the. theory of non swept beams., Thus not in the sense

of the discussion at the end of section 8.2.2.2.
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jons calculated by means of the elementary theory are compared with the
deflections following from the minimum principle for the stresses (loading
case A, table 8.9).

 Similar considerations can be given for the torsional load. The ele-
mentary theory neglects the prevention of warping at the root plane, The
additional rotations of front and rear spar which are necessary to keep
the root section plans are opposite in sign to those of case A, In the
root region these rotations will induce a decrease of the absolute values
of the deflections, This explains +the differences appearing in table 8.9
for loading case B, . _

The stresses following from the formulae of section 8.2 for the in-
finitely léng beam deviate very much from those of section T more in par-
ticular at the concentrated load and, which is more important, near the

clamped end at x = 0,

9 Stress analysis of a semi-infinite swept-back box for moment

end loads.
9.1 Introduction.
The methode of section 7 have proved to predict adequately the

stresses in the more concentrated structural elements, like spar booms
and only shear—carryinglspar and rib webs, as well as the stiffnesses
to be uased in aero-elastic problema, However, an important question re-
mains with respect to the analysis of a swept beam of finite length,
viz, whether it is necessary to apply the supplementary stress systems
to all the cells, This would give rise to a great number of linear simul-
taneous equationé. It is likely, however, that, in certain parts of a
fairly long beam, some of or all the supplementary stress systems can
be neglected or determined in a simplified way. For instance, it is cer-
tain that for cells far from the root the participation factors of the
various supplementary stress systems can be found from the analysis of
the infinite beam (chapter 8.2,..8.4) where only a émall nunber of sBi-
multaneous equations have to be solved (equal to the number of systém
types used), provided that no concentrated loads gccur in this region,
In the region near the root additional loads are required to keep the
root section undeformed {compare the discussion at f£ig.8.19)}. The resul-
tant of these loads is zero and it is well kmown that stresses gtemming
from such a load are confined to the root region jtiself,

So as to investigate this problem of root restrain, the box beam of

section 8 is again analysed by means of the minimum principle for the
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stresses with the 5 supplementary stress systems given-ih section 8,3,
but now one‘end is clamped whereas the external lecad, a moment (MX,O,O)
and a moment (O,My,O) resp,, is applied in X =oco .

Starting from the root, the participation factor of every type of
supplementary stress system approachés the final value for the infinite
beam as obtained in (8,74) and (8.76). This however will appear not to

occur according to a simple law, but as

n y\n n
where n is the cell number, counted from the root, The coefficients

cl...c are a set of constants depending on the load. The guantities

9

%1...%9 are the roots (some of them complex) with modulus <1 of a reci-

procal algebraic equation of the 18th degres.

9.2 Constant moment (Mx=1,0,0),L

Fig, 9,1 is a figure similar to fig, 8.1 and gives the numeration of
the sets of supplementaryfstress systems which starts at the clamped root
of the beam., The infinite set of simultaneous equations (8.7) now takes

the form

¥ *®, . - . _p*
¢*z. &+ B¥Z. &+ C'Z, 4 DIZ = =B (9.2)
0 1 2 3 )
; ¢ | -
n»i , Pz, , + 02 , +BZ +C'Z ,+D'2Z ,=-E. (9.3)

The matrices Zi are

X, ..
4,1

5.1
The matrices D,C,B,C% and D' are already given in table §.2 and
the matrix E by (8.72), | |
The equation (9.3) has the general form but the first two (9.1)
and (9.2) are distorted by the structural irregularity caused by the
presence of the clamped root, The matrices B*¥ C*', C* are given in
table 9.1. As far as the first four types of supplementary stress

systems are concerned, numerical values could be taken from tables 7,1,
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7.7 and T.12,

4
The matrix B

A031.0 -25.36T2

Acy2.0 +10.4273
e¥- | P0y3.0 - 0

AO;4.O 0

2 045.0 -26,4088

is for the loading case (Mx=1,0,0)

i

x 10

(9.4)

Except for the first two equations, the whole set of equations
- {9.1),..(9.3) is satisfied by the selution {8.74) but sudbstitution of
this solution into (9.1) and (9.2) yields ~E,, and ~B, respctively in-—

stead of ~E¥ and -E, where

+10,3193
-13.0957 '
-Ey = + 1,3765

- 1.7142

21,0759

0
-=-18,1900
0
1.71469
26ﬁ4088

x10 .

6. (9.5)

Writing the solutions of the equations (9.1)...{9.3) in the form

n
tions for Qh is obtained 3

B**QO + C¥Q 4+ D'Q, - B-B
c¥Q 4+ B*Q] + C'Q, + D'Q = E.-B
0 _ 2V 2
D QO + CQI + BQ2 + C'Q3 + D'Q4
t
DQ1 + CQ2 + BQ3 + C Q4 + D‘Q5
Dq _, + 0Q 5 + B+ C'Q , +D'Q,
where )
+15.048 o
+ 2.668 -6 —20665 -6
Gl = )} - 1;377 x10 G2 = G =10
+ 1,714 ~1.715
+ 5.333 0

%

7. = Z;:+ Q,, where Z: is the solution (8.74), the following set of equa-—

, (9.6)

5 (9.7)

(9.8)
(9.9)

(9.10)

(9.31)
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From equation (9.8) on Q, = 0 satisfies of course the equations but
in addition these homogeneous equations have a number of solutions, the

characteristic functions

Q = RAD (9.12)

where R is a column matrix and A is a (real or complex) number, the

6haracteristig value,

30 as to obtain the characteristic values together with the correspond-

ing column matrices R, (9.12) is substituted into (9.10)

(D+ CA+ B7\2 + C'AS 4 D")\d)R = 0 . (L9.13)

The existence of a non~zero column matrix R requires the following

determinant to be zero :
[D+ cAs BAZ 4 o123 +.D'?\4l =0 , - (9.14)

The determinant (9.14) is of the 5th order, so having 5! = 120 terms
each consisting of a product of five S5-term polynomials, An equation in A
of the 20th degree can he expected
20 19 18 2
ap AT+ a197\ +tag A+ a2‘7\ + a17\+ ay = 0., (9.19)
This equation is rec1proca}, i,e, 850 = 8g} B1g = 29y ete. because
if Al is a roeot also l/?\1 is a 'root, This latter conclusion is obtained
by transposing the determinant (9.14) which leaves its value unaltered

(note that B is a symmetrical matrix),

[or s one B?\2+c?\3+n?\4!=o

or ' | (9.16)
1 1 1 1
D4 C3x +B-—54+C" =4+ D" —=|=0 |,
Since [D'[ = [D! = 0, the coefficients 250 and & vanish, There re-—

mains an equation of the form
i

18 17 16 15 14 13
AT+ A +a173 + a;e A +a157\ +a147\ +a13>\12+

a1q

2y, Al aiy ?\10 + agq 7\9 4+

a1g * a18}+ a177\2 + a116‘)\3 + a15?\4 + a147\5 + a137\6 + ‘51127\7 +
8 | .

a 'A = O - (9-17)

11
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The solution of the roots proceeds with the usual substitution for
reciprocal equations =A+ 1ﬂA1). Of course, half of the roots have
moduli ¢ 1. They are given in table 9.2, in the sequence of decreasing ﬁodu_
lus, together with their characteristic solutiong, the column matrices R.
" A11 columns R are normalized in such a way that the fifth element is 1, A
state of stress S in the box beam, consisting of supplementary stress-
systems with participation factors according to the solution of (9.12)

(or a propef combination of two of these solutions in order to avoid com~
plex numbers for the stresses) claims to be compatible everywhere in the
structure and should actually be so, if not a limited number of types of
supplementary stress'systems had been used. However, at the root of the
beam they do not comply with the prescribed displacements and it is there-
fore necessary to combine the systems S so as to satisfy this condition, ‘
It is seen from (9.12)_fhat the 9 roots of A with modulus »1 must have

for long beams as a pafticipation factor zero, since the stresses following
from these soclutions would increase exponentially with n.

It does not seem possible to attack a particular mechanical mesning
to the column matrices R and the solution (9.12) fellowing from them; This
means that it seems impossible to predict whick of the stress systems
(9.12) will prevail when a clamped beam is loaded by a moment.

In order to obtain the required combination of the remsining 9
states of stress S, the 9 solutions (9.12) are substituted into (5.6) and

(9.7)

BUR 4+ C¥ RN« DIRA = G (9.18)

. (9.19)

N % "‘J*

*R + B*EN+ C'RY 4+ D'EX = G

The 9 resulting column matrices Gr and G;:forming together the
matrices V1 and V2 reapectively are given in tables 9.3 and 9.4.
The multiplication factors Wyee Wy of the § states of stress Sl...S9

follow from the equations (9.6) and (9.,7) ¢

w

1
v x fE = G
1 1
\F f G I ° (9.20)
g

1) A substitution £ =A+ 1/A already in {(9.14) is of no use, because
D£D' and C £ C*,
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The solution is

W, -612,842 ~ 361.438 i

W, '-612.642 + 361.438 1

w3 +524.700 + 103.255 1

w, +524.700 = 103,255 1| | |

w = +359.369 10 = matrix W . (9,21}
WZ + 49.9688

WT - 69,4195

wg + 4.3882

wg - 3.718%

Then the solution Q , satisfying all the equations (9.6), (9.7),
(9.8).., is (Ri and)\i from table 9.2).

q = w131>1“ + w2R2)2n + ...+w9R9A9n . (9.22)

Qn iz a column matrix

%7 || %3 | - (9.23)

qd.n

5.0

where e.g. is the participation factor of the supplementary stress

q
3.
system type 3 (fig.7.7) in the n and (n+l)th cell from the root (see
fig.9.1), as far as rooi-perturbation stiresses are concerned, The total

participation factors

eI P | (9.24)

X n

*5.n
are obtained by adding to the factors (9,23) the values (8,74) for the
infinite beam under the same loading (Mx = 1, My =0, ¥ = 0).

. Fumerical values for (9,24) are given in table 9.%5. Some stresses,
following from the total participation factors (9,24) and- the basic
stress system fig. 8.5, have been plotted in fig, 9.2,
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It is remarkable that stresses stemming from systems Yn = R?P » Which
rapidly tend to zero (the systems for the small values of A) have generally
small participation factors {column matrix (9.21)), i.e. these stresses are
already small in the first cell from the root.
From table 9.5 it appears that frém.the 5th cell of the root onward
the stresses are almost those of the infinite beam, The etresses in the

spars are already from the 4th cell on practically those of the infinite

beam (fig.9.2).

The fact that in the root region the stresses in the front spar
booms decrease and in the rear spar booms increase is confirmed by simple

mechanical considerations like those given when discussing fig.B.19,

9.3 Constant moment (O, My = 1,0}

.- This section follows guite the same lines as section 9.2,

0
+11.3322
¥ - 0 x 1076 (9.25)
| 0
- 7.5548
The matrices El’ E2, Gl’ G2 and W are respectively
+ 8.7131 0
-10,8562 -23.1458
~E, = - 0,2466 x107¢ ~E,= 0 1070 (9.26)
+ 0,307 - 0.3072
+ 8.5123 + 7.5598
- 8.713 0
-~ 0,476 + 0,481
G, = + 0,247 || x107 Cye 0 x1076 (9.27)
- 0,307 + 0.307
- C,957 -0
wy 306,761 + 277.497 i
w5 306,761 - 277.497 i
wy -137.081 - 110.253 i
v, ~137.081 + 110.253 4 §
W= we + 62,380 X107, (9.28)
W - 3,266€
Wy + 36.1482
wg - 2.,9200
wg - 0©.5138
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Final results are given in table 9,6 and fig., 9.3. with respect to
the stresses near the root the same remarks as at the end of section 9.2
can be madae. . o |

There does not exist a linear combination of the two column matrices
(9;?1) and (9.28) such that the result is a zero column matrix. So there is
no moment (Mx’My’O) which would not cause perturbation stresses at the
root, Also the moment (Mx’My,= £ MQ,O) defined in section £8.2,6,3 will
cause¢ perturbation stresses near the root, which ecan be calculated only

approximately, while the solution for cells far from the root is exact,

L

19' ¥inal considerations,

- The present investigations have shown that the methods used are ade-
quate to analyse swept box structures. Of course some further adaptation
may be desired in practical cases, for example if the shape of the skin
panels is only nearly a parallelogram.

It seems that the uée of the minimum principle for the stresses is to
be pfeferred to the minimum principle for the strains, ForAa certain required
accuracy the minimum principle for the stresses generally requires less un-—
knowns to be solved, However, the amount of numerical work depends not only
on the number of unknowns, If the calculation of the coefficients of the
‘equations is automatized the numder of siructural elements and the number of
the possibilities for their state of stress, respectively state of strain,
attributed to these elements is possibly the most important factor, Alsc the
type of computer used may affect the comparison, It be remembered that in
the present work both principles are used, 80 as to compare results and to
enclose results for displacements between bounds. The latter procedure may
also have its importance for practical application. .

It may be questioned whether the solutions obtained by the present
methods will tend to the exact solution if the number of unknowns is ever—
more jincreased. It was zlready mentioned that the exact solution for the
investigated schematized structure (spar booms and rid flanges that have
no bending stiffness) will have stress singularities at the intersegtions
of rib flanges with spar booms {corners), That means that stresses or their
first derivatives may become infinite, In the corner, ihe two shear Stress—
*flows t of one skin panel acting on the spar boom and on the rib flange
respectively need not to be equal or they may equally tend to infinity, If
among the adapted supplémentary stress {or stfain) sysiems none contains

the type of stress singularity which occurs the results obtained for the
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stressas near the corner by means of increasing the number of stress (or

strain)

systems will converge very badly.

Stress singularities occurring in corners of skin panels may bs studied

along the lines of ref.43} and 44. The stress singularities disappear or

become less severe if bending stiffnese in the plane of the panel is attri-

buted to the spar booms (ref.45).

1
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12 Summary in Dutch,

Over de berekening van vleugelconstructies met pijlsfelling

Het kenmerk van de vliegiuigvlieugel met pijlstelling is, dat de voorzijde
een grote hoek maakt met de langsas van het vliegtuigy in vliegrichting gezien
is de vleugeltip achter de vleugelwortel, Hierdeoor staan ook de liggers niet
loodrecht of ongeveer loodreéht op het symmetrievlak van de vleugel, De in-
vlced hiervan op de spanningsverdeling is groot.

Wat de ribben betreft zijn er twee mogelijkheden, deze kunnen nagenoeg
loodrecht op de liggers staan of deze kunnen evenwi jdig zijn zan de lengte-
as van het vliegtuig, In het laatste geval bevinden zich parallellogramvor-
mige huidplaten tussen de ribben en de liggers, Deze verhandeling gaat over
vieugelconstructies met ribben evenwijdig aan de langsas van het viiegtuig.

Bij vleuzels zonder pijlstelling bestaan verschillende berekeningsme-
thoden, In de eerste plaats is er de methode welke uitgaat van. de theorie
van de prismatische balk belast door een buigend moment, een wringend moment
en een dwarskracht, Een specialisatie voor dunwandige cylinders belast
door een wringend moment is bekend, De dunwandige cylinders kunnen hierbdij
uit meer dan één cel bestaan.l’/ Van der Neut (lit.4) behandelt zulk een
dunwandige cylinder waarin zich een continuum van in hun vlak oneindig
stijve ribben bevindt en welke cylinder door een dwarskracht belast wordt,
Deze ribben zijn geplaatst loodrecht op de lengterichting van de cylinder,
Kojter (1it.6) behandelt eveneens dit geval terwijl het continuum van
ribben ock afwezig kan zijn. Verder is het meogelijk rekening te houden met
geringe tapsheid, zowel van huiddikte als van de vleugelafmetingen, geringe
pijlstelling en belemmering van welving. Er zijn ook uvitbreidingen voor
kegelvormige schalen {13it.7).

In. de tweede plaats bestaat er de methode waarhij de constructie wordt
geacht te bestaan uit elementen die meestal één scort of een beperkt aantal
soorten van belastingen kunnen opnemen, Zo wordt van ligger- en riblijfpla-
ten meestal verondersteld dat deze langs hun randen slechts schuifspanningen
opnemen, De liggergordingen en de ribflenzen worden dan geacht slechts nor-
maalspanningen te Xunnen opnemen, Cok van de ongeveer rechtheekige huid-
velden wordt dan verondersteld dat zij langs hun randen slechts schuifspan-
ningen opnemen, Het normaal-spanningsopnemend vermogen van ligger— en rib-
1lijfplaten zomede van huidvelden en eventuele langsverstijvers kan gevoegd
worden bij de aangrenzende liggergordingen of ribflenzen, De aldus geldeali-
geerde constructie is eindig~voudig statisch onbepaald, Iedere oplosmethode
die deze statische onbepaaldheid volledig in rekening brengt levert dan het-
zelfde resultaat op, terwijl dit resultaat voor de geidealiseerdecconstructie
exact is, Specialisaties gaven bij voorbeeld Van der Neut en Plantema
(1it.13 en 14).

In de llteratuur zijn beide methoden u1tgebre1d voor vleugels met pijl-
stelling. Er is werk waarbij wederom een continuum van ribben oneindig stijf

in hun vlak in cylinders geplaatst wordt, Deze ribben staan dan niet meer lood-

recht op de lengte—as van de cylinder, Specialisatie voor kegelschalen

1) Zulke cellen zijn gescreiden door wanden in langsrichting van de}cylinder.

Elders wordt in dit werk met cellen meestal bhedoeld de ruimte tussen
twee opeenvolgende ribben,




112

zijn ook bekend, In deze verhandeling wordt aangetoond dat dit uitgangspunt
tot foutieve resultaten leidt,

Ock van de thans parallelogramvormige huidvelden tussen liggers en
ribben is wel verondersteld dat zij langs hun randen slechts schuifspannin-
gen opnemen {Levy, 1it,23). Deze veronderstelling leidt eveneens tot foutieve
resul taten,

In het thans ondernomen werk worden de spanning-rek relaties van de
parallellogramvormige huidvelden niet vereenvoudigd. Slechts de langsverstij-
vers van de huid worden continu verdeeld geacht, De constructie blijft daar-
mede coneindigvoudig statisch onbepaald en de principes van de variatie-reke-
ning zijn nodig om tot practisch bruikbare oplosmethoden te komen.

De twee gebruikte variatie -principes luiden als wvolgt:

"Van alle spannings-systemen die aan de evenwichtsvcorwaarden veldoen,
ig die de juiste, welke de complementaire energie minimaal maakt! en

"Van alle rek-systemen die aan de aansluitingsvoorwaarden veldoen-is die
de juiste welke de potentiéle energie minimaal maakt.”

Het gebruik van ieder dazer principes afzonderlijk leidt 1ot een oplos-
sing. Het gebruik van deze principes is welbekend, De onderhavige constructie
vraagt echter speciale vormen van toepassing welke in dit rapport behandeld
zijn. Hiervij is gebruik gemaakt van scheefhoekige codrdinaten zoals ze door
Hemp (1it.22§ tij de behandeling van scheve vleugelconstructies ingevoerd
zijn, Voor zulk esen scheefhoekig cobrdinatenstelsel zijn de spanningen en
rekken zodanig gedefinieerd dat veel relaties, geldig bij orthogonale . coOr-
dinaten, hun vorm behouden., Het equivalent van een normaalrek is thans even-
wel niet alleen afhankelijk van het equivalent van twee normaalspannlngen,
maar ook van het equivalent van de schuifspanning.

Het vergelijken van de resultaten met behulp van de beide principes ver-
kregen geeft een fraaie gelegenheid om de mate van nauwkeurigheid te becor-
delen, Voor belangrijke uitkomsten kunnen zelfs onderste en bovenste grenzen
worden aangegeven waartussen het exact antwoerd van de nog altijd enlgszlns
geidealiseerde constructie met zekerheid moet liggen,

Humeriek wordt behandeld een zan &én zijde ingeklemde doosbalk met 45
Pijlstelling met § cellen, Hlerbij is onder sen cel ie verstaan de ruimte
tussen 2 opeenvolgende ribben of itussen een Tidb en de inklemming, De belas-
ting bestaat uit verticale krachten ter plaatse van de bevestigingen van de
ribben aan de liggers {de punten 1 t/m 1¢, fig. 7. 1).

Bij het toepassen van de methode waarblg de complementaire energie minie
maal gemaakt wordi is een "basis spanningssysteem" aangenomen, hetiwelk in
evenwicht is met de uwitwendige belasting, op welk systeem worden gesuperpo-
neerd "aanvullende spanningssystemsn”, die geen ultwendige belasting vereisen
en voldoen aan de evenwichtsvoorwaarden, Onbekende multiplicatoren van laatst-
gencemde systemen zijn de onbekenden welke moeten worden opgelost door te
eisen dat de complementaire energie minimaal is, _

Voor d4e doosbalk werden achtereevolgens oplossingen verkregen waarbij ge—
bruik werd gemaakt van 2, 3 en 4 types van "aanvullende spanningssystemen”
per csl, waarbij dus achtereenvolgens 10, 15 en 20 ondbekenden op te lossen
waren,

Het toepassen van de methode waarbij de potentidle energie minimazl ge-~
maakt wordt geschiedde op overeenkomstige wijze door invoering van een "basis
reksysteem"” en van "aanvuilende reksystemen". Ten einde tot ongeveer dezelfde
nauwvkeurigheid te komen als bij de eerstigencemde berekeningen werd het nodig
geoordeeld 10 types van "aanvullende reksystemen” per cel te gebruikeny het
vraagstuk leverde dus hier 5C op te lossen onbekenden or. De onderlinge over-
eenstemming tussen de diverse uitkomsten van de vier verkregen oplossingen was
bevredigend. -

Beide methoden werden ook toegepast op de naar beide zijden oneindig
lange doosbalk (met overigens dezelfde afmetingen als van de S-cellige doos-—
balk) voor de belastingsgevallen constant moment en constante dwarskracht,
Hierbij werden 5 types van "aanvullende spanningssystemen"” per cel gebruikt
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en weer 10 types "aanvullende reksystemen". Deze analyse voert tot rela-
ties (in scheefhoekige codrdinaten) tussen moment en specifieke hoekver-
draaiing van de balk, Voor de co&fficiénten, voorkomende in deze relaties
worden onderste en bovenste grenzen bepaald welke betrekkelijk dicht bij
elkaar liggen. Bedoslde relaties zouden kunnen dienen tot een equivalent
van de zogenaamde elementaire balkentheorie voor balken zonder pijlstelling.
Dit komt neer op het geldig verklaren van bedoelde relaties in gevallen
waarbij de dwarskracht, haar werklijn ten opzichte van de doorsnede (even—
tusel wringend moment) of de afmetingen in lengterichting veranderen, of
wanneer de balkeinden nist vrij kunnen welven, Hen poging om op basis van
zulk een elementaire theorie de vijfcellipge doosbalk te behandelen had
slechts een matig succes, doordat de afwijkingen van die theorie in de buurt
van de inklemming van de balk te ernstig zijn,

Om de uitgestrektheid van de stoorspanningen in de nabijheid van een
inklemming te onderzoeken ward, uitsluitend met minimalisatie van de com-
plementaire energie, sen half-oneindige doosbalk (overigens weer met de—
zelfde afmetingen) onderzocht voor het belastingsgeval constant moment, De
stoorspanningen dempen vanaf de inklemming snel uit (niet volgens een sen-
voudige wet) en zijn van de vierde cel af verwaarloosbaar klein,

De gevolgde methoden worden geacht voor de practijk goede resultaten
te leveren, Ze zijn evenwel mosilijk tot convergentie naar sen exact resul-
taat te krijgen. Dit zou studie vragen van de bijzondere spanningstoestand
in de hoeken van de parallellogramvormige platen. Dit heeft slechts zin wan-
neer de liggergordingen en ribflenzen minder sterk geidealiseerd zouden
worden, Want juist in de hoeken krijgt de eigen buigstijfheid en afschuif-
stijfheid van zulke elementen betekenis,



Table 7.1 Values of 106 }“ij of the 10 supplementary siress
systems A ij = Aji

The A ij are the "cosfficients of the unknowns".
i=l | 2 3 4 5 6 7 8 9 10

j=1 {7721(-4952( 494| O 0 [-1502|-15021 @ 0 0
) 16925 1~-5941| 494] 0 | 1502] © |-1502] © 0

3 {17420 |-5941] 494] O 1502 0 ([-1502 0
4 11742059411 © o 1502| -0 [=-1502
5 17420 © 0 0 1502 0

5 6216(-3272| 811| O© 0
7 148661-48351 B11 0
8 15677 |-4895| 811
"9 1567714895
10 15677
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Table 7.2 Values of —106 A’Oi of the basic stress systems and the 10 supplementary strese

systems for the m loading cases (-106A-m01)o

The A 0y ore the "known terms” of the equations (6.6).

m=1 2 3 4 5 6 ] 8 9 10
~592,868 [+692,868 =556, 880 | +556 ,880 |—~420,894 [+420,894 (~284 .906 (+284.905 {-148,920]+148.920
~1087.895|+1087.895 [~815.921 {+815.921 {=543.947 {+543.94T7|=271.974 {+271.974 |+ 12,934 |- 12.934
—815.921 | +815,921 |~543.947|+543.947 [~271.974 [+271.974 |+ 12.934 (-~ 12.934 0 0
—543.9471+543.947(-271.974 [+271.974 |+ 12,934 |~ 12,934 0 0 o 0
271,974 |+271.974 |+ 12,934 |~ 12.934 0 0 0 0 0 0
+448,735|+448,7351+352,577|+352.577 | +256.420 [+256.420| +160,262 (+160.262 |+ 654,105 }|+ 64,105
+779.2591+759.259 | +576.,944 {+576 .944 {+384.629 |+384.629]+192.315 |+192.315 [+ 32.052{+ 32.052
+576.944 | +576.944 | +384 ,629 | +384,629 {+192.315 {+192.315{+ 32,052 |+ 32,052 0 0
+384.529 [+384.529 [+192.315{+192.315 |+ 32,052 |+ 32,052 0 0 0 )
i}929315 +162.315 |+ 32.0R21+ 32,052 4] 0 O o C o
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Values ij. The wvaluas de ara the solutions Xd of the 10 unknowns
for the m loading cases,

m=l | 2 3 4 5 6 7 8 9 10
13714 |+24338 [~10900 [+18793 |=B055 [+13257|=5135 |+7835 [~2190 |+2959
~15202 [+17027 [=11416 [+12468|=7603 |4+ 7985 1~3846 }+3824 |- 714 |+ 641
—~13006 {+11658 |- 8890 [+ 7540|-4838 |+ 3688|-1395(+ 722 |- 218|+ 33
- 9174 |+ T134 |- 5145+ 3500(=-1671 [+ 629|- 422[- 13|~ 52{~ 40
- 4627 (+ 3081(= 15491+ 561|= 434 |- 27|- 88i;- 58|~ 71- 18
+11814 |+14258 |+ 8894 1+11336[+5969 [+ 8368|+3125(+5274 |+ 771(+2118
+ 9670 [+12419 [+ 6868 |+ 9563 |+4119 +‘6644 +16 741436671+ 167)+1076
+ 6561 |+ 9696 [+ 3974 |+ 6BB6|+1652 |+ 4051+ 185]+1563 |- 68|+ 305
+ 3548+ 6759 |+ 1390 |+ 3998|+ 8|+ 1591~ 188(+ 385/~ 56|+ 43
+ 1118+ 3520~ A0+ 1432|- 242 (+ 347\~ 109{+ 38)- 19— &




Table 7.1 Values of the symmetrical matrixJ/émo.RnOdv

multiplied by 1065

m=1 2 3 4 5 6 7 8 9 10

n=1l ) 992,909 o |703.666 © {437.091 O 215.846/ 0  |62.592 0
2 992,905) 0 |703.666] O  [437.091 o p15.846] © |62.59

3 522,350 0  [335.102] O 170.517% O  |51.261 o

4 522,350/ © O  |335.102] © h70.5171 o© |s51.261

5 233.111) O 125,188 ©  [39.929 0
6 233.111 o ‘hes.188] o {39.929

7 79.860 © |28,597| o
8 i1 19,860, 0 | 28.597

9 17,265 0
10 | 17.265




Table 7.5  Influence coeffigisnts Com (Cmn -Cnm) of the swept box
multiplied by 10" and expressed in inoh/1b. Computed with
the minimum principle for the stresses with 10 supplementary
stress systems,
m=1 2 3 4 5 6 7 8 9 10
ne1 [382.86|247.95 | 278.30 | 165.64 | 181.25 | 93.35| 97.48] 39.10] 33.47 | 7.763
P4 248.52 | 183,54 173,45 1120,70 {106.11 64.30( 51,87 20,92 15.43
3 1217.44 | 127.07 146.30 74.17 ] 80.83| 32,22 28.50 6.852
4 135.74 86,50 R7.76 | 47.71 45,28 16,04 14,56
5 110.58 | 13,88 ) 64.17| 24.99] 23.77 | 5.867
6 58.62 | 31.53 38.69 | 11,22 13.73
7 ; 46.66 | 16.63 | 18,91 4,609
8 31.23 | 6.618 | 12,87
9 13.55 | 2.622
10 1124




Table 7.5 Values of stresses in 1bs/inch2 for the m loading cases.
Computed with the minimum principle for the stresses with 10 supplementary

stress systems, ..

H m=1 2 3 4 5 4 1 8 9 10
& 5 - ' :
5 1 0 ) 0 o 0 0 Q 0 0 0.
5 8 2 e} 0 0 0 0 0 o} 0 o 0
" @ 31+ 1.735]40.352{~0.8956]|~0.,249 |=0.156 |~0,162|~0,007(=0,051}+0,004 -0 ,008
o + 41+ 2,282[+1.5441+0.946|-0,935 +0,350(=0.130]+0,098| +0,019] +0,012| +0.014
z 5 |+ 2.955)+41.400[+1,312]+0,400[=0,998{~0.295|~0,172]-0.170|-0,008|~0,042
g £ 61+ 3.965]+2.828<2,475(+1.193 {+0.990[=1.043}+0.330[~0,154| 40,055 +0.,006
» o 7)1+ 2.376[+2.857(+2.955(+1.589 [+1.385|+0,490)=0,907)-0,228} -0,101{-0.109
- 81+ 4.978{+3.858({+3.517{+2.5331+2.183)+1.059/+0,751|=1.087 +0,158{~-0.148
g h g |+ 5.718(+4.905+5.192]+3.395 [+3.659 |+1.956| +1.965|+0,732(-0,495(~0.072
o8 10 |+ 4.976(+4.478[+3.902|+3.433]+2.790{+2.370|+1.585{+1.141| +0.355-0.834
= 11 |+ 11.8601+8.4821+9.505|+5.412 [+7.570{+4.367(+5.547|+2.443{+3.330{+0.869
12 |+ 3.1881+4.312]+2.744)+3.882142,282 |+3.466|+1,740{+3.035 +0,978|+2.,306

o 8 1-3 |+ 2.351{+0.504[-0,304{+0,110|~0,085 |~0,005{~0,017|~0.011(~0,001(~0.004
Ao 2-1 |+ ©.907|+2.564|+0,304]-0,110|+0,085+0,005|+0,017] +0.011}+C,001|+0,004
3-% £ 35 {4+ 2,375(+0.795|+2.553]+0,575 |~0.243{+0,129[~0,065| +0.,009|-0,009{~0,004
@ & A5 |+ 0.891[+2,473]+0.705]+2,692 |+0,243 |-0.129|+0,065|=0.009+0,009 ) +0,004
® 5=7 |+ 2.517]+0.887[+2.534|+0,792 {+2.647 +0.,600]|=0,191| +0,144|-0.033}+0,014
£ .on £-8 | + 0.751|+2,381|+0.734[+2.475 {+0.621|+2.,668(+0.191/~0,144 +0.033|~0,014
20 o 17-9 |+ 2.837|+1.053|+2.T73|+0.956 |+2,726 [+0,843 +2.787| +0.608|-0,097]|+0.119
s 8-10 + 0.431]+2.215|+0.495]+2,301 [+0,542 42,425} +0,481) +2,5601+0,097 -0.119
ga 9=11l + 3.550[+1.434[+3.369(+1.240{+3.1791+1.033 +3.016| +0,786|+2.9791+0.454
w o 10-12| -~ ©.292{+1.834(-0.,101|+2.028 |+0.089 }+2,235|+0.252| +2,482|+0,289|+2.814

) 12 |+ 0,907|-0.504]+0.304|-0,110|+0.085 [+0,005{+0,017| +0.011}+0,001+0.004

£ © {3-4 |= 0.016}-0,191}+0.402 =-0.465 |+0,158(~0.134|+0,048}~0,020}+C.008}+0.001
oam® §5=4 | = 0.140(=0.093[+0.029{~0.215 {(+0.378(=0.4711+0,125|~0.135/+0,024 -0,019
g 0.0 gg"{-B - 0.321|-0.154{~0,239{=0.174 |-0,079 |~0,243| +0.290}~0,464]+0,065|-0.105
922 8%-10l~ 0,723]|-0,3P1[-0,596(=0.274 |-0.453 |=0,191}-0,229)~0,178}+0.192(-0.335
a8 - ER

+ o O

RIS




Table 7.7 Additional values of 10% A 45 of the 15 supplementary

stress systems Aij = Aji' For the other values of. -

of}tij see table T.l.

i=11

7

13 14 15
~1282 |~ 641 . 0 0 0
| = 641 [ ~2%64 | - 641 0 0
0 |- 5641 |- 2564 |- 641 0

0 0 - 641 |~ 2564 | - 641

0 0 0 - 641 | - 2564
1770 1 1770 ! 0 0
~1770 o} 1770 0 0
0 ~1770 o} 1770 0

0 0 - 1770 0 1770

0 0 0 - 1770 0 -
4994 482 80 0 0
10230 321 80 0

10310 321 80

10310 321

10310




i=11
12
13
14
15

Table 7.8 Additional values of -1063.01 of the basic stress system and the 15

supplementary stress systems for the m loading cases (-106/1m01).

For the other values see table T.Z2.
m=1 2 3 L 5 6 7 |- 8 9 10
+373.944|-373.944| +293.813|~203,813| +213.4682|~213.682 +133-551 ?i330551 +53.421(=53.421
+641.046| 641 .,046| +480.785(-480,785{ +320,523[=320,523 | +160.262[~160,262} +26.710| ~26, 710
+480,785|-480,785| +320,523| ~320,523 | +160,262| -160,262 [+ 26.710|~ 25,710 © o)
+120.523(=320,523( +160.252] -160,262| + 25.710)- 26,710 o [ o 0 0
+160.262 | ~160,262| + 26.710{~ 26.710 0 0 0 0 0 0




Table 7.9 Values of ij (3= 1...15).

The values ij are the solutions of the 15 unknowns for the m loading cases.

m=1 2 3 4 5 6 1 8 9 10
3=1|=13343{+24301|=10682 [+18566 |~7971 |+12862 |-5130|+7388|~2193 [+ 2703
2]1=15230] +16517]~11555|+11912]-7814 | +7354 |~4042|+3289|- 790!+ 397
3[=13561(+10876(— 9445 |+ 6789|5310 | +3073|~1712|+ 355]|~ 304}~ 103
4(- 9852|+ 6247!- 5763 |+ 2842{-2127| + 237~ 632|- 192|~ 91|~ 93
51= 5015|+ 2497|- 1892 |+ 236]|- 629 - 177|- 149(= 113!= 13|~ 30
61+11718|+14650| + 8949 |+11912 [+6129 | +9063 |+3292 [+5902] + 838+ 2423
7]+10232(+12906(+ 7352 [+ 9940 1+4495 | +6854 |+1901|+3682|+ 231 |+ 1028
81+ 59541 +20008}+ 4248 |+ 6979 (+1808| +3931 |+ 194[+1370|= 95|+ 206
9|+ 3479]+ 5728+ 1295 |+ 3779 |= 162 | +1331 [~ 348+ 214|- 103{~ 25
10[+ 843+ 3207|~ 311 [+ 1144 |~ 459 | + 166~ 215{~= s51|- 39]- 35
111+ 15111+ 3530+ 1139l= 1751+ 707| - 690+ 3198 ~1040| + 218|- 784
12|~ B2j- 656]- 270|= 913 |~ 396 | -1104 |- 401|- 973~ 259|= 340
13- 1386|- 1511|~ 1311 |- 1485|~1150| -1206 [~ 824 |- 527|- 180|~ 169
141= 1475|— 1789~ 1304 [~ 1340{= 983} = 613 = 316|- 251|- 25|- 45
15{- 846(- 1633|- Ta1|- 619)- 221] - 229] o |- 55|+ 11]- 6




n=1

—
@]

Table 7.10 Influence coefficients Cmn(cmn &Cnm) of the swept-box

multiplied by 106 and expreased in inch/lb. Computed with
the minimum principle for the stresses with 1% supplementary

stresa systems.

W om e W

m=1 2 3 1 5 [ 7 9 10
377.73 | 242.34 | 273,83 | 161.73[178.02 | 91.28 | 95.83 | 38.54 | 33.06 | 7.948
240,93 | 178.42 | 168.09(117.07 |102,79 | 62.50 | 50,34 | 20,50. 15,04
213.45 | 123.35]143.38 | T2.02 | 79.29 | 31.53 | 28.22 | 6.856
1 131,341 83,566 { 84.51 | 46.0% | 43.57 | 15.62 | 13,99
108,27 51.98 62,87 24.23 23.43 5.743
55.95 | 30.30 | 36.96 } 10.84 | 13.06
15,81 | 16.056 | 18.65 { 1.503
29.84 6.429| 12.24
13.44 | 2.6C1
: 10,90
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Table 7.12 Additional values of 1063-ij of the 20 supplementary stiress
aystems,lij = Aji' For the other values gleij seo
table 7.1 and T.T.

iw}6 | 17 18 19 20
j=1 0 0 0 0 0
2 0 0 0 ) 0
3 0 0 0 0 0.
4 0 0 0 0 0
5 0 0 0 0 0
6 | +2262|~2784(+ %22 O 0
T | -2784|+6089 |~ 3827+ 522 0
8 |+ 522)-3827|+ 6611|- 3827+ 522
g 0 + 522~ 3827+ 6611 |- 3827
10 0 0 |+ 522)~ 3827+ 6611
11 | © -2123 0 0 0
12 [ +2123] © |- 2123] © 0
13 0 +2123 0 |- 2123 0
14 0 0 |+ 2123| © - 2123
15 0 C 0 |+ 2123 o
16 | +4388(- 913 |+ 3487 O 0
17 +9819 |~ 1609 |+ 348 0
18 ' +10167 |~ 1609 + 348
19 +10167| -1609
20 +10167




Table 7,13
The values ij are the solutiona of the 20 unkncwns for the m loading oases,

- [ m=1 2 3 4 5 6 - 7 8 9 10
= 1] =132900| +243344] ~106305| +185753]| ~79181| +128618{.=5083 7| +74036|-21780|+27234
2| ~152072] +166197] =115245| +119139| =77843] +73658 | -40280| +33062 |- 7881+ 4075

3| ~135396| +108710] = 94175(+ A7995| =53088 +30936 | =16980] + 3819)~ 3005{- 791

41 - 98570 + 625031 - 57648+ 28434 ~21234( + 2495 |~ 6329|- 1724|- 965{- 839

51 = 50312)+ 24979 = 19065|+ 2325/- 6378(~ 1724 |~ 1603|—- 1114|- 162|- 307
6| +119161( +147969) + 91152|+120187| +562817) 491240 | +34727] +59816 |+ 9700|+26220

7| +101654| +128705| + 72965(+ 98912( +44680] +68211 | +185671+3707T7(+ 1336 |+ 9345

81 + 68702[+ 99280l + 42206+ 69365|+17424| +39604 {+ 7T571+12726{~ €951+1736
9+ 35764+ 66988)+ 13487)+ 38531|~ 1818 +12765 |~ 2500|+ 2214|- 808(+ 35

10 | + 7998+ 34392|~ 137761+ 10987}~ 3706|+ 1690 |- 1906|~- 177|= 423 (- 256
11 | + 16192[+ 3540{+ 11305|= 2174|+ 6860|- 7917 |+ 31922}-11974 |+ 2453 |~ 8821
12 |+ 837]- 5474)]- 1085|- B8488|- 2238|-10449 |- 2405|- 8311 [~ 2199 (- 2061
13 | = 140041— 15484~ 12810}~ 15018[-11061{=-11338 |- 8555|= 4392 |~ 2239 (- 1515
14 | = 215316 |~ 19326~ 13286~ 13426|-10691|- 5811 |~ 4016|- 2733 |- 385|- 801
15 | - 8677|- 16168(— 7T932[~ 6008(- 2751|- 2599 |+ 44|— 8641+ 182}~ 16
16 |~ 5368|-= 3709|- 5157|~ 3333[~ 5161|~ 3656 |-~ 5008(= 5608 [~ 2495 (- 6823
17 {+ 2379+ 1571if+ 1622+ 382|+ 999|~ 1480 |+ 1769 |- 3031 |+ 2529 [+ 279
18 |+ 4427+ 3200|+ 3799+ 836|+ A348{~ 836 |+ 45111+ 2175+ 200 |+ 1071
19 |+ 126(=  274]+ 1914)= 1534(+ 2796+ 196C - 1044|+ 1062i- 551 |~ 107
20 |+ 1405)- 6433+ 2763+ 723|- 1108|+ 798 |- 899|- 182|- 168~ 130

Values of 106

%,y (3= 1.0.20)

In solving the unknowns X

m

J

the matrix

from tables 7.2 and 7.8 and by adding 5 rows of gercs.

- A is used which follows
m03i



Table 7.14 Influence coefficients C_. (cmn -

W O -3 OV s W N

[
(»]

u(

) of the swepi~box mltiplied by 10

6 and

expreasad in ineh/1b. Computed with the minimum principle for the stresses with

20 supplementary stiress systems.

m=1 2 3 4 5 6 1 8 9 10

377.452 |242.251 | 273,566 | 161.657 { 177.799( 91.267 | 95.501 | 38.549 | 32.985 | 7.816
240.524 | 178,412 | 168,061 | 116.894 (102.826 | 62.295 | 50.251 | 20,435 | 14.938

212,167 ( 123.301 | 142,158 71.972°( 79.217 | 31.415 | 28.163 6,734

131.282 | 81.626] 84.600| 45.990 | 43.510 | 15.588 | 13.922

108,002 | 51.938 | 62.663 | 24,088 | 23,378 | 5.633
"1 65.858 | 30,302 { 35,865 | 10,867 | 12,991 .

45.580 | 15,960 | 18,583 4,372

29,651 1 6.436 | 12.115

13,387 | 2.549

10.755




Table 7.15 Values of stresses in lha/inch2 for the m loading caases.

Computed with the minimum principle for the stresses with 20 supplementary

stress systems,

m=1 2 3 4 5 6 7 8 9 10

1 0 0 0 © 0 0j -0 0 0 0

2 0 0 0 0. o 0 o] 0 0 0
3|+ 1.932{ +0,606!~0,697(~0,1131~0.127-0.0831~0,017}-0,029} +0.002} ~0,005
N . Al+ 2.353|+1.458]+1.015)-0,811|+0,439| =0.060|+0,177| +0,043) +0.034 +0.026
ormal stresses 5{+ 3,084{+1.578]+1.427| +0.541|=-0,812|~0,185(~0.131|-0,100{=C.010} -0.023
in upper &par 61+ 3.823{+2.702}+2,397| +1,175|+0,965|-0,889|+0.341|-0.086|+C.C78{+0,020
7|+ 4.419|+2.834(+2.986} +1,654 [ +1,454] +0,572| =0, 742|-0,154|—C,071(-0,067
booms at station) gl, 4 £741+3.687|+3,378|+2,426{42,038) +1,054)+0,678}~0,917]+0.130|-0,079
9+ 6.478|+4.665(+4.,986| +3,225(+3.483| +1,879}+1.867|+0,699!-0,448(=0.078
101+ 4.800| +4,337|+3.749|+3.327[+2,673| +2.298{+1,529{+1,140{ +C,135]~0,708
111+11.302] +8.129}49,275] +6.071 {+7.280| +4.,091| +5,293 | +2.308} +3.168} +0,827
12 [+ 3,462 +4,211{+2.886(+3,647(+2.309] +3,106!+1,701]+2,575140,974(+1.925
1-3 |+ 2,281 +0,490{~0.374|+0,046 |=0.125| ~0,034 {=0,031|-0,022{~0,003{~0.006
2-4 |+ 0.987[+2.778{+0,374|=0,046 |+0,125( +0,C34 [ +0,031| +0,022| +0,003 | +0,006
Shear stresses| 3=5|+ 2.322]+0.736]+2,511}+0,512)|~0.291)+0,083)-0.093|-0,012|~0,016|~0.010
. 4-6 |+ 0,946]+2,532|+0,757| +2.756 [+0,291| 0,083 | +0,093} +0,012|+0,016{+0.010
in spar webs, =71+ 2.546]+0,906 |+2,552( +0. 776 {+2.643| +0,558{-0.203) +0,109)-0,040} +0,001
between the 6-81+ 0,722)+2,362(+0,716|+2,492{+0.625(+2.710(+0,209{~0,109}+0,040)~0,001
7-9 [+ 2.941|+1,127]+2,855|+1.003 [+2,783| +0.838|+2.811} +0.573 |~0,096{+0.095
stations B=10{+ 0.,327(+2.1411+0,413!+2,265}+0,485] +2.430)+0,457|+2.695|+0.096[~0,095
9=11 |+ 3.644|+1.513 [+3.443 (41,306 {+3,242]+1,078|+3.061[+0,803{+2,995]|+0.454
10-12 = 0.376{+1.755|=0.175]|+1.962 |+0,0261{ +2,190}+0,207] +2.46%+0.273| +2.814
1-2 {+ 0,987|=0.490|+0.374|~0,046 |+0,125( +0.034 | +0.031{ +0.022 [+0,003} +0,006
Shear stressy j-4 |- 0,040(-0,246!+0,383}~0,466)|+0,166|=0,117]|+0,061|-0.010/+0,013(+0.004
es in rid 5=6 |~ 0.224|=0,170|~0.040|=0,264{+0,333|~0.475 |+0.116]|=0,121 [+0,024{~0,011
webs between | T-8 |~ 0.355)=0,221(=0,303(~0,227=0,139)-0.280+0,248|~0.465 +0,056] ~0,094
the stations’ |9~10 |- 0.7031-0,385|~0.588|~0,303 [~0,459|=0.240{~0.250{=0.230)+0.177|=0.359




.50 supplementary strain systems,

Alsot Values of [ E.u

i

df for the m leoading cases,

Table 7.15 Vertical displacements in the stations 1...10 belonging to the

The valugs]nE:ﬁ 4f are the "known terms" of the equations (6.29).

Vertiocal diaplacementa in inches at station: m (?igo7.1)orl values ofl[if_—
for the m loading cases,
m=l 2 3 4 5 6 T 8 |” 9 16
i=) 0 0 0 0 o X 0 0- 0 bol
] ] 1 1 ] [ ] 1 3 ] ¥ ] B |
! ] 1 ] [} f ¥ [ ] ] t 1
wl t ! ' ¥ i ] ' ' ' ' 1
o 10| © 0 0 0 0 ) 0 0 0 0
g 1] 0 0 0 0 0 0 0 o 0 0
=] ¥ ] ] 1 1 ] ] | ] ] 1 i
g ) ' 1 1 ' ' t ' ' 1 ’
o 20| © 0 0 0 0 0 0 ) 0 0
w 210,120 0,120(0,12Q 0.120{0.220{ 0.120{0,120( 0.120(0.120 0,120
5 22 ] 0,129 0.120(0,120 0.120{0.T20| 0.120{0.120{ 0.120 0 0
o 23 | 0.12d 0,120{0.12Q 0,120{0,120{ 0.120] © 0 0 0
+ 24 | 0.12d 0,120(0.129 0.120| © 0 0 0 0 0,
* 25 | 0.12d 0.120] © 4] o} 0 0 o C 0
g 25 | 0.648 0.648(0.504] 0.504]0.360| 0.360}0.2156| 0.216l0.072 0,072
£ 27 [ 0.504{ 0.504 0,350 0.360/0,216| 0,216]0,072| 0.CT2 c 0
o 26 [ 0,360 0,350{0,215] 0.21510,072| 0.072 0 C ¢ 0
o 29 | ¢.214 0,216)0,072] 0.072! © 0 0 0 0 0
= 30 | 0,074 0,072 © 0 0 0 ) 0 0 )
o 31 | 0.120-0.120|0.120+0.1200.120+0.120{0,120(-0.120 0,120 | -0.,120
@ 32 ] 0,120+0,120(0,120+-0,1200,120+0.,120 {0,120 {-0.120 0 0
33 ] ¢,120+0,120|0,120+0.120(0,120+0.120 0 0 0 -0
34 10.120-0,120{0,1200,120( O 0 0 0 0 0
35 | 0.120-0,120| © 0 0 0 0 0 0 0
| o 0 0 0 0 ) 0 0 o) 0
[} 1 1 1 1] 1 ] 1 [} ] ]
50| 0 0 0 0 0 0 0 0 0 0




Table‘?.l? Matrix of the values of.lij of the 50 supplementary sfrain systems

= " 3 11]
)..13. ljio The Aij are the “coefficients of the unknowns".

iu

1-5] 6-10 ]11-15/16-20 |21-25/ 26-30{31~35| 36 37 38 30 40 4142 43 44 45| 46 47 48 49 S0
i=1-9 al | -bI 0 0 |er 0 0 0 ' 0 - 1105.9 X
6~10 a1 | o© 0 0 o | o ‘ 0 ' 0 -1203.1 K
11-15 { e | -r1 Q T ~-nT -1048,7 3 -1218,1 K 850,7 J
16-20 |_iI | 0 =41 | %I 1203.2 J 2552,3 X ~240641 J
: 2125 P71 0 0 .0 0 0
26-30f mI’ —nI -1276.1 J -2707.1 K 1658,8 J
31-35 vl 209.,2 J - 3045,2 K o =2126,8 J
10 0 0 © _ N B
01 0 0 0o 1E § ~r o o ol os o o o -t =u o o o
00 1 0 0O 37 q =-T o 0 ~8 O 8 o o -u =t -u o} 0
o0 o 1 0 38 q -r o] o-8 o B o o —u -t - o
o 0 0 0 1 19 q T o0 -8 o g 0 0 =u -t ~u
40 Y¥e] oo o-s 8] o0 0 0 ‘=u =1/24
10 5 0 0 41 =1z ) . Q Q o o o° o] (o]
11 0 0 ¢ 42 v -z o a -x O o o o
JHlo1 1 ¢ o 0 0 0 0 0 3 v-z o} o=z o @ o
00 1 1 0 © 00 0 O 42 vzl oo om0 o
00 0 1 1 ={{oc 0 0 0 o 45 ¥, © © o -~z -g
, - 0 0 0 0 © 16 g & o o o
10 0 0. 0‘ 0 0 0 ¢ 0 a7 g 4 0 [
<11 0 0 0 8 5
k4lo04 1 0 o 4 g °
00 -1 1 0O 4g g
00 0-1- 1 5 Y
a = 8731.9 f = 3609.4 k = 3007.9 p = 6554.6 u= 283.6 g = 6504,3
b = 3609.4 g = 1276.1 2 = 2965,9 q = 5016,8 v = 8187.7 Y = 3470.3
c = 1186.3 h = 249.2 m = 6193,0 r = 410.9 w = 5603,8 5 = 368.5
d = 3445.2 i = 8676.8 n = 3190.3 B = 1218.1 g =-2583,9
e = 5427.7 J = 2345.9 0 = zero t = 2835.8 a = 1804.7




Table 7.18 Values of 106 gni‘ The values Yi are the solutions of the 50 unknowns
for ‘the m loading cases,
m=1 2 3 4 5 6 1 8 9 10

Ji=  Llj= 9.2747|-11.2387|- 9.4322)-11.3820{~ 9.5930({=11,4958 | -~ 9.8094 | -11.,5030 | ~10,3409 | =11.,1265 1
' 2|~10,351 [~10,7036(~10,4669(=10,7677(-10.6247{-10.7532 | -11,0412 | ~10,4398 | -~ 0,2628 [ + 0,3302 2
31-10.7455|-1C.8401(~-10,8756[=10,7605[=11.2421|-10,3932 | ~ 0,4354 | + 0,4167 | -~ 0.0681| + 0,0664 3
41=~10.9177|-10.8650{-11.3233{-10,4388|- 0.5064]+ 0.4014 | -~ 0,1157 | + 0.0729 | -~ 0,015 + 0,0075 4
5[=~11,095901-10,7107|= C.4573({+ ©,3415/~ 0,1182]+ 0,0612 | - 0.0275 | + 0,0074 | =~ 0,0034 | - 0,0001 5
61+ 4.931501-15,986481+ 3.1771]|-18.5865] + 1,31828{~13.8565 | = 1.0323 | =19,9361 | —~ 0.9651 ) =15.7343 6
1= 7.0796 |-11.0136(- 8.3719|-11.7288{-10.1326|~11.5672 | ~14,7818 | - 8,0693 | — 3,2678| + 3.6860 7
81-11.4815]-12.5372|-12.9335|=11.5485(=17.C24 7|~ T7.5483 |.~ 4.8597 | + 4.6508 | - 0,7598 | + 0,7408 8
9]|-13.,40411-12.8157|-17.9312|—- 8,0585{= 5,551+ 4.4805 | -~ 1.2916 | + 0.8133 | -~ 0,1843 | + 0.0836 9
10|-14.98081-11,0933 |- 5.1042{+ 3.8112|- 1,3192|+ 0.6826 | ~ 0,3072 | + 0,0828 | - 0,0376 | ~ 0,0012 10
11]-24,8997(~13.3870(-21,0372[- 9.45683[-17.1506]~ 5,3912 | ~13.3675 | - 0.6959 | =10.8322 | + 5,9500 11
12[=10,4614 |- 14,9153~ 8.85%8|= 3.0037)~ 7.2848|- 0.4270 | ~ 6.8954 | + 4.4702 | + 1.8612 | - 1.5906 12
13|~ 4.0816 |~ 0,5511{~ 3.7758|+ 1.1695)- 4.4093]+ 5,1685 | + 3,3972 | - 1.6186 | + 0,4595| - 0,1001 13
14|~ 1.1109 [+ 1.6857(= 3.0249]+ 5.6481|+ 4.2387|~ 1.4030 [ + 0.9621.| - 0.0B49 | + 0,1072 | + 0.0328 14
15]+ €,23621+ 5.0916]+ 5.2525)= 1,3220] + 1,3225{= 0,0307 | + 0.2642 | + 0,0354 | + 0.0252 | + 0,0154 15
16~ 8,2122(+ 5.6227]- 7.8933]+ 5.9707[- T.6106]+ 6,3466 [~ 7.5353 | + 6.7865 | - £.1092 | + T7.6652 16
17(~ 5.9977 (+ 0.5164|— 5.3080|+ 1.3800|~ 4.8429|+ 2.4315 |~ 5.3657 | + 4.3058 | + 0,9797( - 1,2148 17
18|= 5.0366 1+ 0,7518]- 4.5938|+ 1.8482|~ 5,1067|+ 3.7575 [+ 1.2419 | - 1.7097 | + 0.2148 - 0,3343 18
19]= 4.3162}+ 1.8377|- 4.8984|+ 3.7851|+ 1,3906|~ 1.7107 [ + 0.3077 | - 0.3795 + 00,0544 | - 0.0553 19
20~ 3,9376 )+ 2.6675|+ 1,72771- 1.9154}+ 0,4549}~ 0.3927 [ + 0.1165 | - 0,0571 | + ©.0160| - 0,0030 20
21| +44.1696 [+44 ,9552 | +44.2326| +45,0125] +44.2959 | +45.0580 | +44.3834 | +45.0608 | +44,5960 | +44,9103 21
22| +44.6001 |4+44 . 7411 | +44.6454 | 444,166 T +44,T095 | +44 . T609 | +44.8761 | +44.6356 | + 0.1171 | = 0,1321 22
23| +44.7579 [+44 . T957 | +44 .8B099| +44 . 76391 +44.9565]| +44.6169 [+ 0.1741 | - 0.1667 | + 0,0272 | - 0,0265 23
24| +44,8268 [+44.8057|+44.9890] +44.6352( + 0.2026{~ 0,1606 | + 0,0463 | ~ 0,0291 | + C,0066 | — 0,0030 24
25| +44.8833 |+44.7440|+ 0,1829{- 0.1366(+ 00,0473~ 0.0245 | + 0,0110 | ~ 0,0030 | + 0,0013 | + 0,0000 25
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Table 7019 Influence coefficients Com (¢ = cnm) of the swept box

mn
multiplied by 106 and expressed in inch/1b. Computed with

the minimum principle for the strains with 50 supplementary
' strain systems .

m=1 2 3 4 5 6 7 8 9 10

n=1 | 358,18!234.90 | 259.22 | 153.88| 168,25 | 84.49 | 90.44 | 33.39 [31.72 | 5.238
225,38 1173.78 | 156.46 | 113.99 | 93.97 | 61.01 | 43.99 | 20,81 |[11.82
© 1200.82 |117.91 | 134.40 | 66.56 | 74.32 | 27.11 [26.92 { 4.595
120,48 | 80.65 | 76.05 | 44,98 | 37.72 | 16.02 |11.181
100.54 | 48,58 | 58.21 | 20,85 )22,13 | 3.959
58,03 [ 29.19 | 31.45 | 11.25 |10.55
41,99 { 14.49 | 17.33 | 3.321
25.05 { 6.611] 5.938

12,465 2,508
$,212

O O -3 W & W N

[




Table 7.20 Values of stresses in lbs/inch2 for the m loading cases.

Computed with the minimum principle for the strains with 5C

supplementary sirain systems, Compare tabls 7.21.

m=1 2 3 4 5 ) 7 B ) 10

1 - - - - - - - - - -

2 e - - - - - - - — —
3 1+ 1.930{$0.357(-0.419|+0.117 |<0.106 |+0,005}=0,021{<0.002{=0,002 |~0.001

normal atresses 4 |+ 2.421|+1.459{+1.001{=0,245 |+0,252 [=0,004 +0,050|+0,007|+C,005 |+0.003
in upper spar 5 1+ 3,143|+1.511 |+2.555|+0.429 |-0.497|+0.114|~0,108(+0.003 [-0,012 ~0.004
) _ 5 |+ 3.858{+2,789 {+2.500+1.388 1+0,9851-0,264 +0.219(=0,010{+0,024 {+0,009

booms, immediately 7 |4 1,612|+2.970|+3.135|+1.607 [+1.632[+0.472]-0.418]+0,131|-0,052|+0.002
at tip side of B |+ 4.866]+3,919|+3.575|+2.622 [+2,266[+1,288|+0.808|-0,307|+0.105]|-0.011
) 9 |+ 5.682]4+4.821{+5.112]+3.275|+3.552 |+1.791{+1.944{+0,550|-0,219+C.127

station 10 |+ 1.8771+1.379 [+3.8121+3,314 [+2.747 |+2.242] +1.A62]+1.121}+0,430|~0.305

11 +10.153{+7.,480[+8.255(|+5.587{+5.352 |+3. 711 +4.474{+2.914 42,539 {+C.422

12 )+ 2.549+3.492[+2.079]+3.021 [+1.509 |+2.545] +1.135{+2.044|+0,533{+1.392
. 1-3 |+ 2.272|+0.517|-0.321|+0.020]~-0,080|-0.014|-C.015|-0.005|~C,001}-0,001
Shear stresses 2-1 |+ 0.995642.721|+0.321|-0.020(+0,080(+0,014{+C.015[+C.005!+0.001[+C.001
. 3-5 [+ 2.357140,757)+2.4756}+0.551|-0.,259 |+0.031]-0.059|-0.009 | =0, 005 |=0.005
in spar webs, A-4 |+ 0.911(+2,501 [+0.792|+2.717|+0,259 [~0.C34|+0.059 [+0.00% | +C.005]+0.005
between the 5-7 {+ 2.549]+0.889 |+2.514[+0.805 |+2.57¢]+0,586[-0,202|+0.051]-0.025{~0.005
, 5-8 [+ 0,719|+2.379 |+0.724{+2.452[+0.597|+2.682|+0.202{=0.051 [+0.025|+0.005
stationst 7-9 |+ 2.985[+1,204 |+2.894}+1.097[+2.,796 |+0.948]+2.745]+0.660]-0,099+0.059
8-101(+ 0.281142.054|+0.371|+2.171 [+0.472(+2.320|+0.523 |+2.508}+0,099 =-0,059

9-111+ 3.971|42.015 [+3.595 [+1. 757 |+3.418 [+1.479|+3.239(+1.147|+2.925|+0.687

10-12 [~ 0,703} +1.223[-0.428]+1.501 |~0.150[+1.789]+0,129|+2.121{+0,3421+2,581

Shear stresses 1-2 i+ 0-996 "0.547 +0.321 -0,.020 +0,080 ‘I"0.0l’l +0,015 +0.,005 +0,001 +0.,001
N 13-4 |- 0,085|-0,220+0.171}=0.531{+0.179 |-0.048]+0,044|+0,004|+0,005]|+0.003
in rib webas 5-4 (- 0,192]-0,122-0.058|-0.254 [+0,439{=0,5511+0.143|~0.060}+0,02¢| +0.002
between the 7-8 - 0,434|-0,3156 |-0.349{-0,292 [-0,22% {0,353 |+0,320{=0,610|+0.073{-0.075
stationss g-10|- 0.986 |~0.841[=0.802]-0.670 |-0,622]-0,530(=0.394 {-0.487[+0.243(~0.518




Table 7.21 Values of normal stresses in lba/inch2 in spar booms for the m loading ocases,

Computed with the minimum principle for the strains with 50 supplementary

strain systems. Compare table 7,20,

m=1 2 3 4 5 4 i 8 9 10
® 1{+0.56%5|=0,341 [+0.185 |~0,006 |+0.045 |+0.009 [+0.C09|+0.003 | +0.001 | +0,001
H. ﬁ 2 [+0.998{-0.532 |+0.282 |~0.035 |+0.071 |+0.008]+0,013{+0.004 | +0.001 { +0.001
@ & | 3[+1.627(+0.354 {~0,253 [~0,174 |-0.027 |-0.012}~0,001]+0.002 | €.000 | +0.001
’;-; 2 A]+2.523] +1.208 [+1.454 {=C.539 |+0.387 |=0.037|+0.083|+0.010 | +C,008 | +0,005
5 B 2| 5(+2.744|+1.535 [+1.289|+0.398 |-0,340 |-0.187|~0.045]~0,020 | ~0.003 | =0.002
g %‘ *3 5 |44.024] 42,522 [+2.580(+1.119 {+1.405 [=0.673 |[+0.325|-0.051 | +0.038 | +0.010
2 & Bl 7)+4.059]+2.853 [+2.577|+1.539 [+1.295 [+0.383 |-0.3156}~0,203 | -0.,021 | 0,032
Zé B wrl 8l1.4.891]+3.550 [+3.609 +2.335+2,326 [+0,941 [+1.140|-0,758 | +0.159 | -0.063
+» § 9 145,847 +4.377 [+4.416 [+2.959 (+2.992 [+1.583 |+1.554}+0.377 | -0.129 | -0.22¢
o & |10[+4.518{ 43,763 [42.541 (42,780 |+2.562 (+2. 777 |+1.5841+0.683 ) +0.694 | 0,761
=S 1) - - - - - - - - - -




Tabie'z.22 Comparison of the main diagonal
‘ elements Cmm of the matrices of

influence coefficients of tables
TeDy 7.10, T.14 and 7.19, Elements
multiplied by 106 and expressed in .inch/1bs.

From minimum theorem From min.
ther. fonq
for the stres the
: stresses -

10 unkn. 5 unkn.|20 unkn.| 50 unkn.

table 7.5 table table table
7.10 T.14 - T.19
element 1.1 | 382.86 {377.73 |377.452 | 358.18
2.2 | 248,52 { 240.93 |240.524 225,38
3.3 135.74 | 131.34 [131.282 120,48
4.4 110.58 ] 108,27 | 108,002 100,54
5.5 217.44 | 213.45 | 213,167 200,82
6.6 68.62 £5.95 65,858 58,03
TeT 46 .64 15.81 45.580 41,99
8.8 31.23 29.81 29,651 25.05
9.9 13.55 13.44 13,387 12,465
10,1

d 11.24 | 10.90 | 10,775 9.212

e S A




2
Table 7.23 Values of stresses in 1bs/inch at several stations
for vertical loada of 1 1b in all stations.

(1) (2) (3) (1) ()
1 0 0 9] - 6;474
2 0 0 0 .= 0.811
N
cormal 13 o4z | 1.550 | 1,469 | 1858 | 1.517
in upper | 4 | 4.309 | 4.788 ) 4.674 4.949 5.102
spar 2 4.392 5317 54369 5.134 5.369
booms 6 |10.647 | 10.805 | 10.526 | 11.498 | 11.501
at 7 [12.307 | 12.509 [ 12.885 ' | 14.091 | 12.234
station: | 8 [17-902 {16.911 [ 17.069 | 19.131 { 18,230
9 |27.956 | 26.890 | 26,756 | 27.635 | 23.747
10 24,195 | 22,943 | 23.481 | 24.279 | 21.141
11 |60.285 ) 58.025 | 57.744 | 50,897 -
12 |27.933 | 27.712 | 26,796 | 20.500 -
1-3 | 2.648 | 2,232 | 2,222 2,402

: 3-5 | 6.127 5.724 5.742 5.847

streas in
Spor webal 46 | 6.944 | 7.348 | 7.330 [ 7,225
157 ( 9.911 9,816 9.842 . | 9.761
between | 6-8 | 9.597 9.792 9.756 9.845
the 7-9 [14.615 | 14.935 | 14.930 15.299
stations:| 8-10|11.528 | 11.209 | 11.214 10.845
9-11/21.050 |21.509 | 21.539 24.275

10-12111.630 11.171 11.141 8.405%
Shear 1-2 |+0,620 | 41,036 [ +1,046 +0.865
in I‘ib 5—6 —00518 —01826 _01832 —0-643

-8 [~1.436 -1.850 *I.BZO.I =-2.273
bgtween thP9'10 -3,168 [ ~-3.,307 | -3.340 =5.707

Computed withs
(1) minimum principle for the stresses, 10 unknowns-
(2 - id , 15 unknowns
(3) id s 20 unknowns

(4) minimum prineciple for the strains, 50 unknowns
normal stresses in upper spar booms, immediately at tip side
of atations.

(5) minimum principle for the strains, 50 unknowns normal stresses
in upper booms,; immediately at root side of stations.



- Table 7.24 Values of stresses in 1bs/inch2 at several stations

for vertical loads of 1 1b at stations 1, 3, 5, 7, 9
and of -1 1b at stations 2, 4, 6, 8, 10,

Q) | @ 106 | @ 1 (5)

Normal stiresses
in uppsr spar

booms at stationt

0 0 0 1,142

ol o 0 <~ J1.919
0,818 0.518 0,717 0.896]1.175
3.087 3.262) 3.352) 2.50914.008
1.8060 1.837 1.747] 2.02871.921
4.987 4.783 4.6820 3.57415.447
30109 3012? 3.207 3‘727 30154
5.472] 4.753] 4.727 4.109(6.020
6.122) 5.956] 5.976] 6.507}5.613
3,020 2.615 2.693) 2.777({4.657
+15.139415.049] 14,852 12.669{ -
-6 ,069| ~4.090 =1.132| ~4.490 -

]
QN T3~ OV 4 b DD

=
ng

Shear stresses in
spar webs, between
the stationa:

+1,260 +1.288 +1.274| +1.3C8
-1.250 -1.288! -1,274| -1.308
+3.117 +3.126] +3.124] +3.171
~3,118 ~3,126| =3,124} =3 ,171
+5,037 +5.130 +5.142] +5.111
-5.037 =5.130 =5.142 =5.111
T-9 +7.437) +7.649 +7.658 +7.343
8=10 ~7.436{ ~7.649| =T7.658 =7.343
9-111+11.156011.2150 11 .23 110,025
. 10-12F11.156F11.215011.231F10.025

TYTY
OO 3 TNV e

Shear stresses in
rib webs between 54l +1.350 +1.264| +1,250 1.327

the stations

1-21 +2,008 +1.980Q1 +1,994! +1,940
3=4 +1.,410 +1.428 +1.418 +1.406

7-8 +0,868 +0.750] +C, 754} +1.039
910 =0,450 -0.299| =0,305| +C.585

(1)
(2)
(3)
(4)

(5)

bomputed witht
minimam principle for the stresses, 10 unknowns.

id s 15 unknowns.
id y 20 unknowns.

minimum principle for the strains, 50 unknowns .
normal stresses in upper spar booms, immediately at tip side
of atations, :

minimum principle for the strains, 50 unknowns
normal stresses in upper booms, immediately at root side of
gtations, :




Table 8.1

Numerical values of 106A.pq(Three

supplementary stress systems) .

= l.n
2.n

3.n

= 1l,n
2,n

i:n

= l.n
2.1

3sn

= lgn

2on

J.n

= 1.n
20!1

3.1’1

Y

p=1.{n=2) 2.(n-2} 3.(n-2)

+494
0

0

0
+811
. D

0]
]
+80

p=1.(n-1) 2.(n-1) 3o(n-1).

~5941 +1502 | =641
~1502 -4895 | ~1770
~ 641 +1770 | + 321
p=l.n _ 2on 3.n
| +17420 0 ~2564
0 +15677 0
~2564 -0 +10310
p=1l.(n+1) 2,(n+1) 3.(n+1)
-5941 | -=1502 =641
+1502 | -~4895 | 41770
~641 ~1770_ | +321
p=1.{n+2) 2,(n+2) 3,(n+2)
- 4494 0 0
0 +811 )
0 Q +80

types of

= 10X

matrix D

= 10X

matrix C

= 10°X

matrix B

= 107X

matrix C!

= 107X

matrixz D!




Table 8.2

=10"x
matrix D

=10"X
matrix C

=10"X
matrix B

=106X

matric Qf

=1-C *
matri- Dt

Numerical values of 106/1p .(Pive types of supplementary stress systems),
p=lc(n-2) 2.(n=2) o(n-2) 4.(n=2) 5a(n=2) .
q = l.n| +494 0 0 0 0
2.n C +811 O +522 =16231
l.n 0 0 +80 o Q
4.n 0 +522 0 +3824 ~1043
Sen 0 0 0 0 0
p=l.(n-1) 2.(n-1) 3.(n-1) 4.{n-1) 5.(n~1)
q = len| -5941 +1502 ~541 0 -3803
2.n| =1502 ~4895 -1770 ~3827 ~125
i.nl =641 +1770 +321 +2123 -1840
4en 0 -3827 | =2123 ~1609 +745
Hell 0 =1623 0 ~-1043 +3245
P“lon 20“- ,3.1’1 40“ Son
qa = lon] +17420 o] ~2564 ] +3803
2.n 0 +15677 0 +6611 -125
l.n| =2564 0 +10310 4] +1840
4.n 0 +6611 0 +10167 +746
5.n| +3803 | -125 |+1840 +746 +15507
p=l.(n+1) 2.(n+1) 3.(n+1) 4.(n+1) 5.(n+1)
g = lonj =-5941 -1502 {-641 0 0
2.n] +1502 -1895 +1T770 -3827 -1623
I.n| =541 =1770 .1+321 -2123 =1043
4.n 0 -1827 (+2123 ~1609 -1043
5.n] —3803 =125 -1840 +746 +3245
p=1.(n+2) 2,(n+2) 3,(n+2) 4.(n+2) 5.(n+2)
P=1on +494 0 0 0 O
2en 0 +811 0 +522 0
3.0 o] 0 +80 0 0
dan 1t +522 0 +348 0
5.n 0 -1623 0 -1043 0




Table 8.3 MNumeriocal values of 10% 2 vq (10 types of eupplementary strain systems).

Vatrix T.x105.

NI 1 (nm1) (20 (n=1) {30 (n=1) {46 (01| 5o (n=1) | 64 (n~1) | To(n=1) | B.(n-1)[9.(n-1) [10,(n~2)
l.n 0 0 0 0 0 0 0 0 o -1105,9
2.n o 0 o 0 o o . 0 o) 0 +1203,1
3.n 0 0 0 0 0 0 0 ~1048,7{ +1218,1(+ 850,7
A.n 0 0 0 0 0 0 0 +1203,1| ~2552,1|-2406.1
5.n 0 0 0 "0 0 0 0 ) 0 0
6o o 0 0 ) 0 0 0 ~1276,1{ +2707,1|+1658.8
7.1‘1 C 0 0] 0 0 O 0 + 24902 ""3045.2 —212609
8,n o} 0 0 0 0 0 0 - 410,9| ~1218,1|- 283.6
9on 0 0 0 0 0 0 0 +1218,1| ~2583,9{-1804,7

10.n 0 0 o} 0 0 0 0 - 283,61 +1804.7|+ 368.6




M Numerical va.li.les of 10611__”:1 (10 supplementary strain systems II),
Matrix vx10°.
P~

q= len 2on 3on 4.n Son 6sn Ton 8.n 9.n 10.n
lon | 48731,9|~3609.4] O o |+1186.3 0 0 0 0 +1105,9
2.n | =3609.4|+3445.2] © 0 0 0 0 0 0 -1203,1
Jon 0 0 |+5427.7|-3609.4| © }+1276.1 | - 249.2| ~1048,7|-1218.1(+ 850,7
Aon 0 0 |~3609.4 [+8676.8] © |-2345.9 | +3007.9| +1203.1(+2552.3|-2406,1
5.n | +1186,3 0 0 0 [+2965.9 0 0 0 0 o
6.n 0 0 +1276,1 |~2345,9 0 +6193,0 | =3190,3| ~-1276,1{-2707.1|+1658,8
Ton 0 0 = 249.2 [+3007,9 Y =3190,3 | +6554.6 ] + 249,2{+3045.2{-2126.9
8.n 0 0 |-1048,7[+1203,1] © |-1276,1 | + 249.2( +5016.8] © -2835,8
9.n 0 6 |-1218.1+2552.3{ © [=2707.1| +3045.2] O  |+8187.7 0
10.n | +1105.9|-1203.1|+ 850,7|-2406.1) © [+1658.8 | ~2126.9| -2835.8| © +6504,3




Table 8.5 HNumerical values of 106/\ PR (10 supplementary strain systems III).- |
G :
Metrix T'x10 .

| Le(n+1)]20(n41) | 3u(n+1) |40 (242) F'a(nﬂ) 6.{n+1) | 7.(n+1)]8,(n+1) | 9.(n+1)|120a(n+1)
l.n 0 ) o 0 0 0 0 o 0 0

2.n 0 0 0 0 0 o 0 0 0 0

3an | 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5.n 0 0 0 0 0 0 0 4] 0 0

§.n 0 0 0 0 0 0 0 0 o 0

T.n o 0 0 0 0 0 0 0 0 0

8on 0 0 =1048.7| +1203,.1 - O =1276.1 | + 249.2{ - 410,9H+1218,1 - 283,.6
9on o |- o0 |+1218.1] ~2552.3] © |+2707.1| ~3045.2| -1218.1|-25683.9] +1804.7
10,n {=1105,9|+1203.1| + 850,7] —2406.Y4 © +1658.8 | ~2126,9| - 283.6] -1804.7 + 368,.6




Matrix B xlt’.)6 .

-3403.0

Table 8.5 .
H= T4+ V + T' from tables 8.3, 8.4 and 8.5 reaspectively.

 +8731,9 [~3509.4 0 0 [+11B6.3] © 0 o 0 0
~3609.4 |+3445.2] O o | o 0 o 0 0 0

0 0 +5427,7 |-3409.4 0 +1276.1 (= 249,2(=2097.5| O +1701.5

0 0 ~3609.4 [+8676.8 0 -2345.9(+3007.9| +2406,2 | © ~4812.4
+1186,3 ° 4] 0 +2965.9 0 0 o c o

6] G +1276.1 |-2345.9 0 +6193.,0 =3150.3|-2552.2 0 +331'f.6

o 0 - 249.2 |+3007.9 0 -3190,3{+6554.6|+ 438.4] © ~4253.8

0 Q -2097.5 |+2406,2) - O ~2552.2 |+ 498.4 -_0-4195.0 0 ~3403.0

0 0 0 0 0 o 0 0 +3019.91 O

0 0 +1701.5(-4812.4 0 +3317.6|-4253.8 0 +7241.5




Table 8.7

10°

Matrix T = 7' = matrix table 8.3 = matrix table 8.5

L

o o O O O o o O

o

o o o o o

0
+1048.7

12181
~=1203.1

— 850,7

O O O O O O

0
-1203,1

+2552,3
+2406.1

o O O 0O O O O O O O

O O O O 0 Q

O y
+1274.1
-2707.1
-1658.8

o o 0o o0 o O

0
~ 245.2
+3045,2
+2126.9

0

0
~1048.7
+1203,1

4]
~1276.1
+ 24%9,2

0
+2436,2

9]

0

0
+1218.1
-2552,3

0
+2707.1
-3045.2
-2436.2

0
+3609,4

~1105,9
+1203.,1
+ 850,7
~2406,1
0
+1658.8
-2126,5
0
~3605.4
0
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Table-8,8 Influence coefficients C (Cmn

= cnm) of the 5 cell swept—box

multiplied by 10° end expressed in inch/1b. Computed with the

simplifying assumptions of section B.6.
Compare table 7.14 and 7.19.

8

= 1 2 3 4 5 7 9 10
404,79 | 257.85] 298.20| 167.83 | 198.02 | $0.630 | 110.65 | 32.653 | 42,511 0.307
244.6C) 193.46 | 170.05 | 129.08 [101,90 71.100 | 46.576 | 25.938 | 10,472
234,12 { 129.38 | 159.57 71.406 91,430 26,244 | 36,103 0,307
131.60 ] 90.630| 82,679 | 51.876| 40.168 [19.530| 10.472
' 121,13 | 52.183 | 72,207 19.837| 29.696| 0,307
63.455 | 32.652 | 33,750 | 13.122| 10,472
52.983 | 13.429 | 23,288 0.307
27.352 | 6.715] 10,472
16,8801 0,307
10.472




T&ble 80 E '

Comparison between displacements established with an elementary
theory for the oblique beam (section 8.6) and with the minimum
principle for the strgsses (with 20 unknowns).

Loading case A,

vertical downwardly

directed loads of 1 1b
in station 2 and
station 3 (fig.7.1)
(shear force)
Station Elementary Mivim?m
theory principle
for the
stresses
“ 1 556,05 515,82
a3 427.58 391,58
& 5 288,65 260,05
217 162,53 141.41
9 62.04 48,60
2 438,06 418.94
yla 299.43 291.36
a6 173.31 174.78
g 8 72,82 81.57
& 1o 10,78 C21.67°
Perived :
from 8.8 T.14
table

Loading case B,
vertical downwardly
directed load of 1 1b
in station 2 and upwardly
directed load of 1 1b in

station 3 (fiz.7.1) (torsion)
X Zlementary| Minimum
Station theory principle
: for the
_stresses
1 -40.35 ~31.32
£
g3 -40.67 ~34.76
; 5 ~30.49 ~26,26
o 7 - =20.33 ~16,82
9 -10.16 - 7.73
2 51414 62,11
g 4 10,67 44,75
A 30,49 30.85
+ .
E 8 20.13 18.84
+ 110 10.15 8.20
Derived
; from 8.8 T.14
table

Diaplacements in 107~ inch



Table 0.1 Nﬁmerical values of 106 1pq for the siructure

near the clamped root (fig,9.1),

P = 1.0 2.0 300 400 500

1.0 [+7721 | -19502| -1282 © |+3803 r
. 2,0 1=1502 | #6216} +1770[+22621-3370 5 x
1,0 |~1282 | 41770 +4994| © [+1840 | = 10°X matrix B
4,0 0 +2262 0 |+4388(-1340
5,0 [+3803 | -3370| +1840(-1340]|+12252
p=1,1 2.1 3.1 1.1 5.1
1.0 |~4952 | =1502|~ 640| O 0 ¢ N
2.0 |+1502 | =3272| +1770(=-2784|-1623 | = 10°X matrix C'' |
1,0 |- 641 | =1770| + 482|-2123 0 '
4.0 0 | -2784( +2123 |- 913|-1043
5.0 [=3803 | +1498| =1840|+1789|+3245
p=1.0 2,0 3.0 4.0 5,0
.1 1=4952 [ 415021 ~ 6411 O |-3803
.1 |-=1502 | ~3272 -1770|~27841+1498

106x.matrix C*

0 ~2784| =2123 (- 913|+1789

1.1
2.1
3.1 |= 841 | +1770| + 482|+2123|=-1840
4.1
5,1 0 | -1623] 0 |-1043|+3245

p=1.1 2,1 3;1 4.1 5.1

[}

+16926 0 |1 -2564 0 +3803
0 |+148446] C |+6089|- 125
C C

1.1

2,1 ¢
3,1 |-2564 110230 +1840 10°X matrix 3*
4.1 0

5,1

It

+A089] 0 [+9819]+ T45
143803 | = 125Kk 1840}+ 746! +15507




Table 9.2. Roots of A in (9,13) together with their corresponding

colum matrices R,

1.0 ° 0,19708 + 0,17719 i ‘ 7\3 4= 0.010259 + 0,18617 i
, ‘
" = 0,265022 exp + 0,73230 i = 0.186452 exp + 1.51578 i
8,2 B4
= 0,792771 + 2.74323 i + 0.128175 + 0,478017 i
+ 2.29315 + 2,11288 i + 2,10405 + 0.274173 i
- 2,00890 + 0,205721 i - 2.48997 + 0.305342 i
+ 0.141488 + 0,858861 1 = 0,70780T + 1.53990 i
+ 1,0 + 1.0
/A = = = = =
5 '7\6 _ ’)x,i 7‘8 7\9
-0,0990644| +0.,0863584| —-0.0670232 | -C,00986230 | -0,000735414
R Re _ Ry Rg r By

-0,253097 -1.172421 +0,354021 +0,0079897 | ~0,0009523
+0.734260 +2 ,2165K59 +5,245271 +5.35387 +2,110645
+0.329722 -1.872067 -2 ,8/0A12 =0,471302 +0,013892¢6
+0,5385%10 +0.308594 | =5,479570 =-5.31741 -0,183812
+1.0 +1,0 +1.0 +1,0 +1,0




Table 9.3 Values of the 10 column matrices G; trom ( 9.18 )} after substitution of the § ntsli, R (1 = 1...10) given in table 9.2.Multiplied by 10°.
A R Ay By ' Ay, By Ap By Ao By [ Ag, B Ap By Ags By Ap B
+56.929 + 14710.8 i | + 56,929 - 14710.8 1| +5279.77 + 3226.62 1 | +5279.77 - 3226.62 1 | + 328,079 +5845,53| +2848.72 -349%.50 ~609,5E
F6745.48 v 7993 .43 i) 4+ 6745.48 - 7993 .43 1| +4279.62 + 1845.74 1 | +1279,62 - 1B45.74 & +3511.79 | +B411.42)+11751.4 +17C84.5 +9165,93 - 106 x
r2789.72 - 1038 .17 1| - 2789.72 + 1038 .17 1| —5280.51 - 2347.80 1 | -6280.81 + 23471.80 1 | +5321.15 | -2503.12| -3%42.46 | +8936.84 +5648,90 matrix V,
F1154,29 ¢ S323 11 4 + 3154,29 - 5323 .13 i] +6B7.50 + 5179.61 4 +587.50 - 5179.61 1 | +2974,48 | +1305,78|-12395.4 |~12442 .5 +2632.66 .
H1577.81 4 1480 ,39 i + 1577.83 - 3450 .99 i| +1BA5.,18 + k6,24 1 +1865.18 - - 66.24 1 +B8131.79 | ~2128.421-2151 .1} +4B2.134] +5412,91
Table 9.4 Valuea of the 1 column matricas G; from {(9.19 ) aftsr substitution of the ¢ nets A i By (i = 1...10) given in table 9.2. ¥ultiplied by 105. !
¥
A Y Az R Ay By Ap By hor Rg [ Rge Bg | Ap By Ay, R Agr %
-2784.94~2275.35 i =2785.%1 + 2275 .35 1| -1113.15 ¢ T27.946 1| ~2113.16 -~ 727,946 1| ~1524.78 | +5597.1%({+2971.15 +334% .54 635,16
=-831.308=1725,59 1 ~831.508 + 1725 .99 1| -934.112 -43.2113 1] -934,122+43.2113 1| -4071.27 | +1182.13|+1091.31 |~ 85% .2C | ~4941.66 -
+120.746-393,417 +12C.746  + 353,417 3} -213.780 -107.38  if -213,78041071.38 - 1| + 321,962 +1445.75|-389C.37 [-3885 .03 { +1511.26 . 105 x
-27C.994-1116.09 i -570,994+1116,09 1 -717.227-31.0948 1| =-717.227431,0948 1| =-2527.49 | + 693.99{~ 405.21 |~7076.11 -3957.40 catzix ¥,
o 0 o 0 o) C o 4 ¢




Table 9.5

Participation factors of the

L)

Qe

.l

supplementary atress asystems rapresenting the root perturbation stresaes
at load (ux =1, 0, 0), Multiplied by 106.

2

—A - 5 4
2 3 4 \5 .\'a

AN

8.\9 \ﬂ\ﬂ

N

ay [ 0, a’
% ol %, 4 Q, L q Q, Sy 3y LI z, of {B.7a)
: ] all pairs
barticipation factors (wult. by 10°) of
lof the supplementary stress syatems . . |
in cell nr 1 1-2 2-3 3-4 4-5 5=4 &-7 1-8 8-9 9-10 cells
n i 1 2 3 4 5 é - 1 8 9
Type fig. 7.3 %Y. +2815,12 + 984.19 | +212,11 | +13.24 | -11.18 | =5.28 | ~1.25 =0,12 | +0.04 +0.02 o 0
Typs fig. 7.4 P + 854.19 + 394,89 | +211.77 | +B0.31 | #13.36 | -1033 | ~1.35 | =0.4) | =0.0T | +0.00 o -2394.75
Type fig. 1.7 G5 .n + 282,48 + 398.06 | « 28,28 | -49,44 | -17.06 | ~-2,16 |.+0,22 +0,20 | +0.07 +0.01 o o
Type fig. 7.8 Y. o - 43.91 -~ 32,56 | +118,79 | +22,78 | - 1.79 | -1,64 | -0.41 =-0,07 | =0.00 +0.00 o + 53.90
Type tig. 8.8 g, | * 25431 | -157.83 | + T.90 | +24.18 | » 7.99 | #0.94 | 015 | -0.11[-0.03 [ -0.01 o + 821.8¢

Solution for the énﬂhit. beam for the given
load {(mult. 3y 10°). Thim column has to be
added to all the other golumne to obtain
total partioipation factors,

The total state of strass alsc oontains
the basio stress syster fig.8.5.




Table 9.6 Participation factors of the supplementary airess aystems repressnting the roct perturbation streasea

at load (M, = 1.0). Multiplied by 106.

B NANANAAN,
SN NN

a! ) qJ -1 7
I
M.V2
2 of (8.5,
?Q Ql Q2 Q} QA Q5 QS ng ?a QQ, Qoo
participation facters (mult.by 105} ’
of the supplementary siress aystems
in cell nr 1 1-2 -3 3-4 45 5—6 b=17 7-8 &5 - 9=10
n ¢ 1 2 3 4 5 5 1 8 S
Type fig.7.) 9 .n =1937,78 | —584.74 | —103.66 + 2,08 + By | +3.11 +0,.63 | +0.03 | =~0.0)} -0.C1 0 0
Type fig.7.4 9., “ 70,67 |-331.67 | =156,53 ~44.30 = 4,54 | +1.49 +0,01 | +0,00 | +0.00 +0.00 0 =31085,90
Type Tig.7.7 4., - 805,71 | =195.30 | + 35,13 +331.01 + B,42 | +0.79 =0.21 } ~C.13 | =-0.04 -0.01 0 0
Type fig.7.8 G . - 5.19 | =119.40 - 63,18 =-T1.13 + 1,81 +0.93 +Q,2?2 +0.03 -0,00 -0.00 o -11.4476
Type fig.8.8 %, 5 + 431,19 | + 51,96 | - 23,13 -16,25 - 1,91 | «0.11 +0,13 | +0.07 | +0.02 +0,00 0 -147.236
i : 7 Solution for the gnfinito beam for the given ’
- load (mult, by 10°), This column ham to be !

sdded to all the other seolumns to cbtain tetnlL__,______H,__J

partioipation faotors, -
The total state of atress also contains
the basia stresm aystem fig.8.6,




FIG. 3.1 OBLIQUE COORDINATES.,
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FIG. 3.3 RECTANGULAR PLATE WITH A SYSTEM QF
CLOSELY SPACED STIFFENERS.
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FIG.5.1. RECTANGULAR PLATE WITH STIFFENERS.
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FIG.52 PARALLELOGRAM SHAPED PLATE WITH STIFFENERS.

e
(VW VO W W O

#1070 "\ Y LA\ K
. \ 1 \ " DiReCTION OF
\ R ﬁ A STIFFENERS S

/

' OIRECTION QF
y ) STIFFENERS R



FIG.71 PLANFORM AND CROSS SECTION OF THE 45° SWEPT

BOX WITH RIGHTHANDED OBLIQUE COORDINATE SYSTEM,
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FIG7 3 SUPPLEMENTARY STRESS SYSTEM. TYPE 1.
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FiG.7.4 SUPPLEMENTARY STRESS SYSTEM. TYPE 2,
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FIG.7.5 POSITION OF SUPPLEMENTARY STRESS SYSTEMS.

Nr 1,2,3,4,5
6,7,8,9,10
11,12,13,14 15
16,17,18,19 ,20

TYPE 1, FIG.7.3
TYPE 2, FIG.74
TYPE 3, FIG.7.7
TYPE 4, FIG.78




FIG. 7.6 BASIC STRESS SYSTEMS FOR THE m LOADING CASES.
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FIG.7.7 SUPPLEMENTARY STRESS SYSTEM. TYPE 3.
FORCES [N lbs. STRESSFLOWS IN (bs/inch.
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UPPER SPAR BGOMS
AND RIB FLANGES
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FIG.7.8 SUPPLEMENTARY STRESS SYSTEM. TYPE 4.
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FIG.79 SUPPLEMENTARY STRAIN SYSTEM. TYPE 1.
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FIG.710 SUPPLEMENTARY STRAIN SYSTEM,

TYPE 2.
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VERTICAL DISPLACEMENTS QUT OF CELL:ZERO,

FIG.711 SUPPLEMENTARY STRAIN SYSTEM. ~
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FIG.712 SUPPLEMENTARY STRAIN SYSTEM, TYPE 4.
DISPLACEMENTS IN [NCHES.
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FIG.713 SUPPLEMENTARY STRAIN SYSTEM. TYPE §5.
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FIG.7.14 SUPPLEMENTARY STRAIN SYSTEM. TYPEG,
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FIG.Z215 SUPPLEMENTARY STRAIN SYSTEM.
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FiG.716 SUPPLEMENTARY STRAIN SYSTEM.
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l ”
[ N N N "
\ | Uye0.024 1
[ \h \\ \ 6”
o ‘ U, =-0.024 N
2 y
+ \y
J

\ - X
\\
Ny
IR —
109Y-e1.41421 N\ +1.41421
,\y
g# D#-ﬁlﬁ
N3 Y=ed | _ N~
- .- e —
. \\
AN AN

8.4852 "~

3\

LEFT UPPER SKIN
3,  _2xy_
10°Ux = 5 3552

10’3Ux= - —i— Xz

103Uz::;-X2-4X

NORMAL STRAINS. IN

-2x 2
10%, - —=X__ ,1.41421
r Y i6.9705 x

UPPER SPAR BOOMS
AND RIB FLANGES

P,

LEET SPAR WEB ye8.4852

o

STRAIN Ey IN_UPPER SKIN )

LEFT SKIN
3 2y
107€y -

8.4852

STRAIN €, IN UPPER SKIN

Ey s0

STRAIN ¥ IN UPPER SKIN

109y s 1.41421

STRAINS IN WEBS

LEFT LOWER SKIN

— A
LEFT SPAR

LEFT SPAR WEB y:8.4852

rra-’exa-gu

103y :-4

LEFT SPAR WEB

WEB
Y- 8.4852

LOWER SIDE

REVERSED

REVERSED

LOWER SKIN REVERSED SIGN

y z - 8.4852
REVERSED SIGN

SIGN

DISPLACEMENTS WITHIN LEFT CELL

REVERSED SIGN

SIGN



FIG.7.17 SUPPLEMENTARY STRAIN SYSTEM.  TYPE 9.
DISPLACEMENTS IN INCHES

VERTICAL DISPLACEMENTS QUT OF CELLS :ZERO 1 ' - .
- DISPLACEMENTS AT THE CORNERS OF THE CELLS DISPLACEMENTS WITHIN LEFT
12~ 12" P LELL
:\ .' ; Uy = 0.036 AN
! LEFT UPPER SKIN | LEFT LOWER
Uy--0.036 | | 16.9705" Ux=0 SIGN
AN e N l 103y, = 3x REVERSED SIGN
N Uy=0036 " AN CENTER RIB WEB
AN N AN 6 103y, <122
l' : N Juy=-0.036 N UosD
z ) }z’
Ny J

NORMAL STRAINS IN )
UPPER SPAR\BOOMS '
AND RIB FLANGES

REVERSED
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o
H
[s+]
(&, ]
LiV]

T

-
LOWER SIDE

STRAIN Eyx IN UPPER SKIN

k_ - _ P S L\___‘.x
. - STRAIN Ey IN UPPER SKIN
\_ﬁ_ﬁ _____%» . _\HX ?

STRAIN Y IN UPPER SkiIN

LOWER SKIN REVERSED SIGN

NG X

STRAINS IN WEBS

103y:-12 ' CENTER RIB WEB
- - — \ 3
_—— - - - - - ——g— 10 Y=-12
N < <
N AN AN
N ‘ A




VERTICAL DISPLACEMENTS OUT OF CELLS *ZERO

Fi1G.7.18 SUPPLEMENTARY STRAIN SYSTEM.  TYPE 10.
DISPLACEMENTS IN INCHES

-~

DISPLACEMENTS WITHIN LEFT CELL

DISPLACEMENTS AT THE CORNERS OF THE CELLS

12+ 2"
. LEFT UPPER SKIN
Uy =-0.0339408 LEFT LOWER SKIN
| | : Uys0 REVERSED
uy=0‘0339408| { 116.9705”> 103Uy"'1'xy S/GN
*K‘*—“—:—'ﬁ—" —— - N - X
- —_— ;
CENTER RIB WEB
. N |uys0.0339408 3 4
¥ \ \ 6% | 10Uy=-z vz,
. N JUy:-0.0339408 3 2
109G+ 2 y2. 48
z Ny o

NORMAL STRAINS IN )

- - ., UPPER SPAR BoaMs
103, : 4 8.4852 AND RIB FLANGES
- - - - X CENTER RIB FLANGE )
| 8.4652 " —

4

REVERSED
SIGN

LOWER SIDE

14 ) J

-

STRAIN €, IN UPPER SKIN

£,:0

STRAIN Ey IN UPPER SKIN

1035,,,?’ X (LEFT)

LOWER SKIN REVERSED SIGN

103y z-2. 82843 +2.82843

STRAIN Y _IN UPPER SKIN
A s 1
\\é\ e —X 109 - 5y (LEFT)

+2.82843 -2.82843 /
Y

STRAINS IN WEBS
CENTER RIB WEB

- N - - N — N — ) {1036)"“'3'2).
< ' < Y0




NR.

FilG,. 7.19. POSITION SUPPLEMENTARY STRAIN SYSTEMS.
31
26 .
21
16
11 32
33
ROOT 28
SECTION 23
18 34
\\ 13 29.
8 24
3 9 35
14 30
g 25
N\ ? 20
15
10
\ \\g‘
IN@ ‘
48| SE(I.";'I:ON
37 |
42 |
47 | &
AN
AN
N
1.5 TYPE 1, FIG.7.9
610 TYPE 2, FIG.7.10

11__ .15
16__.20
21._.25
26__30
37...35
36--.40
41...45
46__.50

TYPE 3, Fla. 7.11

TYPE 4, Fla
TYPE 5, FIG
TYPE 6, FlG
TYPE 7, FlG
TYPE 8, FiG

TYPE 8, FiG.

TYPE 10, FIG

.7.12
.7.13
7.4
. 7.15
7.6

7.17
.7.18
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12

———————— MINIMUM PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS
— — — —  MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS
MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS
——-——-—— MINIMUM PRINCIPLE FOR THE STRAINS, 50 UNKNOWNS
'b%nch‘? L\
g "1\\\
8 -
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10 § 4 2
7
LOAD
8 . , 14b
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12 \ 10 8 5 4 2
5 | | ] !
| NN AN
N Y N,
2 CLAMPED BT N9 \J7 N5 N3 1
ROOT 7
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3 -
2 -
1 -
REAR SPAR
0 | i
11 9 7 g




FiG.7.21. VERTICAL LOAD OF 1(b [N STATION 3, SHEAR STRESSES IN SPAR AND RIB WEBS.

+1 -1 N
bs/ i nen? ]
] N
l L__.__._:._.__;:—_—-_-.!
12 1o FRONT SPAR . ! ‘ J
0 ! |
———————————— 8 (] 4 2
) ) o LOAD
4 ° LY
8=45
4 FRONT SPAR
— - - - 1/2A 10 a & 4 2
-1 /] I— ‘ ANEENANEON N
—————————————— , CLAMPED Ao — o N- U~ A - -
ROGT ’ k11 \19 \:[ 7 \\TS \J.? q H
3 i S REAR SPAR
24_
———————— MINIMUM PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS
—— — — MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS
MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS
—— - —— = MINIMUM PRINCIPLE FOR THE STRAINS , 50 UNKNOWNS
1_
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-.585 -.308 -.037 .. 388 +. 377
-.588 -.303 -.040 ,.383 ,. 374
-.802 -.3489 -.068 v 471 + 321
. REAR SPAR
0 .
11 g 7 5 3 1

hear o nmmrnen oo

SHEAR STRESSES IN THE RIBS IN THE ORDER OF THE 4 APPROX!MAF?ONS, LISTED ABOYE,

IN (bsfinch?,




FIG.7.22. VERTICAL LOAD OF 1 (b IN STATION 3, STRESSFLOWS (lbs /inch} IN UPPER
REINFORCED SKIN(COMBINATION OF SKIN AND EQUIVALENT STRINGER PLATE)

BETWEEN TWO CONSECUTIVE RIBS s, VARIES LINEARLY WITH x

DIAGRAMS FOR S,

LOAD
\y SCALE FOR THE STRESSFLOWS S, AND t ' 9 =45 FRONT SPAR ’;"
tbs/
NS 0 o1 0.2 0.3 *Yinch , 1 N
‘ %ﬁ\“ = \S M_ -
' CLAMPED S
) g BN NN - R
ROOT N T F SF N
REAR SPAR

5,:0
y
DIAGRAMS FOR t, BETWEEN TWO CONSECUTIVE RIBS t DOES NOT VARY IN x DIRECTION.
6 4, .

—
S
NN
S
N ——
L
NN

7

\ ——————— MINIMUM PRINCIPLE FOR THE STRESSES 10 UNKNOWNS
= —— MINIMUM PRINCIPLE FOR THE STRESSES 15 UNKNOWNS

MINIMUM PRINCIPLE FOR THE STRESSES 20 UNKNOWNS




FIG.7.23. VERTICAL LOAD OF 1(b INSTATION 3. STRAIN Ey (MULTIPLIED WITH E) IN UPPER SPAR

EEx
4
lbs/ inch‘? r-—-__

BOOMS AND IN SKIN IMMEDIATELY ADJACENT TO THE SPAR BOOMS, AS COMPUTED WITH

- THE MINIMUM PRINCIPLE FOR THE STRESSES AND USING 20 SUPPLEMENTARY STRESS

SYSTEMS.

EE, IN SPAR BOOMS.
——————— ~ EE€y IN SKIN IMMEDIATELY

~——

'| ADJACENT TG SPAR BOOMS.
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o

8 FRONT SPAR
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10 (4 4 2
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FIG.7.24. VERTICAL LOAD OF 11b N STATION 4. NORMAL STRESSES IN UPPER SPAR BOOMS

4—|____‘
lbs/inch2 = T
S O e U Ep— MINIMUM PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS
T ~——— = ——  MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS
——————— MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS
2 —— ~ ——— MINIMUM PRINCIPLE FOR THE STRAINS, 50 UNKNOWNS
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AN 2 \ 10 ) 6 4 2
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— - e nNJ7 s N3 N
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FIG.7.25. VERTICAL LOAD OF 1(b INSTATION 4. SHEAR STRESSES IN SPAR AND RIB WEBS.

3-
o I
o — MINIMUM PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS
~— —— — ~ MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS
- MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS
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FI1G.7.26. VERTICAL LOAD OF 1- (b IN STATION 4. STRESSFLO‘WS {lbs inch) [N UPPER
REINFORCED SKIN.(COMBINATION OF SKIN AND EQUIVALENT STRINGER PLATE)

DIAGRAMS FOR s,, BETWEEN TWO RIB PLANES s, VARIES LINEARLY WITH x.

12 N 1o 8
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——————— MINIMUM PRINCIPLE FOR THE STRESSES, 10 UNKNOWNS
—— — — MINIMUM PRINCIPLE FOR THE STRESSES, 15 UNKNOWNS
MINIMUM PRINCIPLE FOR THE STRESSES, 20 UNKNOWNS




Fi1G.7.27

VERTICAL LOAD OF 1 b IN STATION 4. STRAIN &, (MULTIPLIED WITH E)

EE, 4
' lbs/inch2

IN UPPER SPAR BOOMS AND IN SKIN IMMEDIATELY ADJACENT TO THE SPAR

~ BOOMS AS COMPUTED WITH THE MINIMUM PRINCIPLE FOR THE STRESSES

}

AND USING 20 SUPPLEMENTARY STRESS SYSTEMS. Ny |

FRONT SPAR

——————— EE, IN SKIN IMMEDIATELY ADJACENT : _
TG SPAR BOOMS . |
E£€, IN SPAR BOOMS
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FIG.7.28 SWEPT BOX ANALYSED BY MORLEY

EEx 1bs/,-,,c,,2

STRAIN €x_ (MULTIPLIED WITH E ) IN UPPER SPAR BOOMS

AND [N SKIN IMMEDIATELY ADJACENT 1O THE SPAR BQOMS

FIRST LOADING CASE DERIVED FROM REF. 34
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FIG.7.29 SWEPT BOX ANALYSED BY MORLEY. LOADING CASE OF FIG. 728

FRONT SPAR

STRESSFLOW t IN UPPER COMPOSITE SKIN (COMBINATION OF

SKIN AND EQUIVALENT STRINGER PLATE). DERIVED FROM REF. 34

o1
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STRESS FLOW t IN BAY 4
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FIG, 7.30 SWEPT BOX ANALYSED BY MORLEY.

STRAIN €y (MULTIPLIED WITH E) IN UPPER SPAR BOOMS
AND IN_SKIN IMMEDIATELY ADJACENT TO THE SPAR BOOMS.

" SECOND LOADING CASE DERIVED FROM REF. 34.
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FIG.7.31 SWEPT BOX ANALYSED BY MORLEY LOAOING CASE OF FiIG.730
'STRESSFLOW t(lbs/inch) IN UPPER COMPOSITIE SKIN(COMBINATION
OF SKIN AND EQUIVALENT STRINGER PLATE). DERIVED FROM REF. 34.

T T T T 1T 711
STRESS FLOW t IN BAY 1 i

STRESS FLOW t IN BAY 3
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F1G. 8.1 GROUPS OF SUPPLEMENTARY STRESS SYSTEMS IN THE CELLS OF

AN INFINITE BOX BEAM INDICATED BY THE COLUMN MATRICES (8.1)

OF THEIR PARTICIPATION FACTORS.

celln cell n+l
. Zn_3 Zn_1 Znet : 2'm»:a‘
\ Y A aYs M_'__\
\ p — AN
\ - Zne2 Zn Zne2
_ ' rib n-1 rib n

y DIRECTION

y DIRECTION



FiG, 8.2. SUPPLEMENTARY STRESS SYSTEM. TYPE1
IN TERMS OF CELL OIMENSIONS.

NORMAL FORCES IN
UPPER SPAR BOOMS
AND RIB FLANGES

' LOWER SIDE °

STRESSFLOW s,

P

y

: : STRESSFLOW s,
\ ¥ - _%‘x
\ ,

STRESSFLOW _t

X

STRESSFLOWS IN UPPER SKIN WITH DISTRIBUTED

STRINGERS. LOWER SIDE REVERSED SIGN.

?\ SHEAR STRESSFLOW IN WEBS

REVERSED SIGN




F1G.8.3 SUPPLEMENTARY STRESS SYSTEM TYPE 2
"~ IN TERMS OF CELL DIMENSIONS.

NORMAL FORCES IN
UPPER SPAR BOOMS

AND RIB FLANGES

X

STRESSFLOW s,

RIGHT SIDE
s e2{a-x}
_ xx' a

STRESSFLOW Sy
\ \Y ‘_,.%—\X

STRESSFLOW
RIGHT SIDE

\XR\&*

.2¢
a

IN UPPER SKIN WITH DISTRIBUTED

STRINGERS. LOWER SIDE REVERSED SIGN.

LOWER SIDE
REVERSED SIGN

STRESSFLOWS

SHEAR STRESSFLOW IN WEBS

2¢ N

N Il\(e - - ~
¥ :
i\\ A Y N t.?b




FiG.8.4 SUPPLEMENTARY STRESS SYSTEM TYPE 3

IN TERMS OF CELL DIMENSIONS.

NORMAL FORCES IN

UPPER SPAR BOOMS
AND RIB FLANGES

X

LOWER SIDE

" REVERSED

STRESSFLOW sy
RIGHT SIDE

X

. Syla-x)

Sx ca

STRESSFLOW sy,

X

STRESSFLOW t

RIGHT SIDE

STRESSFLOWS I[N UPPER SKIN WITH UDISTRIBUTED

STRINGERS.

SHEAR STRESSFLOW IN WEBS

SIGN

LOWER SIDE REVERSED SIGN

2¢

2h




F168.5. BASIC STRESS SYSTEM FOR THE CELLS AT LOAD
M(Mx,My=0, M,=0) IN TERMS OF CELL DIMENSIONS,

M x
8bc sin 8

t=

o Mx ]
8bc 3in 8

2b

:? 2¢
6 — WX\
N \ N \\\

| \ Y Mx

* 8bc sin 8

NORMAL FORCES IN
UPPER SFPAR BOOMS
AND RIB FLANGES

STRESSFLOW_ 5,

STRESSFLOW s,

STRESSFLOW t

LOWER SIDE
REVERSED SIGN

STRESS)—'LUWS IN UPPER SKIN WITH DISTRIBUTED

STRINGERS.

LOWER SIDE REVERSED SIGN.

SHEAR STRESSFLOW IN WEBS




Fi1G.8.6. BASIC STRESS SYSTEM FOR THE CELLS AT LOAD

(M, =0, My s+ My=0) IN TERMS OF CELL ODIMENSIONS.
NORMAL _FORCES IN
My
ANAN U b sine UPPER SPAR BOGMS "
AND RIB FLANGES 3
x 7
NN, #s - - x
S
14 ~
: STRESSFELOW _s

>
2
\ x
4 z
X
=
- STRESSFLOW sy =
¥ % z
- —— . x x
w
\ Q&
‘é
Y S
_ 3
S STRESSFLOW t S
3
k_\__ x %
(2]
W
Cr
b~
ey

SHEAR STRESSFLGW IN WEBS

2¢

\J\ \\\\ 1 s
N

REVERSED SIGN

LOWER SIDE REVERSED SIGN.

STRINGERS.



FlG.8.7_ BASIC STRESS SYSTEM FOR THE CELLS AT LOAD
K(O 0,K,) IN TERMS QF CELL DIMENSIONS.

Kz NORMAL FORCES 'IN
UPPER SPAR BQOMS
AND RiB FLANGES

/

L, g4
4{n ”bkz

7 /
g "z/ \y —Line1) Lk,

STRESSFLOWS s,

>

RN
N

Yy

S
N\

STRESSFLOWS sy

14

STRESSFLOWS t

x

e T

SHEAR STRESSFLOW IN WEBS

Chi e .
'_%‘—_ ‘“‘“—"“‘X' ) - X

Ty . HITIRN 25
- N




Ny

FiG.8.8. SUPPLEMENTARY STRESS SYSTEM  TYPE §
FORCES IN (bs. STRESSFLOWS IN (bs/inch

NORMAL FORCES IN
UPPER SPAR BOOMS
AND RIB FLANGES

STRESSFLOW s,

Sx 35 X% -

STRESSFLOW sy,

Sy a"'—y 2

-2.82842 STRESSFLOW ¢
m +2.82842

\ . “’i— h-—(& x)ly

‘282342%95’ . -2.82842
Y

"

12 SHEAR STRESSFLOW IN WEBS

\ 16.9705 '’

\\\\ \\ é"
1z \\ y




F1G.8.9. SUPPLEMENTARY STRESS SYSTEM TYPE 6
FORCES IN [bs. STRESSFLOWS IN tbs [ inch.

~-3,535656

NORMAL FORCES IN
UPPER SPAR BOOMS °

AND RIB FLANGES

OS>

“+3.53556

+1.17852

e 1.1 7352Y - 117652
y

12"!

N-=

STRESSFLOW Sy
'SX’
0.00409206 (x2-12x )y

STRESSFLOW s,

Sy =z
y
0.00136402 y 30098209y

STRESSFLOW ¢
t={6-Xx) .
{0.00408206 y 2 - 0098209 )

-0.0081842 y3.058926 y

STRESSFLOWS IN UPPER SKIN WITH DISTRIBUTED

LOWER SIDE

REVERSED

SHEAR STRESSFLOW IN WEBS

16.9705"

SIGN.

LOWER SIDE REVERSED 351GN.

STRINGERS.




F16.8.10 STRAIN &, (MULTIPLIED WITH E) IN SPAR BOOM (lbs]inch?)
AND IN ADJACENT SKIN OF INFINITE BOX BEAM AT LOAD

. M (M, #1,0,0).
E E.‘x'
tbs/inch? po2172t /
0.2 / : ‘ /
/ /
/ /
/ ADJACENT SKIN /
/ /
/
_ /
/
SPAR BOOM /
o1 0.10075 R 4
| / s
/ /
Y /
- _ s
e 7
003724 : g
SPAR BOOM
'%9 'e’o
&



F1G.8.11 STRAIN € (MULTIPLIED WITH E) IN RIB FLANGE (Ibs]inch?2)
AND IN THE' ADJACENT SKIN PANELS OF THE INFINITE' 80X
BEAM AT LOAD M{quaa)

L — $ . . ! — Eey
o 0.1 0.2 0.3 04 05  ibsfinch?
l / ’
l /
| /
/
| /
l /
| /
/
\ /
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\\ )
Ly
/ "’%
RIB FLANGE / &,
0.2578——0.2629 Lo
()
\ 3
/B
/ \
\
A\
STRAIN ADJACENT SKIN
I/ \T—ON THE RIGHT SIDE
STRAIN RIB \
FLANGE \
[ \
| \
\
l \
| 0.2007 \ p.4526
<
o
Lo
o



FIG. 8.12 STRAIN €, (MULTIPLIED WITH E) IN SPAR BQOM
{lbslinch?2) AND IN ADJACENT SKIN OF INFINITE BOX BEAM

AT LOAD M(0,My=1,0)

SPAR_BOOM
Ko
< )
> <,
. "741 : 4’6‘
& - 3
w
| 4-0.1
| ' STRAIN
- ‘ ADJACENT SKIN
| - 0.15098\/ _
| e - 0.16229 \ STRAIN ™ ~ _
~~J 016323 SPAR BOOM S
4-02
EE lbs/fnch‘?
X




A

FiG. 8.13 GROUPS OF SUPPLEMENTARY STRAIN SYSTEMS IN THE CELLS

OF AN INFINITE BOX BEAM INDICATED BY THEIR PARTICIPATION

FACTORS AND COLUMN MATRICES (8.78) FORMED OF THEM.

Y10(n-1) Y10(n 1}
Y9 tn-1} Ystn+1)
Y Y :
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- — Y 2 " '
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Yien-n 1(n+1)
Li. T | .

N e\

Y I.n
Ya. n
Yan
Y4.n
YS. n

YG. n

Y7. n

s
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FIG. 8.14. APPLICATION OF A MOMENT ﬁ(Mx,0,0') TO THE RIGHT
END BY MEANS OF FORCES P.

hp. Mx__. Mx

:2csfn9 12
;e ' potMx__ Me
2c 2csing 12
A
< ~ N :
. '\ \i AN AN .
N \ AN ~
Y N ¥ DIRECTION

Z DIRECTION

FIG. 8.15. APPLICATION OF A MOMENT M(0.My,0) T0 THE RIGHT
END BY MEANS OF FORCES P.

r

PMyfabsin g

8
N\ P-My/absin g
o - - - - X
N N " Pe f
\\\ N RN PM,/4b sin @
N \ \ b\
AN N N o
¥ N\ ¥ DIRECTION | P=My[4b sin 8

Z DIRECTION

FIG. 8.16. APPLICATION OF A FORCE K( 0,0,K,} BY MEANS QF FORCES P

K
8 P=%Z-
S W —
N AN N
\\x \\ N
' Ny DIRECTION

Z DIRECTION




FIG. 817 ELLIPSES INDICATING THE ENDPOINTS OF MOMENTVECTORS
WHICH CAUSE A STRAIN ENERGY OF 12 Ibs x inch PER
CELL. O0BLIQUE RIBS.

SCALE MOMENTVECTOR
——
104 (b « inch

DISCRETE RIBS
EXACT SOLUTION

! DISCRETE RIBS. MIN. PRINCIPLE FOR THE STRESSES WITH 3 TYPES OF
SUPPLEMENTARY STRESS SYSTEMS. ALS0 EXACT SOLUTION FOR BOX
BEAM WITHOUT RIBS.

DISCRETE RIBS, MIN. PRINCIPLE FOR THE STRESSES WITH 5 TYPES OF
SUPPLEMENTARY STRESS SYSTEMS.

o

DISCRETE RIBS. MIN. PRINCIPLE FOR THE STRAINS.
ALMOST THE SAME AS 4.

e

4 CONTINYOUSLY DISTRIBUTED RIBS (HEMP'S SOLUTION), EXACT SOLUTION.

CONTINUDUSLY DISTRIBUTED INFINITELY STIFF RIBS, EXACT SOLUTION.

Jun




FiG. 8.18. ELLIPSES INDICATING THE ENDPOINTS GF MOA‘*!ENT-
VECTORS WHICH CAUSE A STRAIN ENERGY OF

12 _Ibs x inch PER CELL. NORMAL RIBS.

SCALE MOMENTVECTOR
P

109 b« inch

DISCRETE RIBS
EXACT SOLUTION

THE ELLIPSES 1....5, FROM WHICH THE ELLIPSES 1....4 ALMOST COINCIDE,
CORRESPOND WITH THE 5 ELLIPSES OF FiaG,8.18.



FIG.8.19. APPLICATION OF AN ELEMENTARY THEORY FOR
THE OBLIQUE BEAM.

| ROOT PLANE

DEFORMED RIB PLANE OF INFINITE BEAM,TOP

VERTICAL DOWNWARDLY
DIRECTED LOADS OF
11b IN STATION 2 AND
STATION 3




FiG.9.1. GROUPS OF SUPPLEMENTARY STRESS SYSTEMS IN THE CELLS OF A SEMI INFINITE
BOX BEAM WITH ONE CLAMPED END. EACH GROUP 2, CONSISTS OF THE
5 TYPES FiG.7.3,7.4,7.7,7.8, AND8.8.

N . e Y




FIG.92. STRESSES IN SPAR BOOMS AND WEBS AT LOAD Z/T( My=1, My -0,M;=0)

M=YZ (b inch.
W3 9 13 15 17 19
We N\ (k (\ T\ NI ; AN \ My b inch
CLAMPED W2 4 12 14 16 20
ROOT N y=o
\ NORMAL STRESSES IN_UPPER FRONT SPAR BOOM (bs /inch?
Y . '
~0.068021 0.09484 0.10025 0.10104 0.10075
0.03953
1 5 7
.22078
-0.09453 Z°

0.17209 /

NORMAL STRESSES IN UPPER REAR SPAR BOOM, bs/inch?

SHEAR STRESSES IN REAR SPAR WEB, [ bs/inch2
FRONT SPAR WEB REVERSED SIGN
0.14006

0.15130
0.13664 0.13605 0.13608 0.13614 0.13616

0.12873

0.10346 009969

g.1eon 0.10072

0.10075

0.10075



FIG.9.3. STRESSES IN SPAR BOOMS ANO WEBS AT LOAD @?(MX=O, My 1, Mz=0)

13 15 ”
My =0
_——-;%ai ?\‘§Y\A§€\>§A& X
CLAMPED ™2 4 & 10 12 14 18 20 My=11b inch
rROOT
N | M:VZ 1b inch SHEAR STRESSES IN FRONT SPAR WEB (bsfinch?
Y +0.02653 /
’ 0.00843
hd +0.00207 +0.00012 - 0.00010 - 0.00005 - 0.00001
! 3 S| 7 9 1 13 15 17
.0.0723

- 0.14630

- 0.15939 -0.16230 - 3.16250 - 0.16237 -0.7168230 ~0.16229
4 4 AR /

e

Zl.l'\ll’).‘?l\/J'AL "STRESSES IN UPPER FRONT SPAR BOOM lbs/incha

2 4 6 8. H 12 14 16

-0.00207 ’ -0.00012 1 + 0.00010 «0.00005 + 000001

- 0.0094 Z
- 0.02653 ! ,
- SHEAR STRESSES IN REAR SPAR WEB Ibs/inch?

- 0.16145 | - 0.16189 | - 016218 ko.rszaa 5076229

/

NORMAL STRESSES IN UPPER REAR SPAR BOOM (bs/inch?

- 0.24632
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