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The buckling load of flat panels that chaﬁge in
~ thickness across the bay

J. P. BENTHEM.

Summary,

The eompressive buckling load of infinitely long panels with simply-supported longitudinal edges, that have two sym-
metrical discontinuous changes in thickness across the width, has been calculated by Capev. This derivation holds also
for an infinite set of such panels simply supported in longitudinal direction at equal distanccs. The present paper deals
with an infinite set of equal unsymmetrical panels, buckling load and mode of which are not equal to those of such a

single simply supported panel,
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This investigation has been performed under
contract with the Netherlands Aireraft Develop-
ment Board (N.IV.).

Nota.ﬁons.

s width of one panel.

b width of panel part with
thickness £,

i width of panel part with
thiekness ¢,

t, thickness of panel part see

A thickness of panel part tig. 5

' t,/t

1 b/s

T, Yie B eoordinates ‘of panel part
with thickness ¢,

Duy Yo, 2 coordinates of panel part

with thickness f,

Wy, n deflections from the plane (ie. in
the direction of the 2z, axis) of
the part with thickness ¢, of the
n-th panel, .

Wy, 5 defleetions from the plane (i.e. in
the direction of the 2z, axis) of
the part with thickness ¢, of the

n-th panel.
4 half-wave length of buckling mode.
a, buckling stress {(compressive stress

taken positive).

E elasticity modulus.

v Poisson's ratio (v =0.3).

K,, K, ditferential operators defined in
(2.6)

Ir,, H, differential operators defined in
(2.11)

A /s )

k . from e:=kn*E £,2/12(1 — 3 s?

¢ AV

p L q 3 3

a:, ﬁ,l - g defined in {2.25)

P:s 4 - Jafin :

Q:’ 2. % defined in (2.28)

@y, a4y, @y, @, defined in (2.33)

1 Introduction.

CarEy, ref. 1, caleulites for. longitudinal com-
pression the buckling load of single panels, infinite
in length, simply supported at the longitudinal

edges, and whieh show a variation in skin thickness

across the bay aceording to fig. 1, which may be
eonsidered as an approximation to the more prae-
tical eross-section, fig. 2. Such a econtiguration may
oceur in integral construction of stringer sheet,
whether by extrusion or by machining from the
golid, and the variation in skin thickness may
result in a gain in efficiency. The buckling stress
and mode of such a panel are identical to those
of an infinite set of such panels simply supported
in longitudinal direction at equal distances.

‘A configuration like .fig. 2 (or fig. 3} may
also oceur in struetures where stringers are honded



with their flanges to the skin. The derivation of
Carey for his ease 'is extended for the unsymme-
trical configuration with cross section fig. 3, which
is also simplitied to that of cross seetion fig, 4.
In that case the buckling load and mode of an
infinite set of identical panels (the case actually
considered, fig. 5) are no longer those of a single
simply supported panel.
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Fig, 1. Cross section of symmeirieal pancl analysed
by CAPEY.
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F‘ig. 2. Cross section of symmetrical panel as it may be
applied in practice.
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Cross section of unsymmetrical panel as it may he
applied in practice.
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Fig. 3.

Fig. 4. Simplificatiun. of the ecross section of fig. 3.
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Fig. 5. Part of the infinite set of unsymmetrical panels.
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The derivation of the buckling load of panels
with cross seetion like fig. 1 or fig. 4 is closely
connceted to the well established theories on the
buckling of uniform panels. Detcrmination of the
buckling load of a uniform panel results in the
solution of a homogencous linear differential
equation of the fourth order; for the present case
it results in the solution of two simultaneous
equations of the fourth order. Besides, other work
on the buckling load of ecompression members huilt

qup from flat plates is present (refs. 2, 3 and 4).

In ref. 5 the anthor describes tests on panels
with three unsymmetrical hays. The intention of
these tests was in the first place to determine the
load-carrying capacity and a load-deflection eurve.
The buckling load could not be determined with
very great accuracy due to initial defleetions or
other unavoidable irregularities, Therefore in ana-

lysing the results of ref. 5 (the present computa--

tions not yet being performed) use was made of
buckling loads ecomputed in a semi-empirieal way *).

2 Method of solution,

Fig. 5 shows the n-th panel between two sup-
ports, with its two parts of unequal thickness i,
and i, respectively. Both parts have their own
coordinate axes x, ¥, 2 (note that the coordinate ¥,
in the plate with thickness {, is always negative).
It is supposed that there iz an infinite sequence
of equal econfigurations to hoth sides (in the
direetion of the y-axes). The supports cause no
restraint against rotations ¢, of the panels.” The
supports are supposed not to be able to suppress
uniform expansion in y direetion at uniform com-
pression in z-direetion.

In the n-th panel the displacements normal to
the plate with thickness {, are wi,, those of the
plate with thickness ¢, are wa,.

The bueckling stress o, is to be determined from
the equations {ref. 6)

azwm

i T L9 i TP 841’01.“% il_
o, * ¥, 201, 2 it - D, Oz 2%,
] (2.1}
84%‘2,n a*w-z_n a"*’w‘zn . _ti azwg,..
oyt 0,"0y," oyt D, . 0,°
(22)
where
Et? E i

D= = 1mao s
All equations (2.1), (2.2} have coupled boundary
conditions, ‘At point P, ’

Won_ ==ty =70 (2.3).
MWon_g _ OWip

. o, &4

AR, wopa=1"K, win (2:5)

where

N A comparison is made between the latter values and
the exact ones (for an infinite sequence of bays) in ap-
pendix A,

e




62 . aZ 82 a2,

Ifl = ué—‘i? + v ‘—ax—lz‘., K2 = sz- v axzz - (26)
At point @,
w_‘l.n = tWan . (27)
S n dway 9
: = : -’.8
o, oYy - (28)
t K, Win = 1, K2 Wan (29)
where K,, K, according (2.6)
LA H wy = H we, {2.10)
where
83 aﬂ aS
H=—+2—) w——, Hy= ——-
I P ML R ME
63
+ @ — V) —— 211
{ v) 55,731, (2.11)

Equations (2.3), (2.4), (27) and (2.8) result
from the requircment of gecometrical econtinuity,
(2.5) and (2.9} from the continuity of hending
moments M,, and (2.10) from the continuity
of €, — oM,/ /0c (@, shear force, M, twisting
moment),

In fact (2.3) ... (211) form an infinite set of
conditions {(# ranges from — o to + o) bhut
they may be made to a finite set by supposing
that the buckling mode is repeated after one panel
{with the displacements reversed in sign)

U = —— Ul
(2.12)
Wan —— Won41

Then the infinite number of equatiohs (2.3) ...
(2.11) result into. 8 equations (2.13) ... (2.20)
with 8 unknowns

at P, Wy =0 (2.13)

Wy, =0 (2.14) -
oy n W p

' + " —_— =y

5 5. ) (2.15)

£ Ky wap + 4,0 Ky we =0 (2.16)

at @, - Wig—Wop =0 (2.17)
) awi,u awgln A

o e =0 (218

DK ey — 1,2 Ky w0y, =0 (2.19)

LA H wyn— 15, we =10 (2.20)

A bucekling mode is sought of the shape )
- Wi == 10 () sin 7, /1 (2.21)
Won = Fon () SN 7i,/] (2.22)

‘Fquation (2.21) substituted into (2.1) gives

1} There are no geometrical restrictions on the wave

length, since the panels arve infinitely long in the dircetion
of the x-axis.

ot . 72 dzf‘l.n d4f in ﬁl ?
-_lf.f'l,n—z ? dy12 d-yl*' ‘:: Dl O'I'F—ftn
’ (2.23)
OI‘ . .
@*fan B —ea’ difqa a,” B
dy,* T dy,> _Lé%f“‘ =0
(2.24)
where
a = jf_:, po=Vye+ 1, a=1s
m ——
o=, g =V5Ei—T
i T 25
y=t/t,, t=2VE and k trom o — (2.25)
—p . mEE
- 12(1 — )52

§ =distance between two supports.

" The general solution of (2.28) is (8, 5% 0)
‘ fin= A1, sinh ayy, /s + Agpnsin Byy,/5
+ Agpncosh ey, /s + Ayncos By /s (2.26)
Substitution of (2.22) -into (2.2} gives
Ofon | Bi—al @fon _ alfe

dif,? st dy,* st =0
(2.27)
where
o=t p,= VEF]
(2.28)

182::"2%2_: g, = VE:l_-

and the general solution is (8, 0) o
.f'z,n = Bygsinh ay,/s + Boysin Byy,/s
+ Baneosha,y,/s + Byae0s B,/ (2.29)

The solutions (2.26) and (2.29) inserted into
the houndary conditions (2.13) .., (2.20) deliver
8 homogeneous equations for the unknown inte-
gration constants

A‘l,n A&,n ' B‘I,ﬂ B!},u-

These equations in matrix form have the shape
UZ=0 {2.30)

where ¥ is a square matrix given in table 1,
Z-a column matrix with clements Ayn... Bin,
and 0 a zero column matrix.

Because the equations (2.30) are homogeneous
a non zero solution for the unknowns is only pos-
sible if the determinant of the matrix U vanishes

det U == 0. (2.31)

In table 1 the further substitutions have taken
place . '
N b ,' c ) .
5 =1 ?—1——1; (2.32)




vEtl—v=ay
—ytI—v=gq

PE+1—v)=gq

73 (—£+ 1——v)==(1-4

(2.33)

3 Numerical evaluation,

The method of solution of (2.31) for given
values of y=1¢,/# and of =1"0/s is to choose a
value for A =1/s and to determine by trial and
error the value of £ for whieh the determinant

(2.31)} vanishes, This process is repeated with a

number of different values of A. The value of A
at which

ka* B 12
12{1 — »®)5?

{see {2.25)) rcaches a minimum delivers the actual
wave length and the buekling stress o, !).

It was desirable that the caleulations had only
to be performed w@th real numbers. It may how-
ever oceur that g, = ]/'yf —1 and q2=V£ -1
(from (2.25) and (2.28) respectively) becomé

imaginary (in practice only g, did so). In that
case substitutions like

0= g, (3.1)
Bi=18 (3.2)

where ¢’ and B, are real quantities are desirable.
Further in the matrix table 1

E/A = I/IZ k from o,=

sin B,p —=sin ¢ 8,"y =i sinh B,y
ete. and ¢ ean be divided from the determinant
(2.31), table 1.

The general solution (2.26) may for this case
be written as

f'l,ﬂ = A‘i.n sinh a1y.‘1/'5" -+ Aﬂ,n' sinh Blf'y]l/s
+ Ayp coshayy,/s + Ay, cosh By /s (3.3)

where 8, from (3.2} and 4,,’ are real quantities.

1t is casily observed that the determinant (2.31),
table 1 for all values of y and » is zero if B, =0,
e £=1/y and if B,—=0, Le &=1. These
solutions, however, are without meaning since at,

for example, 8, = 0, the general solution of (2.26)°

s not: ) ’
fi,n, = Ai,nSinh alyl/s_ + AS,nCOth a/s + Aa,n,
but . (34}

f1,n: A—im Sinhalyl/g + A‘J-m'%l‘ +
+ Az, cosh /s + Agn. (3.5)

In practice, should this oeeur at a certain eom-
hination of y, %, the special case can be avoided
by slight alierations of the value for y or 4.

- The computations were performed on the elec-

tronie computer Z.E.B.R.A. of the Nat. Aeronau-

") In the work of CAPEY, ref, 1, the determinant which
bad to vanish was, due to the symmetry properties of the
eonfiguration, only of the 4th order.

tical Research Institute. The combinations of y,
y, A investigated which delivered indecd a minimum

tor V'E are given in table 2. For a certain com-

bination y, n the minimum value of V% (as a
funetion of A) could be determined with great
aceuracy but, as is to he expected, not the value
of A at which this minimum, which was sometimes
very flat, oceurs,

It even turned out that in the region 5= 04,
y=~03 a minimum altered .intc a maximum (see
table 2). In such a region only with very much
trouble the wave length could be determined.

Similar difficulties - were met in the region
n =02, y=05 Here it was almost impossible
to obtain proper solutions following the procedure
just mentioned. These difficulties are, however, of
no practieal importance.

4 Discussion of diagrams,

Fig. 6 and fig. 7 give diagrams as they are
drawn from the computed values of table 2. Values
of y only between 0 and 1 are dealt with, but
hy changing {, into ¢, (y into 1/y} and n into
14, values of y larger than 1 can be met.

For every n there are two branches which (for
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ig. 6. Besults for the buckling stress.
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n=0.8, 0.6 and 0.4) in fig. 6 intersect. At this
intersection belong, however, quite different values
for the wavelength (fig. 7).

HALF WAVE LENGTH

WIOTH PANEL o | &}
16 — DA
t b
Y Y- 2/!.1,1']- Vs
16 { '
: |- srancuEs | l
BELONGING TO BRANCHES 1
14 M OF FIG.6.

M:0, SEE FOOTNOTE? ’r
o PAGE 5

2.6 I—-

o2 BRANCHES 2
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0.4 ——-{ aF Fla.6. —
0.4 . START AT Y:=0, ks0.861(1-7)

02 3
.08
! ) L

o} 01 0.2 0.3 04 Q5 Q.8 07 08 0% 10

yatz /ﬁ
Fig. 7. Wave-lengths.

In fig. 6, the branches 1 all start at y=1,
}"%k=12. The branches in this point represent the
buckling of simply supported constant thickness
panels (or an infinite sequence of such panels).

The branches 2 of fig. 6 start at y =10 (f, = o).

VE=2.640/(1 —=n), they represent the buckling

of a clamped panel of widith (1 — 5)s and thick-
ness t,. The wavelength is 0.661 (1-—q)1).
The branches 2 deliver for y =10, 5y =190

V' k=2.640. However y= finite, 7==0 delivers

Vi=2 2). Obviously the eurves (be it of branches
2, or 1 or both) in the region for very small
values of y and g have strong gradients, but this
region, representing dimensions which do not oceur
in practiee, is not further investigated,
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'} Values for this case of ref. § arc based on v = 34,
the present numbers on v = 0.3, which makes only little
difference for the wave lengih.

) Actually tho limit of V% if both 4 and 4 limit to
zero remaing indeterminate and ean only be solved if the

quotient »%fy is constant during the limiting proeess, where

#° will be a ecertain {not necessary integral) positive

power of .




Comparison with semi-empirical values of ref. 5.

APPENDIX A.

— buckling stress

? 7 fronll/ f‘:::g 6 fz, 3m : Uz
’ 7z ref. 5
0.2 0.543 2.46 0.978 1.63 1.56
0.2 0.555 2.44 0.973 1.58 1.52
0.4 0.547 2.76 0.982 2.07 2.07
0.4 0.551 273 0.977 2.00 2.03
0.2 0.377 2.96 - 1003 248 2.65
0.2 0.376 2.96 - 099 244 2.62
0.4 (.368 3.73 1.005 3.95 3.87
0.4 0,353 3.85 0.975 3.96 3.88

Vahies of o in kg/mm? (£ -=7T000 kg/mm?),
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Computed minima for Wk (diagrams fig. 6 and fig. 7).

TABLE 2.

7 Y A VE
0.2 1.0 1 2
0.2 0.8 “1.00 2.11585
0.2 0.6 0.985 2.3647
.02 0.5 0.922 2.595%
02 0.4 0.7485 2.904
0.2 03 0.605. 3.138
0.2 02 0.546' 3.255
0.2 0.011) 0.5288 330
04 1.0 1 2
0.4 0.8 ©1.009 2.20596
04 0.6 105 25792
0.4 05 1.099 2.9110
0.4 0.42 1.153 33233
0.4 04 1.169 3.458
04 0.38 1.183 3.6008
0.4 0.34 1.20 3.9753
04 0.3 1.22 4.4851
04 0.3 1079 4.44578
0.4 03 0.450 4215
04 0.2 0.407 4.3530
0.4 0.01 0.3966 4.40
0.6 1.0 1 9
0.6 0.8 1.01 2.29699
06 0.6 1.05 27684
06 0.4 1,92 3.626
06 02 1.842 6.095
0.6 02 0.2705 6.534
06 0.01 0.2644 6.61
0.8 1.0 1 2
0.8 0.8 1.00 2.4028
08 0.6 1.005 3.07102
0.8 04 1,030 4.25962
0.8 02, 1.295 6.699
0.8 0.1 - 2.06 10.49
0.8 0.01 0.1322 13.20

maximum

1y Values 9 = 0.01 give praetieally the same result as y =@ and are *

used beeause the programme of the caleulations did not allow v being zero,

i




unsatisfactory way.

been chosen as anr approximation of actual elevator motions.
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Airplane Loads in Pitching Manoeuvres

B. HAKKELING.

by

Summary.

In the present structural airworthiness requirements the piteching manoeuvres are formulated in a rather vague and

In order to obtain an impression of the value of these requirements and to introduce possible improvements, cal-
culations were performed on the tail loads, load factors, and stick forces of two tramsport airplanes of different sizes
in Jongitudinal manoenvres.
The starting-point was n preseribed elevator motion; a deflection-time history as an unequal-sided triangle has

Two parameters were varied: the time tn which the

clevator reaches its maximum deflection and the time in which the elevator returns to its initial positiom.

In addition, the effects of location of centre of gravity, anirplane weight and moment of inertia on the tail loads,
were detcrmmed
The results of the cnmputatmns for the two nirplanes of quite different sizes are analogous in most respecta.

Contents,

6
7
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Appendix B.
Appendix C.
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3.1
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Airplane response.

3.1.1 Increment of aerodynamic tail load.
3.1.2 Load faector.

3.1.3 Pitching acceleration,

3.14 Increment of total tail load.

Stiek force.

Numerical data.
Results.
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parameters eonstant).
Combined variation of centre of gravity,
weight and moment of inertia.

Variation of elevator deflection-time history.

5.6.1 Variation of k= 2% .

1-’1
5.62 Variation of the eontrol time r,.
Discussion.

Coneclusions.
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The cocfficients K;" of equation (8).
The coefficients of equation (14).

Stick force required to balance hob-
welight.

2 Tables.
44 Figures.

inertia (other

List of symbols.

Cr
Cn

Cice

= by + b, 8.
wing span.
span of horizontal tail
~dCy . .
i )

dCy
=
. aCy -
=75
chord.
aceeleration of gravity.
distance between aerodynamic eentre with-
out tail and eenire of gravity.
=T (g 1),

T1 t
radius of gyration with respect to y-axis.
airplane mass,
_F
=7
airplane load faector.
dynamic pressure.
time.
time in which the
maximum defleetion,
time in which the
neutral.
distance hetween cbntr,e of gravity of air-
plane and aerodynamic centre of ({ail
(negative for conventional airplanes).
spring constant of spring tab (eqg. (20)).
lift coefficient.
pitehing moment coefficient of airplane
without tail with respect to aerodynamic
centre.
piteching moment coefficient of airplane

clevator reaches its

elevator returns to



without tail with respeet to centre of
gravity. '

stiek force,

stick force required to balanece bobweight
alone,

largest stick force at which spring tab
will not deflect.

hinge moment of elevator.

moment of inertia with respect to y-axis.
=Tg.

10

empirical eonstant denoting ratio of dam- |

ping moment of complete airplane to
damping moment of tail alone.
cocfficients of eq. (6).

coeffieients of eq. (8).

lift on tail

first maximum of tail load inecluding ba-
lancing load.

second maximum of tail load including
balancing load.

maximum of (L,) as a funetion of k.
balancing tail load in level flight condition
first maximum of ineremental tail load
due to a manoeuvre (fig. 5),

second maximum of ineremental tail load
due to a manceuvre (fig. 5).

maximum of AL, as a funetion of k.
pitching moment of airplans without tail
with respect to aerocdynamiec centre.
piteching moment of airplane without tail
with respeet to centre of gravity.

wing area,

area of horizontal tail.

area of elevator behind hinge line,

first maximum of tail load (including in:
ertia loadings) due fo a manceuvre.
sccond maximum of tail load (including
inertia loadings) due to a manoeuvre.
airspeed.

design manoeuvring speed.

design eruising speed.

design dive speed.

airplane weight,

weight of horizontal tail.

wing amgle of attack.

flight-path angle,

elevator defleetion from trimmed con-
figuration.

maximum elevator deflection during a
manoeuvre,

maximum possible elevator deflection
(elevator against its stop).

spring tab deflection.

downwash angle.

ratio of dynamic head at tail to dynamie
head at wing.

angle of piteh.

coefficient used in fig. 3.

mags density of air.

aerodynamie time (dimensionless, eq. (7)).
dimensionless time in which the elevator
reaches its maximum deflection.
dimensionless time in which the elevator
returns to neutral.

o frequency of airplane pitehing oscillation
(eq. (11}).
A means an inerement of a quantity from

the unaceelerated flight condition due to
4 manoeuvre.

gi cocfficients of eq. (14); see appendix B.

¥ coefficients of eq. (14); see appendix B.

Subscripts:

max  maximum valuze,

£ tail, except §;.

w wing.

e clevator. )

1,2 denote first and second maximum res-
pectively.

The notations «, «- ete. denote single and double
differentiations with respect to r.

The notations a, @ denote the results of super-
position veferred to in par. 3.1

1 Introduction.

In order to judge the present structural air-
worthiness requirements econecerning pitching ma-
noeuvres on their merits and to have a starting-
point for possible improvements, the knowledge of
airplane accelerations and tail-loads due to differ-
ent types of elevator movements is needed.

The problem of determining dynamic tail loads
in a rational way has been treated by many
authors (e. g. bibliography of ref. 1), but most
approaches have other aims. .

In the present work particular attention has
been devoted to the variation of airplane normal
aceeleration and tail load as a funetion of:

o location of the centre of gravity.

b " airplane weight,

¢ airplane moment of inertia.

d the shape of the elevator deflection-time history.

In all eases the elevator deflection as a function
of time is assumed to be triangular and in case @
two parameters are varied: the “control time” {,
(the time in which the elevator has reached its
maximum, defleetion) and the ratio k=1{,/t, (see
fig. 1).

LB

— - ELEVATOR DEFLESTION &

TIME

1
1 ta SECOMNDS
1 . “1'. Ty

A et

Fig. 1. Assumed shape of elevator deflection-time history.

Account was taken of the control force, required
to apply the assumed elevator-deflection history
of fig. 1.

In order to gain an insight into the hehaviour




of airplanes of different sizes the ecomputations
were performed for two types:

Airplane A, a twin-engined light transport, design
take-off weight 15,500 kg (34,170 1b);
control column directly connected
with elevator, no mechanical or aero-
dynamic servo-system.

Airplane B, a four c¢ngine medium transport,
design  take-off weight 48,081 kg
{106,000 1b); elevator control system
provided with a spring -tab.

The numerical data used in the computatiots
were derived from reports on two airplanes of the
above-mentioned types.

The research reported in this paper was carried out
under contract with the “Netherlands Civil Aviation
Department” upon a recommandation made by the
“Netherlands Committee for Structural Strength
Requirements for Civil Aireraft”. Although some
preliminary remarks have been made with regard
to existing airworthiness requirements, no parti-
cular attention has yet heen given to the desira-
bility of revising such requirements in view of the
results of the present work and other recent in-
vestigations (e.g. ref. 6). This matter will form
the subject of further study by the said committee.

2 Assumptions.

21 The general problem of the response to longi-
tudinal control involves the solution of three simul-
taneons differential equations (e, g. chapter 10 of
vef. 2). The variables in these eguations are the
airplane veloeity V, piteh angle ¢ and angle of
attack «. The solution gives a very slow oscillation
(phugoid mode) with poor damping of the speed V,
piteh angle # (each with relatively large ampli-
tudes) and angle of attack (small amplitude).

Another oscillation with a short period and heavy
damping involves mainly the change in angle of
attack. During this short period mode, the change
in airspeed is very small and the assumption of
constant eirspeed for a study of the initial response
is justified.

The aceuracy achieved in this way is reasonahle
for structural design purposes and depends largely
on the achievable aceuracy in determining the sta-
hility derivatives.

2.2 It is assumed that the initial change of the
piteh angle is very small; therefore the change
of the component of weight perpendicular to the
flight-path has been neglected.

2.3 The ecalenlated stick forces balance the acro-
dynamie hinge moments only, Stick forces due to
angular acceleration of the elevator, down springs
and hobweights of the control system, are not taken
into account., The control system is assumed to
he frietionless and its eemponents to be rigid. The
influence of the rotational inertia of the elevator
may beeome important at very large rates of in-
crease of the stick foree; in such cases a springtab
will defleet first and the elevator deflection ean

have a considerable lag.
i)

11

2.4, Aeroelastic effects are neglected (rigid adr-
plane}.

25 The variation of the downwash angle due
to engine shipstream effects during the manoeuvre
s neglected.

2.6 The aerodynamic derivatives are assumed to
be eonstant during the manceuvre,

2.7  Aerodynamic lag is neglected.

Some remarks on the limitations imposed by
these simplifying assumptions ean be found in
see, 4 of ref. 7. !

3 Derivation of equations.

According to the assumption of constant speed
during the initial response to elevator deflection,
one of the three differential equations can be eli-
minated. The remaining two equations refer to
equilibrium of forees in vertical direction and
equilibrium of moments with respeet to the centre
of gravity. ]

In fig. 2 the adopted axes, sign conventions and
positive directions are shown.
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Fig. 2. Adopted axes and positive directions.
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In the following the words “foree”, “angle”
ete. mean the variation of these quantities from
the values in unacecelerated symmetrical flight; thus
Ae is abbreviated to e (etc.), where Ae is the vari-
ation from the initial value. Assuming that there
is no logs in speed, summation of forces along the
Z-axis gives:

dy dy ad, ’
mgV — - GeeaS — (5 )ta”qs‘*"
chL a4 T
il o g 8, —
( da )td,t vis, T
_ dCL) dex (f-.’[,t'i‘h) dl-_‘ L
(&) &m0

The first term on the Jeft-hand side represents
the mass foree. The second term gives the aero-
dynamie foree of the airplane with undeflected
elevator, which can be written as:

ddc: aqS: .
. dC.r,) “dOLy Sy ( ds
I, (2) S (1) s
where (7%_) refers to the airplane without tail.
w



The text terms are the foree due to elevator
deflection, pitching velocity effeet of the tailplane
and the effect of time lag in downwash at the tail,
respectively. _

The moment equation is:

((z‘ib)waqh3+ (%U—,) txqu: (/lﬁgj—) z +

+(ddiL)gﬁ_(fx,+h) de

dt v da 198~

dC[ dﬂ &
_(da) e KV—qS;xt—{—

+ (%)t (j(;)tS'qq‘l?th +

The first-term refers to_the pitehing moment of

+ (3)

the airplane without tail with respect to the centre

of gravity: _
. dc&!m} 82 [hb dCL) } , S2
Moo=~ e = |5 (), | o0 5 =
dCL)
== h S 4
(da w9 @

where h is the distance from the aerodynamie
centre of the airplane without tail to the centre
of gravity.

The third term represents a correction for the
time lag effect in the downwash angle at the tail.
The factor K in the fourth term denotes the ratio
of damping moment of the complete airplane to
the damping moment due to the tail alone. The
meaning of the remaining terms will be evident.

With the aid of the relation (fig. 2)

b=a+vy ’ (5)

it is posmble to eliminate y and 4 from the equa-
tions (1), (3) and (5)) which yields an equation
of the form .

d2a dea ds

W‘+K1 7 + K,a=K, § + K, — - (6)

The coeffieients’ K, in’ this cquation for a
(damped) oscillation contain the speed V. In
order to reduce computational work it is econ-
venient to introduce "a- nondimensiohal time 1,
originally suggested by GLAUERT:
{ :

T== ﬁ%-z t. ' (M)
. With = as a new 1ndependent variahle equatlon
(6} can be rewritten:

o+ Kl'a+Ela=K/ s+ K5 (8)

where the dots denote differentiations with respect
to r (ef. ref. 3).

The eoefficients Kt of eq. (8) are independent
of speed and contain aerodynamic and geometrie
constants (K are written out in appendix A,
cf, ref. 4).

The possibility of negleeting the ])alt K} § of

the forcing funection in eq. (8) is- considered in
ref. 4; it appears that this part is in general
negligible,-except in the case of a very fast elevator
deflection,

Starting from the foreing funetion K/8(7)

(neglecting K, 8) shaped as an unequal-sided {ri-
angle (see 8(r) in fig. 1), the response of the
airplane as well as the stick force required to
perform this preseribed elevator motion can be
determined.

3.1 Airplane response.

Sinee the equation ‘
at+K'a+ K a=EK/S$ (+) (9)

(with & (r) according to fig. 1) is linear, the
solution can he obtained by superposition of the
solutions of three similar equations

at Kla+ K a=HK'3:(r) (i=1,2,3) (10)
each with a foreing function KJ/8:i(m' =A1 K,
-E—'r; the meaning of A is explained in fig. 3.
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Superposition of §, (), 3, {7} and J; (v) gives.d(7) of fig. 1L

E
51 ('1") = -;— T — A==
1 N
§ —k
& () = el (1) = A =i (r < Ty, 8 (£} =0).
.§ T ' 1
8 = — | -_— =0).
ha(f) P LL k[ A k_l(‘fc-./_“'znaa(") 0)

3 9; () are the foreing functions of the three equations (10).

Fig. 3. The component paris A (r) of the elevator
motion of fig, 1

In practice this superposition is performed by
superimposing the response of the airplane due
to 3, (+) for = > r, on that due to 8, (r); the
response due to 5, (r) is superimposed for r> Ty,

The above-mentioned responses are obtained

from the solution of (9) with 8§ (+) ﬁ—a—f and

1
the initial conditions 1 =0 - a =« =0 (un-
accelerated flight), which ean be shown to be




= Kz’ T1 K2’
-y K K/ *—2K/
-+ 2 5__}__ 1 2 -
e &, coswr—!-—“————-Zng, smml
(11)
where
T2
mﬁ+|/1f_;_(£
Hence
- P
_ K; & [ -5 T K/ ) ]
_Kz' w_—rl— I1—e {eos«:r%- 5 . Slnw'!"
(12)
and
Y _."ﬁiq—
o= K, ie 2 siner
71} Tl

The results of the superposition referred to

above will be denoted by e, a, cte.

3.1.1 Increment of aerodynamic teil lood.

The increment of the angle of attack of the
tailplane due to downwash, pitching velocity and
clevator deflection ean be written

a1 )y o) b b
T da : da
el

(13)

Substituting %f_fmm (1) and (5) in (13) and

inserting o; in the equation of the increment of
the tail load AL (positive downwards),

F dC
AL:—( da:b);dthSt

this ‘tail load increment hecomes:
AL=y [¢, & + f,& + g, 8). (14)

The coctficients ¢ and ¢; are written out in
Appendix B. .

3.1.2 Load factor.

The airplane load factor An can be computed.

from « and AL

ac,, ) PV AL (15)

A”’*“( de Jyaw — W

3.1.3 Pitching acceleration.
oo . a8
The pitching aeeelera,-tlon—ﬁﬁ— ean he expressed

in terms of a and « by eliminating y. from (1)
and (5)

. | (087"
o _ W [§1+
dt 14_( (fi(ib ) m:V7 pgi; |
() o 0 2 T
+s§(d‘(’“)w+(i? leﬂw‘ﬁ]-

(16)
314 Increment of totel tail load.

The increment of the fofel load of the tail A8
{positive downwards) is composed of the aero-
dynamic load increment AL (eq. 14} and inertia
components due to pitching acceleration and load
factor increment:

dzg IVc
AS = AL + # ar r + An W, (17)

where W, is the weight of the tail plane.
3.2 Stick force.

In this report only the stick foree required to
balance the aerodynamie hinge moment during the
preseribed clevator motion (fig. 1) will bhe con-
sidered.

The general expression for the inecrement of the
stick force I (from the trimmed configuration) is:

F=m,q8:ce (byas+ b8 +0,8) (18)

where gq8cce (b, e+ 5,8+ b;8;) is the hinge
moment.

In the case of airplane 4 (see chapter 1) the
eontrol column is directly eonneeted with the
clevator and no spring tab or servo tab are
fitted. In this case the “aerodynamie’ stick foree
becomes

Fzmeqsece (bla1+b28). (19

The elevator of airplane B is fitted with a spring
tab (fig. 4). Up to a stick foree ¥, the tab will

POSITIVE DEFLECTIONS
'-—ﬁ :
&

: 7 SPRING
-—
z J
HINGE
ELEVATOR SPRING TAB

Fig. 4. Schematic diagram of a spring tab;
positive deflections.

—=— POSITIVE STICKFORCE

not deflect due to preloading of the spring. If
F > F, the tab defleetion with respect to the
clevator is a function of the stick force alome
(neglecting the hinge moment of the tab itself}:

§=C(F—F,) ¥, >0 (20)

where: € 'is a spring eonstant. ~Substitution of
(20) into {18) gives the stick force in the case
of a deflected spring tab (eguation [22)).




Finally, if the tab reaches its maximum de-
flection 3., , the elevator acts as a eontrol sur-
face with a deflected trimtab.

Summarizing, the undermentioned equations are

valid in the three ranges (F > —F,)
Fe=m,q8e (byor +1,8)—F, LFLF, (21
(tab undeflected)
e @ Se Co(byar + b, 8 — b, CF)
P= LA 2
lo-m,qC8.ceb, = F..(22)
(tab deflected) &, < 8¢,
F=myq8.c(byar+ 5,8+ b8 ),
81; = Stmax . (23}
{constant tab deflection)
In the case of negative stick forees and

¥ < —F, cquation (20) hecomes
§;:=C(F+ F)) (207

and the required stick force with deflected spring
tab is
Mo SeCe (byar + 0,8+ 8, CF,)
1—m.qC8.c. b,
| 8. ] < | 8:

Fe=

Fa—F,
(227)

mini
or {maximum negative tab deflection)
Fﬁmgqsgce (blaci + bzs-—ba{ Stmm[)

8y =38, (23°)

min®

4 Numerical data.

The data of airplanes A and B, used in the
computations, are compiled in tahle 1. *

All manoeuvres have been caleulated for sea-
level air density at the design manoeuvring speed
V., the design cruising speed V; and the design
dive speed V.

In all cases the elevator will be deflected up-
wards (8 negative) introducing a pull-up of the
aireraft; dewnward elevator deflection changes all
signg of the load inerements.

B Results
5.1 Introduction.

In order 1o facilitate the understanding of the
results, the airplane loads, pitehing acceleration
and required stick foree as a function of time are
given in an arbitrary ease in figs. 5 and 6; this
eage 18 a checked manocuvre with airplane B and
k=25 (fig. 1) at speed V,.

It appears, that both the inerement of the aero-
dynamic tail load and the inerement of the total
tail load have two extreme values.

* The moment of inertia I (kg msec®) is given in

. . (]
terms of I/=1 g (kgm?), so that Icy2=IW (),
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The first éxtreme value is ecalled the first maxi-
maum (ALY of the tail load. This maximuam ocenrs
in many cases at the instant of maximum elevator
deflection, but at high speed and/or large r, this
first maximum oceurs earlier.

This first maximum arises as a result of the
downward load due to the deflected elevator and
the increasing upward load due to inerement of
the angle of attack of the fail.

After the clevator has  reached its maximum
deflection, the effect of the increasing angle of
attack of the tail a: is dominant, nence AL
decreases and changes sign {(r = 0,28 in {fig. 5).

After AL has reversed its direction the angle
of attack of the tail reaches a maximum (in the

“example of fig. 5 at r = 0,42) and its upward

~ effeet has a maximum at that time. Due to the

fact that the other component {2 downward load
as 7 result of elevator defleetion) ig still deecreas-
ing, an extreme value of the resulting aerodynamic
tall load AL, however, ocecurs at a later moment.
This extreme value will be ealled the second maxi-
mum (AL,).

Tt should be emphasized that the character of
the tail planc load at the moments of the first

‘and seeond maximum is quite different. At the

first maximum the elevator is defleeted (aft eentre
of pressure) and at the second maximum the
elevator deflection iz considerably decreased or
zero. In the latter case the loading is eomparable
with a gust loading,

The total load inecrement AS differs from AL
due to mass loads (eqg. 17). The maximum values
A8, and AS, (fig. 5) are in all cases smaller than
the corresponding values AL, and AL,.

The computed stick forece F (fig. 6) required to
produce the preseribed elevator deflection-time
history of fig. 5 is related fo the aerodynamic
hinge moment only; so the computed stick force
does not contain the foree required to balance the
moment due to rotational aecceleration of the ele-
vator, mass accelerations of parts of the control
system, possible downsprings and bobweights. Such

- additional parts of the stick foree can inerease the

computed one considerably.

I the case of airplane A {eontrol column
directly commected with elevator) the shape of the
stick foree-time history is the same as the shape
of the assumed & — ¢ diagram, as the coefficient
b,=0 (table 1, eq. (19)).

Airplane B, however, is fitted with a spring tab;
up 40 a stick foree F,==7.6 kg the tab is not
defleeted and the stick force-deflection ratio 1is
large. If the spring tab deflects {(F > F,), this
ratio decreases considerably.

Egs. (21) and (22) ean he rewritten
F—=Aa {24)
and ' :
F=B((a+ D) (25)

respeetively, where a=b, e, 4+ 5,8 and 4, B and
D are constants, 4 » B,

The iwo components of @ are given schematic-
ally as funection of time in fig. 7a and e itself in
fig. Tb. The known preload F, determines the




value a==ap al which eq. (24) ceases to be valid
and in this wa,y the F — r diagram of fig. Te and
fiz. 6 ean be constructed.

In the graphs in this report sometimes large
values of An__ occur. In fact, the value of an
is limited by stelling of the airplane. In many
graphs this “stalling limit” is indicated; the air-
plane response beyond this limit has to be redueed
to this additional Anmx—limitation. The computed
“stalling limit”" is based on the statiec €. ., but
in fast manoeuvres the dynamie CLmax can inerease
this stalling limit.

5.2 Variation of the centre of gravity (other para-
meters constant).

A checked manoenvre with both airplane types
has heen investigated where the location of the
centre of gravity varied in the ranges indieated
in table 1. In all cases 5 =2 end {,=0.3 sec.

The values of AL,, AL, and An as functions

of the ecntre of gravity location with § 2= 0.436
rad (fig. 1), or a maximum deflection such that
the maximum stick force does not exceed a ehosen
value of 100 kg, are given in figures 8 and 9.
The said manceuvre was investigated, beeause it
was desired to caleulate the behaviour of the air-
planes when no aceount is taken of a An-limitation.
The results may give an impression of the action
the pilot might take in an cmergeney condition
and this manoeuvre has therefore been called an
“emergency manoeuvre”. In the airworthiness
requirements it is assumed that the pilot will he
able to restriet the load factor to the wvalue cor-
responding to manceuvring limit load: n=2.5.
Therefore, the resnlts of the computations were
also reduced to An_ =15 this manoeuvre being
called a “normal manoeuvre”. In figures 10 and 11
the loads in these mancetivres are givemn.

The effect of centre of gravity variation for

equal elevator defleetions (3 = 8 Or F

100 kg) on the first maxtmuwm iz small (figs. 8
and 9); in the ease of equal an__ (figs. 10 and
11} the effect is somewhat larger and a forward
centre of gravity yields the largest AL, exeept
at speed V..

In all cases the largest second mazimum AL,
appears at an aft ecentre of gravity.

The value of the ecceleration increment AN
due to checked manoeuvres with equal elevator

defleetion (‘S:Smax or F =100 kg) increases
with a rearward shift of the centre of gravity.

5.3 Variation of airplane weight (other parameters
constant }.

The effect of airplane weight is investigated by
means of a checked manceuvre with both airplane
types (k=2) and weights as specified in table 1.
As in par. 52 the manoeuvre is performed by
means of a maximum elevator defleetion § = §as
or, if the required stick force exceeds 100 kg, a
deflection such that Fo,, =100 kg. Again, this
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manoeuvre is reduced sueh that Ang, =—1.5. The
results are shown in figs 12, 13, 14 and 15.
The change of the first magimum AL, as a

fanction of weight is not large if 3 == Spux (OF
Foax =100 kg); a small airplane weight results
in a somewhat larger change (figs 12 and 13).
If the manoeuvre is reduced such that Afip.< 1.5
a large weight is eritieal (figs 14 and 15) especially
for airplane B (the last-mentioned effeet is due
to a strong dependence of Afina, on aireraft weight,
fig, 13).

In all cases the second maximum AL, is critical
for large aircraft weight.

The value of the maximum acceleration in-

crement during a manoceuvre where § = 8 max
or Fua = 100 kg increases at decreasing airplane
woight,

5.4 Varigtion of moment of ineriia (other para-
meters constant),

The dependeneec of maximum tail load inere-
ments and acceleration inerements on the moment
of inertia with respect to the wy-axis, is determined
with a checked manceuvre (k=—2). Again the
maximum deflection of the elevator is Spw ==
— 0436 rad (or reduced such that F,, = 100 kg},
whereas this “emergeney manoenvre” has beep
reduced to Anp., =15 as well. The moment of
inertia is varied in the range indicated in ta.ble 1.

In al! cases (figs 16, 17, 18 and 19) the first
maxzimum is critieal at a larqe moment of inertia.
This effect of increasing AL, with inereasing I,
Is relatively strong.

In manoeuvres where 8 = 8,0, OF Foax = 100 ke
the second mazimawm is eritical at a small moment
of inertia. Due to reduction of this manceuvre to
Alpa =15 a large moment of inertia yields the
largest AL,, cxcept at speed V4 (figs 18 and 19},
but in this case the effect is small

The maximum ecceleration increment (§=8max
or Foe =100 kg) is eritical at a small value of
the moment of inertia.

55 Combined variation of cenire of graovity, weight
and moment of inertia.

The qualitative results of par. 52 up to and
including 5.4, are summarized in table 2.

In order to detcrmine most critical manoeuvre
loads in practiee, it appears that the trends shown
in table 2 do not define immediately the most
adverse weight configuration.

It should he emphasized that the equilibrium
(or balaneing)} tail load (the tail load before the
initiation of the manoceuvre) must be taken into
account in determining the eritical load. This
equilibrium tail load changes with centre of gravity
position and weight. For example, a forward centre
of grawty causes a large downward balancing load

-and in spite of the fact that AL, (downward) due

to a checked manoeuvre at VA ig eritical at an
aft centre of gravity (figs 10 and 11), the total
aerodynamic tail load has its maximum value at
a forwerd centre of gravity.
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5.6° Variation of elevator deflection-time history.

The assumed ‘triangular clevator deflection-time
history has been changed by :

1. variation of the ratio k=—-2 (fig. 1) with

_constant v, (£, = 0.3 sec).

2. variation of the “control time” 7, with con-
stant k& (k=2). ’

9.6.1 Variation of kHT
1
The extreme values of the inerements of the
tail load AL, and AL, and the maximum acceler-
ation Inerement: Aﬂma, at speeds V4, Ve and Vp
for both airplanes A and B, were computed for
elevator motions with different values of the
parameter k. The control time ¢, was 0.3 sec in
all cases, ‘ '
Again two types of manoceuvres were inves-
tigated :

1. an “emergency case” §=8m“=——l(}.436 rad
or a value of § sueh that F.— 100 kg,

2. a “normal case”
;1.5.

The results in the “emergency case”
in figs 20 up to 25 inclusive.

It will be evident that AL, is independent of k.

As can be expected the value of Anp. is in-
creasing with & (k== corresponds to an un-
checked manoeuvre).

A remarkable effeet can be nofed in the graphs
concerning AL,. At relatively low values of k
the graphs of /.\.L2 show ¢ maximum (AL, m) and
at larger values of k, AT, increases again {air-
plane A) or iz still deereasing (airplane B).

The effeet can be explained hy the faet that
for large values of % at the instant of the seecond
maximum the elevafor hos' not yet refurned to
reutral. (See for instance the example of fig. 5.)
According to equation (14), in figure 26 AL, has
been split up in three eomponents:

'AL:¢[¢1;+¢2‘;+¢38]
=AL;+ A'L;“}' Al

where § is such that Afga

are shown

in the case of airplane A and speed V4. Ii ean
" be seen -that above a certain value of & a down-
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ward component ALy exists at the instant of the -

second maximum (in the example of fig. 26 this
effect iz amplified by the component AL for low
values of k). This non-zero value of AL; cxplains
the origin of a' maximum of AL, as a function
of k.

At each speed a vaIue of A%, can be computed
where the airplane is stalling (defined hy Cpoax).
In fact, this phenomenon introduces at each speed
a ARmac-limitation at low values of & The results
of this A, -limitation are analogous to the resulis
of, the reduction to' Anga, = 1.5, discussed in this
report as the *“normal case”, '

It can be concluded that in order to determine
extreme values of the tail load increment AL, in

‘dition (CAR cascs 4, and D).

the emérgency case (maximum elevator deflection
of maximum stick force) the investigation ean he
confined to low values of k. .

The tail load increments AL, and AL,  as
funetions of airvspeed (fig. 27) are analogous of

both ajreraft A and B if 8§ =35,,.. In the ecase
of airplane A a stick force restriction oeecurs at
Ve==95m see™ (Fmx =100 kg) and at higher
speeds the ineremental tail loads are reduced con-
siderably. :

The results in the “acrmal case” (8 such that
ANy == 1.0) are shown in figs ‘28 up to 33 in-

" clusive.

Exireme valnes of AL, AL, and F .. as fune-
tions of %k arise at- the smallest possible k& or
(for AL, at V,) at such k that Anu.. =15 and
5 = Srmax- ' ,

It was tried to plot tail load inerements and
stiek forees as functions of speed for distinet values
of %k, but this did not lead to results, which eould
add to a better understanding of the effeei of
speed on the tail leads occurring during the
“normal case” pull ups. The different curves
appeared to eross each other in a rather confusing
way, which did not permit any useful conelusion.
Moreover, the graphs for the two aireraft consider-
ed did not show similar trends.

The maximum stick forces required to perform.
the manoenvres for aireraft B, noted in the graphs

(figs 23 up to 25 inel. and 31 up 4o 33 inel) are

very small. - Again it should be stressed, that
I, contains only the stick foree required to
balance the aerodynamic hinge moment (see also
par. 5.1.5); thlS part of the actual stick foree is
indicated as “Fo.. (aecrodyn)” in all graphs. Air-
craft B iIs fitted with a bobweight at the control
eolumn, The stick force required to balance the
bobweight (Fue) is derived in Appendix C and
the example of this appendix shows that the real
stick foree can he considerahly larger than F .
{asrodyn). As the piteh angle 8 is requived to
obtain Fy and 6 was. not eomputed, Fao 18 not
available.

Aircraft A is not fitted with a hobweight.

In order to compare the computed maximum
tail loads with the loads according to . present
airworthiness requirements the latter are com-
puted with the aid of the “Civil Air Regulatlonq”
§ 4b. 213 (e).

The unchecked pull-up load at speed V4 (CAR -

§ 4b.213 (e) (1)) is determined by means of an
approximate ~“rational” analysis, as often used
by. U. S. aireraft firms.
. The checked manoeuvre loads at V. and Vo
(§ 4b. 213 (e) (2) and (3)) are ealenldted assum-
ing that the piteching moment due to the additional
tail load is balanced hy the pitching moment of
inertia of the airplane.

Balancing tail loads are determined in the 1g-
condition (CAR cases 4, and D,) and 2.5 y-con-
These' balancing
loads are added to the manoeuvre loads (aceording
to CAR) in order to obtain the total tail loads.
"The balancing tail load in the 1 g-condition,




.

of course, is used to determine the total tail load
obtained by means of the rational analysis used
in this report. ' :

The comparison is made in figs 34 and 35 at
speeds V4 and Vp respectively. The results of the
rational analysis are the same as those of figs 31
and 33.

It is shown in ﬁgq 34 and 35 that the checked

manoeuvre-CAR loads corvespond to values of &
which are rather large if these requirements are
intended to cover emergency conditions as well
Especially the first maximum total tail load L, at
speed Vp is much too small.

The total tail loads for two avhitrary selected
values of k& (k=92 and k=25) as functions of
airspeed are compared with the CAR values in
fig. 38.

From the figs 34 to 36 incl it can be eoncluded,
that the checked manceuvre loads derived from
the pitching aceelerations preseribed hy CAR are
not realistic for emergency econditions (often
characterized hy k—=2), even if the restriction
ARy == 1.5 would be acceptable in this ecase.

In order to obtain the total aercdynamic tail
load, the balancing tail load must be taken into
account. This halancing load varies with speed.
In fig. 37 the fotal acrodynamic tail loads I,
and L. and the balaneing load are shown as
functions of speed. This figure is taken from
fig. 27 by adding the balancing load at each speed.

It can be coneluded that, apart from gust loads,
the extreme value of the second maximum is eritical
for bending and shear of the tailplane at all speeds;
this eonclusion for the airplanes A and B need
not he true for other airplanes.

562 Variation of the control time 1.

As stated in par. 5.6, the elevator deflection-
time history ean be varied in’a second way hy
means of the “control time” r,. Manoeuvrés with
different r, and constant & (k=2) were investi-

gated for both airplanes A and B (figs 38 wup

to fig. 43 inclusive). The loads of airplane A for
differcnt values of = are obtained from ref. 5
and are reproduced here.

In the “emergency case” ()6—_—:6,““ or Ko =
100 kg) it appears that the first maximum of the
tail load is eritical for the smallest possible value
of 7, (aerodynamie lag neglected). The second
maximum of the tail lIoad AL, and the maximum
acceleration inerement Ang,, are critical for finite
and non-zero values of 1.
“optimum control times” for AL, and Ang.
{ref. B). The optimum econtrol tune r, does not
show a significant dependence on the flight speed,
hence the real optimum econtrol time ¢, decreases
with increasing airspeed. The “stalhng limit”
referred to in par. 5.1, however, in some ecases,
causes an optimum control time », at the (first)
intersection of the eurves AL, (% = 8,mx) and
AL, (Afmac,,,,,). The last-mentioned curve is not
indicated in the graphe. In the case of airplane A
the ‘“stalling limit” is not important, for the

restriction Fro.. =100 kg (speeds ¥, and Vi)
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Hence there exist

reduces the manoeuvre to ARy, < Afta 1) (figs
39 and 40).

In the “normal case” (Ahg.x =15 according to
the present airworthiness requirements) the first
maximum AL, is still eritical for the smallest
possible r,. The second maximum AFL,, however,
is critical at the value of r, which helongs to the

(first) intersection of the eurves AL, (3::8,“&,{)
and AL, (AP =105}; this optimum =, will in
general be smaller than the optimum », in the
“emergency case”.

Incremental tail loads for arbitrary values of
t, (£, ==015 see, 0.30 sec, 1.20 sec) as.funeiions
of airspeed are shown in fig. 44 where the manoceu-
vre is restricted by Anm&KQI.S; tail load inerve-
ments derived from CAR are shown as well.

It appears that the manceuvre loads according
to CAR are in general small: they belong (in the
case of airplane B) to a manoeuvre with a control
tlme t, of 1.0 to 1.3 seconds, which is relatively

“slow”,

5.7

In practical rational analyses the design tail
loads are often caleulated supposing a ehecked
manoeuvre with #, =0.3sec, k=2 and Anpe, =15
It is possible to test this procedure by means of
the results of this report (figs 28 up to 33 inel.
and figs 38 up to 43 incl.) for the two airplanes
investigated. Coneerning the assumption k=2 it
appears that a smaller value of % is more critieal,
apart from the fact whether & < 2 will be realistie.
The assumption ¢, = 0.3 sec appears to he rational
for the second maximum at speed V., but at high-
er speeds the tail load inerements are larger at
a smaller confrol iime. Especlally the first maxi-
mum is very sensitive at small £, and this maximum
roughly doubles for t, =015 sec with respect to
t, =103 see at Vy and Vs. A econtrol time {,=
0.15 sec is not unthinkabie aecording to ref, 6.

On the other hand, in “emergency manocuvres”

(this case with 5= 8max OF pilot effort limitation,
is not included in present requirements) the tail
loads gre much lorger than in the “normal cases”
{compare figs 20 up to 25 inel. with figs 28 up
to 33 inel. for parameter k and see figs 38 up to
43 inel, for parameter £,), The assumptions k=2
and ¢, =03 see. for AL, _ appear to be rational
at Vp; this speed is eritical for airplane B (no pilot
effort limitation, fig. 37) but not for airplane A.

It can be coneluded that the eritical manceuvre
for actual design must he chosen by means of
rational investigation of the ecritical clevator de-
flection-time history for each airplane configuration
in normal cases (Afya. =1.5).

Mmeover attention has to he paid to the need
of an “eomergency case” (limited by pilot effort
and airplane stalling) to he inserted in structural
airworthiness requirements,

Discussion,

6 Conclusions.

. 6.1 Starting from a preseribed triangular elevator

defleetion-time history, checked manoeuvres with




two airplanes of quite different sizes were cal-
culated. The parameters varied were the control
time t, (the time in which the elevator reaches
its maximum deflection} and the ratio & between
the time after which the elevator has returned to
its initial position and ¢,.
carried out for two airplanes at different speeds
and weight configurations.

Two types of manoeuvres are discussed through-
out this report: a so-called “emergency ecase”,
where the pilot deflects the elevator due to a
sudden event in a very short time (limited by
maximum pilot effort) and a "“normal case” ae-
cording to present airworthiness requirements.

6.2 In most respects similar results were obtained
for both airplane types investigated.

6.3 In “emergency cases” (3:'8,,,“ or Fo..=
100 kg) the second maximum of the tail load in-
crement has critical values both in the case of
variation of r, and in the ease of variation of k,
for finite and non-zero values of r, and % respeet-
ively. The first maximum of the tail load inerement
is eritical for -, =20, that is to say for the smallest
possible 7, (neglecting acrodynamic lag).

The maximum normal aceeleration inerement is
eritical for a finite and non-zero r, and k==
(unchecked manoeuvre).

6.4 In “normal cases” (An,nﬂx< 1.5) both the

first and second maximum of tail load increment

are critical for the smallest possible %, except the
second maximum at low speeds (k > 1). The first
maximum is critieal at the smallest possible «,,
the second one again at a finite and non-zero -, .

6.5 The pitehing accelerations in the “normal
cases” as funetions of speed are compared with
those preseribed by CAR. 4bh. Tt appears that the
CAR-values are related to relatively slow elevators
movements, not resulting in eritieal tail loads,

6.6 For both airplane types investigated the
second maximum of the tail load (including the
equilibrium load) was larger than the first maxi-
mum (absolute values) at all speeds, but this fact
need not necessarily be true for other airplanes.

The caleulations were
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The loading of the tail plane due to the first
maximum is different from that of the second
maximum (in some cases comparable with a gust
loading).

6.7 The required stick forees are quite different
for both airplanes (no servo or hooster and fitted
with spring tab respectively). The stick forces
required to balance the acrodynamic hinge moment
were very small in the case of the spring tab;
additional stick forees due to a hobweight fitted
in this airplane can be considerable, but have not
heen computed.

6.8 It is recommendable to choose the manoeuvre

loads in the case An\\\/\ 1.5 by means of a rational
determination of the criteal elevator-time deflection
history for each airplane configuration.

Moreover it is coneluded that attention has
to be paid to the need of an *“emergency ecase”
(limited by pilot effort) to be inserted in strue-
tural airworthiness requirements.
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APPENDIX A,

The coefficients &’ of equation (8).
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APPENDIX B.

The coefficients of equation (14).
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. "APPENBIX C.
Stick force required to balance bobweight.

CONCENTRATED WEIGHT
OF STICK AND BOBWEIGHT/ B

Fhw

o

HORIZONTAL

distance between hinge H and centre of
gravity of hobweight and stick.

control column defleetion,

fixed angle. .

angle of pitech of airplane. .

weight of bobweight and stick.

length of control eolumn. -

load factor at control eolumn.

I

o
[ T

Equilibrium with respect to hinge H (assump-
tion: f=0).

JSEL (k]
b, = W [/,,— i (1 Xz) da

e )

n' Wy acos [90°— (8 + & +.0] =Fypplecos

2 W,asin (B+ ¢+ 0)

. leos B ’

In the case of airplane B: W,a= 597 kgm
g =209°

I =0.797 m.

Fﬁm:

Hence
sin (8 + 6 + 29°9)

P ="T48n cos B

ke,

Ezxample

Airplane B, speed Vo, § = 8pm, k=5, r=r,
(Fueronlyn:F’max:15.3 kg) See flgS 5 a.ngl 6.

2
An = (.431 %g—: + 3.56 see? § =1°14"at r=r1,
{estimated).
Estimated distanee between ¢. . and control eoclumn
115 m.

11.5 X 3.56

W= 0431+ O =560k
}8 o 1509'.

' : o0 .
Fro—17.48 X 5.604 329528 560 ke

cos 15°97

Total stick force at =1+, 30.9 kg + 153 kg =
46.2 kg,

i
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TABLE 1,

Numerical data.

Airplane A Airplane B Airplane A Airplane B
S T0 1357 - m? 7 (specd V) 0.95 1.00 —
S, 16 387 m? n (speed V¢ and Vp) 1.00 1.00 -
—x:+ h 10.892 16.080 m Vs 78.0 94.3 m sec!
b 9127 14,173 m Ve 110.0 1341 m sec
%—Z (.360 0.395 — Vo 1414 178.4 m gec—t
K N B ¢ 1.1 — b, = dC 0 —0.117 rad-?
dev;
dac,, o dCu .
(5 ')w 5680 | 4699 rad-" by =21 019 —0.119 rad-
dC[,) _ T _dCy s
( =) 410 350 rdt | b, = — 0175 rad
(an ) 2.00 258 rad-t My 1.89 2.09 m—*
ds /¢ .
(%ﬁ—f—‘) — 0.50 — 0.416 rad-! S 3.182 10.12 m?
I
p 0.12492 kg sec> m— | e 0.356 0.808 m
g 9.8067 m see—? C — 0.02604 rad kgt
Airplane A Airplane B
Weight variation ) 15,500 kg «— 13,000 kg 48,081 kg «— 28,900 kg
Moment of inertia variation 249,700 kgm? «—— 185,000 kgm? 1,170,000 kgm? «—» 1,051,794 kgm?
Centre of gravity variation 2835 9% MAC «— 43.03 % MAC 1350 % MAC «—— 34.87 % MAC

Elevator and spring tab deflections:

Smex == = 0436 rad (== 25°) (Airplane A and B)
8, = + 0349 rad (+ 20°) (Airplane B)
8¢,,,= — 0.140 rad (— 8°) (Airplane B).

in
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TABLE 2,

Critical eonditions for AL,, AL, and Any,.

|

critical condition

kind of manoeuvre centre? of weight mt.)men.t of
gravity 1nertia
3 == Spmax OF Flay = 100 kg — ¥ —" large
AL, -
‘ forward
ANy = 1.5 (except at Vi) large large
8 = B OT Frnax == 100 ke aft large small
AL,
Ay = 1.5 aft large *)
A B == Bag OF Fs = 100 kg aft small small

*} ' —— means

that the effeet is small,
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A stress diffusion problem for a wedge-shaped

plate with three

by

stiffeners

J. P, BENTHEM and J. VAN DER VOOREN,

Summary,

The isotropic wedge has two edge-stiffencers of equal normal rigidity and a stiffener along the bigector of the wedge,

A force acts at the vertex in the direction of the latier stiffener,
with one stiffener, are extended for the present case.

Methods, previously wsed by the authors for wedges

The method involves usc of the Mellin transform and the numerical solution of two simultaneous singular integral

equations of the Guuchy type.

Applications are given for a half wedge angle « == 80°, i.e. for the half plane with an cdge-stiffener and a stiffener

noermal to the edge, for different stiffness ratios of the stiffencrs.

This investigation has been performed under
contract with the Netherlands Aijreraft Develop-
ment Board (N.IV.).

Cont.eni.s.

1 Introduetion. ‘

2  Btress-strain relations and expressions for the
stress flows in oblique coordinates.

3 The houndary eonditions and the application
of the Mellin transform..

4 The position of the poles of Ti[s] and Tn{s]
in the complex s-plane,

Appendix A — The relation between f, [ic—l
T]

and [, l}g—], respectively
(5] and &, [s].

Appendix B — Analytical integration of some
terms in eqs. (8.41) and (8.42)
with the aid of (8.43).

6 tables.

14 figures.

Netations. 1)

5 Evaluation of expansions for i;[x] and tu[y]. 1, 11 spffices referring to stiffeners, see
6 Application of the inverse Mellin transform fig. 1. _ ) _
to the funetional equations. T, Y oblique coordinates, defined in
fig. 2.
7 Determination of the funetions #,, [i], a angle between coordinate axes, or
> _ the constant defined in table 2.
12 [i} s For [_y_J and h,, [l] U, Nz, Uy, 4,  displacements defined.in fig. 3.
] £ ] £, By, Y obligue straincomponents, defined
8 Solution of the problem for a===/2, n (2.1). , ‘
8.1 The expansions for the functions #[z] = Aig symmetrical matrix, defined in
t![x] and t;(;[[y]. (2_2)'
811 Small values of = and y. Szy Sy ¢ oblique stressflowcomponents, see
812 Large values of z and y. fig. 2.
8.1.2.1 Expansion for #[z], fi, gi functlons of the cmnplex variable
812.2 Bxpansion for fuly]. [z + Aiy].
: - gi’ first derivative of ¢ with respect
8.2 Determination of the functions h,, [?], to {z + Ay].

Aj
fie [—:—] y T [—gml, hyy [%] in case ¢ ==/2. N
8.3 Final solutions for f;[z] and ix[y] by

roots of eq. (2.4).
normal foree in stiffener.

means of the infegral equations, 1) Bome quantities are replaced by dimensionless quanti-

¢ fies with the sid of f E‘11%(35)}{ hout (ultimatly)

3, ies wi e ald ¢ ormula withou ultimately

9. Way fo solution for some other cases. altering their notation (the mdmém “al” s dropped
10, References, S

again),



E Young’s modulns of the wedge
material.

v Poisson’s ratio of the wedge ma-
terial (0.3).

i plate thickness of the wedge.

E, Young’s modulus of a stiffener,

Ay crosssectional area of a stiffener.

P load at the vertex, sce fig. 1.

t obligue stressflow component ¢
along stiffener 1.

tu obligque stressflow component #

along stiffener 1L.
t 1 -+ s cose, see eq. (3.16).

Hs] Mellin transform of k{z]}, accord-

ing to H{s] :-f h[z]z’;_1 dz
g

where ¢ is a complex variable.

BP normal foree in the edge-stiffener
at the vertex, see eq. (4.1).

¢ (EsAs)I/ (EaAs)n, ratio of nor-
mal stiffnesses of the stiffeners
I and II. i

£ obligue coordinate, synonymous
0 .

7 oblique coordinate, synonymous
to vy.

fij, 4, j=1,2 functions, defined in eqs. (6.11)
... (8.14).

@ ¥ . . .
Ry E‘J y Hega {_97-] functions, defined in egs. (6.20),
- (6.21).

P;, Pq (=8P) normal forces in the stiffeners I
and IT at the vertex.

g symbaol, replacing 4 and ¢

9, [#/Z] funetions, defined in eqs. (8.44)

g, [2/{] AT

t*[E], tr*[E]
t**[¢], tu**[{]

expansions for £[{] and tu[] in
case << 1, see egs. {(843).
expansions for #[{] and fu{Z] in
ease ¢ >> 1, see egs. (8.43).

1 Infroduetion,

In ref. 1, Korer solved the problem of the
diffusion of a load from a semi-infinite edge-
stiffener into an isotropic half plane. The shear
flow acting from the stiffener on the half plane
is £{x]. Its Mellin transform is

o

T(s] = [ tz]a"" da. (1.1)
d
In ref. 1 a-funetional equation
Tls+1}=—2sT[s] eotms (1.2)

iz obtained, wﬁich is solved. From this solution-

t{x] is determined.

In ref. 2 the authors developed a method to deal
with wedge-shaped plates with -one edge-stiffener
and one edge freec. Again the shearflow, acting
from the stiffener on the wedge, is {[z], its Mellin
transform T[s]. A funetional equation

Tls + 1] = Z[s] T[s] (1.3)

42

is obtained, where Z[s] is a known function. The
farther solntion of the problem conld not follow
the lines of ref. 1, since these seem only to be
applicable for the wedge angle «=180° (i.e. the
half plane with semi-infinite edge-stiffener).

The method of ref. 2 is not exact but delivers
answers of high aceuracy, also for the singular
behaviour at #— 0 and the asymptotic behaviour

.at T— 0.

In this paper the method of ref. 2 is further
extended for a case where more than one stiffener
is involved. An isotropic wedge with two edge-
stiffeners of egual normal rigidity and one stiffe-
ner along the bisector of the wedge is investigated.
The loading foree acts at the vertex in the direction
of the latter stiffener. Due to the symmetry of
the configuration, only half of the wedge needs
to be considered. In view of a possible further ex-
tension to anisotropic plates, whieh could be under-
taken, oblique coordinates are used instead of polar
coordinates (see also ref. 3).

Along the bisector-stiffener there is a shear flow
t[x] and along the edge-stiffener a shear flow
tu[y]. Their respective Mellin transforms are

e}

tz] *"

dz

U]

Ti[s]
(1.4)

Tuls] :ftn[y] v dy,
G

Instead of (1.3) two simultaneous funetional
equations

TI[S+1):Z11[S'] T {s]+ le[S’] Tls]
(1.5)
Tulst+1]1=Z,, [s] Ta[s]+ Z,,[s] Tuls]

are obtained,

When the inverse Mellin transform is applied to
these functional equations, two simultancous sin-
gnlar integral equations of the Cauchy type are
obtained. These are to be solved numerically.

Applications are given for a half wedge angle
a=190° 1ie for the half plane with an edge-
stiffener and a stiffener normal to the edge. There
proves to be a logarithmic singularity ay =20,
y=~0

In ref. 1, 2 and in the present paper the bending
stiffness of the edge stiffener is neglected., Cal-
culations where finite bending and shear stiff-
nesses of this stiffener are taken into account are
now under progress.

2 Stressstrain relations and expressions for the
stress flows in oblique coordinates.

Fig. 1 shows the configuration to be analyzed.
As mentioned, only half this configuration (iig. 2)
has to be considered. Fig. 2 also shows the choice
of the oblique coordinate system as well as the sign
conventions used for the stress flows. Finally,
fig. 8 gives the definition of the displacements
and strains, The stress-strain relations for the
isotropic plate will be repeated here for convenience
from ref. 2.
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Along the y-axis (stifferer II) the boundary conditions are found from the equilibrium of a stiffener
element in y-direction and the direction perpendicular to it. Assuming that stiffener IT has only normal
rigidity, these conditions read, according to fig. b,

an.
/ I dy ay
tr
S a
Sx
Ir
fr
_____ e . o e
aw,
Vony | fothp+ ~Lax)
dax : : No
Fig. 4. Equilibrium of an e¢lement of the half stiffener I. Tig. 5. Equilibrium of an element of stiffener IT,
dN :
| 5 Lt 8, cos =0 (8.3)
and o ‘ '
Sey, ginae=21_0, (3.4)
Dimensionless guantities are now introduced by the substitutions f
o BaAdii PEh . - 'P
_ T y = —————— & Ep=— —0 Eg,
En (Ey Ayu % (B, Ay %
_ (E; Aa}ll R 5 — PER s _ P
= E YT L) M YT A
, (3.5)
e PER ; . F '
¢ (E, Aa) “ YT E AN
PE PEhR
« fi=

(CrsrC Tt v v el I

When these expressions are substituted into all equations, and if again the notation “dl” is dropped,
all equations preserve their original shape, with however
P=1 E=1, h=1, Ea=1, A c
81 sIF— (36)
Ea= = 1, Ayy=1 . . :
where I = (Ex As)I/(Es A—a)II- ‘ . (37)

By a twofold differentiation of (3.1) with respeet to z and substitution of the relation:

Yy ¥w | B
o o dy

the condmon (3.1) can be replaced by.eq. (3.8). . ,
The boundary econditions (3.2) and (3.3) are replaced by the ‘egs. (3.9) and (3.10) ‘after using

eq. (3.6), taking into acecount that the strains in the stiffeners T and II are equal to the strains

{ez) y=0 and (&)= in the plate respectively and taking s, =0, sec eq. (3.4).
The boundary condltlons thus become

l

oAl ’ 1 3y 1 as; 1 e __ ‘ V . ’ .
fory=0: Sna o sia %y tga 8 0 - - 68
d{ez) 4. ‘ ' : *
, te —éx—y—c' + (,tl + 8y, €080) =0 (3.9)
and for x =0; Mi;_g);mgo +tn=0 ‘ (3.10)

+

5= 0. : L : (3.11)
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Substitution of the egs. . (2.1),.(2.3), making use of (2. 4) fmally birings. the four boundary conditions
into the desired form. They now, read successwely .

S[{—4dnrfeosat (4,, + A, c08a) hi— (A, + Ay, 008a) - A/Ai ) f. [m] +
4+ {44, + 4, co8a) 27— (TA,+ 44, —d ,cosa) i+ (94,,—84,,co5a) —
— 3 AN Fgiz] + {—4, )ft eos a + _(-Alz + A eosa)d; — (A, +_A12 cosa) +

+ Ayi/as } e gle] ] =0 o (3.12)

‘} c3 ’{(An A A A1z - Als Ai) fi’[-’b'] + (_ An A-iz + 3 Au - A-13 J\i} gi’[:ﬂj +
F(A A2+ Ay — A, 0) 2077 [5] } + (B + sy 0080) =0, (3.13)
5 {(Aog hi— A M) My ] + (A di o+ A 0%) g [hy] + (— A M+ A, 203 ay) 907 [My]) + t ::14(3)

. (3.
a2 { i) ] —2gilay] — ) ¢/ DAy]} =0 - (315)
Furthermore, expressions for (i1 + sy, cos ) and ty are available from (2.3). They read

fre=t + Sy eosae==3 {(cosa—r;) fi[z] + (2 cosa) gilx]+ (cosa—N) x gi’[m'] (3.16)
' b= ZA; { fillay] — (uy) o Ryl - (3.17)

where the ~ sign denotes a shear stress flow as it is defined in orthogonal coordinates.

Application of the Mellin transforms fw st .da: to (3.12), (3.i3), (3.16) and j‘o ...yﬂ_i dy to
(3.14), (3.15), (3.17) delivers in accordg.nct} with ref. 3, pag. 14, formulas (4.8), (4(.)9)
5 [—{— A AP cosat (A, + Ay cosa)hi— (A, + Ay eoSa) + Agp/hi ) (s— 1) Fifs —1] —
(4, + Ay cosa)rd — (T4, + 44— Ay cosa)hi + (9 Ay, —3 A cosia) — 3. A,0/0 )
s —1) Gy[s—1]H{ -~ A rPcosa + (;412 + A, cos a) Ai— (A, + 4, 008a) +
+ Ap/h ) s(s— DG [s—1] ] = (3.8)

el {_"(Aul\l +A12_‘A1:~1’\ )(s'—l'Fi[S—l] — (— AIIA' + 3A12'—‘A‘13A)

(s—1) Gi[s — 1]+ (A® + Ay — A h)s (s—1) Gi[s—11) 1+ Ty[s] =0 (3.19)
3 (A — A )N T (s~ VP[5 — 1] — (A, + 4,200 " (s — 1) Gils— 1]+
b (—Ap T AN s (s —1) Gi[s—1) ) 3 Tu[s] =0 (3.20)
. z{af-SFi[s}—2‘\‘--2—“@[@ + AT Gls] =0 (3.21)
T\s] = { (cosa—A)Fils] + 2 cos a Gals] — (cos @ — A)sGils] } (3:22)
o Tuls] =3 {— At ”F [s]—a.“’sG [s11} (3.23)
where generally H[s] — [ Rlz]) 2" da.

After replacement of (s—1) by s in egs..(3.18), (3.19) and (3.20) and dropping the bar again,
the six expressions (3.18) ... (3.23} will now he specialized for the isotropic wedge. This is done by
inserting the symmetrical matrix Ay of eq. (2.2), with the factor Eh replaced by 1, and taking

Mo=exp *ia. . (3.24)

+

The result is given in a somewhat differe;lt succession in table 1, which contains the formulas
(8.25) — (3.28).
In eqguation (3.27)

e = (Ed)/ (B:d)u. | (3.29)

, From the eqs. (3.23), (3.24),l(3.25) and {3.26) F,[s], F,ls], &, [s) and G [ ] ecan be solved with
Cramer’s rule, as functions of T:[s] and Tu[s]. They read ,
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4{sin2(s —Da-+ (s—1)sin2a) Figs=[{—s(s —2)(1 + v) sin*a’
-——s(l—v} sin eeos (s — 1) e sin (s-—2) a—2{l—v)eosasin (s— 1) asin (s —2) «
+ 2(3——2) sin o sin (s—l) €08 {(s—2)a}x 1{ (s(l——-v) —2(s~—2)
8in & cOS (s—l)acos (s—2) a+2(1——v) @08 e 608 (s —1)- asin (s—2) a
4 51 —+) Sinae()Sa} TI[S] + [2(s~ﬁ2) { (cosasin (s—2) @

4 sin (s — 1) &) —t—-%cOSaGOS (s——2) 1] Tuls] (3.30}
and

4{sin2s—Dat (s—1sin2a) Gro[s) == [— { 2 —s(1 + »)) sina
— (1 + v) cos (s —1) asin (s—2)a}xFi{(1l—v)eoset+ (1+v)cos(s—1)a
cos (s—2) a}] Tuls] + { —2sinacos (s—2)a = 2icosacos (s— 2)a } Tuls]. (3.31)
| " Tnserting of (3.31) and (3.32) into (3.29) and (3.30) delivers, after some tedious but straightforward
algebra, the funetional equations for Ti[s] and Ty [s.]. They are

& —(1+ ) (3—v) sin(s —Da—(s—1)* (14 v)?sin*a +4

T:bs+1] ——s 7 sin2(s—1Jat (s—D)sinZa Tnls]
e

Tuls +1] =— S 2LOE V)sgz(}ssil;)in+(s(s__1~)1§ ;tfch e Tulsi
e @3

from which ecxpansions for #[z] and tuly] will be developed, for small and large values of =, ¥
respectively, by means of inverse Mellin transforms.

In a way, similar to that used in ref. 2, it ean be proved that & (2] and #n[y] are analytic functions.
4 The position of the poles of 7:[¢] and Ty[s] in the complex s-plane,

The normal foree in the stiffener I at y=10 be -
P,=gP. (4.1)

As the stiffeners I and II are connected at the vertex the normal force in stiffener I at =0 is
Pr=(1—2fcosa) P. : (4.2}

In (41) and (4.2) B is an unknown constant.
It is now possible to obtain values for 7:[1] and Ty[1]

T (1] = / i dz . (4.3)
0 -
Tufl) = [ tudy B CES
i1
Introduction of the origina! coordinates and shear flows with egs. (8.5) now delivers
. . L »
Te (1] = Ff A dx:%:@ﬂe cos @ | (4.5)
Tn[l = f tndy—-——— B ' (‘16)

The equations (4.5) and (4,6) express the additional requirement that all stresses vanish at infinity.

From (3.32) and (3.33), in which Tyls 1, Tils + 1], Tuls) and Tuls + 1] occur, it follows that these
four functions must be defined in a strip of the eomplex s-plane which is parallel to the imaginary axis
and wider than 1. Because the integrals (4.3) and (4.4) are certainly convergent (see 4.5), (4.6)),
the point s=1 must lie in the afore mentioned strip. ' .
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The integration for the inverse MMellin transform must also take place thereim.
- Thus
Lo a, < Bes < Reb,
Rea, <1 < Reb, (4.7)
Rea, + 1< Reb,

In (47), @, and b, (and their complex conjugates @, and b,) are pdles of T[s] or Tuls] or of
both of them. '
The functional equations (3.32) and (3.33) are now written in the form

Ty —_— ‘—ﬁ'— I T b1a ;
[s +1] SN [s] T [s] t1o18] (4.52)
- TIl[S] ) tu[S]
8
TII[S + 1] = — W T [3] —_— tzz[sl (4.8b)
TIl[s] t21 [S]
or
7 [s] % tls—1]
2N[s—1] Tuls] b (s —1]
T1 _1 —_ — 4.9
. ] e{s—1) by [3"—1] tals—1] (4:30)
t,[s—1] toals—1]
%tn{s‘—‘l] TI [6‘]
2N[S—1] tzl[s_’]-] TII[S]
Tn —1 _ — 4.9]3
. : e{s—1) ta[s—1] tiels —1] ( )
t,[s—1] t.fs—1]
whera
Aylsl=— 0+ ) B —v)sin? (s — Da— (s—1)2 {1 4 v)*sin*a+ ¢
tale] =2(s—2)(1 + +) sin @ sin (s —1)a + 4 cos (3—2)&
£als] =2{s(1+v) —4}sin asin (s—1)a + 4cos (s —2)a . {4.10)
fn[s] =—4sin?(s—1) a — dsin?a+ 4
. . N[s]=sin2(s —1) a + (s—1)sin2a. ‘ N
Furthermore, elaboration of the determinant
tals]  tls] 411
A= s gl (411

delivers after substitution of (4.10)

Al=— A+ { =121+ v)sin?2a+ (B3—v)sin?2{s—1)a+
' ' +4(s— 1) sin2asin2(s—1}a}. (4.12)

It appears from {(4.9) and (4.11) that a, generally is the firstecoming zero of sA[s] starting from
Re s=1 in negative direction. From (4.8) it may be expected that b, is the firstcoming zero of
N[s—1] starting from Re s=1 in positive direetion. It can be proved that, for all values of a,
b, =2

Analytical continuation of 7:(s] and Ty[s] outside the strip to the domain Re s> Re b, is done
with the equations (4.8), to the domain Re s < Re «, with the equations (4.9).

It will be apparent from eqs. (4.8) and (4.9) that any pole of T4[s] or Tu[s] in s=yp generally
includes poles in p+ 1, p+ 2, ete. for Re p>1. and in p—1, p—2, ete. for Re p < 1.

So there exist series of poles, cach starting from a “leading” pole in s=p. The alrcady mentioned
poles at s=—ua, and s=50,(=2) are, of course, such “leading” ones.

The situation of any of these poles can he determined from the cquations (4.8) and (4.9). The
leading poles at Ke s <1 are, generally, at the zero’s of sals], the leading poles at Re s > 1 at the
zero’s of N[s—1]. The residues of the leading poles, however, generally cannot be solved from these
equations directly. The residues of the other poles are known linear funetions of the residues of the
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leading poles. Multiple ‘poles, which may oceur, give some complications but present no essential diffi-
culties In chapter 8 dealing with the wedge angle a=m/2, it is shown how the relations between the
residues of the poles are determined.

" 5 Evaluation of expansions for #[z] and f[y].

Expansions for tl[zc] and fy[y] ean be found by application of the residue theorem in the follow-
ing manner (see fig. 6).

I 5
|
I CLOCKWISE CONTOUR
- ANTE- CLOCKWISE
CoNTQUR

Res

|
/

‘."--__

Fig. 6. Integration contours in the complex s-plane in order
to find asymptotic expansions for I, [#} and t, [¥]-

For small values of w,u the integration contour ¢ —i e —»¢-+ {0 may be closed at infinity, in
anti-clockwise direction, thus delivering

' gtioe

- 1 '
i [2] =——— f Ti(slz~* ds=—= % |residues of poles of Ty [s]a;—si (5.1)
2w i oo - Res<i
1 c4im ‘
nly] =——— j Tyuls]y—-% ds= 3 {residues of poles of Tn[s]y-S} (5.2)
271 etim Re s<1

For large values of z,v the integration contour c—iw —» ¢+ 4 o may be closed at infinity in
clockwise direction, thus delivering

c+im
L [2] = 3 {residues of poles of 7' [s]z—%} (5.3)
' He g »1 : '
ctic L - . .
tndyl :—2_1;: f Tplsly —¢ ds=— . b3 ) | residues of poles of Tuls]y—*} (5.4)
. e 8> !
C—100

6 Aﬁplica,tion of the inverse Mellin transform to the functional equatioms.

The functional equations (3.32) and (3.33) are rewritten m the' simple form

Lnfs + 11 =4 0ayls] Tuls] +4 ¢ als] Tuls] (63)
% 1;1[3 + 1] =a,,[s] T:1[s] + ay,fs] Tuls] | , . - (6.2}
where ' T
, (L4 (B—)sin® (s—1)a— (s—1)* (14 v)?sin’a + 4 '
Oy [8] = “ . sin2 (s —Da+ (s—1)sin2a (6'?")
_ 2(s—2)(1+ v)sinasin (s——1)a + dcos (s —2)a
23] ﬁ_" sin2 (s—1lya+ (s—1)sin2« (64)
_ 2{s(1+v)—4}sinasin(s—1)a + 4cos (s —2)a :
O [$] =~ sin2 (s—1at (s—1)sin2« (85)
0, [5] = — —4sin? (s —1)a—4sin*a 1 4 | | (6.6)

gin2 {(s—1)a+ (s—1)sin2a
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It has already heen. discussed that the functions Tifs] and Tuls] are defined within the strip

\' - ' Be a, < Be s <2 '
' ' "Rea, <1, . (6.7)

Thus the functmns Tils +1] and Tuls -+ 1) are defined mthm the strip
Réa,—1<Res<1

Be o, —1 <0 : l {6.8)
et oo 1 e+im
The inverse Mellini transforms ; f ...... z=*ds and ‘ f ...... y~% ds are now applied to
271 im 2axd i .
the funetional equations (6.1) and (6.2) respectively, '
‘The result is
&X o 1 i l
P/P —2 f?l[g]dézc [? f11 [%] ?I[‘f]dé + C-f - f12 [_’] tII "?]d’? (6.9)
0 a ' ¢ _
H =]
1 . (v "1
Pu/p— [ tablin= [ 1|4 bl qoee [ o for | 2 tntote (6.10)
0 g , :
with
c+i o .
T 1 (:s -3
= = 6.11
o 3] = gz | oale) n_‘) ds (6.11)
- ’ a41i ‘
Y 1 YN g
fm' [‘E‘] = ) n_i. ) [w (121[3] (—E—) as - . . (6-12)

and where f,, [—2—:—

] and f,, [_y_] are such that their Mellin transforms are
7

S 2] (@ a(2) —als (e1®)
0

F 2 o(2) ot e
0 .

7 )

énd

The integrals of (6.13) and (6.14) are Cauchy principal values.”

The left-hand sides of (6.9), (6.10) take the
given forms for values of Re s> 0, This require-
ment, together with the requirements (6.8), gives

Gy [5) — = 2. - (6.17)
The function :

for the validity region for s at the present in-
versions

0<Res<1. (6.15)

The formulas (6.9} ... (6.14) ean be verified with
ref. 4, page 308 form. (14), page 341 form. (1)
and ref. 5, page 43 form. (102) which is a faltung
theorem of the Mellin transform.

An attempt to determine fn {—é«] and f,, [—],

by applieation of the inverse Mellin transform to
the right-hand sides of (6.13) and (6.14) resp-
ectively, fails because these right-hand sides do
not tend to zero within their strips of integration
{see (6.153)) for I'm s> =+ w.

Actually, if s=c+y, 0<c<l, y—> 2w,

(3—v)(1+v)?:

+
an[s] - = 5

(6.16)

and

83—+ 3
_ 27 CE—x

has the Mellin transform

B0ty . 1 (@) af2) =

2 x
0 1——
£
_ ﬂ?:ﬂg(l_f_"), cotgms (6.18)
and the funection
2 9
T op—

hag the Mellin transform

E[— ! (1)3_1 d(y_)::-—.?,cotg:rs.
w ¥ vy 7
v (6.19)




In (6.18) and (6.19), the region of s is again °

0<Re s<1

and the integrals are Cauchy prineipal values
(vef. 5, page 345, form. (18)).

Within the strip 0 << Re s < 1, the right-
hand sides of (6.18) and (6.19) tend to zero,
for Im ¢— *oo, in just the same way as do
ay,[s] and a,;[8] (compare eqs. (6.16) and (6.17)).

"If the function h,, [—ig—] and hy,, [%] are intro-

duced according to

] =] +

and

(3—v)(1+v)
27 .

= (6.20)

r m"‘ — mr_l‘.
P/i 2()] fi[£]de c{-][-f

17

+cf%ﬁJQMMM

Pu/P — fmmw—fg J“ha@+[—mJ]mM%—Hf“ dy.

}ﬁﬂ@ﬁ

hﬂ[%]zfm Fﬂ+§ nly (t’;.Zl)

respectively, their Mellin transform are: from

(6.13), (6.14), (6.18) and (6.19)

1,,5] =[] + L)

and

cotg v s {6.22)

H,[s] =a,[s] +2cotgns. {6.23)

The first terms in the right-hand sides of
(6.22) and (6.23) eanmot have poles in the region
(0 << Re s<1, because the second terms do not
have one therein.

These funetions tend to zere exponentialiy with-
in the strip of integration for Jm s— £ and
thus their inverse Mellin transforms converge.

With the aid of (6.20) and (6.21), the integral
equations (6.9}, (6.10) now hecome

There is another way to set up the integral equations (6.9), (6.10) which is more elaborate.
From physical considerations wusing the original eoordinates their form is easily found to be

C s (E A,,),
Pr— | 2h{fldi = 17—

and

&—fnx

In (6.26) and (6.27)
511[$> ‘ﬂ

fzm%MQhH@+wAmemu%ymM

(3-v)(1+v) F el
2 f-—;ﬂ @
(6.24)
(6.25)
(6.26)

_ (B, nf 2 Bh e, [y, €} fo [£)de + (_Eﬁ_f Bh esly, 9] b [n}dn. (6.27)

is the strain along the z-axis due to the loading force of fig. Ta.

e2 (£, 7] is the strain along the z-axis due to the two loading forces of fig. 7h.
eq1 [Y, £] is the strain along the y-axis due to the loading foree of fig. 7a.
e22[Y, 7] Is the strain along the y-axis due to the two loading forces of fig. Th.

y AXis

‘ey‘ezr[’rg]
' x AXIS

€x=€,,[x.§]

h)-

Fig. 7. The wedge without stiffeners with two unit load systems working om it.




-The functions eiy, i: j==1,2, must be determin-
ed along the lines of, for example, ref. 3. If these
ealeulations wounld be carried out, it would appear
that, in the original coordinates,

}GT i [%]:2 Eh ey, [, ¢]

1 fis [f_] = Eh e,,[2,9]

] '; (6.28)
It [?[zm e, £]

1

1
f'zz [i] =Eh 822.[_1],1]].
n 7

The function e,[x & has a singularity at
£=14¢, the charaeter of which is easily detected
by noting that in the vicinity of the unit foree
of fig. Ta the funetion e, (=, £] behaves as if it
were aeting in an infinite plate,
vieinity of x=2~£ (ref. 6, chapter 4, paragraph 38)

e[z, £] — ;11[37, §l =
i (B3—v){1 + v} 1

Thus, in the .

- 2FEh 2 g (829)

It may now be noted that £.e,(z, £] suggests

\ the function that was separated from f, [-Q%l
[

in (6.20),

The singularity of e.ly,7] at y =14 is easily
deiected by recognizing the faet that, in the
vicinity of one of the unit forces of fig. Th, the
stress-distribution behaves as if this force were
acting on a half plane

Thus, in the vieinity of y =17 (ref. §, chapter 4,
paragraph 33),

- 1 2 1
€22 [y, 7)] —> £ [y, T,l] = —
n—Y

Eh =
Tt may now be noted that we,, [y, 4] suggests
Y

. 6.30)

the funetion that was separated from f,,

n (6:21).

Becanse, in view of

] 2

functions, certain symmetry properties may be
expectod betwéen these functions and their res-
pective Mellin transforms a,,[s] and a,,[s].

In appendix A, it is proved that these relations
are

(6.28),

are related to influence

the functions

L e ==t (631)

and
—a,l—s + 1] =ua,[s + 1]. (6.32)

Indeed, (6.32) proves to be true for (6.4) and
(6.5). .

7 Determination of the functions h,, [%J, fiz [i], fu [%] and 2, [QJ
7 7

The functions eoncerned are repeated here for convenience

ckiwm
" [i 1 f ’(1+v)(_3-—v)sin2(s—-1)a+(SH])2(1+v)2sin2a~—4+
Ylel T 2w . sin2{(s —1}a + (s —1) sin2a
P -3
IO DA C k0 B! t (i‘i) ds (7.1)
2 £
| 1 e+im ) ) .
z]_ 2{s —2)(1 + v)sinesin (s —1)a + 4 cos (s —2)a a:)“s 72
\ fie L}}—zﬂ.%c im— sin2(s —a + (¢—Vsin2« (;_ ds (7:2)
‘ 1 e+iw l '
| £ [l}= . _2{s(I+v)—4}sinesin (s —1)a + 4cos (s—2)a (l) ds (13)
| é 2t e sin2(s — e+ (s—1)sin2 « ¢
‘ 1 c4im 4 - 1) +4 - 4 ) » R
5 [i}___. ‘ [ 4sin (s—1e sin? @ — Kl . 74
| =gl =277 J s1n2(s_~1)a+(s—1)sinza_+2c°tg”f(q) ds (74)
In these equations the requirement for ¢ is that of (6.15)
D<e<l, (7.5)

For values of x/¢ x/n, v/¢ y/n <1, the integration line ¢—iw — ¢ + i may be closed at in-

‘ finity in anti-elockwise direction, like is done in fig, 6, and the integrals are determined as the sum
of an infinite series, derived with the aid of the residue theorem. Likewise, for values of /¢, x/n,

y/& y/m>1, the contour may be eclosed in clockwise direction and again the residue theorem is
applied. Generally, the obtained infinite series cannot be summed into a elosed form. However, for

e=r7/2 (sec the numerical example) it turns out that the integrals in question, (7.1

given in eclosed form.,

.. (74}, can be
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8 'Solution of the problem for a=a=/2.

81 The expansions for the functions hlz] =t[x) and tyly].
8.11 Small values of = and y.

In view of thé egs. {4.8) ... (4.12), the poles of Ti[s] and Ty[s] in the region Res <1 may be
expected at the zero’s of (a=—=m/2)

s sint (s —1)mwr="0. ) (8.1)

T-hese are s=-—n, where n=20, 1, 2, 3 ...... .
The Laurent expansions of T:[s] and Tu[s] for s =1 be (¢ 0)

T+ el=%+a11et aroe® + a3e® + .o ' (8.2a)
Tl el =8+ byyet biae® + bage o (8.2b)
From (45) and (4.6) it is determmed that the first terms of these expansmns must be § and S

respectively. The' coefficlénts aq4, 219, b1 1 by,3 ... are unknown,
With the aid of (4.9) the Laurent expansmns for 7;[s] and Tyu[s] in s=0 are determined from

T1 {1+ e] 7 tiale]
T — 2 N[e] Tull + &) tzz[s]
TI [E] — e A[g] ' (8.3&)
and
Clgtale] T[]
—9N[e] | tale] Tull+ €] -
= . 8.3b
TII[‘E] ce A[S] ( )
According to (4.10), (411) and (4.12) °
N[:] =sin2 (s —1) %-:——Tre-i' ......
. et .
tll[a]z—(1+v)(3—v)(1-— 1 + oo )——-( —28+1)(1+v2)+4 .......
wie?
ta[e ]‘—2(eﬁ2)(1+v) ( + o )+4(—1+ g e ) (8.4)
2.2 2.2
tule]l =2 {c(l+v) —4} (_1+ ’?8” + o ) +4(_1+ "85 +)
tple] = —dsin® (e — 1) % SRR AR .
Ale] =— (1 + v) (B — ) =2+ ...... .
When it is supposed that T'i[e] and Tule] can be given by the Laurent expansions ,
Ty [e] == oo + 22 fﬂ-—hr o + dgre F oo C o (85a)
& ' ' .
. b b
Tule] = oo + ";;2_ + ==L+ by + bose e (8.5b)
it ean be found from (8.2)... (8.5) that
ay_p =0 forn=3 4, .... ' ' (3.6)
1
4 (— + vﬁ)
d (8.7)

G- T ) B
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: - —28 8 1 4y
Go-1= "3, o — (1+)(3— 7 by A+ v (B—~vr . (8.3)
and . g .
bo—n=0. for n=3, 4, ....., (8.9)
1
( + v,ﬁ')
bo,-2 = m‘ (810)
—928(1 4+ 1 9 3 1 4y ’
bog=-—B TV 2 % 4 a— TN YL A ,
0. G —vn B MM TTAT G M AT e, 8D
It may thus be concluded that the poles of T:[s] and T[s] in s=0 are of order 2.
 Applieation of the residue theorem, like is done in (5.1), (5.2), and remembering that
. I 2
gf=gmi=etnr=l —elng + —Eu‘;—m)f+ ...... (8.12)
and . '
. I .
y—“—_—y-e':e*!fﬂyml—elny+(i21:~qi+ ...... {8.13)
delivers, when only the poles in s=0 are taken into account,
t; [.’.B] = —Gp,-2 Inz -+ Aoy, (8.14&)
Iyl =—Dbo olny +bo_4. : . {8.14b)
With the aid of (8.7), (8.8), (816) and (811), introducing the unknown
—28 . 8 1 v
_ R U S L A
4 B—v)r o g (1+ ) (B— v)r T b 1+ )3 —v)=’
the eqs. {8.14) heecome
1
#[z] AT @ nr+ A (8.15a)
1 1
4 (—.’I“ vﬁ) 2 ('7'["1,8)
tuly] =— — - L iay——°t T4 A (8.15b)
(3 —v) _

71+ ) (3 —v)

812 Large values of w and Y.
8.1.2.1 Ezpansion for fz].

In view of equations (4.8) and (410) the poiés of T{s] and Tyls] mm the region Re 8> 1 may
be expected at the zero’s of

gin (8 —2)r=0.

They are §==2 + #, where n=0, 1, 2, 3, ......
With the aid of (4 8} the Laurent cxpansions for Tl[s] and Tu(s] in ¢=2 are determined from

el +s)

T2+ ¢] = Trl+e]  -—till + e (R.16a)
AIN[1+e] | Tull+ e 1+ €]
and
Pafg o) = — — 2Fe | TaliFel  —full+e] | (8.16b)
N1+ | Tu[l+e] £ [1 + ¢]
According to (4.10) ' ' T
B+ e] = (1 ) (3 e ) 2 ”Te R R P
t,2[1+£]:2(——1+s)(1+v)s% +4e-2’1+ ...... R
till+ el =2 {1+ 1+ v)—‘.l:}s‘% +45§+ ...... & F (8.17)

t[l + el =—=n2e> + ... et 1.
N1+ e]=enr-t ... .




The Laurent expansions for T([1 4+ ¢} and Tyufl -+ ¢] have alveady been given in (§2). When for
Ti{2 + ¢] and Tu[2 + ¢] Laurent expansions are assumed in the form

Ty 12 + edm= oo + “3-1 t g + gg e+ e, (8.182)
Tul2 + ] =..... ¢ bi‘i + bao + boa g F e (8.18b)
it ean be found from (8.16)... (8.18) that
‘ s, _n =1 for ﬂ=2, 3, ... ) ) {8.19)
dg,_1 =—¢fm (6.20)
ban=0for n=1, 2, ...... . {8.21)

From (821) it is seen that Ty [s] has no pole at s=2.
Application of the residue theorem, like is done in (5.4), and remembering that

7 =g 2 (1l —clnz + ... )

delivers, when from 7:[(s] only the simple pole in s==2 is taken into account,
ti{2] = = w-2. (8.22)
rig
8.1.1.2 Ezxpansion for iuly].
For this purpose the coefficients aag and bgy in (8.18) are computed. They read
Ay == — 5‘“’;- {2+ day, +=B(1—)) . (8.23)

1—v
5 -

by — (8.24)

With the aid of (4.8b) the Laurent expansion for Ty[s] in s=23 is determined from
2+ e T (2 + €] —t,4[2 + &]

Tul3 4 el =— —— (8.25)
_ N2+ ¢] Tu[2 + &] t,,[2 + ]
where
v
I f2 + e] =dv+ 21+ v) — 3 24+ ...
12 +e] =—4'+ 2%+ ...
wie?
Ni2+e]l=—mne [1-!- 5 +] {8.26)
1 . 1 Te ]
| S S L NP |
Whpn the Laurent expansion for 7T:[3 -+ ¢] is supposed to be
b b
Tyul3 4 ] = ...... + 0t “‘;-* + bae + bgre t+ ...... (8.27)
E
it can be found from (B.25)...(8.27) that
by_n=0 for n=3, 4 ..... (8.28)
8¢ :
bﬂ._2= : vida_ 4 = — ) v . (829)
8 4 3
by _qge=— —byg + ’ a1 + —Laz,o- (8.30)
. ar T T

In (8.30) byy is given in (824), no_y in (8.20), bui agp remains unknown, in spite of (8.23), thus
also b 3,—1- . . 7
. Applieation of the residue theorem, like is done in (5.4), and remembering that

y Sty 3(1l—elny + ... )

delivers, when from Ty[s] only the double pole in $==38.is taken into account,
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tnly] =bs 2y 2 lny—bs_1y? (8.31)
or with (8.29) and (8.30) :

talyl == yy~3lny + By~? (8.32)

where the coefficient B remains unknown.

8.2 Determination of the functions h,, [%J  fus [i] for [ } and h,, [_] n case a—=n=/2.
7 7

Tn this special case, a==/2, these funetions read from (7.1) ... {74)

ctiwm
s s+ DA+
= Lot he,
+ Efs%’: :)2 _4a ;;):8—4 + _(i%@_—_"lcotgws f (-?—)_ds (8.33)
' e+icw
fn [%]z 2;‘ f ‘2-5_39;?)_(%)—3‘1& (8.34)

e—iw s ——

2
The funetion f,, [i] is not mentioned here explicitly because it can easily be found from f,, [%—]
17
with the expression (see appendix A, eq. (A.6))
1 1
T fz] [_—

[ =— 2 tate (835)

by taking % = %::z.

Furthermore,

ol

The integrations (8.33), (834) and (8.36), where aceording to ch‘apter T 0<e<], can be carried
out in a direet way, without use of the residue theorem, with the aid of ref. 4, chapter VII. This
delivers -

[ ?_ 2+ 2¢co8sw
sins

+ Zeotgws t (%)—sds. (8.36)

C‘—-l 60

. Lg _ (=25 4 5) (a/8)? +w(«{1;2: (1;/)5():5}/53) F(—v—6v+3) 537
fn %] =i— {—11—% (8.39)
Ry, {%} :_% T;’EIT?? (8.40)

The functions (8.37) ...(840) are identical with those alvready derived by Melan, ref. T, for
the half plane, ' .

8.3 Final solutions for t[z] and tufy] by means of the iniegral equations.

In the integral equations (6.24) and (6.25), the quantities £ and n may be replaced by any other
symbol. Introduction of the symbol ¢ in both equations and substitution of (8.37) ... (8.40), (4.1) and
(4.2), delivers, when additionally (6.24) is divided by ¢,

2 o ——..fv+5)(x/é')2+(4v2+12)($/§)+(——v —6v+3)
A [e1d 1
¢ [,f hldlal + f;: SENERST

1+ B—y L Chig] 4f1 v— (z/{)?
LR 1~—$/é’ {1+ (/0P

L] dg

Ty ullldE=1/c (8.41)
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4 Fa 1—v{y/)? 2 i hele] . 2 bul f]
— u{{ld T I a7z — =1,
ﬁ“f”““ T (ATt f T+ yg ? fz 14z fg;)
where according to the egs. (8.15), (8.22), (8.32) '
. 4 (% +8)
Bl =d— g yEey f
: o
* 2(Laug) oL )
ta*[f]=A —. (B3 —v) w1+ {8=v) tnd (8.43)

el = g

8¢
|

t**[{]

!

:B{"s—? vg;aﬂné’:().

The single asterisk stands for small, the double for large values of ¢£.
Since {n[¢] tends very rapidly to zero for large values of £, as compared with #[{], it was considered

allowable to put t**[{] =0 for values of ¢ greater
The functions

{(v?—2v - B)(x/2)?

+ (4 +12)(2/) +

than a suitably chosen large value of £

(—v2—6yv -+ 8)

{1+ (&/0)}°

v— (&/¢)?
{1+ (&/8)2}?
1—vv(y/L)t

{1+ @/}

are given, as far as necessary, in table 3 for the
value v=10.3. Some of the integrands, occurring
n (8§41) and (842), can be considerably simpli-
fied in the ranges for small, vespectively large
values of ¢ (see appendix B).

As both integral equations (8.41) and (8.42) .
are of the same type as that, given in ref. 2,
eq. (5.11), the method for numerical evaluation,
givenr in chapter 5 and table 1 of that reference,
is applicable here, but for one additional require-
ment. When #&H* iy*, ** and {** (see eq.
{8.43)) introduce respectively g5, My, fo
and ngp unknowns, whereas the numbers of un-
known values of #: and Iy, at moderate values
of z and ¥, are respectively mg, and ngi, the
total number of unknowns in each of the egua-
tions (8.41) and (8.42) can be denoted

(ﬂ1t+”1n) + (o + non) T

+ (ﬂ3[+n3")=q+2 (847)
Assuming, that for the necessary relations -be-
" tween the unknowns a number of ¢+ 1 is de--
livered by the {g;+ 1)-fold application of eq.
(8.41) and a number of gu -+ 1 by the (gum + 1)-
fold application of eq. (8.42) the relation

LG+ qu=¢ (8.48)

must hold. This does not necessarﬂy 1mp1y that
¢ =gu. However, as the expansions #*[z] and
t*[y] contain the same unknown coefficients and
consist of the same mumber of terms (sec eqs.
{8.43)), whereas the expansions &**[x] and’

=g, [SG/C} (8.44)
=g, {2/¢] (8.45)
=g, [y/{] (8.46)

tu**[y] are both known (see again eqs. (8.43)),
it seems advisable to take in this case
| . .
g1 == N3 11

and {8.49)

. g1 = du
in order to obtain an equal degree of accuracy
in the solutions for &[{x] and #uly].

The scheme of evaluation for both integral equa-
tions, in order to separate the necessary system
of linear relations between the unknowns into two
basic eguations, is given in table 2 (this table is
the same as table 1 of ref 2, but for some minor
alterations).

As the evaluation sehemes for both integral
equations will” be taken alike, only one of them
will be determined here,

From thé eqs. {8.43) two eonclusions can be
drawn, namely

(a1 + i) =2

and (8.50)
. (’1’12‘1 + 'Rgln) =1.
Henee, see €qs. (8.47), (8.48) and (8.49),
gy ==qre=q/2 {8.51)

so ¢ must be an even number,
Taking the value ¢=18, which means from
eq. (8.47) a system of 20 linear equations, delivers

R O (8m)
When, for p; is assumed the value
L =11 (8.53)




it can directly be concluded from table 2, that

1 =21

and (8.54)

&= 12.

With the expression z,=38a"! (see table 2)
the values of z, and y, become with a=2

p, = §.210 = 1024 3
Ty, = 5.2%0 == 1048576 5 .

For 5 is, for some values of the stiffness ratio ¢,
taken the value 4.107%, hence

(8.55)

=10~% 272 for n >1
Zn=10 mns (8.56)
Z, =10
and the values of z, and z, become
= 0.0512
ey (8.57)
o = 52.4288.

It will be obvious from table 2 that, for use
of the Simpson rule,

O=3h(lz +42, +22,+.....

in that region where the integrations are carried

o

-1

out numerically, the quantities z;—w; and
§;-——wy have to be even numbers. Together with

the information given in table 2, that w1> 1
and sI ry it follows that

wr=2 4, 6, ...... {8.58)
and

51=22, 24, 26, ....... (8.59)

In view of the further requirements for w; and s;;
mentioned in table 2, the choice

=2 8.60
8= 24 ( ) )
is reliable, as then

T [Ty = 2,/ 0, = 271° == 0.000977

and (8.61)
Lz, /s, = 2,/ 0, = 2712 = 0000244
which is small enough, :
With the aid of the eqs. (8.44) ... 8.46), (8.52)

.. (8.60), appendix B and the introduction of the
logarithmic eoordinates

t=eo*
T == e** (8.62)
y == et

the integral equations (8.41) and (8.42) become

To4n
2 4 . 2 o]l*
(? * TT-'»U‘I.‘Z-F!I) (}[ tl [C}dc + f t‘{C ¢ dé* +
29 4n
T L n 94 40 .
v [ gl apemage B0 GIEL gy
am Zin 2w *¥g4n 1—e” 1249~%
I T B IO T e E S N R T NN
RSl @z — [ —dz -+
2 ﬂfnim ‘: 2 mgfn-n £ ren
Yo4n Y% pn
el AL LS BEA TS TS L (863)
12+n h "24n
where n=0...9, and
Tatn 240
—p——— [ g [ g e aiemae +
Y 24 0 "”"2+n
Lo Ya4n ¥™24n
= f A g + [ a*[£)dg + [ aleo)et" e +
" @3 ¥24n
#2440 .
_ 2 f tlI[C‘] *» 2 f t]][C ] dC‘: O (8.64)
o Vg 10712 1o ' ‘

where again, n=0... 9.
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Tn (863) and (8.64) only the integrals, contain-  3a b on el erpi
ng H* tu*, 6** and fu®*, are solved analytically. ! T
The other terms are numerically evaluated with J\T\Q\
the aid of Simpson’s rule. Those involving a 2 R\
Cauchy principal value are numerically evaluated \\ - x
with the aid of the special rule that is developed - N\ L
in ref. 2, appendix C. The so derived basic "= oy
equations, stemming from (8.63) and (8.64), are A
given in tables 4 and 5. Further caleulations were -
performed on the N.L.R. digital computer ZEBRA o \EALE (10—
and results were obtained for the stifiness ratios e
c=14, 14, Y%, 1, 2, 4, 8. In all these cases in \ SOLUTIONS FOR ty [x) AND typiy!
{8.55) the value of § was lb.10-% . IN CASE OF STIFFNESS RATIO
Figures 8...14 give curves ofL%—;i—)i tlx] w? C'{ESASJI/E"S’H“
1
v A ]
and (_g%l}%)l tuly] as funetions of —(E% x "j\ \\\
N 1,
and __Eh y respectively. In these figures FOR BEHAVIOUR x,y—
(EsAa)I \ R x,y—0
tr[x] and fu[y] are actual shearflows and x and ¥y LOBARITMIE. SINGULARITY)
actual coordinates (shearflows and coordinates O Ty SRR
with “dimensions”). The way of (3.5) to make g ‘ e ool
quantities dimensionless .w1t.h (Esds)n ‘is less i DIMENSINLESS WITH (3.5),
suitable to compare the figures 8...14, since the Al A- ag13827
stiffness (K,4,); proved to be a more important 1‘. - 018901
parameter than the stiffness {(F;4:)n. In the B WAS NOT COMPUTED
figures 8...14, the curves for Eﬁ_ﬁ:)_l t1[x]
differ very little. This means that the stiffness
of the stiffener 11 ((E4,}yn) is of little influence -
wt ot w? wf ’ fa too Tig. 9.

b £h
x A
T agi AN T

(Eg At {Eg dg) (Eg Ag/ (Eg As) ¥
=553 v or 2L 1y L o o S L e
4
] hd T T
] N .
|| RIS
N — X \\ —— —wetpix) ) x
\k s FiEsAgly ™ 3 (EgAg)z
LY i ! Y
. 5
\\ AN l}E, Aglpr AN 16 Asir
\ \\{Es Aist tix) _ 1] \ 155! Ai 5 J ”
PEh PEn (T T
(E5AglT (£ AglT ‘
penerth) \ - —heh - tarts]
SOLUTIONS FOR fy [x} AND tryiy} \ SOLUTIONS FOR tp (x] AND trrivi
I CASE OF STFFNESS RATIG IN CASE OF STIFFNESS RATHO
c.zEsns)I/rss Agdyp et ) ex rs,A,JI/(E, ), a2
Y 0t
T
1 ‘\ ]
114}
\\ \
\ FOR BEHAVIBUR x,y ~=0 " FOR BEHAVIDUR x,y==0
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AND X,y —~o0 SEE (0.15], AND x,y--=o0o0 SEE {0.15),
(8.22),08.32), WHERE t7(x] [ 8.22),16.32), WHERE typlx]
o AND typ [y} ARE MADE ANG tp [y} ARE MADE
— DIMENSIONLESS WITH (1.5), DIMENSIONLESS WITH (351,
l‘. 1‘| A« 0.020481 4:-0087702
1 \I p- 014190 p- 624230
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on the shear flow along stiffener I. At large
values of z- for all cases™)
(B4 1 Eh

For ¢==1, values of &[x] and tn[‘y] are given
in table 6

xj ~ (8.65)

9 Way to solution for some other cases.

The formulas of section 8 (a=—=/2) are not
applicable to the cases ¢==0 and c=cw. The
ease ¢ = a0 (no edge stiffener present) requires a
geparate {reatment, using similar methods. How-
ever, for that problem Korrer and HEwns (ref. 8)
already gave a solution with the aid of another
method, which seems not to be applicable to the
case ¢ o,

The case ¢=0 (only an edge stiffener iz pre-
seni along the houndary of the half plane) was
already dealt with by MuLaw (ref, 9).

< If the loa,dmg foree, aeting at =0, y=0,
is dirécted in the dlI’EthOIl of the edge stlffener,
the stiffener normal 1o the edge remains unstrain-
ed. Then again the problem is reduced to that of
MEeraN (ref. 9).

60

10 References.

1l Korrer, W. T. On the diffusion of load from a stif-
fener into a sheet., Quart. Journ. of Mech. and Appl
Math. Volume VIII, Part 2, June 1955.

2. BextHEM, J. P. and v. . Vooren, J. On the diffusion
"of a load from an edge-stiffener into a wedge-shaped
plate. NLL-TN 8.541, 1939,

3. BextuEm, J, P. and v, D, VoorEN, J. On the stress
probiem of anisotropic wedges. NLL-TN 8. 537.

4, ErpéLyr, A. Tables of integral transforms. Volume I.
Me Graw-Hill Book Comp., New York, 1954.

3. Bymppow, I N, Pourier transforms. Me Graw-Hill Book
Comp., New York, 1851

6. TorosHENKO, 8. and GoOpmER, J, N. Theory of Elasti-
city, Mc Graw-Hill Book Comp., New York, 1951,

7. MeLaN, E., Der Spannungszustand der durch eine Ein-
zelkraft im innern beanspruchten Halbscheibe. Zeitschrift
fiir angewandte Mathematik und Mechanik, Band 12,
Seite 343, 1932,

8. Korrer, W. T. and Hews, A, M, The diffusion of a
load from a stiffener into a semi-infinite plate, (in
Duteh), Unpublished Paper of the Lab. Appl Mech.
of the Techu. Univ.,, Delft, 1957,

9. MzLaw, E., Ein Beitrag zur Theorie geschweisster Ver-
bindungen. Ingemieur-Archiv, Band III, Seite 123, 1932.

APPENDIX A.

The relation between f,, [ﬂ] and f, [%], respectively a,,[s] and a,,]s].
- : ely . o,

For the free wedge, loaded hy the systems of figs. 7a and 7b, the following theorem is wvalid.
The work done by the loading system of fig. 7a due to the displacements stemming from the loading
system of fiz. 7b is equal to the work done by the loading system of fig. Tb due to the displacements

stemining from the loading system of fig. Ta.

Using the notations of figs, 7a and 7b and assuming that at mfmlty the displacements along the‘

a0

£

f eraly 7] d =2 f e (), £) dy.
u

With eqs. {6.28) this can be rewritten in the form

[ e (@)= (g )

&y

_edges and the bisector are zero, this theorem reads in formula

As (_y_) and (E—) may be replaced by any other symbol, (A.2) is rewritten in the form
7]

3

1/q
Taking g =0 in (A3} it is obvious that

from (A.3) and (A4)

Hence,

and as ¢ is variable

f 1121 dZI—ffm [-—} %dz: fofm[z] dz.
_ q

(A1)
(A2)
9%
(A.3)
dz=0. (A4)
q
- f Fule] dz (A.5)

1y This fallows from :(8.22), where ¢ [z],and z are dimensionless accordingly (8.35).
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AL R

Application of the Mellin transform

an

f Pt dz on both sides of (A.6)
i

delivers, aeccording to ref. 4, chapter VI, form. (3) and (4)

tpl—s F 1] =—ayu[s+1] (A7)
or, replacing s by —s
85 + 1] =—ay[—s + 1], ) {A.8)
APPENDIX B.

Ané,lytica,l integration of some terms in egs. (8.41) and (8.42) with the aid of (8.43).

In eq. (8.42) the two terms '
2 tnf¢] 2 tu[{]
SRR L B | (B0

2 [emmar+ 2 [ wogac=o | (B2)

may be simplified to

when ¢ 1s small with respeet to y.
‘Under the same assumption the term

401 1w
Tt ey 5

of (8.42) may be simplified to

*[21 dt. | (B4)
Wihen, on the other hand, ¢ is large with respect to y, (B.3) can satisfactorily be replaced by

4 1L
= f T e (B.5)

Next, the last three terms in the left hand side of eq. (8.41) will be considered.
The integral ,

4 v— z
23 F s (;”f) s tald) 4 (B.6)
may be replaced by
—47]- ¢ tu®[¢] dg, when (z/) is large (B.7)
and by
—4;_1“ f —tf%[—g]— af, when (z/¢) is small (B.8)

In just the same way the integral

_f 1 (VP—2v+5){(x/0)?+ (42 +12) (/) + (—v*—6v + 3)
¢ T+ (/D)°

t(Lh (B.9)

may be replaced by




and by

(v*—2v

2x

(— =6y
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+5

2

+3) f tﬁ"‘g[é'} d¢, when (x/é) is small.

Finally, when ¢ is small with respect te =z, _t-he integral

may be rveplaced by

2

(1+v) (3—v)
N

(14 ) (8 —v) fi
4

[ o

t¢]
1—x/g

f t®(¢] dé‘, when {x/é‘) Is large

24

(B.10)

(B.11)

(B.12)

(B.13)
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TABLE 2. . _ i

Scheme for the numerical evaluation of an integral equation of the type

1 1tz F1ot
Bft +0[_h td-i»D/—J £1d Ej LIS 7 1 £ T )
A+B |t [2/£)H[£1d¢ LLa/E19 (8¢ + T ;/ e
. d -
Over this part ¢ is described by the Over this part t is described by the expansion
. expansion ¥, see egs. (8.43), which . ' t** see eqs. (8.48), which eontains n, unknown
\ contains n, unknown ecoefficients eoetficients '
I E——— -
“\h'ﬁ\.h n; unknown
ordinates ¢
g ?
- +
= T tn{-n-,;
g
75
—— 1, T, Ty ' Tz Lp?) Ty Bogg 1) Scale for Inxa, Inl,
e — : z
g + 1 coordinates z.,,, \ by =12n = a1 for n }1
(m = 0 ... q) which are i &y =Ty =0
i mused at the (g + 1)-fold The value of a must be such that oseillations,
Evaluation of the integral i application of the inte- ! that could be present in ¢, can be deseribed
equation with z value z. —~-)-T gral equation’ . adequately (see ref, 2, appendix B)
Analytically | Numerically [ Analytieally
w must be such that z, (w >1) A z, (s >7) s must be such that
in this regon £ € z;  Evaluation with z value 2., ->y i "in this region { » =z,
Analytically ] Numerically I Analytieally
Twgm ) ‘L Ty + 0
_ Evaluation with z value z., —>|
Analytically I Numerically Analytieally
Tutq (W q K < p) ' Tsyq

') Experience has shown that if z 4 g <r the methed of sclation leads to dlvergent results, Tf z-}- ¢ = r the results are convergent. With #z + g =r no experience
has yet been obtained.

*) There is however no objection against z > p

%) In eq. {8.42) x is to be replaced by y, t[{'] =ty [{], g B1=0(), C=0
Ineq (841) vl =t k], ¢ L1=tuld], F=0
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TABLE 3.

Funetions ¢,, g, and g, of (8.44)

z/L,y/ g, [#/¢] g, [2/¢] g, [4/¢)
218 + 0.0000171280 — 0.0000000000145519 — 0.00000000000436557
a1 +0. 342559 —0. 582076 —0, 174623
16 +0. 685117 —0. 232831 —0. 698494
915 + 0. 137023 —0. 931324 —0, 279397
914 +0. 274044 —0. 372529 —0. 111759
29 + 0. 548079 —0. 149012 —0. 447035
12 + 0. 109613 —0, 596046 —0. 178814
pIE +0. 219212 -—0. 938418 —0 715255,
910 4+ 0. 438370 —0. 953675 —0, 286102
o + 0. 876521 —0. 381466 —0. 114439
o8 + 0. 175216 —0. 152582 . —0. 457726
o7 + 0. 350062 —0. 610266 —0. 183046
26 + 0. 698523 — 0. 244004 —0. 731469
g5 + 0.138976 — 0. 974372 — 0, 291446
o -+ 0.274437 —0.. 387137 — 0. 114763
23 + 0.531344 — 0. 150769 —0. 430769
92 + 0.979120 — 0. 543253 — 0. 131488
2 + 1.62185 — 0.148000 —0. 800000
1 + 2.24500 — 0.175000 + 0.175000
9-1 + 2.49259 + 0.0320000 + 0.592000
2-2 + 2.29408 + (.210880 + 0.869204
9-3 + 1.91396 + 0.275692 + 0.964923
-+ 4+ 1.58407 + 0.293793 + 0.991071
9-3 + 1.36830 4 0.208440 - + 0.997756
2-6 + 1.24495 + 0.299610 + 0.999439
97 -+ 1.17899 + 0.299902 + 0.959860
3-8 + 1.14488 + 0.299976 + 0.999965
2-¢ + 1.12754 + 0.299994 + 0.999991
210 + 1.11879 + 0.299998 + 0.999998
g 4 1.11441 + 0.300000 -+ 1.00000
9-12 + 1.11220 + 0.300000 + 1.00000
913 + 1.11110 + 0.300000 -+ 1.00000
2-14 + 1,11055 + 0.300000 + 1.00000
915 + 1.11027 + 0.300000 + 1.00000
g-18 + 111014 + 0.300000 + 1.00000
2-17 + 1.11007 + 0.300000 + 1.06000
2-1 + 1.11003 + 0.300000 + 1.00000
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- TABLE 4.

Evaluation of integral equation (8.63) into a system of ten linear relations
between: the unknowns.

term coeffieient
A +0.0002. 2% 1/¢+0.00124279
B —0.0000150862 . 27, n, 1/c+0.000222226 . 27, 1/¢ —0.0000937451 n+ 0.00138097

i gan | +0.0000462100.27.  1/c--0.000287371

toaaa | +0.000369680 .2n.  1/c+0.00229963

It 44n +0.000369680 .27,  1/¢+0.00230097

i 5.a | 000147872 .20,  1/c+0.00921437

—
trogin | H0.00147872 .20, 1/c+0.00923486

t 74w | 4000591488 .2, 1/¢40.0370966

tr g4n +0.00591488 .2n. 1/e-+0.0373932

tt g+a +-0.0236596 20, 1/¢+0.151912

ti104n o H0.0236596  .2n.  1/c+0.127023

f11en | 00946380 .2n.  1/c+1.00313

ti 19 4a || T0.0473190 .20, - 1/c+0.0360373

o134 —0.914223
boaen — 0144438
b 150 —0.308519
t 164 —0.158853
17 , 0331679
184 —0.170682
19 cn —0.346936
t o0 o 0174956
tooten . —0.351449
fiozan —0.176115
f o934 n —0.352622

13 QT —0.0882052
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TABLE 4,
term coefficient
tr 94 g —0.000000230554
tn g4m —0.000(0448882
It 4an —0.00000897738
fi 540 —0.0000718117
i g+ a —0.000143563
tnr 74 n —0.00114657
o5 oyn —0.00227777
i oem —0.0177414
te10 + 0 —0.0319631
tr 11+ ~—0.174156
fii2 4m —0.102964
tu_lg n -+ 0.0376523
tir1a 4 a +0.123780
tn 15 :T +0.324414
tu g+ n +0.172857
tr 17 40 +0.351183
tyigen +0.176280
b 19 +n +0.352903
tiog +n +0.176495

right ' (1/6) (0.0000502874.2% .1, 1/¢ —0.000740754.27 . 1/¢+40.000312484.1n 4 0.995395)

hand
side l

+ ¢ (0.000000345648 . 2-*n)

In this hasie equation n="0,...., 9.

ty* =A4—(1/c+ 0.3 8)(0.251437 p -— 3.84389)
when p= 2...... 11

ty,* ==509295818 . ¢.2-2p when p=21...... 33

tup“' =A — 0.235785(1/c+0.3 BY—(1/c+0.3 8) (0.251437 p — 3.84389)
when p= 2 ...... 11

tup‘“ =0 when p=21_..... 31

The unknowns are 4.3 . tlm ...... trygr Btrggeeeees tll-zo-
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TABLE 5.

Evaluation of integral equation (8.64) into a system of ten linear relations
between the unknowns.

term coefficient

A + 0.0001 . 2n — 0000000182138

g — 0.00000754312 . 20 . n + 0.000104039 . 2» + 0.6300000137389 n—1
tr g +:j —— 0.0000000841661
f 34m ) — 0.00000134664
t 4in — 0.00000269310
t 5im — 0.0000215395
t gin — 0.0000430370
t 7an | — 0.000342953
t ogan | — 0.000675224
t 9in — 0.00506898
b oam — 0.00773628
t 11 +n — 0.00941382
tr 124, + 0102964 -
ts 1340 + 0.696623
ft 1440 + 0.511408
tt 15+n + 1.13545
t 16 +n | + 0.583111
117 40 ' + 1.17409
1840 : 4 0.588034
tr 104m + 1.17656
t 204 n + 0.588343
toien . + 117672
tr 99 4n + 0.588363
tr 93 4 + 117673
fr 24 4n | + 0.294182
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TABLE 5.

term coefficient

ti o4m + 0.0000231050. 20 + 0.000000280550

by a4n + 0.000184840 .27  + 0.00000448880

tr 4 inm £ 0000184840 .27 -+ 0.00080897730

te 5. n + 0.000739360 .20 -+ 0.0000718262

B 64n +0.000739360 2% + 0.000143679

ty 7 i +0.00295744 . 2n  + 0.00115027

i gig |+ 000205744 .2n  + 0.00230731 .
THT + 0.0118298 .20 4 0.0186782

1o o m + 00118298 .20 + 0.00385651

bir s, | + 00473190 .2n.  + 0675185

fit 19 4 + 0.0236596 © .20 -—D.294182

trr 13 5 n —1.85191

14 4 0 — 0.592220

ti 15 4 n —1.19541

1 16 4 n — 0.590671

1740 ! — 117788

t 184 m 0.588508

bt g — 1.17680

tir oo 4 — 0.588373

right (1/¢) (0.0000251438.27 ., n —-0.000346798.2n —0,0000000457964 %+ 0.000000641563)
l:?‘?: — ¢ (0.00000115189.2-n)
In this hasie equation n—=0.,.... 9.

¥ A-—(1/c + 0.3 8)(0.251437 p — 3.84389)
when p—= 2...... 11

L‘IP“ = 5H09295818 . ¢. 2-2p
when p=21...... 33

i, = A— 0.235785 (1/c+0.3 B)—(1/c+0.3 §) (0251437 p —-3.84389)
when p= 2...... 11

tup"“‘ =0 : when p=21 ...... a1

The unknowns are A, B, &, ...m.. fryys birggereees tiry,
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TABLE 6.

Solutions for #[x] and fy{y] in dimensionless form in case
of stiffness ratio ¢ = (F,4)/ {Ed =1

b4 :;OS: gp___;; tifz] tuly]

1 0.00005 3.5787 3.3220

2 0.0001 3.30560 3.0483

3 0.0002 3.0313 2.7745

4 0.0004 27575 2.5008

5 0.0008 24838 . 2.227

6 0.0016 22100 1.9533

7 0.0032 1.9363 1.6796

8 0.0064 1.6625 1.4058

9 6.0128 .1.3888 1.1321
10 (.0256 1.11506 0.85834
11 (.0612 0.84130 0.58460
12 0.1024 0.62190 0.42904
13 0.2048 0.42356 0.28553
14 0.4096 .25452 - 0.16395
15 0.8192 013178 0.080568
16 1.6334 0.056618 0.031575
i7 3.2768 0.020167 0.0096511
18 6.5536 0.0061195 0.0021176
19 13.1072 (0.00034843
20 26.2144 (.000041670

For relations between quantities withount and with dimensions
see formulas (3.5).

For behaviour x,y—0 and x,y— o see - (8.15), (8.22)
and (8.32),

A=-—0.33243, B=029572, B was not computed.
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Oscillating rectangular wings in supersonic flow with
“arbitrary bending and torsion mode shapes.

Part I. Development of the theory.

E. M. DE JAGER.

Summary.

The pressure distribution at the surface of rcetangular harmonieally oseillating wings at supersonic speeds is deter-
mined by aid of Gardner’s method for the solution of the potential equation. The solution is vslid for arbitrary normal

Lift and moment have been caleulated for arbitrary bending and torsion mode shapes.

The nerodynamic derivatives are given in the form of the sum of somo terms each of which consists of two factors,
nna heing a function of the reduced frequency and the Mach number onily, the other one containing the bending or
the torsion mode shape in a very simple way.
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List of symbols,

c veloeity of sound,
l .
Q(X,Y,T) Fw(-'ﬂ,y,t)
A amplitude of translation,
k reduced frequency.
I wing chord:
p (X, ¥) pressore distribution at the wing

outside the Mach waves {rom
leading  edge tips.

Peip (X, Y) pressure distribution at the wing
ingide the Mach waves from
leading edge tips.

Ap (X, Y) edge correction of the pressure
distribution at the wing.

$ wingspan,

i time.

w(x,y,t) downwash distribution at the ng

T2 physical coordinates.




Te ¢ eoordinate of elastic axis,

£ total lift.

;M total moment.

A aspeet ratio.

B(y) hending mode shape.

B; coefficients of polynomial ap-
proximation of the hending mode
shape.

Ch lift coefficient.

Cu moment -eoefficient,

LiY) lift per unit span outside the
Mach waves from the leading
edge tips.

AL(Y) edge correction of the lift per

_ unit span.

L lift, not corrected for the influ-

_ ence of the side edges of the wing,

AL edge correction of the lift;
¢ =L+ AL.

M(Y) moment per unit span outside the
Mach waves from the leading
edge  fips.

AM(Y) edge correction of the moment per

; unit span.

M moment, not corrected for the in.
fluence of the side edges of the

- wing,

AM edge correetion of the moment
O =M + AM.

M Mach number,

s wing area.

T: coefficients of polynomial ap-
proximation of the torsion mode
shape.

[ velocity of the undisturbed flow.

XY Z7T Lorentz’ transformed eoordinates.”

X. X coordinate of elastie, axis.

8 Ve —1.

2 EM

K .342_
cirenlar frequeney.

p density.

(X, Y,0,7) veloeity potential at the wing out-

erip(X, Y, 0, T)

side Maeh  waves from leading
edge tips.
veloeity potential at the wing in-
side Mach waves from leading
edge tips.

Ap(X,Y,0,T) edge corrsction of Velomty po-
tential at the wing.
p amplitude of rotation.

Suhseript B

Subseript T

_ quantities assoeiated with bending

of the wing.

guantities assoeiated with forsion
of the wing.

1 Introduction.

The problem of the harmonically oseillating
rectangular - airfoil at supersonie-speeds has been
investigated by many authors using varicus me-
thods of approach.

Assoming the Mach waves from the leading
edge wing tips do not intersect the opposite side

72

edges, the problem has been solved hy Stewart-
son, Goodman, Rott et. al. for the case that the
normal veloclty, plescrlbed at the wing, is in-
dependent of the spanwise coordinate (see resp.
lit. 1, 2 and 3).

In partleular Stewartson solved the problem by

“using the Laplaee transform of the veloeity po-

tential, Goodman by aid of Gardner’s method for
solving the potential equation (lit. 4) and Roit
hy following a method of Lamb (lit. 5) in- his
treatment of Sommerfeld’s diffraction problem

A solution in the form of a frequency expansion
has been furnished by Watking and Nelson (lit. 6
and 7); these expansions, however, are only valid
in a restrieted range of the frequency, viz. for
an expansion up to the seventh power of the fre-
M1

MZ
where k denotes the reduced frequency and M the
Maeh number (see lit. 7).

All these solutions exhibit the disadvantage of
being only valid for wings which do not deform
in spanwise direction. However, Miles presented
in lit. 8§ a general solution by aid of the Wiener-
Hopf techunique; this solution is alse valid for a
normal veloeity distribution varying in spanwise
direction.

For a survey of all these theories the reader
ig referred to lit. 9. In this report a solution is
presented which is also valid for normal veloeity
distributions varging in spanwise direetion, the
theory is a generalization of Goodman’s method
(lit. 2). The resulting formulae for the pressure
distribution at the wing are rather complicated,
which is also the case in Miles’” theory. However,

quency the range of validity is 0=k =

‘after integrating this pressure distribution over the

wing surface, simple formulae for lift and moment
have heen obtained. It appears that it is possible
to give a good approximation of the lift and the
moment hy expressing them in a number of terms
cach of whieh consists of two factors, one being
a funection of the frequeney and Maech number
only and the other one containing in a very simple
way the variation of the downwash distribution
in spanwise direction.

This report contains the development of the
theory and formulae are given for lift and moment
due to translation and piteh; the amplitude of
the oscillation may be an arbitrary function of
the spanwise coordinate,

The numerieal results will be presented in a
subsequent paper, ref. 13.

The author wishes to thank Prof, Dr. A, I. van
der Vooren and Prof. Dr. B, van Spiegel for their
helpful suggestions and their valuable criticism in
the preparation of the report; he is also obliged to
the members of the compuiational section of the
National Aeronautical Research Institute.

2 The fundamental equatipns and their solution.
21 The boundary velue problem.

The lnearized equation for the disturbanee
veloeity potential ¢ in unsteady non-viscous irro-
tational compressible flow is given hy:




M 1
(M*— 1) pre — oy —g2 T 2 e + o =0,

(2.1)

where z, ¥ and z are rectangular eoordinates in
streamwise, spanwise and vertical direction res-
pectively, ¢ is the time, M the Mach number and ¢
the speed of sound (see sketeh a).
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The problem of ealculating the pressure distri-
bution on a given rectangular wing in supersonic
flow without interfering tips- is. essentially the
same as that for the guarter infinite wing, since
the flow field behind the rectangular wing does
not influence the flow field at the wing and the
edge effect of one corner is the same as the effect
of the other one due to symmetry,

Therefore we shall consider for the present only
the quarter infinite wing. In keeping with the
concepts of linearized theory the boundary econ-
ditions pertaining to equation (2.1) become now:

(1) the normal velocity, positive in downward
direetion, is given on the wing; this means
(,0;(3;, yr 0: t) == W(SU, y! t) fOI'

<<z <w, 0y <w.

{2) the disturbances are propagated downstream
and they must vanish forward of the Mach
waves originating at the leading edge of the
airfoil; hence they are upstream of the en-
velope of the Mach eones with apices along the
leading edge of the wing o(z, v, 2,4) = 0.

(3) the pressure must vanish off the airfoil, sinee

it is asymmetric with respect to # and only the.

airfoil is eapable of supporting a discontinuity

; . Doyl | B
in pressure; heneeﬁ——U £y + 5 =0 for

0 <—By <2,2=0, where U is the velocity
of the undisturbed flow and g=1"2_1.
By aid of the second boundary condition
we can reduce the last condition to a some-
what simpler form, viz.:
ez, ¥, 0,1) =0 for 0 < — By < z.
Equation (2.1) ean be simplified by using the
well-known Lorentz transformation, viz.:
_% _ B _B
= 1 Y——uT’y, Z—TZ,
Bct — Mz
l H
where 1 is a representative length.

T= (2.2)

. The transformed eguation becomes
{2.3)

and the boundary conditions, pertaining tfo this
equation, may be written as:

PXX — PYY T @ZZ — $TT 0

(1) o2(X,Y, + 0, T)==g(X,Y,T) for 0< X <oo,

0 <Y < o, where

o(X, ¥, T) = %w(m, wt) (24

(2) ¢(X,¥Y,+0,T)=04or X < 0 and for ¥ < 0.

This boundary value problem will be solved
by Gardner’s method.

22 Shkort description of Gaerdner’s method for
solving the boundary value problem.

The essence of (Gardner’s method consists in
splitting the four dimeusional boundary value
problems into two three dimensional problems.

For this purpose we infroduce the anxiliary in-
dependent variable £ and the quantities ¢ and Q.
. With a slight modification of Gardner’s method
it is assumed that the funetion ¢ (&, Y, 7, ¢)
satisfies the partial differential equation

(2.5)
and is submitted to the boundary conditions:

oe(X, T, T,8) = g(X, ¥, T)
for {=+0,X >0,

oy — o — ¢ — UEEE: 0,

(2.6)
and

o(X, Y, 7,6 =0 for X <41, (2.7)
whereas the funetion Q(X, Y, Z, T, £) is a solution
of the equation

QEE —QYY—QZZZO, (28)
and is subjected to the conditions
Qz{‘Y, Y’ Z? T‘l S) I::OE(X, Y! T1 E)
: for Z==x=0, Y >0, (2.9)°
WX, YV, Z,T,6H=0
for £> X
(2.10)

Q(Xny:zl T:S}:O
‘ for Z=:0, Y <0,

After the solution of these two houndary value
problems the perturbation velocity potential is
obtained by putting £ =0 in the expression derived
for the function Q(X, Y, Z, T, £); hence

(X, Y, %,T,0) =(X,Y,2,T). (211

It would carry us too far to prove here that
this funetion ¢(X,Y,Z,7T) really satisfies the
boundary value problem pertaining to equation
{2.3); see ref. (4).

Hence we may conclude that the time dependent
boundary value problem in four variables is re-
duced to two houndary value problems in three
variables, each of which is equivalent to a well-
known problem in steady supersonic flow, which
can be solved by means of EKvvard’s theory
(ref. 10).




T4
2.3 The solution of the problem for o(X,Y,T,£). .
"The problem for ¢ is eguivalent to the bouﬁdary value problem of the infinite half plane in steady
supersonic flow. . ’

T
(0.T+X,0)

-l

(X-§.7.0)

i |L‘_é {X.T,.0)
{115

Sketch b

According to the theory of Evvard (ref. 10) the solution appears to be

1 47 dX .
o(X,Y, T, 8) = — —— X, ¥, T, ) it £>0, 2.12
(XY, 1,8 =— fsf 9 Ve > e

The region of integration § consists of the intersection of the forward Maeh cone from the point
(X, T, &) with the plane £=0 (see sketch b). The generators of this cone make an angle of 45° with the

X,-axis. Performing the integration to 7, first, the limits of integration become TV (X — X,)? — &

~for T, and 0 and X— ¢ for X,. In the case of harmonic oscillations the integration to T, can be

performed (see Appendix A) and eq. (2.12) reduces to:

X—¢ ‘
WXV, 1,0 =— [ 9%, V1) I (VE=EV =B} ax i1 £>0, (213)
]
2 kM . |
where «x = & and J, denotes the Bessel function of order zero; k stands for the reduced fregueney
" defined by k== ?v—lLT with v as the frequency of the harmonic oscillation. -

Another form of equation (2.13) can be obtained by substitution of X —X,=2X and the result
becomes: '

L0 X
(X, 7,7, g)—_—:_f g(X — X, ¥, TV, (x I/X?qu) dX it £>0. (2.14)
E .

24 The derivation of the velocity potential on the wing.

The second boundary value problem in the £ Y,Z space is equivalent to the boundary value problem
of the gquarter-infinite wing in steady supersonic flow (see sketch ¢). The coordinate X of the original

Y

M7
L. ‘
YoE X

z

Sketch ¢
problem appears here to be a parameter, which equals the fcoordinate of the leading edge of the
quarter infinite wing. Bince we are only interested in deriving an expression for ¢(X,Y,+ 0,T) for
X>0(X, Y, +0,T)=0 for X < 0) the parameter X may be assumed to be larger than zero. Solving
the houndary value problem for 2 two cases have to be considered, whether ¥+ > X or ¥ + ¢ < X.
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When ¥ + £ < X the potential ©(X,¥,Z,T,£) at the wing will be influenced by the subsonic edge
of the wing; this, however, does not happen when Y + ¢ > X (see sketch d).

Y oE X
Yy

/
(ghyn e
1'“"53‘7/#5}41 1%k E’/'(_“ et

i o e 135
x Yyu E|E0Yt

Mn\[é‘

£
Bketeh 4 |

According to the theory of ref. (10) the potential @ at the wing for ¥ + £> X is given by the
formula: ) '
X Y45—%

XY, 1,8
Q(X,Y,‘l‘O,T,E):—_]:—f UE( )
r
13

ay.dé,, Y +£> X, (2.15)
Vei—éy—o@—1)

Y+ E_’Et

where (X, Y, , T, &) is given by equation {2.13) or {2.14).
Putting now £{==0 in eq. {2.15) we obtain the perturbation velocity potential ¢ at the wing in our
original problem for ¥ > X and hence:

Y—%, — (¥ —¥y)*

or after substituting ¥ — ¥, = Y

\
‘ . . 'X Y .

XY, T¢ .
¢(X,Y,'+0,T)=—%ff %dndg,y>x,
|
|
|
|

‘ 1 F e y—Tore _
o(X,Y,+0,T) “‘—‘ff 7 d¥de, ¥ > X (2.16)
kg
Ve 7

For ¥ + ¢ < X the potential @ at the surface of the wing is given by the expression:

E+Y YHE—E '
X, Y,,T,
n(X,Y,+0,T,g)=_if f e YDAy e
T oy VEEI—O T
X E—t4Y |
1 LG & A S

S S A L e S 07,12
i Eiv s,_[g_y ViE—e)y—T—7)

where ag (X, ¥y, T, £) is given by equation (2.13) or (2.14).

Sinee g(X,Y,T) is only defined for ¥ >0, o(X, Y, T, £) is also defined only for positive values of Y.
Defining, however, «(X,Y, T, §) for negative values of ¥ as the analytieal continuation of o(X, Y, T, £)
for positive values of Y the expression for (X, Y, + 0, T, ¢} may he written as:

x Y+s — ‘
ULT, + 07,5 =— 1SS IL U
Y+E —5, VE—&r— -1,
X =Y )
X’ Yl H T: 31
+ L TT:E“(_T‘E—? —_—
LY Y i (=& —(Y—7)

with ¥ + ¢ < X. ‘
Putting again £=0 we obtain' the velocity potential at the surface of the wing of our original
problem for Y < X, viz.:



6
i l/a—l'—fm e
)"'_'Y+‘El
XY, T,
if "F(’*_‘f)_ Y, withY<X
w Ve — (¥ =7,

Y—§,

or after substituting ¥ —¥,==Y
X +%

1 ‘ UE(X’Y_:I_’TT}EI) —
WX, Y, 4 0,7) —— 2 f f 807 T Gvae, +
T ]/E.z_ﬁyz
) _El 1 -
X 4t - -
M el XY —T,T,8)
S j oi 8 (e, with Y < X. (2.17)
T, ]/Ez_?z
v o2¥—% 1

Comparing equations (2.16) and (2.17) we see at once, that the first term of (2.17) has the same
form as the rlg.ht-hand side of equation (2.16); hence the second term of (2.17) represents the edge
effect of the wing.

3 Determination of the pressure distribution, w(z, y) — g% LU % W By)e™, (33)
31 The boundary condilions on the wing. .
and according to (2.4) the function g(X,Y,T)

The theory of the preceding chapter will now becomes :

be applied to harmonically translating and pitching

wings. Apart from some restrictions, whiech will ' .1 I w T+ IMX

be made later on, the amplitude of the oscillations 9s(X, ¥, T) =1v B B (_E Y) ¢ Bt

are assumed to vary arbitrarily in the direction

of the wing span, viz. the direction of y. e ke B (i y) Pttt (3.4)
The wing surface z—==2(x, y, t} is for the case B

of translati iven b .
aHon 81 v For the case of pitehing the wing surface will

s=z(z,y, )= (y)em (3.1) be given by the equation

where the bending mode shape B(y) is an arbitrary 2(z, 4, 1) = o (1) (. — z) 6™, {3.5)

function of y.. Sinee the bending moment is zero . .
where 2. is the z-coordinate of the elastic axis,

. 2B 2
along the edge of the wing, g - must vanish there ‘'which is assumed to be parallel with the leading
edge of the wing. The torsion mode shape ¢(y)

- and hence . is again agsumed {o be an arbitrary funetion of v,
@B — Since the torsion moment is zero along the wing

e =10 (3.2) d@

- tip, must vanish therc and hence

Since the flow is supposed not to separate from dcv’

the wing surface, the downwash on the wing is X ( de -0 (3.6
given by Ay gy ’
The downwash is now given by the expression

wia,y) = 2 + U 2 =o(y) {iv(e—z) + VY™, (3.7)

and hence aceording to (2.4) the fumetion g{(X,Y,T) becomes for the case of torsion:

_ B ! ( 1\ eqremn
0 (X, 1) =i g (F y) X— X+ k)e

iz L 3 ) ar

— ixepl (Xc + -2"—16) ¢ (% y)e""”"””" . (3.8)
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Substitution of the functions ge(X, ¥, 7) and ¢g(X,Y,T) in formula (2.14) yields expressions for
the funetion o(X,Y,T,£) and when we insert consecutively these expressions into formulae (2.16} and
(2.17) we get the velocity potential at the wing,

3.2 The pressure distribulion in the region of the wing not influenced by the tips.

The pressure jump p over the wing, positive in upward dirvection, can be determined by aid of

the formula:

p 4 4, WX T, H0T) (XY, 0,1

ToU* T IMU. X

where p denotes the density.

The region of the wing, which is not influenced
by the wing tip, i.e. the region ¥ > X, will he
considered first. The veloeity potential in the
point (X, Y, 7) is only determined by the points
of the wing lying within the forward Mach cone
with (X, Y, 7Z) as apex,

Hence the velocity potential at the wing in the
point P(X Y, 0} is only influenced by the points
of the wing lying within the triangle ABP (see
sketch e), o

Y
) ,
/
//
AN Ve
\\P(X,Y.o) // ¥uX
// //
N yd
e
e
x
Sketch o

—: AT , (3.9)

The bending mode shape B (—%— Y) and the

torsion mode shape ¢ (—é— Y) will be approxima,ted

within this triangle by a polynomial of degree n
with coefficients which depend on the spanwise
coordinate of the point P.

The method of caleulation is not limited with
respect to the value of n and consequently the
results of the caleulations can always by improved
by using polynomials of higher degree.

When the aspect ratio of the wing is not small
and the Mach number of the undisturbed flow is
sufficiently large, the iriangle ABP will occupy
a relatively small part of the wing surface. In
this ease the bending mode shape B and the tor-
sion mode shape ¢ will be approximated fairly
well by using polynomials of the second degree.

Hence we may write -

B (% v)—i(m 4+ 5L+ 3,2

8 B
| (3.10)
50(% v)=(1+ TZ%LJF Ta%:—)

with dimensionless coefficients which may wvary
from point to point in spanwise direction.

From the formulae (2.14), (3.4) and (3.10) it follows that the funection o(X, ¥, T, £) in the case of

translation can be written as

;) Y Y2 ixT —
| on(X, Y, T, &) — ixcfl (Bl Bt By _ﬁT) ¢ T os(X, 6), (3.11)
with
¥ —_ — ——
ap(X, £) = — f ¢ E=5 g (VI 2)dX and £> 0. (3.12)

§

In the same way it follows from (2.14), (3.8) and (3.10) that the function «{X,¥,T,£{) in the case

of piteh can be written as:

YL =+ ol (e, 5, f; ) T o (X, —
: i ) Y y? il " .
—ixefil (Xe + '2?) (Tl + ?‘2? T ) T u(X, 8), (3.13)
with
X .
ar(X, §) =— f(X_EE)e"‘M‘*"‘X’ 1, VE_p)ds and £>0. (3.14)

5
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" Inserting (3.11) resp. (3.13) into the expression (2.16) we get the velocity potential at the wing.

After some calculations which are performed in appendix B we obtain for the case of translation
(bending) :

X

f M=K g (XX —
0

2

pu(X, Y, + 0, T) == —ixcple *T [(B + B, % +RB

i X
—%: -]; X J, (X)) — 12 fe“‘““ N g E)dX + i —y_fe"“““x“"’?Jn(;X}df[], (3.15)
K - R .
1]

K

and for the case of pitch (torsion)

er(X, Y, + 0, Ty =ps | X, Y, +0,T; Bhﬁ_(x + T !—
X
— ixcfle T [( T, + ngr + T, %) f MME-D x Xy I, X)dX +

X ’ X
vl f'ﬂr_‘l" f M D T 1 (T)AX — - (kMX + 2) j NN T ) (X)X +
K
0 0

L X [ L% o) ” (3.16)

where o, | X,¥,+0,7; By—— (X + 27‘) Ty| denotes the velocity potential (8.15) for the bending

wing, where the coefficients B;. are veplaced by — (X +- 3% ) Ty, he=1, 2, 3,

Using equation (3.9} we get finally the pressure on the wing in the region ¥ > X ; for the case of
translation :

. X
2 N _ .y
Ve (B B B ) ) i [ @D g Toin 4
‘ . - §
B , 3 M B i b (X -
C ot E ?“’T XJo(kX) & - = X T, (xX) +‘Tfe =D 7 (X)aX +
i B é ‘
X
+132Mfew(x"‘“ ?Jo(@)dfﬂ, (3.17)

0
-and for the case of piteh:

Pr(X,¥)  pa ( ' ‘ |
== i 1T
1 pU? 3 U2 iB" = +2]., Wt

=

' .ox. C
2] - Ty — e p—
+4"sz Ke“‘T[Jr zxﬁ""( +Tﬁ£+ T, g )fe”‘”“"’—“" X 7, («X)dX —
0
7 T, (M |
— (M + @2 X) (T + T, ﬁ+ T, fe"‘*"‘"’— ﬂ: LTXJO(KX)H

X

<

— iz (M + ixp2X) f FME-D 5 ( TV +
- :
_H : -X'.‘}'.—'_ o
+ ZT { M2+ g(ixMX + 2) } fe'““"X‘X’XJO(KX)dX +
I B oy '
+ Mp? f gHMH-D Jo(xf)d;f]. (3.18)

1]

iy . o = - S S
The integrals f e *MX=D Fnj («X)dX are tabulalated by Vera Huckel in ref. (11).
' 0
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3.3 The pressure distribution in the region of the
wing tips,

We shalll now consider the region of the wing
tip, i.e. the region where 0 < ¥ < X.

The velocity potential in this region is given
by equation (2.17). The first term of the right-
hand side of this equation is exactly the same
expression as the right-hand side of equation
{2.16). _

The velocity potential giip in the region 0 < Y
<. X can thus be splitted into two parts, viz. one
part ¢ corresponding with the velocity potential
in the region ¥ > X and the other part Ag, which
represents the eorrection of ¢ due to the presence
of the edge of the wing, or in formmla:

pp(X, ¥, + 0, 1) =
o(X,¥,4 0,T) + 2p(X, ¥, +0,T), (3.19)

where (X, Y, + 0, T) is given by equuation (2.16)
and ap(X,Y,+0,T) by .

A (X, Y, + 0, T) =

X +E:I. ¢ J—
+l_f [ GE(XsY—‘Yrng'j)
<Y< X (3.20)

The pressure distribution p.,(X,¥) in the
region of the wing tip ean accordingly be written
as:

dY dg,
Y 2¥—§

peip(X, ¥) =p(X,Y) + Ap(X,Y), (321)

where p(X,Y) is given -by eq. (3.17) or (3.18)
and Ap(X, ¥} represents the influence of the edge
on the pressure distribution. The latter has now

to be determined for the cases of translation and -

pitel.

(Y, 1,0 = el (B + By

) T oa(X,8), £>0,0< Y < X,

The bending mode shape B(y) has a vanishing
second derivative for y=0 and therefore this

funetion will he approximated by )‘,(B1 + B, %:)
for 0 <Y < X with B, and B, as constant coeffi-
cients. When S84 (4 is the aspeet ratio of the
wing) ig sufficiently large, the region influenced
by the tip is relatively small in comparison with
the whole surface of the wing (see sketeh f), and

s
Q ¥
\\ //
l \ﬂy-n !
1 BA-1  pA
T T
] l@ Y
il Je§
| N e
M YoX
Sketeh f f

hence the error introduced by the rather rough .
approximation of B(y) for 0 <Y < X will not
‘wive rise to large errors in the final results.
Moreover it is in principle possible fo approxi-
mate the funetion B(y) for 0 < ¥ < X by a poly-
nomial of the third or even higher degree.
Henceforth we shall assume that the guantity
BA is large enough in order to be justified to use

the approximation ! (Bl + Bz»ﬁ—) for the bending

mode shape in the region 0 << ¥ < X of the wing.
The funetion o(X,Y,T,£) hecomes:

(3.22)

and this has now to he inserted into equation (3.20).

The result becomes (see appendix C.1):

. ¥ +
App(X, Y, + 0, T)==ixcﬂle*’”[(31 + %Y) fe""””f-*‘?’f.,(f, Y)dyﬂ%‘— g fe""*‘“*"-f‘fu()_(, Y)df],
¥ ¥
: (3.23)
with
I,(X, 1 [ VT ‘
0( ] Y)'z l//?_ (K X —EI) l—/—s——y. (3.2‘:1:) ]
T v L —
— X
LX,Y)= lf TV X2 g2 - ]/djl 5 (3.25)
T ¥ S1 1

"~ By aid of the equations (3.19, (3.i5) rand (3.23)  the .potential- 8y, (X, Y, + 0,7} is casily obtained,
and using (3.9) and (8.21) the pressure distribution Psyy, due to translation becomes:
Pr ﬁp(X,‘ Y) i
U7

'pB(XJ Y)
1 pU”

Ap_g (X, Y)

)

(3.26)
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where %(—‘;{—l’]p— is given by equation (3.17) and —A—%(—;%;Y‘) by the formula: |
App(X,¥) . B T ( B, B, :

X

8

) X
+ ’l:xﬁg (Bz + Ez_ Y) f einM(X—.?) 11‘(?: Y)d_X—%x,B2 % Yy f eixM (X—-"")Io(fJ Y)dX]
Y Y

In order to determine the pressure distribution
on the wing tip the integrals [(X,Y) and

X

f e MX-X [ X, V)dX (b = 0,1) have to De
Y
evaluated numerically.,, However, it will appear
in the next chapter that the numerical evaluation
of these integrals is not necessary, when the in-
vestigation is confined only to lift and moment
of the wing.

In the ease of piteh the torsion mode shape
¢{(y) has a vanishing first “derivative for y =10
and therefore this funetion should he approximated

2
by the pelynomial T, + T, % for 0 <Y <X

with T, and 7, as econstant coefficients. However,

this approximation of the torsion mode shape gives

rise to such a large amount of caleulations (see

appendix (. 3), that instead of the approximation
2

Y
e=T + 7, '—82— the rough approximation ¢ =-

T, —constant for 0 <Y < X will be used. The
error introduced by taking this rough approxim-
ation will become smaller according as the quantity
BA will be larger, since the parts of the wing

with 0 < ¥ < X. {3.27)

influenced by the wing tips become relatively
smaller, when the aspect ratio of the wing or the
Mach number is inereased {see sketch f),
Henceforth it will be assumed that the aspeet
ratio of the wing or the Mach number or both
will be sufficiently large in order to be justified

. 1
to use the approximation .,p(—ﬁ—l’)i T, for the

torsion mode function in the region 0 <Y < X
of the wing.

The funetion (X, Y, T,£) ecan he given imme-
diately by putting T, =0 and T; =0 in eq. (3.13)
and the result is:

or(X, ¥, T, &) = + ixeflT,e™T op(X, 8) —
el X, + 5%) Te*Tas(X, 8),
with £>0 and 0 <Y < X. (3.28)

In order to obtain Agr equation (3.28) has to
he substituted into equation (3.20); the second
term of (3.28) gives a contribution to A¢r which
can be derived immediately from eguation (3.23)
by replacing B, by —(Xg + ?Ik—) T, and putling
B, equal to zero. .

The contribution of the first term of (3.28) to Agr is determined in appendix C.2 and it appears thaf
the tip correction for the velocity potential ean be written as:

Ap (X, Y, +0,T) — izcBIT,e™*T [— (

X
+ f (X —X)e"¥ &-Dp (¥, Y)df}.
I‘/i -

X

i ' xM(X-%) 1 7 T
X. +W) f e (X, Y)dX +

Y

{3.29)

r

The addition of (3.29) to ¢r (X, ¥, + 0,7), given hy‘ equa,t,i()n| (3.16), yields the velocity potential er,;,
on the wing in the region of the wing tip and by aid of (3.9) and (3.21) we obtain finally the pressure

distribution Py, due to pitch.

A}]T(X, Y)

Pri,(X¥)  pr(X,Y)
FpU? T 3pU?
XY . .
where (X ¥) is given by equation (3.18} and
tpU* .
Apr _ K
3 plU® - M=

X

Apr (X, ¥)

T 0<Y <X, - (3.30)

P by the formula:

—dic BT [+ M (Xe-i— 7;7) 1L(X,Y)—

&
—{ZM 4 (X —X.)ip?) f e*MX-D ¢ (¥ ¥)aX i«ﬂ‘*[?{ei“““’“’_"zl(}a Y)d}?]; D <Y < X. (331)
J )

¥
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In order to caleulate the pressure distribution in the region of the wing tip < ¥ < X the integrals
X & .
I, gHME-D) ¢ (X, Y)dX and [ P ixM (X—2) I(X,Y)dX have to be evaluated numerically. When
v i
we restriet, however, our investigation to lift and moment, the numerical evaluation of these integrals:
can be avoided as will appear in the pext chapter.
The formula for the pressure distribution due to piteh in the region 0 < Y < X is given in appen-

dix C.3, wherein the torsion mode shape has been approximated by e,o(J)_T + ﬁd ¥z It turns out
that the amount of calculations to obtain convenient expressions for lift and moment will he increased

. T, . .
considerably, when the approximation ¢ =7, + —* ¥? instead of y== constant is used.
BZ

4 Determination of lift and moment.

v

- .

Expressions for lift and moment can be derived from the formulae for the pressure distribution on
the wing,

The lift -per unit span due to translation can he written as:

4.1 Definitions and notations.

1 .

La(Y) = z] po(X,Y)AX for 1< Y < BA—1, . (4.1)
0
and
La(Y) + Alp(Y) =1 pr(X, Y)dx + zf Aps(X, Y)dX  for 0< ¥ <1 and
1} . 'd

fA—1<Y < P4, (4.2}

where the second term ALz(Y) of the left-hand side cquals the second term of the right-hand side.
In the same way the lift per unit span due to piteh is

Ly(Y) =1 pr(X, Y)dx for 1< Y <BA—1, (4.3)
; .
and

1
Lr(¥) + AL (Y) =1 pr(X,Y)dX+Z f ape(X, Y)AX
- ] v
for 0<< Y <1 and B4 —1 <Y < BA. (4.4)

Quite analogously one obtains for the moments about the leading edge per unit span:

Mp(Y) =1 f Xps(X,Y)dX for 1< ¥ < 84 —1, (4.5)

Ma(Y) + AMz(Y) =1° prB X,Y)dXx + I* fXApB(X Y)ydx

for 0<Y<1 and BA—1<Y<1 (4.6)

1
Mp(Y) =17 [ Xpr(X,Y)dX  for 1 <Y < BA—1, (4.7)
L0

1

Mo(Y) + AM(Y) =12 f Xpo(X,Y)dX + P / Xapr(X, YydX
U.,‘ o . r

¥
for 0<Y<land 84—1<Y < BA. (4.8)

Integr:'iting these expressions to Y and éssuming the hending mode shape and the torsion mode shape
symmetrical with respect to the midchord of the wing one obtains for the total lift and moment the
following expressions:




£4

Cp=1Ly+ ALsﬂ%fLB(Y)dY+ —[ALB(Y o (4.9)
%pa 1
21 a2l 1
G =L+ ale = [ L(X)a¥ + / AL:A{Y)dY, (4.10)
) o
134 l. 1
Oy e My + Ay 2 f My (Y)dY + 2t f AMz(Y)dY (4.11)
ﬁ 0 ﬁ i}
%@A , i ,
My=Mr + AMp=-—— | My (Y)dY + _zﬁ_ f AM(Y)dY, (4.12)
g d
484
where L — ﬂj La(Y), ALy= =" 21 f ALz(Y)dY and in the same way for the corresponding terms

in the other fomulae

The {first terms represent the part of lift or

moment, which corresponds with results obtained
by strip theory, whereas the second terms repre-
sent the correction due to the finite span of the
wing.
" Substituting the formulae for the pressure dis-
tribution (3.17), (3.18), (327) and (3.31).one
gets finally the desired expressions for lift and
moment,

The formulae (3.27) and (3.31) are valid for
the ease that the Mach waves from the leading
edge <o not interseet on the surface of the wing,
henee for 84 = 2 (see sketch {}. Therefore one
might think that the derived expressions for lift
and moment will also be valid for g4 > 2. How-
cver, it can easily be shown that the expressions
for lift and moment will be even valid for 84 > 1,
when the downwash distribution at the wing is
symmetrieal with respect to the midchord of the
wing. The formulae for the pressure distribution
are however not valid in the extended range
of BA.

Hence our results for lift and moment will be
valid as long as the Mach waves from the leading
edge tips do not intersect the opposite side edges
of the wing, ‘

42 Determination of lift and moment.

The determ.i_nation of the first part of lift and
moment viz. "L and M can he performed by in-
tegrating the formulac (3.17) and (3.18) first to
X and consecutively to Y. ‘ :

The integration to X results into a combination
of funetions f, (x, M) defined by

. ' o .

File, M) = f e RHE (XVAT R XDAX,  (418)
0 -
with A=20, 1, 2, 3, 4.

These iniegrals, of course alse occurring in two-
dimensional unsteady supersonic flow theory, are
tabulated hy Vera Huckel in ref. 11. The inte-
gration to Y involves for the case of translation
nothing more than the integration into the span-
wise direction of the bending mode shape and its
second derivative, and correspondingly for the case
of pitch the integration of the torsion mode shape
and its second derivative, The calculations have
been carried out in appendices D.1, D.2, E, 1
and T.2 and the results are summarized in the
next section.

The determination of the second part of it

and moment viz, AL and AM which represent the
influence of the wing edges involves the reduction
of the double integrals:

1
AL — (X, Tydx {ay,  (414)
b d

©and

1

1
: ]” Xap(X, Y)deqllf. (4.15)

0 v

AM =

Substituting equations (3.27) and (3.31) into
(414) and (4.15) and performing the integration
to X gives rise to the oceurrence of integrals which
to the authors knowledge can only be calculated
numerieally.

Since this involves mueh numerical tedious
caleulations the order of integration will be
interchanged and the  double integral ean then
be redueed to integrals which partly ean be cal-
culated exactly and partly can be written in the
form -(4.13).

The reductions have been carried out in appen-
dices 1.1, D.2, E.1 and E. 2 and the results are
again summarized in the next sectiom.
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4.3 Recapitulation of the resulls. . -

In this section we give a review of the results for lift and moment derived in the appendices D
and E and make some oomplementary remarks.
a) The lift due to bending of the wing.
The lift coefficient due to bending reads:
' Y L AL, :
OLy=——2 = 4 z__ (4.16)
Ly pU28e™ . 1y pl28e™ 1, pl728e™

where the second terms is a correction of the first one due to the finite span of the wing; S denotes
the wing area.

o
- Edy | ld (y)
LB : ¢ I =0
— = (e, ) ——————— + G, M 2= 417
14 o286 "t a( ) 1, BA alx, M) ~— ﬁA - ( )

ALy
15 pU?Se™

= Halo, M) DLt K, 1) B2
B4

vy . . '
where B(y) = B(—Bn) is the bending mode shape of the wing; B, and RB,:are constants such that

Y .
.’,(B1 + B, F) approximates the bending mode shape as well as possible in the region 0 <Y < X.

FB(“? M) = + iKB'Z')fu(K: ]H) _'ixezfl('() ]”) }-s
Gale, M) = + 44 -ﬂ% % [— Me—9J () + (M + ixB2)fox, M) —i {282 +
+ MM+ i) ) Fole, M) — MBH, (x, M) ], (4.18)

Hple, M=+ 14 252 [ —ixM (sin &k —iM cos «) } ] ,

Kk, M) = —1/ Gg(x, M).

b)  The Bift due to torsion of' the wing.
The lift coefficient to torsion reads
QT ZI' - AE?'

Cur= 7 i i 419
L ‘%pUzSeM 1/2 PUzsewt 1/2 pU‘*’Se“" ( )

where the second term again denotes the eorrection of the first one due to the finite span of the wing,

By
L iM f ‘°'(_B_)dy
W = { Fr(x, ¥) — (X + ?) Fy(x, M) l ™ +
Y ?
do | ——
| Grl 20) +,8(Xe+~§£) Gale, ) | FII _E{;JSE%M ,
| “%72?%55 iy, 2) — (X¢+—;%I;) (s, 1) | ;’;, (£.20)

Y ' .
where ¢(¥) =¢( ) F)denotes the torsion mode shapeof the wing; 7, is the constant which approximates

the torsion mode shape as well as possible in the region 0 < ¥ < X,




Folx, My=+2 1 -15*"‘;{—!((2 M+ iiézk)f“(x, MYy +2{M + 'ixﬁz)fl(x, M ——.iﬁfz(x‘ M) } ,

Gr(x, My =+ 21 L:ﬁ —:2— [— &(2 M + 8% o (s, M) + {4M + 24x(3 (5’”.+ 1) — 28 } . (421)
Sl M) + {—5182 — 24+ 2xMB ) fo(x, M) — MB*fi(x, M) 1, .
Halx, M) = + ?3%_ i[ (1 + M%) cose + Zilf sinx } o™ ™¥ — (14 M%) + ictp? + "22‘3‘]
¢) The aerodynamic moment due to bending of the wing,
The moment coefficient due to bending reads:
(e — Myt AMy (4.22)

T 1 U8l Yo pUSIe™ 3 U8 A0 ™

where the second term is again the correction of the first one due to the finite span of the wing.

/284
Y ..
_ ) | 280
. ‘B(IB u Z d’y ={} .
B P M) o Qu, M) — =0 ,
v pUz.S.leM _ E(. ) Y, BA Qs(x, M) oA (4.23)

AN B
i o= Bale, M) ——— -+ Sp(x, M) B
Ly pl/2.8.1e BA BA

Py(x, M) = + 2 },f,, (@B (e, M) — 2 iMF, (x, M) — B, 0, 0) }
' 2 1., —ixM 202 . 202
Qo My =— - - (2ixMe ™ Jy(x) + xBfole M) — M (4 + 7).
'fl(K? M)—(58°+ 2)f2("‘: M)+ 'iMﬂEfa(Ka M) } ' (4 24)
2 . '
RB(K, My—=+ Me [1——~K—2—2ﬁ4— ((1 + M?*) cosk + 2iM sin« + wH B cosk —
_xﬁzsinx) e~ (a2 + 1) H .
Spe, M) =—14 Qu(x, M).
d) The aerodynamic moment due to lorsion of the wing.
The moment coefficient due to torsion reads:
o M 71
. Cy T — T + AZ"IT (4.25)

T U8 1 eS80 4 ol2.8 0e™
) Yo p p 2 p

where the second term again denotes the correction of the first one due to the finite span of the wing.

! : 1,84 -
T2 M 5[ ?(T)dy
s = P i) — (x4 20) ot | S
1y
T do m) (4.26)
+ 4 Qrle M) + (x,,+%{,—) QB(K,M)i% Jﬁ"f_— -y
S = [t — (x4 ) Rats 0] £
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2
3 zm
+3M . fale, M) —ip* fo(c, M) },

Pl M) =+ =~ {— (3 M + 24xB2)f, (x, M) + 3dx282 . f,(k, M) +

Qr(x, M) = + % _*%; [— (3 M + 2B olx, M) + i { (34 + 1) +25pe ).

ok, M) F 3 M3 4 @Bk M) ——i(T B2+ 3)fu(x, MY — MB2 .1, (x, M) ],

_IJlI;i,B"_ —1§~[{ (4+3p%sin x—iM(4 + £%) cosx + 2Mp®sine +
b K

+ kBH(B® + 2) cosk ) 6~ M (4 + B7) + V/AMEt + 1/, K85 ]

The expressions given in this seetion for lift and moment are valid for arbitrary bending and torsion
mode shapes, provided SA is not too small (see seetion 3.3) and the Maeh waves from the leading
edge tips do not interseet the oppomte side edges of the wing.

The corrections due to the finite span of the wing appear to be inversely proportional to the effective
aspect ratio SA.

For the case of a flat wing translating or pitehing harmonically the bending mode shape becomes
B = h—=constant and the torsion mode shape becomes y—a = constant and the formulae given in this
section become quite exact.

For the case of translation the formulae for the litt and moment derlvatne's become :

RBeley M) = +

aCL -QB HB(K, M)

oh Vs pU28he™ = Falo M)+ A (20
o

WG _ : P, ) + Folu 3 (4.28)

b Yo pURShIe™ pA

where h is the amplitude of the translation,
For the case of pitch one obtains:.

M
Hio, 1) — ( Xe 4 20 Ha, M)
0 & | Prle, 2) — ( it ) Fa, 1) { + B ,
9 o pUrSpet / " . A
(4.29)
M
A ReGo 8 — (Xt ) Rale M)£
i) (E)K )

W ¢ LI == Pr(x, M) — (X + l{l{—) Py(x, M) I + ﬁ ’
B 1y pU2.Slp.0? Jii pA )
(4.30)

The first term of these expressions represents the two dimensional part while the second term yields
the correction due to the finite gpan of the wing,
The numerical results of this report are presented in ref. 13,
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APPENDIX A

Derivation of equa.igion (2.13),
Inserting the limits of integration equation (2.12) can be written as:
x_g xR
a(XYTé)————wf f 0(X,,Y,7,

¢ r-VE-xp-g

arl dx,
—, 0. (A1
‘va—wr—a—t—g 7% &V

For harmonie oseillations we may write:
o(X,Y,2,T) =2(X,Y,2)e™"

with x o kM

and % the reduced {requency.

Henee ¢4(X,Y, 0, T) =&,(X, ¥, 0)e™T and 'the function ¢(X,Y, T) may be written as g(X, ¥, T) =
G(X,Y)e*T.
Substituting this into equation (A 1) we obtam

x5 |/ X E
(x Y10 =—— [ ex,n) [
0

W E TR

ein T, d-Tl

dX,, £> 0,
Vx=x)y—(T—-T)y—¢

The integration to T, is performed by putting
T, =T— )V (X—X)?—£ cos®

and the result is

r+l x-xp-g

k3

GfxTIdT1 =e‘ifo e—ixl/(x_Xl)u_En con © dﬁ‘):‘
r V(X xy_p V(X__Xl)2“ (r—7)*—§ ;
=T ], (« VX—=X)T—£}.
Hence
X-£
o(X,Y,T,8) =— [ G(X,, Y, T, (< VIE—X,)7— B} dX,

which is identical to eq. {2.13).

APPENDIX B

. Derivation of the velocity potential on the wing in the region ¥ > X.
B.1 The case of translotion (bending).

In the case of translation the funection o(X,Y, T, &) introduced in section 2.2 can be written as:

. Y YE ixT '
U’B(X, Y, T, E) =’M<Gﬁl (Bl + Bz -F' - Ba —B—z—) e TO'B(X, £) (B 1)
X
oa(X, &) =— fe*"”“"-"” 7, « VI _g)dX and £> 0. (B.2)
§ .

According to equation (2.16) the velocity potential becomes

ixcpl | B 1,;1 5 1;”: %
XY, +F0,T) =0 =2 T | = T (X, £, gy (ds =
‘PB( > . ) - e 8&'1 U’B( E) EI I/fl ——-(Y—Y1)2 1

+% (Y —X) (Y —Y)2

‘ B, + B,~—— -+ B~
[E— "’KCIB'I Ifo___aB(Y g f ﬁ ° B dY
'BE; ! ‘—E: V{_- 2 Y2




Y ¥z

The inner integral equals =(B, -+ Bla -B——i- B, — g + /2 £?) and thus the velocity potential ecan
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he written as

. . X - '
on(X, Y, +0,T) =+ ixcgzg ‘”{(31 + Bz_g—_ + B, —— 7 )GB(X 0) — 1/2—?,% Of %{EB(X, &) }Efdé,}=
X
=t ieploT (B, + B4 B ) a0 + g | w06 ],

Afte‘r substitution of (B.2) and interchanging the order of inteéfratmn we' can write:

X

X e z

ft_TB(X, £,)Ede, ::—fe""'"‘f"—*?’ | qu (x szf-_ &) 6de | ax= .,

b 4 d . .
. x

s
B [ G -D g | f JX sing) sin g cospdp | dX.
0

L
The inner integral equals —"L@ (see ref."12) and hence
A P
X x .
- 1 . 3y = —_ —
fﬂa(X, 84 d&=——;f FHMEI-D ¥ 1 (X)X =
0 0

KE

X —_
fi[ci"%’(x_i)i_d_{%rldfzi‘YJ (X)) — —1- f ME-3) 5 ()X +
* K
0

x
M

+i [ =D F)aX
. B :
Inserting this result into the last expression for the veloeity potential we obtain finally:

X

S Y! . Ty v — e
es(X, ¥, + 0, T) = — ixcple*T {(31 + Bz% + B, 7 ) f M E-D (X)X —
0

B,
TR

which expression is the same as expression (3.15).

X X
%[XJO(KX)-_ f eV E-D 5 (VAT + il f e"f‘”‘*"*f’x__J[;(xf)'dX‘H (B.3)
0 . i .

B.2 The case of ptich (torsion),

We shall now deduee the expression for the velocity potential for the case of pitch,
The function ¢(X,Y, T, £) is given by equa.ti()ns (3.13) and (3.14) viz.:

or(X, Y, T, &) = + ixeBl (T + T, /3 + T, %) e Ton(X, £) —
: : i Y ¥e ixT ~
e ixofil (Xe +5) (r, +m, 5T ) T (X, 0 (B. 4)
with
X o :
(X, &) = f(x—?)e*””‘x-’” IV X _pydX with £ > 0, - (B.B)

The seeond term of the right-hand side of equation (B, 4) gives a contribution to the veloeity potential
on the wing which equals the velocity potential ¢z(X,Y, + 0,T) for the case of translation, where

however the ceoefficients By are replaced by — ( 21 ) Ty, h==1,23. o
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This part will bo denoted by gs | X, ¥, + 0, T; By=— (X + 5 ) 7|

The contribution of the first term of equation {B.4) io the velocn,y potential will be denoted by
er1 (X, Y,+ 0,T) and according to equation (2.16) we can write:

”,(X,Y,+0,T):ﬁ_£°3_ gi»TjM f ] 8 dY5d$1
71' ¢ agl _El VEIZ;_
X
= iofle™T (2,4 1, 5 T ) on 0)"*"/2%} [ ee 2nlht)_ge ) -
; ix Y inM (X -X) T,
_..‘I,KCBIG T (T.l + T ‘B — 4 Ta —B-?-)f (X .X)G J ( X)d,X...—. [ﬂT(X E])gldglg (B 6)

The integral f or (X, &,)£, dg, can be reduced in the same way as [ op(X, £,)dE, and the result becomes
0 0

X

wMX + 2

X X
[ o g6 aty=—i 2 [ PO (20T + 2 [ a5 (Hax —

0 0 ¢

X
X . % N
— 5 f e* MI-D y «X)dX.
C

Insertinging this result into cquation (B.6) and adding the contribution q:m}X, Y, +0,.T;

By— (x + ’27) T,.[ we obtain finally

o (X, T, + 0, 7) = g }X,Y,+0,T;Bh—_~;(x Qk)T;. -

- X

. f 2 P = — =

~— ixcplei* T {(T + T, % + T, %)[ (X —X)e™MI-0 g (. XVdX + -
X :
ﬂf LSS CIND X)dx_—_———z M f M ET-DF 7 (X)X +
K
0
X
X eM(X-X) T T .
+ —KT e JD(KX)dX (B, 6)
0 Lo ‘ :

which is the same as expression (3.16),

APPENDIX C

Derivation of the velocity potential on the wing in the region 0 <Y < X.
C.1 The case of trenslation (bending).

-The velocity potential in the region of the wing tip is denoted by ¢z, (X,¥, + 0,7T) and according
to eq. (3.19) it can be written as:

po,y (X, X, + 0,T) —ps(X, ¥, + 0, T) + 8¢5 (X, ¥, + 0, T) (C.1)
where 0 <Y < X, ' :

The first term of the right-hand side is alrea,dy determined in appendix B and is given by equation
(B.3) or (3.15).
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The second term 4¢s(X,Y, + 0,T) is obtained by substitution of

o==op(X, ¥, T, £ =ixchl (B1 + B, %) e*T ou( X, £) (3.22)
with
s (X, §) = — f HNI-D g (VT ¥ (3.12)
£
into
1 X e y—-T 1)
App = — —“l—/:_— dydi, . (3.20)
" 512,_‘172
¥ 2v-g

Hence Apg can he put into the form

X [ { +& B =
. ; - : B +: (Y-—-Y
pgy e —CBlL™T / 80X, &) f ! ) av | dg,. (C.2)
4 P (v Vv ) '
The inner integral ean be reduced to
Bz ) (1'1' i 2 Y—gl 'BZ Evd ;v
(I§1+-—ﬁ—y ?fslan) —2'_B__l/'.Y.]/£1—Y
and equation (C.2) can then be written as: "
‘ _ ¥
. ; B - i B a — . L 2¥Y ¢
— T 2 7 2z v — 1
Arps_\ixCBle"‘ {— 1 (B1 + TB~ Y) oa(X,Y) —_ (Bl +. 3 Y)Yf ' o, ('J'B(X, £) l sin—* = aé, —
x
2 By [ G VE=T a4 '
x B AT
or after partial integration:
— X — X
C wr B VT o dt B, NVTY [_ de
App = kg, le"‘T[—zhf (X,6) v+——— — B, +=%2% *—f X, ¢ ——:%:]
B B 3 " aB +) l/‘fl—-y ( 1 8 ) L as{ 1) £ V&l—y

Substitution of (3.12) into this expression for Age and intémhanging the order of integration yields
finally :

X X
Al X, ¥, + 0, T) = ixofle T [_- %Y f'e“‘“‘x-f’ 1,(X, Y)ax + (B, + % y)f G E-B (T Y)d,?]
¥ ¥

where (.3

X ___ X
IWEY)=—"r [ sV Ty % (X, ¥) = e VI gy S
SO =Ty i e e yf“ RN s
(C.4)

This expression for Aps(X, ¥, + 0,7T) is the same as eq. (3.23).

C.2 The case of pitch (torsion).

The velocity potential in the region of the wing tip is denoted by pr,, (X, ¥, +0,T) and according
to (3.19) it ean be written as

o1 (XY, + 0,T) =g (X, ¥, +0,T) + 8pr(X, 7, +0,T) with 0 <Y < X, (C.5)

The first term of the right-hand side of equation (C.5) represents the part of the velocity potential
which is not influenced by the wing edges. This term is already determined in appendix B and is givén
by the formulas (B.6) or (3.16).

The second term denotes the influence of the edge in the velocity potential and this part of the
velocity potential is obtained by substitution of .

e =ar(X, Y, T, 8) =ixcBlT,e™T o0 (X, £) — ixefl (X,, + EEE) Te*T 0p( X, £) (3.28)

- with
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.z B . | J
P, B = e | D (VR T ax (3.12)
S , _

and

or(X, ¢) = [(x XDy (Vi T eyax (3.14)
§
into
x +& .
o X Y —Y,T¢)

pp=+ L / gt %) o a, (3.20)

2¥- g2 —¥?

i

The second term of (3.28) gives a contribution to Agaa- which ean be obtained immediately from equa-

tion (3.23) or (C.3) by replacing B, by — (X., )T and putting B, equaI to zero.
( ‘Hence Agr can, be written as: : r '

. L . X
Apr( X, Y, + 0, T) = ixcBIT e *T [ f A=Ky (X V)dX +

1 f, oTEXél)} f 1/51—-172 dél}-:

'ﬁixc,éz'fle'” [— (},% E!k_) fx e;”ﬂ; ‘X“E’II(X Y)dX + = f ! g a}_(X &) l( —sm"‘é—‘%i)d&]
¥ ' t
X ’ X

— el 6™ F(Xﬁ%) f oM E-Dp (7 Y)df-—'%l/y_ f or (X, £,) ?]7‘2—5—1.;] (. 6)
¥ v Ve —

b

Substitution of (3.14) into the second term of (C.6) and interchanging the order of integration yields
fm&lly S . h

| B} .
App(X, T, + 0, T) = iwcplT,e T [ﬂ (xe + 7“%—} f FMME-D (T 7yaX +

;- + f(X Xy X-Dp (x) )dx} | = (C.7)
with ' '
s,
I(X Y)———» [J(KVX —5_1 }?l/s_Tf?

which is the same expression as the right-hand side of eq. (3.29).

C.3 The approximation (;7 Y) T + %‘g Yz,
In order to get some insight in the amount of ealeulations necessary 'for the determination of the
pressure distribution in ﬂhe region of the wing tip, when the torsion mode shape ¢(y¥) is approximated

by ¢ (; ) =T, + Y2 instead of by ¢ (L Y ) —consta.nt, we derwe here the formula for the
pressure distribution.

-t
i

.3“ B

As the derivation of the formula. for the veloelty potentml on the w1ng does not involve any diffi-
eulty and ean-he performed in the same -way .as in appendlx 0 2, it will be sufflelent to give this
formula without deduction. Hence . s

L _ ?Tnp(XY'!_OT)':'?T(XY'*'OT)+A9T(XY+OT) 0<Y<X (C.8)
where ¢r(X, Y, + 0,T) is given by equation (B.6) or (3.16) and
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X

App(X, ¥, + 0, T)=+ixcj3lef"r{— (Xe+-2—'"k—){(n = Yz) [e"‘”‘“’Il(J?,Y)dE_
' ¥
x ’ x ' B
g:f yzf M (X-Fopy Y)dxf (T1+ g yz)fe"""”“—x’ (X —X), (X, 7)d% —
Y
X —
Loy fe*'*”fx-x’ (X — DVH(T, Y)a:XJ with 0 <Y < X @y
¥
wherg ‘
HEY) =/ L,(X,Y) +*/,LEX,Y) — T LX,Y) + L(X,Y) -/, LX,7)
and
1 F -
LY = | I VT ) B
(E D) = If ( & ‘
Ve F e
— Y VS d¢
Il X,If — efu K Xz 2 I e erererera——
X, 1) = If ( ) ey
1 H |
v 2z 2 V__
L& Y) =y Yf o Ve ey Vitva
X (C. 10)
v 1 V_z 2
LT, ¥) = _myf T VE =g
1 i - (2Y —¢
LT V)= J « VX o) esins (_E_) dé
l/ 2.2 £df
L(X,Y) = Y‘l [J(K T s

By aid of formula (3.9) we obtain t!he pressure distribution pr (X, Y) in the region of the wing tip
and consequently :

pry, (X, ¥)  pr(X,Y) Apr(X, ¥)

' = ; ; 0<Y <X C.11
‘ /2 pU? /s pU? 1/, pU? < < ( . )
Xy, . | _ Mpe(X, ¥
where pi:/(ﬂ PUz) is given by equation (3.18) and IZ ;EpU—z) by the formula
(X, Y) . ox
Apr(X, 7 . . B T ‘i T , - M) _ Ly
= — i T [+ )[(Tﬁﬁ—:YZ)erl(x, Y) +uﬁ?}_}[ M -E) [ (R, 7)dX | —

- jMH(X Y) + icg? fr :xM(Xfi)H(jz_, Y)df” _

ﬁz .
X X
—(T1+ gj v )] M f e X-D 1 (X ¥YAX + izp? f MNE-D (¥ X1 (X, Y)dX E
¥ ¥
X X
+%§y2 jM fe"‘"”x-f’ﬂ-(f, Y)AX + ixp? ]e""M‘X"_Y’(X_X)H(X, Y)df}] (C.12)
¥ ¥ :

For the determination of the pressure distribution it is necessary to evaluate numerically all the inte-
grals (C.10) and all the other integrals occurring in equation (C.12).
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However, when the investigation is restricted to lift and moment only, these numerical evaluations
can be avoided; nevertheless it is seen, that the amount of ecaleulations is increased considerably
. 1 . .
when the torsion mode shape ¢ (E Y) is approximated by ¢=1, + 11312
3
for 0 < ¥ < X. . .

7

Y? instead of by ¢ =-constant

APPENDIX D,

Derivation of formulae for 1ift due to translation and pitch.

D.1 The Uft due to translation.

The lift due to translation is denoted by £z which consists of two parts, viz. Ly and ALg,
Ls is defined by :
g4

Ly= ﬁf Ly(Y)dY (D. 1}
B 0
with A as aspect ratio of the wing and
La(Y) =1 fpﬂ(x,, Y)dX - (D.2)
g

where ps(X,Y) is given by equation (3.17).

Regarding the integration to X we have to bear in mind that Lz(Y) represents the lift per unit span
at some time £ and hence the factor ¢®7 has to be written as ¢i¥, ¢=ieMX,

Inserting (3.17) into (D.2) one obtains:

1
LB(Y) . B T Y ¥z [ [ —ieMX d
TN e IV I
b o071 44— e " l (B + B, B + B, & )M'O e Jo(kX)dX +

+H,a2f§f ’"‘M‘YJ(KX)dedX} e [ Ui f—f*MIXJ (Z)ax +

4 1 x . 10X B
T f [ H e g (XX | dx + pu [ |[ o X (D)aX | ax D
0 o 6 0

{D.3)
Putting
1 -
. : :f ST XY T X)AX =], (i M) : (D. 4)
. 0 )
partial integration yields:
4
fe-""MX (XN, (kX)AX = — e ="M () + fy(x, M) —iM[, (x, M) (D.5)
b _ .

+

X
f “E J («X)aX | dx — fus M) — - f, (o, ) (D.6)

1
f eV (T T) X | aZ = 1,06 3) — L £, 20 (D.7)
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Hence
Y

Lg{Y) Fe) it zz_ _ . n . YT
e ((B + B, 5 +B B”)! (M + B o, M) — i8°F (o, M) | +

f;;z — Mo~ S () + (M + kB ok, M) — (2 B2 + MM + ixB?) )1 (e, M) — MBf,y(x, M) H(D. 8)
Integrating with respect to ¥ gives
.84 Y
5(5)
[ %),
Ly B iw [+ BV (e M) — B ( g 1
05 =g ™ | (L 0 M) — (5 3D ) T +
+ ng — Me WM F () (M A kB2, M) — (2 82+ MM A i)y (x, M) —
ol 4
fBa(Y)dY
02 0
— L1ty | (0.9)
Since B,(Y) can be written as J
| 4 o5 ()
B(Y) =57 —gv —

and the bending mode shape is assumed symmetrical with respeet to the midchord of the wing, the
seeond integral in (D.9) can be simplified to:

1,04
J 2o a5 )
T

Y=10 —E ! dy y=10

g
wea 1A

We proceed now to the calculatlon of the second term ALp of ‘the lift. ALy is defined by ALg==

2 { ALg(Y)dY with ALg(Y) =1 [ App(X, ¥)dX, where Apg( X Y) is given by eguation (3.27).

Hence

VAL (N X, max | av— 28 [ { [apa(x, v)ax
a2} o son|ar = 3| o | o

Substitution of equation (3.27) yields for the inher integral:
x

{ YI,(X,¥)dY —
i .

X
app (X, 1) B ixT [ /’ B,
§ Typur W=t digp @B, [ L DAY A

X
—M — [ YI,(X,Y)dY + 8 B, f fe"“M‘X-f’Il('XZ Y)cw_(‘ dy +

+ i % fxy ) f SME-D 1 F ¥V4X } dy-_q:x,m% fxy } fxe"‘”’“-f’ro(i ¥)dxX| dY].(D. 10)

0 Y (] '

The coefficients B, and B, are now taken as constant and independent of the spanwise dircction Y;
the integrals I,(X,¥) and I,(X,Y) are given by equation (C.4) or (3.24) and (3.25).
The substitution of (3.25) gives for instance:

x

Xl/_ X
Jll(X,Y)dlr::d/'_;l_’_ ji[ Jolx I/X'z_éz) W% iy
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or after interchanging the order of integration

v

X X
! [ 1,(X, Y)Y =14 fJu-(KVsz’gZ)dg=s—i“_2(i‘§l. ' (D. 11)
0 Q
In the same wéy it appears that: 1 ‘
X
o [ YI(X, V)dY =3 («X) _i('fXJ | (D.12)
and { ’ | )
f YI(X,Y)dY =14 (xX) Jli'; ) ‘ (D. 13)

The double integrals occurring in equation (D.10) are also reduced by aid ‘of mtemhdngmg the order
of integration, e. g

X X .
f | [ FHE-D (T, ¥)aX | ay = [ D] [ L& vy | a¥ =
§ ¥ § 3
inMX - L 1 )
, f e~ Gn («X)dE = T 3 iM sin (xX) + cos (,ex>_ewMX] . (D.14)
o : : kP .
{

In the same way it can be shown that:

¢
2k

x B:.qu
fy ’f ixM (X~ X)I(X Y) ax % dY::%;

0

X
f'e*"‘”x (X)), (<X )dX.
0

By aid of partial integration the integral is reduced to the form:

X 4
. = I O N, . .
f e MY (VT (e X)AX = — ¢ T"ME X J (X)) + o (X ;0 MY —iMF (X5 6, M) (D. 15)
. 0 .
where
X —
[l X0, M) = [ e M g («X)dX
(D.16)
X .
X M) = f e~ M (Y, (X )dX, §
: ' 0 I . ! -
Hence - ’ . ‘ {
X

Y jf PME-X) 1 (F ¥)dX | dY =8 TE-—XJ (kX)) + ™ EY F(X 5 M) —iMFL (X, M) H
d (D.17)

Besides, it follows from (D.16) that f,(1;x, M) =Ff,(x, M) and fl(l;x, M)y={f,(x, M) (see eq. (D.4)}.
The last double integral of equation {I).10) can be reduced as: ‘

x x X
ucMX — — I
j‘ v ’ [ ieM(X— X)I (X Y)dX dY=];/2 [ e-ixMX (KX)Jl(KX)dXZ
0 ¥ o
=1 | = XTX) + o™ (163 — M X5k 0D )] (. 18)

Inserting (D.11)—(D.18) into (D.10) gives finally:

X
Aps(X, ¥) B kT 272 S
Of—_l—/zp—U;Jde—l-ZMz e B, {e cos (kX)) } +
BB [ M) — £, M) ) e X (eX) — e X0 [l @
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Substituting ¢#*T =™, ¢~*#x and integrating (D.19) with respect to X gives by aid of the equations
(D.4), (D.15) and (D. 16)

T ivt 1‘ [

V) _;K_Bz — Me™™M () + (M + ixﬁﬁ)fo'(x, M)"Ti (28 MO+ 8 ) £, (x M) — BB £, ) “

(D. 20)
The lift due to translation can now easily be obtained by qdding Ly and ALp. .

D.2 The Uft due to pitch.

The 1ift due to pltch is denoted by, £r, which GOIlblbtb of two parts LT and ALT "Ly is defined by
the expression:

: /24 . ' t
Lo=20 [ Lty (D, 21)
with
| L=t | @y (D.22)
| 0 '
| where pr(X, Y) is given by equation (3.18). .
Inserting equation (3.18) into (D.22) yields:
|
- il
‘ | La(¥) =L3{Y;B,v,l ( B )Th} .
| - Yo pU% Yo pU2 .1
| + 21 L}%eiv" { — (2 M + iB%)fo(x, M) + 2(M + iB%)f 1 (x, MY — 1By (x, M) }(1‘1 + T, %Jr T %)Jr
T,(Y) L. .
+ e [—x(2M + B, M) + {4M + 2ic(3 8 + 1) — B2M } f,(x, M) —
L i(2 5 B 20BNy (e, M) — MBEF (x, M) | l ‘ (D. 23)

The derivation of this expression runs along the same lines as in the ease of translation (see appendix 1. 1).
Use has been made of the following formulae which are ed.sﬂy checked by aid of partial integration;

X

1 .
f | ] e~ HMX (&)AJO(K)?)JX‘I AX =f, (0 M) — — frpq (6 10) (1. 24)
§ u K
with
. .
5, (s M):f e (XYM (k, X)X (1. 4
. : | 0 \ | .
[X U e MY T (XA =14 : fole, M) —%— falx, M) Z (D. 25)
{ 1] . i
X ; . . .
fX ’fefim“f (xX)J, (X)X = 15 ?f,(x, M) —Klzf £k, A;)} (D. 26)
0 0 .

Integrating eq. (I).23) with regpect to ¥, using (ID.9) and rememberiné that the coefficients 7', T,
and-T; depend on the spanwise coordinate ¥, one gets finally for the part Ly of the lift due to piteh:
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’II,’?QA .
L B ' M / ’ (%_) v
T . ;P ivE 2 2 fy iRt j‘j—_————
U8 = *—21.1112 e ;2(KX3‘|‘-..82) [{(M—i—wﬁ Vo (x, M) — i8%f (x, M) } A -+
+ T;r{eﬂfe’i"M T () 4 (M & B folx, M) —i(2 8% + MM + ) (x, 2) —
K : .
1,84
T.(Y)dy
d
— MpEf,(x, M) } ‘—m—']
1]2"3,1
] P (%) ¥
F (= k(2 M A i), M) + 2(M + B2 fy (x, M) —iBf,(x, M) } . YAy +
2
+ T;e_ [—x(2ZM + B f (e, M) + {4 M + 2'1'«{3 82+ 1) —@8M Y, M) —3(2 +58* +
. K
1,84
T.(Y)dY
+ 2 iMBHYf, (x, M) _A{Bm(.‘, M) ] i—lmf— (D.27)
The integrals of the funection T,(Y¥) can again be simplified by putting
B @ (_%i)
TS(Y) = ? dyz
[34
‘ dﬂ*’(—ﬁ“)
Since the torsion moment ig zero along the wing tip, —ay must vanish for Y =10 and hence the in-
tegral of the fumetion T,(Y) can be reduced to the simple form:
Y, 84 '
f T, (¥)dY 5 l
& _8 ___M( B ) =L(L‘i";) .. (D.28)
1/2‘811 A aY Y=1/,84 A dy V=5
We proceed now to the reduetion of the second term AL; of the lift due to pitch. ALr is defined by
. l . )
Airz%f AL (Y)dY (D. 29)
0
with
1
ALy(Y) =1 [ Apr(X, ¥)dX ' (D, 30)
¥

where Apr(X,Y) is given by equation (3.31).
After interchanging the order of integration (D.29) becomes:

' 1 X
— I2
ALe— 2 f 3 f spr(X, Y)Y | ax. (D. 31)
ﬁ 0 0
Substitution of equation (3.31) yields:
X X
Apr(X,Y) . B w[ ( M f
2Pt 2) gy— o x. NAY —
f S = — ey et [+ M (X KB“’)O 1,(X, Y)dY

X x X x '
C{BM + (X — X.yig?) f{fe_‘“m—f’ 1L(X, V)dX | aF + iep* f}ffei””“-f’ll(ff, ¥)dX | dy]
u] Y a ¥y .

where T, is now taken as a constant, (D.32)
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The first two integrals are already reduced in appendix D.1 and the third integral ean easily be
reduced by aid of partial integration,
The result is

X
- ik E-Bp ;T = _ 1 M {«X') cos (xX) («X) sin (xX)
&f ][ Xe 1,(X, ¥)dX | dY == ﬁ2 e
¥ _
2 1 2 2 giMX
(5= ) sin (eX) it (KX}_W] (D.33)
Substituting this result and the formulae (D.11) and (D.14) into (D.32) and nsing e oMt | g~ieMX
one obtains:
App(X, ¥) B ivt M\ LieMx
a/_WdY + 245 T (X + ﬁz),e cos (eX) —1| —
i ( sin (xX) . ) iwx ” D 3
_ _ — .34
B oM + cos (xX) ‘ + (KX) 1 ( )
Integrating finally with respeet to X one gets the desired expression for ALy, viz.:
ALy 4 T, ™ iM ) . . _ixdt |
————— ' —iM M4 ep2r}y —
7% oS g 4w {( o [ (sink —iM cos k)e + 4 kB }
. 4
;2 {(1+ M) cosx + 2iMsine)e™M — (1 + W2) + ixdpg® + &2 7“ (D. 35)
K

By adding the expression (D.27) and (D.35) the lift due to pitd} is obtained.

a

APPENDIX E

Derivation of formulae for the aerodynamic moment due to translation and pitch.
E.1 The eerodynamic moment due to translation.

The aerodynamic moment due to translation is denoted by 9z where Ry again consists of two parts
Mg and AMs.
Mg is defined by

%P4
ﬂﬂa—j M(Y)aY . (E.1)
with
MB(Y)=:12f Kps(X, V)dX (E.2)
0

and ps(X,Y) is given by equation (3.17).
Ingerting (3.17} into (E.2} one arrives at an expression analogous to equation (D, 3), viz.:

1
ﬂ[ﬂ(y) . . ,8 iv:[ ‘ Y Y \2 [ _ixxat
_——% e ———41-1?2— K@ ]B1 + Bgf + B, (_ﬁ__) ] M bf e XJ,(«X)dX +
1 X
+ iKﬁefX ; / e—ixMX_ JO(Kf)df z d‘X,} 4 —?;9 [._-;._ﬁ_ [ e-th{X XzJ (KX)dX -+
0 ¢ i

1
+ 2 [ xeg-inmx g (cX)dX +
p

0

"‘Gefx }f “"MXJ (KX)dX {dx+ﬁzﬂ1 fX {f —WME XJ (X)X ] axX D (E.3)
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The only integral oecurring in this expressmn and not already determmed in appendix D is

f(KX)’ —HME 7 (e X)dX.

This integral iy epsily redueed by aid of p-artml integration and the result is:
1
f eI (XY (kX)X = — e ™M ] () + 21, (k, M) — iMT, (x, M). (E. 4)
; ‘

‘Using. equations (D. 4), (D.25), (D.26) and (E.4} the right-hand side of (E.3) becomes:

()

Mp(Y) _ B i — : Cop B,
% o7 =25 [{mﬂfugx,M)_2lﬂzfl(u,n1)~pf2(x,n1)} — =t
4 B (2icde ™™ 1 (<) + B (x, M) —iM (4 + B2, (¢, M) —
. pTE ok S — 14 ‘Bx)l(x, )
!
L G RLEN MET } | (E.4)
Integrating with r.éspect to ¥ ylelds ultimately
. . A
vigd - (1Y
B (;g“)
T 3 ' S
B vt 202 ' Qo . pe a
7N T M + 2 e { 8% (x, M) —2iMf (x, M) — B°f.(x, M) } Yy
e zﬂz {2 iMe™ ™ J () + B, (x, M) —iM (4 + B4 f1(x M) +
%R4
f&(l’)di’
- — (5B + 2, (x, M) 4 MBf (i, M) } X — R : (1. 5)

We proceed now to the reduction of the second part Ajfg of the aerodynamic moment due to trans-
lation. This quantity is defined by

AM; = —fAMg(Y ' (E. 6)
with

AMy(Y) =12 fX. Aps(X, Y)AT; (B.7
¥

and App(X,Y) is given by equation (3.27).
After interchanging the order of integration AMp becomes

1 x : .
. . t o
Ay = gﬁl [ x| j spa(X, V)Y | dX. (B-8)
. g .
The inner integral has been reduced already in appendix D.1 (see formula, (D.19),
Multiplication of this expression with X and integrating consecutively to X gives the seeond part of

the aerodynamic moment and the result is:

AMs 2 ¢ 2
=tz | B [1—_ 23

N . _ . —ixM
T pUSL WA {( (1 + M%) cosx + 248 sinw + WMP? eosk— kB2 sink)e

— (M4 1) }] /“}; 2 (B o(x, M) — M4 + B2, (x, M) —
— 587 + ), (x, M) + (MBf,(c, M) + 2ixMe™ ™" JQ(K).]] (B9

r —_— —
The aerodynamic moment due to translation ean now easily be obtained by adding Mz and AMg.
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E.2 The ae-rod—;;mmic moment due to pitch.

The aerodynamlc moment due to piteh 'is denoted hy My, where Oy consists of the parts My
and AMT

My is defined by :

91 184 :
M= 2L [M'T(Y)dl’, : : (E. 10)
By
with
‘MT(Y)'=:12 f‘XpT(X, Y)dx (E.11)

0
and p,(X,Y) is given by equation (3.18).
Substitution of (3.18) into equation (E.11) yields:

Mo | ViB=— (X4 ) 1

Ma(Y) B o[+ e Y ye
1% pU%E ' 1, pUP12 + 44 37 e +ip2 T, + T, 7 + T, ?) .
1 x S " x - :
o 2 S
x| [ e X (XX |ax—n (7, + Tz%’— + T, —gz_)fx | [ e g, Xyax | ax—
’ ¢ ] ) -

X
— g (T; + T, % + T, %)Uf Xz tD[ e‘iquJn(jéf)df [ dx +

+ T,(Y) [M fxz ~iRME g XVd X—l{- X j / _lfoJo(Kf)dI ‘dX_
g . < 0 '

BZ K2

1 X 1 X
— "i f X U e T g VT % X+ L@ +1) [X }f ™M ¥ 1 (X)X f dx —
K o
0 0 . O ] -

X - . 1 . X )
— mp fxz }f e~ M ¥ I (X)dX 2 ax + Mﬁzj e }fe?*”MX.YzJO(Kf)dff dXD (E.12)
0 I 0 g ‘
1

X
The only integrals not yet reduced are f Xz :fe""”{f,fn(;f)df f dX,
b g ’

1 x ) X ,
fxz jf o= MT .Y.Jn(xf)dff ix and fX ]f eI X7 (X)aX | dX.
0 [} ] 0

By aid of partial integration the following formulae qah he easily checked:

1

- X . .
/ ngl/v e—ixMJ&—' Jn(xf)df } dX =1/, gfn(": M) — _%‘_ folx, M) }
0 1]

_[fXZJA/i""’“’"‘? (T, (X)X | aX =2/, {10, 2) — - fute ) | (E.13)
0

v

1 X

(;/X 20] g~ ME (xX)2J (X)dX = dX.: 1, , fole, M) — Kizﬂ("» n } |
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By means of the eguations (D.4), (D.25), (D.26) and (E.13) one obtains after a small caleulation:

Mo | ViBa=— (Xt ) 1 |

My (Y) _ %
Vel i/, pUl
ivt -
+ i ’% T (=B 20 ol M) + BB, (x, M) + 3 MF, (e, M) — i, (5, 1) } g (%) +
?%; [— 2B M + 24xf)folx, M) + ix® { 3(1 + 3 8%) + 2dcMB? ) fo(x, M) + 3 M(3 + B fo(x, M) —

— (T 8% + 3)fy(x, M) — MB*f (v, M)] T, (Y) ] (E.14)

Integrating with respect to ¥ gives finally the first part of the aerodynamic moment due to piteh, viz.:
%BA

y
f o (=) ay

B

. WM '
=—2 s " (Kot Z) | (4B 20— 231, 0 30— B0, I ) S

7. plS E B +

+ —K%—{ 2 'iKMG_i,‘MJO(K) + 8% (i, M) —iM (4 + B*)f, (k, M) — (5 8% + 2)f,(x, M) + IMB*y(x, M) } .

%EA
f 7(Y)dY

0

\ iﬁ' eivt
Yy BA—J i

O [ B+ i 00 + 8 e M) + 3 B (e, ) —

nEA .

[ o5 )a

B, M) Y g M 2 M) i (3(L+ 3 47) + 2B} o ) +
hpa
f 7,(Y)dY

+ 3M(3 + By (6 M) —i(T 82 + 3)fs (o M) — MBY,(x, )] °

—.‘W} (B9

At last the second part of the aerodynamic moment will he determined. AM7p is defined as:

1
— 21
AﬂITzﬂfAJIT(Y)dY . (E. 16)
B :
where
1
AMp(Y)y =1 fXApT(X, dx (E.17)
3 _
and Apr(X,Y) is given by the expression (3.31).
Hence .
1 x
_ 9 I . .
AMy = 3 fX ? APT(X, ¥)dy { dX. (E. 18)
) o

The inner integral has heen reduced already in appendix T2 (see form, (D.34)). Multiplying this
expression with X and integrating econseeutively to X, one obtains for the second part of the aero-
dynamiec moment:
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AM; 4 T, & [ : i \ oy N . it
W- -ﬂajx_ﬂer ( e+_KB?) [{(2+B)GQ§K+2%MS]HK+@KMJB COSK"—'KﬁZSIDK'}B -
(B 2) 1, ep + ;2 [{ + xB2(f + 2) cosx + 2 iMpB sinx— iM (B + 4) cosx +
K .
+ (3 4) sink o™ FIM(4 4+ B0) 4 1/, Mgt + 1/, . 360 (E.19)

The total aerodynamie moment due to piteh is obtained by adding the right-hand sides of eqgs. (B.15)
and (K. 19).
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C.C.L. Class. D43

REPORT TR W.5

Oscillating rectangular wings in supersonic flow with arbitrary
bending and torsion mode shapes.

Part 1I: querical results

E. M. DE JAGER.

Summary.

As has been shown in part I the userodynamie

derivatives can be given in the form of the sum

of some terms each of which consists of two factors, one being a funetion of the reduced frequency and the
Mach number, the other one containing the bending or the torsion mode shape.
Tables of the factors containing the reduced frequency ¥ and the Mach number M are 'presented for E=0{0.1}1

and M= 1.2 (6.1) 1.6 (0.2) 2 (0.5) 4.

Iz order to show the influence of frequency, Mach number and aspeet ratio graphs are given of the aerndynamie

derivates for a tramslating and pitehing flat wing.

They have been plotted as functions of the reduced frequency for different values of aspect ratio and Mach

number.

Contents,

List of symbols.

Introduetion.

Reeapitulation of the theoretlcal results.
Application of the theory to a flat wmg
References, .
11 tables.

24 figures,

o DY

List of symbols. -

h amplitude of translation
vi
k reduced frequency Xl
l wing chord
s wing span
t " time .
4,2 rectangular eoordinates
o z coordinate of spanwise elastic axis
A aspeet ratio i
B coefficients of polynomial approxi-
mating bending mode shape

B(y) hending mode shape

L lift coefficient
Cu : moment coefficient
Lg lift due to hending
L, lift due to torsion
Mg moment due to bending
My moment due to torsion
M Mach number

S wing area
71 a3 coefficients of polynomial approxi-
mating torsion mode shape
U, undisturbed flow veloeity
B Var—1.. :
kM
K T )
v cireular frequeney
p density
¢ amplitude of torsional oseillation
ely) torsion mode function
F (x, M)
G (x, M)
(x, M)
{, M) functions occurring in the formulae
{x, M) for the aerodynamic derivatives
(x, M)
(x, M)
(K’ M)

suffix B denotes quantities asseciated with bending
suffix T denotes quantities associated with tersion

Y

1 Introduction,

In NLR. report W.3 (ref. 1) we considered
the problem of the harmonically osecillating reect-
angnlar wing in supersonic flow. The wing was
assumed to execute small torsional oscillations of
amplitude ¢(y) about Some spanwise axXis ==,
(see sketch) and small vertieal translations of
amplitude B(y), where o(y) and B(y) may be
arbitrary functions of the spanwise coordinate .




Outside the Maeh lines from the leading edge.

tips (region I) e{y) and B(y) were locally ap-
proximated by polynomials of the second degree,
viz.;

1
Cely) =T, +T”£+T3 -

B =t(s+5Y+5 L) an

Z PR

while in the regions Il inside the Maeh lines
from the leading edge tips ¢(y) and B(y) were
approximated by : ‘

‘P(y) =T

B(y) —1(B, + B, i{_) (1.2)

2 Recapitulation of the theoretical results.

{(compare lit. 1 sections 3.2 and 3.3). Expressions
were given for lift and moment, These expressions
consist of a number of terms each of which is
composed of two factors, one containing the re-
duced frequeney and the Mach number only, the
other one the bending or torsion mode shape B(y)
and ¢{¥) In a very simple way.

The tunctions ¢(y) and B(y) were taken sym-
metrically with respect to. the midehord of the
wing.

-.The formulae for lift and moment are valid as
long as the Mach waves from the leading edge tips
do not interseet the opposite side edges; this meang
that the effective aspect ratio 84 must be larger
than 1; 4 is the aspect ratio and g— T

The theory is so much the more aceurate aceord-
ing as the approximations (1.1} and (1.2) for the
bending and the torsion mode shape are more
accurate,

The rather rough approximations (1.2) for ar-
hitrary bending and torsion mode shapes in the
regions IT inside the Mach waves from the leading
cdge tips may he of little value when the regions II
occupy a large part of the wing i. e. when the value
of BA is elose to 1. However, the aceuraey of the
approximation (1.2) increases when BA becomes
larger; moreover the influence of the tips upen
lift and moment of the wing decreases for larger
vaiues of fA. For a translating and pitching flat
wing the formulae for lift and moment are quite
exact.

In this seetion we give a review of the rvesults derived in ref. 1.

a) The lift due to bending of the wing.

[

The lift coefficient (lift positive in upward direction) can be written as:

£a

Lx . ALy

Lp

1/2 pU288 vt

pUQSeivz 1/2 Pvzseivt

(2.1)

where the seeond term is the edge correction of the first one due to the finite span of the wing; U is
the undisturbed veloeity, § the wing area, v the circular frequeney, ¢ the time and p the density.

e
3 [ ?_(I"J_l d (42
LB dy =0
_ M + G M Y
Vo pUSe™ il B) * ol 20 BA
ALy
-5 2,
% Tige™ = Hpix, M) —— ,GA + Hp(k, M) 13 (2.2)
QM vl . .
where k = 5 k the reduced frequency 3T { the wing chord, s the wing span, M the Mach number

B= }/3> "1 and A the aspect ratio. B{y) is the bending mode shape of the wing and B, dl’ld B,

are constants such that Z(B + A, T> approximates the bending mode shape as close as possible in the

1
0<y<—.
YS7g

The eompléx functions Fg, Gz, Hz and Kz are given in section (4.6) of ref. 1; HAp=—

. Gs

and. the funections Fgz, s and Hg are tablﬂdted in tables 1—11 for % = 0(01)1 and M =

1.2 (0.1) 1.6 (0.2) 2 (05) 4,
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b)Y  The lift due to torsion of the wing.

The lift coefficient ean be written as

. R S (2.3)
4 Vo pl28e® 15 pl72Se™! L pli2Set*
where the second term represents the edge correetion.
. "
_ o [ etnay
T Te 1! 6
e N F — (= m e
WG Pt — (& ) matemn (g —
| . (E‘_ﬁ)
’ Te M |2 \Ndy /oy
N e iM) T,
WH i}['r('\:M)— (T'*"FK— Hp(x, M) tEA_- _ ‘ | .(2.4)

where 2. is the z-coordinate of the elastic axis and ¢(y) the torsion mode function. T, is the constant,
. . . . . 14
that approximates the torsion mode shape as elose as possible in the region 0 <y <—.

The complex functions Fy, Gy and IIy are given in section (4.6) of ref. 1 and they are tabulated
in tables 1—11.

¢) The cerorynemic moment due to bending of the wing.

‘ The aerodynamic moient (positive nose-heavy) is taken with respeet to the leading edge of the wing;
| the moment coefficient reads as:
| * |

M 5 . My AMgi
‘ Cu, == — == . . (2.5)
Ly pU28le™ 14 oU281e™ 14 o281
where the second term represents again the edfl;e eorrection.
Yas . .
B . [ E(l’_yl dy | dB )
_,ﬂ__zpn(,(’ . [ —— , WY R 7 Cdy Jy=o
Yo pU?Sle™ Vo s BA
" : |
'——*A—E—*-.*= R;;(K, M) Bl + SB(K, ﬂ[) Bz N (26)
L, plj281e™ B4 BA
8p(x, M) ==— 1, . Qpi{x, M} and P, @z and Eg are given in section (4.6) of ref. 1; they are tabulat-

ed in tahles 1—11.

d) The aerodynamic moment due to forsion of the wing.

The moment (positive nose heavy), is taken with respect to the leading edge of the wing, and the moment
coefficient reads as: ‘

1
Cu,

on — , —
- T — e My —+ __L (2.7)
Yo oU™. STe™ 1 pUSle™ 1 pUt . Slg” -

where the second term represents again the edge correction.




+ Qe 1) + B(mT

Al
Yo pli2 8.1, 6™

+ 22) Po, ) }

= | Relx, M) — (_ +

¥is

f #(0)dy
M

B

1% 8

v (@),

iM ) < E

Qs(x, M)

M
Bx

)RB(K M) ’?%1— (28)

The funections Pr, Qr and Ry are given in section (46) of ref. 1; they are tabulated in tables 1—11.
The ealeulation of the aerodynamie derivatives can now easily be performed for some triven bending

or torsion mode funetion by aid of the tables 1--11.

It appears that the correction of lift and moment due to the finite span of the wing is inversely

proportional to the effective aspect ratio BA.

3 Application of the theory to a flat wing.

For a flat- wing, plunging with amplitude A, the formulae for lift and moment about the leadmg

edge reduce to
aCL L}l

oh 1 Uz S R o™

BCM_ My

th 140U, 8.1 k. e™

_ Ha(x, M)
= P, M) + 27
. Ra(x, M)
=Pl M) + 2= (3.1)

For the wing, if pitehing with amplitude ¢ about the spanwise axis z=—z., the formulae for ]lft

and moment about the leading edge become:

0Cs _ Lo ‘ :[FT(K,ﬂI)——(fi"f-
[ 1 pll*. 8. 0. e } !
oCy Mo

»
% I/“ZPUQ‘S'I-ﬁﬂ.e”‘: Prlx, M) — (T-I—

Te

Iér(x, M)y — (—+

i

) Falx, M) [ +

24

t

Hy(x, M) — (x‘ + LAY NS
B4

)P,,(K, My +

) Bg(x, M)

+

BA

These formulae are essentially the same as those
derived by Miles in refs. 2 and 3,

In order to obtain some insight into the varia-
tion of the aerodynamiec derivatives as functions
of the reduced frequency, aspect ratio and Mach
number, the absolute value of the aerodynamie
derivatives and their phase with respect to the
phase of the plunging or pitehing motion have
heen plotted as funetions of the reduced frequency
for several values of the aspect ratio and for
M=13 2 and 4

These graphs are presented in figs. 1, 1a, 1bh,
— 8, 8a, 8b; the moments, however, have not been
taken with respeet to the leading edge of the
wing, but with respect to the axis of rotation of
the pitehing wing; the abscissa of this axis has heen
chosen as =141 viz, the midchord line of the

(3:2)

wing, The range of the reduced frequency is
0—1.0 and the aspect-ratio varies from its mini-

1
mum value A :B— fo w

It appears that the absolute value of the aero-
dynamie derivatives decreases when the Mach
number increases. The variation of the magnitude
and the phase of the acrodynamie derivatives as
funetions of the aspect ratio becomes smaller
according as the aspect-ratio becomes larger and
this effeet is in general stronger when the Mach
number is increased; this result is in agrecment
with the fact, that the correction term due to the
finite span of the wing is inversely proportional
to the effectiver aspeet ratio BA.

There are some values of the reduced frequency
where the magnitude of the aerodynamic derivative



or its phase seems to be independent of the aspect
ratio; see figs. da, ba, 8a and 8h,

It seems that the curves for different aspect
ratio all intersect in one point. Careful calenla-
tions, however, have shown that this commeon point

of intersection is not real; nevertheless the varia-

tion of the magnitude of the aerodynamic deriva-
tive or its phase as function of the aspect ratio
is very small in the neighbonrhood of these values
of the. reduced frequency.

Nelgon, Rainey and Watking have alyo pre-
sented a theory for the oscillating flat rectangular
wing in supersonic flight (ref. 4). They present
amongst others expressions for lift and moment
cocfficients expanded to the seventh power of the
frequency. Their results, however, are only valid

e M1
for O = k = ——ﬂ'f‘ ,
report are valid for all values of k.

The numerical results presented here are in
good agreement with those of reference 4. Com-
putation of the formulae of ref. 4 has revealed
that the numerical results for the moment curve
slope and the corresponding phase angle associated

whereas the results of this

¥

with pitching are not in good agreement with the
corresponding graphs in ref. 4.

Sinee the values computed from the formulae
of ref, 4 agree quite well with those derived from
the formulae (3.1) and (3.2} of this paper, it may
he coneluded that a little error bhas been made in
ref. 4 in drawing the graphs for the moment curve
slope and the corresponding phase angle asso-
clated with piteh,
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Fig. le. Lift curve slopes for translation ns a function
of reduced frequeney for some values of the aspect ratio.
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Fig. 2a. Moment curve glopes for translation as a function

of reduced frequeney for some values of the aspeet ratio.

The moment is taken with respeet to the midehord line
of tho wing. Mach number ¥ =1.3,
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Irig. 3e, Lift curves slopes for piteh as a funetion of
reduced frequency for some values of the aspect ratio.
Axis of rotation is nudchord line of the wmg‘
Mach number M —4,
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Fig. 4b. Moment eurve slopes for pitch as a funetion
of reduced frequency for some values of the aspoet ratio.
Axis of rtotation is midchord line of the wing.

The moment i3 taken with respect to the axis of rofation.
Mach number M = 2,
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Fig. 4e. Moment ecurve slopes for piteh as a funetion

of redueed frequency for some values of the aspeet ratio,
Axis of rotation is midehord line of the wing,
The moment is taken with respect to the axis of rotation.
Mach number M =4,
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Fig. 6b. Phase angle in radians between moment veetor
and angular displacement vector for translation as
function of reduced frequency for some values of the
aspect ratio, The moment is taken with respect to the
midehord line of the wing. Mach number M =2,
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Fig. 7n. Phase angle in radians between lift veetor and
angular displacement veetor for piteh as a function of
reduced frequeney for some values of the aspect ratio.
Axig of rotation is midchord line of the wing,
Mach number M —1.3.
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Jig. 6e. Phase angle in radians between moment veztor
and angular displacement vector for tramsglation as a
funetion of reduced frequeney -for some values of the
aspeet ratio. The moment is taken with respect to the
midehord line of the wing, Mach number M =4,
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Fig. 7b. Phase angle in radians between lift vector and
angular displacement wveector for piteh as a funection of
reduced frequeney for some values of the aspect ratio.
Axis of rotation is midehord line of the wing.
Mach number M =2,
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Fig. 7e. Phase angle in radians between lift vector and
angular displacement vector for pitch as a function of
reduced frequeney for some values of the aspeet ratio.
Axig of rotation is midebord line of the wing.
Mach aumber M =4,
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Tig. 8b. Thase angle in radians between moment vector
and angular displacement veetor for piteh as a funetion
of reduced frequency for some values of the aspect ratio.
Axis of rotation is midehord line of the wing.
The moment is taken with respect to the axis.of rotation.
Mach number M =2,
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‘The moment is takon with respect to the axis of rotation.
Mach number M = 4.
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TABLE 1.
M =+ 1.20000.

k RGFH I'?RFB Re GB Im GB RBHB IT}LHB

0 — 0.00000 — 0.00000 + 0.00000 + 0.00000 + 0.06000 4+ 0.00000
0.1 — 0.25199 — 112107 + 012465 + 0.26501 + 0.20755 + 0.53974
0.2 — 0.78059 —1.83371 + 0.40395 + 0.33983 + 0.66929 + (.76704
0.3 —1.13645 —2.11894 + 0.63536 “+ 0.18686 + 1.0508% + (,63482
0.4 —1.09199 — 2.325679 -+ 067684 — 0.062356 + 1.14144 + 0.37298
0.5 — 0.82088 — 2.78445 -+ 0.54892 — 0.23265 + 1.00920 + 025121
0.6 — 0.64896 — 3.48975 + 0.38827- — 0.24969 + 0.88412 4~ .34101
0.7 — 0.68709 — 418091 + 0.31297 — 017492 + 0.91452 + 0.50163
0.8 — 075502 — 468146 4+ (1.33201 — 011882 -+ 1.05059 + 0.56760
0.9 — 0.64103 — 5.09127 + 0.37072 — 0.13261 + 1.14600 + 0.51896
1.0 — 0.36149 — 5.63369 + 0.36434 — 0.18104 + 1.13464 + 0.46661

Re Fr I'm Fr Re 7 Im Gr Re H» Im I,

0 — (0.00000 — 0.00000 — 0.00000 — 0.00000 — 0.00000 — (.00000
0.1 — 0.08690 — 0.58139 — 0.01687 — 0.04600 + 0.05315 + 0.18818
0.2 — 0.29949 — 1.05051 — 0.06819 — 0.06972 + 0.056315 + 0.30925
0.3 — 0.52920 —1.36722 — 0.10236 — 0.06243 + 0.32990 + 0.33735
0.4 — 0.68332 — 1.57827 — 0.12954 — 0.03278 + 0.43142 + 0.28813
0.5 —(1.73883 — 1.76831 — 0.13293 + 0.00110 -+ 0.47093 + 024321
(.6 — 0.73517 —-1.99458 — 0.11979 -+ 0,02425 + 0.46990 + 0.21222
0.7 —(,72370 — 225931 - —0.10322 + 0.03273 + 0.46276 + 0.21240
0.8 —0.72443 -— 2538277 | — 0.09233 + 0.03217 + 0.46931 + 022670
0.9 —0.72358 — 2.79403 — 0.08815 + 0.03064 + 048704 4+ 0.23671
1.0 —0.70199 — 3.04909 — 0.08656 -+ 0.03171 + 0.503b5 + 0.23802

Re Py Im Pg Be Qg Im Qg Re Ry Im Ry

0 — 0.00000 — 0.00000 <~ 0.00000 + 0.00000 + 0.00000 4+ 0.00000
01 — 016510 — 0.53968 + 0.09922 + 0.19566 -+ 0.15440 + 0035157
0.2 — 0.48110 — 0.78321 4+ 0.31623 + 0.23473 + 0.48471 + 045778
0.3 — 0.60725 — 075171 -+ 0.48106 4- 0.09274 -+ (0.72098 + 0.29747
04 — 0.40866 — 0.74752 + 0.48156 — 011177 + 0.71003 + 0.07484
0.5 — {0,08205 —1.01614 -+ 0.34852 — 0.23099 + 0.53827 + 0.00799
0.6 + 0.08621 — 1.49517 + 0.20767 —0.21312 4+ 0.41422 + 0.12879
07 + (103660 — 1.92161 + 0.15736 — 0.12558 + 0.45176 -+ (.28923
0.8 — 0.03059 — 2,14870 + 0.19282 — 0.07032 + 0.58128 + 0.34090
0.9 -+ 0.08255 — 2.29724 + 0.23783 — ().08658 -+ (.65896 -+ 0.28226
1.0 -+ 0.34050 — 2.58459 + 0.23385 —0.13323 + 0.63109 4 0.22858

Re Py Im Py Ee §)r Im Qr Re Ry Im By

1} — 0.00000 — 0.00000 — 0.00000 — (0.00000 + 0.00000 -+ 0.00000
01 - 0.06481 — 0.38475 — 0.01402 — 0.03656 + 0.04237 + 0.14008
0.2 —0.21942 — 0.63090 — 0.04799 — 0.05415 + 0.14560¢ -+ 0.22474
0.3 —0.3754T — 086094 — 0.08323 — 0.04576 + 0.25536 + 0.23433
0.4 — 046157 — 0.96907 — 1.10301 — 0.01953 + 0.32470 + 0.19312
0.5 — 046744 — 1.07686 — 0.10240 + 0.00853 + 0.34190 + 0.14588
0.6 — 043372 — 1.22703 — 0.08868 + 0.02590 + 0.32890 + 0.12444

N — 0.405660 —1.41308 — 0.07370 + 0.03017 + $.316503 + 0.13117
0.8 —0.39612 —1.60367 — 0.06501 + 0.02728 + 0.32020 4+ 0.14812
0.9 — (0.38809 — 1.78005 — 0.06267 + 0.02456 + 0.33488 -+ 0.15843
1.0 — 0.36234 — 1.95003 — 0.06233 + 0.02513 + 0.34781 + 0.15947




-

TABLE 2.
M ="+ 1.30000.
k | Re Fg ImFg Re Gy Im Gy Re Hy Im Hp
0 — 0.00000 — 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.60000
0.1 —0.13330 — 0.92987 + 0.05917 + 0.18041 + (0.12061 + 0.45548
0.2 — 0.46369 — 1.68244 + (.21260 ~+ 0.29075 + 043173 + 0.76956
0.3 — 0.82231 —2.17631 -+ 0.39807 + 0.29178 + 0.80686 + 0.86717
0.4 — 1.03573 — 2 46546 + 0.54605 + 0.19071 + 1.10676 + 0.77077
0.5 —1.01912 — 270075 + {1.60835 + 0.03473 + 1.24529 + 0.51830
0.6 — 0.81315 — 3.03922 + 0.57794 —0.11361 4+ 1.22370 + 0.42126
0.7 — (1.54647 — 3.55750 + 0.48625 — 0.20559 + 111727 + 0.37285
0.8 — 0.35087 — 422019 -+ 0.38360 —0.225H74 -+ 1.02583 + 0.44395
0.9 — 0.28396 — 4.91785 + 0.31305 -— .19291 + 1.01821 + 0.57762
1.0 —0.30539 — 554531 + 0.29190 —0.14470 + 1.10143 4 0.69471
Re Fy Im Fr Re Gy Tm Gy Re Hy im Hr
0 — 0.00000 — 0.00000 — 0.00000 ¢ | — 0.00000 -+ 0.00000 + 0.00000
0.1 — 0.04526 — 047316 — (.00893 -—— (.03834 + (.03053 + (.15526
0.2 —0.16674 -— 0.89975 — 0.03679 — 0.06669 4 0.11347 + 0.28120
0.3 — 0.32737 - 1.25007 — 0.07283 —0.07837 + 0.22618 + 0.35837
0.4 — 0.48216 — 152068 — 010833 — 0.07203 -+ 0.34062 =+ 0.38302
0.5 — 0.59508 —1.73262 —0.13486 — 0.05159 + 0.43274 + 0.360662
0.6 — 0.65045 —1.91993 — 0.14793 ] — 0.02437 + 0.49075 + 0.32976
0.7 — 0.65449 — 2.11469 — 0.14778 + 0.00186 + 0.51601 + 0.29342
0.8 — 0.52753 — 2.33545 — 0.13844 + 0.02151 + 0.51994 -+ 0.27163
0.9 — 0.59191 — 2.,58387 — 0.12550 -+ 0.03255 + 0.51719 + 0.26817
1.0 —0.56183 — 2.84950 —0.11336 -+ 0.03631 + 0.51909 -+ 0.27816
Re Py Im Py 5 Re Qg ‘ I'm Qg N Re Ry ImEp
0 — 0.00000 — 0.00000 -+ 0.00000 + 0.00000 -+ 0.60000 + (.00000
01 — (108804 —0.45671 + 0.04721 + 0.13425 4+ 0.09009 + 0.30022
0.2 — (.29605 — 078270 + (L16807 + 0.21047 + 0.31826 4+ 0.48836
0.3 — (,49494 — 0.92625 + 0.31039 + 0.19743 + 0.58068 + 0.50880
04 — 0.,556358 — 0.94478 + 0.41564 + 0.10400 + 0.76623 + 0.38775
0.5 — 0.42404 —0.96813 + 0.44603 — 0.02738 + 0.81255 + 0.21467
0.6 —0.16270 —-1.11929 -+ (0.39985 — 0.14295 + 0.73295 -+ 0.09150
0.7 + 010802 —1.44281 + 0.30834 —0.20334 + 0.60126 + 0.07942
0.8 + 0.27666 —1.88474 + (.21695 —0.19984 + 0.50589 -+ 0.17232
0.9 + 0.30796 — 2.33348 -+ 0.16196 — (.15372 + 0.50102 -+ 0.30945
1.0 + 0.25644 — 2.96581. + 0.15483 — 0,10099 + 0.58235 + 0.41655
Re Py Im Py Re Qr Im @y Re Ry Im By
0 — 0.00000 — 0.00000 — 0.00000 | — 0.00000 + 0.00000 - 0.00000
0.1 — 0.03384 — (,31433 — 0.00827 — 0.03057 + (.02438 + 0.11602
0.2 —0.12349 — 0.59167 — (.03050 — 0.05261 + 0.09013 + 0.20770
0.3 —0.23841 — 0.80938 -— 0.05996 — 0.06051 4+ 0.17799 4+ 0.25934
0.4 — 0.34228 -—0.96701 — (,08827 —0.05336 -+ 0.26435 + 0.26880
0.5 — 0.40741 — 1.08413 —0.10834 —0.03486 + 0.32988 + (.24684
0.6 — 0.42412 — 1.19006 — {11661 — 001152 + 0.36572 + 3.21159
0.7 — 040117 —1.31074 - 0,11375 + 0.00994 + 0.37477 + (0.18076
0.8 —{1.35832 — 1.45918 — (110366 -+ 0.02490 + 0.36820 + 0.16529
0.9 — (0.31526 — 163334 — 0.09143 + 0.03203 + 0.35917 + 0.16685
1.0 — (0.28303 — 182136 — 0.08128 + 0.03295 + 035714 + 0.17968
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TABLE 3.
M = + 1.40000,

k Re Fy Im Fg Re Gy Im Gg Re H, Im Hy
0o - — 0.00000 — 0.00000 + 0.00000 + 0.00000} =+ 0.00000 .+ 0.00000
0.1: — 0.08242. — 0.79946 + 0.03477 + 0.13285 + 0.08194 + 0.39412
02 . — 0.29977 — 1.50434 + 0.12966 -+ 0.23160 + 0.30509 -+ 0.70887
03 - — 0.57375 — 2.05493 + 0.25935 -+ 0.27209 + 0.60911 -+ 0.88963
D4 - — 0.80748 — 0.44749 + 0.39043 + (.24682 + 0.91607 + 0.92259
05 - —(.92157 ——2.73353 + 0.49145 + 0.16626 + 1.15574 + 0.83659
06 . — (.88209 — 299807 + 0.54188 + 0.05461 -+ 1.28694 + (.69062
0.7 — (170956 — 3.32621. + 053712 — (.05842 -+ 1.30774 + 0.55204
08 — (.46803 — 3.77177 + 0.48818 —0.14689 + 1.25146 + 047374
0.9 ©—0.23418 — 4.34027 + (.41649 —0.19590 4 1.17097 -+ 0.47843
1.0 — (.06894 —4.99242 + 0.34601 — 020452 + 1.11782 + 0.55514

Re FT Im I'JT Re Gg‘ I'm GT I{GI{T Im 1["'

0. — 0.00000 — (0.00000 — {.00000 — 0.00000 + 0.00000- + 0.00000
0.1. — (0.02782 — (0.40396 — 0.00686 — 0.03303 -+ 0.02065 + 0.13324
0.2. — 0.10519 — (.78349 — 002610 — (.06038 + 0.07876 -+ 0.25024
0.3 — 0.21548 —1.12019 — 0.05405 — 0.07763 + 0.16381 -+ 0.33836
04 — (.33606 — 1.40588 — 0.085567 — (108251 + 0.26122 + 0.39127
0.5 — 0.44420 —1.64393 — (0.11525 — 0.07528 + 0.35587 + 0.40985

- 0.6 — 0.52260 —1.84724 — .13864 — 0.05848 + 0.43551. + 0.40126

0.7- — 0.56292 — 203391 — 0.15306 — 003612 + 0.49319 - |- + 0.37657
0.8- — 0.56649 — 222194 — 0.15799 — 0.01261 + (.52799 + 0.34755
0.9. — 0.54215 — 242473 . —(,15489 -+ 0.00825 + 054417 4+ 0.32384
1.0 — 0.60236 — 2.64843 -—0.14646 +-.0.02401 + 0.54906 + 0.31102

Re Py Im Py Re Qs Ini Qg Re Ry Im By

0 - — 0.000060 — 0.00000 + 0.00000 + 0.00000 4 0.00000 -+ 0.00000
01 — 0.05460 — 0.39550- 4 0.02777 - + 0.09914 + 0.06129 + 0.26088
02 — 0.19458 — (.72085 + 0.10302 + 0.16997 4 0.22633 + 0.45863
0.3 — [1.35826 — 093474 + 0.20419 + 0.19286 + 0.44530 -+ (.65127
04. — (1,47142 —1.04161 + 0.30310 + 0.16260 + 0.65485 + 0.53132
05- — 047787 — 1.08960 + 0.87382 4+ 0.08942 + 0.79987 4+ 0426674
0.6 — (1.35950 — 115084 + (0.40038 — 0.00508 + 0.85143 + 0.28936
0.7 —0.14694 —1.29231 + 0.38091 —0.09528 + 0.81454 + 0.17547
0.8 + 0.09846 — 1.54982 + (1.32692 — 0.15976 + (1.72346 + 0.12619
0.9 -+ 0.30797 — 191558 -+ (0.26841 — (.18748 4 .0.62680 + 0.15458
1.0 + 043342 — 2.34400 + 0.19653 — 0.18001 + 0.56875- + 0.24412

Ee })T Im PT Re Q'J' I'm Q'p Re R;r' I'm RT

0 — 0.00000 — 0.00000 — 0.00000 — 0.00000 <+ 0.00000 | 4 0.00000
01 — 0.02082 — 0.26874 — 0.00571 — (.02637 4 0.01650 4+ 0.09970
0.2 —0.07822 —0.51803 — 0.02168 — 0.04788 + 0.06272 4 0.18589
0.3 — (0.15845 — 0.73355 — 0.04470 — 0.06079 + 0,12969 + 0.24825
04 — 0.24300 — 0.90968 — 0.07031 — 0.06326 + 0.20506 + 0.28189
0.6 —0.31371 -—1.05045 — 0.09389 — 0.0h568 + 0.7622 + 0.28815
06 - - -— 0.35749 —1.16761 — 011168 — 0.04039 4+ 0.33329 + (.27366
0.7 — 0.36912 — 1.27677 —0.12157 — 0.02097 4+ 0.37108 + 0.24819
0.8 — 0.35161 — 1.39247 — 0.12335 — 0.00130 + (.38973 + 0.22179

09 — 0.31403 — 1.52569 —- 011852 + 0.01542 4 0.39371 + 0.20233
1.0 — 0.26793 — 1.67923 — 0.10964 + 0.02726 4 (.38994 4 0.19387
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TABLE 4.
M =+ 1.50000.

E Re Fy- Im Fg Fe Gy Im Gy Re Hg Im Hp
] — 0.00000 | — 0.00000 + 0.00000 + 0.00000 -+ 0.00000 -+ 0.00000
0.1 — 0.05588 — 0.70539 + 0.02307 -+ 0.10325 + 0.06095 -+ 0.34886
0.2 —0.20784 — 1.35327 +- 0.08767 + (18688 + G.23143 + (.64676
0.3 —0.41331 — 1.90222 <+ 0.18106 + (.23552 + 0.47746 + 0.85452
0.4 — 0.61504 — 233824 + (128523 + 0.24121 + 0.75183 + 0.95340
0.5 —0.75725 — 2.67806 + 0.38102 + 0.20486 + 1.00662 + 0.94853
0.6 — 0.80100 - 2.96358 + 0.45225 + 0.13561 + 1.19964 + 0.86619
07 — 0.73422 — 3.24932 + 0.48901 + 0.04829 -+ 1.31286 4+ 0.74605
0.8 — 057359 —3.58676 + 0.48931 — 0.04023 + 1.34582 + 0.63043
0.9 — 0.35814 — 4.01031 + 0.45879 — 0.11493 + 1.31826 + 0.55371
1.0 — 0.13660 — 4.52906 -+ 0.40862 — 016574 + 1.26201 + 0.53468

Re Fyp Im Fp Re Gy Im G, Re I, Tm Hqp
0 — 0.00000 — (.00000 — 0.00000 — 0.00000 + 0.00000 + 0.00000
0.1 —0.01881 — (1.35522 — 0.00518 — (.02918 + (.01533 4 011747
0.2 — 007206 — 0.69571 — 0.01999 — 0.05464 + 0.05922 + 0.22457
0.3. — 0.15083 - 1.00949 — 0.04233 — 0.07330 + 0.12583 -+ 0.31265
0.4 — 0.24236 — 1.28946 — 0.06914 - 0.08313 + 0.20661 + (37614
0.5 — ().33251 '— 1.53452 — (.09689 — (108347 + (1.29189 + 0.41329
e — 0.40847 —1.74929 —0.12223 - — 0.07504 + 0.37255 + 0.42620
0.7 — (1.46100 —1.94284 — 014247 — 0,0b075H + 044148 -+ 0.42003
0.8 — 0.48596 —2.12648 — (.15597 — 0.04021 - (.49465 -+ 1.40185
0.9 — 0.48402 — 2.31138 — 016231 — 0.01929 + 0.530091 + 0.37911
1.0 — 0.46020 — 2.50645 —(,16214 — 0.00043 -+ 0.55264 -+ 0.35828

Re Pg I'm Pg Re Qg Im Qg Re Rgp Im Ry
O -— 0.00000 — 0.00000 -+ 0.00000 + 0.00000 + ¢.00000 + 0.00000
0.1 — 0.03707 —-{1.35017 -+ D.01843 -+ 0.07715 + 0.04562 | "+ 0.23139
0.2 — 013579 - 0.657566 -+ 0.06979 + 013801 + 0.17221 4+ 0.42219
0.3 —(0.26248 — 0.89273 + 0.14319 - 0.16995 + 0.35163 + 0.54187
0.4 —0.37267 — 1.04878 + 0.22339 + 0.16685 + 0.54522 + 0.57726
05 — 042474 —1.14354 -+ (.29436 -+ 0.13021 + 0.71373 + 0.53523
0.6 —0.39253 — 1.21429 + 0.34293 + 0,06849 + 0.82708 + (.44000
07 — 027317 —1.30649 + 0.36159 -- 0,00515 + 0.87137 4+ 0.32602
0.8 — 0.08763 — 146029 4 0.34981 -+ 0.07620 + (0.85127 + 0.22857
0.9 -+ 0.12588 — 1.69894 + 031361 -—0.13218 + 0.13218 + 0.17460
1.0 + 0.32361 — 2.02262 + 0.26359 -+ 0.16536 + 0.70936 + 0.17640

Re Py L I'm Py Re Qp Im Qyp e By fm Er
0. — 0,00000 — 0.00000 — 0.00000 — 0.00000 + 0.00000 + 0.00000
0.1 — 0.01408 — 0.23647 — 0.00432 — 0.02330 + 0.01225 + 0.08795
a2 — 0.05368 — 046120 — 001662 — 004344 + 0.04722 4 016728
0.3 —0.11144 — 0.66480 — 0.03508 —0.05776 + 0.09990 + 0.23087
0.4 —0.17682 — 0,84202 — 0.05703 — 0.06459 -+ 0.16305 + 0.27427
0.5 —0.23840 — 0.99268 —0.07944 — 0.06346 + 0.22853 + 0.29636
0.6 — 0.29609 —1.12133 — 0.09944 — 0.05510 + 0.28879 4+ 0.29926

0.7 —0.31308 — 1.23609 — 011479 — 0.4124 + 0.33813 4 028773 -

0.8 —{0.31688 — 1.34666 —0.12421 — 0.02423 4+ 0.37304 + 0.26798
(.9 — 0.29931 — 146224 — 012746 — (.00658 + 0.39484 -+ 0.24638
1.0 — 0.265H61 — 1.58974 —0.12529 + 0.00952 -+.0.40438 4 0,22828
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TABLE 5.
M=+ 1.60000.

k Re Fy Im Fg Re g Im Gy Re Iy Im Hg
0 — 0.00000 —0.00000 | -+ 0.00000 + 0.00000 4+ 0.00000 ) -+ 0.00000
0.1 — 0.04026 — 0.63385 + 0.01654 + 0.08330 + 0.04807 + 0.31407
0.2 —0.15169 —1.22957 + 0.06356 + .15402 + 0.18462 + 0.59240
0.3 — 0.30845 — 1.75767 + 0.13369 + 0.20173 + 0.38820 4+ 0.80078
0.4 —0.71414 —-2.20393 + 0.21617 + (.21989 + 0.62781 + 0,L93672
0.5 — 0.61011 — 257245 + (0.29875 + .20683 + 0.86889 + (.89222
0.6 — .68413 — 2.88439 + 0.36987 + 0.16585 + 1.07988 + 0.95355
07 — 0.67748 -—3.17285 + 0.42065. + 210438 + 1.23789 + 0.87327
(0.8 — 0.58858 — 3.475620 + 0.44579 + 0.03245 -+ 1.33233 4 0.77010
0.9 — 043274 -— 3.82464 + 0.44514 -+ 0.08925 + 1.36594 + 0.67289
1.0 — 0.23784 — 4.24305 + (142236 + 0.10128 + 1.35294 + 0.60492

k Re Fr Im Fy Re Gy Im Gy Re Hy Im Hy
0 -—(.00000 — 0.00000 — 0.00000 — 0.00000 + 0.00000 + 0.00000
0.1 — (.01353 — 0.31858 — (.00415 — (1L.02623 + 0.01207 =+ 0.10551
0.2 — 0.05221 —0.62745 —0.01612 —(0.04982 -+ 0.047060 + 020378
0.3 — 011071 —0.91834 — 0,03453 — 0.06846 + 0.10111 + (.28850
0.4 — 0.18108 — 118569 —0.05751 — 0.08045 + 0.16891 + 0.356513
0.5 — (.25409 — 142735 — 0.08247 — 0.08496 + (.24384 + 0.40137
0.6 — 0.32063 — 1.64477 — 0.10699 — 0.08199 -+ 0.31924 + 042736
0.7 — 037309 | —1.84252 — (12880 — 0.07242 + 0.38922 + 043543
0.8 — 040639 —1.02733 — 0.14620 — (1L.05776 + 0.44935 + 0.42961
0.9 — 041848 —2.20710 —0.15814 —0.03992 -+ 049713 -+ (41489
10 — 0.41035 — 2.38915 — 0.16436 — 0.02092 + 0.53211 + 0.39640

k Re Py Im Pp Re Qg \ Im Qg Re Rg Im BEp
0 — (.00000 — 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000
01 — 0.02673 — 0.31527 + 0.01322 + 0.06229 + 0.03600 + (0.20856
0.2 — 0.09948 — 0.60212 + 0.05065 + 0.11413 + 0.13762 + 0.38862
0.3 —0.19774 — (.83933 + 0.10600 + 0.14692 + 0.28708 + 0.51728
04 — 0.29306 — 1.01825 + 017012 + 0.15548 + 0.45890 + 0.58159
0.5 — (.35602 —1.14510 + 0.23272 + 0.13881 + 0.62505 + 0.58085
0.6 — 0.36351 — 1.23961 + 0.28422 + 0.10020 + 0.76064 + (.52620
0.7 — 01,30439 —1.33032 + 031743 + 0.04640 + 0.84867 + 0.43785
0.8 — 01821y -—~1.44782 + 0.32874 — 0.01372 — 0.88299 -+ 0.34049
0.9 — 0.01426 --1.01754 -+ 0.31853 — 0.07120 + 0.86881 + 025800
1.0 + 0.17251 -—1.85390 + 0.29077 — 0.11803 + 0.82083 + (,20852

k Re Pr Im Py Re(r Im @y Re By Im Ry
0 — 0.00000 — (,00000 — 0.00000 — 0.00000 + 0.00000 -+ 0.00000
0.1 —0.01013 —0.21217 — (.00346 — 0.02096 + 0.00965 + 0.07903
0.2 — 0.03895 — 0.41658 — 0.01341 — (1.03966 4+ 0.03750 + (.15203
0.3 — 0.08202 — 0.60674 — 0.02869 T —0.05412 + 0.08042 -+ (21381
0.4 — (13280 — 0.77843 — 0.04755 — 0.06295 + 0.13371 + 0.26068
0.5 — (118374 — 0,93035 — 0.06787 — 0.06545 4+ 0.19185 + 0.29093
0.6 - (0.22758 — 1.06417 — 0.08752 — 0.06172 + 0.24927 + 0.30491
0.7 -—0.26844 — 1.18413 —0.10460 — 0.06258 + 0.30113 + 0.30488
0.8 — 027269 |, —1.29622 — 0.11768 — (.03941 + (.34395 + 0.29447
0.9 — (1.26937 —1.40702 —(.12596 — 0.02391 + 0.37595 -+ 0.27806
1.0 -— (.25006 —1.52265 —0.12933 —0.00784 4+ 0.39713 + 0.26003
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TABLE 6.
M =+ 1.80000,

k Re Iy Im Fg Re Gy Im G5 ReHg Im Hpg
0 — 0.00000 — 0.00000 + 0.00000 + 0.00000 T + (.00000 4 0.00000
01 — 0.02351 — (1.53110 + 0.00984 + 0.05844 + 0.03341 4+ 0.26370
0.2 — 0.08984 T—1.04237 + 0.03827 + (111052 -+ 012991 + 0.50655
0.3 — 0.18718 —1.51732 + 0.08211 + 0.15065 + 0.27887 + 0.71045
0.4 — 0.29802 — 1.94561 4+ 0.13652 + 017470 + 0.46422 + 0.86225
0.5 — (40218 — 282477 -+ 0.19566 + 0.18042 -+ (L.66672 4+ 0.90541
0.6 — (.48011 — 2.66065 + 0.25335 + 0.16771 + (.86657 + 0.99054
0.7 —{.51619 — 2.96613 + 0.30391 + (4.135863 + 0.04610 4+ 0.97500
0.8 -—0(.5012] — 3.25951 + 0.34279 + 0.09652 4 1.19183 + (.81246
0.9 -—0.43382 — 3.56080 + 0.36708 + 0.04654 + 1.29654 4+ (.8458%
1.0 — 0.32060 — 3.88925 -+ 0.37573 — 0.00608 + 1.35886 + 0.76506

REFT ImFT RBGT Im GT I[:BI[’." fﬂt[{q'
-0 [ — D.00000 — 0.00000 —— 0.00000 — 0.00000 =+ 0.00000 -+ 0.00000
0.1 — 0.00788 — 0.26640 — 0.00296 — 0.02200 + 0.60838 <4 (.08837
0.2 — (1.03069 — 0.52778 — 0.01158 — 0.04240 + 0.03289 + 0.17254
0.3 — 0.06599 — 0.77965 — 0.0251% — 0.05975 + 0.07173 -+ (.24868
04 — 011007 — 1.01864 — 004271 — 0.07288 + 0.12210 + 0.31372
05" —(.15836 — 1.24274 — (0.06280 — (.08097 + 0.18050 4 0.36558
0.6 — 0.20597 — 1.45159% — 0.08398 — (1L.08367 + (1.24309 -+ 0.40331
0.7 — 0.24828 — 1.64639. —0.10474 — 0.08107 + 0.36607 4+ 0.42715
0.8 —0.28139 —1,82972 — 012374 — 0.07366 + 0.36604 + 0.43838
0.9 —0.30254 — 2.00016 — {13988 — 0,06227 + 0.42027 4+ 0.43915H
1.0 — 0.31034 — 2.17686 — 0.15238 — 004801 + 0.46692 + 0.43214

Re Py Im Pg Re Qg Im @z Re By Im Eg

| L

0 — 0.00000 — 0.00000 4 0.00000 + 0.00000 ~+ (,00000 4 0.00000
0.1 — 0.01562 — 0.26470 + 0.00787 + 0.04374 + 0,02503 + (.17532
0.2 — 0.05916 — 0.51459 4+ 0.03063 + (.08218 + 0.09702 -+ 0.33402
0.3 — (12118 — (0.73766 - + 0.06528 + 011073 + 0.20714 + 0.46176
04 — .18796 — 0.92697 -+ 0.10789 + ¢.12600 + {1.3421%2 + (.54853
0.5 —{).24382 — 1.08203 + (.15368 -+ (.12632 + 0.48622 -+ 0.584983
0.6 —0.27414 — 1.20900 4+ 0.19724 -+ 011181 + 0.62344 + (.58724
0.7 — 0.26790 —1.31974 + 0.23303 -+ 0.08436 + 0.74003 + 0.54785
0.8 — 021982 — 1.42079 + 0.26011 - 0.04731 4 0.82589 + 0.48307
0.9 — 0.13128 — 1.55574 + 0.27362 + 4.00493 + 0.87628 + L.40674
1.0 — 0.01026 — 1.71240 4+ 0.27392 -—0.03815 4 0.8919%4 - 0.33292

ARBPT Im PT Re Q'r Im QT Ke RT im R'p
0 — 0.00000 — 0.00000 — 0.00000 — (0.00000 -+ 0.00000 -+ 0.00000
a.1 — 0.00591 — 017749 — 0.00246 — 0.01758 -+ 0.00670 4+ (.06622
0.2 — 0.02292 — (1.35096 — (0.00964 - — (103380 -+ 0.02626 + (.1289%4
03" —0.04903 — (1.51688 — (.02093 — (L04741 + 0.05715 4+ (.18499
0.4 —0.08116 — 0.67264 — (.03540 — 0.05741 + (0.08697 4+ 0.23187
0.5 — 011557 — 081680 — 0.05188 — (.06315 - 0.14275 4+ (0.26792
0.6 — 0.14828 — (194931 — 0.06909 —0.06435 + 0.15126 4- 0.29248
0.7 — 017561 —1.07141 — 0.08574 —0.06112 + 0.23933 + 0.30589
0.8 — 019456 —1.18H49 — 010070 — 0.05385 + {1.28416 + 0.30940
09 —0.20316 —1.29469 — 011304 — 0.04359 + 0.32359 + (130495
1.0 — 0.20062 —1.402568 — 012215 —0.03102 + 0.35624 4+ (0.29492
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TABLE 7.
M ==+ 2.00000.

k REFB I’anB Re GB Im GB R@]]B I??LHB
0 —- 0.00000 — 0.00000 + 0.00000 + 0.00000 -+ 0.00000 + 0.00000
01 — 0.015620 — 0.45934 + 0.00662 + 0.04380 + 0.02547 -+ 022856
0.2 — .058564 — 090779 + 0.02588 + 0.08377 - -+ 0.09969 + 044311
0.3 — 012350 —1.33362 + 0.06609 + 0.11648 + 0.21629 + 0.63109
04 — 0.20023 —1.73017 + 0.09460 + 0.13917 + 0.36547 -+ 0.78259
0.5 — 027690 — 2.09437 + 0.13810 + 0.15002 + 0.53503 + 0.89135
086 — (0.34127 — 242769 -+ 0.18293 + 0.14830 + 0.71175 + (0.95525
0.7 — .35241 — 273592 + 0.22548 + 0.13445 + 0.88279 + 0.79637
08 — 0.39214 — 3.02847 + 0.26247 + 0.10990 -+ 1.03695 + 0.96052
0.9 — 0.36617 — 3.31708 + 0.29133 -+ 0.07699 + 1.16586 + (,91647
1.0 — (.30460 — 3.61429 + 0.31034 + 0.03863 + 1.26461 + 0.84475

RBFT I‘m,FT RGGT I’m,G'p RBI{T Im,H'j'
0 — 0.00060 — 0.00060 — 0.00000 — (.00000 + 0.00000 -+ 0.00000
0.1 — 0.00509 — 0.23043 — 6.00230 — 0.01906 + 0.00638 + 0.07650
.2 — 0.01592 — 0.45785 ~— 0.00904 — 6.03701 + 0.02517 + 0.15018
0.3 — 0.04314 — 0.67954 ~—(.01981 — 0.05282 + 0.05527 -+ 0.21843
04 — (.07269 — 0.89329 — 0.03393 — (.06562 + 0.09501 + 0.27901
05 — (.10597 —1.09762 — 0.0H0563 — 007474 + 0.14221 + £.33025
0.6 — 0.14008 —1.29102 — 0.06862 — 007977 + 0.19440 4+ 0.37T112
0.7 — (117209 — 1.4764: — 0.08717 — 0.08009 + 024900 4+ (0.40126
0.8 — 0,19935 — 1.65227 — .10516 — 007732 + 0.30354 - 042100
0.9 — 021966 —1.82119 — 012167 — 007035 + 0.35580 - (043129
1.0 — 0.23152 -— 1.98552 — {.13596 — 0.06028 + 040397 -+ 0.433562

Re Py Im Py Re Qn Im Qg Re Ry Im Ba
0 — .00000 — (.00000 -+ 0.00000 + (L00Q00 4+ 0.00000 + 0.00000
0.1 — 0.01011 —0.22941 -+ 0.00629 -+ 0.03279 + 0.01909 + 0.15205
0.2 — 0.03862 — (1.44994 + (.02066 4+ 0.06241 4 0.07453 + 0.29293
0.3 — (LOK036 — 0.65409 -+ 0.04465 -+ (.08599 + 0.16102 + 0.41266
04 — (0127564 — 0.83689 + 0.07501 -+ 0.10129 + 0.27046 -+ 0.50358
05 —0.17092 — 099675 + 0.10892 -+ 0.10687 + (.39282 + 0.56110
0.6 —0.20119 — 1.13576 + 0.14331: + (0.10225 + 0.51736 + 0.58413
0.7 —0.21032 — 1.25948 + 0.17515 + 0.08792 + 0.63378 + 0.57511
0.8 — (L19280 — 1.37620 + 0.20176 + 0.06526 + 0.73341 + 0.53951
09 — (.14650 — 1.49589 + 0.22108 + 0.03637 + 0.81007 + 0.48518
1.0 — 0.67308 — 1.62877 + (0.23184 + 0.00382 + 0.86064 + 0.42123

r e Py , Im Py Re () T Qq. Re By Im By
0 — (L.O0000 — 0.00000 —0.00000 — 0.00000 + 0.00000 + 0.00000
0.1 — 0.00382 — 0153565 — 0.00191 — 0.01524 + 0.00511 + 0.05734
0.2 — 0.01489 — 0.30470 — 0L.00753 - — 0.02952 + 0.02011 + 11233
.03 — 0.03210 — 0.45129 — 0.01647 — 0.04198 + 0.04408 + 0.16280
0.4 — 0.05376 —- 059159 — 0.02815 — 0.0b187 + 0.07555 4+ 0.20692
(5 — 0.07770 — 072453 — 0.04182 - — (.0b562 + 011277 + 0.24335
0.6 — 010156 —0.84972 — 005662 — 0.06193 + (0.15355 + 0.27128
0.7 — 0.12299 096752 —0.07165 — (.06169 + 0.19576 + 0.29052
0.8 —{.13990 —1,07900 —- (0,08604 — (0.05805 -+ 0.23733 + 0.30144
0.9 —0.15602 — 118576 — 0.09902 — 0.05138 4+ 0.27645 -+ 0.30494
1.0 — (0.15408 — 1.28084 —0.04222 -+ (L.31170 + (.30229

— 0.10997
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TABLE 8,
M = 1 2.50000.

k Re Fy Im Fg Rte Gy Im Gg Re Hy Im Hg
0 — 0.00000 — 0.00060 -+ 0.00000 4+ 0.00000 + 0.00000 <+ 3.00000
0.1 — 0.00659 — 0.34836 + §.00325 -+ (.02513 + 0.01599 + 017336
0.2 -— 0.02557 — 0.69210 + 0.01279 4+ 0.04868 + 0.06305 + 033952
0.3 — 0.05472 —1.02707 4 0.02804 + 0.06917 4+ 0.13848 + 0.49178
04 — (.09056 — 1.350056 + 0.04805 + 0.08534 + 0.23799 + 0.62444
0.5 — 0.12873 — 1.85911 + 007161 . + (.09619 + (.35608 + .73295
0.6 — 0.16442 —1.95379 + 0.09730 + 0.10108 -+ 0.48640 + 0.81463
0.7 — 0.19286 — 2.23518 + 0.12360 + 0.09975 + 0.62223 + (.86835
0.8 — (.20981 — 2.50088 -+ 0.14902 + 0.09232 + (.75699 + 0.89479
0.9 — 0(.21202 — 276969 + 017214 -+ 0.07529 -+ 0.88467 + 0.89626
10 — 019748 — 309136 4 019177 + 0.06147 + 1.00028 + 0.87639

Re F'y I'm Fe Re Gy Im G¢ Re Hr Im Hy
0 W — 0.00000 — 0.00000 — 0.00000 ] — 0.00000 + 0.60000 + 0.00000
01 — 0.00220 — 0.17438 —0.00149 — 0.01445 + 0.00401 + 0.05795
0.2 — 0.00866 — 0.34759 — 0.00589 — 0.02829 + 0.01587 + 0.11445
0.3 — 0.01892 — 0.51855 — 0.01302 — 0.04004¢ |- -+ 0.03513 + 0.16813
0.4 —0.03225 — 0.68632 — (.02256 — 0.05190 -+ 0.06106 + 021774
0.5 —0.04773 — 0.85022 — 0.03408 — 0.06073 + 0.09271 + 0.26227
0.6 — 0.06427 — 1.00979 —0.04711 — 0.06710 + 012892 + 0.30089
0.7 — 0.08072 — 1.16489 — (.06110 — 0.07079 -+ 0.16846 + 0.33309
0.8 — 0.09594 —1.31569 — 0.07547 -—0.08638 + 0.21001 - + 0.35862
0.9 — 0.10886 — 1.46263 — 0.084967 — 0.06992 + (.25229 + 037754
1.0 —0.11759 — 1.60642 — 0.10817 — 0.06555 + 0.29400 + 0.39014

Re Py Im Pg Re Qg Im Qg Ee Rp Im Bp

|

0 — 0.00000 —0.00000 + 0.00000 + 0.00000 -+ 0.00000 + 0.00000
0.1 — 0.00438 — 017398 + 0.00260 + 0.01882 + 0.01199 + 0.11541
0.2 — 0.01671 — (.34451 + 0.61022 + (.03633 -+ 0.04719 + 0.22507
0.3 — 0.03580 — (.50852 + 0.02236 + 0.05131 + 010335 + 0.32365
0.4 — 0.05831 — 0.66373 + 0.03821 + 0.06269 + 0.17693 + 0.40665
0.5 — 0.08100 — 0.80890 + 0.05673 + 0.06969 + 0.26337 + 0.47068
0.6 — 010014 — 0.94400 + 0.07674 + 0.07180 + 0.35747 + 0.51874
0.7 — (11213 — 1.07029 -+ 0.09694 + 0.06886 + 0.45377 + 0.535626
0.8 —0.11388 —1.,19019 + 0.11608 + 0.05462 + 0.54698 + 0.53617
0.9 —(.10315 — 1.30706 + 0.13301 © 4 0.04878 + .63239 + 0.51872
i.0 — 0.07889 — 1.42494 + 0.14674 + 0.03286 + 0.70618 + 0.48625

Re Py Im Py Ee @ Im Qg Re Br Im By
0 — 0.00000 — 0.00000 — 0.00000 — 0.00000 4 0.00000 + 0.00000
0.1 —0.00165 —0.11623 — 0.00124 —0.01155 =+ 0.00320 + 0.04344
0.2 — 0.60648 — 0.23152 — 0.004M1 — 0.02258 + 0.01268 + 0.08568
0.3 — 0.01410 — 0.34502 — 0.01083 — 0.03260 + 0.02804 -+ 0.12557
04 — 0.02392 — 0.45599 — 0.01874 —0.04117 + 0.04867 + 0.16209
0.5 - —{0.03518 — 0.56391 — 0.02827 —0.04792 4+ 0.07374 -+ 0.19439
0.6 — 0.04697 —{.66845 — (0,03899 — 0.05258 + 0.10228 + (0.22183
0.7 — 0.05836 — 0.76956 — (.05043 — 0.05498 4+ 0.313323 + 0.24401
0.8 — 0.066954 — (.86743 —-0.04268 — 0.05505 + 0.16550 + 0.26077
0.9 — 0.07634 — 0.96249 — 0.07353 — 0.05285 + 0.19801 + 0.27220
1.0 — 0.08141 — 1.05538 —— 0.08425 — 0.04851 -+ 0.22977 -+ 0.27861




122

TABLE 8.
M = - 3.00000.

k l Re Fy Im Fg~ I Re Gy l Int Gy Re Hg Im Hpg
0 — 0.00000 -~ 0.00000° + 0.00000 * -+ 0.00000 . -+ 0.00000 + 0.60000
0.1 — (1,00350 -—0.28245° + 00197 + 0.01652 + 0.01174 + 0.14063
" 0.2 — (.01366 — 0,56256 - + 000778 + 0.03217 + 0.04643 -+ 0.27655
0.3 — 0,02940 - -~ 0.833822 - + 0.01714 + 0.04611 -+ 0.10248 <+ (1.40331
04 — 0.04907 —1.10772" + 0.02956 + 0.05762 . + 0.17739 ‘- 0.51696
0.5 — {.07055 —-1.36990 + 0.04444 + 0.06609. + 0.26785 + 0.61424
0.6 — 0.09145° —-1.62430 " + 0.06101 + 0.07107 + 0.36996 + 0.69278
0.7 —0.10928 — 187119~ + 0.07847 + 0.07231 + 0.47947 + 0.75117
0.8 — 012174 -—2.11156 + 0.09597 + 0.06973 + 0.59199 + (.78899
09 — 0.12686° — 234709 + 0.11269 -+ 0.06347 + 0.70331 + 0.80687
1.0 — 012320 — 257995 + 0.12785 + 0.05382 + 0.80954 + 0.80632

Re Fp Im Py Re Gr Im Gy Re H, Im Hy
0 — 0.000600 - — 0.00000 - | — 0.00000 -— (L0000O . | + 0.00000 . + 0.00000
0.1 — (.00117 —0.14132 — 000112 . | —0.01172 + 0.00294 + 0.04698
0.2 — (.00462 — 0.28206 . | — 000443 -—0.02302 + 0.01167. . + 0.09302
0.3 —0.01012 — 0.42165 — 0.00980 — (0.03351 -+ 0.02592 + 0.13720
0.4 — 0.01734 — 0.55962 — (.01706 " —0.04283 +0.04526 + 0.17869
0.5 — 0.02582 — [.69559 — 0.02593 — 0.05066 + 0.06914 + 0.21676
0.6 — 0.03504 — 0.82928 — (.03610 -—0.05674 - + 6.09685 + 0.25080
0.7 — 0.04443 — 0.96058 — 0,04723 — 0.06088 + 0.12762 + 0.28036
0.8 — 0.05338 —1.08949 — 0.05891 — 0.06296 + 0.16063 + 0.30514
0.9 — 006133 —1.21617 — 0.07077 — 0.06296 + 0.19502 + 0.32502
1.0 — 0.06778 —1.34092 —0.08243 — (.06091 + (1.22997 + 0.34003

‘ Re PB L ImPB Re Q.B ITTLQB RE'RB ITm.RB
o 0 T—-— £.00000 — 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000
01 — 0.00233 —0.14112 + 6.00158 , | + 0.01238 + 0.00880 + 0.09365
02 — 0.00904 — 0.28050° + 0.00622 + 0.02403 + 0.03476 + 0.183563
1.3 —0.01928 — 0.41657 + 0.01367 -+ 0.03426 + 0.07565 + 0.26611
04 — (0.03174 — {1.54809" + 0.02353 + .04248 + 0.13213 . + 0.33827
0.5 ~— 0.04473 —0.67431 + 0.03527 -+ 0.04818 + 0.19872 + 0.39748
.0.6 — (.05640 — 0.79502 - + 0.04524 <+ 0.05101 + 0.27312 + 0.44198
0.7 — 0.06486 — 0.91061 " + 0.66177 + 0.65079 + $.35185 + 0.4708%
0.8 — 0.06836 — 1.02208: + 0.07514 + ¢.04747 + 0.43136 + 0.48385
0.9 - — 0.06552 —1.13092" + 0.08767 + 0.04121 + 0.50828 + 048185
1.0: — 0.05542 — 1.23904 + 0.09871 + 0,03228 + 0.57956 + 0.46628

RGPT ImPT Re QT Im pr‘ RGRT I?’nRT
0 — 0.00000 — 0.00000 — 0.00000 — 0.00000 =+ 0.00000 + 0.06000
0.1 — 0.00088 — 0.09420 — 0.00093 — 0,00937 + 0.00235 + 0.03522
0.2 — 0.00345" — 0.18793 — (.00369 — 001838 + 0.00933 + 0.06966
0.3 - — 0.00755 — 0.28076 — 0.00816 — 002670 + 0.02070 + 0.10255
04 —0.01288" — 0.37229 — 0.01418 — 0,03402 -+ 0.03611 .+ 013321
05 - — 0.01907 —0.46224 — 0.02152 — 0,04006 + 0.05506 + 0.16103
0.6 — (.02569 - — 0.55041 — 0.02992 — 0.04462 + 0.07697 -+ 0.18553
0.7 — 0.03227 — 0.63673 ~—1.03905 — 0.04754 + 010118 + 0.20834
0.8 —(.03832 — 0.72123 — (.04859 —0.04871 + 0.12700 -+ 0.22324
- 09 — 0.04340 — 0.80408 — 0.06821 — 0.04813 + 0.15370 + 0.23615
~1.0 — 0.04710 — 0.88554 — 0.06757 — 0.04584 + 0.18060 + 0.24515
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TABLE 10,
M = + 3.50000.

k Re ¥y Im Fp  Be Gy Im Gg Re Hy Im Hq
0 - — 0.06000 — 0.00000 4 0.00000 -+ 0.00000 + 0.00000 + 0.00000
01 - — 0.00210 — (.23828 + .00134 + 0.01176 + 0.00933 + 0.11867
02 —0.00821 — 047521 + 0.00529 + 0.02295 + 0.03697 -+ 0.23386"
0.3 —0.01773 — 0.70954 + 0.01168 + 0.03305 4+ 0.67771 + 0.34226
04 — 0.02972 — 0.94024 + 0.02022 £ 0.04158 + 0.08183 -+ 0.44086
05 —0.04299 — 1.16661 + 0.03053 + 0.04811 + 0.14217 4 0.52710
0.6 —-0.05615 —1.38828 + 0.04214 + 0.05234 + 0.21572 -+ (1.59901
0.7 — 0.06775 — 1.60532 . -+ 0.05456 + 0.05407 + (,29971 + 0.65523
0.8 — 0.07640 —1.81821 + 0.06722 + 0.05318 + 0.31908 | 4 0.69516G
0.9 — 0.08087 — 202782 + 0.07960 4+ 0.04971 + 0.48666 + 0.71863
1.0 -——0.08018 -.223535 + 0.09118" + 0.04379 -+ (L.58322 + 0.72652

Re Fr Im Fr Re Gy I'm Gy Re H. Im Hy
0 -— 0.00000 — 0.00000 — 0.00000 I 0.00000 -+ 0.06000 + (.00000
0.1 — 0.60070 -— 011920 — 0.00090 — 0.00988 + 0.00234 + 0.03964
0.2 — 0.00277 -——0.23806 — 0.003567 — 0.01946 + 0.00928 + 0.07857
0.3 — 0.00609 - 0.35625 — 0.00791 — 0.02841 + 0.02066 + 0.11614
0.4 —0.01046 — 0.47350 —0.01380 — 0.03646 + 003617 + 015170
0.5 — 0.01563 — 0.58956 — 0.02105 — 0.04337 + 0.05543 -+ 0.18469
0.6 — (.62130 — 0.70427 — (.02942 — (.04891 -+ 0.07794 + 0.21464
0.7 — 0.02713 — 0.81754 — 0.03866 — 0.05293 + 0.10317 + 024116
0.8 — 0.03279 — 0.92936 — 0.04847 — 0.05532 + 0,13052 + 0.26397
0.9 — 0.03792 — 1.03979 — (.05857 — (.05602 + 0.15937 + 0.28291
1.0 — 0.04223 — 1.14898 —-0,06866 — 0.05503 + 0.18909 -+ 0.29792

’ Re Py ) Im Py \ Re Qg ) Im Qs Re Rz Im Bs
0 — 0.00000 — 0.00000 -+ 0.00000 + .00000 + 0.00000 -+ 0.00000
0.1 — 0.G0140 —0.11908 -+ 0.00107 + 0.00881 + 0.00700 4 0.07904
02 — 0.00544 — 023715 -+ 0.00423 + 0.01715 + 0.02769 + 0.15529
0.3 —0.01164 — 0.35329 -+ 0.00932 + 0.02458 + 0.06117 + 0.22612
0.4 — 0.01927 — 0.46675 + 0.01611 + 0.03071 + 0.10600 -+ 0.28916
0.5 —0.02736 — 0.57705 + 0.02425 -+ 0.03518 + 0.16029 + 0.34241
0.6 — 0.03485 —-0.68401 + 003337 -+ 0.03776 -+ 022176 + 0.38437
0.7 — 0.04062 -~ 0.78778 + 0.04303 + 0.03828 + 0.28791 + 0.41407
0.8 — 0,04362 — (1.88885 + 0.052%77 + 0.03669 + 0.35614 + 0.43113
0.9 — 0.04295 — (,.98803 + 0.06214 + 0.03301 + 0.42385 + 0.43572
1.0 — 0.03795 — 1.08637 + 0.07071 + 0.02738 -+ 0.48862 + 0.42859

Be Py m Py Re Qr Im @ Re Iir Im By
o — {LOOGOO — 0.06000 — 0.0006G0 — G.00000 + (.00000 + (0.000G00
0.1 -— 0.00053 —0.07946 — 0.00075 — 0.007TH + 0.00187 + 0,02972
02 — 0.00207 — 015864 | —. 000297 — 0.01554 + 0.00742 + 0.05885
.0.3 — 0.00454 — {.23730 — 0.00659 — 0.02265 + 0.01650 + 0,08684
0.4 — 000777 — 0.31520 — (101148 — (.02898 + 0.02887 + 011317
0.5 — 0.01155 —0.39217 — 0.01748 — 0.03434 + 0.04417 + 0.13737
0.6 — 0.01564 — 0.46808 — 0.02439 — 0.03854 -+ 0.05200 + 0.15905
0.7 —0.01975 — 0.54287 — 0.0319 — 0.04144 + 0.08150 + 017790
0.8 — 0.02362 — 0.61654 — (0.04003 — 0.04297 + 0.10337 + 0.19372
0.9 — 0.02696 — 0.68918 — 0.04825 — 0.04306 + 0.12587 + 0.20637
1.0 — 0.02953 — 0.76092 — (.05639% —0.04175 + 0.14889 -+ 0.21584
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‘ L Lo
‘ TABLE 11.
\ M = + 4.00000.
‘ -k Re Fy ImFg Re Gy Im Gg Re Hp Im Hg
|
‘ 0 . — 000000 — 0.00000 + 0.00000 + 0.00000 -+ 0.00000 i + 0.00000
) S0 — 0.00137 — 0.20641 + 0.00097 + 0.00832 + 000778 + 0.10282
‘ - 02 — 0.005634 — (41196 -+ 0.00386 + 0.01725 + 0.03085 + 0.20287
‘ 03 - —(0.01155 — (:61585 + 0.00853 -+ 0.02491 + 0.06839 + 0.29751
04 - —0.01942 — (.81742 + 0.01479 + 0.03145 -+ 0.11910 + 0.38433
‘ 0.5 — 0.02819 — 1.01618 + 0.02239 + 0.03659 + 0.18123 + 0.46122
0.6 - -—0.03699 —1.21190 + 0.03100 + 0.04008 + 0.25268 + 0.52648
‘ 07 — (.04489 — 1.40456 + 0.04029 + 0.04176 + (.33109 + (.57890
08 — (.05009 — 1.59444 - 0.04986 - -+ 0.04154 + (341394 + 0.61774
‘ 0.9 —(.05447 — 1.78205 =+ 0.05934 + 0.03941 + 0.49867 + 0.64281
‘ 1.0 — 0.05466 — 196810 + 0.06836 4+ 0.03544 + 0.58278 + (.65441
’ Re Fr Im Fy Re Gy Im Gy ‘Re H Im Hy
0 — {.00G00 — 0.00000 — 0.00000 — 0.00000 + 0.00000 -+ 0.00000
0.1 — (.00046 —(0.10324 — 0.00076 — 0.00857 -+ 0.00195 + (.03433
02 —0.00180 —0.20627 — 0.00300 — (.01688 4+ 000774 + 0,06811
0.3 — (.00396 — (L.30887 — 0.006066 — 0.02468 + 0.01725 + (.10080
0.4 — 0.00682 -— 0.41087 — 001164 — 0.03176 + 0.03025 + 0.13189
0.5 —{(.01021 —0.51210 — 0.01778 — (0.03789 -+ 0.04644 + (.16093
0.6 —0.02394 — 0.61247 —0.02492 — 0.04291 + 0.06546 + 018751
| 0.7 — (.01782 — 0.71190 — (.03282 — (.04668 + 0.08688 + 0.21132
‘ 08 —0.02160 — 0.81038 —0.04128 —- 0,.04908 4+ 0,11025 + 0.23208
0.9 —0.02509 — 0.90793 —. 0.05006 — 0.05007 + 0.13508 4 (.24967
‘ 1.0 — 0.02807 . — 1.00466 — 0.05891 — 0,04962 + 0.16087 + 0.26396
} Re Py Im Py Be Qs Im Qp Re Rg Im Ep
0 — (0.00000 — 0.00000 -+ 0.06000 + 0.00000 -+ 0.00000 + 0.00000
0.1 — (.00091 —0.10317 + 0.00078 -+ 0.00661 + 0.00583 -+ (.06848
0.2 - — (0.00354 — 0.20569 + 0.00308 + 0.01289 + 0.02310 + 0.13476
.03 — 0.00759 —0.30698 + 0.00681 + (0.01854 -+ 0.05114 + 0.19761
04. — 0.01261 | — 0.40655 + 0.01178 + 0.02325 -+ 0.088856 + 0.25244
. 05h — 001798 — 0.50408 + 0.01779 . -+ 0.02680 4+ 0.13479 + 0.30029
0.6 —0.02304 — 0.59943 + 0.02457 + 0.02900 + 0.18723 + 0,33807
0.7 — 002707 — {1.69267 + 0.02181 - 0.02970 + 0.24421 + (0.36758
0.8 — 0.02938 — (.78407 + 0.03920 + 0.02886° -+ 0.30369 + 0.38565
0.9 — (.02938 — 0.837411 +- 0.04642 + 0.02643 + 0.36359 + 0.39315
1.0 — 0.02659 — 0.96344 + 0.06315 + 0.02263 + (.42192 4 0.39045
Re Py Im Py Re @y Im @y Re Ry Im Ry
O — 0.00000 — 0.00000 — 0.00000 — 0.00000 -+ 0.00000 , -+ 0.60000
0.1 — 0.00034 — 0.06382 — 0.00062 — 000685 + 0.00156 "4 0.02574
0.2 — 0.00135 — 013747 —0.00250 — (0.01348 -+ 0.00619 -+ 0.05102
0.3 — D.00296 — (0.20579 — 0.00555 — 0.,01968 + 0.01378 + 0.07540
04 —0.00507 — 0.27362 — 0.00968 — 0.02526 + 0.02414 -+ 0.09844
0.5 — 0.00755 — 0.34085 — 001477 — 0.03003 -+ 0.03702 + (0.11978
0.6 — 0.01025 — 0.40739 — 002067 — 0.03385 -+ 0.05210 <+ (.13909
- 0.9 — 0.01299 — 0.47321 —0.02718 —- 0.03660 -+ 0.06902 -+ 0.156611
0.8 — 0.01559 — 0.53830 —0.03412 —0.03820 + 0.08740 -+ 0.17063
09 —0.01788 — ,.60269 — 004127 — 0.,03861 + 0.10682 + 0.18254
1.0 — 0.01970° — 0.66648 — 0.04844 — 003781 + 0.12686 -+ 0.19178






