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NLL-TR S 527 

The buckling load of flat panels that change in 
thickness across the bay 

by 

J. P. BENTNEM 

see 

Summary. . .  

Tho mmpreasive buckling load of infinitely long panels with simply-supported longitudinal edges, that hare two  8ym- 
metrical diseontinuous change8 in thickness the n<dth, has k e n  calcuhted by CAPEY. This derivation hdds  also 
fo r  an infinite set of such panels simply supported in longitudinal direetion at  equal distances. The present paper de& 
with an infinite set of equal unsymmetrical panels, buckling lond and mode of which ,are not equal to those of such a 
single simply supported panel. 

b / s  
coordinates-of panel part 
with thickness t ,  
coordinates of panel part 
with thickness t, 
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This investigation has been performed under 
contract with the Netherlands Aircraft Develop- 
ment Board (N.I.V.) . 

WZ, n deflections from the plane (i.e. in 
the direction 'of the z, axis) of 
the uart with thickness t. of the 

1 
n-th -panel. 
half-wave length of buckling mode. 

= 

az buckling stress (compressive stress 

E elasticity modulus. 
Y Poisson's ratio ( v  = 0.3) 
K ,  K2 differential operators defined in 

111, H ,  differential operators defined in 

taken positive). 

(2.6) 

(2.11) 
x 
k 
t 

11s 

x V k  
from o, = k+ E tt2/12 (1 - 2 )  s' 

P,, 41 I defined in (2.25) 
f f1 ,  a , 

. .  P,; 9 2  

a,, 8, 
( I , ,  f c 2 ,  %,  a, 

1 Introduction. 

1 defined in (2.28) 
defined in (2.33) 

C ~ r w ,  ref. 1, caIcul$tes for. ~ongitudinal com- 
pression the buckling load 'of single panels, infinite 
in length, simply supported at the longitudinal 
cd'ges, and which show a variation in skin thickness 
across the bay according to fig. 1, which may be 
considered an approximation to the more prac- 
tical cross-section, fig. 2. Such a configuration may 
occur in integral construction of stringer sheet, 
whether by cxt,nlsion or by machining from the 
solid, and the variation in skin thickness may 
result in a gain in efficiency. The buckling stress 
and mode of such a panel, are identical to *hose 
of an infinite set of such panels simply supported 
in longitudinal direction at equal distances. 

' A  eonfiguration like .fig. 2 (or fig. 3) may 
also occur in structures where stringers are bonded 
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with their flanges to the skin. The derivation of 
CAPICY for his ease is extended for the umymme- 
trical configuration with cross section fig. 3, which 
is also simplified to that of cross section fig. 4. 
I n  that case the buckling load and mode of an 
infinite set of identical panels (the case actually 
considered, fig. 5) are no longer those of a single 
simply supported panel. 

1 
1 ,  t i  

Fig. 1. Cross seotion of syiymmctrial panel analysed 
by C U E Y .  

1 1 2  
11 t ,  

b r I  _ _  b t 
Fig. 2. Crass section of symmetrical p i e l  as it may bo 

applicd in practice. 

,- 

Fig. 3. Craw section of unsymmctriexl panel as it may lx 
applied in practice 

Fig. 4. Simplification of the cross seetion of :. 3, 

FIELD n 

The derivation of the buckling load of panels 
with cross section like fig. 1 or fig. 4 is closely 
connccted to the well wtablished theories on the 
buckling of uiiiloim panels. 1leterminat.ion of the 
buckling load of a uniform panel results in the 
solution of a homogeiieous liiiear differential 
equation of tlie fourth order; for the present case 
it results in the solution of two simultaneous 
equation of the fourth order. Besides, other work 
on the 'buckling load of comprcssion 'members built 
up from flat plates is ,present (refs. 2, 3 a.nd 4) .  

In ref. 5 the author describes tests on panels 
with three unsymmetrical bays. The intention of 
tliesc tests was in the first place to determine the 
load-carrying capacity and a loaddeflect,ion curve. 
The .buckling load could not he dctermined with 
very great accuracy duo to initial dcflections or 
other nnavoidable irregularities. Therefore in ana- 
lysing the resulk3 of ref. 5 (the present computa- 
tions not yet being performed) use was made of 
buckling loads computed in a semi-empirical way I). 

2 Method of solution, 

Fig. 5 shows the n-th panel between two sup- 
ports, vi th  its two parts of unequal thickness t, 
and t, respectively. Both parts ,have their own 
coordinate axes x, y, z (note that the coordinate y. 
in the plate with thickness t ,  is always negative). 
It is supposed that there is an infinite sequence 
of equal configurations to both sides (in the 
direction of the y-axes). The supports cause 110 
revtraint against rotations ys of the panels. The 
supports arc supposed not to be able to suppress 
uniform expansion in 2, direction a t  uniform com- 
pression in x-direction. 

I n  tlie n-th panel the displacements normal to 
the plate with thickness t ,  are to1,,, those of the 
plate with thickness t, are tuZ,,,. 

The buckling stress os is to he detcrmiiied from 
tho equations (ref. 6) 

Fig. 5. Part  of the inf ini te  set of unsymmctricnl panels. 

where 

E t I 3  E t,3 
12(1-2) D., = 1 &- 12(1 - " 2 )  

All equations ('2.1), (2.2) have coupled boundary 

(2.3). 

conditions. At point P ,  

W2.n-I = 101." = 0 

t,3 K ,  w~,,-I = t," K ,  w4.n (2.5) 
wliere 

1) A comparison is made between tile latter values ana 
the exact ones (for an infinite sequcnce of bays) in  ap- 
pendix A. 
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(2.8) 

t,3 K,  W I . ~  = t,3 K ,  ~ 2 , "  

H I  ~ 1 , ~  = tZ3 H ;  ~ 2 , ; ~  

(2.9) 

where K,, IC, aceordiqg (2.6) 

(2.10) 

where 

(2.11) a. 
asz2auz 

+ (a-") 

where 

s z distance lietween two supports. 1 
Equations (2.3), (2.4), (2.7) and (2.8) result 

from the requirement of geometrical continuity, 
(2.5) and (2.9) from the continuity of bending 
moments M , , ,  and (2.10) from thc eontinuits + Cos11 ~ Y , / s  + COSP,!/,/S (2.26) 

The general solution of (2.23) is ( P , # O )  

f ~ , ~  sinh a,y,/s + A2.,,siii p,!/,/s 

~ ~. . ~. ~ 

of Qu - a n i i / a s  ( QV ' shear force, A&, twistink 
moment). Substitution of (2.22) -i,nto (2.2) rives 

In fact (2.3) ... (2.11) form an infinite set oj! 

they may he made to a finite set by  supposing 
that the buckling mode is repeated after one panel 
(wit,h the displacements reversed in sign) 

d'f2.R + P z 2 -  ayz dzf2,n ~ ~ ' P s '  _ _ _ _ _  conditions (n ranges from - m to + m )  but s' f2,*= 0 
d!/2 SZ d!iZ2 

(2.27) 
where 

. .  

(2.12) 
W1.n =-Wl.n+l 

w2.n =- W2,"SI 

Then the infinite number of equatioiis (2.3) _.. 
(2.11) result int,o 8 equations (2.13) ... (2.20) 
with 8 unknowns 

a t  P, Wfn = 0 (2.13) 

w.,, = 0 (2.14) : 

t ,J IC, wj,, - t,l IC, wp, = 0 (2.19) 

t,311,w,,n-tt,3rI, w2,*=0 (2.20) 

(2.21) 

(2.22) 

A buckling mode is sought of the shape1) 

wi.,, =fi,n (!Ir) sin m , / l  

U I ~ . , ~  =f2,= ( g z )  sin m,/l, 

Equation (2.21) sulistituted into (2.1). gives 
I 

~. 

~. . 

I )  There art: no gronictrical restrictions on the wa+ 
length, sine0 the panels are infinitely long in the d imt ion  
of  the x-axis. 

and the general solution is (p, # 0) 

.& = BI,,, sinh aiyz/s  + B , ,  sin p , y l / s  

+ B3,,,cmh a2vz/s + Bb,,, cos P2y2/s (2.29) 

The solutions (2.26) and (2.29) inserted into 
the houndary conditions (2.13) _.. (2.20) deliver 
8 homogeneons equations for the unknown inte- 
gra.tion constants 

 AI,^ ... A4,n , B I , ~  ... Bh,.a, 

These equations in matrix form have the shape 

U Z E O  (2.30) 

where U is a squa.re matrix ,given in table 1, 
Z .  a column matrix with elements AI,,, ... Bb.n, 
and 0 a zero column mat,rix: 

Because the equations (2.30) are homogeneous 
a non zero solution f o r  thc unknowns is only pos- 
sihlc if the dcterminant of the matrix U vanishes 

det U = 0. (2.31) 

In table 1 the further substitut.ions have taker1 
place 



(2.33) 1 -  .: y ( +  1--=a; 
- y ( + T - v = a 2  

y3 (f + 1 - ") = aa 
y " - t +  l - - )=a ,  

3 Numerical evaluation, 

The method of solution of (2.31) for given 
values of y = td& and of 7 = bJs is to choose a 
value for  A=l / s  and to determine by trial a,nd 
error the value of < for which the det,emiinant 
(2.31) vanishes. This process is repeated with a 
number of different values of A. The value of X 
at which 

(see (2.25)) reaches a minimum delivers the actual 
wave length and the buckling stress c.'). 

I t  wa6 desirable that the calculations had only 
to be perfurmed with real numbers. I t  may how- 
ever oceiir that ql = v m  and q3 = v m  
(from (2 .25)  and (2.28) respectively) become 
imaginary (in practice only g1 did so). In that 
case suhtitutions like 

q L  = iq: (3.1) 
p1 = $3: (3.2) 

where q,' and p,' are real quantities are desirable. 
Further in the matrix table 1 

sin pL7 = sin i p, '~ = i sinh p,'? 
etc. and i can be divided from the determinant 
(2.31), table 1. 

The general solution (2.26) may for this case 
he written as 

f ~ , ~  = A,,n sinh a l y ~ / s  + A2,: sinh p;y,/s 

i- As,,, c&h a,y,/s + Ah,,, cosh p,'y,Js (3.3) 
where 0,' from (3.2) and A*.,,' are real quantities. 

It is easily observed that the determinant (2.31), 
table 1 for all values of y and 7 is zero if p, = 0, 
i. e. t = l / y  and if &-0, i. e. (=l. These 
solutions, however, are without meaning since at, 
for example, = 0, the general solution of (2.26) 
is not: 

fm = Al,,sinh a,ulJs + A3,"cmh a,g l / s  + Ah,,, , 
(3.4) but ' 

j$,,,= L4,,n sinh.a,y,/s + Ax,,,> II -k 
S 

+ AB," Cod1 a, l / , /~  + Ab,,, . (3.5) 

I n  praetice, should this occur at a certain com- 
liination of y,  7, the special eme can be avoided 
by slight alterations of the value for y or 7. 

The compatdons were performed on the elec- 
tronic computer Z.E.B.R.A. of the Nat. Acronau- 

. .  

I )  I n  the  work of C~PEY, rcf. 1, the determinant which 
had t o  vaninh was, due to the symmetry propcrtics of thc 
configuration, only of the 4th older. 

tical Research Institute. The combinations of y, 
7, A invest.igated which delivered indeed a minimum 
for b% are given in table 2. For a certain com- 
bination y, 7 the minimum value of Vk (as a 
function of A)  could be determined with great 
accuracy but, as is to be expected, not the value 
of A a t  whiah this minimum, which was sometimes 
very flat, occurs. 

It even turned out that in the region 7=0.4, 
y ='0.3 a minimum altered ,into a maximum (see 
table 2 ) .  I n  s w h  a region only with very muell 
trouble the wa.ve length could be determined. 

Similar difficulties .were met in the region 
~ ~ 0 . 2 ,  y=O.5. Here it, was almost impossible 
tu obtain proper solut.ions following the procedure 
just mentioned. These difficulties are, however, of 
no practical importance. 

4 Discussion of idiagrams. 

Fig. 6 and fig. 7 give diagrams as they are 
drawn from the computed values of table 2 .  Values 
of y only between 0 and 1 are dealt with. but 
by changing t, into t ,  (y into l/y) and 7 into 
1 - 7, values of y larger than 1 can be met. 

For every 7 there are two branches which (for 

Y. '*It I 
Fig. 6. Results for the buckling &rem. 



?=0.8, 0.6 and 0.4) in fig. 6 intersect. At this 
intersection belong, however, quite different values 
for the wavelength (fig. 7 ) .  

I n  fig. 6, the branches 1 all start at y = l ,  
vK-2. The branches in this point represent the 
buckling of simply supported constant thickness 
panels (or an infinite sequence of such panels). 

The branches 2 of fig. 6 start at y = 0 ( t ,  = m). 
vx=2.640/(1 - q ) ,  they represent the h k l i n g  

of B clamped panel of width (1 - 7)s and thiek- 
l i es  t,. T,he wavelength is 0.661 (1-7) '). 

The branches 2 deliver for y = 0, 7 = 0 
b%- 2.640. However y = finite, 7 = 0 dcliven v% = 2 2 ) .  Obviously the eimes (be it of branches 
2, or 1 or hoth) in the region for very small 
values of y and 7 have strong gradients, hut this 
region, representing dimensions whiah do not occur 
in .practice, is not further investigated. 
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APPENDIX A. 

Comparison with semi-empirical values of ref. 5. 

, 
0.543 2.46 

0.555 I 2.44 

0.547 2.76 

0.551 2.73 

0.377 2.96 

0.376 2.96 

0.368 3.73 

0.363 3.85 

7 

0.2 

0.2 

0.4 

0.4 

0.2 

0.2 

0.4 

0.4 

__- 
0.978 1.63 1.56 

0.973 1.58 1.52 

0.982 2.07 2.07 

0.977 2.00 2.03 

1.003 2.48 2.65 

0.995 2.44 2.62 

1.005 3.95 3.87 

0.975 3.96 3.88 

I . I- I I hucklina stress 

Values of in kg/mm2 (E: = 7000 kg/mmz). 
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TABLE 2. 

Computed minima for h (diagrams fig. 6 and fig. 7).  

7 

0.2 
0.2 
0.2 

* 0.2 

0.2 
0.2 
0.2 
0.2 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 

0.4 
0.4 

0.4 
0.4 
0.4 

0.6 
0.6 
0.6 
0.6 
0.6 

0.6 
0.6 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0.8 

Y 

,1.0 
0.8 
0.6 
0.5 

0.4 
0.3 
0.2 
0.01 1) 

1.0 
!0.8 
0.6 
0.5 
0.42 . 
0.4 
0.38 
0.34 

0.3 
0.3 

0.3 
0.2 
0.01 

1.0 
0.8 
0.6 
0.4 
0.2 

0.2 
0.01 

1.0 
0.8 
0.6 

. 0.4 
0.2 
0.1 

0.01 

A 

1 
1.00 
0.985 
0.922 

0.7485 
0.605' 
0.546' : 
0.5288 

: 1 
j 1.009. 

'. 1.05 
1.099 
1.153 
1.169 
1.183 
1.20 

1.22 
1.079 

0.450 
0.407 
0.3966 

1 
1.01 
1.05 
1.22 
1.842 

0.2705 
0.2644 

1 
1.00 
1.005 
1.030 
1.295 
2.06 

0.1322 

ViE 

2 
2.11585 
2.3647 
2.5958 

2.904 
3.138 
3.255 
3.30 

2 
2.20596 

2.9110 
3.3233 
3.458 
3.6098 
3.9753 

4.4851 
4.44578 

4.215 
4.3530 
4.40 

2 
2.29699 
2.7684 
3.626 
6.095 

6.534 
6.61 

2 
2.4028 
3.07102 
4.25962 
6.699 

2.5792 

10.49 

13.20 

maximum 
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REPORT S. 529. 

Airplane Loads in Pitching Manoeuvres 

B. IIAKKELING. 

. .  
summary. 

I n  tho present structural airworthiness rcquiremcnts tho pitching manoeuvres arc formulated in a rather vague and 
unsatisfactory way. 

I n  order t o  obtain an impression of tho vnluc of these requircments and to introduce possible improvements, cal- 
culations were pcrfarmed on the ta i l  loads, load he tors ,  and stick foroes of two transport airplanes of different  sizes 
in  longitudinal manoeuvres. 

The starting-point was a prescribed elevator motion; a deflection-time history as an unequal-sided triangle has 
hocn ehascn 58 an appraximntion of actual elevetotor motions. Two parameters were varicd: the time i n  which the 
elevator reaches its '  maximum deflection and the time i n  which the elevator returns to i ts  initial position. 

I n  addition, t h e  effccts of location of centre of gravity, airplane weight ?nd moment of inertia. on the ta i l  loatls, 
wore determined. 

The results of the computations for  the t,wa airplanes of quite difforont sizes &IC analogous in most respects. 

Contents. 

l i s t  of symbols. 
I Introduction. . .  

2 Assumptions. 
3 Ilerivation of eqGations. 

3.1 Airplane response. 
3.1.1 Increment of aerodynamic tail load. 
3.1.2 Load factor. 
3.1.3 Pitching acceleration, 
3.1.4 Increment of total tail load. 

3.2 Stick force. 
4 Numerical ,data. 
5 Results. 

5.1 Introduction. 
5.2 Variation of the centre of gravity (other 

parameters constant), 
5.3. Variation of airplane weight (other para- 

meters eomtant). 
5.4 Variation of moment of inertia (other 

parameters constant). 
5.5 Combined variation of centre of gravity, 

weight and moment of inertia. 
5.6 Variation of elevator deflection-time history. 

5.6.1 Variation of k I 1. 
7.  
. I  

5.6.2 Variation of the control time T ~ ,  

5.7 Discussion. 
6 Conclusions. 
7 References. 
Appendix A. The coefficients K,' of equation (5). 
Appendix B. Tthe Coefficients of eqnation (14). 
Awcndix C. Stick force reauired to balance hob- .. 

weight. 
2 Tables. 

44 F'igures 

List of symbols. 
(I 

b wing span. 
= b ,  at + b,  8. 

span of horizontal tail 

C chord. 

h 
acceleration of gravity. 
distance between aerodynamic centre with- 
out tail and centre of gravity. 

(fig. 1). 
="=L t k 

k, 
111 airplane mass. 

7 1  t, 
radius of gyration with respect to y-axis. 

m I, - - - 
II ' 

airplane load factor. 
dynamic pressure. 
time. 
time in which the elevator reaches its 
maximum deflection. 
time in which .the elevator returns to 
neutral. ' 
distance between cent6  of gravity of air- 
plane and aerodynamic centre of tail 
(negative .for conventional airplanes). 
spring constdnt of spring tab (eq. ( 2 0 ) ) .  
lift coefficient. 
pitching moment coefficient of airplane 
without tail with respect to aerodynamic 
centre. 
pitohing moment coefficient of airplane 



I 
I’ 
K 

V 
V A  

VC 
vi 
W w, 
a 
Y 
S 

10 

without tail with respect to centre of 
gravity. 
stick force. 
stick force required to balance bobweight 
alone. 
largest stick force at which spring tab 
will not deflect. 
hinge moment of elevator. 
moment of inertia with respect to y-axis. 
= I g .  
empirical constant denoting ratio of dam- , 

ping moment of complete airplane to  
dam.ping moment of tail alone. 
coefficients of eq. (6). 
coefficients of eq. (8). 
lift on tail. 
first maximum of tail load including ba- 
lancing load. 
second maximum of tail load including 
balancing load. 
maximum of (L,) as a function of k. 
balancing tail load in level flight condition 
first maximum of incremental tail load 
due to  a manoeuvre (fig. 5). 
second maximum of incremental tail load 
due to a manoeuvre (fig. 5). 

II maximum of A L 2  as a function of k. 
pitching moment of airplane without tail 
with respect to aerodynamic centre. 
pitching moment of airplane without tail 
with reqpeet to  centre of gravity. 
wing area. 
area of horizontal tail. 
area of elevator behind hinge line. 
first maximum of tail load (including in; 
ertia loadings) due to  a manoeuvre. 
second maximum of tail load (including 
inertia loadings) due to  a manoeuvre. 
airspeed. 
design manoeuvring speed. 
design cruising speed. 
design dive speed. 
airplane weight. 
weight of horizondal tail. 
wing angle of attack. 
flight-path angle. 
elevator deflection from trimmed eon- 
figuration. 
maximum elevator deflection during a 
manoeuvre. 
maximum pmihle  elevator deflection 
(elevator against its stop). 
spring tab deflection. 
downwash angle. 
ratio of dynamic head at tail to dynamic 
head at wing. 
angle of pitch. 
coefficient used in fig. 3. 
m a s  density of air. 
aerodynamic time (dimensionless, eq. (7)) .  
dimensionless time in whiah the elevator 
reaches its maximum deflection. 
diminsionless time in which the elevator 
returnq to neutral. 

0 frequency of airplane pitching meillation 
(eq. (11)). 

A m e k  an increment of a quantity from 
the unaccclerated flight condition due t o  
a manoeuvre. 

h Coefficients of eq. (14); see appendix B. * coefficients of eq. (14) ; see appendix B. 

Subscripts : 

max maximum value. 
t tail, except S t .  

W wine. 
E eIevitor. 
1 , 2  denote first and second maximum res- ’ 

pectively. 
The notations A, a.etc. denote single and double 

The notations e, 6 denote the results of super- 
differentiatiom with respect to  7. 

position refcwed to in par. 3.1. 

1 Introduction. 

~- 

I n  order t o  judge the present structural air- 
worthiness requirements concerning pitching ma- 
noeuvres on their merits and .to have a starting- 
point for possible improvements, the knowledge of 
airplane accelerations and tail-loads due to differ- 
ent types of elevator movements is needed. 

The problem of determining dynamic tail loads 
in a rational way has been treated by man!: 
authors (e. g. bibliography of ref. l ) ,  but most 
approaches have other aims. 

I n  the present work particular attention has 
been devoted to the variation of airplane normal 
acceleration a.nd tail load as a function of:  

n location of the centre of gravity. 
b ’ airplane weight. 
c airplane moment of inertia. 
d the shape of the elevator deflection-time history. 

I n  all me the elevator deflection as a function 
of time is assumed to be triangular and in case d 
two parameters are varied: the “control time” t, 
(the time in which the elevator has reached its 
maximum deflection) and the ratio k=t,/ t ,  (see 
fig. 1). 

Fig. 1. Assumed shape of elevator deflection-time history. 

Account was taken of the contml force, required 
to  apply the assumed elcvat,or-deflection history 

In order to  gain an insight into the behaviour 
of fig. 1. 
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of airplanes of different sizes the computations 
were performed for two types: 

Airplane A, a twin-engined light transport, design 
take-off weight 15.500 kg (32,170 lb) ; - .  . ~~ ~ 

control eo1;mn ‘directly connected 
with elevat.or, no meeha.niea1 or aero- 
dynamic servo-system. 

Airplane B, a four engine medium transport, 
design take-off weight 48,061 kg 
(106,000 Ib) ; elevator control system 
provided with a spring ,tab. 

The numerical data used in the computations 
were derived from reports on tu’o ailplanes of the 
above-mentioned types. 

The research reported in thispaper was carried out 
uncler contract with the “Nebherland3 Civil Aviation 
Department” upon a recommandation made by the 
“Nctherlands Committee for Structural Strength 
Requirements for Civil Aircraft”. Although some 
preliminary remarks hare been made with regard 
to  existing airworthiness requirements, no parti- 
cular attention has yet been given to the desira- 
bility of revising such requirements in view of the 
results of the present work and other recent in- 
vestigations (e. g. ref. 6) .  This matter will form 
t,he subject of further study by the said committee. 

2 Assumptions. 

2.1 The general problem of the response t o  1 0 6 -  
t,udinal control inrolves the solution of three simul- 
taneous diffeiyntial equations ( e ,  g. chapter 10 of 
ref. 2 ) .  The variables in tJliese equations are the 
airplane velocity V, pitch angle B and angle of 
attack a. The solution ghes a very slow oscillation 
(plmgoid mode) with poor damping of the speed V ,  
pitch angle B (each with relatively large ampli- 
tudes) and angle of attack (small amplitude). 

Another oscillation with a short period and heavy 
damping involves mainly the change in angle of 
attack. During this short period mode, the ahange 
in airspeed is very small and the assumption of 
constmt airspeed for a study of the initial response 
is justified. 

The accuracy achieved in this way is reasonable 
for struct,ural design purposes and depen,ds largely 
on the achievable accuracy in determining the std- 
hility derivatives. 

2.2 It is assumed that the initial change of the 
pitch angle is very small; theref,ore bhe change 
of the eomponerit of weight perpendicular to the 
flight-pa,th has been negleeted. 

2.3 The calculated stick forces balance the aero- 
dynamic hinge moments only. Stick forces due to  
angular acceleration of the elevatm, ,down springs 
and hobweights of the control system, are not taken 
into account. The control system is assumed t o  
be frictionless and its components to be rigid. The 
influence of the rotational inertia of the elevator 
may become important at very large rates of in- 
crease of the st,ick force; in such eases a springtah 
will deflect first and the elevator deflection can 
have a considerable lag. 

1 

2.4. Aeroelastie effects are negleeted (rigid air- 
plane). 
2.5 The variation of the downwash angle due 
to engine slipstream effects during the manoeuvre 
is neglected. 
2.6 T,he aerodynamic derivatives are assumed to 
be constant during the manoeuvre. 
2.7 Aerodynumic lag is neglected. 

Some remarks on the limitations imposed by 
these simplifying assumptions can he found in 
see. 4 of ref. 7. i 

3 Derivation of equations. 

According to the assumption of constant speed 
during the initial response to elevator deflection, 
one of the three differential equations can be eli- 
minated. The remaining two equations refer to 
equilibrium of forces in vertical direction and 
equilibrium of moments with respect to the centre 
of gravity, 

I n  fig. 2 the adopted axes, sign conventions and 
positive directions are shown. 

Fig. 2. Adoptcd axes and poai t iw directions 

In  the following the words “force”, “angle” 
ete. mean the variation of these quantities from 
the values in unaceelerated symmetrical flight; thus 
Aa is abhreviated to a (etc.), where Aa is the vari 
ation from the initial value. Assuming that there 
is no loss in speed, summation of forces along the 
Z-axis gives: 

The first term on the left-hand side represents 
the maSS force. The second term gives the aero- 
dynamic force of the airplane with undcfleeted 
elevator, which can ,he mitten as: 

where (=) dCL refers to the airplane without tail. 
W 



The'next terms are the force due to  elevator 
deflection, pitching velocity effect of the tailplane 
and the effect of time lag in downwash at the tail, 
respectively. 

The moment equation is: 

The first.term refers to.the pitching moment of 
the airplane without tail with respect to the centre 
of gravity: 

=(x) dCc o q h S  
1v 

(4) 

where h is the distance from the aerodynamic 
centre of the airplane without tail to the centre 
of gravity. 

The third term represents a correction for the 
time lag effect in the downwash angle at the tail. 
The factor If in the fonrth term denotes the ratio 
of damping moment of the complete airplane to 
the damping moment due to the tail alone. The 
meaning of the remaining terms will be evident. 

With the aid of the relation (fig. 2) 

(5) 
it i; possible to eliminqte y and B from the equa- 
tions (I) ,  (3) and ( 5 ) ,  which yields an equation 
of the form 

d2a da as - + K ,  - + K , a = K , S  + K , -  
a t 2  at at (6) 

The coefficients K ,  i n '  this equation for a 
(damped) weillation contain the speed V. I n  
order to reduce computational work it is eon- 
venient to  introduce a nondimensional time T, 

originally suggested by, GLAUERT : 

With 7. as a new independent variable equation 
(6 )  can be rewritten: 

i + K;' i t K: = K; s + K,' i (8) 

wherc the dots denote differentiations with respect 
t,o I (ef. ref. 3).  

The coefficients Ki: of eq. (8) are independent 
of speed and contain aerodynamic and geometric 
constants (K,' are written out in appendix A, 
cf. ref. 4). 

The possibility of neglecting the ;>art R,' S of 

the  forcing function in eq. (8) is considered in 
ref. 4; it appears that this part is in general 
nediuih1e:exceut in the case of a verv fast elevator 
deFGtion; 

Starting from the forcing function K;S(7) 
(neglecting K,' 6 )  shaped as an unequal-sided tri- 
angle (see S ( r )  in fig. l), the response of the 
airplane as well as the stick force required to  
perform this prescribed elevator motion can be 
determined. 

3.1 Airphne response. 

Since the equation 

L + K,'; + K ; ~ =  K ; S  (.) (9) 
(with S (7) according to  fig. 1) is linear, the 
solution can be obtained by superposition of the 
solutions of three similar equations 

(10) 
each with a forcing function K / S , ( T ~  = A  K: 

6 
- 7 ;  the meaning of X is explained in fig. 3. 
7 1  

; + x:, +,K, 'ccX, '6 , (T)  (i = 1, 2, 3) 

- 

Superposition of 6 ,  (r), 6, (T) and 6 ,  ( 7 )  gives.S(T) of fig. 1. 

3 I 6,  (4 = - - - k 4 a - (7 d T*, (T) E 0). 

Kt3 ai (r) %re tho forcing functions of the three equations (IO). 

Fig. 3. The component parts d, (q of, the elevator 
motion of fig. 1. 

k -  I [:, 1 k-1 

In practice this superpxition is performed by 
superimposing the response of the airplane due 
to S, ( T )  for T f l  \ 7, on that due to 6, (7) ; the 
response due to 6, (7) is superimposed for I 4 \ T ~ ,  

The above-mentioned responses are obtained 

from the solution of (9) with 6 ( 7 )  = - T  and 

the initial conditions T =, 0 + LI = a = 0 (un- 
accelerated flight), ~vhich can be shown to be 

s 
7 1  



and 

w 7 1  

The results of the superposition referred to 
- -  

above will be denoted by a, h, cte. 

3.1.1 Increnient of nerodynamic tail load. 

The inwenlent of the angle of attack of the 
tailplane dne to downwash, pitching velocity and 
clevator deflection can be written 

d8 
dt ' 

Snhstituting - from (1) and ( 5 )  in (13) and 

inscrting at in the equation of the increment of 
the tail load AL (positive downvards), 

this tail load increment bccomes: 
- 

AL = $ [d, a + $4,; + & SI. (14) 
The eocfficients $ and & axe written out in 

Appendix B. 

3.1.2 Load factor.' 

The airplane load fact,or A n  can be computed 
from & and AC 

3.1.3 Pitching acceleration 

The pitching acceleration= can he expressed 

in terms of i and h by eliminating y from (1) 
and ( 5 )  

? t Z  - - 

3.1.4 Increnient of total tail load. 

T,he increment of the total load of the tail A S  
(positive downwards) is composed of the aero- 
dynamic load increment AL (eq. 14) and inertia 
components due to pitching acceleration and load 
factor increment : 

d c r c  l V t  is the weight of the tail plane 

3.2 Stick force. 

I n  this report only the stick force required to 
balance the aerodynamic hinge moment during the 
nrmcribed clevator motion (fig. 1) will he con- 
kdered. 

The general expression for the increment of the 
stick force P (from the trimmed configuration) is: 

. 

P=nL,qS,c , (b ,a t+ b , S + b , S t )  (18) 

where q S, ce ( b ,  at + b ,  8 + b,&) is the ,hinge 
moment. 

In the case of airplane A (see chapter 1) the 
control column is directly connected with the 
elevator and no spring tab or servo tab are 
fitted. In  this case ,the "aerodynamic" stick force 
becomes 

P=meqSece  ( h , a t  + b , S ) .  (19) 
The clevator of airplune I) is fitted with a spring 

tab (fi,g. 4).  Up to  a stick force P, the tab will 

POSITIVE DEFLECTION9 

A POSlTlVE SrlCXFORCE 4 ;s7 
, IPi l iNC 

- 
HlNGE 

ELEVATO SPRING TAB 

Fig. 4. Sehemstio diagram of a spring tab; 
positive aefleetions. 

not deflect due to  preloading of the spring. If 
F > P,  thc tab deflection with respect to the 
clerator is a function of the stick force a1,one 
(ncglecting the binge moment of the tab itself) : 

S,=C(P-P1) PI > 0 (20) 

where. C is a spring eonstant. ' Substitution of 
(20) into (18) gives the stick force in the case 
of a deflected spring tab (equation (22)). 
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Finally, if the tab reaches its maximum de- 
Election S t m a x ,  the elevator acts as a control sur- 
face with a deflected trimtab. 

Summarizing, the undermentioned equations are 
valid in the three ranges (P / - P,) \ 

P = n ~ , q S , c , ( b , a t  + b , S ) - F ,  < F < F ,  (21) 
(tab undeflected) 

711. q S,'ec(b1 et + b, 6 - b, CF,) 
P =  F > F , .  ( 2 2 )  1 -me q C S, ce b, 

(tab deflected) S; < SlmaX 
P=m,qS,c,  @,at + b ,S  + b,St , , , ) ,  

(constant tab deflection) 

I n  the case of negative stick forces and 

( 2 W  
and the required stick force with dcflwted spring 
tab is 

st =ai,,, . (23) 

P < - P, equation (20) becomes 

s t =  c ( P  + F , )  

me q S, e, ( b ,  at + b, 6 + b, CP , )  
P =  F < - F r  1 -mm, (I C S, ea b,  

I S t  I < I St,,,,"l (22") 

or (maximum negative tab deflection) 

F = m , q S e ~ , ( b , a r  + b , S - b b , l S t , , , ( )  
s t  = St,,.. (23'1 

4 Numerical data. 

The data of airplanes A and B, used in the 
computations, are compiled in table 1. * 

All manoeuvres have heen calculated for sea- 
level air density at the design manoeuvring speed 
V,, the design cruising speed Va and the design 
dive speed V D .  

I n  all cases the elevator will be deflected up- 
wards ( 6  negative) introducing a pull-up of the 
aircraft ; doimward elevator deflection changes all 
signs of the load increments. 

5 Results. 

5.1 Introduetiolz. 

I n  order to  facilitate the understanding of the 
results, the airplane loads, pitching acceleration 
and required stick force as a function of time are 
given in an arbitrary ease in figs. 5 and 6 ;  this 
case is a checked manoeuvre with airplane B and 
k = 5  (fig. 1) at  speed 7,. 

It appears, that both the increment of the aero- 
dynamic tail load and the increment of the total 
tail load have two extreme values. 

* The moment of inertia I (kgmsee') is given in 
I' 

Y W  
terms o f , I ' = I  g (kgm'), so that k 2 = -  (ma). 

The first extreme value is called the first maxi- 
mum (AL, )  of the tail load. This maximum occun 
in many cases at #the instant ,of maximum elevator 
deflection, but at bigh speed and/or large T, this 
first maximum wcnrs earlier. 

This first. maximum arises as a result of the 
downward load due to the deflected elevator and 
the increasing upward load due to increment of 
the angle of attack 'of the tail. 

After the elevator has.  reached its maximum 
deflection, the effect ,of the increasin,g angle of 
attack of the tail at is dominant, nence AL 
decreases and changes sign ( T  - 0,28 in fig. 5 ) .  

After AL has revened its direction the angle 
of attack of the tail reaches a maximum (in the 
example ,of fig. 5 at T = 0,42j and its upward 
effect has a maximum at that time. Due to  the 
fact that the other component (a downward load 
as a r a n l t  .of clevator deflection) is still dccreas- 
in,g, an ext.reme value of the resulting aerodynamic 
tail load AL, howevcr, occu~s at a later moment. 
This extreme value d l  be cadled the second maxi- 
mum (A&). 

I t  should he emphasized that 'the charactcr of 
the tail plane b a d  at t(he moments of the first 
and second maximum is quite different. At the 
first maximum the elevator is ,deflected (aft, centre 
of pressure) and.  at the second maximum the 
elevator deflection iq considerably decreased or 
zero. In the latter ease the loading is comparable 
with a gust loading. 

The t.ota,l loa:d increment A S  differs from AT, 
drie to  m a s  loads (eq. 17). The maximum valncs 
AS, and AS, (fig. 5) are in all cases smaller than 
the corresponding values AL, and A&. 

The computed stick force F (fig. 6) required to 
produce the prcscrihed elevator deflection-time 
history of fig. 5 is related to the aerodymmic 
hinge moment o d y ;  so t h o  computed stick force 
does not contain the force required to  balance the 
moment due to rotational acceleration of the elc- 
vator, m a s  accelerations of parts of the control 
system, passible downsprings and bobweights. Such 
additional parts of the stick force can increase the 
computed onc comiderably. 

In  the ca,se of airplane A (control column 
directly connected with elevator) the shape of the 
stick force-time history is the same as the shape 
of tho assumed S--B dia,gram, as the coefficient 
b,=O (table 1, eq. (19)).  

Airplane B, ,however, is fitted with a spring tah; 
up t o  a stick force P,  = 7.6 kg the tab is not 
deflected and the stick force-deflection ratio is 
large. If the spring tab deflects ( P  > F,), this 
ratio decreases considerahly. 

Eqs. (21) and (22) can he rewritten 

F , = A a  (24) 

P = R  ( a  + D )  ( 2 5 )  

rospectively, whcrc n = b, at + 6, S and A,  B and 
D arc constants, A 1 I(. 

The t,wo components of a are ,given schematic- 
ally as function of ,time in fig. 7a and  a itself in 
fig. 7b. The known preload P, determines the 

and 
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1 value a=ap, at which eq. (24) ceases to be valid 
and in this way the F - T diagram of fig. 7c and 
fig. 6 can he constructed. 

I n  the graphs in this report sometimes large 
values of Anmar occur. I n  fact, the value of 
is limited by stalling of tke airplnne. I n  many 
graphs t.his “stalling limit” is indicated ; the air- 
plane response beyond this limit has t o  he reduced 
to this additional Anmax-limitation. The computed 
“stalling limit” is based on the static C L , , ,  bot  
in fast manoeuvrm the dynamic CLmU can increase 
this stalling limit. 

5.2 Vnriation of the centre of gra.vity (other pala- 
nieters constant). 

A checked manoeuvre with hoth airplane types 
has hecn investigated TThcre the location of the 
ccntre of gravity varied in thc ranges indicated 
in table 1. I n  all cases k = 2  and t , c 0 . 3  sec. 

The values of A L , ,  &La and An as functions 
of the ccntre of gravit.y location with ^s =- 0.436 
rad (fig. I ) ,  or a maximum deflection such that 
the maximum stick force does not exceed a chosen 
value of 100 kg, arc given in figures 8 and 9. 
The said ma,noenwc was investig.;ited, hccause it 
was desired to caleulate the behariour of the air- 
.planes when no acconnt is taken of a An-limitation. 
The results may give an impression of the action 
the pilot mi8ht take in an cmergcncy condition 
and this manoeiwre has therefore hecn called an 
“emcrgency manoeuvre”. In  the airworthinm 
requirements it is assumed that the pilot d l  be 
ablc to rcst.net the load factor to the value cor- 
responding to manoeuvring limit load : n = 2.5. 
Thereforc, the results of the computations were 
also reduced t,o Annlar = 1.5 this manoeuvre bcing 
called a “normal manoeuvre”. In  figures 10 and 11 
t.hc loads in these manoenvrcs are given. 

The effect of centre of gravity variation for  
equal elevator deflections (^s = or F,, = 
100 k’g) on t,he f irst  ntasintunt is small (figs. 8 
a.nd 9 ) ;  in the case of equal Anm_ (figs. 10 and 
11) the effect is somewhat larger and a forward 
ccntre of gravity yields the lmgest AL, except 
at, speed V A .  

In  all cases the largest second masinaunt AL, 
appcars at an aft centre of gravity. 

The valne of tho accelerrrtion increme& An,,, 
due to checked manoeuvres with equal elevator 
deflection (S = S,,, or F,,,= 100 kg) increases 
with a reanvard shift of the centre of gravit,y. 

5.3 Varia.tion of airpla.ne weight (other parameters 
constant). 

Tlhe effect of airplane xeight is investigated by 
means of a checked manoeurre with hoth airplane 
types (k= 2) and weightn as specified in table 1. 
As in par. 5.2 the manoenvre is performed by 
means of a maximum elevator deflection 6 = S,”,, 
or, if the required stick force exceeds 100 kg, a 
deflection such that P,.,-100 kg. Again, this 

- 

A 

manoeuvre is reduced such that  An,, = 1.5. The 
results are shown in figs 12, 13, 14 and 15. 

The change of the f irst  mazintunt AL, as a 
function of weight is not large if ŝ=S,, (or 
Fnl, ’= 100 kg) ; a small airplane weight results 
in a somewhat larger change (figs 12 and 13). 
If the manoeuvre is rcdnced such that A?z,,,\ 1.5 
a large wcight is critical (figs 14 and 15) especially 
for airplane B (the last-mentioned effect is due 
to a strong dependence of an,,,,, on aircraft weight, 
fig. 13). 

I n  all cases the second ntazimum AL, is critical 
for hrge aircraft weight. 

The value of the maximum acceleration in- 
crement during a manoeuvre where S = a,,, 
or F,,, -100 kg increases at decreasing airplane 
wcisht. 

5.4 Variation of moment of inertia (other para- 
nzeters constant). 

The dcpendenec of maximum tail load incre- 
ments and acceleration increments on the moment 
of inertia with respect to  the y-axis, is determined 
with a checked manoeuvre ( k = 2 ) .  A,gain the 
maximum deflection of the elevator is S,,= 
- 0.436 rad (or reduced such that E’,,,, = 100 kg) , 
whereas this “emergency manoenvre” h a s  beer, 
reduced to An,,,=1.5 as well. The moment of 
inertia is wried in the range indicated in pble  1. 

In all cases (figs 16, 17, 18 and 19) the f irs t  
nanximunz is criti’cal at a large moment of inertia. 
This effect of increasing ALl with increasing I, 
is relatively strong. 

I n  manoeuvres where ^s = S,,,, or FmaX = 100 kg 
the second maxinmna is critical a t  a small moment 
of inertia. Dne to reduction of this manoeuvre to 
An,,,=1.5 a large moment of inertia yields the 
largest AL, , except a t  speed Vn (figs 18 and 19), 
h u t  in this case the cffect is small. 

The maximum accelerntion incvenaent ( 6  =S,,, 
or F,,, 1100 kg) is critical a t  a small value of 
tho moment of inertia. 

5.5 Conibined variation of centre of gravity, weight 
and moment of inertia. 

The qualitative results of par. 5.2 up to and 
including 5.4, are summarized in table 2. 

I n  order to determine most critical manoeuvre 
loads in pract,ice, it appears that the trcnds shown 
in ta,hle 2 do not define immediately the most 
adverse weight configuration. 

It should he emphasized that the eqiiilihrium 
(or balancing) tail load (the tail load before the 
initiation of the manoeuvre) mnst be taken into 
acconnt in determining t.he critical load. This 
equilibrium tail load changes with centre Df gravity 
position and weight. For example, a f,orward centre 
of gravity causes a large downward balancing load 
and in spite of the fact that ALx (downvard) dne 
to a checked manoeuvre at V ,  is critical a t  an 
aft  ,centre of gravity (figs 10 and ll), the total 
aerodynamic tail load llas its maximum value a t  
a forurard centre of gravity. 

/ 

* 
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the emergcucy case (maximum elevator deflection i 
of maximum stick force) the investigation can be 
confined to low values of k. 

The tail load increments A L l  and AL,,_ as 
functions of aiispeed (fig. 27) arc analomus of 
both aircraft A and B if ^s=S, , , .  I n  the case 
of airplane A a stick force restriction occurs at 
V.- 95 m see-’ (Pmnr = 100 kg) and at higher 
speeds the incremental tail loads are reduced eon- 
siderahly. 

The results in the "normal case” (S such that 
An,,,=1.5) are shown in figs ,28 up to 33 in- 
clusive. 

Extreme values of A L L ,  AI;, and FmSx. as fiine- 
tiom of IC arise a t  the smallest possible k or 
(for AL, at V , )  at such li tha.t An,,,, = 1.5 and 
s = s,,,. 

It was tried to plot, tail load increments and 
stick forces as functions of speed for distinct values 
of k, but this did not lead to results, which could 
add to  a better understanding of the effect of 
speed on the tail loads occurring during the 
“normal case” pull ups. The different curves 
appeared to cross each other .in a rather confusing 
way, which did not permit any useful conclusion. 
Moreover, the graphs for the two aircraft consider- 
ed did not show similar trends. 

The maximum stick forces required to perform. 
the manoeuvres for aircraft B, noted in the graphs 
-(figs 23 up to 25 incl. and 31 up to 33 inel.) are 
very small. ‘Again it should be stressed, that 
E;,, contains only the stick force required to 
balance the aerodynamic ,hinge moment (see also 
par. 5.1.5); t.his part of t.he actual stick force is 
indicated as ‘‘PmaX (aerodyn)” in all graphs. Air- 
craft B is fitted with a hohweight at the control 
column. The stick force required to balance the 
bobweight (Para) is derived in Appendix C and 
the example of this appendix shows that the rcal 
stick force can he considerably larger than P,, 
(acrcdyn). As the pitch angle 0 is required to 
obtain Paw and 0 was. not computed, Paw is not. 
available. 

1 

,. 

Aircraft A is not fitted with a bobweight. 
In  order to  compare the computed maximum 

tail loads with the loads according .to present 
airworthiness requirements the ,latter are com- 
puted with the aid of the “Civil Air Regulations” 
4 4h. 213 (e). 

The.unchecked pu‘ll-up load at speed V, (CAR 
0 4b.213 (6) (1)) is determined by means of an 
approximate ’ “rationay’ analysis, as ’often used 
by. U. S. aircraft f i m .  
. The checked manoeuvre loads at V, and V, 
(9 413.213 (c) (2) and (3))  are calculated assnm- 
ing that the pitching moment due to the additional 
ta.il load is balanced by the pitching moment of 
inertia of the airplane. 

Balancing tail loads are determined in the 1 g- 
condition (CAR eases A, and D,) and 2.5 b-con- 
dition (CAR cas” A, and D2). These’ balancing 
loads are added to the manoeuvre loads (according 
to CAR) in order to obtain the total tail loads. 

‘The bdaneing tail load in the 1 g-condition, 

5.6 Variution of elevator deflection-time history. 

The assumed triangular clevator deflection-time 
history has been changed by:  

1. variation of the ratio k = >  (fig. 1) with 
71 

constant rl (t, = 0.3 see). 

stant k ( k = 2 ) .  
2. variation of the “control time” rt with con- 

5.6.1 Variation of k = ’. 
71 

The,  extreme values of the inerementr of ‘the 
tail lmd &I;, and hL, and the maximum acccler- 
ation increment. An,., at speeds V., , V C  and V ,  
for both airplanes A and B, were computed for 
elevator motions with different values ,of the 
parameter 16. The control time t ,  was 0.3 sec in 

Again two types of manoeuvres were inves- 
tigated : 
1. an “emergency case” S =S,,=-,O.436 rad 

2. a “norma,l case” where s  ̂ is such that An,,, 

The results in the “eniergenoy C I I S O ”  are shown 

It will be evident that AL, is independent of k.  
As can he expected the value of Anmax is in- 

creasing wibh k (IC? m corresponds to an un- 
checked ma.noeuvre). 

A remarkable effect can he noted in the graphs 
concerning AL2.  At relatively low values of k 
the graphs of A L ,  show a mmimnnt (AL2,& and 
a t  larger values of k, AL2 increases again (air- 
plane A) or is still decreasing (airplane B). 

The effect can be explained by t,he fact that 
f’or large values of k at the instant of the second 
maximum thc eleva.tor has’ mt yet returned to 
neutral. (See for instance the example of fig. 5 . )  
According to equation (14)? in figure 26 AL, has 
been split up  in three componenb: 

all cases. 

,. 

or a value of S such that P,, c 100 kg. 

= 1.5. 

in figs 20 up to 25 incliuive. 

- - 
= $ [h e + h a  + $a SI 
= AL; f AL; -f- AL j 

in the ease of airplane A and s p e d  V,. It can 
he seen .that above a certain value of k a down- 
ward component ALg exists at the instant of the 
second maximum (in the example of fig. 26 this 
effect is amplified by the component ALZ for low 
values of k). This non-zero value of ALa explains 
the origin of a’manimnm of AL2 as a function 
of: k. 

At each speed a value of a?~,,,, can he computed 
where the airplane is stalling (defined by C,,,,). 
I n  fact, this phenomenon intmduees at each speed 
a An,,-limitation at low values of k. The results 
of this An,,,-limitation are analogous to  the results 
of,  the reduction to’ An,,, = 1.5, discussed in this 
report as the “normal case”. 

It can he concluded that in order to’ determine 
extreme values of the tail load increment ALL,‘in 

‘ ’ 
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of course, is used to  determine the total tail load 
obtained by means of the ratioiial analysis used 

reduces the manoeuvre to An,”,, < A%ax8,a,, (figs 
39 and 40). 

in this report. I n  the “norninl C(LSR” (471ncaA ,= 1.5 according to 
the present airworthines reqinrements) the first 

speeds V A  and V, respectively. The results of the maximum AL. is still critical for the smallest 
The comparison is made in figs 34 and 35 at 

. - .-. 
rational analysis are the same as those of figs 31 Dossible T , .  The second maximum AL-. however. 
and 33. 

It is shown in figs 34 and 35 that the checked 
manoeuvreCAR loads correspond to values of IC 
which are rather large if these requirements are 
intcnded to coxrer emergency conditions as well. 
Especially the first maximum total tail load L, at 
speed V D  is much too small. 

The total tail loads for two arhitraiy selected 
values of k ( k = 2  and k s 5 )  as functions of 
aimpeed are compared with the CAR values in 
fig. 36. 

is critical-at the value of v I  which belbngs to the 
(first) intersection of tihe curves aL, (% -8,,, ) 
a.nd A& (annu = 1.5) ; this optimum T~ will in 
general he smaller than t,he optimum in the 
‘’ emergtney ease”. 

Incremental tail loads for arbitrary values of 
t ,  (t,=0.15 see, 0.30 see, 1.20 see) as .functions 
of airspeed are shown in fig. 44 where the manoeu- 
vre is restricted ‘by An,,<l.5; tail load incre- 
ments derived from CAR are shown as well. 

I 

From the figs 34 to 36 incl. it can be concluded, It a,ppeals that the manoeuvre loads according 
tilab the cheeked loads derived from t,o CAR are in gcneral small: they belong (in the 
the pitching accelerations prescribed by CAR are Case Of airplane B) to a manoeuvre with a control 
not realistic for emergency conditions (often ;:me t, Of 1.0 to ].3,seconds, which is relatively 

An,,,=1.5 wonld he acceptable in this care. 
characterized by k = 2 ) ,  even if the restriction slou“’. 

In  order to olitain bhe total aerodynamic tail 5.7 Discifision. 
load, the bnlanein,g tail load must bc taken into 
aecoiint. This ,balancing load va.ries with speed. 
I n  fig. 37 the total aerodynamic tail loads Ll 
and LZmax and the balancing load arc shown as 
functions of speed. This figure is takeii from 
fig. 27 by adding the ,halancing load at each speed. 

It can be conclnded that, apart from ,gust loads, 
the extreme value of the second maximum is critical 
for bending and shear of the tailphne at all speeds; 
this conclusion for the airplanes A and B need 
not he true for other airplanes. 

5.6.2 Variation of the control t ime T,. 

As statgl in pa,r. 5.6, t,he elcvator deflection- 
time history can he varied in’a  second way hy 
means of the “eontrol time” 7,. Manoeuvr& with 
different 7, and constant k ( k = 2 )  u w e  investi- 
gated for both airplanes A and B (figs 38 up 
to fig. 43 inclnsive). The loads of airplane A for 
differcnt values of T~ are obtained from ref. 5 
and are reproduced here. 

I n  hhe “emeruency ca.se” (S=S,,, or E’,,,,,,= 
100 kg) it appears that t,he first maximum of the 
ta.il load is critical for the smallest possihle value 
of rl (aerodynamic lag neglected). 3lie second 
maximum of the tail load AL, and the maximum 
acceleration increment Ail,,,, are critical for finite 
and non-zero valnes of T,. Hence there exist 
“optimum control times” for A& and A n , ,  
(ref. 5) .  The optimum control time rl does uot 
show a significant dependence on the flight speed, 
hence the r e d  optimum cont,rol time t ,  decreases 
with increasing airspeed. The “stalling limit” 
referred to in par. 5.1, however, in some eases, 
causm an optimum eont,rol time T ,  at the (first) 
intersection of the curves AL, (%-S.,..) and 
4L2  (Anmaxh,al,). The last-mentioned curve is not 
indicated in the graphs. I n  the case of airplane A 
the “stalling limit” is not important, for  the 
restriction P,,,, = 100 kg (speeds Vc and Tin) 

, 

, 

In practical rat.iona,l analyses the design tail 
loads are often calculated snpposing a checked 
manoeuvre with t, = 0.3 see, k = 2 and A?&,,,.* = 1.5 
It is possible t o  test this procedure by means of 
the results of this report (figs 28 np to  33 incl. 
and figs 38 up to  43 incl.) for the two airplanes 
investigated. Concerning the assumption k = 2 it 
appears that a smaller value of k is more critical, 
apart from the feet whether k < 2 will he realistic. 
The assumption t, = 0.3 sec appears to he rational 
for t,he second maximum at speed V ,  , hut at high- 
cr speeds the tail 1oa.d incrementa are larger at 
a smaller cont,rol time. Especially thc first maxi- 
mum is very scnsit.ive a t  small t ,  and this maximum 
roughly doubles for t, 10.15 see with respect to 
t ,  = 0.3 see at V c  and V,. A control time t,.= 
0.15 see is not nnthinka.hle according to ref. 6. 

On the other hand, in “emergency manoeuvres” 
(this case with S = S,,, or pilot effort limit.ation, 
is not included in present requirements) the tail 
loads are nzuch hrger  than in the “normal cases” 
(compare figs 20 up to 25 incl. with figs 28 up 
to 33 inel. for parameter k and see figs 38 up to 
43 inel. for parameter t l ) ,  The asumptions k = 2  
and t,=0.3 see. for appear to be rational 
at, V D  ; this speed is critical for airplane B (no pilot 
effort limitation, fig. 37) hut not for airplane A. 

It can he concluded that the critical manoeuvre 
for actual design must be chosen by means of 
rational investigation of the critical elevator de- 
flection-time history for each airplane configuration 
in normal cues  (an,,, = 1.5) .  

Moreover a.ttent,ion has to  he paid to the need 
of an “emergency case” (limited by pilot effort 
;ind airplane stalling) to hc inserted in stnictnral 
ainvorthiness requirements. 

6 Conclusions. 
6.1 Starting from a prescribed triangular elevator 
deflection-time history, checked manoeuvres with 

.. 
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two airplanes of quite different sizes were cal- 
culated. The parameters varied were the control 
time t ,  (the time in which the elevator reaches 
its maximum deflection) and the ratio k hetween 
the time after which the elevator lias returned to 
its initial position and t, . The calculations were 
carried out for two airplanes at different speeds 
and weight confi,yrations. 

Two types of manoeuvras are discussed through- 
out this report : a so-called “emergency case”, 
where the pilot deflects the elevator due to a 
sudden event in a very short time (limited by 
maximum pilot effort) and a “normal case” ac- 
cording to present airworthinm requirements. 

6.2 I n  most respects similar results were obtained 
for both airplane types investigated. 

6.3 I n  “emergency cases” @=Smn, or Fma,= 
100 kg) the seoond maximum of the tail load in- 
crement has critical values both in the case ‘of 
variation of 7 ,  a.nd in tho case of variation of k ,  
for finite and non-zero values of r1 and k respect- 
ively. The first maximum of the tail load increment 
is critical for 7, = 0, that is to say for the smallest 
possible I, (neglecting aerodynamic lag). 

The maximum normal acceleration increment is 
critical for a finite and noli-zero I, and k c s o  
(unohecked manoeuvre). 

6.4 In “normal cases” (An,,,,,/ 1.5) both the 
first and second ma.ximnm of tail load increment 
arc critical for the smallest possible k: except the 
second maximum a t  low specds ( k  > 1). The first 
maximum is ,critical at  the smallest possible il, 
the second one again a t  a finite and non-zero 7,. 

6.5 The pitehing accelerations in the “normal 
cases” as functiom of speed are compared with 
those prescribed by CAR. 4h. It appenrs that the 
CAR-values are related to relatively slow elevators 
movements, not resulting in critical tail loads. 

6.6 For both airplane types investigated the 
second maximum of the tail load (including the 
equilibrium load) was l a q e r  than the first maxi- 
mum (absolute values) a t  all speeds, but this fact 
need not necesrarily he true for other airplanes. 

The loading of the tail plane ,due to the fimt 
maximum is different from that of the second 
maximum (in some eases cornpartihle with a gust 
loading). 

6.7 The required stick forces are quite different 
for  both airplanes (no servo or huoster and fitted 
with spring tab respectively). The stick forces 
required to ,balance the aerodynamic hinge moment 
were very small in the case of the spring ta.b; 
additional stick forces due to a bohweight fitted 
in this airplane can be considerasble, hut have not 
been computed. 

6.8 It is recommendable to choose the manoeuvre 
1oa.ds in the case An 1.5 hy means o€ a rational 
determination of the critcal elevator-time deflection 
history for each airplane configuration. 

Moreover it is concluded that attention has 
to he paid to the need of an  “emergency case” 
(limited by pilot effort) to be inserted in struc- 
tural airworthinw requirements. 
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APPENDIX B. 

The coefficients of equation (14). 

APPENBIX C. 

Stick force required to balance bobweight. 

V """OL' 

a = distance hetwecn hinge H and centre of 

p = control column deflcction. 
E =' fixed angle. 
0 = angle of pitch of airplane. 
1V,= weight ,of hobweight nnd etick. 
2 c length of control column. 
n' = load factor at control column. 

gravity of hobweight and stick. 

Equilibrium with respect to hinge H (assump- 
tion: p= 0). 

I n  the ease of airplane B:  W ,  a= 5.97 kgm 

1 = 0.797 'm. 
E -29' 

Hence 
sin (/3 + 8 + 29') 

cos a $'bW = 7.48 ?b' kg. 

Example 

Airplane B, speed, V , ,  8 = S,, , k-5, = T ,  

~ .n=0 .431-=+  3.56 see-* 0=l014'at T = T ,  

(estimated). 
Estimated distance between c. g. and control column 
11.5 m. 

- 
15.3 kg). See figs 5 and 8. 

d28 
at2 

11.5 X 3.56 
9.81 I n' = 1 + 0.431 t - = 5.604. 

p = 15'9'. 
sin45'23' 
cos 15'9' P a , o  = 7.18 X 5.604 =30.9 kg. 

Total stick force a.t T = T ,  30.9 kg + 15.3 kg = 
46.2 kg. 



Fig. 7. Structure of the stick force-time aiagram of fig. 6. 

Fix. 8. Airplaiic A. AI,, , aL, and A V L ~ ~  a8 functions of 
centre of graisity locution ( 6  F = -0.436 rad 

or FmBX = 100 kg). 

I 
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Fig. 9. Airplano B, JL, aL, ana anmar &9 functions of centre of gravity location 
=-00.4RR rad or FmaI =IO0 kg). 2,s m.s 
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Fig. 11. Airplane B. A L ,  and AL2 as functions of gravity location (4” ,-’ 
m.x \ 1.5) 

Fig. 12. Airplano A. A&, A L ,  and Anmsx as functions 
* 

of airplane weight (6 = 6 = - 0.436 rad “I 
, or Fmmx = 100 kg). 

Fig. 13. Airplane B. ALl, A L ,  and Anm,, ILI. funetians 
A 

of airplane weight ( 6  =d = 2 0.436 m.’ 
or Fmar = 100 kg). 

ma= 



24 

Fig. 14. Airplmic A AI,, and A I L  as functions of 
nirpianc ,wight (Anmex < 1.5). 

Fig. 15, Airplniip B. aL. and AL, 84 functions of 
airplane weight <1.5). 

Fig. 16. Airplane A. AI,, , A L2 and nnmar RR functions 
of the " w n t  of incrtin (a^= smax = - 0.436 rad 

or Fmar = 100 kg). 

Fig. 17. Airplane 13, &I,t, aL, and nnmaX as functions 
of Ihc moment of incrtia (a= J m n x  =-0.436 rad 

or Frnai= 100 kg). 



Fig. 18. Airplane A. ALl and AL, ai functions of the 
moment of inertia (asmar 1.5). 

JI,, -k 

Eg. 20. Airplane A.AL,, A L ~  nnd &amaxas functions 

of k=f2($=8,, ,ax=-0.436 rad). Speed’P . 
TI  
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, .PLI 

-k 

Fig. 21. Airplane A. A L l ,  A L, and Am,,, 8.3 functions of IC = 

Tl 

- I* (Fmax = 100 kg, %<a,,,*%). Speed Pc,  

- k  

fig. 22. Airplane A. A L , ,  AL, snd:Anmah a8 functions of k =  

7 ,  

- 7 2  ( P m a x = l W  k g , S ~ 8 ~ , , , ) .  Speed P,,. 
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Fig. 23. Airplane B. AZ, , aL, and llnmsx as functions of k = 
- T * ' @ = 8  "lax =-O0.43G rad). Speed V A .  
7, 
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lo t 
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-k 

Fig. 24. Airplane B. A L , ,  a L 2  and AnmAI as functions of k =  
- T2 (b = amax = - 0.436 rad). Speed P c  . 
TI 
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-k 
Fig. 25. AirpJane B. aL , ,  aL1  and anmnx &9 functionaof I C =  

1. - ($= bmax = - 0.436 rad). Speed To . 
71 

Fig. 26.  Component parts of aL,= AL;+ aL; + A L ~  89 functions of I C =  
72  - (6 - = 8max= - 0.436 rad). Airplane A;  speed V ,  . 
7, 
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- k  

Fig. 29. Airplane A.&L, ,  &Lz and F,,, &s functions of IC = 2 
7, 

1.5). Speed V c  

I Fig. 30. Airplane A. &L, ,  &La and F,,, as functions of k =  2 (&nmzx=1.5).  Sped V , .  
I, 



- k  

Fig. 31. Airplane B. A L ,  , AL, and Fmax as fuunetions of k = 2 (An,=, = 1.5). Speed 7 , .  
TI 

- k  

Fig. 32. Airplane B. AL, ,  AL, and PmaXs.s functions of 76= 2 (Anmax = 1.5). S p d  7 ; .  
7 1  
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-k 

Fig. 33. Airplane B. nL,, A L ~  and Fmar functions of k = 2 (nnWax = 1.5). Speed V D .  
r, 

1's 1,170,000 kg m2 

I / l \ \ \ l  I i I I i I I I I I I I I 

, , I I I I I I I I I 
0 2 4 6 6 10 12 14 16 18 20 22 24 26 28 30 

-k 

Fig. 34. Airplane B. Comparison of computed tail loads 
(as functions of k) with those according to CAR. 

%=a V * .  
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Fig. 35. Airplane B. Comparison of computed tail loads 
(as functions of IC) with tho= awcording to  CAR, 

Speed V D .  

-AIRSPEED Vmle5-1 

Fig. 36. Airplane B. L, and L, as functions of airspeed 
fo r  k = 2 and k = 5 (Anmax = 1.5). 
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Fig. 37. Airplane A and B. L, , L, and the bdaneing load 
8s functions of airspeed. 

Fig. 38. Airplane A.  A L ~ ,  ALs and An,,, 89 funetiona 
of the “eontrol time” rl ( b  = 2).  S p e d  7, . 
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Fig. 39. Airplsno A. AL,,  A L ~  and Anmax BS functions 
of the “control time” (IC = e) .  Spced vc. 

Fig. 40. Airplane A. A L ~ ,  ALz and anmlx as functions 
of the “control time” 7, (k = 2). Speed V, .  
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Fig. 43. 'Ainplane B.AL,, A L ~ ,  Anmsr and Fmax as 

functions .of the "control time" 7,. Speed V" , 

I I I 1 1 I I I 1 I I 
O 91 42 03 0 4  05  0 6  07 48 09 

Fig. 44. Airplane B. AL, and aL, &s functions of 
airspeed (an,,, 1.5). 



TABLE 1. 

Numerical data. 

Airplane A 

70 
16 
10.892 
9.127 

0.360 

~ 1.1 

5.680 

4.10 

2.00 

- 0.50 

Airplane B 

135.7 
33.7 
16.080 
14.173 

0.395 

1.1 

4.699 

3.50 

2.58 

- 0.416 

0.12492 
9.8067 

Weight variation 
Moment of inertia variation 
Centre of gravity variation 

Elevator and spring ta4h deflections: 

mz 
m2 
m 
m 

- 

- 

rad-' 

rad-' 

rad-' 

rad-' 

kg see' m-' 
m see-? 

s. 
Ce 

C 

- 

a,,, = -C 0.436 rad (-c 25') 
- + 0.349 rad (+ 20') 

(Airplane A ind B) 
(Airplane B) s t  ,"ax- 

-0.140 rad (- So) (Airplane B). 

. . Airplane A 
_ _  

15,500 kg tf 13,000 kg 
249,700 kgm* cf 185,000 kgmZ 
28.35 % MAC M 43.03 % MAC 

Airplane A Airplane B 

0.95 
1.00 

18.0 
110.0 

141.4 

0 

- 0.19 

- 

1.89 

3.182 

0.356 
- 

1.00 
1.00 

94.3 
134.1 

178.4 

- 0.117 

- 0.119 

- 0.175 

~ 

2.09 

10.12 

0.808 
0.02604 

- - 
Airplane B 

- 
- 

m sec t  
m sec-' 

m see-* 

rad-' 

rad-' 

rad-> 

m-' 

m2 

m 
rad kg-' 

- 

48,081 kg tf 28,900 kg 
.1,170,000 kgm2 t--f 1,051,194 kgm2 
13.50 70 MAC c--f 34.87 % MAC 

w m 
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TABLE 2. 

Critical conditions for A L L ,  AL2 and an,, . 

af t  

kind of manoeuvre 

^s = S,,, or F,,, = 100 kg 

A%,,. = 1.5 

small 

A%,., = 1.5 

A 

S = Lax or = 100 kg 

I 

critical condition 

centre of 
gravity 

weight 

forward 
(except at %) large 

af t  lange 

moment of 
inertia 

large 

lange 

small 

- 9 

small 

I *) - means that the effeot is small 
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RZPORT NLRTR S.542 

A stress diffusion problem for a wedge-shaped 
plate with three stiffeners 

by 

J. P. BENTHEN and J. VAN DER VOOREN 

summary. 

The isotropic ws&e has two edge-stiffeners of equal normal rigidity and a stiffener d o n g  the bisector of the wedge. 
A faree sets at the vertex in the direction of the lntter stiffener. Methods, previously uscd by the authors for wedges 

-with one stiffener, aro extended far the present ease. 
R e  method involva  usc of the M d i n  transform and the numerical solution of t v o  simultadeous singulsr integral 

equationa uf the Oauchy type. 
Applications &re given f o r , =  half wedgo mgle L/ =go“ ,  i.e. f a r  tho half plane with an orlge-stiffener and a stiffener 

normal t o  the edgc, for difforcnt st iffl ieu ratios of tho stiffencrs. 

This investigation liar been performed under 
contract with the Netherlands Aircraft Develop- 
ment Board (N.I.V.). 
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suffices referring to stiffeners, see 
fig. 1. 
oblique coordinates, defined in 
fig. 2. 
angle between coordinate axes, or 
the eoixtant defined in table 2.  
displacements defined in fig. 3. 
oblique straincomponents, defined 
in @,I) .  
svmmetrical matrix. defined in 
(2.2). 
oblique strmflowcomponcnts, see 
fig. 2. 
functions of the c m d e x  variable 

t o  [z + hty]. 
xi roots of eq. (2.4). 
N normal force in stiffener. 

l) S,om quantities are rsplnccd by dimensionless quanti- 
ties with the aid of formula (3.5), without (ultimately) 
altering thcir notation (the indication “dl” is dropped 
again), 



E Young's modulus of the wedge 
material. 
Poisson's ratio of the wedge ma- 
terial (0.3). 
plate thickness of thc wedge. 
Young's modulus of a stiffener. 
crosssectional area of a stiffener. 
load a t  the vertex, see fig. 1. 
oblique stressflow component t 
along stiffener 1. 
oblique stressflow component t 
along st.iffcner 11; 
tl + s,,casa, see eq. (3.16). 
Ilcllin transform of h[z], accord- 

ing to' H[s] = / h[z]s*-' dz 

where s is a complex variable. 
normal force in the edge-stiffener 
at the vertex, see eq. (4.1). 
(EaAs,JI/ (E8A8)lr, ratio of nor- 
mal stiffnesses of the stiffeners 
I and 11. 
oblique coordinate, synonymous 

oblique coordinate, synonymous 

m 

0 

to x. 

to y. 

... (6.141. 
f i i ,  i, j = l , 2  functions, defined in eqs. (6.11) 

~, 

72,, [F] , b2 [$]functions, defined in eqs. (6.20), 

16.21 1. 
\ ---, 

PI, PI, (=pP) normal forces in the stiffeners I 
and I1 at the vertex. 

P symbol, replacing n and 6 - .  

functions, defined in eqs. (8.44) 
... (8.46). 

, tI"[i], t lI"[P] expa,nsions for  tI[i]  and t11[5] in 

g, [X/./pl 
g, [ d P I  
g, [dll 

case Z << 1, see eqs. (6.43). 

case 5 >> 1, see eqs. (8.43). 
tI'"[./p], t,,""[P] expansions for and til[[] in 

1 Introduction. 

I n  ref. 1, K o m  solved the problem of thc 
diffusion of a load from a semi-infinite edge- 
stiffener into a n  isotropic half plane. The shear 
flow acting from the stiffener on the half plane 
is t [ x ] .  Its Mellin transform is 

m 

T[s] = \ t[zIzS-' dx. (1.1) 
6 

I n  ref. 1 a functional equation 

2'[s+1]=-2sT[s]cot71S (1.2) 

is obtained, which is solved. From this solution 
t[z] is determined. 
In ref. 2 the authors developed a method to dcal 

with wedge-shaped plates with one edgc-stiffener 
and one edge free. Again the shearflow, acting 
from the stiffener on the wedge, is t[x], its Afellin 
transform T[s]. A functional equation 

T [ s  + 11 =Z[s ]  T[s] (1.3) 

is obtained, where Z[s] is B known function. The 
further solution of the problem could not follow 
the lines of ref. 1, since these seerm only to be 
applicable for the wedge angle (I = 180O (i. e. the 
half plane with semi-infinite edge-stiffener) . 

The method of ref. 2 is not exact hut delivers 
answers of high accuracy, also for the s i n y l a r  
behaviour at z+ 0 and the asymptotic behaviour 
at z+ m .  

I n  this paper the method of ref. 2 i.; further 
extended for a case where more thau one stiffener 
is involved. An isotropic wedge with two edgc- 
stiffeners of equal normal rigidity and one stiffc- 
ner along the bisector of hhe wedge is investigated. 
The loading force acts a t  the vertex in the direction 
of the latter stiffener. Due to the symmetry of 
the configuration, only half of the wedge needs 
to be considered. I n  view of a possible further ex- 
tension to anisotropic plates, which could be nnder- 
taken, oblique coordinates are usad instead of polar 
coordinates (see also ref. 3).  

Along the bisector-stiffener there is a shear flow 
t,[z] and along the edge-stiffener a shear flow 
t,, [y], Their respective Mellin transforms are 

T,[s] = 1 &[XI z8-' ax 

(1.4) 

IIlptead of (1.3) two simultaneous functional 
equations 

Tr[S+ll=Z1l[Sl TILS] + Z,,[Sl T,r[sl 

TII[s+ll=z,,[Sl TI[$]+ Z,,[Sl Tn[sl 
(1.5) 

are obtained. 
When the inverse Mellin transform is applied to 

these functional equations, two simulta,ncous sin- 
gular integral equations of the Cauchy type are 
obtained. These are to be solved numerically. 

Applications are given for a half wedge angle 
a-90° ,  i. e. for the half plane with an cdge- 
stiffener a,nd a stiffener normal to the edgc. There 
proves to  be a logarithmic singularity at x = O ,  
?/ = 0. 

I n  ref. 1, 2 and in Dhe present paper the bending 
stiffness of the edge stiffener is neglected. Cal- 
culations where finite bending and shear stiff- 
nesses of this stiffener are taken into amount arc 
now under progress. 

2 Stressstrain relations and expressions for the 
stress flows in oblique coordinates. 

Fig. 1 shows the configuration to he analyzed. 
As mentioned, only half this configuration (fig. 2) 
has to he considered. Fig. 2 also shows the choice 
of the oblique coordinate system as well 'a the sign 
conventions used for the stress flows. Finally, 
fig. 3 gives the definition of the displacements 
and strains. The stressstrain relations for the 
isotropic plate will be repeated bere for convenience 
from ref. 2. 
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Aflong the y-axis (stiffener 11) the *boundary conditions are found from the equili,brium of a stiffener 
element in ydireetion and the direction perpendicular to it. Assuming that stiffener I1 has only noma1 
rigidity, these conditions read, accoding to fig. 5, 

Fig. 4. F4uilibrium of an element of the half stiffener I. Fig. 5. $.+librim of an element of stiffener 11. 

sz,, s ina=O 
I Dimensionless quantities are now introduced by the substitutions 

(3.3) 

(3.4) 

When these expressions are substituted into all equations, and if again the notation “dl” is dropped, 
all equations preserve their original shape, with however 

P = l ,  E = l ,  h = l ,  E,r=l, A,,Fc 
(3.6) 

where ~ = ( E a A a ) d ( E a & ) n .  ’ (3.7) 

ay 32% a,, 
a~ 3x2 ay 

E m  =, 1, .&I‘= 1 

By a twofold differentiation of (3.1) with respect to  z and substitution of the relation: 

+ -  _- -- 

the condition (3.1) can be‘ replaced by.eq. (3.8). 
The boundary conditi,ons (3.2) and (3.3) are replaced’ by the’.cqs. (3.9) and (3.10) ‘af ter  using 

eq. (3.6), taking into account that the strains in the stiffeners I and I1 are equal to the strains 
( E ~ ) ~ = ~  and ( E ~ ) ~ = ~  in the plate respectively and taking ss,, =O, see eq. (3.4). . ,  The boundary conditioils thus become 

(3.8) 

(3.9) 

(3.10) 

(3.11) 



Substitution of the eq3. (2.1), . (2.3), making use of (2.4), finally tirings.the.four boundary conditions 

. .  
into the desired form. Tliey now. read successively . .  . .  

X [ {-AA, ih i2cWa+ (A, ,+ ,A, ,co~a)  h i -  (A,,+A,,cosN) +.A&i)f i ' [~]  + 
+ { ( 4 A ~ ~ f A ~ ~ ~ ~ ~ ) h i * - ( 7 R ~ , + 4 A ~ , - - . A , , ~ a ) h i +  ( 9 A , , - 3 A a , , ~ a ) -  

-3A&i}gi ' [~]  f ( - A , , h i * ~ a r a +  (Al2 +.A,,ema)X~-,(A,, +,A,,easa) + 
+ A,&'h~i } 5 gi"[r] ] = 0. . .  (3.12) 

4 c 2 I{ (411 hi2 + A,, - A,, hi) f i ' [ ~ ]  + (-All hi2 + 3 AI, - A,, hi) Si'[Zl + 
+'(A,tAi* + -&-AlaAi)~gi ' : [~]  ] + (t + s , , cGs~)=~ .  (3.13) 

hi - 4 3  hi')fi';[hi?ll + (A,,& + Am hiz) gi'[hil~] + ,(--A2% hi + A,, Xi2)  (X iv)  ~ i " [ X i ! / ] )  + tu zz 0. 
(3.14) 
(3.15) 2 Xiz I( f i  [hi!/] - 2.gi [hi!/] - (hiv) gi'[hiv] ) c 0. ' 

Furthermore, expressions f o r .  ( t ~  + sy, cosa) and tII are available from (2.3). They read 
' *  

t I = t r +  oi[21+ ( m a - ~ i ) ~ g i r [ ~ j  (3.16) 

(3.17) tn=-Shi  { f$[hi!/] -,(hi!/) A'[hiv] 

sign denotes a shear stress flow as it is dcfined in orthogonal coordinattes. 
. .  

where the 
m 

- a - i  Application of the Mellin transforms [ ... r ds to (3.12), (3.13), (3.16) and J ...v'-' dg to 
0 n 

(3.141, (3.15), (3.17) delivers in accordance with ref. 3, pag. 14, formulas (4.8), (4.9) 

2 [ - ( - A A , , X i z ~ ~ s a +  (A, ,+A, ,cosa)hi - ( (A, ,+A, ,cns .a)  + A , , / h i )  ( ~ - l ) P i [ ~ - l ] -  

{ (4A,, + A,,cwa)hi*- ( 7 ' 4 ,  + 4A,,-A,,  cosa)hi + (9A,,-3A;,,cosn) -3AA,,/hi)  

' (s-1) Gi'[s-'l]+'( - A A , , X i 2 ~ ~ ~ a  + (Alz + A, , cKs ,~ )  Xi- (Aas + A , , O O S ~ )  + 
+ A , J h i ) ~ ( s - l ) G i [ ~ - l ]  ] = 0  (3.38) 

$ 6 2  ( -  (A,,XiZ + A,,-AA,,Xi)(s-1)Fi[s-l] - (-Allhi* + 3A,2,-A~3hi) 

(s-1) G i [ ~ - l ] + ( A ~ ~ h i ~  4- At2-A,,hi)s (s-1) Gi[s-l] ) + T,[s] = 0  (3.19) 

I: ( - ( A ~ ~ - A ~ ~ A ~ ) A ~ ~ - ~  ( s - I ) P ~ [ s - ~ ~ I  -'(A*; + A , , A ~ ) x ~ ' - ~  ( s - i j  G , [ ~ - I I +  

+ ( -Ae2 f A2aAi)hi'-8S(S-l) Gi[s-l] } + TJZ[S] = 0  (3.20) 

(3.21) X { h i 2 - s F i [ ~ ]  -22i2-"Gi[s] 4- A\i2-"sGJ[s] = 0  

T,[s] -2{ (cas:c-hi)Fi[s] + 2 ~ a s : o r G i [ ~ ] - ( ~ o s a - h ~ i ) ~ G i [ ~ ]  } 

TI1 [SI = 2 ( - hi'-s Pi[s] -hii-*sCi[s] ) 

(3.22) 

(3.23) . .  , .  
m 

where generally N[s] = h[2] zs-' dz. 
. .  , ,  ' 0  , .  

After replacement of (s-1) by s in eqs. ,(3.18), (3.19) and (3.20) and dropping the bar again, 
the six expressions (3.18) ... (323) will now be specialized for the isotropic wedge. This is done by 
inserting the symmetrical matrix A,, of eq. (2,2), with the factor Eh replaced by 1, and taking 

AI,% = exp % i N .  (3.24) 

T h e .  result is givcn in a somewhat differeht succession in table 1, which contiins the formulas 
(3.25) - (3.28). . ,  . ,  

I n  equation (3.27) 
C =  ( E A ) J ( E ~ A ~ L .  (3.29) 

, From the eqs. (3.23), (3.24), (3.25) a.nd (3.26) B",[sl, P,[s], G,[s] and G,[s] can be solved with 
Cramer's rule, as functions of TI[s] and T,,[s]. .They read 
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4 ( sinZ(s-1)a 4- (s -1) sin2 a) P, ,2s  = [ { - s(s - 2 )  (1 + v )  sin' a ' 

-s(l--)sinacos(s-l)asin ( s - 2 )  a-2(1-v)eoscrsin(s- l )asin(s-2)a 

+ Z ( s - 2 )  sinnsin(s-1)  a e M  (s-2) e )  

sinucos(s-1) aim (s-2) a +  ~ ( 1 - v )  cosacos ( s - ~ ) - n s i n  ( ~ - 2 ) a  

i{ ( ~ ( 1 - v )  - Z ( S - ~ )  ) 

+ s(1-v) s i n a e o s a ) ]  T I [ s ]  + [ ~ ( S - Z )  { (eosasin ( s - 2 ) a  
, .  

+ s i n ( s - l ) a )  ~ i ~ o s a c o s ( s - 2 ) a )  1 Tn[sl (3.30) 
and ,~ . ,  , I .  

( s in  2(s--1) 0 + (s-1) sin 2 a )  G,,2 Is] & 1- [ ( 2 - s ( l +  v)) s i n e  

- ( ( 1 i v ) c o s ( s - l ) n s i n ( s - ~ ) a ) ~ i ~ (  ( 1 - v ) o w a +  ( 1 + v ) c o s ( s - l ) a  

e o s ( s - 2 ) a } ]  T , [ s ]  + ( -2sinncos(s-2)a  T 2 i c o s a ~ o s ( s - 2 ) u ) T ~ 1 [ s ] .  (3.31) 

~ Inserting of (3.31) and (3.32) into (3.29) and (3.30) delivers, after some tedious but straightforward 
algebra, the functional equations for T I [ s ]  and T I I [ s ] .  T,hey are I 

T ~ l s l  
c - ( 1 f v ) ( 3 - ~ ) s i n * ( s - l ) ~ - ( ~ - l ) 2  ( 1 + v ) * s i n 2 a + 4  
2 s inZ(s - I ) a+  (s-1) s i n 2 a  , T I [ ~ + ~ ] = - s -  

(3.32) c 2 ( s - 2 ) ( 1  + v )  sinasin ( s - 1 ) a  + 4eos ( s - 2 ) a  
Tn[s l  - S T  sin 2(s - l )a  + (s - 1) sin 2 a 

Ti[sl 
2( s(1 + v )  -4}sinusin ( s - l ) a  + 4eos (s  - 2)cr 

sin2(s-l)a + ( s -1)  s i n 2 a  T**[s + 11 =-s 

(3.33) -4&Z(s-  l ) a - 4  sin2u + 4 
sinZ(s--I)a + (s- l )s in2a -s . T I I [ ~ I  

from which cxpansions for T I [ = ]  
respectively, by means of inverse Mellin transform. 

and h [ y ]  will be developed, for small and large values of z, Y 

In 'a way, similar t o  that used in ref. 2, it can be proved that &[%I and tl,[,!/] are .nalytic functions. 

4 The position of tKe poles of TI[#] and T I I [ s ]  in the complex s-plane. 

The normal force in the stiffener I I ' a t  y = 0  be 

PI, = p P. (4.1) 

P I =  ( 1 - 2 / 3 c o s a )  P. (4.2) 

As the stiffeners I and I1 a,re connected a t  the vertex ,the normal force in .stiffener 1 at s=O is 

In  (4.1) and (4.2) ,/3 is an unknown constant. 
It is nNow passible to  obtain values for T1[11 and T11[11 I 

i 

T I I [ ~ ]  = r tn  dy (4.4) 
6 

Introduction of the original coordinates and shear flows with eqs. (3.5) now delivers 

The equations (4.5) and (4.6) express the additional requirement t h a t  all strsses vanish at infinity. 
From (3.32) and (3.33), in which T , [ s ] ,  T , [ s  + 11, T,,[s]  and TII[s + 11 oecur, it follows that these 

four functions must bc defined in a strip of the complex s-planc which is parallel to the imaginary axis 
and wider than 1. Because the integrals (4.3) and (4.4) are certainly convergent (see 4.5), (4.6)), 
the point s = l  must lie in the afore mentioned strip. 



The integration for tho inverse 3Ielliii transform must also take place therein. 
Thus 

Re a, < R e s  < R e  b, 

R e a , + I < R e b ,  
R B  a, < 1 < R e b ,  (4.7) 

In (4.7), a, and b ,  (and their complex conjugates and b,) are poles of T,[s]  or TII[s] or of 
hoth of them. 

The functional equations (3 .32)  and (3 .33)  are now written in the form 

or 

(4.9a) 

(4.9h) 

t , , [ s ]  =- (1 + v ) ( 3 - v )  sin* (s - ] ) a -  ( s - I ) ~  (1 + v)*s in*a + 4 

t , , [ s ] = 2 ( ~ - 2 ) ( l + v ) s i i i  a s i n ( s - l ) a + 4 c o s ( s - 2 ) a  

t , , [s]  = 2  ( s ( 1  + v )  - 4 )  sin a sin ( ~ - 1 ) a  + 4eas ( s - 2 ) a  

t,, [SI = - 4 sinZ (s - 1) a - 4 sin2 a + 4 

N[s]=sin2(s-1) a f (~-1)s in2ol .  

Furthermore, elaboration of the deterniiriaiit 

whcro 

(4.10) 

(4.11) 

A [ s ] = - ( l + v )  ( ( ~ - l ) ~ ( l +  v ) s i n 2 2 a +  ( 3 - v ) s i n 2 2 ( s - l ) a +  
+ 4(s--1) s i n Z a s i n 2 ( s - I ) a ) .  (4.12) 

It appears from (4.9) a,nd (4.11) that a, generally is the firstcoming zero of sA[S] starting from 
Re s = l  in negative direction. From (4.8) it may be expected that b ,  is the fimteoming zero of 
N[s-I] starting from Re s c l  in positive direction. It can be proved that, for a.11 values of a, 
b, = 2. 

Analytical oontinuation of T,[s] and T,,[s] outside the strip .to the doma,in Re s > Re 6 ,  is done 
wibh the equations (4.81, to the domain Re s < Re a, with the equations (4.9). 

It will he apparent from eqs. (4.8) a.nd (4.9) that any pole of T,[s] or TII[s] in s=p,  generally 
includes poles in p + 1, p. + 2, etc. for Re p > 1, and in p-1, p - 2 ,  ete. for Re p < 1. 

So there exist series of poles, each starting from a “leading” pole in s = p .  The already mentioned 
poles at s=a, and s =  b,(=2) are, of course, such “leading” ones. 

The situation of any of these poles can he determined from the cquatiom (4.8) and (4.9). The 
leading poles a t  Re s < 1 are, generally, at the zero’s of sA[s], the leading poles a t  Re s > 1 at tthe 
zero’s of N[s-l] .  The, residues of the leading poles, however, generally cannot be solved from these 
equations directly. The residues of the ‘other poles are known linear functions of the resi,dnes of the 
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leading poles. Multiple 'poles, which may occur, give some complications but present no essential diffi- 
culties. I n  chapter 8, dealing with the wdge angle a = ~ / 2 ,  it is shown how the relations between the 
residues of the poles are determind. 

5 Evaluation of expansions for 21[~1 and t , , [y] .  I 

Expansions for ~ I [ z ]  and t l l[w] can he found by application of the residue theorem in the follow- 
ing manner (see fig. 6). 

Fig. 6.  Intogration coutoum in tho eompier a-plano in order 
t o  find nsymptatic expansions f o r 2 ,  [SI ma t,l 191. 

For small values of z, y the integration contour c - i m -f c + i m may be closed a t  infinity, in 
anti-clockwise direction, thus deliverin,g 

' ' c+im 

tr  [ZJ =v T~ [SI 5 - 6  as= x \residues of poles of T ,  [slz-sl (5.11 
R e 8 < 1  c-i ' J  to 2 T 2  

c + i m  

For large values of x, y the integration contour c - i m -+ c + i cl) may be closed at infinity in 
clockwise direction, thus delivering 

c+i m 
, I  . .  2, [Z] =- T I  [SI x -8 .as-- X ]residues of poles of T I  [ S I Z - ~ )  

2 s i  ,' 1 Re d,Z c - i m  

c C i m  

, .  

6 Application of the inverse Mellin transform to the fimctional equations. 

The functional equations (3.32) and (3.33) are rewritten in the simple form 
. : . ,  

, 1  
. - - ' , [ ~ + 1 ] = 8 ~ a , , [ s ] T , [ s ]  + + ~ a , , [ ~ l T n [ s I  

1 
- 2'1,[s + 11 -a2,[sl T,[sl + a,,[sI TII[SI 

8 

s 
d e r e  

' - ( 1 + , ~ ) ( 3 - ~ ) s i n ~  ( $ - - ) a -  ( ~ - - l ) * ( l . +  v ) * s i n 2 a + 4  - 
a,, [SI = - 

: s i n Z ( s - l ) a +  ( s - l ) s i n 2 a  

' 2 ( s - 2 ) ( 1 +  v ) s i n a s i n ( s - l ) a + 4 c o s ( s - 2 ) a  
.,,[SI =- 

sin2 ( s - l ) a +  (s--1) s in2a  

2 ( s ( l + v ) - 4 } s i n a s i n ( s - l ) a  + 4 c w ( s - Z ) a  
sin2 ( s - 1 ) a  + (s--1) sin2a 4 s I  = - 

-4sin2 ( s - l ) a - 4 s i n 2 a +  4 
sin2 ( s - l j a+  ( s -1 ) s inZa  . a,,[sI = - . 
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It has a.lready been. discussed that the functions T.[s] and T, , [ s ]  are defined within the strip 
. .  

Re a, < Re s < 2 
R e a , < l .  (6.7) 

\ ’  
Thus the functions Tl[s + 11 and TI,[$ + 11 are defined within the,  strip 

. ,  Rd a , - l < R o  s < l  
Re a,-1 < 0. ( 6 . 8 )  

c+i m ’ . c + i m  I 

1 
2 7rz 

The inverse Rlellin transforms ...... - 2 - 8  ds and / ...... 1 ~ - *  ds are now applied to  
0 - i m  c - i m  

2 1Tz 

the functional equations (6.1) and (6.2) respectively. 
The result is 

with 

and where fl, [F] and f,, [x] are such that their Mellin transforms are 

and 

[f.* [$I p y - *  d (-) ’1J = a , , [ s ] .  
‘I 0 

T,he integrals of (6.13) and (6.14) arc Cauchy principal values. 

The left-hand sides of (6.9), (6.10) take the 
given forms for values of R e  s > 0. This require- 
ment, together with the requirements (6.8), gives 
for the validity region for s a t  the present in- 
versions 

0 < Re s < I.. (6.15) 

The formulas (6.9) ... (6.14) can be verified with 
ref. 4, page 308 form. (14), page 341 form. (1) 
and ref. 5, page 43 form. (102) which is a faltung 
theorem of the ilfellin transform. 

An attempt to determine fll [:] and f,, [:I, 
by application of the inverse RIellin transform to 
the right-hand sides of (6.13) and (6.14) resp- 
ectively, fails because these right-hand sides do 
not tend to zero within their strips of integration 
(see (6.15)) for 1m s-+ k Q I ,  

Actually, if s = c + iy, 0 < c < 1, - 1 ~  -f ”_ ;o , 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

a 2 , [ s ] + f 2 i .  (6.17) 
The function 

- (3 - - ) (1  + v )  i 
2 7  5 - - 2  

liuv the Rlellin transform 
m 

27r 
0 

(6.18) ( 3 - - ) ( 1 +  ”) - cotg 7r s 2 
and the function 

2 1 1  -- ~ 

0--1J 

has the Ifellin transform 
m 

2 
Y 

(6.19) U 1-- 
11 and 



In  (6.18) and (6.19), the region of b is again 

O < R e  s < l  

and the integrals are Cauchy principal values 
(ref. 5, page 345, form. (18)). 

Within the strip 0 < Re s < 1, the right- 
hand sides of (6.18) and (6.19) tend to zero, 
for Im s+ kea, in just the same way as do  
a,,[s] and a,,[s] (compare eqs. (6.16) and (6.17)). 

If the function h,, [:I and ~t,, 151 are intro- 

dnced according to 

and 

50 

respectively, their Mellin transform are from 
(6.13), (6.14), (6.18) and (6.19) 

and 
II,,[s] =a , , [~ ]  + 2eotgrrs. (6.23) 

The first terms in the right-hand sides of 
(6 .22)  and (6.23) cannot have poles in the region 
0 < Re s < 1, heca i~~e  the second terms do not 
have one therein. 

These functions tend to zero exponentially with- 
in the strip of integration for l r i r  s i  & m and 
thus their inverse Mellin transforms converge. 

With the aid of (6.20) and (6.21), the integral 
equations (6.9), (6.10) now become 

(6.24) 

There is another way to  set up the integral equations (6.9), (6.10) which is more elahorate. 
From physical considerations using the original coordinates their form is easily found to he 

and 

I n  (6.26) and (6.27) 
E>,[%, (1 is the strain dong  the z-axis due to the loading force of fig. 7a. 
E,,[s, 71 is the strain along the z-axis due to the two loading forces of fig. 7h. 
~,,[y, f ]  is the strain along the y-axis due to  the loading force of fig. 7a. 
cZ2[y, 01 is the strain along the y-axis due to the two loading forces of fig. 7h. 

. .  
a) b) 

Fig. 7. Tho wedgo without stiffcnors with two unit 'load systems working on it. 
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The functiom E , ! ,  i: j = 1,2, must he determin- 
ed along the lines of, for example, ref. 3. If these 
calculations would be carried out, it would appear 
that, in the original coordinates, 

The function E , ~ [ Z ,  (1 har a singularity a t  
+=t, the character of which is easily detected 
by noting that in the vicinity of the unit form 
of fig. 7a the function E ~ ,  [z, <] behaves as if it 
were acting in an infinite plate. Thus, in the 
vicinity of z=f  (ref. 6, chapter 4, paragraph 38) 

- 
[G t1 + 15, 61 

. (6.29) 
1 ( 3 - v ) ( l  t v )  _ _ _  

2 Elr. 2*  <-X 
- 

It may now be noted that <.  E ~ ~ [ Z ,  t ]  suggests 

the function that lvm separated from f,, 
in (6.20). 

The singularity of s,,[y, 71 at y = 7  is easily 
detected by reoognizinlg the fact that, in the 
vicinity of one of the unit forces of fig. 7h, the 
stresydistrihution hohaves as if this force were 
acting on a half plane. 

Thus, in the vicinity of y = 7 (ref, 6, chapter 4, 
paragraph 33), 

It may now be noted that 7 [y, 71 suggests 

[$I the function that was separated from f,, 
in (6.21). 

Because, in view of (6.28), the functions 

f,, [T] a.nd f,, [f] are related to influence 

functioxw, certain symmetry properties may be 
expectod betwien these functions a.nd t,heir res- 
pective Mellin transforms a,,,[s] and a,,[s]. 

In appendix A, it is proved that these relations 
are 

(6.31) 7 1 f,, [,]--.f2Jz1 1 

and 

-nI2[-s + 11 =.,,Ls + 11. (6.32) 

Indeed, (6.32) proves to be true for (6.4) and 
( 6 . 5 ) .  

7 Determination of t h e  functions h,, [:I, f,, [$I, f,, 151 and h,,  [:I. 
T,he functions concerned arc repeated here for convenience 

c + i m  

+ 1 ( 1 f v ) ( 3 - v ) s i n Z ( s - l ) a +  ( s - I )* ( l  t v)*sinZa-4 
hl, [:I=, c-l 1 m 1 sinZ(s- l I )a+ (s-1) s i n 2 a  

c + i  

(7.3) 
1 2 ( s ( 1  + v )  - 4 )  sinasin (s- l ) a  + 4 c m  

s i n Z ( s - l ) c +  (s--1) s i n 2 a  
C - l m  

c+x m 

1 4sinZ (s-1)a + 4sin2a-4 
sin2 ( s - l )a+  ( s - l ) s i n 2 a  

c-l m 

(7.4) 

In these equations the requircnient for c is tha.t of (6.15) 

O < C < l .  (7.5) 

For values of x/C, x / 7 ,  g, / t ,  y,/7 < 1, the integration line c- i m  i c + io0 may be closed a t  in- 
finity in anti-clockwise diroetion, like is done in fig. 6, and the integrals are determined as the sum 
of an infinite series, derived with the aid of the residuo theorem. Likewise, for values of 5/< ,  x / 7 ,  
?//<, y/7 > 1, the contour may be clmed in clockwise direction and again the residue theorem is 
applied. Generally, the ohtain.ed infinite series cannot be summed into a closed form. However, for  
a c d 2  (sec the numerical example) it turns out that the integrals in question, (7.1 ... (7.4), can be 
given in closed form. 
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I . .  . .  8 'Solution of the problem for  ,=,/2. , ,  

. ,  
8.1 The expansions jor the f i m t i o n s Z I [ s l  = t ~ [ x l  amd t11[1~1. 

8.1.1 Small wdues of s and ?/. 
. .  

I n  view of the eqs. (4.8) ... (4.12), the .poles of T1[s] and T,I[s] in the region'Re's < 1 may be 

(8.1) 

expected at the zero's of (a c m / 2 )  

s sin* (s - 1) m = 0. 
, I '  

These are s=--n, where n-0, 1, 2, 3 ....... 
The Laurent expansions of T , [ s ]  and T,,[s] for s+ 1 be ( E +  0) 

T I  [ ~ + E ] - ~ + ~ , , , E + ~ ~ , ~ E ~ + U ~ ; ~ E ~ +  ...... (8.2a) 

Tn[1 + E] =,8 + b + , j  e + b1.22 + b, ,3ks  + ........ (8.2b) 

From (4.5) and (4.6) it is detennined'that the first terms of these expansions must be 4 and /3 

With the aid of (4.9) the Laurent expansions for TI[s] and T,I[s] in s = O  are determined from 
respectively. The coefficients a,., . a,.2 ... b,,,, bj.2 ... are unknown. 

- 2 N [ c ]  TI 1.1 = 
C E  

and 

(8.3a) 

(8.3b) 

According to (4.10), (4.11) and  (4.12) ' , . . 
7r 

N [ E ]  =sin2 (E-1) -=- -n~+ ...... 2 

(1 t . ) (3-- . )  I-- 22 -t- ...... ) - ( (SZ- .2E+1)(1+;2)  + 4  ....... t,,[&l =- ( 4  . .  

1 
t 2 , [ E ] C 2 { e ( 1 f v ) - 4 }  ( - A + -  8 + ...... ) + 4 ( - l + T + . . :  ....) 

...... ...... (8.4) t,,[.l.=2(:-2)(1 + v )  ( - 1  + - 8 f ) + 4 (  -1 + s+ 
i T 2 2  7 r 2 2  

92 l i Z 2  

. .  

7r 
t Z 2 [ c ]  =-4sinZ ( E -  1) ~ = - 4  + 2 2  -k ...... 

A [ e ]  =- (1  + v )  (3-v) 2 7 r Z  + ....... 
4 

When it is supposed that T , [ e ]  and T I I [ c ]  can be given by the Laurent expansions 
. I  

, .  

TI [e] = ...... + ~ +- + %,o + a",, E + ...... 
2 e .  

bo,-2 bo 1 

e1 ' , e 

(8.5a) %-a %.-i 

TI , [ . ]  = ...... + __ + + bo,o + bo,, e + ...... (8.5b) 

.. 
it can be found from (8.2) ... (8.5) that, . .  

a",-,, = O  for n=3 ,  4, ...... (d.6) 

(8.7) 
4 ( + + v , 8 )  

(1 + v )  (3-  "h ao.-2 == 
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a 1 4 "  
(lo.--l = ( 3  - ")n + q1 - c (1 + " ) ( 3 - " ) n  + b q A  (1 + u)(3-v)rn  

- 2 P  

bo,-,,=O. for n = 3 ,  4, ...... 

4 , ( f +  V P ) ,  

I bo,-2 = (1 + v ) ( 3 - v ) 7  

- - z p ( l t v )  1 2 a 1 4v 
+ b4 (1 + " ) ( 3 - " ) x '  + ai,* - - _  

c (1 + V ) ( 3 - - " ) 7 r  
bo,-i = ( 3  - V ) T  c (3- - )7r  

It may thus be concluded that the poles of TIIS]  and TIr[s] in s=O are of order 2. 
Application of the residue theorem, like is done in (5.1), (5.2), and remembering that 

( ~ Z n x ) ~  
2! 

(e  l n y ) z  
2!  

z - B c ~ - E = ~ - . I ~ s = ~ - - Z ~ ~  + + ...... 
and 

y - a = y - e z e - z f n u = l -  e l n y  + t ...... 

tI[x]=-ao,22Znz+ao-i  

t11lv1 = - b t r , , - ~ i n y + b o - i .  

delivers, when only the poles in s - 0 are taken into account, 

With the aid of (8.7), (8.8), (8.10) and (S.ll), introducing the unknown 

A= - 2 8  8 1 4 "  
( 3 - " ) n  + c (1 + ") (3 - ")T + b l , l  (1  + v )  (3 - ")T ' 

the eqs. (8.14) hecome 

4 (++ ' 8 )  
t , [ 2 ]  =- Zns+A 

n ( l  + ") (3- ") 

t,I[Y1 =- tny: 
4 (4 1 ' 8 )  2 (f + ' P )  

+ A. C 

T(l+ . ) ( 3 - - )  n ( 3  - ") 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14a) 

(a.14b) 

(8.15a) 

(8.15b) 

8.1.2 Large values of x and y. 

8.1.2.1 Expansion for &[XI. 

he expected at the zero's of 

, .  

In view of cqu;ttions (4.8) and (4.10) the pol& of T,[s] and T,,[s] in the region Re s > 1 may 

sin ( sT2)n=0 .  

They are s = 2 + n ,  where n-0. 1, 2, 3, ....... 
With the aid of (4.8) the Laurent cxpuuions for T,[s] and T, , [ s ]  in s = 2  are determined from 

and 

c ( 1  + E )  TI [l + €1 - t,,[l + SI 
2 N [ 1 +  e ]  Tn[1 + .I t,ID + .I 

21, [ Z  + e ]  =- (8.lGa) 

(8.1Gb) 

712 

4 

T,,[2 + &I =- 

t,,[1 + E ]  =- 

According to  (4.10) 

( 1 + v ) ( 3 - v ) ~ ~  - + 4 - e 2 ( l + v ) Z +  ...... 
T x t 12 [ l  + E ]  = 2  (- 1 + 2) (1 + " ) e  - + 4 E - + ...... E 3  + ...... 
2 2 

T II t;,[1 + .I = 2 [(l + c)  (1 + ") -4 ) z'y + 4 E - + ...... 2 + ...... 
2 . .  

t,,[l + e] - - T Z ~ ~  + ...... e' + ...... 
N[1 + €1 = E T  + ....... 

(8.17) 
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The Laurent expansion8 for TI[l + E]  and T 1 , [ l  + .] ha% already been given in (8.2) 
T , [ 2  + .] and T,,[2 + e ]  Laurent expansions are assumed in the form 

+ a2,0 + a2,, E t aB-4 TI [2 + e].= ...... + __ 

bi,-t TII[2 + E ]  = ...... .+ __ + b2.o + b2.j E + ...... 

a2,--n = 0  for n=2, 3, ...... 
a2,--1 =- d s  
b2,-,=0 for n = l ,  2, ....... 

...... 
E 

E 

it can he found from (8.16) ... (8.18) that 

From (8.21) it is seen that T',,[s] has no pole at  s = 2 .  
Application of the residue theorem, like is done in (5.4), and remembering that 

x-*--a = 2 - 2  (1-6 Z l l Z  + ...... ) 
delivers, when from T,[s] onIy the simple pole in s = 2  is taken into account, 

C 
tr[z]=;nr-2. 

8.1.1.2 Expansion for t,[y]. 

For this purpose the coefficients a2,0 and b2,0 in (6.18) are computed. They read 

C 
a z o  =- - ( 2 + 4 a 1 , ~ + ~ p ( l - - ) }  27r 

With the aid of (4.8b) the Laurent expansion for T , , [ s ]  in s - 3  is determined from 

where 
i Tr [2 + SI - t , d [ 2  + e ]  

t,, [Z + €1 
T, , [3  + €1 e- 

l?V 

2 t,,[Z + E l  c 4 Y + 2 L ( l  + ") - - 2 + ...... 
t,,p + E ]  =-4 t W Z 2  + ...... 

I N [ 2  + E ]  =-* E [ '+T  + ..:... T Z E 2  

1 1 T E  

N , 2  + .] =- [A+ + ...... 
When the Laurent expansion for T , [ 3  + e ]  is supposed to  be 

T , , [ 3  + e ]  = ...... + -- b3,-2 t __ *3,-i + bz.0 + bsre + .._. 
2 e 

it can he found from (8.25) ... (8.27) that 

b3,-,,=0 for n = 3 ,  4, ...... 
8 8 c  
s 4 

b S  2 =  - vap, - t  = - - v  .- 

When for 

(S.18a) 

(8.18b) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

I n  (8.30) b2.a is given in (8.24), in (8.20), but a2.0 remains nnknown, in spite of (8.23), thus 
also b s . - t .  

Application of the residue theorem, like is done in (5.4), and remembering that 

y-3-'=?/-3(1-€Zn?/ + ...... ) 
delivers, when from TII[s] otily the double pole in s = 3. is taken into account, 
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t,,[?/l = b 3 , - - 2 ~ - ~  lny--b3,-1 (8.31) 
or with (8.29) and (8.30) 

(8.32) - 8 c  
7rz 

tlI[Yl =- ~y-31.y + By-3  

where the coefficient B remains unknown. 

8.2 Determination of the fimctions h,, [r] , f,, [:I, f,, [F] und. h,, [F] in cme a = n / 2 .  

I n  this special case, a=7i/2, these functions read from (7.1) ... (7.4) 
cci m 

*s s(s + 1) (1  + ”)’ + 1-4 (1 + w )  ( 3 - v )  cotg -- 1 
na  2 sin T s 

e-< m 

3 s ( l +  v ) ’  (1 + v ) * - 4  (1 + v)(3-v)  
(8.33) 2 +y-- + sin n s sin T s 

(8.34) 

I41 The function f,, [:] is not mcntioned here explicitly because it can easily he found from f,, 
with the expression (see appendix A, eq. (A.6)) 

(8.35) 
1 1 f,, [-;I = - 2 f,, [SI 
- 
z 

Y by taking = -= z. 
X t  

Furthermore, 
e+i  m 

1 2 + 2cossn  h,, J 1 -  . + 2 c o t g n s  1 
sin s 7r 

e-, m 

(8.36) 

T5he integrations (8.33), (8.34) and (8.36), where according to  chapter 7 0 < c < 1, can be carried 
out in a direct way, without use of the residue theorem, with the aid of ref. 4, chapter VII. This 
delivers 

(8.37) 
( v s - 2 v  + 5)(x/<)’ + ( 4 v 2 +  12)(x/<) + ( - 9 - 6 ”  + 3) 

2 7  ( 1 + (df) } 

(8.38) 

(8.39) 

(8.40) 

The functions (8.37) ... (8.40) are identical with those already derived by Melan, ref. 7, for 
the half plane. 

8.3 F U l  solutwns for t,[xj and tI,[y] b y  niaans of the integral equations. 

I n  the integral equations (6.24) and (6.25), the qunntities < and 7 may be replaced by any other 
symbol. Introduction of bhe symbol 6 in both equations and substitution of (8.37) ... (8.40), (4.1) and 
(4.2), delivers, when additionally (6.24) is divided by c, 

m 5 

t l [ i l  a 2 ( v ’ - - Z v + 5 ) ( ~ / / 1 ) ~ +  (4v2+12) (x /c )  + ( - v z - 6 v + 3 )  

C 0 ( 1  + (Vi) 1 % 



8 c  t I 1 * * [ ~ ] = ~ ~ - ~ - -  v p - 3 z n ~ = 0 .  1 ,a 

The single asterisk stands for small, the double for large values of %. 
Since tII[%] tends very rapidly to  zero ifor large values of Z, as compared with tl[[], it was considered 

The functions 
allowable to put tlr**[[] = O  for  values of [ greater than a suitahly charen large value of 5. 

(8.44) 
( ~ ' - 2  v + 5) ( ~ / c ) '  + (4 v2 + 12)(2/[) + (- w 2 - 6  Y + 3) 

= g, [x/Z1 
( 1 + W Z )  1 

(8.45) 

(8.46) 

are given, as far as necessary, in table 3 for the 
value Y = 0.3. Some of the integrands, occurring 
in (8.41) and (8.42), can be considerably simpli- 
fied in the ranges for small, 'respeetively large 
Ga1ue.s of [ (see appendix B). 

As both integral equations (8.41) and (8.42) 
are of the same type as that, given in ref. 2, 
eq. (5,11), the methd .  for ,numerical evaluation, 
given in chapter 5 and table 1 of that reference, 
is applicable here, but for one additional require- 
ment. When tr", &,*, tI** and t P  (see eq. 
(8.43) ) introduce respectively n,,l, q . 1 1 ,  

and unknowns, whereas the numbers of un- 
known values of tI and trr ,  at moderate values 
of z' and y, are respectively na,l and n3.11 , the 
total number of unknowns i n  each of the equa- 
tions (8.41) and (8.42) can be denoted 

(nl.1 + n t d  + (%.I + n2.d + 
' + (n3,,'+ ni,II) -q  + 2. (8.47) 

Amuming, that for the necessary relations .be- 
tween the unknowns a number of qI + l is de- 
livered by the (qI + l)-fold application of eq. 
(8.41) and a number of qIr + 1 by the (qn + lY- 
fold application of eq. (8.42) the relation 

Qr + 411-Q (8.48) 

must hold. This does not necessarily imply that 
q1 = qrr . However, as the expansions tl* [5 ]  and 
trI*[yJ contain the same unknown coefficients and 
consist of the m e  number of terms (see eqs. 
(8.43)), whereas the expansions t,*4[s] and' 

til**[$/] are both known (see again eqs. (8.43)), 
it seems',ndvisable to take in this case 

ns.l=n3,11 
and , . (8.49) 

41 = PI1 
in order to  obtain an equal degree of- accuracy 
in the solutions for tl[zJ and t I , [g] .  

The scheme of evaluation for  both integral equa- 
tions, in order to separate the necessary system 
of linear relations between the unknowns into two 
hasic equations, is given in table 2 (+his table is 
the same as table 1 of ref. 2, hut f o r  some minor 

I . .  

alterations). 
As the emluation schem& for both intemal 

equations will'be taken alike, only one of t iem 
will be determined here. 

From the eqs. (8.43) two conclusions oan be 
drawn, namely 

. .  
, (%I  + n d  = O .  

.I %.I= q1 = q /2  (8.51) 
so q must be an even number. 

Taking the value q=18, which means from 
eq. (8.47) a system of 20 linear equations, delivers 

n3.1 = q I  = 4. (8.52) 

Hence, see eqs. (8.47), (8.48) and (8.49), 

Wthen; for p ,  i s ' , assked  the value 
, I  . p l = l l  (8.53) 
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it can directly he concluded from table 2 ,  that out numerically, the quantities zI-wI and 
sl - wI have to be even numbers. Together with 
the information, given in table 2, that  wI> 1 and 
and s, > r, it follows that 

With the exmession x, = 6 nn--i (see table 2 )  w1=2, 4, 6. ._.... (8.58) 

rI=21 

$1 = 12. 
(8.54) 

the values of xp, and g,, become with a s 2  and 
s1=22, 24, 26, ....__ . (8.59) 

I n  view of the further requirements for wr and s,, 
mentioned in table 2, the choice 

. 2, = 8 . Z 1 O  - 1024 6 
(8.55) 

z,,, = S.ZZo = 1048576 S . 
For 6 is, for  some values of the stiffness ratio c, w1=2 

SI = 24 taken the value + . l o - '  , hence 

5 -110-4 

(8.60) 

Zn-2 for 12 > 1 
(8.56) is reliable, as then n- 

5, = o 

xpz= 0.0512 

x , ~  = 5'2,4288. 

and the values of 5, and x,, become 

(8.57) 

It will he ohvions from table 2 that, for use 
of the Simpson rule, 

o= + h (1 2, + 45, + 2 x s  + ...... + 4x,-, + 
+ 1 X"), 

in that  region where the integrations are carried 

x,,/x=, = x , / x , ~  = 2-l' = 0.000977 
and (8.61) 

x.,/Xa, = x , , / x~ ,  = 2-'* = 0.000244 

which is small enough. 
With the aid of the cqs. (8.44) ... 8.46), (8.52) 

... (8.60), appendix B and the introduction of the 
logarithmic coordinates 

5 == or* 

y = e @  
x = e *  (8.62) 

the integral equations (8.41) and (8.42) become 

3-6v-v2 [ tI*'i[[] ( 3 - v ) ( l  + v )  

2 T  __ ai- 
2rr 5 

+ 
*24+n 

\%.#hehere n = 0 ... 9, and 

. (8.63) 

(8.64) 

where again, n = 0 ... 9. 



I n  (8.63) and (8.61) only the integrals, contain- 
inmg tr*, tn*, &** and trr**, are solved analytically. 
T,he obher terms are numerica.lly evaluated with 
the aid of Simpson's rule. Those involving a 
Cauchy principal value are numerically evaluated 
with the aid of the special rule that is developed 
in ref. 2, a,ppendix C. The so derived basic 
equations, stemming from (8.63) and (8.64), are 
given in tables 4 a'nd 5. Further calculations were 
performed on the N.L.R. digital computer ZEBRA 
and results were obtained for the stiffness ratios 
c =  Ys, x, v2, 1, 2, 4, 8. I n  a,ll these cases in 
(8.55) the value of S was %.  le4. 

(EaA,), 
PEh Figures 8 ... 14 give cumes of h [ X l  

y respectively. I n  these figures and 

tI [ X I  and In [y] arc actual shearflows and x and y 
ectual coordinates (shearflows and coordinates 
with ",dimensions"). The way of (3.5) to  make 
quantities dimensionless witb ( E a A 8 )  is less 
suitable to  compare the figures 8 ... 14, since the 
stiffness (E,A, ) ,  proved to 'be a more important 
parameter than the stiffness I n  the 

t,[z] figures 8 ... 14, the CIII'YCS for 

differ very little. This means that the s t i f f n m  
of the st.iffener 11 ( is of little influence 

Eh, 
(E,A,)I 

( E A 1  

PEh 



59 



60 

on the shear flow along stiffener I. At large 
values of z - f o r  all eases1) 

For c =  1, values of t l [z ]  and tI1[y] are given 
in table 6. 

9 Way to solution for some other cases. 

The formulas of section 8 ( a = ~ / 2 )  are not 
applicable to the cases c=O and c = m .  The 
case c =  m (no edge stiffener present) requires a 
separate treatment, using similar methods. How- 
ever, for that problem K o m  and HENS (ref. 8) 
already gave a solution with the aid of another 
method, which seems not to be applicable to the 
case c f m .  

The case c=O (only an edge stiffener is pre- 
sent along the boundary of the half plane) was 
already dealt with by M m  (ref. 9). 

If the loading force, acting at s=O, y=  0, 
is directed in the direction of the edge stiffener, 
the stiffener normal to the edge remains unstrain- 
ed. Then again the problem is reduced to that of 
M" (ref. 9). 
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APPENDIX A. 

The relation between f,, [+] and f,, [%I, respectively u, , [s]  and a,,[s]. 

For the free wedge, loaded by the systems of figs. 7a and 7h, the following theorem is valid. 
The work done by the loading system of fig. 7a due to the displacements stemming from the loading 

system of fig. 7b is equal to the work done by the loading system of fig. 7b due to the displacements 
stemming from the loading system of fig. 7a. 

Using the notations of figs. ?a and 7b and assuming that at infinity the displacements along the 
edges and the bisector are zero, this theorem reads in formula 

pE" ds=2 / L V > * )  &/. (A.1) 
f u 

With eqs. (6.28) this can be rewritten in the form 

As ( f )  and (:) may be replaced by any other symbol, (A.2) is rewritten in the form 

Taking q = O  in (A.3) it is obvious that 

u 
Hence, from (A.3) and (A.4) 

and as q is variable ___ 
1) This fallows from 8(8.22), where I ,  [z] , and z are dimensionless accordingly (8.35). 



- 1 f,, [-] 1 = - z f 2 J 4 .  : ' '  

z 2 

Application of the Mellin transform 
m / ... sa-' de 'on  both sides of (A.6) 

0 

delivers, according to ref. 4, ahapter VI, form, (3)  and (4) 

als[-s + 11 =-a,,[s + I] 

a,,[s + 11 =-az l [ -s  + 11. 
or, replacing s by - -s 

APPENDIX B 

Analytical integration of some terms in eqs. (8.41) and (8.42) with the aid of (8.43). 

In eq. (8.42) the two terms 

may he simplified to 

whcn i is small with respect to ?I. 
Under the same assumption the term 

of (8.42) may be simplified to 

When, on the other hand, P is large with respect to IJ, (B.3) can satisfactorily be replaced by 

Next, the last three terms in the left hand side of eq. (8.41) will be considered. 
The integral 

may be replaced by 

/ tll'i[P1 dc, when (x/g) is small. 
7 

In just the same way the integral 

may be replaced by 



~~ 

and 

Finally, 

tlC 

nhen 

fi2 

("2-2" + 5) 
2 nx 

tr"[[] &, when { x / [ )  Is large 

( - v 2 - 6 v  + 3) / &?%! dg, when (z/[) is small. 
2 7  c 

[ is small with respect to x, the integral 

replaced by 

(B.10) 

(B.11) 

(B.12) 

(B.13) 
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TABLE 2. 
Scheme for the numerical evaluation of an integral equation of the type 

Analytically Numerically 

- 
Over this part t is described by the 

expansion t', see eqs. (8.43), which . 
contains n, unknown coefficients 

Analytically 

4 
Over this part  t is described by the expansion 
t", see eqs. (8.48), which contains n2 unknown 
coefficients 
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TllBLE 3. 

Functions g , ,  g, and g3 of (8.44) ... (8.46) 

+ 0.0000171280 
+ 0. 342559 
f 0. 685117 
+ 0. 137023 
+ 0. 274044 
+ 0. 548079 
+ 0. 109613 
+ 0. 219212 
+ 0. 438370 
+ 0. 876521 
+ 0. 175216 
+ 0. 350062 
+ 0. 698523 
+ 0.138976 
+ 0.274437 
+ 0.531344 
+ 0.979120 
f 1.62185 
f 2.24500 
+ 2.49259 
+ 2.29105 
+ 1.91396 
+ 1.58407 
+ 1.36830 
+ 1.24495 
+ 1.17899 
+ 1.14488 
+ 1.12754 
+ 1.11879 
+ 1.11441 
+ 1.11220 
+ 1.11110 
+ 1.11055 
+ 1.11027 
+ 1.11014 
+ 1.11007 
+ 1.11003 

- 0.0000000000145519 
- 0. 582076 
- 0. 232831 
- 0. 931324 
- 0. 372529 
- 0. 149012 
- 0. 596046 
- 0. 238418 
- 0. 953675 
-0. 381466 
-0. 152582 
-0. 610266 
-0. 244004 
-0. q74372 
-0. 387137 
-0. 150769 
-0. 543253 
- 0.148000 
- 0.175000 
+ 0.0320000 
+ 0.210360 
+ 0.275692 
+ 0.293793 
+ 0.298440 
+ 0,299610 
+ 0.299902 
+ 0.299976 
+ 0.299994 
+ 0.299998 
+ 0.300000 
+ 0.300000 
+ 0.300000 
+ 0.3C0000 
+ 0.300000 
f 0.300000 
+ 0.300000 
+ 0.300000 

- 0.00000000000436557 
- 0. 174623 
- 0. 698494 
- 0. 279397 
- 0. 111759 
- 0. 447035 
- 0. 175814 
- 0. 7 15 2 5 5. 
- 0. 286102 
-0. 114439 

, -0. 457726 
-0. 183046 
-0. 731469 
-0. 291446 
-0. 114763 
-0. 430769 
-0. 731488 
-0. 800000 
+ 0.175000 
+ 0.592000 
+ 0.8692M 
+ 0.964923 
+ 0.991071 
+ 0.997756 
+ 0.999439 
+ 0.999860 
+ 0.999965 
+ b.999991 
+ 0.999996 
+ 1.00000 
+ 1.00000 
+ 1.00000 
+ 1.00000 
+ 1.00000 
+ 1.00000 
+ 1.00000 
+ 1.00000 
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TABLE 4. 

Evalnation of integral equation (8.63) into a system of ten linear relations 
between the unknowns. 

term 

A 

P 

tr 3 + n  

tr 4 r n  

t 1  8 + n  

t 1  1 0 + n  

t1 12 + n  

tI  13 + n 

t I  14 t n 

tr 15 r n  

tI  16 + n  

6 17 + n 

tl 22 + n 

coefficient 

f0.0002.2". l/c+0.00124279 
~ ~ ~~ 

-0.0000150862.2~. n ,  l /c+ 0.000222226.2n. l/c-0.0000937451 n+O.O0138097 

+0.0000462100. Z n  . l/c+0.000287371 

f0.000369680 .2n. l/c+0.00229963 

+0.000369680 .2". l/cf0.00230097 
~ 

f0.00147872 . 2 n ,  l/e+0.00921437 

f0.00147872 . 2 n .  1/6+0.00923486 

f0.00591488 . 2 n .  l/c+0.0370966 

+0.00591488 . 2 " .  l/c+0.0373932 

+0.0236596 . 2 n .  l/c+O.151912 

f'0.0236596 . 2 " .  1/~+0.127023 

f0.0946380 . 2 " .  l/e+1.00313 

+0.0473190 . 2 " .  l/c+0.0360373 

-0.914223 

-0.141438 

-0.308519 

-0.158853 

-0.331679 

-0.170682 
~ ~ ~ ~ 

-0.346936 

-0.174956 

-0.351449 

-0.176115 

-0.352622 

-0.0882052 



G7 

coefficient 

1 -0.000000260554 

I -0.00000448882 

~ 

tu 6 i a 

tu 7 + n 

tl1 4 + n I t  -0.00000897738 

-0.000143563 

-0.00114657 

tn 5 + n -0.0000718117 

s + 71 

9 + n 

-0.00227777 

-0.0177414 

tn 10 + n 

tn 11 + 11 

t 1 r 1 a + n  

-0.0319631 

-0.174156 

4 .102964  

t u  13 + n 

14 + n 

+0.0376523 

+OS23760 

+0.176280 

tlL 15 + n 

fr l  1F + n 

17 + n 

t11 19 + n /I +0.352903 

+0.324414 

+0.172857 

+0.351183 

right 
hand 
side 

In this basic equation n=.O ...._. 9. 
* = A  - ( ] / e  + 0.3 /3) (0.251437 p - 3.84389) t r y  

when p =  2 .._.._ 11 
when p = 2 1  ...... 33 tb* = 509295818 . c , 2 -  2 p 

tI,p* =A-O0.235785(1/c+0.3p)-(l/c+O.3fi) (0.251437 p-3.84389) 

tup*’ = 0 
The unknowns are A .  p .til, ...... t,,o, trr,% ...... t1120. 

when p = 2 .__... 11 
when p = 21 _..... 31. 

( l / C )  (0.0000502874.2”. 1L.l/c-0.000740754.2~. 1/~+0.000312484.n+0.995395) 

+ c (0.000000345648 .2-*1~) 
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TABLE 5. 

Evaluation of integral equation (8.64) into a system of ten linear relations 
between the unknowns. 

term 

A 

P 

11 4 + n  

. tI 5 + n  

t1 6 + n  

t1 91-n 

tl 13 +n. 

t I  14 + B 

tl 17 + n 

tl 18 + n 

tl 21 + n 

tr 23 + 7l 

t1 2 4 + n  

1 
coefficient 

+ o.oooi .zn - 0.000000182138 

- 0.00000754312 . 2*  . + 0.000104039 . 2 n  + 0.0000000137389 n - 1 I 
I 

- 0.0000000841661 I 

- 0.00000134664 I 
- 0.00000269310 I 

I 

- 0.0000215395 I 
1 

- 0.0000430370 

- 0.000342953 

I - 0.000675224 

I - 0.00506898 

- 0.00773628 I 
- 0.00941382 

+ 0.102964 ' 

+ 0.696623 i 
+ 0.511408 I 
+ 1.13545 

+ 0.583111 

+ 1.17409 

+ 0.588034 

+ 1.17656 I 
+ 0.588343 

+ 1.17672 

+ 0.588363 

- 

I 

+ 1.17673 I 
+ '0.294182 I 



69 

TARLI? 5.  

term 

tI1 2 + 11 

I 

I t11 e + n 

I tn 19 + n 

I t r r  ?O -i- n 

coefficient 

+ 0.000739360 .2n + 0.000143679 

+ 0.0118298 . z n  + 0.0156782 

10.0236596 ' .2* - 0.294182 

- 1.85191 

- 0.592220 

- 1.19541 

- 0.590671 

- 1.17785 

- 0.588508 

- 1.17680 

- 0.588373 

right (lie) (0.000025143x.2~. - 0 . 0 0 0 3 ~ ~ ~ 9 s . 2 ~  - -0 .oooonoo~~~96~ n+ o.ooon00641563) 

aids - G (0.00000115189.2"~) 

I n  this basic equat,ion n =  0 ...._. 9. 

t,,; A - (1/c + 0.3 p )  (0.251437 p - 3.84389) 
when p = 2 ...... 11 

when p = 2 1  .._... 33 

when p =  2 ...... 11 
mlicn p c 21 . . . . , . 31 

- 309295518, c .2- 2 P tl/* - 

trrp* =A-0.235785 (1/~-1-0.3 /3)--(1/~+0.3/3)(0.251437p-3.843S9) 

tlIPQ* = 0 

The unknowns are A,  p, tiv2 ...... hm, ~ I I , ~  ...... hm 

I n  this basic equation n =  0 ...._. 9. 

t,,; A - (1/c + 0.3 p )  (0.251437 p - 3.84389) 
when p = 2 ...... 11 

t,,~*=609295518. c.2-2P 
when p = 2 1  .._... 33 

when p =  2 ...... 11 
mlicn p c 21 . . . . , . 31 

trrp* =A-0.235785 (1/~-1-0.3 /3)--(1/~+0.3/3)(0.251437p-3.843S9) 

tlIPQ* = 0 

The unknowns are A,  p, tiv2 ...... hm, ~ I I , ~  ...... hm 
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TABLE 6. 

Solutions for t , [z]  and t,,[q] in dimensionless form in case 
of stiffilms ratio e =  (E8Aa),/ (E8As) , I=l ,  

__ 

e 
__ __ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 '  

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
__ 

0.00005 

0.0001 

0.0002 

0.0004 

0.0008 

0.0016 

0.0032 

0.0064 

0.0128 

0.0256 

0.0512 

0.1024 

0.2048 

0.4096 

0.8192 

1.6384 

3.2768 

6.5536 

13.1072 

26.2144 

3.5787 

3.3050 

3.0313 

2.7575 

2.4838 

2.2100 

1.9363 

1.6625 

1.3888 

1.1150 

0.84130 

0.62190 

0.42356 

0.25452 

0.13178 

0.056618 

0.020167 

0.0061195 

3.3220 

3.0483 

2.7745 

2.5008 

2.2271 

1.9533 

1.6796 

1.4056 

1.1321 

0.85834 

0.58460 

0.42904 

0.28553 

0.16395 

0.080568 

0.031575 

0,0096511 

0.0021176 

0.00034843 

0.000041670 

For relations hetwecn quantities without and witn dimensions 
see formula9 (3.5). 
For bcliaviour z, ?/ --f 0 and x, 7~ --f m see - ( S X ) ,  (8.22) 
and (8.32). 

A = - 0.33243, p = 0.29572, B was not computcd. 
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Oscillating rectangular wings in supersonic flow with 
arbitrary bending and torsion mode shapes. 

Part I Development of the theory 

by 

E. 11. DE JAGER. 

The pressure distribution at the surface of rcctangular harmonically oscillating wings at supermnio spoeds is doter- 
mined by aid of Gardner's method fo r  the solution of the potontial equation. The solution is v d i d  for arbitrary normal 
velocity distributions proscribed at the surfaeo of the wing. 

Lift and moment have been calculated for arbitrary bonding and torsion mode &apes. 
Tho aerodynamic derivatives are given in the form of tho sum of soma terms each of which congists of two factors, 

"no being a function of the roducod frequcncy and the Mach numbcr only, the other one containing tho bending or 
tho torsion mode shzppo in a very simple way. 

Contents. 

l i s t  of symbols. 

The fundamental equations and their soiution. 
2.1 The boundary value problem. 
2.2 Gardner's method for solving the boundary 

value problem. 
2.3 The solution of the problem for  u (X, Y ,  

T ,  0. 
2.4 The derivation of the velocity potential on 

the wing. 
3 Determination of the pressure ,distribution on 

the wing. 
3.1 The downwash on the wing. 
3.2 The prcsurc distribution in the region of 

the wing, not influenced by the tips. 
3.3 The pressure distribution in the region of 

the wing' tips. 

1 Intrduction. 
2 

4 Determiration of lift and moment. 
4.1 Definitions and notations. 

4.3 Recapitulation of the results. 

Appendiem. 

.4 .2  Determination of l if t  and moment. 

5 References. 

A. Derivation of equation (2.13). 
B. Derivation of the velocity'potential at the wing 

in the region Y > X .  
B. 1 The case of translation (bending). 
B. 2 The case of pitch (t.orsion). 

in bhe region 0 < Y < X. 
C. 1 %he case of translation (bendin,g). 
C. 2 The case of pitch (torsion). 

C. Derivation of the velocity potential at tihe wink 

Y2 C. 3 The appboximation y (i Y ) =  Ti+T3-  
PZ 

D. Derivation of formula? for l if t  due to  trans- 
lation and pitch. 
D. 1 The lift due to translation 
D. 2 The lift due to pitch. 

E. Derivation of formulae for the aerodynamic 
moment due to translation and pitch. 
E. I The aerodynamic moment due to trans- 

E. 2 The aerodynamic moment due to pitah. 
This investigation has been performed by order 

of the Netherlands Aircraft Development Board 
(N.I.V.). 

List of symbols. 

C velocity of sound. 
1 

lation. 

g (X,P,T)  - w(z, Y, t )  
h mpli tude of translation 
IC reduced frequency. 
1 wing ohord. 
P (X, Y )  pressure distribution at the wing 

outside the &tach waves from 
leading edge tips. 
pressure distribution at the wing 
inside the M x h  waves from 
leading edge tips. 

*P ( X ,  Y )  edge correction of the pressure 
distribution at the wing. 

S wingspan. 
t time. 
w ($2 !I, t )  
%,!I, 2: physical coordinates: 

P l , ,  ( X ,  Y )  

downwash distribution at the wing. 
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XC 
I: total lift. 
m total moment. 
A aspect ratio. 
B (9) bending mode shape. 
B ,  coefficients of polynomial ap- 

proximation of the bending mode 
shape. 

3c coordinate of elastic axis. 

C‘ lift coefficient. 
C M  moment coefficient. 
L ( Y )  l if t  per unit span outside the 

n h a h  waves from the leading 
edge tips. 
edge correction of the lift per 

A E  

l f ( Y  

unit wan. 
lift. not corrected for hhe influ- 
ence of the side edges of the wing. 
edge correction of the l i f t ;  

moment per unit span outside the 
Mach wave8 from the leading 

2 =t+ nr, 
1 

edge tips. 
ed’ge correction of the moment per AN(Y) 
unit  span. 
moment, not eorreeted for the in- 
fluence of the side edges of tbe 

edge correction of the moment 

n? 

- wing. 
AM 

N Mach number. 
S wing area. 
T, coefficients of polynomial ap- 

proximation of the torsion mode 
shape. 
velocity of the undisturbed flow. 
Lorentz’ transformed coordinates: 
X coordinate of elastic axis. 

53tZ==nl+AB. 

U 
X ,  Y ,  2, T 
X ,  
P V M Z - 1 .  

2 kM 
I __ 

P‘ 
Y circular frequency. 
P density. 
?(X, Y ,  0, T )  velocity potential at the wing out- 

side Maoh waves from leading 
edge tips. 
velocity potential at the wing in- 
side Mach waves from leading 
edge tips. 

Ap(X, Y ,  0, T )  edge correction of velocity po- 
tential at the winn. 

pl,9(X, Y, 0, T) 

P amplitude of rotation. 

Subscript I) 

Subscript T 

1 Introduction. 

, quantities associated with bending 
of the wing. 
quantities asswiated witb torsion 
of the wing. 

edges, the problem has been solved by Stewart- 
son, Goodman, Rott et. al. for the case that the 
normal velocity, preserihed at the wing, is in- 
deuendent of tlie spanwise coordinate (see resp. 
lit: 1, 2 and 3).  

Tn nartirnlar Stewartson solved the aroblem by r--.---- ~~ 

-.. 
using the Laplace transfoim of the veloeity Po- 
tential, G o o d ”  by aid of Gardner’s method for 
solving the potential equation (lit. 4) and Rott 
by following a method of Lamb (lit. 5) i n  his 
treatment of Sommerfeld’s diffraction problem. 

A solution in bhe form of a frequency expa,nsion 
has been furnished by Watkins an,d Nelson (lit. 6 
and 7) ; these expansions, however, are only valid 
in a restricted range of the frequency, viz. for . 
an expansion up to the seventh power of the fre- 

&P - 1 
NZ quency tlie range of validity is 0 S k 5 

where k denotes the reduced frequency and. M the 
nfach number (see lit. 7 ) .  

All these solutions exhibit the disadvantage of 
being only d i d  for wings ulhiah do not deform 
in spanwise direction. However, Miles presented 
in lit. 8 a general solution by aid of the Wiener- 
Hopf technique; this solution is also valid for a 
normal veloeity distribution varying in spanwise 
direction. 

For a survey of all these theories the reader 
is referred to lit. 9. I n  this report a solution is 
presented which is ako valid for ,normal velocity 
distributions va.qing in spanwise direction, the 
theory is a generalization of Gwdma,n’s method 
(lit. 2).  The resulting formulae for the pressure 
distribution at the wing are rather camplieated, 
whicrh is also the ease in Miles’ theory. However, 
‘after integrating this pressure distribution over the 
wing surface, simple formulae for lift and moment 
have been obtained. It appears that it is possible 
to give a good approximation of the lift and the 
moment hy expressing them in a number of terms 
each of which consists of two faet,ors, one being 
a function of the frequency and Mach number 
only and bhe otiher one containing in a very simple 
way the variation of the downwash distribution 
in spanwise direction. 

This report contains the development of the 
theory and formulae a,re given for lift and moment 
due to translation and pitch; the amplitude of 
the oscillation may he an arhitrary function of 
the spanwise coordinate. 

The numerical results will be presented in a 
subseqnent paper, ref. 13. 

The author wishes to thank Prof. Dr. A. I. van 
der Vnoren and Prof. Dr. E. Tan Spiegel for their 
helpful su’ggestions and their valualble criticism in 
the preparation of *he report; he is also obliged to 
the membera of the computational section of the 
National Aeronautical Research Institute. 

The problem of the harmonia117 oscillating 2 The fundamental equations and their solution. 
2.1 Tlia boundary ua7zce problem, rectangdar ’ airfoil a t  supemnio- speeds has been 

investi’eated hv many authors mine  various me- ... Y ~ 

thods of approach. The linearized equation for the disturbance 
Assuming the Mach waves from the leading velocity potential p in unsteady non-viscous irro- 

edge wing tips do not intersect the opposite side tational compressible flow is given by : 
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where x, y and z are rectangular coordinates in 
streamwise, spanwise and vertical direction res- 
pectively, t is the time, M the Ilach nnmber and c 
the speed of sound (see sketah a).  

\ 
\ 

.t 
’ Sketch a 

The problem of calculating the pressure distri- 
bution on a given rectangular wing in supersonic 
flow without interfering tips. is essentially the 
same as that for the quarter infinite wing, since 
the flow field behind the rectangular wing does 
not influence the flow field at the wing and the 
edge effect of one corner is the same as the effect 
of the other one due to symmetry. 

Therefore we shall consider for the preytnt only 
the quarter infinite wing. In  keeping with the 
concepts of: linearized theory the boundary con- 
ditions pertaining to  equation (2.1) become now: 

(1) t,he normal velocity, posit,ive in downward 
direction, is given on the wing; this means 
p:(z ,y ,O, t )  = w ( z , ~ , t )  for 

O < x < m ,  O < y < m .  

(2) the disturbances are propagated downstream 
and they must vanish forward of the Mach 
wa.+es originating at the leading edge of the 
airfoil; hence they are upstream of the en- 
velope of the Mach cones with apices along the 
leading edge of the wing p(z,y., z , . t )  

(3)  the pressure must vanish off the airfoil, since 
it is asymmetric with respKt to z and only the. 
airfoil is capable of supporting a discontinuity 

0. 

~. . 
UP a, a, 
Ut  a% at 

in pressure; hence - = U - + - = 0 for 

0 < - py < z, z = 0, where U is the velocity 
of the undisturbed flow and P = v m  

By aid of bhe second boundary condition 
we can reduce the last condition to a s m e -  
what simpler form, vu. : 

p(%,y,  0, t )  = 0  for 0 < -,By < x. 
Equation (2.1) can he simplified by using the 

well-known Lorentz transformation, viz. : 

where 2 is a representative length 

, The transformed equation becomes 

yxx -pn--rpze - QTT 0 (2.3) 
and the boundar~. conditions, pertaining to this 
equation, may he written as: 

(1) , , (X ,Y ,+O,T)=O(X ,Y ,T )  for o < x < ~ ,  
0 < I’ < m , where 

1 
P Y(x, Y ,  T) = - W ( Z ,  Y, t )  (2.4) 

(2) p(X, Y ,  + 0 ,  T) =0 for X < 0 and for Y < 0. 

This boundary value problem will be solved 
by Gardner’s method. 

2.2 Short description of Gardner’s method for 
solviny the  boundary value problem,. 

The essence of Gardner’s method consists in 
splitting the four dimensional boundary value 
problems into two three dimensional problems. 

For this purpose we introduce the auxiliary in- 
dependent variable ( and the quantities u and n. 

With a slight modification of Gardner’s method 
it ~ is assumed that the function u ( X ,  Y ,  T, t )  
satisfies bhe partial differential equation 

( T I X  - um - a- UZE“ 0, (2 .5)  
and is submitted to the boundary conditions: 

q ( X ,  l’, T, 0 = dX, y ,  T) 
for [ = s 0, X > 0, (2.6) 

( T ( X ,  Y ,  T, () 0 for X < 0, (2.7) 
whereas the function n ( X ,  Y, 2, T, () is a solution 
of the equation 

net -nu - n z z  = 0, (2.8) 

and 

and is svbjected to the conditions 

n&x, Y,Z, 2 ’ , t ) C U < ( X ,  y, T , t )  

n(x, y, 2, T,, 6 )  = 0 

for 2 - 2 0, Y > 0, (2.9) 

\ 
(2.10) I for f > X 

for Z c -t 0, Y < 0, 
fl (X, Y, Z, T, [) = 0 

After the solution of these two boundary value 
problems the perturbation velocity potential is 
obtained by putting < = 0 in the expression derived 
for the function n ( X ,  Y ,  Z,  T, t )  ; hence 

(2.11) 

I t  would carry us too far to prove here that 
this function p(X, Y, 2, 2’) really satisfies the 
boundary value problem pertaining to  equation 

n(x, Y , Z , T , O )  =p(X, Y , Z ,  T ) .  

(2 .3);  see ref. (4) .  
Renee we mav conclude that the time dependent 

boundary value problem in four variables is re- 
duced to  two boundary value problems in three 
variable.s, each of which is equivalent to  a well- 
known problem in steady supemnic flow, which 
can be solved by means of Eward’s  theory 
(ref. 10). 



74 

I 
2.3 The solution of the problem far u(X,P, T , t ) .  

" The problem for o is equivalent to the boundary value problem of the infinite half plane in steady 
supersonic flow. 

, € I  

Sketch b 

According to the theory of Evvard (ref. IO) the solution appears to be 

T i e  region of integration S consists of the intersection of the f,orward Mach cone from the point 
( X ,  T ,  6) with the plane 6 c 0 (see sketch 'b). The generators of this cone make aa angle of 45' with the 
X,-axis. Performing the integration to TI first, the limits of integration become TF v (X-X, )%-  p 
for T ,  , and 0 and X.- t for X I .  I n  the case' of harmonic oscillations the integration to P, can be 
perfprmed (see Appendix A) and eq. (2.12) reduces to: 

X--E 

u(X, Y, T, .$) =- 1 ~ ( x , , Y , T )  J , ( K v ( x - ~ , ) ~ - ~ ~ I ( E x , ~ ~ * > o , .  (2.13) 
0 

and J ,  denotes the Bessel function of order zero; k stands for the reduced frequency 
2 kM 

mhere I= __ 
"1 

P2 
defined h y ' k =  - with Y as the frequency of the harmonic osciliation. 

2 u  

becomes : 
Another form of equation (2.13) can be obtained by substitution of X - X , - Z  and the result 

X 

U ( X , Y , T , E ) = - /  ~ ( x - z , Y , T ) J , ( .  VF-*~)~X if t >  0. (2.14) 
E '  

2.4 The derivation of the vklocity poteutial on the wing. 

The second boundary value problem in the t, Y ,  Z space is equivalent to the boundary value problem 
of the quarter-infinite wing in steady supersonic flow (see sketch e ) ,  The coordinate X of the original 

I 2  

Sketch c 

problem appears here to be a parameter, which equals the &c-eoordinate of the leading edge of the  
quarter infinite wing. Since we are only interested in deriving an expression for v(X, Y, + 0, T) for 
X > 0 (dx, Y, + 0, T )  E O  for X < 0) the parameter X may be assumed to  be larger than zero. Solving 
the boundary value problem for < X .  two cases have to be considered, whether Y + f > X or Y + 
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W'hen Y + # < X the potential n(X, Y ,  2, T, <) at the wing will be influenced by the subsonic edge 
of the wing; this, however, does not happen when Y + E > X (see sketch d). 

According to the theory of ref. (10) the potential 0 at :he wing for Y + > X is given by the 
formula : 

where u ( X ,  Y l , T , & )  is given hy equation (2.13) or (2.14). 

original problem for Y > X and hence: 
Putting now < c 0 in eq. (2.15) we obtain the perturbation velocity potential at the wing in our 

or after substituting Y - Y,  = y 

For Y t. 8 < X the potential 0 at the surface of the wing is given by the expression: 

where ot ( X ,  Yk# T, &) is given by equation (2.13) or (2.14). 
Since g ( X ,  Y ,  T )  is only defined for Y > 0, u ( X ,  Y ,  T, 6) is also defined only for positive d u e s  of Y.  

Defining, however, u ( X ,  Y ,  T, t )  for negative values of Y as the analytical continuation of u ( X ,  Y ,  T, t )  
for positive values of Y the expression for n ( X ,  Y ,  + 0, T, <) may he written a: 

with Y + .$ < X .  

problem for Y < X, vi,: 
PuttGig again [ = O  we obtain' the velocity potential at the surface of the wing of our original 



or after substituting Y -Yy, =Y 

(2.17) 

Cmparing equations (2.16) and (2.17) we see a t  once, that .the first term c (2.17) has : same 
form as the rigiht-hand side of equation (2.16); hence the seconcl term of (2.17) reyrmnts  the edge 
effect of the wing. 

3 Determination of the pressure dikribution. as az 
at  ax w(5,y) =--k  U-=i"B((? l )e '"* ,  (3.3) 

3.1 The boundapy conditions on the wing. 
The theory of the preceding chapter will now 

be applied to harmonically transla.ting and pitrhing 

be made later on, the amplitude of t h e  oscillations 
are assumed to vary arbitrarily in the direction 

The wing surface Z = Z ( Z , Y ,  t )  is for the ease 

and according to (2.4) the function g ( X ,  Y ,  T) 
becomes: 

wings. Apart from some restrictions, whirh will IT f ZJfX gB(x, Y, T) =i,L B (" Y )  e'" P P  p'c 

(3.4) of the wing span, via the direction of y. - i K c p ~  ($ Y ) e .  ~ x ( T + f d X )  . 

of translation given by 
For the case of pitching bhe wing surface will 

s=z(z,y, t )  =B(y)e'"I, (3.1) be given by the equation 
where the bending mode shape B(y)  is an arbitrary 
function of y. Since the bending moment is zero 

along the edge of the wing, - must vanish there 

and hence 

d?B 
dyZ 

daB (-) E O .  
d e  y=o 

(3.2) 

Since the flow is snpposcd not t o  separate from 
the wing surface, the downwash on the wing is 
given by 

The downwash is now given by the expression 

z(5,y,t)=p(y)(s-xs,)eiYt, (3.5) 
where ze is the z-coordinate of the elastic axis, 
vhich is assumed to he parallel with the leading 
edge of the wing. The torsion mode shape p(y)  
is again assumed to be an arbitrary function of 21. 
Since bhe torsion moment is zero along the wing 

tip, d. must vanish therc and hence 
@I 

(*) =o. (3.6) d!/ y=o 

and hence according to (2.4) the function g ( X ,  Y ,  T) bFomes for the case of torsion: 

BdX, Y ,  T) = i v  - l a  y ( 2 Y )  (x-xx,  +.-)e' 1 I X ( T + W X )  
P 2 ik 

(3.7) 
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Substitution ,of the functions g E ( X ,  Y ,  2') a,nd gT( X, Y, 2') in formula (2.14) yields expressions for 
the function u ( X ,  Y ,  T ,  E) and When we insert consecutively these cxpressions into fomulae (2.16) and 
(2.17) we get the veloeity potential a t  the wing. 

3.2 The prosmre distribution' in the region of the wing not iufluescod b y  the tips. 

The pressure jump p over the wing, positive in upward direction, can ,he determined by aid of 
the formula: 

(3.9) M X ,  Y,, + 0, T) 
ax 

a ? w ,  Y ,  + 0, T) 
aT 

- 4 -- 131 P 
&iF - 13fU 

where p denotes the density. 

The region of the wing, which is not influenced 
by the wing tip, i e .  the region Y > X ,  will he 
considered first. The velocity potential in the 
point (X, Y, Z) is only determined hy the points 
of Dhe wing lying within the forward Mach cone 
with ( X ,  Y, Z) as apex. 

Hence the velocity potcntial at tho wing in the 
point P(X, Y, 0) is only influenced by the points 
of the wing lying within the triangle ABP (see 
sketch e). , I  

Sketoh 0 

The bending mode shape B ($ Y) and the 

torsion mode shape y l ( +  Y ) will be approximated 

within this triangle by a polynomial of degree ?I 

with coefficients which depend on bhe spanwise 
coordinate of the point P. 

Tlhe mebhod of calculation is not limited with 
respect to the value of n and consequently the 
results of the calculations can always by improved 
by using polynomials of higher degree. 

When the aspect ratio of the wing is not small 
and the Mach number of the undisturbed flow is 
sufficiently h g c ,  the triangle ADP will occupy 
a rclativeIy mall part of the wing surface. I n  
this case the bending mode shape B and the tor- 
sion mode shape ? will be approximated fairly 
well by using polynomials of the second degree. 

Hence we may write 

B (p I Y )  - 1 ( B ,  + E , -  Y f B,  -) Y* I 

(3.10) 
P P" 

I Y YZ 
'p (p Y )  = (TI + T, -+ P T, -) P' 

wi dimensionless coefficients which may vary 
from point to point in spanwise direction. 

From the formulae (2.14), (3.4) and (3.10) it follows that the function u ( X ,  Y ,  T, #) in the case of 
translation can he written as 

(3.11) Y Yl 
P P 

uE(x, Y ,  T ,  t )  = iKcpz (B. + B, - + B, -) e''' iE(x,  t ) ,  
with 

X 

=- / e'"" (X-1) J,(K v ~ 2 - # 2 ) d ~  and # > 0. (3.12) 

I n  the same way i t  follows from (2.14), (3.8) and (3.10) that the function v ( X ,  Y ,  T, 6) in the case 

oT(x, Y, T, <) = + i ,cp~ (T' + T, - + T, -) e'XTor (x, <) - 

e 

of pitch can be written as: 

Y YZ 
P P' 

i Y YZ 
k P p" 

-i@ (X* + 2) (T' + T,-+ T, -) e'"'&(X,<), 

with 

(3.13) 

(3.14) 
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Inserting (3.11) resp. (3.13) into the expression (2.16) we get the velocity potential at the wing. 
After some calculations which are performed in appendix B we obtain for the case of translation 
(bending) : 

Y 

(3.18) 



3.3 The pressure distribution in the region of the  
wing tips. 

We shall1 now consider the region of the wing 
tip, i. e.  the region mhere 0.< Y < X. 

The velocity potential in this regi,on is given 
by equation (2.17). The first term of the right- 
hand side of this equation is exactly the same 
expression as bhe right-hand side of equation 
(2.16). 

The velocity potential qtip in the region 0 < Y 
< X can thus ,be splitted into two parts, viz. one 
part (p corresponding with the velocity potential 
in the region Y > X and the other part  Av, which 
represents the correction of 'p due to the presence 
of the ed,ge of the win,g, or in formula: 

(pliy.(Xu Y, + 0, T) = 
(~(1, y ,  f 0, T) + 4 ( X ,  Y ,  f 0, T), (3.19) 

where q ( X ,  Y ,  + 

The bending mode shape B ( u )  has a vanishing 
second derivative for y - 0 and therefore this 

function will be approximated by 2 ( B ,  + B2-) 
for 0 < Y < X with Bl and B, as constant coeffi- 
cients. When PA ( A  is the aspect ratio of the 
wing) is sufficiently large, the region influenced 
by the tip is relatively small in comparison with 
the whole surface of the wing (see sketch f ) ,  and 

Y 
P 

I" 

0 < Y < X. (3.20) 

The Pressure distribntion P w ( X ,  Y) in the 
region of the wing tip can accordingly be written 
as: 

piip(X, Y )  = p ( X ,  Y) + Ap(X, Y ) ,  (3.21) 
where p ( X , Y )  'is given by eq. (3.17) or (3.18) 
and A p ( X ,  Y) represents the influence of the edge 
on the pressure distribution. The latter has now 

pitch. 

lienee the error introduced hy the rather rough 
approximation of B ( y )  for  0 < Y <.X will not 
give rise to large errom in the final results. 

Moreover it is in principle poesible to a.pproxi- 
mate the function B(y)  for 0 < Y < X by a poly- 
nomial of the third or even higher degree. 

Henceforth we shall assume that the quantity 
PA is large enough in order to be justified to  use 

the approximation 2 ( B .  + B 2 - )  for the bending 

mode shape in the region 0 < Y < X of the wing. 

Y 
P to be determined for the cases of translation and 

The function u ( X ,  Y ,  T,E)  becomes: 

(3.22) uB(x, Y,, T , E )  =+x ' ( B ,  + R ~ - )  Y eixT iB(x,6), > 0, 0 < Y < X, 
!' P i  

and this has now to be inserted into equation (3.20), 
The result becomes (see appendix C .  1) : 

(3.24) 

(3.25) 

By aid of the equations (3.19, (3.15) ,atid (3.23) !~he .pote~l t ia l . (p~ ,~ ,  (X, Y, + 0, 2') is easily obtained, 
and using (3.9) and (3.21) bhe pressure distribution p B t i o  due to translation becomes: 

(3.26) 



') by the formula: 
4 PUZ where p B ( X '  is given by equation (3.17) and 

1 PUZ 

Y 

with 0 < Y < X .  (3.27) 

I n  order to dctermine tihe pressure distribution 
on the wing tip bhe integra.ls L ( X ,  Y )  and lei-. 1x-X) I h ( X ,  - Y)dF ( h  = 0,l) have to be 

evaluated numerically.. However., it will appear 
in the next chapter that the numerical e x h a t i o n  
of these integrals is not necessary, whcn the in- 
vestigation is confined only to lift and moment 
of the wing. 

I n  the case of pitah the torsion mode shape 
q ( y )  has ,a vanighing first "dcrivativc for y = 0 
and therefore this function should he approximated 

by the polynomial T, + T, for 0 < Y < X 

with T, and T, as constant coefficients. However, 
this approximation of the torsion mode shape gives 
rise to such a large amount of calculations (see 
appendix C. 3) ,  that instead of tlhe approximation 

p = T, + T ,  - the rough approximation q =: 

T,=constant for 0 < Y < X will be used. The 
error introduced by taking this rowh approxim- 
ation will became smaller according as the quantity 
PA will be larger, since Che parts of the wing 

Y 

YZ 
P 

YZ 
P' 

influenced by the wing tips hecome relatively 
smaller, when the aspect ratio of the wing or the 
Mach number is increased (see sketch f ) .  

Hencoforth it will be assumed that tlhe aspect 
retio of tthe wing or the Mach number or both 
will be sufficiently large in order to  be justified 

to use t h e  a.pproximation p ( B Y  )= T, for the 

torsion mode function in the region 0 < Y < X 
of the wing. 

The fnnetion -(X, Y, T, #) caa be ,given immc- 
diately by putting T ,  = 0 and T, = 0 in eq. (3.13) 
and the rarult is: 

u r ( X ,  Y ,  T, [) = + kPZT,eiXT &(XI #) - 

1 

. .  

with # > 0 and 0 < Y < X .  (3.28) 

I n  order to  obtain d p r  equation (3.28) has to 
be substituted into equation (3.20); the second 
term of (3.28) gives a contribution to Apr which 
can hc derived immediately from equation (3.23) 

by replacing B, by -(X. + -) T, and putting 

K, equal to zero. 

i 
2 k  

The contribution of the first term of (3.28) t o  Aq,. is determined in appcndix C.2 a,nd it appears that 
the tip correction for the velocity potcntia.1 can be w r h n  as: 

' X  ' 

A? T ( X ,  Y, + 0 , I ' )  =izcpZZ',eiXr [- ( X .  + L) ] ei'*(x-a Zr(z, Y ) d z  + 

+ /' ( x - z ) ~ ' x M ( x - ~ ) I  ( X  Y ' ) ~ x  . (3.29) 

The addition of (3.29) to qr (X, Y ,  + 0, T ) ,  givcn hy' equation' (3.16), yields the velocity potential P T ~ ~ , ,  

on the wing in the region of the wing ti,p and 'by aid of (3.9) and (3.21) we obtain finally the pressure 
distribution p ~ , ~ ~  due to pitch. 

2 k  Y 
X 

1 :  1 ,  

Y 

by the formula: 4 PUZ 
where p T ( X '  is given by equation (3.18) and 

1 PU2 

(3.30) 
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In order to calculate the pressure distribution in the region of the wing tip O <  Y < X the integrals 

I , ,  / p V w - %  T l ( ~ ,  Y)dx and [ =yei*M(X-z) 1 3 ( 2 ,  Y)dz, have to he evaluated numerically. When 

wc restrict,, howcver, onr investigation t,o l if t  and moment, Che numerical evaluation of t.hcse integrals 
can .he avoided as will appear in the next chapter. 

The formula for 8he pressure distribution due to pitch in the region 0 < Y < X is given in appen- 

dix C. 3, wherein the torsion mode sha,pe has been approximated by (p(v) = T ,  f - Yz. It turns out 

that the amount of calculations to obtain convenicnt expressions for lift and moment will be increased 

considerably, when the approximation 

4 Determination of lift and moment, 

4.1 Dofinitions and notations. 

the wing. 

X X 

Y L 

T.3 
P: 

T.4 
p' 

= T, 4- - Yz instead of p = constant is used 

' (  

Expressions .for lift and moment can he derived from the formulae for the pressure distrihution on 

The lift .per unit span due to  translation can he written as: 
1 .  

&,(Y) I I J p , ( x ,  Y ) ~ X  for 1 < Y < PA - 1, (4.1) 
0 

and 

LB(l') + &&(P) c , Z  p , ( X ,  Y ) d X  + Z A p B ( X ,  Y)dX for 0 < Y < 1 and 

/ 3 A - l < Y < < l l ,  (4.2) 
0 .i' Y I 

where the second term AL,(Y) of the left-hand side equals the' second term of the right-hand side. 
I n  the same way the l if t  per unit span due to pitch is 

* 
L,(Y)=Z ( p , ( X , Y ) d X  for I < Y < P A - I ,  (4.3) 

and 

J 
U 

1 1 

L,(Y) t AL,(Y) = 1  1 p , ( X ,  Y)dX + 2 [ A p T ( X ,  Y)dX 
0 k 

for 0 < Y < 1 and PA-1 < Y < PA. (4.4) 

Quite analogously one obtains for the moments about the hading edge per unit span: 
1 

JI,(Y) =I* 1 x ~ , ( x , Y ) ~ x  for 1 < Y <PA-- ,  (4.5) 
0 

I 1 

M,(Y) + A I T B ( Y ) = Z 2  / X p ~ ( X , Y ) d ~ + I ' ~ X A p ~ ( X , , Y ) d X  
d Y 

for 0 < Y < 1 and PA-1  < Y <.I, (4.6) 
1 

MT(Y)=12 / Xp, (X , .Y )dX  for l < Y < P A - I ,  (4.7) 
, i  

? 1 

MT(Y) + Alll,(Y) -1' /" X p , ( x ,  Y ) d X  + d x A p ~ ( x ;  Y ) d x  . .  
0 i. 

(4.8) for 0 < Y < 1 and PA-1  < Y < PA. 

Integrating these expressions to Y'and assuming the bending mode shape and &e torsion mode shape 
symmetrical with respect to the midchord of the wing one obtains for the total lift and moment the 
following expressions : 
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(4.9) 

(4.10) 

(4.11) 

(4.12) 

t @A 
- 

where L B =  - 

in the other formulae. 

2 z  jALB(P)rll' and in the same way for the correspondmg terms 

The firat terms represent the part of l if t  or 
moment, which corresponds wieh results obtained 
by strip theory, whereas bhe second terms repre- 
sent the correction due to the finite span of the 
wing. 

Substituting the formulae for the pressure dis- 
tribution (3.17), (3.18), (3.27) and (3.31) .one 
gets finally the desired expressions for lift and 
moment. 

Tthe formulae (3.27) and (3.31) are valid for 
the case that the Mach waves from the leading 
edge do not intersect on the surface of Uhe wing. 
heice for PA > 2 (Jee sketch f ) .  Therefore one 
might think that  the derived expressions for lift 
and moment will also be valid for PA > 2. Eow- 
ever, i t  can easily be shown that the expressions 
for lift and, moment will be even valid for PA > 1, 
when the dowhash  distribution at the wing is 
symmetrical with respect to bhe midchord of the 
wing. The formulae for the pressure distribution 
are however not valid in the extended range 
of PA. 

Heme our results for lift and moment will be 
valid as long a the Mach waves from the leading 
ed'gc tips do not intersect the opposite side edges 
of the wing. 

4 2 Determination. of  l i f t  and moment 

The determination of the first part of lift and 
moment viz. and % can be performed by in- 
tegrating the formulae (3.17) arid (3.18) first to 
X and consecutively to Y .  

The integration to X results into a combination 
of functions f n  ( x ,  N) defined by 

f A ( X , J f )  = / PMX ( d ? ) * J , ( . d ) d X ,  (4.13) 
0 

witrh A = 0, 1, 2, 3, 4 

These integrals, of courbe also mcurring in two- 
dimensional unsteady supersonic flow 8heory, are 
tabulated by Vera Huckel in ref. 11. The inte- 
gration to Y inrrolves for  the w e  of translation 
nothing more Uhan the integration into the span- 
wise direction of the bending mode shape and its 
second derivative, and correspondingly for the ease 
of pitch the integration of the torsion mode shape 
and its second derivative. The calculations h v e  
been carried out in appendices D. 1, D. 2, E. 1 
and E.2 and the results are summarized in the 
next seetion. 

Tho determination of tihe second part of lift 
and moment viz. and A@ which represent the 
influence of the wing edges involves the reduction 
of the double integrals: 

and 
4 4  

- 2 13 4 . u ~  - 1 ( X A p ( X ,  Y)dX/ dY. (4.15) 
P o  k 

Substituting equations (3.27) and (3.31) into 
(4.14) a.nd (4.15) and performing the integration 
to X gives rise to the occumnce of integrals which 
to the authors knowledge can only be calculated 
numerically. 

Since this involves much numerical tedious 
ealcula.tions the order of integration will be 
interchanged and the '  double integral can then 
be reduced to integrals which partly can be eal- 
eulated exactly and partly can he written in the 
form .(4.13). 

The reductions have been carried out in appen- 
dices 0.1, D. 2, E. 1 and E. 2 and the results are 
again summarized in vhe next section. 
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4.3 Rempitulation of the results. ' 1  : 
I n  bhis section we give a review of the results for lift and moment derived in the appendices D 

and E and make some oamplmentary remarks. 

a) 

The lift coefficient due to hending reads: 

The lift due to  bending of the wing. 

(4.16) 

where the second terms is a correction of the first one due to the finite span of the wing; S denotes 
the wing area. 

where R ( y )  c B (T) is the bending mode shapc of the wing;, B ,  and B,  *are constants suuh that 

Y 
2 (BL + B ,  p) approximates the hnd ing  mode shape BS well as possihle in the region 0 < Y < X .  

(4.18) 

(4.19) 

where the second term again denotes the correction of the first one due to t~he finite span of the wing. 

(4.20) 

Y 
P where V ( U )  = v ( z  --)denotes the torsion mode shapeof the wing; T, is the constant vhich approximates 

the torsion mode shape as well as possible in the region 0 < Y < X. 



e) 

The moment coefficient due to bending reads: 

The aerodnJnnmic moment due t o  bending of the wing. 

(4.22) 

where the second term is again the correction of the first one due to the finite span of the wing. 

(4.23) 

(4.24) 

(4.25) 

where the second term again denotes the correction of the first one due to the finite span of the wing. 
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PT(<, n f )  = + - - ip 

&(I(, $1) = + - __ iP [- 2 ( 3  ir + 2 iKp*)f , (x ,  $1) + inz ( 3(3 pz + 1) + 2irnlp2 } , 

( - - * ( 3 M + z i . 8 ' ) f , ( s n f )  + 3 i n y Z . f l ( * , M )  + 
3 K M Z  

+ 3M.f2(K,41)  - @ ' . f z ( K , , M )  } ,  

3 r3M* 

fr(K,Jf) + 3 M ( 3  + " p ' ) f , ( K , n r )  - i ( 7 P 2 +  3 ) f , ( n , ' M ) - n 1 p Z . f , ( ~ , 4 ~ )  1, 

t Kp' (p' + 2) cos I ) e-"%+ i M  ( 4  + 8') + 7/9iM2P4 + 
4 1  

% ( K ,  11) = + __ - [ { (4 + 3 p?) sin I( - iH(4 + p') cos K + 2 &ilfp'siri x + 
.3po ] . 

nf*p 2 

The expressions given in this section for lift and moment are valid for arbitrary bending and tomion 
mode shapes, provided PA is not too small (see section 3.3) and the Mach waves from the leading 
ed'ge tips do not int,ersect the oppmite side ed,gm of t'he wing. 

Vhe corrections due to the finite @an of the wing appear to  be inversely proportional to the effective 
aspcct ratio PA. 

For the case of a flat wing traiLslatiiig or pitching harmonically the hending mode shape becomes 
D = h ~ ~ o n s t a n t  and the torsion mode shape becomes p=a=constant and the formulae given in this 
section hecame quite exact. 

For tihe case of translation the formulae for  the lift and moment derivatives become: 

(4.27) 

(4.28) 

I where h is the amplitude of the translation. 
For the case of pitch o m  obtains: 

I (4.29) 

(4.30) 

The first term of these expressions represents the two dinierisiorial part while the second term yields 

The numerical results of this report are presented in ref. 13. 
the correction due to  she finite span of the wing. 
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A P P E N D I X  A 

Derivation of equation (2.13). 

Inserting the limits of integration equation (2.12) can be written as: 

For harmonic oscillations we may write: 
, ( x , ~ , z , T )  = * ( X , Y , Z ) ~ ' " ~  

wibh I(= __ 2 k M  and IC the reduced frequency P" 
Hence qz(X,  Y ,  0, T )  = Q , ( X ,  Y ,  @ ) e t X T  and the function g ( X ,  Y ,  T )  may be written as g ( X ,  Y ,  T )  = 

G ( X ,  Y)aiXT.  
Sahstituting this into equation (A. 1) we obtain: 

The integration to  T, is performed by putting 

T, = T - v ( X  - x , y -  62 cos 0 

and the result is 

A P P E N D I X  R 

Derivation of the velocity potential on the wing in the region Y > X. 
B.1 The case of translation (bending). 

I n  the ease of translation the function u ( X ,  Y ,  T ,  E) int.rducfd in section 2.2 can bc written as: 

(B. 1) 

(B. 2) 

u B ( ~ , ~ , ~ , g = i K c p z  B, + B ~ - + B ~ ~ )  Y e ' " T i B ( X , t )  
( P P 

X 

&x, t )  =- [ J ,  (. v % T ) d x  a,nd 2, 0. 
E 

According to equation (2.16) #he velocity potential becomes 
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Y Y= B 
P P' P' The inner integral eqnak T(B, + B, - + B, - + % 2 6;) and bhus the velocity potential can 

be written as 

I 1 1  
After substitution of (B.2) and interchanging the order of integration we can write: 

- 

The inner integral equals (see ref.'12) and hence iz 

Inserting this resnlt into the last expression for' the velocity potential we obtain finally: 

which expression is the same as expression (3.15). 

B.2 The case of pitch (torsion). 

We shall now deduce the expression for the velocity potential for ehe caae of pitch. 
The function v ( X ,  Y, 1', t )  is given by equations (3.13) and (3.14) viz.: 

Y PZ 
P P2 u T ( x ,  Y, T, t )  c + incp~ T, + T ,  - + T ,  -) e"TiT(X,  0 - 

The second term of tihe right-hand side of equation (B. 4)  gives B contribution to trhe velocity potential 
on the wing which equals tihe velocity potential q R ( X ,  Y, + 0, T) for the case of translation, .?here 

however the coefficients Bh are replaced by - ( X .  + i) Th, 7i.= 1,2, 3. 
2 k  ' ,  , 
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T h i s p a r t w i l l b e d e n o t e d  b y p . j x , P , + O , T ; B h = - ( X ~ + ~ ~ T h I .  i 

The contribution of the first term of equation (B.4) t o  the velocity potential will be denoted by 
(pr.4 ( X ,  Y, + 0, T) and according to  equation (2.16) we can write: 

X X 

The integral [ & ( X ,  & ) t , d f l  can he reduced in the same way a &(X, &)d& and the result becomes 
0 0 

Insertinging this result into equation (B. 6 )  and adding the contribntion p X ,  Y, + 0,. T ;  I 
B h = -  ( x e  + &) Th I obtain findly 

p T ( X ,  7, f 0, T)=ps  ] x,y, f 0, T ; R h = -  (.e +A) T h  1 - 

which is the same as expres.+m (3.16) 

A P P E N D I X  C. 

Derivation of the velocity potential on the wing in the region 0 < 1' < X .  

C.1 The W S E  of translation (bending). 

The velocity potential in the region of the wing tip is denoted by pBtlil(X, Y ,  + 0, T )  and according 
to cq. (3.19) it can be written as: 

y, f 0, T) = p ( X ,  y ,  f 0, T) + AYB(X,  Y, f 0, T) (C. 1) 

where 0 < Y < X .  
The first term of the right-hand side is already determined in appendix B and is given by equation 

( B . 3 )  or (3 .15 ) .  



(3.22) 

(3.12) 

(3.20) 

Hence AQB can be put into the form 

The inner integral can he reduced to 

l and equation (C. 2 )  can then be written as: 

or after partial integration: 

This expression for Aps(X, Y, + 0, T) is the same as eq. (3.23). 

C.2  l ' k e  case of pitch (torsion). 

The velocity potential in the region of the wing tip is denoted by yFttp (X, Y ,  + 4, T) and according 
to  (3.19) it can he written as 

Q T , ~ ~ ( X ,  Y ,  -t 0 , T )  = ~ T ( X ,  y ,  + 0, T) + A,T(X, Y, + 0, T) with 0 < Y < X .  ( C .  5 )  

The first term of the right-hand side of equa.tiol1 ( ( 3 . 5 )  represents the part of the velocity potential 
which is not influenced by the wing edges. This term is already determined in appendix B and is given 
by the formulae (B.6) or (3.16). 

The second term denotes the influence of the edgo in the velocity potential and this part of the 
velocity potential is obtained by substitution of 

(3.28) i 
2 k  

(I = .p(X, Y ,  T, 6) - ixcpzT,e'KT & ( X ,  E )  - i,cp ( X. + -) 2' ,e 'XTiB(X,  

with 



and 

into 

(3.14) 

(3.20) 

The second t e m  of (3.28) gives a contribution to  Apr which can he obtained immediately from equa- 

tion (3.23) or (C. 3 )  by replacing B,  by - (X, t; A) T, and putting B, equal to zero. 

( *Hence A ~ F  can be written as: 1 

Substitution of (3.14) into the second term of (C. 6) and interchanging the order of integration yields 
finally 

mliich is the same expression as the right-hand side of eq. (3.29). 

C. 3 T ~ O  approximation ($ Y )  = T, + 2 YZ.  
. . ,  P' . 

I n  order to "get some insight in the amount of calculations necessary .for the detemination of the 
pressure distrihut.ion in Uhe region ,of the wing tip, when the torsion mode s h p e  .y(y) is approximated 

1 T* by yl ( p  Y )  '= T, + - 'Yz inst& of by (D (k Y )  =constant, we derive here the formula for the 
P' 

pressure distribution. . 
As the derivation of the'fonnula for the vel&ity potential on the .wing'does not involve any diffi- 

culty and can. be performed in the s+me 'way :as in appendix C.  2,, it will be sufficient to give this 
formula without deduction. Hence ., 

T 

' . . ,  : 
' , ,  I , .  

. .  i 

. .  

. Q ~ , , , ( X , P , ~ O , T ) . = ~ T ( X , Y , ~ ~ , T )  + A W ( x , Y , . f O , T ) ;  0 <  y < x  (C.  8) 
!. , , ,  , ... . .  . , I 

where ~ " T ( X ,  Y, + 0, T) is given' by equation (B. 6)  or (3.16) and 



By aid of formula (3.9) we obtain vhe pressure distribution p ,  
and consequently 

( X ,  Y) in the region' of the wing tip 
t i 0  

(C. 11) 

For the determination of bhe pressure distribution it is necessary to evaluate numerically all the inte- 
grals (C. 10) and all the other integrals occurring in equation (C. 12). 
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However, when the investigation is restricted to  lift and moment only, these numerical evaluations 
can be avoided; nevertheless it is seen, that the amount of calculations is increased considerably 
when the torsion mode shape yl ( k  Z Y )  is approximated by 'p = T, + 2 P Y2 instead of by p = comtant 

Ts 
for 0 < Y < X. . .  

A P P E N D I X  L). 

Derivation of formulae for lift due to translation and pitch. 

D. 1 The lift due to translation, 

The lift due to translation is denoted by E, which consists of two parts, viz. zB and AT,. 
Ln is defined by: 
- 

with B as aspect ratio of the wing and 
4 

where p , ( X , Y )  is given by equation (3.17). 

at some time t and hence the factor eizT has to be written as e i y t .  E - ~ & ' ~ .  
Regardin,g tihe integration to X we have to  bear in mind that Z, (Y)  represents the lift per unit span 

Inserting (3.17) into (D.2) one obtains: 
I 

- 4i- P K e ' ~ r [ ( ~ I  + B,  - Y + B,  ,)[$I, YZ /' e- i*MxJ,(xX)dX + 
0 i l l 2  B yz p P . 1  -- 

i x  I + i n p J  j J  e-iXM'J,(nz)dF 1.x 1 + -[- B, -io' j e - i ~ M x X J , ( u X ) d X  + 
I .  

0 P' K u 0  

(D. 3) 
Putting 
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\ Hence 

+ L / - n r e - i = ~  J , ( ~ )  + ( ~ + i ~ p ) f , ( ~ , n i )  - i ( z p * +  M ( H +  i.p))f,(.,nr)- 
K Z P *  

(Y) dY 
0 

% PA - Moz . f z  ( 5  $1) 

Since H,(Y)  can be written as 

B , ( Y )  = - 

and the lmding  mode shape is assumed symmetrica.1 with respect to the midchord of thc wing, the 
second integral in (D .9 )  can be simplified to:  

2 1  dYZ  

‘12 @A 

c- 0 

PA Y = 0  

We proceed now to the calculation of the second term ATB of ‘the lift. AT8 is defined by AE,= 
1 

2 1  - / A L ( Y ) d Y  with &(Y)  = 1  \ Ap,(X, Y ) d X ,  where Apa(X,  Y) is given by equation ( 3 . 2 7 ) .  
8, Y 

Hence 

Snhstitntion of equation (3 .27)  yields for  the inner integral: 

Tmhc coefficients B ,  and B, are now taken as constant and independent of Uhe spanwise dircction Y ;  
the integrals Zo(X ,  Y )  and Zl(X, Y)  are given by equation (C.4)  or (3.24) and (3.25). 

The substitution of (3.25) gives for instance: 
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or after interchanging the order of integration 
X X 

I sin ( K X )  ' (D. 11) 
t i  

f '{Z,(X,Y)dY=Yi ji"(nV%=F)dZ= 2 *  
I 

0 . .  0 

In  the (same way it appears that:  

(D. 12) 

J , ( .X)  : \  .i" YI"(X, Y)dY = y2 (KX) I? 

0 

(D. 13) 

I 
The double integral; occurring in equation (D.lO) are also reduced by aid of intemhanging the order 
of integration, e. g. 

In the same way i t  can be shown tihat: 



Substituting , e i x T  =bi”’. e- ixMx 
(D.41, (D .15 )  and (D.16) 

atid integrating (D. 19) with respect to X gives by aid of the equations 

‘I @’ IB, [; + p’ ( i M  + e - ” ~  (sinx-tzlllcosn) - . 

i I , . , !  .s 

AE.8 _ _ _  4 
1/2 pUz.S - N? A 

The lift due to translation can now easily be obtained by adding zB and AEB 
(D. 20) 

I). 2 The lift due to pitch. 

The lift due to  pitch is dcnotcd by G, which consists of two parts and AT,. Z r  is defined by 
the expression : 

with 

6 1 

L d Y )  = 1 1 PdX,  Y)dX 
0 

where p r ( X ,  Y) is given by equation (3.18). 
Inserting equation (3.18) into (D. 22) yields: 

(1). 21) 

(D. 22) 

with 

(D. 25) 

(D. 26) 

Integrating eq. (I). 23) with respect to Y ,  using (D. 9 )  and rememberin$ that the coefficients l’, , T, 
and.7‘; depend on bhe spanwise coordinate Y ,  one gets finally for the part of the lift due to pitch: 



9F I 

/ T,(Y)dY 
ii (D. 27) 

Y9PA -1 + 2 k & f f i * ) f , ( K ,  Jf) - j f p ’ f , ( K ,  n f )  1 

The integrals of the function T,(Y) can again be simplified by putting 

p” dZQ ($1 
2 dYZ T,(Y) = - 

I 

must vanish for Y = 0 and hence the in- 
&(+, 

dP Since the torsion moment is zero along the wing tip, 

tegral of bhe function T, (Y)  can be reduced to  the simple form: 

‘ l z  @ A  

(D. 28) 

We proceed now to the reduction of the second term ATr of the lift due to pitch. 4 z ~  is de€ined by 

a L -  2 1  /”< AZT(Y)dP (D. 29) = - P O  
with 

1 

AL,(Y) c= 1 4pr(x, Y)dx 
Y 

where A p , ( X ,  Y )  is given by equation (3.31). 
After interchanginmg the oi>der of integration (D. 29) becomes: 

(D. 30) 

(D. 31) 

Substitution of equation (3.31) yields: 
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The first two integrals are already reduced in appendix D. 1 and the third integral can easily be 
reduced by aid of partial integration. 

The result is 

(D. 33) 

Substituting this rcsult and the formulae (D. 11) and (D. 14) into (D. 32) and nsing eirT =ei"f  . 
one obtains: , 

Integrating finally with respect to X one gets the desired expression for A%,, viz.: 

2 I - [ { ( 1  + JI*) cos I( + 2 iu sin x 1 0 - i ' ~  - (1  + JP) + i . ~ p  + Kz 
KP' 

By adding bhe expression (D. 27) and (D. 35) the lift due to pitch is obtained. 

(D. 34) 

(D. 35) 

A P P E N D I X  E. 

Derivation of formulae for the aerodynamic moment due to translation and pitch. 

E . 1  The aerodynamic moment due t o  translation. 

Tshe aerodynamic moment due to translation is denoted b y m ,  where Gma again consists of two parts - 
.tfE and A%. - 
#fa is dcfined by 

with 
1 

&(Y) - P i  X p , ( X , Y ) d X  (E. 2) 
0 

and p s ( X , Y )  is given by equation (3.17). 
Inserting (3.17) into (E.2) one arrives a t  an expression analogous to  equation (1).3), viz.: 
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The only integral weurring in this expression and not already determined in appendix D is 

j ( K x . ) 2 e - i x M x  J , ( ,X)dX.  
0 

I 

This integral is easily reduced by aid of partial integration and the result' is:' 
1 

(E. 4) / e - '  I X M X i .  ( ~ X ) ~ J ~ ( x X ) d x = - . e - ' ~ ~  J o ( ~ )  + z f , ( ~ , & f )  - - N f , ( K , N ) .  
0 

.Using. . .  equations . (D. 4 ) ,  (D. 25), (D. 26)  and (E. 4) thc ri,ghhtAhand side of (S .  3) becomes: 

+-  { Z i ~ M i e - " ~  J,(K) + p ? f O ( K , k )  -%(4 + P 2 2 ) f , ( ~ , D 1 )  + 
r y z  

%PA 

' 
Bd ( 3') d P  

- ( 5 P z  -t z ) f , ( X ,  N )  + iJfP'f,(~, 31) 1 (E. 5)  

We proceed now to the reduction of the second par t  ALEB of the aerodynamic moment due to trans- 
lation. This quantity is defined by 

with 

! and A p s ( X ,  Y )  is given by equation (3.17). 
After intemhanging the order of integration AaD becomes 

The inner integral )has been reduced already in appcndix D. 1 (see formula (D. 19).  

the aerodynamic moment and the result is: 
Multiplication of this expression with X and integrating consecutively to X gives the .second part of 

- ($fz + 1) } ] + E [K'/?f,(K, 8f) - i81(4 + K ' P ) f , ( K ,  M) - 
PK' 

- 5 p 2  + -:!)f,(K, &f) t iHflZf$(K,8f) + 2 i ~ N e - " ~  J.(K)]] (E. 9) 
I 

The aerodynamic moment due to translation can now easily be obtained by adding gD and A&. 
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E.2  'The aerodynamic moment due to pitch. 

The aerodynamic moment due to pitch ' is  denoted :hyX.,, where 9 l t ~  consists of the parts a; 
ill7 is defined by: 

I 
and A@,. 
- 

(E. 10) 

with 

(E. 11) 
6 

and p T ( X ,  Y) is given by equation (3.18). 
Substitution of (3.18) into equation (E. 11) yields: 



Integrating with respect to Y gives finally Che first part of the aerodynamic moment due to pitch, viz. 

1 + -( 2 i ~ M e - ~ ' ~  J o ( K )  f K 2 @ * f o ( K , & f ) - i ~ I f ( 4  + K z p z ) f ~ ( K , & ~ )  - ( 5 P 2  + 2 ) f z ( < , l f )  + iNP'fa(K,M) ) .  
K'P' 

y.p.4 

ip  e i ~ t  
/" T,(Y)dl' 

~ ] + 21, [{ - K y 3  ni + z i.pjf,(., fir) + 3 iK*pf,(Io M) + 3 nff2(., M) - 0 

yz PA 

% P A  / P(+)dY 
1 

f, [- K2(3 M + z ; @ ) f , ( K ,  $f) + i K z  ( 3 ( 1  + 3 p') + 2 idfp } f,(K, &f) + 
'/% PA .B 

-iPfa(x, M ) ) 0  

% P A  

j 2'3(Y)dY 

+ 3M(3 f N'p')fg(K,iff) --(7p + 3)f3 ( K , H ) - > f p f , ( K , ~ % f ) ]  ] , (E.15) .'Iz PA 

At last, t,he second par t  of the aerodynamic moment will he determined. AITT is defined as: 

" j A i U T ( P ) d Y  (E. 16) 
An?, = 7" 

where 
i 

AMT(Y)  = 2% / XAp,(X, Y ) d X  (E. 17) 
Y 

and Apr(X ,  Y )  is given by the expression (3.31). 
Hence 

I x 
/ X  I 1 A P T ( X ,  Y )dY  1 d X .  AMT = - (E. 18) 2 P - 

P o  0 

The inner integral has been reduced already in appendix D. 2 (see form, (D. 34)).  Blultiplying this 
expression with X and integrating consecutively to X ,  one obtains for the second part of the aero- 
dynamic moment: 

I -  
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1 - (p‘ + 2) - ++‘I + - [ ( + ~p’(p’ + 2 )  cos K + 2 i&p’ sin x - iM (p’ + 4) cos + 
KP’ 

+ (3 pz + 4) sin K 1 + i J I (4  + p‘) + 1/2 i ~ ~ ~ z ~  + . .3pe1] (E. 19) 

The total aerodynamic moment due to  pitch is ohtained hg adding the right-hand sides of eqs. (E.15) 
and (E.19). 
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REPORT TR W. 5 .  

C. C. L. Class. D 43 

Oscillating rectangular wings in supersonic flow with arbitrary 
bending and torsion mode shapes. 

Part 11: Numerical results 

by 

E. M. DE JAGER. 

S U " a r y .  

As has been shown in p k t  I thc aerodynamic derivatives can be givon in  the form of the sum 
of some terms each of which consists of two factors, one being 5 function of the reduced frequency and t h e  
.Maoh numbor, the other one containing the bending or the torsion mode shape. 

Tables of the fnetors oontaining the reduced frequency k nnd the  Mach number M a r e  presented f o r  k =  0 (0.1) 1 
and 41 = 1.2 (0.1) 1.6 (0.2) 2 (0.5) 4. 

I n  order to  show tho influeneo of frequency; Mach number and aspoet ratio graphs are given of the aerodynemie 
dorivatetes for a translating and pitching f l a t  wing. 

They have bcsn platted as funct ions of t hc  reduced frequency for different values of aspect ratio and Mach 
number. 

Cantents. 

Lirt of symbols. 
1 Introduction. 
2 Recapitulation of the theoretical results. 
3 
4 References. 

Application of the theory to a flat wing. 

11 tables. 
24 figures, 

List of symbols. 

h amplitude of translation 
"Z 

reduced frequency - 2 U  
I; 

2 wing chord 
S win'g span 
t t ime 

wing area 
coefficients of polynomial approxi. 
mating torsion mode shape 
undisturbed flow velocity ' 

I Vnr.--l.. 
__ ..; 2 kN 

l 3 2  
circular frequency 
density 
amplitude of torsional oscillation 
torsion mode function 

functions occurring in the formulae 
for the aerodynamic derivatives 

1; . .~~~.  
x, Y, 8 rectangular coordinates suffix B denotes quantit ics associated with bending 
5, 

A aspect ratio ., J 

z coordinate of spanwise elastic axis . suff ix  T denotos qunntit ies associated with torsion 

Bl. 2, s coefficients of ipolynomial approxi- 1 Intrcduction. 
mating bending mode shape 

B (v) Ix!ndiug mode shape In N.L.R. report W . 3  (ref. 1)  we considered 
C L  lift coefficient the problem of the harmonically oscillating rect- 
C M  moment coefficient angular wing in supersonic flow. The wing was 
L, lift due to bending assumed to execute small tomionad weillations of 
L, lift due to torsion amulitude * ( ? I )  about some spanwise axis Z=X* 
31 B 

M T 
moment due to bending 
moment due to torsion 

(see sketch) and small vertical translations of 
amplitude B(y) ,  where ~ ( y )  and B ( Y )  may be 

.U Nach number arbitrary functions of the spanwise coordinate y. 



Outside the Mach lines from the leading edge. 
tips (region I) p(y)  and B ( Y )  were locally ap- 
proximated by polynomials of the second degree, 
viz. : 

Y ?Iz p(y )  = T, + T,-+ T ,  - 
1 1% 

while in the regions I1 inside the Maah lines 
from the leading edge tips p (y )  and B ( y )  were 
approximated by: 

Q(?/ )=Ti  

(1.2) 
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(compare lit. I sections 3.2 and 3.3). Expressions 
were given for lift and moment. Tjhese expressions 
consist of a number of terms each of which is 
composed of two factors, one containing the rc- 
duced frequency and the Mach number only, the 
other one the bending or torsion mode shape B ( Y )  
and p ( y )  in a v e r y  simple way. 

The functions p(y) and N ( y )  were taken sym- 
metrically with respect to.  the midchord of the 
wing. 
" .The formulae for lift and moment are valid as 
long as the Mach waves from tihe leading edge tips 
do not intersect the opposite side edgcs; this means 
that the effective aspect ratio PA must be largeF 
khan 1 ;  A is the aspect ratio and p= pM2-l. 

The theory is so much the more accurate accord- 
ing as hhe approximations (1.1) and (1.2) f o r  the 
bending and the torsion mode shape are more 
acciirate. 

The rather roug?h approximations (1.2) for ar-  
bitrary lending and torsion mode shapes in the 
regions I1 inside the Mach wa.ves from the leading 
cdge tips may be of little value when t.he regions I1 
occupy a large part of blre wing i. e. when the value 
of PA is close to 1. However, the accuracy of t,he 
approximation (1.2) increases when p.4 becomes 
larger; moreover ?he influence of the tips upon 
lift and moment of the wing decreases for larger 
values of PA. For a translating and pitahing flat 
win,g the formulae for  lift and moment are quite 
cxact. 

2 Recapitulation of the theoretical results. 

I n  this section we give a review of the results derived in ref. 1. 

a)  The lift due  to  bendiiag of the wing. 

The lift coefficient (lift positive in upward direction) can be mritten as: 

where the second term is the cdge correction of the first one due to the finite span of bhc wing; U is 
the undistnpbd Telocity, S the wing area, Y the circular frequency, t the time and p the density. 

(2.2) 

2 kill "l 
2u , k. the reduced frequency - ~ 2 the wing chord, s the wing span, BI the Nach number, where K =  __ 

p =  I/= and A the aspect ratio. B(y)  is the 8hnding mode shape of the wing and R ,  and B, 
are constants such tchat Z(n, f B, 2) approximates bhc bending mode sliape as close as possible in the 

0<1,<- B '  
The complex functions FBI Q, , f IB  and K B  arc given in section (4.6) of ref. 1; K g  = - f /a  . 6 s  

and the functions B'B, GB and I l e  are tahulated in tahles 1-11 for  k = 0 (0.1) 1 and 111 = 
1.2 (0.1) 1.6 (0.2) 2 (0.5) 4. 

P' 

1. 

I 
1 



b) l ' h e  lift due to torsion of the wing. 

The lift coefficient can be written as 

where the second term represents the edge correction. 
5 8  

(2.3) 

whcre zc is Bhe z-coordinate of the elastic axis and p(u) hhe torsion mode function. T, is the constant, 

that approximates the torsion mode shape as close as possible in the region 0 < y <-. 

i n  tnhles 1-11, 

1 
P 

The complex functions F r ,  GT and 11, we given in section (4.6) of ref. 1 and they arc tahulated 

e) T h e  n e r o i ~ ~ ~ ~ i ~ i m i c  moment &le to hending of the.  uriilg. 

The aerodynamic moment (positive nose-heavy) is taken with respect, to the leading edge of the wing; 
Vhe momelit coefficient reads as: 

/ mhcrr the second term represent? again the edge correction. 

(2.6) 

Ss(n,Jl) =-%. Q n ( ~ ,  M) and P a ,  Q R  and RB are given in section (4.6) of ref. 1; they are tahnlat- 
cc1 i n  tablev 1-11, 

d) The nerodpmLic mmnent due to  torsion of the wing. 

The moment (positive nme heavy), is taken with rerpcct to  the leading edge of the wing, and the moment 
coefficient reads as:  

where the second term represents again the edge correction. 
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The functions P T ,  QT a.nd E ,  are given' in section (4.6) of ref. 1 ;  they are tabiilated in tables'l-11. 
T,he calculation of the aerodynamic deyivatives can now easily be performed for some given beiiding 

or torsion mode function by aid of the tables 1-11, 
I t  appears tihat the correction of lift and moment due to  the finite span of the wing is invei-sely 

proportional to  the effective aspect ratio PA. 

3 Application of the theory to a flat wing. 

For a flat wing, plunging with a<mplitude h ,  the formulae for lift and moment about the leading 
edge reduce to  

For the wing, i pitching with amplitude (p about the spauwise axis z =zs, the 
atid moment about the leading edge become: 

mulae 

(3.1) 

. lift 

+ (  PA 

These fomulae are essentially the same as those 
derived by Miles in refs. 2 and 3. 

In order to obtain some insight into the varia- 
tion of the aeroclynamic derivatives as functions 
of the reduced frequency, mpect ratio and Mach 
number, the absolute value of the aerodynamic 
derivatives and their phase with respect to the 
phase of the plunging or pitching motion have 
110cn plotted as functions of the reduced frequency 
f o r  several values of the aspect ratio and for 
ill = 1.3, 2 and, 4. 

These graphs are presented in figs. 1, la,, lh ,  
- 8, 8a., 8h; the moments, however, have not been 
t,aken with respect to the leading edge of the 
wing, ,but with respect to the axis of rotation of 
the pitching wing; the abscissa of this axis has heen 
chosen as z = '/r 1, viz. the midchord line of the 

(3.2) 

wing. The range of the reduced frequency is 
0-1.0 and the aspect-ratio varies from its mini- 

mum value A =- to m , 

It allpears that the absolute value of the acro- 
dynamic derivatives decreases when the Maoh 
number increases. The variation of the magnitude 
and the phase of the aerodynamic derivatives as 
functions of the aspect ratio hecomes smaller 
according as the aspect-rntio becomes l a x e r  and 
this effect is in general stronger when the Mach 
number is increased; this result iu in agrecment 
with the fact, that the correction t e m  ane to  t'he 
finite span of the wing is inversely proportional 
to  the effective aspect ratio PA. 

There are some values of the reduced frequency 
ivhere the mitgiiitude of t,he aerodyna,mic derivative 

1 
P 
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or its phase seems to be independent of the aspect 
ratio; see figs. Pa, 6a, Sa and Sb. 

It seom that the curves for different aspect 
ratio all intersect in one point. Careful calcula- 
tiom,, h,owever, ,have shown that this common 'point 
of intersection is not real; nevertheless the varia- 
tion of the magnitude of the aerodynamic ,deriva- 
tive or its phase as function of the aspect ratio 
is very small in the neig;hhourhood of these values 
of the,rednced frequency. 

Nelson, Rairiey and Watkins have also pre- 
sented it theory for the oscillating flat rectangular 
n.ing in supersonic flight (ref. 4). They present 
amongst others expressions for lift and moment 
coefficimts cxpa,nded to the seventh power of the 
frequency. Their results, however, a,re only valid 

for 0 5 76 , whereas the results of This 

repovt are valid for all values of k .  
Thc numerical results presented here are in 

good agreement with thme of reference 4. Com- 
ix~tation of the formulae of ref. 4 has revealed 
that the numerical results for the moment curve 
slope and the corresponding phase angle associated 

I W  - 1 
ill' 

with pitching are not in good agreement with the 
corresponding graphs in ref. 4. 

Since the values computed from the formulae 
of ref. 4 agree quite well with those derived from 
the formulae ( 3 . 1 )  and, (3.2) of this paper, it may 
he concluded that a little error bas becn made in 
ref. 4 in drawing the gra.phs for the moment curve 
slope and the corresponding phase angle asso- 
ciated wit,h pitch. 
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Fig. In. L i f t  curvu slopes fo r  t ra is la t ian as a function 
of roduecd frequency f o r  mnic values of tho sspcet ratio. 

Xuch nutnbcr X E 1.3. 

. ac l k l  

0 2  03 0. 0 5  as or 08 o s  I C  
k 

Fig. lb. Lift curvc slnpcs f a r  translation as 5 function 
nf reduccd frcqwuey for ~ n i e  values of the nspeet ratio. 

Mach number Af = 2. 

Fig. IC. Lift WIYO slopos f o r  translation 8s a function 
of reduced frqueney for st” xalucs of the nspeet ratio. 

Mach number M = 4. 

1-24 
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0 4  

0.1 

0.i 

0.1 
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Fig. en. JIoinent mrvc  slopes for  tmnslstion as n function 
of roduccd frequency for mmo values of the ospcet ratio. 
Thr: mmiicnt is tskm with respect to  the midchord line 

of tho wing. Mach number M = 1.3. 
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Fig. 3e. Li f t  e n r m s  slopes for pitch as a function of 
rcdiiccd froqoency for some values of tho nspcet ratio. 

Axis of rotation is niidohord line of tho wing. 
Mach number M = 4. 

Fig. 4a. Moment mrvo slopes f o r  pitch as a function 
of rodueed frequcocy for some values of tho aspect ratio. 

AxiS of rotation is midchord lino of tho wing. 
The moment is takcn with respect t o  the axis of rotation. 

Uach nnmber U =  1.3. 

o 0.1 02 (u OA a5 ao a7 a0 as i o  v 
Fig. 4b. Moment curve slopes for pitch 8% a function 
of rcdllced froqucncy f o r  soinc values of tho aspcet ratio. 

Axis of rotation is midehard line of the  wing. 
The uioincnt is taken with respect t o  the axis of rotation. 

Mach .number M = 2. 

k 
Fig. 4e. Mlamcnt curvc slopes fo r  pitch as a function 
of rcdueed frequency for some values of the aspect ratio. 

Axis of rotation is midchord line of the wing. 
Tho moment is tnken with respect to thc axis of rotation. 

Mach number H = 4. 

' 





Fig. 6b. Phase angle  in radians betwoon moment VcctUr 
and angular displacement vector for translation as il 

function of reduood frequency f a r  Rome values of thv 
aspect ratio. The moment ia taken with respect to the 
midchard line of the wing. Mach number M c 2. 

Fig. i a .  Phase angle in radians hotween lift vector and 
angular displaeemont vector f o r  pitch as a function of 
reduced frequoncy for some valucs of the aspect ratio. 

Axis of rotation ia  midchord line of the wing. 
Mach numher M'= 1.3. 

~~ 
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Fig. 6c. Phasc angle in radians botwocn monlcnt vector 
and angular diuplacomont vector fo r  translation 8s n 
function of roduocd freqnoney . t o r  some value8 af thc 
aspect ratio. Tho moment is takon with respect to  thc 
midchord line of the wing. Mach numbcr M =  4. 

Fig, 7b. Phhaso angle i n  radians between l i f t  vector a n d  
angular displacement vector for pitch as a function of 
reduced frequency fo r  some values of tho aspect ratio. 

Axis of rotation is midchord line of tho wing. 
MIaoh number ,+I= 2. 



' 0 01 02 03 0 4  05 ' 06 07 08 ' U o  LO . *  
Fig. 7c. Phase :~nglo in radians hetrvecn l if t  vector and 
angular displneemcrit, vector fo r  pitch :M :L function of 
reduced frcqucney f a r  some vnlries of thc aspect mtio. 

Axis of rotation is midchord linc of tho wing.  
Nneh nunrhor N , =  4. 

* F i g .  8a. I'hnsc anglc in radians hetween ~ ~ m m c n l .  vector 
and  angular displaccnient vector for pitch a8 a function 
of reduced frcqueney for same vnlrm of the aspect mtio. 

Axis of , rotat ion is midehord line of tho wing. 
Tho moment is tnkcn with respect to the axis of r o t n t i m  

Mach number N = 1.3. 

Fig. 8h. Phaa: angle i n  rndinns hetween mumant vcetor 
a n d  sngrilsr displsccmont vector for pitch as a function 
of rcdueed 'frequency for some vahles of thc bspeet ratio. 

Axis of rotation is midchord linc of thc wing. 
Tho moment is  taken with respect t o  the aris.af rotation. 

Mach number N = 2. 

Fig. 8e. l'hnsa nnglo in radiarls hctweon moment, vcetur 
and angular displnecriient veetor.for pitch as a funet,ion 
of reduced frcqucney for  mnm ralucs of thc aspcet  mtiu. 

' Axis of rotation is midehord'line of thu wing. 
Tho moment is taken with respect to  the axis of rotation. 

Mach number AI = 4. 
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TABLE 1 

.$I = + 1.20000. 

k I m  FB Re GB RE H s  

+ 0.00000 + 0.20755 + 0.66929 + 1.05089 + 1.1414'4 + 1.00920 + 0.88412 + 0.91452 + 1.05059 + 1.14600 + 1.13464 

I m  H B  

+ 0.00000 + 0.53974 + 0.76704 + 0.63482 + 0.37298 + 0.25121 + 0.34101 + 0.50163 + 0.56760 + 0.51896 + 0.46661 

I ~ L  0, 

+ 0.00000 + 0.26501 + 0.33983 + 0.18686 
- 0.06235 
- 0.23265 
- 0.24969 
- 0.17192 
- 0.11882 - 0.13261 
- 0.18104 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.6 
0.9 
1.0 

- 0.00000 
- 0,25199 
- 0.78059 
- 1.13645 
- 1,09199 
- 0.82088 
- 0.64896 
- 0.68709 
- 0.75502 
- 0.64103 
- 0.36149 

- 0.00000 
- 1.12107 
- 1.83371 
- 2.11894 
- 2.32579 
- 2.78415 
- 3.48975 
- 4.18091 
- 1.68116 
- 5.09127 
- 5.63369 

+ 0.00000 + 0.12465 -+ 0.40395 + 0.63536 + 0.67684 + 0.54892 + 0.38827- + 0.31297 + 0.33201 + 0.37072 + 0.36434 
~~ 

Ro 0, 

- 0.00000 
- 0.01687 
- 0.05819 
- 0.10236 
- 0.32954 
- 0.13293 
- 0.11979 
- 0.10322 
- 0.09233 
- 0.08815 
- 0.08656 

I ~ L  GT 

- 0.00000 
- 0.04600 
- 0.06972 
- 0.06243 
- 0.03278 + 0.00110 

+ 0.03273 + 0.03217 + 0.03054 + 0.03171 

+ 0.02425 

Ro HT 

- 0.00000 + 0.05315 + 0.05315 + 0.32990 + 0.43142 + 0.47093 + 0.46990 + 0.46276 + 0.46931 + 0.48704 + 0.50355 

I m  l I T  

- 0.00000 + 0.18818 + 0.30925 + 0.33735 + 0.29813 + 0.24321 + 0.21222 + 0.21240 + 0.22670 + 0.23671 + 0.23802 

l i e  F T  

- 0.00000 
- 0,05690 
- 0.29949 
- 0.52920 
- 0.68332 
- 0.73883 
- 0.73517 
- 0.72370 
- 0.72113 
- 0.72358 
- 0.70199 

It71 F,. 

- 0.00000 
- 0.58139 
- 1.05051 
- 1.36722 
- 1.57827 
- 1.76831 
- 1.99458 
- 2.25931 
- 2.53277 
- 2.79403 
- 3.04909 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

R E P ,  Im Ps RE Q B  I m  Q B  Tie R, Int E ,  

4- 0.00000 + 0.35157 + 0.45778 + 0.29747 + 0.07484 + 0.00799 + 0.12879 + 0.28923 + 0.34090 + 0.28226 + 0.22858 

I m  13, 

+ 0.00000 + 0.1400s + 0.22474 + 0.23433 + 0.19312 + 0.14588 + 0.12444 + 0.13117 + 0.14812 + 0.15843 + 0.15947 

-~ 

0 
0.1 
0.2 
0.3, 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

~ 

- 0.00000 

- 0.48110 
- 0.60725 
- 0.40866 

+ 0.08621 + 0.03660 
- 0.03059 + 0.08255 + 0.34050 

- 0.16510 

- 0.08205 

- 0.00000 
- 0.53968 
- 0.78321 
- 0.75171 
- 0.74752 
- 1.01614 
- 1.49517 
- 1.92161 
- 2.14870 
- 2.29724 
- 2.58459 

t 0.00000 + 0.09922 + 0.31623 + 0.48106 + 0.48156 + 0.34852 + 0.20767 + 0.15736 + 0.19282 + 0.23783 + 0.23385 

+ 0.00000 + 0.19566 + 0.23473 
4- 0.09274 
- 0.11177 
- 0.23099 
- 0.21312 - 0.12558 
- 0.07032 
- 0.08658 
- 0.13323 

t 0.00000 + 0.15410 + 0.48471 + 0.72098 + 0.71003 + 0.53827 + 0.41422 + 0.45176 + 0.58328 + 0.65896 + 0.63109 

Im PT 

- 0.00000 
- 0.38475 
- 0.68090 
- 0 86094 
- 0.96907 
- 1.07686 
- 1.22703 
- 1.41308 
- 7.60367 
- 1.78005 
- 1.95003 

- 

Im QT 

- 0.00000 

- 0.05415 
- 0.01576 
- 0.01953 + 0.00853 + 0.02590 + 0.03017 + 0.02728 + 0.02456 + 0.02513 

- 0.03656 

RE PT 

- 0.00000 
- 0.064Sl 
- 0.21 942 
- 0.37547. 
- 0.46157 
- 0.46744 
- 0.43372 
- 0.40560 
- 0.39672 
- 0.38809 
- 0.36234 

RE QT 

- 0.00000 
- 0.01402 

- 0.08323 
- 1.10301 
- 0.10240 
- 0.08868 
- 0.07370 

- 0.06267 
- 0.06233 

- 

- 0.04799 

- 0.06501 

RE RT 

+ 0.00000 + 0.04237 + 0.14560 + 0.25536 + 0.32470 + 0.34190 + 0.32890 + 0.31653 + 0.32020 + 0.33488 + 0.34781 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

. 0.7 
0.8 
0.9 
1.0 



0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 

- 

- 0.00000 
- 0.13330 
- 0.46369 
- 0.82231 - 1.03573 
- 1.01912 
- 0.81315 
- 0.54647 
- 0.35087 
- 0.28396 - 0.30539 

~ 

l ie  FT 

I H e  PB 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.00000 - 0.04526 
- 0.16674 
- 0.32737 
- 0.48216 
- 0.59508 
- 0.65045 
- 0.65449 
- 0.62753 
- 0.59191 
- 0.56183 

I m  FB 

- 0.00000 
- 0.92987 
- 1.68244 - 2.17631 - 2.46546 
- 2.70075 
- 3.03922 
- 3.55750 - 4.22079 
- 4.91 785 
- 5.54531 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

I n &  F ,  

- 0.00000 
- 0.47316 
- 0.89975 - 125007 
- 1.52068 
- 1.73262 
- 1.91993 
- 2.11469 
- 2.33545 
- 2.58387 - 2.84950 

lm P B  

- 0.00000 
- 0.45671 
- 0.78270 
- 0.92625 - 0.94478 
- 0.96813 
- 1.11929 

-'1.88474 
- 2.33398 
- 2.96581 

- - 

- 1.44281 

- o.onono 
- 0.08804 
- 0.29605 
- 0.49494 - 0.55358 
- 0.42404 
- 0.16270 + 0.10802 + 0.27666 + 0.30796 + 0.25644 

I m  P, 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.00000 
- 0.31433 
- 0.59167 
- 0.80935 
-- 0.96701 
- 1.08413 
- 1.19006 
- 1.31074 
- 1.45918 
- 1.63334 
- 1.82136 

-. -. 

- 0.00000 
- 0.03381 
- 0.72319 
- 0.23841 
- 0.3+228 
- 0.40741 
- 0.42412 
- 0.40117 
- 0.35832 
- 0.31526 
- 0.28303 

115 

TABLE 2. 

Re Gs 

+ 0.00000 + 0.05917 + 0.21260 + 0.39807 + 0.54605 + 0.60838 + 0.57794 + 0.48625 + 0.38360 + 0.31305 + 0.29190 

Re GT 

- 0.00000 ' 
- 0.00993 
- 0.03679 

- 0.10833 
- 0.13486 
- 0.14793 
- 0.14778 
- 0.13844 
- 0.12550 
- 0.11386 

- 0.07283 

Re Q B  

+ 0.00000 + 0.04721 + 0.16807 + 0.31039 + 0.41564 + 0.44603 + 0.39985 + 0.30834 + 0.21695 + 0.16196 + 0.15483 

Re QT 

- 0.00000 
- 0.00827 
- 0.03050 
- 0.05996 
- 0.08827 
- 0.10834 
~ 0.11661 
- 0.11375 - 0.10366 
- 0.09143 
- 0.08126 

l m  G,  

+ 0.00000 + 0.18041 + 0.29075 + 0.29178 + 0.19071 + 0.03473 

- 0.20559 
- 0.22574 
- 0.1 9291 
- 0.14470 

- 
~ 

- 0.11361 

Inz GT 

- 0.00000 
- 0.03834 - 0.06669 
--0.07837 - 0.07203 - 0.05759 
- 0.02437 

+ 0.02151 

f 0.03631 

+ 0.00186 

+ 0.03265 

I m  QB 

+ 0.00000 + 0.13425 + 0.21047 + 0.19743 + 0.10400 - 0.02738 
- 0.74295 
- 0.20334 - 0.19984 - 0.15372 - 0,10099 

- 0.00000 - 0.03057 - 0.05261 - 0.06051 
- 0 05336 
- 0.03486 - 0.01 152 + 0.00994 + 0.02490 + 0.03203 
i- 0.03295 

Re H s  

+ 0.00000 + 0.12061 + 0.43173 + 0.80686 + 1.10676 + 1.24529 + 1.22370 + 1.11727 + 1.02583 + 1.01821 + 1.10143 

Be HT 

+ 0.00000 + 0.03053 + 0.11347 + 0.22618 + 0.34052 + 0.43274 + 0.49075 + 0.51601 + 0.51994 + 0.51719 + 0.51909 

RE R,, 

+ o.oooon + 0.09009 + 0.31826 + 0.58068 + 0.76623 + 0.81255 + 0.73295 + 0.60126 + 0.50589 
c 0.50102 + 0.58235 

+ 0.00000 + 0.02438 + 0,09013 + 0.17799 + 0.26435 + 0.32988 + 0.36572 + 0.37477 + 0.36820 + 0.35917 + 0.35714 

I m  Hs 

+ 0.wDoo + 0.45548 + 0.76956 + 0.86717 + 0.77077 + 0.51830 + 0.42126 
f 0.37285 + 0.44395 + 0.57762 + 0.69471 

7 n ~  HT 

+ 0.00000 + 0.15526 + 0.28120 + 0.35837 + 0.38302 + 0.36662 + 0.32976 + 0.29342 + 0.27163 + 0.26817 + 0.27816 

I m  Rn 

+ 0.00000 + 0.30022 + 0.48836 + 0.50880 + 0.38775 + 0.21467 + 0.09160 + 0.07942 + 0.17232 + 0.30945 + 0.41655 

Ina RT 

+ 0.00000 + 0.11602 + 0.20770 + 0.25934 + 0.26880 + 0.24684 + 0.21159 + 0.18076 + 0.16529 + 0.16685 + 0.17968 

~ 
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TABLE 3. 

:If = + 1.40000. 

Re Gn 

+ 0.00000 + 0.03477 + 0.12966 + 0.25935 + 0.390g3 + 0.49145 + 0.54188 + 0.53712 + 0.48815 + 0.41649 + 0.34601 

___- 
1m GB 

-t 0.00000 + 0.13285 + 0.23160 + 0.27209 + 0.24682 + 0.16626 + 0.05461 
- 0.05842 
- 0.14689 
- 0.19590 
- 0.20452 

Re i I B  

+ 0.00000 + 0.08194 + 0.30509 + 0.60911 + 0.91607 + 1.15574 + 1.28694 + 1.30774 + 1.25146 + 1.17097 + 1.11782 

Ini €In 

+ 0.00000 + 0.39412 

+ 0.88963 + 0.92259 + 0.83659 + 0.69062 + 0.55204 + 0.47374 + 0.47843 + 0.55514 

+ 0.~ns8'i 

R 

0 '  
0.1 
0.2 ' 

0.3 
0.4 
0.5 ' 
0.6 
0.7 
0.8 
0.9 , 
1.0 

l lc  P B  

- 0.00000 
- 0.08242 
- 0.29977 
- 0.57375 

- 0.92157 
- 0.88209 
- 0.70986 

- 0.23418 

- 0.80748 

- 0.41j803 

- 0.06894 

Ill1 PB 

- 0.00000 
- 0.79946 
- 1.50434 
- 2.05493 
- 0.44749 
- 2.73353 

- 3.32621 
- 3.77177 

- 4.99242 

- 2.99807 

- 4.34027 

Re FT Re Gr Ini Gr 

- 0.00000 
- 0.03303 
- 0.06038 
- 0.07763 - 0.05251 
- 0.07528 
- 0.05848 
- 0.03612 - 0.01261 

f 0.02401 
+ 0.00825 

i- o.noono + 0.13321 + 0.25024 + 0.33836 + 0.39127 + 0.40985 + 0.40126 + 0.37657 + 0.34755 + 0.3235~ + 0.31102 

+ o.ooono + 0.02065 + 0.07876 + 0.16381 + 0.26122 + 0.35587 + 0.43551 + 0.49319 + 0.52799 + 0.54417 + 0.54906 

IZe 12, 

+ 0.00000 

+ 0.22633 + 0.44530 + 0.65485 + 0.79987 + 0.85143 + 0.81454 + 0.72346 
+,0.62680 + 0.56875. 

+ 11.06129 

0 
0.1 I 
0.2 
0.3 
0.4 
0.5, 
0.6. 
0.7 
0.8 I 

0.9 
1.0 

- 0.00000 
- 0.02782 
- 0.10519 
- 0.21548 
- 0.33606 
- 0.44420 

- 0.56292 
- 0.56649 
-0.542215 
- 0.50236 

Ill2 Pn 

- 0.52260 

- n.onnon 
- 0 . 0 i i m  
- 0.19458 
- 0.35826 
- 0.47142 
- 0.47737 
- 0 35950 
- 0.14694 + 0.09846 + 0.30797 + 0.43342 

- o.noooo 
- 0.40396 
- 0.78349 
- I .12019 
- 1.40588 
- 1.64393 
- 1.84724 
- 2.03391 
- 2.22194 
-2.42471 
- 2.64843 

I m  P,  

- 0.00000 

- 0.72085 
- 0.93474 
- 1.04161 
- 1.08960 
- 1.15084 
- 1.29231 
- 1.54982 
- 1.91556 
- 2.34400 

___ ___ 

- 0.39550 

- 0.00000 
- 0.00686 
- 0.02610 
- 0.05405 
- 0.08557 
- 0.11525 
- 0.13864 
- o.ir,306 
- 0 . 1 5 7 ~  
- 0.15489 

. - 0.1 4646 

120 Q B  

+ 0.00000 + 0.02777. + 0.10302 + 0.20419 + 0.30310 + 0.37382 + 0.40038 + 0.38091 + 0.32692 + 0.25841 + 0.19653 

Illi QR 

+ 0.00000 + 0.09914 + 0.16997 + 0.19286 + 0.16260 

- 0.00508 - 0.09528 
- 0.15976 
- 0.18748 
- 0.18001 

+ o . m w  

In& It, 

+ 0.00000 + 0.26088 + 0.45863 + 0.55127 + 0.53132 + 0.426674 + 0.28936 + 0.17547 + 0.12619 + 0.15458 + 0.24412 

0 '  ' 
0.1 
0.2 
0.3 
0.4 I 

0.6 
0.7 ' 
0.8 I ' 
0.9 ' 
1.0 ' : 

0.5 

Ile QP. Re 8, In1 R, 

+ 0.00000 + 0.09970 + 0.18589 + 0.24825 + 0.28189 + 0.38815 + 0.27366 + 0.24819 

+ 0.20233 
f 0.19387 

+ 0.22179 

- 0.00000 
- 0.02637 
- 0.04788 
- 0.06079 
- 0.06326 
- 0.05568 
- 0.04039 
- 0.02097 

+ 0.01542 + 0.02726 

- o.ooi30 

+ 0.00000 + 0.01650 + 0.06272 + 0.12969 + 0.20505 + 0.7622 + 0.33329 + 0.37108 + 0.38973 + 0.39371 + 0.38994 

- o.onooo 
- 0.02082 
- 0.07822 
- 0.1 5845 
- 0.24300 

- 0.35749 
- 0.36912 

- 0.31403 
- 0.26793 

- 0.31371 

- 0.35161 

- o.ooono 

- 0.51803 
- 0.26874 

- 0.73355 
- 0.90968 
- 1.05045 
- 1.16761 
- 1.27677 
- 1.39247 
- 1.52569 
- 1.67923 
- 

- 0.00000 
- 0.00571 - 0.02165 

- 0.07031 - 0.09389 - 0.11168 - 0.12157 
- 0.12335 
- 0.11852 
- 0.10964 

- 0.04470 

0 '  
0.1 ' 
0.2 
0.3 
0.4 
0.5 
0.6 ' 

0.7 
0.8 
0.9 ' 
1.0 



0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.00000 
- 0.05588 
- 0.20784 
- 0.41331 
- 0.61504 
- 0.75725 
- 0.80100 
- 0.73422 
- 0.57359 
- 0.35814 
- 0.13660 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

0.9 
1.0 

0.8 

- 0.01881 - 0.07205 
- 0.15088 
- 0.24236 
- 0.33251 
- 0.40847 
- 0.46105 

- 0.48402 
- 0.46020 

- 0.48596 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

- 0.00000 
- 0.03707 
-0.13579 
- 0.26248 
- 0.37267 
- 0.42474 
- 0.39263 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

- 0.00000 
- 0.01408 
- 0.05369 
- 0.11144 
- 0.17682 
- 0.23840 
- 0.29609 
- 0.31308 
- 0.31688 
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TABLE 4. 

.*I = + 1.50000 

Re Fa . Ilia GR 

+ 0.00000 + 0.10325 + 0:18688 + 0.23552 + 0.24121 + 0.20486 + 0.13561 + 0.04829 
- 0.04023 - 0.11493 
- 0.16574 

__I_ ____ 
REI IJ8 

+ 0.00000 + 0,06095 + 0.23143 + 0.47746 + 0.75183 + 1.00562 + 1.19964 + 1.31286 + 1.34582 + 1.31826 + 1.26201 

I m  Fn 

- 0.0000@ - 0.70539 
- 1.35327 
- 1.90222 
- 2.33824 
- 2.67806 
- 2.96358 
- 3.24932 
- 3.58676 
- 4.01031 
- 4.52906 

Re /& 

4- 0.00000 + 0.02307 + 0.08767 + 0.18106 
t 0.28523 
i- 0.38102 
i- 0.45225 + 0.48901 + 0.18931 + 0.45879 + 0.40862 

Im €Is 

+ 0.00000 + 0.34886 + 0.64676 + 0.85452 + 0.95340 + 0.94853 + 0.86619 + 0.74605 + 0.63043 + 0.55371 + 0.53468 

I m  GT 

- 0.00000 
- 0.02918 
- 0.05464 
- 0.07330 
- 0.08313 - 0.08347 
- 0.07504 
- 0.05975 
- 0.04021 
- 0.01929 
- 0.00043 

____ 
Re GT 

- 0.00000 
- 0.00518 
- 0,01999 
- 0.04233 - 0.06914 - 0.09689 
- 0.12223 
- 0.14247 
- 0.15597 

- 0.16214 
- n . i m i  

IZe IIT 

+ 0.00000 + 0.01533 + 0.05922 + 0.12583 + 0,20661 + 0.29189 + 0.37255 + 0.44148 + 0.19455 

-i- 0.55261 
-1- 0.53091 

Im FT 

- 0.00000 
- 0.35522 
- 0.69571 
- 1.00949 
- 1.28946 
- 1.53452 
- 1.74929 
- 1.94284 
- 2.12648 - 2.31138 
- 2.50645 

I m  H ,  

+ o.oooon + 0.11747 + 0.22457 + 0.31265 + 0.37614 + 0.41329 + 0,42620 + 0.42003 + 0.40185 + 0.37911 + 0.35R28 

Im RE 

+ 0.00000 + 0.23139 
t 0.42219 + 0.54187 + 0.57726 + 0.53.523 + 0.44000 + 0.32602 + 0.2285i + 0.l74GO + 0.17640 

I m  P B  

- 0.00000 - 0.35017 
- 0.65756 
- 0.89273 
- 1.04878 
- 1.14354 
- 1.21429 
- 1.30649 
- 1.46029 
- 1.69894 
- 2.02262 

REI QB 

+ 0.00000 
-t 0.01843 + 0.06979 + 0.14319 + 0.22339 + 0.29436 + 0.34293 + 0.36159 + 0.34981 + 0.31362 + 0.26359 

I m  QB 

+ 0.00000 + 0.07715 + 0.13801 
-1 0.16995 + 0.16685 
-t 0.13021 + 0.06849 
-1- 0,00515 + 0.OTF20 
-0.13216 
t 0.1F536 

Re hb 

+ 0.00000 + 0.045G2 + 0.17221 + 0.35163 + 0.55522 + 0.71373 + 0.82i08 + 0.87137 + 0.85127 + 0.13218 
t 0.7093F 

Im Pq Re KT Tm RT 

+ 0.00000 + 0.08795 + 0.16729 + 0.23087 + 0.2742i + 0.29636 + 0.29926 + 0.26773 + 0.26798 + 0.24638 + 0,22828 

- o.oooon 
- 0.23647 
- 0.46120 
- 0.66480 
- 0.84202 
- 0,99268 
- 1.12133 
- 1,23609 
- 1.34666 
- 1.46221 
- 1.58974 

- 0.00000 
- 0.00432 
-0,01662 - 0.03508 
- 0.05703 
- 0.07944 
- 0.09914 
-0.11479 
-0,12421 
- 0.12746 
- 0.12529 

- 0.00000 
- 0.02330 
- 0.04344 
- 0.05776 
- 0.06459 
- 0.06346 
- 0.05510 - 0.04124 
- 0,02423 
- 0.00658 + 0,00952 

+ 0.00000 + 0,01225 
f 0.04722 + 0,09990 + O.lG305 + 0.22853 + 0.28879 + 0.33813 + 0.37354 + 0.39484 
+.0.40438 
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TABLE 5. 

JI = + 1,60000 

Re FIB I m  F ,  Iin II,  

+ 0.00000 + 0.31407 + 0.59240 + 0.80578 + 0.93672 + 0.89222 + 0.95355 
-t 0.87327 + 0.77010 + 0.67289 + 0.60492 

____ ____ 
Imn G,  

+ o.ooonn + 0.08330 + 0.15402 + 0.20173 
3- 0.21989 + 0.20683 + 0.16585 + 0.10438 + 0.03245 + 0.08925 + 0.10128 

Re I I n  

+ 0.00000 + 0.04807 + 0.18462 + 0.38820 + 0.62781 + 0.86889 + 1.07988 + 1.23789 + 1.33233 + 1.36594 + 1.35294 

k 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

k 

- 

l ie  Gg 

+ 0.00000 + 0.01654 + 0.06356 + 0.13369 + 0.21617 + 0.29875 + 0.36987 + 0.42055 + 0.44579 + 0.44614 + 0.42236 

- 0.00000 
- 0.04026 
- 0.15169 
- 0.30845 
- 0.71414 
- 0.61011 
- 0.68413 
- 0.67748 
- 0.58858 
- 0.43274 
- 0.23784 

- 0.00000 
- 0.63385 
- 1.22957 
- 1.75767 
- 2.20393 
- 2.51245 
- 2.88439 
- 3.17285 
- 3.47520 
- 3.82464 
- 4.24305 

R E  H ,  Im Hr In8 GT 

- 0.00000 

- 0.04982 
- 0.06846 
- 0.08045 
- 0.08496 
- 0.08199 
- 0.07242 
- 0.05776 
- 0.03992 
- 0.02092 

- 0.02623 

Re GT 

- o.oooon 
- 0.00415 
- 0.01612 
- 0.03458 
- 0.05751 
- 0,08247 
- 0,10699 
- 0.12880 
- 0.14620 
-0.15814 
- 0.16436 

Re PT 

- 0.00000 

- 0.05221 
- 0.11071 
- 0.18108 
- 0.25409 
- 0.32063 
- 0.37309 
- 0.40639 
- 0.41848 
- 0.11035 

- 0.01353 

Ini  Pr 

- 0.00000 
- 0.31858 
- 0.62745 
- 0.91834 
- 1.18569 
- 1.42735 
- 1,64477 
- 1.84252 
- 1.02733 

- 2.38915 
- 2.20710 

+ o.oooon 
+ 0.04700 
+ 0.01207 

+ 0.10111 + 0.16591 + 0.24384 + 0.31924 + 0.38922 + 0.44935 + 0.49713 + 0.53211 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

+ 0.00000 + 0.10551 + 0.20378 + 0.28850 + 0.35513 + 0.40137 + 0.42736 + 0.43543 + 0.42961 + 0.41489 + 0.39640 

Im R, 

+ o.oooon + 0.20856 + 0.38862 + 0.51728 + 0.58159 + 0.58085 + 0.52620 + 0.43785 + 0.34049 + 0.25800 + 0.20852 

k Im Q B  

+ 0.00000 + 0.06229 + 0.11413 + 0.14692 + 0.15548 + 0.13881 + 0.10020 + 0.04640 
- 0.01379 
- 0.07120 
- 0.11803 

Re RB 

+ 0.00000 + 0.03600 + 0.13762 + 0.28708 

+ 0.62505 + 0.76064 + 0.84867 
- 0.88299 + 0.86881 + 0.82083 

~ - 

+ 0.45890 

Re Ps 

- 0.00000 
- 0.02673 
- 0.09948 
- 0.19774 
- 0.29306 
- 0.35602 
- 0.36351 
- 0.30439 
- 0.18219 
- 0,01426 + 0.17251 

Im Ps 

- o.noooo 
- 0.31527 
- 0.60212 
- 0.83933 
- 1.01825 
- 1.14510 
- 1.23961 

- 7.44782 
- 1.01754 
- 1.85390 

- 1.33032 

R'e Q B  

+ 0.00000 + 0.01322 

+ 0.10600 + 0.17012 + 0.23272 + 0.28422 + 0.31743 + 0.32874 + 0.31853 + 0.29077 

+ 0.05065 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.G 
0.7 
0.8 
0.9 
1.0 

k Re PI I m  PT R E  QT 1% QT 

- 0.00000 
- 0.02096 
- 0.03966 

- 0.06295 
- 0.06545 
- 0.06172 - 0.05258 
- 0.03941 
- 0.02391 - 0.00784 

_ _ ~  

- 0.05412 

Re I<, Im RT 

+ 0.00000 + 0.07903 + 0.15203 + 0.21381 + 0.26068 + 0.29093 

+ 0.30488 + 0.29447 + 0.27806 + 0.26003 

+ 0.30491 

- 0.00000 
- 0.21217 
- 0.41658 
- 0.60674 
- 0.77843 
- 0.93035 
- 1.06417 
- 1.18413 
- 1.29622 
- 1.40702 
- 1.52265 

- 0.00000 
- 0.00346 
- 0.01341 

- 0.04755 
- 0.06787 
- 0.08752 
- 0.10460 
- 0.11768 
- 0.12596 
- 0.12933 

- o.nz869 

+ 0.00000 + 0.00965 + 0.03750 + 0.08042 + 0.13371 + 0.19185 + 0.24927 + 0.30113 + 0.34395 + 0.37595 + 0.39713 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.00000 
- 0.01013 
- 0.03895 

- 0.13280 
- 0.18374 
- 0.22758 
- 0.25844 
- 0.27269 
- 0.26937 
- 0.25006 

- n.0820~ 
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TABLE 6. 

JI = + 1.80000 

Re FB Im GB In1 Fn 
____ 
- o.oonoo 
- 053110 
- 1.04237 
- 1.51732 
- 1.94561 
- 2.32477 
- 2.66059 
- 2.96613 
- 3.25951 
- 3.56090 
- 3.88925 

Re Go 

+ o.ooono + n.00981 

+ o.nszii 
+ 0.03827 

+ 0.13652 + 0.19566 + 0.25335 + 0.30391 
f 0.34279 + 0.36708 + 0.37573 

Re 118 

t o.oonoo 
t 0.03341 
t 0.12991 
t 0.27887 
t 0.46122 
t 0.66672 
k 0.86657 
t 0.04610 
k 1.19193 
t 1.29654 
t 1.35886 

lna I€, 

+ 0.00000 + 0.26370 

+ 0.71045 + 0.86225 
f 0.95541 

+ 0.975ofl + 0.91246 + 0.84589 + 0.76506 

+ 0.50655 

+ o.99n54 

k 

0 
0.1 
0.2 
0.3 
0.4 
0.5 ' 
0.6 
0.7 
0.8 
0.9 
1.0 

- o.ooono 
- 0.02351 
- 0.08984 
- 0.18718 
- 0.29802 
- 0.40218 
- 0.48011 
- 0.51619 
- 0.50121 
- 0.43382 
- 0.32060 

+ o.noono + 0.05844 + 0.11052 + 0.15065 + 0.17470 + 0.18042 + 0.16771 + 0.13853 + 0.09652 + 0.04654 
- 0.00608 

Ina GT 
____ ___ 
- o.noon0 

- o.o424n 
- 0.02200 

- 0.05975 
- 0.07288 
- 0.08097 
- 0.08367 - 0.08107 - 0.07366 - 0.06227 
- 0.04801 

Re GT 
- 

- n.oooon 
- 0.00296 
- 0.01158 
- 0.02519 
- 0.04271 
- 0.06280 
- 0.08398 
- 0.10474 
- 0.12374 
- 0.13988 
- 0.15238 

Re FIT 

- o.oonoo 

- n.otim 

- 0.00788 
- 0.03069 

- 0.11007 
- 0.15836 
- 0.20597 
- 0.24828 
- 0.28139 
- 0.30254 
- 0.31034 

Im FT 

- o.onooo 
- 0.26640 
- 0.527-78 
- 0.77965 
- 1.01864 
- 1.24274 
- 1.45159 
- 1.64639 
- 1.82972 
- 2.00516 
- 2.17686 

rie 

t o.nonoo 
t 0.00838 

t 0.12210 

t 0.03289 
t 0.07173 

t 0.18050 
t 0.24309 
t 0.30607 
t 0.36604 
t 0.42027 
t 0.46692 

I m  If,. 

+ 0.00000 

+ 0.17254 

+ 0.31372 + 0.36558 

+ 0.42715 + 0.43838 + 0.43915 + 0.433214 

- 

+ 0.08837 

+ 0.24868 

+ 0.10331 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Re Pa 

- o.ooono 
- 0.01562 
- 0.05916 
- 0.12119 
- 0.18796 - 0.24382 - 0.27414 
- 0.26790 
- 0.21982 
- 0.13128 
- 0.01026 

Re Qn 

+ 0.00000 

+ 0.03053 + 0.06528 + 0.10799 + 0.15369 
f 0.19724 + 0.23393 

+ 0.27362 + 0.27392 

+ 0.00787 

+ o.26011 

[TIL &E 

- 
+ o.noono + 0.04374 

+ o.iztino 

+ 0.08218 + 0.11073 

+ 0.12632 + 0.11181 + 0.08436 + 0.04731 

- 0.03815 
+ 0.00493 

I m  R, 

+ 0.00000 + 0.17532 + 0.33402 + 0.16176 + 0.54853 + 0.58983 + 0.58724 + 0.54765 + 0.48307 + 0.40674 + 0.33292 

rat zjB 

- o.ooono 
____ 

- 0.26470 
- 0.51459 
- 0.73766 
- 0.92697 
- 1.08203 
- 1.20900 
- 1.31974 
- 1.42979 
- 1.55574 
- 1.71240 

RE Re 

t 0.00000 
t 0.02503 
t 0.09702 
t 0.20714 
t 0.34212 
t 0.46622 
t 0.62349 
t- 0.74003 
t 0.82589 
t 0.87628 
t 0.89194 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Im Pr Re QT If63 P p  

- 0.00000 
- 0.00591 
- 0.02292 
- 0.04903 
- 0.08116 
- 0.11557 
- 0.14828 
- 0.17561 
- 0.19456 
- 0.2031 6 
- 0.20062 

In1 QT 

- n.ooonn 
- 0.01758 
- 0.03380 
- 0.04741 
- 0.05741 
- 0.06315 
- 0.06435 
-o0.ntiii2 
- 0.05395 
- 0.04359 
- 0.03102 
____ 

RE RT 

t 0.00000 

t 0.02626 

____ -__ 

t o.onti70 

t n.05715 
t 0.0969i 
t n . i w s  
t 0.19126 
t 0.23933 
t 0.28416 
t 0.32359 
t 0.35624 

+ 0.00000 + 0.06622 + 0.12894 + 0.18499 + 0.23187 
t 0.26792 + 0.29248 + 0.30589 + 0.30940 + 0.30195 + n.29492 

0 
0.1 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.2 

- 0.00000 

- 0.35096 
- 0.51686 
- 0.67264 
- 0.81680 
- 0.94931 
- 1.07141 
- 1.18549 
- 1.29169 
- 1.40258 

- 0.17749 
- o.ooono 
- 0.00246 

- 0.02093 
- 0.n3un 

- 0.00964 

- 0.05188 
- 0.06909 
- 0.08574 
- 0.10070 
- 0.11304 
- 0.12215 



k I ReFB 1 IniFB 

0.1 - 0.01520 - 0.45984 + 11.00662 + 0.04380 + 0.02547 t 0.22856 
0.2 - 0.05854 - 0.90779 + 0.02585 + 0.08377 + 0.09969 i- 0.44311 
0.3 - 0.12350 - 1.33362 + 0.05609 + 0.11648 + 0.21629 + 0.63109 
0.4 - 0.200023 - 1.73017 + 0.09460 + 0.13917 + 0.36547 + 0.78259 
0.5 - 0.27690 - 2.09437 + 0.13810 + 0,150112 + 0.53503 + 0.89135 
0.6 - 0.34127 - 2.42769 + 0.18293 + 0.14830 + 0.71175 + 0.95525 
0.7 - 0.38241 - 2.73592 + 0.22548 + 0.13445 + 0.8~279 + 0.79637 
0.8 - 0.39214 - 3.02847 + 0.26247 + n.iog9n + 1.03695 + 0.96052 
0.9 - 0.36617 - 3.31708 + 0.29133 + 0.07699 + 1.16586 + 0.91647 
1.0 - 0.30460 - 3.61429 + 0.31034 f 0.03863 + 1 . 2 ~ 4 ~ 1  + 0.54475 

0 - n.oonnn - o.noono + n.ooooo + n.oooon + n.noooo + n.oonno 

+ 0.05527 + 0.21843 

c.5 + 0.14221 -k 0.33025 
f 0.19440 -t 0.37112 

0.7 
0.8 
0.9 - 0.21966 -1.62119 

- 0.23152 - 1.98552 

f 0.09501 + 0.27901 

I Re&, 1 I m Q B  I R E %  1 l m R B  

+ o.ooono + 0.00529 + 0.03279 + 0.01909 -t 0.15205 + 0.02066 + 0.06241 + 0.07453 + 0.29293 
0.3 
0.4 

0.6 
0.7 

0.9 

0.5 

0.4 

1.0 

- 0.08036 - 0 . 6 ~ ~  + 0.04465 + 0.08599 + 0.16102 '+ 0.41266 
- C.12754 - 0.83689 + 0.07mi + 0.10129 + 0.27046 + 0.50358 

- 0.20119 - 1.13576 + 0.14331. i- 0.10225 + 0.51735 + 0.58413 
- 0.21032 - 1.25948 + 0.17515 + 0.08792 + 0.63378 + 0.57511 

- 0.146m - 1 . m 8 9  + 0.~2108 + 0.03637 + 0.81007 + 0.48518 

- 0.17092 - 0.99675 + o.inx92 + 0.10687 + 0.39282 + 0.5~110 

- n . m x n  - 1.3v.xn + 0.20176 + 0.06526 + 0.73341 + 0.53951 

- 0.07308 - 1.62877, + 0.23184 + 0.003~2 + 0.86064 + 0.42123 

~~ 

- o.nonoo - o.nnono - aooono - o.ooooo + n.oooon 
- 0.01489 - 0.30470 . - 0.00753 - 0.02952 + n.ozni1 
- 0.05376 - 0.59159 - 0.0~815 - 0.05187 + 0.07558 

- 0.00382 - o.i535f, - n .oom - 0.01524 + 0.00511 

- 0.03210 - 0.45129 - 0.01647 - 0.04198 i- 0.0440s 

0.5 - 0.07770 - 0 . ~ 5 3  - 0.04182 - 0.05862 + 0.11277 
- 0.10156 - c.84972 - 0.05662 - 0.06193 + 0.1535~i 
- 0.12299 . - 0.96752 - 0.07165 - 0.06169 + 0.19576 

0.9 - 0.15602 - 1.18576 - 0.09902 - 0.05138 + 0.27645 
1.0 - n.iws - i."m - 0.10997 - n.n4zzz t 0.31170 

-0.13990 - 1.07900 - 0.08605 - 0.05805 + 0.23733 

+ o.oonoo 
+ 0.11233 

+ 0.20692 

+ 0.05734 

f 0.16280 

f 0.24335 
t 0.27128 + 0.29052 

+ 0.30494 
f 0.30229 

+ 0.30144 

- 
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TABLE 8. 

$1 = + 2.50000. 

k Im G ,  
____ ~ _ _  
+ o.oonon 
+ 0.04868 + 0.06917 + 0.08534 + 0.09619 

+ 0.02513 

+ 0.10108 + 0.09975 + 0.09232 + 0.07929 + 0.06147 

Re G ,  

+ n.noooo + 0.00325 + 0.01279 

+ 0.04805 + 0.07161 + 0.09730 + 0.12360 + 0.14902 

+ 0.02604 

+ 0.17212 + 0.19177 

Re If, 

+ aonnoo + 0.01599 + 0.06305 

+ 0.23799 + 0.35608 

+ 0.13848 

+ 0.48640 + 0.62223 + 0.75699 + 0.88467 + 1.00028 

Im F B  

- 0.00000 
- 0.34836 
- 0.69210 - 1.02707 - 1.35005 
- 1.65911 
- 1.95379 
- 2.23518 
- 2.50588 - 2.76969 - 3,03136 

Im H B  

+ o.nnono + 0.17336 + 0.33952 + 0.49178 + 0.62440 + 0.73295 

+ 0.86835 + 0.89479 

+ 0.81463 

+ n . m x  + 0.87639 

K e  F a  

- 0.00000 
- 0.00659 - 0.02557 
- 0.05472 
- 0.09056 
- 0.12873 
- 0.16442 
- 0.19286 - 0.20981 
- 0.21202 
- 0.19748 

n 

0.3 

0.5 

0.7 
0.8 
0.9 

0.1 
0.2 

0.4 

0.6 

1.0 

Re F ,  Im P:, Re GT Im GT R E  HT Im €IT 

- n.oonoo 
- 0.00220 
- 0.00866 
- 0.01892 
- 0.03225 
- 0.04773 
- 0.06427 
- n.0807~ 
- 0.09594 
- n.10886 
- 0.11759 

- n.oooon 
- 0.01445 

- 0.04094 

- 0.06073 

- 0.07079 
- 0.08638 
- 0.06992 
- 0.06555 

- 0.02829 

- 0.05190 

- 0.06710 

~ ~ 

+ n.ooono + 0.05795 + 0.11445 + 0.16813 

+ 0.30089 + 0.33309 

+ 0.21775 + 0.26227 

+ 0.35862 + 0.37754 
f 0.39014 

Im R, 

+ 0.00000 

+ 0.22507 + 0.32365 + 0.40665 

+ 0.51374 + 0.53526 + 0.53617 + 0.51872 

+ 0.11541 

+ 0.47068 

+ 0.48625 

+ o.oooon + 0.00401 + 0.01587 + 0.03m + o.06106 

+ 0.16846 + n.2inni  + 0.25229 + n.zwn9 

+ 0.09271 + 0.12892 

Re RB 

+ n.nnooo + o.nii99 + 0.04719 + 0.10335 + 0.17693 + 0.26337 + 0.35747 + 0.45377 + 0.54698 + 0.63239 + 0.70618 

- n.onnon 

- 0.51855 
- 0.68632 
- 0.850~2 

- 0.17438 
- 0.34759 

- 1.00979 
- 1.16489 
- 1.31569 - 1.46263 
- 1.60642 

- 

Im Pe 

- o.onnoo 
- 0.17395 
- 0.34451 
- 0.50852 

- 0.80890 
- 0,94400 

- 0.66373 

- 1.07029 
- i.19019 - 1.30706 - 1.42494 

- o.nnoo0 
- 0.00149 
- 0.00589 

- 0.03408 
- 0.04711 

- 0.08967 
- 0.10317 

Re QB 

+ o.onnoo + o.00260 + 0.01022 + 0.02236 + 0.0382i + 0.05673 + 0.07674 

+ 0.11608 + 0.13301 

- 0.01302 
- 0.02256 

- 0.06110 
- 0.07547 

+ 0.09694 

t 0.14674 

n 
0.2 
0.3 

0.5 

0.1 

0.4 

0.6 
0.7 
0.6 
0.9 
1.0 

~ 

Im Q B  

+ 0.onooo + 0.01882 

+ 0.06269 

+ 0.06886 + 0.05462 + 0.04878 

+ 0.03633 + 0.05131 

+ 0.06969 + 0.07180 

+ 0.03256 

no Ps 

- o.nooon - 0.00438 
- 0.01691 
- 0.03580 
- 0.05831 
- 0.08100 

- 0.11213 

- 0.10315 
- 0.07889 

- 0.1nni4 

- 0.11388 

RE Pr 

- o.oonnn 

- 0.014in 

- 0.03518 

- 0.05836 

- 0.00165 - 0.00648 

- 0.02392 

- 0.04697 

- 0.06694 - 0.07634 
- 0.08141 

n 
0.2 
0.1 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

1.0 
0.9 

Im P, 

- o.onnon 
- 0.11623 

- 0.45599 

- 0.23152 
- 0.34502 

- 0.56391 
- 0.66845 
- 0.76956 
- 0.86743 
- 0.96249 
- 1.05538 

Re QT 

- - 

- o.nooon 
- 0.00124 

- 0.01083 

- 0.02827 

- 0.00491 

- 0.01874 

- 0.03899 
- 0.05043 - 0.04265 
- 0.07353 
- o.nsm 

Im RT 

+ o.00000 + 0.04344 + 0.08568 + 0.12557 + 0.16209 + 0.19439 + 0.22183 + 0.24401 + 0.26077 + 0.27220 + 0.27861 

Im QT 

- n.ooon0 
- 0.01155 
- 0.02258 

- 0.04117 

- 0.05258 

- 0.05505 
- 0.05285 

- 0.03260 

- 0.04792 

- 0.05498 

- 0.04851 

RE RT 

+ o.onooo + 0.00320 + 0.01268 + 0.02804 + 0.04867 + 0.07374 + 0.10228 + 0.13323 + 0.16550 + 0.19801 + 0.~2977 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
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TABLE 9. 

N = + 3.00000. 

k Re F l B  In1 FIB Re G ,  Im'GB 

+ 0.00000 + 0.01652 + 0.03217 + 0.04611 + 0.05762 + 0.06609 + 0.07107 + 0.07231 + 0.06973 + 0.06347 + 0.05382 

Re H g  

+ 0.00000 + 0.01174 + 0.04643 + 0.10258 + 0.17739 + 0.26785 + 0.36996 + 0.47947 + 0.59199 + 0.70331 + 0.80954 

Im H E  

+ 0.00000 + 0.14063 + 0.27655 + 0.40331 + 0.51696 
i 0.61424 + 0.69278 
i 0.75117 + 0.78899 + 0.80687 + 0.80632 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 : 
0.9 ' 
1.0 

- 0.00000 
- 0.00350 
- 0.01366 
- 0.02940'- 
- 0.04907 
- 0.07055 
- 0.09145 
- 0.10928 
- 0.12174 
- 0.12686 
- 0.12320 

- 0.00000 
- 0.28245 
- 0.56256 

- 1.10772 
- 1.36990 - 1.62430 
- 1.87119 
- 2.11156 
- 2.34709 
- 2.57995 

- 0.a3822 

+ 0.00000 + 0.00197 + 0.00778 + 0.01714 + 0.02956 + 0.0'4444 

+ 0.07847 + 0.09597 + 0.11269' + 0.12785 

+ 0.06101 

Re HT Im HT Re GT 

- 0.00000 
- 0.00112 
- 0.00443 

- 0.01706 
- 0.02593 
- 0.03610 
- 0.04723 
- 0.05891 
- 0.07077 
- 0.08243 

- a.oo98o 

Re Q B  

+ 0.00000 + 0.00158 + 0.00622 + 0.01367 + 0.02353 + 0.03527 + 0.04824 + 0.06177 + 0.07514 + 0.08767 + 0.09871 

Re PT 

- 0.00000 

- 0.00462 
- 0.01012 
- 0.01734 
- 0.02582 
- 0.03504 
- 0.04443 
- 0.05338 
- 0.06133 
- 0.06778 

Re PB 

- 0.00117 

- o.noooo 
- 0.00233 
- 0.00904 
- 0.01928 
- 0.03174 
- 0.04473 - 0.05640 
- 0.06486 - 0.06836 
- 0.06552 
- 0.05542 

Im PT 

- 0.00000 
- 0.14132 
- 0.28206 
- 0.42165 
- 0.55962 
- 0.69559 
- 0.82928 
- 0.96058 
- 1.08949 
-1,21617 

-_ - 

- 1.34092 

Ini GT 

- 0.00000 
- 0.01172 
- 0.02302 
- 0.03351 
- 0.04283 
- 0.05066 
-0.05674 
- 0.06088 
- 0.06296 
- 0.06296 
- o.mn91 

11% Q B  

+ 0.00000 + 0.01238 + 0.02403 + 0.03426 + 0.04248 + 0.04818 + 0.05101 + 0.05079 + 0.04757 + 0.04121 + 0.03228 

+ 0.00000 + 0.00294 + 0.01167 + 0.02592 + 0.04526 + 0.06914 + 0.09685 + 0.12762 + 0.16063 + 0.19502 + 0.22997 

RE R, 

+ 0.00000 + 0.00880 + 0.03476 + 0.07565 + 0.13213 + 0.19872 + 0.27312 + 0.35185 + 0.43136 + 0.50828 + 0.57956 

+ o.oonoo + 0.04698 + 0.09302 + 0.13720 + 0.17869 + 0.21676 + 0.25080 + 0.28036 + 0.30514 + 0.32502 + 0.34003 

I m  RB 

+ 0.00000 + 0.09365 + 0.18353 + 0.26611 + 0.33827 + 0.39748 + 0.44198 + 0.47080 + 0.48385 + 0.48185 + 0.46628 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 ' 

1.0 

Im PB 

- 0.00000 
- 0.14112 
- 0.28050 
- 0.41657 
- 0.54809' 

- 0.79502 
- 0.91061 
- 1.02208: 
- 1.13092 
- 1.23904 

___ ___ 

- 0.67431 

$ 0  
0.1 
0.2 
0.3 ' 

0.4 : 
0.5 
0.6 
0.7 ' ' 
0.8 

1.0:  ' 

0.9 ' .  ~' 

I m  RT 

+ o.noooo + 0.03522 + 0.06966 + 0.10255 + 0.13321 
+ 0.16103 + 0.18553 + 0.20634 + 0.22324 + 0.23615 + 0.24515 

Im PT 

- o.oonoo - 0.09420 
- 0.18793 
- 0.28076 

- 0.46224 
- 0.55041 - 0.63673 
- 0.72123 
- 0.80408 - 0.88554 

- 0.37229 

Re QT 

- 0.00000 
- 0.00093 
- 0.00369 

- 0.01418 
- 0.02152 
- 0.02992 
- 0.03905 
- 0.04859 
- 0.05821 
- 0.06757 

- 0.00816 

Ini QT 

- 0.00000 
- 0.00937 
- 0.01838 
- 0.02670 
- 0.03402 
- 0.04006 
- 0.04462 
- 0.04754 
- 0.04871 
- 0.04813 
- 0.04584 

-~ - 

Re RT 

+ 0.00000 

+ 0.00933 + 0.02070 + 0.03611 + 0.05506 + 0.07697 + 0.10118 + 0.12700 + 0.15370 + 0.18060 

+ 0.00235 

Ro P T  

- o.noooo 
- 0.00088 
- 0.00345' 
- 0.00755 
- 0.01288' 
- 0.01907 
- 0.02569 
- 0.03227 
- 0.03832 
- 0.04340 
- 0.04710 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 ' 
0.8 
0.9 ' 

1.0 
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TABLE i n .  

k Ile  FB 

0.3 0.01773 I 0.4 I 1 0.02972 
0.5 

0.8 
0.9 

0.6 
0.7 

1.0 

- 0.04299 - 0.05615 
- 0.06775 - 0.07640 
- n.oso8'i 
- 0.08018 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 I 0.8 
0.9 

0 
0.1 

0.4 
0.5 
0.6 
0.7 

1.0 

0.2 
0.3 

0. 8 
0.9 

- o.noooo - o.on070 
- 0.00277 
- 0.00609 
- 0.01046 

- 0.02130 
- 0.01563 

- 0.0271 3 
- 0.03279 
- 0.03792 
- 0.04223 

- o.nnooo 
- o.oo14n 

- 0.01927 
- 0.02736 
- 0.03485 
- 0.04062 

- 0.03795 

- 0.00544 
- 0.01164 

- 0.04362 
- 0.04295 

Re Pr 

0.6 

0.9 

0.7 
0.8 

1.0 

- 0.01564 

- 0.02696 

- 0.01975 
- 0.02362 

- 0.02953 

I m  Fa 
___ 
- n.onooo 

- 0.47521 

- 0.94024 

- 0.23826 

- 0.70954 

- 1.16661 
- 1.38828 
- 1.60532 - 1.81821 

- 2.23535 
- 2.0278~ 

I m  Fr 

- n.onooo 
- n . i m o  - 0.23806 
- 0.35625 
- 0.47350 
- 0.58956 
- 0.70427 
- 11.81754 
- 0.92936 
- 1.03979 
- 1.14898 

In1 P, 

- o.noooo 
- 0.11906 
- 0.23715 
- 0.35329 
- 0.46675 
- 0.57705 
-. 0.68401 

- 0.98803 

- 0.78778 
- 0.68885 

- 1.08637 

illl PT 

- 0.00000 

- 0.15864 
- 0.23730 
- 0.31520 
- 0.39217 

- 0.51287 
- 0.61654 
- 0.68918 
- 0.76092 

--- ___ 
- 0.07946 

- 0.46808 

, R e  GB 

+ 0.00000 + 0.00134 + 0.00529 

+ 0.02022 + 0.03053 + 0.04214 

+ 0.06722 

+ 0.01168 

+ 0.05456 

+ 0.07960 + 0.09118 

ne (fT 

- 0.00000 
- o.oon9o 
- 0.00357 

- 0.01380 
- 0.02105 
- 0.02942 
- 0.03866 - 0.04847 
- 0.05857 

- 0.00791 

- 0.06866 

Re Qn 

+ o.noonn + o.noio7 + 0.00423 + 0.00932 + 0.01611 + 0.02425 + 0.03337 + 0.0~303 + 0.05277 

+ 0.07071 
+ 0.06214 

Ile QT 

- o.onooo 
- 0.00075 
- 0.00297 
- 0.00659 

- 0.02439 

- 0.04003 
- 0.04825 
- 0.05639 

- 0.01148 
- 0.01748 

- 0.0319 

l m  Gs 

+ 0.00000 + o.nii76 + 0.0~295 

+ 0.04158 + 0.04811 + 0.05234 + 0.05407 

+ 0.03305 

+ 0.05318 + 0.04971 + 0.04379 

Itn GT 

- o.nonoo 
- 0.00988 
- 0.01946 
- n.02841 

- 0.04891 
- 0.05293 
- n.oii532 
- 0.05602 

- 0.03646 
- 0.04337 

- 0.05503 ___ 
Itn QB 

+ n.nnoon + 0.00881 + 0.01715 + 0.02458 + 0.03071 + 0.03516 + 0.03776 + 0.03828 + 0.03669 

+ 0.02738 
+ 0.03301 

h QT 

- o.oonoo 

- 0.02265 

- 0.03854 

- 0.04297 
- 0.04306 
- 0.04175 

- 0.00791 
- 0.01554 

- 0.02898 
- 0.03434 

- 0.04144 

Re Ha  

+ 0.00000 

+ 0.03697 
+ 0.00933 

+ 0.67771 + 0.08183 + 0.14217 + 0.21572 + 0.29971 + 0.31909 + 0.48666 + 0.58322 

Re H ,  

+ o.oonoo + 0.00234 + 0.110928 + 0.02066 + 0.03617 + 0.05543 

+ 0.10317 + 0.13052 

+ 0.07794 

+ 0.15937 + 0.18909 

Re R, 

+ o.oonon 

+ a06117 + n.io600 + 0.1~029 + 0 . ~ ~ 1 7 6  + 0.28791 + 0.35614 

+ 0.00700 + 0.02769 

+ 0.42385 + 0.48862 

Re RT 

+ o.oooon 

+ 0.00742 

+ 0.02887 + 0.04417 

+ 0.10337 

+ 0.14889 

+ 0.00187 

+ 0.01650 

+ 0.05200 
f 0.08190 

+ 0.12587 

Im fly 

+ 0.00000 + 0.11867 + 0.23386 ' + 0.34226 + 0.44086 + 0.52710 

+ 0.69510 

+ 0.59901 + 0.65523 

+ 0.71863 + 0.72652 

l m  H T  

+ o.onnno + 0.03964 + 0.07857 

+ 0.18469 

+ 0.11614 + 0.15170 

+ 0.21464 + 0.24116 + 0.26397 

-I- 0.29792 
+ 0.28291 

Im Rs 

+ n.oooon + 0.0~904 

+ 0.22612 
+ 0.15529 

+ 0.28916 + 0.34241 + 0.38437 + 0.41407 + 0.43113 

+ 0.42859 
+ 0.43572 

Im R ,  

+ n.oonno + 0.02972 + 0.05885 + 0.08684 + 0.11317 

+ 0.15905 

+ 0.20637 + 0.21584 

+ 0.13737 

+ 0.17790 + 0.19372 
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TABLE 11 

M = + 4.00000, 

Re €In 

t- 0.00000 
4 0.00778 + 0.03085 + 0.06839 + 0.11910 + 0.18123 + 0.25268 + 0.33109 + 0.41394 + 0.49867 + 0.58278 

Im Gg 

+ 0.00000 + 0.00882 + 0.01725 + 0.02491 + 0.03145 + 0.03659 + 0.04008 + 0.04176 + 0.04154 + 0.03941 + 0.03544 

17% H 

+ 0.00000 + 0.10282 + 0.20287 + 0.29751 + 0.38433 + 0.46122 + 0.52648 + 0.57890 + 0.61774 + 0.64281 + 0.65441 

Re Gs 

+ 0.00000 + 0.00097 + 0.00386 + 0.00853 + 0.01479 + 0.02239 + 0.03100 + 0.04029 + 0.04966 + 0.05934 + 0.06836 

- 
Re F ,  

- 0.00000 
- 0.00137 
- 0.00534 
- 0.01155 
- 0.01942 
- 0.02819 
- 0.03699 
- 0.04489 
- 0.05099 
- 0.05447 
- 0.05466 

Z7n F g  

- 0.00000 
- 0.20641 
- 0.41196 
- 0.61585 
- 0.81742 
- 1.01618 
- 1.21190 
- 1.40456 
- 1.59444 
- 1.78205 
- 1.96810 

IC 

0 
0.1 
0.2 ' 
0.3 
0.4 
0.5 ' 
0.6 
.0.7 
0.8 ' . 
0.9 
1.0 

Im GT ' R e  HT Re Gr ZnL I€, 

+ 0.00000 + 0.03433 + 0.06811 + 0.10080 + 0.13189 + 0.16093 + 0.18751 + 0.21132 + 0.23209 + 0.24967 + 0.26396 

Re Pj 

- 0.00000 
- 0.00046 
-0.00180 
- 0.00396 
- 0.00682 
- 0.01021 - 0.01394 
- 0.01782 - 0.02160 
- 0.02509 - 0.02807 

Zm FT 

- 0.00000 
- 0.10324 
- 0.20627 
- 0.30887 

- 0.51210 
- 0.61247 
- 0.71190 
- 0.81038 
- 0.90793 
- 1.00466 

- 0.41087 

+ 0.00000 + 0.00195 + 0.00774 + 0.01725 + 0.03025 + 0.04644 + 0.06546 + 0.08688 + 0.11025 + 0.13508 + 0.16087 

Re Rg 

+ 0.00000 + 0.00583 + 0.02310 + 0.05114 + 0.08885 + 0.13479 + 0.18723 + 0.2w21 + 0.30369 + 0.36359 + 0.42192 

~ _ _ _ _  

0 
0.1 
0.2 
0.3 
0.4 
0 5  
0.6 
0.7 
0.6 
0.9 
1.0 

- 0.00000 
- 0.00076 
- 0.00300 
- 0.00666 
- 0.02164 
- 0.01778 
- 0.02492 
- 0.03282 
- 0.04128 
- 0.05006 
- 0.05891 

]le QB 

- 0.00000 
- 0.00857 
- 0.01668 
- 0.02468 
- 0.03176 
- 0.03789 
- 0,04291 
- 0.04668 
- 0.04908 
- 0.05007 
- 0.04962 

I n i  Q, 

+ 0.00000 + 0.00661 + 0.01269 + 0.01854 + 0.02326 + 0.02680 + 0.02900 + 0,02970 + 0.02656' + 0.02648 + 0.02263 

Z7n R, Ile Pn 

- 0.00000 
- 0.00091 - 0.00354 
- 0.00759 
- 0.01261 
- 0.01798 
- 0.02304 - 0.02707 
- 0.02938 
- 0.02938 
- 0.02659 

I m  PB 

- 0.00000 
- 0.10317 
- 0.20569 
- 0.30698 
- 0.40655 
- 0.50408 
- 0.59943 
- 0.69267 
- 0.78407 
- 0.87411 
- 0.96344 

~~ 

+ 0.00000 + 0.06845 + 0.13476 + 0.19761 + 0.25244 

+ 0.33897 + 0.36758 + 0.38565 + 0.39315 + 0.39045 

Zni RT 

+ 0.00000 + 0.025i4 
-t 0.05102 + 0.07540 
+ 0.09644 + 0.11978 
4- 0.13909 + 0.15611 + 0.17063 + 0.18254 + 0.19178 

+ 0.30029 

__- 

- 

+ 0.00000 + 0.00078 + 0.00308 + 0.00681 + 0.01178 + 0.01779 + 0.02457 + 0.03181 + 0.03920 + 0.04642 + 0.05315 

0 
0.1 
0.2 

.0.3 
0.4 .' 

0.5 ' ' 
0.6 
0.7 
0.8 
0.9 
1.0 

Z?,l P ,  n e  RT 

+ 0.00000 + 0.00156 + 0.00619 + 0.01378 + 0.02414 + 0.03702 + 0.05210 + 0.06902 + 0.08740 + 0.10682 + 0.12686 

Ile QT 

- 0.00000 
- 0.130062 
- 0.00250 
- 0.00555 
- 0.00966 
- 0.01477 - 0.02067 
- 0.02718 
- 0.03412 
- 0.04127 
- 0.04844 

Zm QT 

- 0.00000 
- 0,00655 
- 0.01346 
- 0.01968 
- 0.02526 
- 0.03003 
- 0.03385 
- 0.03660 
- 0.03820 
- 0.03861 
- 0.03781 

Xe P,  

- 0.00000 
- 0.00034 
- 0.00135 
- 0.00296 
- 0.00507 
- 0.00755 
- 0.01025 
- 0.01299 
- 0.01559 
- 0.01768 
- 0.01970 

' 0  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.00000 
- 0.06882 
- 0.13747 
- 0.20579 
- 0.27362 
- 0.34085 
- 0.40739 
- 0.47321 
- 0.53830 
- 0.60269 - 0.66648 




