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Summarx.

The supersonic flow around axially-symmetric and quasi axially-
symmetric bodies is investigated Withra twofoid-purposa. One purpose
is to -determine whethér or not thé linearized potential flow theory
can give an adequate description of the flow-field around such bodiss,
The other purpese is to forward more reliable methods of éompufation
for those cases where thé results of the investigations lead to the
conclusion that this theory is inadequate.

A consideration of the mass~ aﬁd mémenfum flow through conveniently
chosen control surfagés, provéé thatlona can obtain a quantitative
measure for the error made by using linearized theory, The usefulness
of this‘concept is emphésized by making a direct oomparispn between
the results of linearized theo;y and those of more exact theories,

For axially-symmetric bodies such a comparison can be obtained-
by using an exact method of éharactéristics. The results show that
the linearized theory is of only limited value, particularly so.when
an in¥erference bétween various parts of a configuration occurs,

This leads to the investigation of optimum. shapes of axially-
symmetiric bodies with a given base-afea by using the non—linear
differential equations of isentropic flow, The same maés— and momentum
flow equafions are used here as fﬁr the determinatiqn of the adequate- .
ness of linearized theorf.

For the quasi~axi§11y—symmetric bodies a comparisén'can only

be'obtaiped‘for the flow around an inclined cone, since it is



the only case which hés been studied by using more édvanced methogé.
.Once more it is found that in mgst céseé_thq linearized theor3A§oqa
not give reliahie resulfs. ThefefOre a method is'iresented for the
galculatibn-of.the flow field-around‘axially—symméifio'quiag.with
axis-ihclinations. This method oconsists, anﬁlégouélto thathforbfhe
cone, of‘superposing a ﬁerturbation on the purel& axialiy%ey?metrio “
flow fiéld. It 15‘g1§en in such a form that it is pbssible télperform."
the §alou1gtions by using & method of oharaoéeristiqs baqéd 5£-the.
characteristics of the axially-symmetric flow field, The ana1ysi§ is
restricted to terms whioﬁ deﬁend‘on the first order of a emall

deformation parameter,




1 General introduction,

The study of supersonic flow has a history of about one century. It
was initiated by investigating the wave phenomena related to the propa-
gation of sound, A now classical paper was written in 1860 by Riemann
(ref.,1) on the jheofy of waves of finite amplitude paving the way for the
development of the.mathemafical theory of hyperbolic equations,

Although the possibility of discontinuous solutions was recognized
rather early, ii was not until the publication of the works of Rankine
(ref.2) and Hugoniot (ref,3) that the equations for -shock-waves were
established as they are known today. At about the same time the first
- practical arblication of supersonic flow was made by the Swedish sngineer
Gustave de laval, the discoverer of the nozzle named after him, This type
of ducet is and has been of fundamental importance for the development of
suparéonic aerodynamice, since it plays an essential role in the operation
of wind’ tunnels,

In the beginning of this century progresz into the study of plane
supersonic flow waé made through the important work of Prandtl and his co-
workers, They discovered and elaborated the so called simple wave flow,
thus making it possible ito design two-dimensional de laval nozzles that
are perfect,

‘However, it may be stated that the great impetus to the investigation
of supersonic aercdynamics was not made until about 1930, Two distinct
lines of approach were then initiated{ .

The first approach relies on the assumption that the disturbance
velocities, caused by bodies moving faster than the speed of sound, are
small compared to the undisturbed velodify. It is evident that such a
-theory is restricted in its range of applicability, i.e, the bodies have
to be slender and the Mach number not too high, On the other hand, the sim-
plification reached by linearizing the governing differential equations
opens the poseibility to obtain results, which otherwise can not be found,
The researchea of Ackeret on plane flow (ref.ﬁ) and of von Kérmédn and
Moore (ref,.5) on axially-symmetric flow were the starting point for nume~
rous applications of these perturbation metheds,

The second approach tries to find physioaliy acceptable solutions of
the non-linear differential equations, governing supersonic flow. For plane

flow several exact solutions waere known. The first exact solution for an



axialljasymmatric gupersonic flow was given by Taylor and Maccoll (ref.ﬁ).
Thelr work on the flow around a cone, can atill be comsidered the starting
poiht for later investigations of more general flow fields, bj the method
of characteristics,

It is interesting to see how these two approachas havs daveloped
8ince their initiation, '

Especlally during the second world war and thereafter the numbar of
problems studied and solved by using perturbation methods, leadingz to

linearized equationa; are uncountable. Atiention may be drawn to examples

. such aslthe,supersonig‘fluw around inolinedlbudies, and the study of the

cptimum shape of axially-symmetric configurations with respect to wave drag,
To account for such broad applications of in faot only approximate methods,
various reasons may be given,

One of the most important reasons in the opinion of the authorj, ia the
faot that there was already a well-developed mathematical theory fof"linear
partial differential equations, which together with the principle of super-

- poaition could be used to reduce many very complicated yroblems to a few

simpler ones,
The study of exact flow f1elds around axially-symmetric configurations

‘was stimulated by the publication of a comprehensive table of the flow

around a cone by Kopal et, al in 1947 (ref.7). This table was obtained by
numerical integrations of the equations of Taylor and Maccoll. It is
interastlng to note that these computations were performed wlth the aid of
ordinary desk computers, .

A further step forward in this field was made by Stone, who detérmined
the flow around an inclined cone,corract up to the first order in the angle
of incidence(ref.8).The second or&er term has subsequently Been determined,
Extensive tables of the data obtained have also been given by Kopal (ref.9
and 10), _ ,

‘In the mean time several papers had appeared, exploring tﬁe‘applicabi-
lity of the theory of characteristioc surfaces and characteristic equations
partinent to hyporbﬁlic aquationa; for the numeriqal ealculation of_the

 flow field around axially-symmeiric bodies, The researches of Ferri-m&y be

mentioned here, especially since he tried to gensralizes the method of Stone
for bodies at an angle of attack (ref,11), by using 'a method of charaoter-

isties, Perri (ref.12) was also the first to point out an inconsistency




\n

in'the theory of Stone who ignored the singular behaviour of the entropy
at the surface of an -inclined cone, This criticiesm, leading to the concept
of a vortical laysr, does not influence, hawevér, the pressurs distribu-—
tion obtained by the first order theory. of Stone,

A natural and important question iss"How do the resulis obtained by
the linsarized and the exact theory compare?ﬁA direct comparison, however,
ie only possible if there are bodies for which the flow can he calculﬁted
by using both mathods, ~ As is evident from the foregoing discussion,
this is the case for the éone.'Already in 1947 this comparison was made
by Kopal (ref.13). Although only valid for a coné, this work constitutes
a sharp criticism'against the use of the linearized theory. Already at
that time it was remarked: "if we wish to progress with quantitative in- -
vaestigations of supersonic flow around solid bodies,....., we cannot avoid
the non-linear character of these problems", It is quite astonishing that
this serious warning against the use of linearized theofy seoms . to have
had no effect, for since that time a tremendous number of papers om -
linearized methods have appearad;

However, though it is very easy to say that problems should be solved
by more exact methqu,‘aﬁch a remark has little signifiocance when such
more exact methods are not available, or if time and money are prohibitive
to their application, which was certainly the case at the time they were
proposed., On the other han&, quite a number of papers have appeared which
have attempted to define the range of validity of the linearized theory,
As an example of such a paper, the one by Miles may be mentioned (ref.14).
However, all the results of these researches have the drawback that théy
lead to rather vague requirements, not giving a quantitative measure for
tha erfor.which is made by using linearized theory.

Moreover a variety of methods have been proposed to improve the Te~-
sults of the first—~order linrearized theory, Such a procedure for instance
is given by van Dyke (ref,15)..This second-order theory, howevef, doss
not extend the renge of validity very much, s0 that its practical useful -
nese is only limited, A comparison of the results obtained by usiﬁg these

improved methods has been given by Ehret (ref,16). The conclusions reached
are that the range of body shapes, fineness ratios and Mach numbers for
which these theories give acceptable results, is limited, It should be
born in mind that this applies only to the pressure distribution along




the body, Researches on the validity of the linearized theory for the
determination of the whole flow field, show that the deviations between
linearized and exact results become larger in the outer flow field, This
makes it rather doubtful if linearized theory can be used to solve pro-
bléms of interference in a reliable sense, One important representative

‘of these problems is the search for optimum shapes with respect to wave
drag, In this case a certain part of the fuselage has to interfere with
all the other parts in such a way that the-wave drag is as loy as possible,

The point of view suggested by the results of the mentioned research-
88 can be summarized now as followsy

Evidently the linearized potential theory is the simplest tool
avalilable for analysing supersonic flow around a certain configuraticn.
However, in practice no measure of the quantitative error made is possible,
if no comparison can bé made with exact results, Up to now, there are only
very few problems which can be solved by using exact methods,

On the other hand the application.of exact metheds for the numarical
determination of a flow field, ﬁhich required a large amount of'time
becausa no electronic computers were available when they were prbposed
for the first iime, has become much simplér due to the rapid development
of thess devices, Therefore it seems advisable to use these exact methods
wherever possible, in order to avoid the uncertainty of the values obtain-
ed by uéing the linearized theory, This implies the development of ap-
propriate methods for a variety of problems,

The task set forward by these considerations can therefore be
described as follows: ' .

1, A method should be found to measure the quantitative error in the
resulis of the linearizaed theory which would not require makiﬁg a direct
comparison between these results and the results obtained by using other
more exact theories,. _ |

2., For cases where it has been shown that linearized theory cannot be
applied, methods-should be developed which would be both numerically.
applicable to, as well as based on the exact diffarential equations of

sﬁpersonic flow,

It is the purpose of this thesis to investigate along these lines

a rather small domain of the theory of supersonic flow,




Two classes of probleme will be considered: In the first place the
flow around axially-symmetric configuratioﬁs where the axis is aliéned
with the direction of the undisturbed free streamy in the second rlacs the
flow around a quasi axially-symmetric body will be considered (such a dbody
is obtazined by deforming the axis of an initially axially-symmetric‘pody.
A configurntion at an angle of attack is one of the most simple exaﬁples).

To achieve a systematio representation the paper has besn divided
into three main parts,

The first part gives a general account of the equations governing.
supersonic flow and shook waves, deriving thersby the frequently used
equations needed in the other two parte, _ _

The second part contains the results of investigations on the super-
sonic flow around axially-symmetric configurations, First a quantitative
measure for the srror in using the method of linearized theory is given
by considaering mass flow and momentum flow thrbugh conveniently chosen
control surfaces, Especially for the floﬁ around a cone simple results
are obtained, but the method is equally applicable to more general axlally-
symmetfic bodies, For greater undefstanding of thg.usefulness of this con~
cept, a direct cowparicon is systematically given between the results of
flow phenomena obtained by calculating with an exact method of character-
istics and thoss results obtained by using the linearized theory. The re-
sults obtained shov that linearized theory is of only limited value,
especially when it is used on those problems wherélinterference occurs,

When using the non~linear equations of supersonic flow this insight
leads to the investigation of -optimum shapes of axially—symﬁetric bodies
with a given base area, The discussion will be restricted here to the
case whers the flow in a certain part of the flow ie isentropic.,

Inrthe third part thé supersonic flow around quasi axially-symmetric
configurations will be investiguted., Here also will be given a qﬁantitativé
measure of the error made by 'wsing linearized theory, Here, however, the
situation is less favourable for a direct comparison, since only the flow
around a conse at én angle of attack has been solved by using more advanced
methods. Therefore after having shown with momentum transport consider-
afions, that this analysis of the flow around a cone is fully censistent,
an attempt is made to forward a theory which enables the numerical cal-

culation of the flow field around a quasi axially-symmetric body,. The



method proposed is, in fact, analogous to that of Stone, a perturbation
theory superposed on the purely axially-symmetric flow field. The in-
vestigation is limited to the determination of the perturbations up to

the first order of a small deformation parameter,

2 The basic egquations,

Here & rather detailed derivatiorn will be given of the basic
equations, Subsequently the equations for a superscnic domain and for a
three dimensional shock wave will be given., The equations valid for the

linearized potential flow will be summarized.

2.1 The field equations,
In this section the basic equations will be given which are valid

for a domain of supersonic flow not containing shock waves,
It will be assumed that the effects of viscoaity, thermal conduction
and diffusion can be neglected, with the medium gdnsidered an‘ideai gas,
A Cartesian coordinate system Xyy Xpy ¥g will be used (see fig.l:).
The velocities in the directions of the respective axes are given as
Ups Uy Vg | | o
Using the summation convention of Binsatein the equations of motion

and the equation’of continuity can bs written as

34,13 - )

i tox -0 . (2.1
3

do o2k

3% *Paxk =0 | (2.2)

whare p is the density, p the pressure and t denotes time., The symbol %?
is the substantial derivative. The assumptions about the physical pro-

perfiea of the medium give Tisse to the sguations

dQ das

=T © | (2.3)
and
.‘1;’. = WT (2.4)

where Q is the heat added, S the entropy and T the absoluto temperature.




Use will be made of the fact that for a reversible process

d4Q = T8 = d8 -2 dp (2.5)
- P
The internal energy dE for an ideal gas is given by

dB = c dT ' (2.6)
where Cy is a conmstant, viz, the specific heat with constant volume.

Introducing aq, (2,6) into (2.5) the entropy can be written as:

s=c tar-rRlnp | (2.7)

where c_ is the spacific heat with constant pressure,

It is preferable to define a specific entropy by

g .
5 =— ‘ (2.8)
v

~If the values in the undisturbed stream, which is assumed to be
uniform, are given by p=p, , p = P &nd a8 = 0, equation (2.7) can be
written by using eq. (2.4) as

il +8

P =Ce (2.9)
_Y <
whare C = %n o and vy S;EE .
v

It ‘should be remarked that whereas 4o - 0, the value of & is not

at .
in general egual %o zero, because shock waves may have occurred outside
the domain considered,

Differentiating eq. (2.9)‘and using the relation for the velocity

of sound and sq. {2.3), there is obtained

3

E_E.... 2 dp -
g~ * xw=°0 (2.10)
' . 2 ap I
wh = (==) = Y . 2,11
ere a (ap)S 5 ( )

The analysie will be restricted to the case of steady flow hence

%? = % %E% : (2.12)
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If account is taken of eq. (2,12) equation (2.,10) together with eq.
(2.1) and eq. (2.2) multiplied by u;y gives rise to the fundamental

relation
‘ au_ o aui
R, T %, 70 - (2.15)
i i

To obtain another set of squatione, use will be°made of the enthalpy H.

This is defined by _
H:E-ulp’,_'. (2.14)

Using eqs, (2.3) and (2.5) and snbstituting eq. (2.1) times uy into
the differential equation which can be obtained from eq. (2,14), there is
obtained after integration

H4 = wu, = constant along & stream line,

] ‘
Since the flow is assumed to be uniform far upsiream, there holdsg
H +'% w,u, = constant in the whole flow field. (2.15)

Differentiating this equation with respect to x and subtracting
eq. (2.1) there followa:

u ! - "k + BH;f- L% _q (2 165
i axk axi axk P . * ¢

Prom eqs, (2.14) and (2,5) the following general relation can be

obtained
dH—l;-dp:Tds : | (2.17)

This means that the value of a contour integral has to be zero i.e.:

j{{dH - % dp - T ds}: 0. (2.18)

From this result, with the aid of eqs. (2.3), (2.5) and (2.14)
together with the condition that the flow is uniform far upstream, it can
be derived that ‘

2 _1 3 _ .8
=, " ox, Taxk_ . : (2.19)

Introduging this relation into eq. (2.16) there is finally obtained

{ du, du, 2 ,
i 8 s
uy {Bxk - axl}'+ TO=D) sz =0 . (2.20)
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- or in vector notation
2

— —» a -
uxrotu =~ o ) grad s (2.21)

which equation is known as Crocco's theorem,
By using eq. (2.15) and observing that for an ideal gas the enthalpy
is equal to cpT, it follows that

2 Yely, 2 Y=l
= (F5 + ) - T upu (2.22)

o0

where M., is the Mach number and U, is the velocity of the uniform
undisturbed f£low,

Substituting eg, (2.22) into eq. (2,13) and into the sysfem of
eqs, (2.20) there is obtained & set of four non-linear differential
- equations for the four unknown quantities u, and s,

This syster of equations will be investigated further in the
remainder of this section.

It is. of advantage to use a oylindrical coordinate system x,r,¢
and associated velocity components u, v, w, because here our main
interest is the study of axially-symmetric bodies (see fig.1).

The transformation formulae are given by

| |
x, = r sin¢ ‘ | (2.23)a
x3 = r cos ¢
and ‘
u; =u
u, = v eing + w cos § (2.23)b

u, = v cos¢ - w sin¢

On using these equations, eq. (2.13) and egs. (2.26) osn be transform-
ed into the following system of four squations

1__) -.V..}_ l(l_!f)i‘!;+i+
26 T a.2 ¢ T

vu ,9u v uw, dw 1 v W -
7 (‘5}' + “a?) - 'g("a_x' 7 a¢) (r EX 'a?) =0 (2.24)a
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av  du w1 8 a8
moa) T T T YT ax - O (2.24)1
1 dv ow w av du a2 il ]
(I-'Wa ~ar © F)' {"a'i = ar} Y(r=1y ar = © (2.24)0
. 2
1l av w w Jgw. 1 du a 1l 98 .
vra‘p"ar"?)'“{'E? r'a?F}'*ﬂY_—lTran“O . (2.24)a

This system will now be brought into the form of a set of relations
valid along characteristic surfaces,
These surfaces are thus defined that the relations that are valid
along them contain only derivatives along the surface.
~ Henoe, it is not possible to construct a solution for the flow field
starting from quantities given along such a characteristic surfacae, .
To £ind the characteristic surfaces it will be assumed that such a

surface can be written as

r=f (x,$) :
‘The derivatives along this surface or the so called "inmner" deri-

vatives are given then by

) a af

)

i AR where G) = 37 (2.26)a
15 19 3 1 af '

rTW rag T where @, = ¥ 35 (2.26)b .

i

Substituting these equations into the system (2,24), the result
oan ?a written ass '3“3
853 = Y . (2.27)

This set of equations has begn given in full on the follog&rg rage.

This is 2 system of equations from which the guantities 5;1 can
ba solved, provided that the surface andlphe flow quantitiés uﬁﬁ along
the surface are given, In that case the right hand side is known, to-
gether with the coefficients of the unknown derivafivea.

Now a8 has already been remarked, the requirement for T = £(xy¢)
to be a characteristic surface, is that it is not possible to continmue -

the solution starting from quantities given along the surface, This
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. aw‘
means that there cannot be found unique solutions for the quantities 3;3.

The system should be either incompatible or dependent, Then thsre :
holds

Det, a. . =
1j

This requirement leads to an equation for the unknown quantities
G’1 and s
Kow the conly physically possible cass is that the equations are de-

pendent, This means that for esach associated pair of values for G"l, and

CT2 obtained from eq. (2,28) an "annuling vector” can be found such that

850 - ' (2.29)

This 'is only possible if at the same time the following relation

is satisfied.

N N f . .

Qibi =0 (2.30)
This equation ie the compatibility equation, for it is valid if
equation (2.29) is valid. Now b,

functions and the inner derivatives along the surface r = f{x,$), and

is an expression containing only the

thus eq. (2.30) is a relation which satisfies the requirements for T
to be a characteristic surface,
The characteristic directions can be found by applying eq. (2.28).
- If the operation of determining the daterminant of aij'is performed, the

result obtained is:
2 2 2 ] 21
(unG'l—vx_fG'E) {G‘l +0, + 1~ ;—2- (y-uG‘l—wG'z) } = 0 (2.31)

Now the vector (Gi,—l,Gé) is proportional to the unit normal

vector (nl, n,y n;) of the surface r = £{x,0).

3)

Bquation (2.31) gives a5 characteristic directions therefore

'v—uﬁi—wﬁé = un, + vn, + wn3 =0 (2.32)a
a 07 =w(@, ¢ 2 ’
an v=u(, 2 = +a Gi + Gé + 1
or ,
un, f v, 4+ Wng = - a : (2.32)b
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It should be observed that the relation (2.32)a has tb be counted
twice according to eq, (2.31), The interpretation of the eqs. (2.32)a
and (2,32)b is in fact quite simple, Wquation (2.32)a states that the

~normal vector in a certain point P of the surface r = f(x,$) should be

perpendicular to the vector (u, v, w). The set of characteristic sur-
faces obtained in this case is therefore the set of stream surfaces, The
| sireamline can be considered és-a characteristic line in this case,

I Equation (2,32)b states that the velocity normal to the character-
istic surface is equal to the local velocity of sound, This meanslthat
this gurface is locally a cone with a half top angle u with respect to

the vector u, v, w, where y is defined by

1

\/Mz-l

where M is the local Mach number,

(2.33)

tﬂhu:%:i

To find the relations (2,30) which are valid along the character—
istie sﬁrfaces, first the annuling vectors v 3 have to be determined,
If eq, (2.32)a is valid, the matrix a . of eq, (2,27) reduces to

ij
Gy . -3 02, o
L S ST S | (2.34)
-u -V - -0
uGé vGé wﬁé cGé
2

where c = 7T%:TT

It ocan be seen immediately tﬁat the annuling vector has to satisfy the
the relations ' ‘ ' '

If the components 92, 05 a.nd‘-D4 are considered to be the compo-
nents of a veotor ¥ , equation (2.35) can be written analogous to eq.
(2.32)a as

-
n

.-$ = O (2036)
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This equation has the two independesnt solutions

(2.37)a
(2.37)v

ot ¢
i

=4 o=y

-
and xn
as follows by using eq. (2.32)a.

The two annuling vectors for this case are therefore given by

Di ={o, u, v, w} : . (2.38)a
‘and 7 ,
91 ={o, VG, + vy Wey = uG,, ~u-vgy ' (2.38)b
The compatibility equation for the annuling véctor (2.38)a is
given by '
Es 1 &s
Y tVrwg Tt C (2.39)

From this equation, by using the egs. (2.26)a and [2.26)b it
follows, that
ds

8s 8s W .38 ‘ -
us‘i-bvgr—-i-i"ﬁzo or E—_-E-zo (2.40)

Thus the result is found that the entfopy has to be constant along
a streamline. This cannot be too surprising, sinca in fact this is a
direct consequencs of the assumption made about the physical behaviour
of the medium. Equation (2,40) is the same as eq. (2,3) es it ought to be
| The compatibilitj equation for the annuling vector (2.38)b is given

by
u du - uf Q‘L_'_.ug- l.éy;_ugvl..ﬂc + az 13s = 0 (241)
T 5 2 5x 1r 3¢ 5x  r 17 Y(¥=1I) T 8¢ ° e

where use has been made of eq. (2.39)., _

" It can be shown that this equation expresses the fact that the
component of the rotation vector, normal to a siream 5urfage for which
the entropy is constant, vanishes,

Now the annuling vectors and the compatibility equations will be
determined in cass that eq. (2.32)b holds. ‘
In that case the matrix ay 4 of ?q, (2.27) reduces to.




ud’ N VG'é 1 w(;‘ +a \{G"zqy 0“224.1 ' c(Tz
where the + sign refers to v—uG‘-wGé = aVG + T, +1
e 2 ' |
the - S1gn to V-ucl-\'-'(fz = =& Gl + 0.2 +1 .

Again the components 02, 95 and -D4 of the annuling vector have to

satisfy the relation

g g

OI‘ - n. Q = 0 L]
Now according t¢ eq. {2.32)b there holds

—
n

— -—
n, = 4 3 -

These two equations together with eq. (2.42) give

- u —ﬁ'
. ¥ = -1 (2.43)

The complete expressions for the annuling vectors are then given byt

G2
Q = { ‘ ] .-
4 a\/O' +0,° +1 aVO" +G:,_ +1 a\[0'12+0’22+1

(2.44)a

X,
2

mld

and

(2.44)0

LA
a2

P
2 _2
21 a 0' +0§ +1 alfgy "+q,"+1

The Gompatibility equation for the annuling vector (2.44)a is given

by
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: 1 du bv 1l &v ow
(uaé—wci);-g$+(u+v01)—; +(w+v0é);-3¢+(w01-u0é iz *
v-uJ. —w(. 2

l "2 ): b8 wbds | a b8 1 5s

M Sy {“ it T S"'J"Y Y1 {Gl_bx +0 7 ?cF}*
,
pu uw 1l du vudv wvw l dv uw dw

~(veugs -G, }{(1- )28 - B S _ VMoV vw LoV UM OW

172/ R 2%x T 2r3f T 23x T 2T 8P 2 Bx

w2 ldw = w '

-‘.As can be seen, the characteristic equation (2.45) in this form is
equally valid for the annuling veotor (2.44)b, The equation thus is valid
along the two different surfaces given by eq, (2.32)b, The difference lies
in the fact that the quantities G' and G, are related by a different
formula in the two oases. '

Thus the original set of four partial differential. equations has
been transformed into a system of four dharacteristic equations given by
eqs. (2.40), (2.41) and (2.45) together with the characteristic directions
given by the eqs. (2,32)a .and (2.32)b, It is this set of relatione whioch
will play an important role in the following investigatione,

2.2 The equations for shock transition,

‘ Since in the following paiagraphs the notion of a shoock wafe will be
uéed frequently,.here an account will bé glven of the equations valid for
the transition, In fact a shock wave is a surface where the flow quantities
can bs considered to change discontznuously. In reality it is in general
a domain of the flow with a thickness of a few mean free molecular.pathes,
where due to vigcosity and thermal conduction rapid changes occur,
In the treatmsnt-given.hefe, it will be assumed as before that the
gas is ideal, and that outside the shock the effects of viscosity and
thermal conduction are negligible. The general conditions for shock
transition are given by
1o conservation of mass
- 2° coneervatioﬁ of momentum
30 conservation of energy.
K¥oreover the transition should be such that the entropy cannot diminish
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in accordance with thes second fundamental law of fhermodynamics.
With the assumpiions made heré, the reasulting equations get a rather
simple form, To derive these equations it will be assumed that in a cer-

tain arbitrary point of the shock surface the normal vector B and two

- tangent- vectors ;; and ?; are given, The component -of the veloecity E’in
the direction of these vectors will be denoted by Uy and u,
1 2
respectively.

The shock wave itself ia assumed to have zero wvelocity,
If the index f refers to the state in front of the shock and the in~

dex a to the state aft of the sﬁock the relations c¢an ba written ass

Pelip = P U (2.46)a
n n
2 2
Pf+p f'l.lf = pa“‘pa u, (2.46)v
n n
Pellp Wp =P, u U ‘ (2,46)c
n tl n tl .
Pelip Bp = P, U U (2.46)d
n t2 n t2 )
1 2 2 2 1l, 2 2 2
Ho+ -5(ufn+uft +uft ) = B+ 5-(uan+uat +uat ) | (2.46)e
1 2 b 2
S,~Sp =8820 ‘ (2.46)f

These equations together with the equation of state (2.4) and the
equation for the change in entropy (2.9) suffice to determine all the
quantities aft of the shock wave, if those in front of it are given, It
must be noticed that equation (2,46)e has already been derived (see
0q.(2,15)), |

The system (2.46) can be greatly simplified by observing that from
egs. {2.46)c and (2.46)d follows by using eq., (2.46)a

£ =1 ) (2-4?)3

and

U, =u . (2.47)b
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If now the Mach mumber Mn is introduced by

y = —= : (2.48)

the system gives, by eliminating Y and Pys rise to the following
equation

Y+l 2 2 2 2 ¥=1 2
2, ¥, - uanufn{l"' YMn }+ ufn- {1+ z Mn _ } =0

n
or -
“an 1 1+n.1n21 ( 1_Mn2 ) .
uf = T+l 2 ( 2 -49) _
M
n n

As can be shown the condition (2.46)f allaws only the + sign in
eq, (2.49) ‘The final result is therefores

“a o, (r-1 )Mn2+2 2.50)
2 | 2.50
u P ¥+1 ¥ 2 _

1) I

From this equation it is readily derived that

- 2
e, (re)M)

| (2.51)a
Pe  (v=1 )Mn2+2 |

and
?, | |
= 2 (M 1) (2.51)b
Equation {2,9) gives thens
oo s )( )
| Pe/\Pe
or ' (y+1)M 2 =Y
as = In 2 J n 2,52
: {[ Y+1 ( n ) '(Y—l)lﬂn2+2 ' ( 5- )

The general -shock conditions for an ideal gas and a shock velocity
zero are thus derived. The equations that are important for the follow-
ing investigations aré the four relations (2.47)a, (2.47)b, (2.50) and
(2.52).
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"2.3 The equations for linearized potential flow,

Here & short derivation will be given of the equations valid for a
linearized potential flow. To that end it will be assumed that the pertur-

bation velocities are small as compared with the velocity Ugg of the free

stream,

Hence ‘u =0 (E&) (2.53)a
v &« Us (2.53)b
¥ < U (2.53)e

Furthermore it will be assumed that the effects of entropy production
can be neglected, According to the interpretation given of eq. (2.41)
this means that the rotation vector is identically zero in the whole flow
field, Thus there holds: '

1 dwr 1l du

T cEagc O (2,54)b
Ju av

-3 - © (2.54)c

From eq. (2.24)a together with eqs. (2.53) there follows by

neglecting products of small quantities

2 du av 1l dw v
P YT TIHTT O (2.55)
Wher.e Bw= Mi-l
The eqs. (2.54) allow the introduction of a velocity potential
? by
L]
u = i (2.56)a
LS )
AR~ {2.56)b
-z (2.56)e

The flow is then governed by one linear partial differential
equation of the second order, -This equation follows by inserting egs.
(2.56) into eq, (2.55). The result is '
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2 1 Y
PP T x0T 7 Y = O (2.57)

This is the well=known linsarized potential equation for supersonic
flow, It should be observed that egqs. (2.56) are valid in every flow
dcmain where the entropy is a constant throughout this domain,

3 Studies on supersonic flow around axially symmetiric bodies.

To study the charaotarietics of supersonic flow past a certain con=
figﬁration, in moet of the cabes use has’been made of the iinearizad
potential theory. However, as has been already indicated in the intro-
duction, this theory has the disadvantgge of being‘only approximate; the
approximation being poorer if the configuration is less slender and the
¥ach number is higher. -

Ro direct estimates, howéver, are known about the limits of appli- -
cability of this theory, other than by comparison with the results of:
exact theory. This is only possible -in very féw oéaes, for inastance in
the case of flow around cones, " . ' _

In this chapter, the validify.of linearized theory as applied to
the study-df supersonio flow around axially symmefric configurafions
will firet be investigated. It will be shown that the linearized theory
is insdequate in predicting the flow field around bodies of pradtical
imporianoa for'ng&rly'every Mach number, Bspecially in the case of inter-
ferencé no other result can be expected than the correct order of magni-
tuéa, since on the basis of the present investigations, it appears to be
that the flbw quantities at a certain diataﬁoo from the donfiguration ara
more in error than those nearer to the body.

Acoording to these argumenis, the détarmination of optimum body
‘shapes by using lineérizad methods should be suspectied. Therefore it
aeemed wanted to dsviae & method using the non-linear squations for
deriving optimum conditions, In the seoond part of this chapter guoch a
matho@ will be disoussed for a body with a presoribed value of the base
‘area and for a given Mach number. The method of analysié is closeli Trow-
lated to the study of linecarized flow since in both cases use will be
made of the-notion of a control surface,
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3.1 On the validity of linearized theory for axially sjmmetric fiow.

The present investigation, whose aim it is to give a quantitative
value of the error made by using linearized theory, was undertaken after
certain inconsistencies were discovered by applying the theory of ref.17.

There a method 1s given, bhased on tinearized theory, which aims at
constructiﬁg axially symmetric configurations of optimum shape with a
given base area, by prescribing the value of the disturbance velocities
on the forward characteristic emanating from the base (see fig.2),

The method of characteristics was used to construct these bodies
and due to the properties of the configuration investigated, the first
part of the body contour could be chosen freely. It then proved, however,

“to be impdésible to reach the proper value of fhe radius of the base area,
and moreover the drag as found by integrating along the body contour was
not equal to the prescribed value, The differences.were rather large and
this seemed very surprising since the preséribed disturbance velocities
were such as to give the‘éorrect mass—~ and momentum transport,

It was found along the lines.outlined below, that this difference
was due to the use of the linearized theory, in particular because of the
rather thick nose of the configuration and the intsrference of flow
between various pdrfé of the configuration.

A method to study the validity of linearized theory, can be found
by observing that the body area at a certain distance from the nose of
the body and the drag om that part of the body can be expressed as inte-
grals of functions of the disturbance velocities over a control surface.

This surface emanates from the section considered and intersects
the shock wave. from the nose of the body (see fig.3). In most of the cases
it is convenient to take as a control surface the forward directed
characteristic surface, ' ‘

The method of comparison between these integrals and body area, and
integrated drag offered itself as a natural tool to study the applicabi- .
lity of llnearized theory,.

The order of magnitude of the average orror in the flow guantities
van be predicted correctly on the basis of this comparison, It should be
remarked that this method of gstimation of error is independent of the

use of more exact theory.
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Here, the case of an axially-symmetric body will bs considered, where
the free stream is in alignmment with the axis of the body. The simplest
case of such a body is a cone, and much attention will be focussed upon
this configuration. l

To give more insight, a detailed comparison of flow fields and
pressure distributions is presented for certain configurations, '

The investigation will start with a derivation of integral expressions
for body area and drag. ' '

3.1,1 . Integral expressions for body area and drag.

In this seotion a derivation will be given fcr cartain integral ex-
pressions which are suitable to discuss the validity of linearized theory.
The derivation will be given first without making any assumptions abbut the
order of hagnitude pf the quantitias cccurring,

There after a siﬁplif;ed version will be given, by making the same
assumptions used for deriving the Iinearizad”potential equation, In partli- -
cular it is this latter version.which will be used to discuss the validity
of the results obtained by using linearized theory.

To derive the integral expressicns use will be made of the conoept of
a oontrol surface, This is a surface ﬁhidhenvelops a osrtain volume, in '
whioh a part of the body 1is imbedded, The control surfaoce whick will be
used here consists of‘two opposing parts, one of the two being part of the
shockwave, the other emanating from the body section which is considered
to interseot the shockwave in a circle with & certain radius, K

The integral expression for the body area is found hy observing‘that
the ingéing nass has to be equal to the cutgoing mass, This can be written

ﬂpn v, d0 = 0 O (3.1)

where Vn is the outward directed component of the velocity along a normal

as

to the surface and 40O is an element of the contrel surface,
in fact, eq, (3.1) is the maoroscopic form of the contimuity equation.
If the part of the shook wave belonging to the control surface is
danoted by 0,y and the rest of the control surface by O,y eq. (3.1) can

be written as
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#pl an a0, " + ﬂpa V!.12 do, = 0 . (3.2)
0 0 .
1 2 ' :

If now Jl is the angle between the tangent to the first part .of the
control surface and the axis of the body at a point at the radial distance
r and \I the supplement of the corresponding angle for ths aft- part of the
control surface (see fig.3), eq. (3.2) can be written as
R ‘ R

, c G
21:me°°6/‘ T dr= 2n UmR'/ { .;mJ Vo cosJ };ﬁl—a:; (3.3)

B

where RB is the radius of the body section considered and R, is the radiua_
of intersection of the two parts of the control surface (see fig.3). It
should be observed that the velocities u and v are made dimensionless with -
respect to the free stream velocity Ug . '

Equation (3.3) can be brought in a more elegant form by choosing for
the aft part of the control surface a characteristic surface. It will be
shown later that in this case there holds (according to-.eq. (2.32)b)

-u

tan«T ——————J1~ . (3.4)
2{32+v2 _

Moreover from equaticns (2,9) and (2.22) there follows
- 1 ]

Y1 '
0p = by (3" M) P (5.5)

Here "a" is the velocity of sound, made dimensionless with respeci to U 4.
The function P, which is in fact the ratio of the stagnation pressures of
the disturbed and the undisturbed flow,. is given by

-2
P = _B Y-l L] . (3-6)
Substituting eqs. (3.4) and - (3.5) into eq. (3.3) there is obtained
3 .
> Rc 2M2 -1 .
RB = 2 J {(& m) u_ B P I}I‘ dr (3-?)
B ‘ |

where q2 = u2 + v2, and where the subsoripts 2 have been dropped. This

is the required equation, expressing the body area as an integral of a
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funotion of the vslocities gnd the entropy only.

Now this equation will be simplified by using the assumptions that
the disturbances are small and that the effects of entropy are negligible.
In this case eqs. (2.53)a-b are valid while P = 1.

As oan be seen immediately eq. (3.4) can be written then as

ta;nJ2 = -5}- (3.8)

L]

indicating that in this case the characteristics are sitraight parallel
lines, which is in accordance with eq. (2, 57).
Moreover, as can be found by expandzng eq. (3.5), the density can

be wrltten as

pezpw{l-miu-} ' 3.9

where u' is the perturbation velocity defined by

ut =u -1 . ' ‘ (3.10)
Inserting these equations into equation (3.3) gives
2 °f 5 ‘
Ry =2 { o u' + Bmv'} rdr - (3.11}
BB

where v' has been written instead of v.

~ Equation (3.11) can be considered as a first order expression for
the body area, and thus éhould be coneistent with the use of linearized
theory. '

The second integral expression can be obtained by applying the
momentum equation in an axial direction te the air within the control
volume, if D is the drag force exerted by the air on the body and if it
is assumed that the pressure p of the undisturbed siream is acting on

the base of the body the momentum equation can be written as

Dain p R ,[[pz sin'J dO ./,T plsinj dO
= - ./]plandO f] oy ¥ n U, 40, ' (3.12)




Since Ui is equal to the free stream velooity U,,, eq. (3.12) can be

simplified by using the mass flow relation (3.2), The result obtained is

PP, ' 0,5V, (U1 )
D ='/] ® 2 sin /0, -_[/ 25 2.7 a0, (3.13)

Y Peo Pop Vo0

Kow this equation will be brought into a form where the integrand is

dependent on the velocities only, To this end it is observed that by

using eq. (3.5) together with eq. (2.9) there follows

"
=1
P, = pw(agaﬂi) P . (3.14)

Introducing this equation into eq. (3.13) and using eqe. (3.5) and (3.10)

thers is found

D = /
U2
o

Qﬂ 02

Y .
Y=1
2.2 .
1--(a2 V) Plsin J2d02 +

Poo
2
anr

1 .
. Yl
- b//(afmi) P{uy~1)(u, sinJ2+v2 cost)doz BN | (3.15)
2 o

Taeking again for the aft part of the control surface .a characteristic
surface, the final result can be obtained by using sq.(3.4) together with

the following evident relation

B, 1 |
p‘U2 = ;ﬁﬁ_ . (3.16)
0000 0 _ : . |

If the subscripts 2 are omitted, the integral sxprsssion can be written

‘then as
R : Y R L
. Yl Y-l . 2 .
A e ) (TR e
(3.17)

If the flow field is calculated ocorraectly this equation has to give the
same value of the drag as found by integrating the axial oomponents of

the pressure forces working on the body,
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Also here, the first order form of this equation will be given, To
do this, the Taylor-expansion of eq. (3,14) will be given, It turns out
that up to the squares of the disturbance velocities

2f 1 .2 1.2 .2
PyPyy = Pl {-U""z"" +‘2‘%U'} ' ~ (3.18)

Substituting this equation together with eqs. (3.8), (3.9) and (3,10)
into eq, (3,13) there is found

R

e _
32 = Rf (Bmu'-v')? rdr (3.19)
foo 00 B

One of the interesting features of this simple expression.is the -
fact that the integrand is quadratic, thus leading to the result that the
drag is at least zero, A far moré-important remark must, however, be mads,
The usnal approximation for the pressure coefficient is given by the first
term of eq, (3.18), while eq, (3.19) has been derived by using also the
quadratic terms, In fact the drag would be identically zero if only the
firet term of eq. (3.18) had been used, This result indicates the necessi~
ty of using the form for the pressure coefficient given by eq, (3.18).
This statement will be further commented’ on, |

_ The integral expressions (3 1), (3.11), (3.13) and (3, 19) are the
bagic tools which will be used in the following investigatlons on the super=-

sonic axially symmetric flow

3,1,2 The linearized flow around a cona,
In this section a study will bse made of the supersonic flow around

a cone with the aid of linearized thaorj.‘By using the already derived
integral expressions, the validity of fhia thaory for a cone will ba
investigated, _

According to eq. (2 57) the linearized potential equation for super-
sonic flow in the case of a eylindrical coordinate system, is given by

2 1 1 '
Poo Vpx * Ppp T I * ;§'¢¢¢ =0 (3.20)

Here, ¢ is defined in such a way, that the disturbance velocities, made

diﬁensionless with respect to the free stream velocity U, are given by
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u'! = % ’ | _ 7 (3.215&

vt = 2 | o (3.21)p -
and :

w! n_% % ) - (3.21)0

Since the flow is conical, the d%sturbance velocities are constant

along rays through the origin, Introducing

x | ' . .
t =3 | (3.22)a
and - o = rtG(t) - , (3.22)b

equation (3.20) can be written, after observing that m¢¢ vanishes due
to the axially symmetrical character of the flow, as

2 2, da%¢ . aG '
t(t%=Bo) 2t {2(t AR } =0 . (3.23)
Solving this equation thers is obtained
| t‘?-ﬁfo t, ‘
G = =K ==t + K cosh +Q . (3.24)
, Boo

The disturbance velocities are given by

ula Gt %}- . : | | (3.25)a
2 4G | . :
v‘ = ol t E"_"b" ' ('325)b

Since along the‘first chéracteristic t = Byp the quantity
Boou ut+v! has to be equal 10 zero, it follows that Q = O,
Equations (3.25)a and (3.25)b can then be written as

u' = K cosh } i (3.26)a
. Boo . .

vi= <X \/tz-pfo : - (3.,26)b

The integration constant can be determined from the condition that

the body has to be a stream surface, or if g;- is the tangent to the body

contours




() Eoow o - (3.217)
" It should be observed thai here the exact form of the boundary con-
dition will be used. '
If the semi-~top angle of the oonice} body is denoted bj‘xrs,fit
can be shown that

X = = (3.28)

t
2 2 -1 o
bofto “Poo + c0sh © 52
where t "c':ot'f\:)"j

The equations (3,26)a-b and (3. 28) thus give the flow field, around
a cone according to linearized theory.

The question that will be raised now, is @

"What is the range of Mach-numbers M, and semi~top angles'J. for
which this result is approximately valid?"

This question will be answered by ueing the integral expressions
'derived in the foregoing section,

First use will be made of the expression for the square of the
radius of the body cross eectiop eq. (5.11)."The integral at the right
hand side of this equation can be calculated by using the expressions

for the perturbation velocitlies u' and v!', The reeult‘ie
Ro H2 cosh

2 /{ -ﬁoo ul+p v'}rdr = R32

Ry

Boo

1~ : (3.29)
tthi -ﬁi +ooeh-1 Ffi

It is evident from eq. (3.29) that'eq. (3.11) is not satisfied. This

could be expected since only an approximate theory is used., The important

point concernlng these two equations, however, is that eq. (3. 29) gives
the poeeihility to obtain a judgement on the walidity of-the linearized
theory, Dus to the form of the integrand of eq. (3.11), the difference
between the 1eft—hand side and the right-hand side of this equation givee
a measure of -the average arror in the flow quantities.

If a difference of X percent between the left—hanq side and the
fight-hand side is oonsidered as permissible, there can beloalculeted
limits of applicability of the linearized theory for a cone by sclving




the following equation

. t t
- 2 2 -1
]ﬁ%ocosh 1 F§o= -1%% {to Vto B +coslhl ﬁ—:} (3.30)

'In fig.4 the limits for X = 5 and X = 10 have been given, As can be
seen from these curves the region of aﬁplicability is very small. If the
flow field has to be known accurately, the lower bound has to be applied,
This indicates that only the flow around very slender cones ¢an be |
calculated by using linearized theory. For a practical semi-éngle,
say 100, linearized theory is unable to give the flow field accurately.

One important aspect of the curves given in fig.4 is, that for Mo
very near to unity, the value of «T which is allowed decreases rapidly,
show1ng that linsarized theory is 1nva11d around Mao” 1, This fact about
the linearized theory, long since known, can thus’ be shown to be true in a
very simple way.

If X ie calculated as a function of Mach number M, and of semi-
top angle qf? it appears that with increasing Mach number and 1nc;easing
semi-angle the average error in the flow field characterized by X in-
creases rapidly, as is shown in table la,

To substantiate these results an analogous investigation will be per- ‘
formed by using eq, (3.19). The right-hand side of this equation proves
to be ‘ '

/Rc % %
2 2.2) 1, 2 .2y ) 2 2.1 -1 0
n ul=vi ) "rdr = n¥ - =t =g )J+cos8h 7 — | £ |t co ——
B R D Bm[ o2t 3 6% Bm]
(3.31)
'The right=hand sida: of eﬁ. (3.19) can be obtained, as has already
been remarked, by integrating the axial component of the pressure force
secting on the hody, Thus it is found that
D = f o rdr | (3.32)
PR -
o o0 ‘
where cp is the pressure cosfficient, which is given by
' b-p .
6 = ——— . (3.33)
P 1 _
'ipmm
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Now, different expressions can be obtained for D, according to the
different approximations, used for the pressure coefficient. Here use will
be mads of the formula given in aq. (3.18), which was used also when de-
riving eq. (3.19). Performing the integration indicated in eq. (3.32)
there follows |

t 1.t
D 2.2 1,,2 .2 -1 2
#—L:i nK Ry { -2-(to-ﬁoo)+008h F;o—o (}o vto |3 (-' B +1)°°8h ] (3.34)

Poo¥co

Again there is an apparent difference between the two expressions for
the drag, eqs. (3,31) and (3.34). It should be observed that both are cal-
culated by using approximate values for the perturhation v31001t135. If
both the drag accordirg to the integral expression and that found by
direct integrétion of the axial forces along the fuselage are equal, then
no other conclusion can be reached than that both contain an error of equal.
order, But they are not equal, and therefore, this difference must be a
measure for the consistency of linearized theory., Thus again limits of

applicability can be calculated by solviﬁg the eguation

- ¥y 1% )1 2 1% N t
- _ -. 1,.2 .2 2 -1 "o
160 ("JOSh | 'B';'o (E‘ Bw -l-l)COSh E;; +t0 tO-Bw - -e-'(to—ﬁm): Mw(OOSh m)
(3.35)
where )( ig the difference in percents between the expressions‘(5 51) and

(3.34). In table 1 b the quantity )( has been given as .a function of

M o and qr The results are 1n.oomplete agreement with those of table

2

1 a, leading thus to the same conclusions about ths validity of linearized
theory. i

4 detailed comparison between the flow fields as determined by
linearized theory and exact methods respectively shows how large the
actual error is at each point, This will be done in sectioh 3.1.4, How-
ever, first the flow field around pointed axially stmetric bodies will

be studied along the same lines as given here, to see if the conclusions

reached for a cone have to be altered with more general configurations,

3.1.5 The 1inearized flow around s body,
To obtain the flow field around a general axially-symmetric confi-

guration in the linearized approximation, a solution of eq. (2.57) must
be obtained which fulfills the boundary condition along thé body contour

as given by eq. (3.27).
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This problem can be solved, by means of an analytical method, such
as a distribution of sources along the axis, or by a numericai method,
An excellent numerical method for the solution of hypefbolic
‘@ifferential equations is the method of characteristics, where the flow
field is calculated step by step by using the characteristic equations
‘along characteristic surfaces, A detailed deseription of the derivation
of such equations has been given in chapter 2, It can be shown by using

the results of this chapter that in the linearized approximation these

equations take the following form

du'’ 1 dv? 1 vt , ; . I
=t a ther = O . (3.36)a |
R . dr 1
along the characteristic with T and
b4 Beo
du! l1dvt =~ 1 v!? |
along the characteristic with dr = 1 .
dx Beo

The flow field can be determined by using these relations if besids
‘the boundary, the flow around the nose of the body is also given. The
shape of a pointed nose can always be considered as conical, This gives
the possibility to use the results 6f the preceding section, In that
case the flow gquantities are known along the last characteristic of the
conical region (sée fig.5). The method of characteristics to be used here
is straightforward and the most advisable for quantitative results if the
flow field has to be known, . |

For the study of the applicability of,linearized theory the flow
field around two bodies is calculated for different Mach numbers, In fact
each body represents a whole family, since the base 6an ba selected at
.arbitrary values of the axial coordinate x between the nose and the basge,
because the flow is sgupersonic, This means that the flow aft of a given
value of x cannot influence the flow field before the backward directed
characteristio emanating from thé cross section at x.

The two bodies chosen have a conmical nose over 0.025 of the length
and are followed by a parabolic shape which’is.symmetric with respect to
the 1ine x = 0.5125, The base 1lies at x = 1,0, The conical nose of
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the first body has a semi~top angle qf = T, 5 "and that of the second body
8

has q] = 12 5 . If the slenderness is given by

{ .
“TT - (3.37)
the bodies have s = 13, T and 8 = 8.4 respectively. The flow field'éround
the body with.&r = 7.5° and 8 = 13,7 has been determined for the Mach
nnmbera Mcp = 2 and M= 5. The flow field around the body withqf = 12 5
and & = 8.4 has Been determined for the Mach numbers My = 2 and M= 4,

Along several characteristics for different values of x, the right-
hand side of the integral expression for the mass flow eq.(3.11) has been
calculated. The results found thus have to be compared with the function
RBZ -
have therefare been given in figs 6 (a=d) together with the prescrided
distribution of the oross seotional area of the bodies, _

The deviation betwoen the two curves gives, just as for the oone, &
measure of the average error in the flow field, It is fbund tﬁat the differ-
ences are relatively the largest at the nose and at the end of the body.

as prescribed by the body.corntours, The results for the various cases,

The curves indicate that for bodies which have a positive slops over most
of the length, the error decreases with increasing slenderness. However,
if a2 negative slope is present over an appreciable length of the body the
deviation grows rapidly with increasing negative slope.

From the figures & (a-d) it can be seen that the general trend of in-
creasing deviations with decreasing slenderness is very stiriking. The
great importance of these figurea, however,-1s that they give a quantita-
tive answer to the question of the validity of 1inqarizéd theory for the
caloulation of the flow field around these particular configurations,

Seen in this light, although in general the deviations for bodies are

less pronounced than for cones, the only case that may be given a reliable
numarical value, is the ocase whers qf = T, 5 and M 4= 2 The differences
for the other cases are €o large that linearlzed theory determines apparent-
ly only the order of magnitude of the flow quantities,

As was done for the 6one, 8. comparison will also be ma¢e of the drag
as found by integrating the axial pressure forces working on the body,
and the drag as found by calcﬁlating‘the loss ,of momsntum through & sui-

~tably chosen control surface, The respective expressions are given by

e e A S 1 | |




sas. (3.32) and (3.19).
In the figs6(a=-d) the quantities D are given as a function of
x, and are calculated by using both th8238%ve mentioned expressions. The

difference. apparent here underlines the conclusions based already on the
investigation of the expression for the mass flow,

One important remark to be made is that the drag of the body is
apparently generated for the largest part by the ndse and the end of the
" hody, which is evident from figs 6 where the drag does not increase midway
between the eﬁds. In those terminal parts, hoﬁever, the largest errors are
present in fhe flow field according to the results already obtained. Thus
it may be concluded that the drag on rather slender bodies is not predict-
ed more accurately, .than for cones which have a slepe of fhe order of the
510pe at the nbsa of the body.

From the fact that the curves which are compared at the end of fhe
body for instance are closer to each other than at the nose, no other
conclusion can be drawn, than that the error in eq, {3.19) is nearly the
same as that in eq, (3,32), '

Only if eq. (3.11) for the mass-flow is gatisfied.and at the same
time eq. (3.19) gives the same result as eq. (3,32) can.it be concluded
that linearized theory is able to give a quantitéti#e answer, In the
given examples this ocdurs only for the case where qrs = ?,50 and
Mo = 2.

Thus the conclusions reached at in this section are as follows:
Linearized theory is only able to describe the flow field arcund a body
if the shape is slender and the slope is small and moreover the Mach num~
bers are low, For higher Mach numbers, less glender shapes and rather
large slopes, only the order of magnitude of thé'flcw quantities can be
predicted, The methods given here enable the calculation of the average
error present in the flow field., As is shown in figs, Ta-b where X ’
being the percentual difference between the left-hand side and the right-
hand side of the massTflow.equation, is given as a function of the axial
distance x for two of the cases congsidered, the error is, even in parts
where the slope is very small, rather large.

For practieal applications the range of validity is evidently so
small, if accurate results are required, that the question can be raised

whether it is advisable to use linearized theory for the calculation of
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the filow field around axially-symmeiric pbnfigurationa.

3,1.4 The exact flow around a cone.

One of the first exact molutions for the inviscid supersonic axially-
symmetric flow was given in 1933 by Taylor and Maccoll for the flow around
a cone, Assuming that the flow quantities are constant along rays théough
the vertex of the come, the‘governing diffsrential equations take a

gimple form

. 2,— = -
£ow . e d) (3.38)s
%‘& -3¥ =0 (3.38)v

where u is ‘the velocity along the cone with semi-top angle «f and ¥ is the
velocity orthogonal with‘reapect to W in a meridional plane, "a" is as
usual the velocity of sound. The system (3.38) is a set of two first

order differential equations which can be derived from the géneral ex-—
pressions given in chapter 2; The second squation states in fact that

the flow is irrotational, since the entropy rise across the shock wavs,
which is itself conical, is a constant, ‘

A comprehensive compilation of numeriocal data,solutions to the
non~linear differential equations (3.38) for flow around a cone, has been
given in reof.7 for various semi-top angles J’s and Mach numbers Moo.

If the flow around a cone has to be known for a particular case it
is best in general to interpolate the results in ref,T7. Especially ac=
curate calculations of flow fields require then a large amount of work,

However, with present day electfonic compufers, numerical integra-
tion of particular equations can be easily handled. & |

Because all the calculations are performed in a cylindrical co-
ordinate system, it is easier to work with the axial and radial veleci-

ties u and v than with other velocity components, These are given hy

T=ucosy +vaindg (3.39)a

v = -u sinJ + v cos (3.39)p




Substituting these equations into the system (3.38) there is

sbtained
du —aZy - rz
= : ‘ %2.,40}a
a (v cosy ~u sinJ)2-a2
S5 = oot ¥ (3.407b

“he boundary condition at the cone surface,according to eq.(3.27), ‘

is given by

u = v cot Js : for J:J’S ©(3.41)
The conditions on the as yet unknown shock wave J= Jw are given by:

=l =y taan _ {3.42)a

and

1
- - (3.42)b
® -Y;—l (n~] )+Sin217w

The derivation of these two equations will be given with some.
details in section 424 of the following chapter. They are based on the
goneral results for shock transition given in chapter 2,

The method of solution of the equations (3.40) with the boundary
conditions (3.41) and (3.42) is analogous to that of Kopal,.and need not

therefore to be discussed here, The riss of entropy across the shock wave

is given by Y- | -1
Y=1 : v-1
a : 2
- 1)142 8in J -
Y1 (Y"’, 00 w 2y 2 .2 2
P= g = 1+ ey (MOOBJ.H Jw 1) (3.43)

(Y-I)Mi Bianw+2

For a flow which is determined exactly the integral expressionse
(3.7) and (3.17) have to be identitiesj the deviations will give an insight
in the numericel accuraoy obtained, As a test case the flow around two
cones with Js = 7.50 and Js = 12.5° have beeq used, for the Mach numbers
WMoy = 2y Mo = 5 2and Moo = 2, Moo = 4 Tespectively, In table 2, the two
sides of equation (3.,7) have been given together with the drag as calcu-
lated by using eq. (3.17) and eq. (3.32). The agreement obtained shows
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that the numerical acouracy is very good,

%.1.5 . The exact flow around a bodj.

The solﬁtion of the problem to determine the flow field around an -
axially-symmétric body, can be obtained by using the exact inviscid flow
equations and fhen to transform these equations into characteristic
equations -according to the treatment given in chapter 2, By using 2 nume-
rical method of solut1on, based on these equations, the flow field can be
constructed, This construction is greatly aided by the use of electronic
computers, ' '

The governing differential equations are according to eqs (2;24)

a=d, for an axially—symmetrlc flow given by

(-2 Eo 0y For-Ea 2l o G
& a .
v 6u 2 3s
v{sf'é?}*rcma= ° o Gk
u v a2 | J8
“{ar ax}+—n‘:ﬂa—r = 0 o (3.44)c

where it is underatobd that ail the velocities are made dimensionless with

‘respect to the free stream velocity Uy 3 hence the speed of sound "a" is

given by
2 1 y=1 Y=1 2 2
8% = =+ 3 - 5 (W ) .
¥

Instead of working with the specific entropy s, use will be mads of
the ratio of the stagnation pressures.P, as defined by eq.(3.6).

From the system of characteristic equations (2,40), (2.41) and
(2.45) it can be derived that for axially-symmetric flow the following

characteristic squations are valid:

_ P = constant™ (3.45)a
along lines with a slope & = = (i.e. streamlines).

*)It should be obgerved that this constant can be different for
each streamline,
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(uﬁ-n—v) du -(u—Bv) —_ - {- E-%;?r' ?—iﬂ % =0 (3.45)b
aglong a line with the slope %E- = ;: :
and | . _
) (a4 Dok - _Y% £ -0 | (3.45)e

o : . dr u-gv
a}ong a line with the slops T T Puav

From ihésé equations it is evident that the influence of the
quantity P on the velocity components u and v is determined by the
gradient %; along the chéracteriatic surfaces, If %% is identically
zoro in the whole domain of the flow considered, u and v can be cal-
oulated without any knowledge of P, This is the case for‘a conical body.
In those cases where,%% is small along both the families of oﬁaraotaristic
surfaces, the last.yerms in egs, (3.45)b-c can be neglected, thus in faot
negleocting the influence of the curvature of the shock waves on the flow
field. | |

This will be a valid assumption if the curvature .of the shook wave
is small, Sinca acoording to éq. (2.52} the entropy rise aoross a shook
wave oan be calculated as soon’as the shape of the shook is known, it is
poesidle to oheck the assumption of having a emall EE;'by caloulating the
quantity P as a funotion of r along the shock wave, .

To esteblish the accuraoy of the linearized theory it will be useful
to coﬁplement fhe results obtained in section 3.1.3 by a direct comparison
of the flow fields, as calculated by using linearized and exaot theory
respeoctively. |

For that purpoge the flow fiesld around the same bodies as OOns;derad
in that section will be defeimined.by using exact methods., However, an
assumption will be made, viz. that 4o is negligible along both families of
charaoteristic surfaces, This means that eq. (3.45)a will not be used in
the actual computations. The influence of this assumption will be measured
by uging the integral expressions for drag and body area, '

To start the flow field construction by uiing the character1stic
equations, the flow arcund the conical nose has to be known just as in

. the linearized case, The soiution for this problem has already besen given



in the preceding section,

The boundary condition along the fuselage is given by eq, (3.27),
while the boundary conditions along the shock.wave are very analogous
to those for the cone, i.a.

. ) "
o 12 @in) .
2 0
(u—l) = Y+1 Mz - ‘ (3.46)8

Vo= -(u—l)cot«7¥ (3-46);D

where now mT* is the angle between the shock wave and the x-axis, and
is in general dependent on the radial coordinate. The third shock con-
dition is_i‘gi'ven by oq. (3.43) whean-»J'vir is replaged by J*. Because neo
use is made of eq, (3.45)a, this condition need not be used in the actual
calculation, but will serve to determine the entropy rise along the
shock wave afterwards, '

The pressure coefficient is given by the following formula (ses eq.

(3.33) and eq. (3.14))

| = '
YM o

After determining the flow field around the two bodies, a check on
the results has been applied by calculating the right hand side of the
mass flow equation (3.7) and by comparing the drag as found by integra-

tion along the control surface and along the body,

Sinoe, as has alrsady been remarked, the gradient of the entropy
has been neglected, it can not ba expected that a parfect agreement will
be obtained. By applying the mess flow- and drag equations, it should be
observed that there are two reasons for a deviation, in the first piace
the velocities calculated ars incorrect due to the neglection of_gz .
Howover, as has been argued the influence of this approximation is indeed
negligible if the gradient is small. In the second place a.deviation will
be czused by the fact thaf the entropy rise across shook wavas ié neglect=-
 ed, vhich means that the quantity P occurring in the expressions oonsidered
s unknowﬁ. It is immedjately clear (for instance by comparison with a
cone) that this latter reason is the most important for small L,

To see if this reasoning is aceceptable the integral expressions
“have bean caloulated with various assumptions on the function P.
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In the'first place it is assumed that there is no rise in entropy -
or P = 1, thus physioally no shock wave is prasent,

A second choice is that P has the value prescribed by the conical
'part of thé,éhock wave,

However, the best result should be obtained by adjusting to every
field point a value of P in an approximate way, It should be remembered‘
that the ontropy has to be constant along axiallp-symmetric stream sure
faces, If now the assumption is made that the density and the distur—
bance veloocity are cqnétant along a characteristic surface, the shape .of
a stream surface cay be oonstruoted in an approximate way, Since along
the shock wave the funotion P ean be caleculated,. this assumption together
with the mass flow equation sufficesto caloulate the funciion P in an
arbitfary point of the flow field in tke following way. If D is a point

on the shock wave and & the field point then

P(RE} = P(RD) (3.48)a

provided that RE and RD are related by the following expression

p 2 _g2 Rz_REz

4] i} [+

5 T T T E (3.48)v
Bp =Ry B =Ry

where the various quantities ococurring are indicated in f£ig.8.

- In tabls 3 the results of the calculations for body radius and drag
are given with the various assumptions for P, mentioned above, Tor each
of‘the four bodies considered thess quantities have bsen compared for two
-different cross sections, 7

It is evident from these results that the assumptions of a constant
entropy rise aoross the shock wave give rise to dppmeciable differences,
- while the third method, as presoribed above, gives en agreement which is

-remarkably good, This suggests that the influence of the neglect of the
gradient of tha entropy (%%) on the field quantities u and v is indesd
vary small, .
Thus, here again, the importance of the integrél expressions . found
by using a control surface for estimating the quantitative error whén
certain faotors are neglected, is shown,




42

In the four last sections enough results have been obtained to give
a detailed comparison between the resulis of the linegrizad and the exact
theories, This comperison will be given in the following sections.

3,1,6 Comparison of the pressure distributions,
In this section a mors detailed analysis will be made of the pressure
distribution along a fuselage &8 calculated by using linearized and exaot

methods, _ :
Although already in ref,.13 a rather comprehensive analysis is given
for the case of the cone, part of this analysis will be repeated here,

in order to give the comnection with what has been already said,

In the sections 3,1.2 and.3.1{3 it is proved that the mean error in
flow quantities inoreases rapidly with higher Mach numbers, and not
slender bodies, A question now arises, being one which has been asked by
many investigators before, whether or not the pressure distribution over
the body is as much in error as the quantities in the.outer flow field.

As will be shown the answer to this question depends largely on the
approximation which is made in the formula for the pressuré coefficient,

First the pressure distribution on the surface of a cone will be
considered.

“In the figures 9 a~d the pressure cosfficient is given as a function
of the Mach number M,, for several values of the semi—fop angle ;Ts.

In eaoch case four different curves are given for the pressure coef-.
ficjent, The correct one is caloulated with eg. (3.47) by using the theory.
of Taylor and Macecoll as set forward in section 3.1.4. If the same formula
(3.47) is used with P = 1, and the flow quantities according to the
linearized theory, the apprbximation according to KdrmdneMoore is found.
If the expression for the pressure coefficient is'expanded by using the
binemial theorem and if only linear and quadratic terms are fetained, the
formula (3,18) results, One étéﬁ further is to omit the quadratic terms
and to put the formula for 6p in the usual form for thin wings |

Op = =gu'! (3049)

It might be expected that the error would increase with inareasing :
. approximation of the formmla for the pressure distribution, This, however,
is not true, From fig,9 it is evident that the absolute best'approximation
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is obtained with the most simple form for S i.e, eq. (3,49).

The approximation which can be considersd the mos? valuable is given
by the expression (3.18), Although absoluﬁely more in error than eq.(3.49)
it gives the same trend for all Mach numbers and semi-top angles as the
cérrect solution, The approximation according to Kérmidn-Moors gives the
greatest deviations, the error in that case being altioul two times larger
than that found on using eq, (3.18)., This indicates that the values of the
flow quantities differ appreciably from those of the correct ones, and
that by using an approximate formula for the pressure coefficisnt part
of this error can be corrected for, This result cannot be based on a rigo~-
rous analytical investigation, It must be considered as rather arbitrarily,

| To see how the deviation betwsen the pressure-coefficients, according
to fha linearized approximation and the exact ones is related to the
mean error in the flow as given in table 1, table 4 is given indicating
this deviation as a function of Mach number M, and semi-top anglenTs.

It has been defined by the quantity K in the following way

Cy el
2o 100 éw.m) (gu) \ (3.50)
Per )

In fact this X is the percentage by which the pressure coefficient
according to eq. (3.18) differs from the exact one.

Comparing table 4 with table 3 it is remarkable that the error in
the pressure-—coefficient as calculated by using sq. (3.18) is not as
strongly dependent on the Mach number as the mean error X is, On the
other hand the amount that linearized theory differs from the exact
theory, does not allow quéntitative meaning be given to the linearized
theory for praotical shapes,

To see how these conclusions have to be modified for more realistic
configurations, the pressure distributions for the four different cases
already studied in the sections 3.1.3 and 3,1.5 have been given in figs.
10 a~d. In each case three different curves are given, based respectively
on 8q. (3.47) which gave the exact value of cp and of the two approxi-
mations to the formula for the pressure coefficient, based on eqs.(3.18)
and (3.49) for the linearized theory,




One property which the figures have in common is, that the slope of
the exact curve is larger than those of the linear curves over the for-
ward part of the configurations, while this situation is reversed at the
aft-part, This indicates.that'the ourves based on the linearized theory,
in all éases, do not give the aotual itrend of the exact cuwrve, If & choice
has to be made upon which of the two versions of the linearized pressure
coefficient is preferadble, it will be seen that this questidn-is hard to
answér._ln some cases, aver certain parts of the configuration eg.(3.49)
will give a better result than eq, (3.18), while on other parts this
‘'situation is reversed.

The ocuxrve baséd)on eq. (3.18), however, oan in all oases be related.
to the exact curve in a unique way, This curve shows in-all cases a steady
increase in deviation with increasing HMach number or decreasing slender—
ness., '

It is remarkable that the dsviations are larger on the aft part of the
fuselage than on the forward part. Even in the case \T =T. 5 y My = 2
~ these deviations are very largs.

In figs 11 a~d the roesults obtained have been shown in another way
by calculating the percentual difference beiwaen the exact cp and the
pressure coefficient as given by eq. (3.18)., Here more clearly the indeed
large differences are shown, In conclusien, it can be said that the re-
marks already made for cones, apply as well for bodies, The deviation in
the pressure coefficient, at least along the parts of the ocontowr with
a positive slope, is alwgyé emaller than the mean error in the flow field
based on the mass=flow and mamantum.bonsiderations. The oonclusion for a
part with negative slope, however, must be, that in each oase the result
of the linearized theovry for the pressura.ooaffidiant is highly question=-
able, apart from those pieces of the oontour wﬁere the use of linearized
theory is admitted by a very low mean error in the field quantities,

As has been said above the error in °p;15 for some parts of the body
far loss than the mean error, This indicates that the flow field at a
oertain distance from the body 18 more in error than the flow field
closely surrounding this body, In the following sactioﬁ, it will be in-
vestigated if this suggestion is truae..
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3,1.7 Comparison of the flow fields,
Until now the comparison between the results of the exact and the

linearized theory have been restricted to global results based on the
control surface approach, which gave a kind of mean error of the flow
quantities and to a direct comparison of the pressufe distribution, In
many problems, however, not only the value of the flow quantitiés on the
body is important, but aiso the values in the outer flow field, A simple
exampie, where this is important, is the interference beiween the body and
another configuration;

Again'fhe conical body presents the most simple example for dis-
cussing the differences between the exact- and the linearized theory in
the outer flow field,

To this end, in fig,12 a-d, the disturbance velocities u' and v'
caused by a cone, are given as a funotion of the spherical coordinate \T.
In each figﬁre the results, as derived by using the exact theory of Taylor
and Maccoll and accoiding to the linearized theory of section 3,1.2,. are
given, This has been‘done'for the ¥ach numbers'Moo = 2.,1469 and Vg = 4.

From these figures it is evident that linearized theory, at least
for a cone, gives results that best approximate the exact values at the
fuselage, while the deviation between the two theories increases very
rapidly in the outer flow field, It is clear that the Tegion of disturbed
flow, caused by the body, even for rather low Mach ﬁumbers, is much larger
according to tbhe exact theory than with the linearized theory. Moreover
another serious drawback of the linearized theory for a cone, which must
be noted, is that it is not able to give a shock wave, This means that
in the outer parts of fhe flow completely different phenomeﬁa- are pre-
dicted by linearized theory than ogcur in reality, The limits of applica~
bility are therefore even more severse than those given in the table 1
(where the mean error in the flow guantities is given), if interference
effects are important. ' ' .

In figs 13 d-d and 14 a=d a trial is made to indicate the differen—
oes between linearized theory and exact theory for bodies with reapect
to'the flow field, The alreay earlier investigated body with a semi-top
angle of 12,5° has been studied for the Mach numbers Mo = 2 and M= 4.
In each case the velocity distribution along a forward directed character-

igtic surface has been given, The characteristics start from about the




cross sections at £ = 0.4 and X = 0.8. The results must be treated with
some care, for it was not possible to select the same poéition of % for
the linearized and the exact case. They were taken, however, as near to
each other as could be accomplished. These figures display the same
features which are already evident in those for the cone. The larger
region;of disturbance given by the exact theory together with the existen-
ce of’a shock wave give rise to very large dlfferences between the results
of the .two theories for the outer flow fleld This trend is strongly de-
pendent on the Mach number, The results obtained in thls_sectlon thus give
rise to the statement, that the linearized theory is very inadequate,
which is particularly true when the theory has to be used in cases where

the flow phenomena in the cuter flow field are important,

- 3,1.8 Concluding remarks,

In the foregoing sections the validity of linearized theory for the
study of the flow around axially-symmetric configurations has been in-
vestigated, Use has been made of integral expreésions for the body area
and the drag, derived by usihg suitabiy chosen control surfaces;

It has been shown that by using these integral expressions a quan-
titative estimate can be given of the error made by applyiﬁg the lineariz-
ed theory, The results, which are given in terms of the so called mean
error, indicate that only in those cases where this mean error is very
emall, the dlfferences between the 11nearlzed and the exaot theory can
be considered as negligible.

It occuré that this is only the case for shapes, which are impracti-
cal. | ‘

‘Furthermore it has been shown by a detailed qompariéon that the -
lineariZed theory gives results which are mors in‘error at some distance
from'tﬁe bod&, than near to the body itself, This statement is related
te ths fact that.the linsarized theory for pointed bodies is unable to
give‘tha existence of é shock wave, Such facts should lead to total mis-
leading impfessions of the phenomsna occurring in reality, in cases where
the:effects of interference are important, Some of such cases are indeed
known in the 1iterature.'

The above given reasons lead to the necessity of giving’the utmost
care to the study of the axially-symmetric optimum configurations, In all
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cases the condition for an optimum shape can be given by a prescribed
velocity distribution on a closed surface, surrounding thé'body. To de-
termine now the shape of such a body, the flow field has to be calculated.
However, if use is maae of linearized theory, the same large errors are
present in the flow field as in the flow field around given shapes, de-
pending of course on slenderness and Mach number, Therefore the shape con-
structed by using such & theory has 1ittle chance to bs the actual shape'
of the derived optimum configuration. ‘

For this reason it is necessary.to have resort to more exact methods
of investigation for the flow field of an axially-symmetric configuration.
Since already methods are’ known for constructing the flow field if suffi-
cient conditions are given, the only remaining problém i8 to find these
conditioné. ‘ -

In the following part of this section the important problem of the
necessary conditions for an optimum shape with given base area, will
therefore be solved by uéing the exact equations for isentropiec, invisecid
flow,

3,2 OCn the determination of optimum axially-symmetric shapes.
In the first part of this chapter a ?ariety of reasons were given

to suspsct optimum-shape configurations as determined by the linearized
theory. To remedy this situation a more exact description of the pro-
'perties bf supersonic flow must be given, This means that the non-linear
differential equations as given in chapter 2 have to be used,

The problem which will be studied, is the determination of an op-
timum shape with a given base area at a given Mach number M ., of the
free stream. ' .

It is to be understood that an optimum shape is such a configuration
for which the wave drag is as low as possible under certain restraints,

-This problem has been solved alreadyAin 1935 with the aid of
linearized theory by von Kirman x) (ref.18).

However, the method ﬁsed there can not be generalized for a treat-
ment where non-linear differentiél equations are used. A scheme which per-
mits such a generalization is given in ref.17.

Tﬁere, use has been made of a control surface approach., As has been

set forth in section 3,1,1, the drag and the body area can be written as

x) with the accessory condition of given length
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integrals of functions of the velocities along the control surface. It
will be assumed that the body_whose'shape has to be determined, is in the
volume enclosed by the control surface. This control surface will consist
of two paris; namely the surface separating the regions of undisturbed and
disturbed flow, and the forward facing characteristic surface emanating
from the base, In this case, the whole flow field inside the control sur-
face is governed by the velocity distribution along the aft-character-
istic surface, The problem reduces, thérefore, to the determination of
such a veiocity distribution along this surface, that the drag has the
emallest value possible, and that the base area has a given value.

. ' To solve this problem use will be made of variational theoryj with
the differential equation therseby derived, together with the appropriate
characteristic squation and the boundary conditions, the optimum velocity
digtribution aléng the aft-characterietic surface ¢an be determined,

Te make the problem as simple as possible, it will be assumed that
the flow is isentropic in the volume enclosed ﬁy the cohtrol aurface,

This has the consequence that the flow is glso irrotational in that
domain,

A remark should be mads about the isoperimetric conditions in the
optimization procedure, If the ex&q£ flow equeiions are used, the charace
teristic_surfaces have a slope which varies from point to point in a
meridian plane, since it depends on the velocities, Thus the shape of the
aft-characteristic surface is not khown befofahand, but follows as a re—
sult of the solution of the pfobleﬁ,‘

This makes it hard to prescribe a given length, as is usual in the
linearized treatment of this problem, Instead therefore it will be assumed
that the base area of the'body as well as the radius of the intersecting
circle of front- and aft part of the control aurfaée is giveﬁ.

Another, very important point is the folléwings Far behind the body,
the drag of the configuration that is considered is accompanied with é
rise in entropy, This may seem quite amazing sﬁnce it has been assumed that
the flow is isentropic, However, it must be emphasized that this is only
true inside the control. surface, Somewhere in the outer flow field, a shock
‘wave will be formed which gives the expected rise of entropy. This shock
wave will be formed at the point of convergence of the compression fan

which has to be generated by the nose of the optimum body, in order to
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fulfill the condition of isentropic flow inside the control surface, The
poinf of convergence together with the optimum distribution will now be
determined in the following sections, These sections contain a revised

version of the subject matter of ref,19.

3.2.1 The requirements for minimum drag.

In this part a summary will be given of the'equations which have to
he uséd.for deriving the optimum conditions along the aft characteristic
. surface, All these equations have already been derived but for the sake
of the clearness they will be given here in the proper ordar, together
with the fundamental assumptions underlying this analysis,

In the first place it has been assumed that the aft part of the
conitrol surface consists of a characteristic surfaca. Due to the analysis
being'rastricted‘to rotationally symmetrio flow fields, this surface it-
gelf is axially-symmetric,

‘ Ecqordiné to eq. (3.4) the slope of this surface is given by

_d£ u=-vg

ix = " viup . (3.51)

The base area and tke drag of the oconfiguration imbedded in the
volume -enclosed by the control surface are given, if eq, (3.51) is valid,
by the equations (3.7) amd (3,17). Since it is assumed that the flow in-
side the contrel surface is isentropic, the function P of eq. (3.6) is in
this casa squal to 1.

The equation for the mass flow (3.7) can be written then as
B ;

1
e —_
2 PoY=1 2
R(‘T = 2 'R/ (azMzw) -ﬁ%—é?rdr : (3.52)
B .

The equation for the drag is acocording to eq. (3.17) given by

| | R, Y . R, L

< Y.-ll y=-1 2
p—%— = 2n R'[ 'Y—Mé— 1-(§2M°2°) dr~2nni[ (u“l)(azuoao)_ E?-E{; rdr
e 00 B o0 ' (3.53)

In_thése expreésions Ry 18 the radius of the base area, while R,
is the radius of the intersecting circle of the fore and aft part of the
control surface. As before, all velocities are made dimensionless with

the aid of the velocity U. . The quantities R Rc and M, have certain

B’
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pregscribed values,

The problem to be solved, therefore, is to minimize the expression
for the drag given by eq, (3.55), while at the same time satisfying eq.,
(2.52). Noreover it is necessary for the quantities u and v to satisfy
the characteristic equation for axially-symmetric flow which is valid
along the aft—characteristic surface, This equation can be found from

eq. (3.45)c, if it is remembered that 22 _ 0 in this case,

dr
Then there is found:
> .
(uB—v) + (u+Bv) dr + -% ;%E; = Q . : (3.54)

The expressioné (3.52), (3.55) and (3.54) enable the formulation of
the problem, This probleﬁ is to find such a distribution of the veloci~
ties u and v as a function of the radial distance r, that the.drag D
has its minimum value at a given value.of R°2 in eq, (3.52), while the
characteristic eq, (3)54) has to be satisfied for every value of r in-
side the interval R rs]i This problem is stated in such a form that
it is particularly sulted for application of the variational tkegory. Be-
fore this theory will be applied, scmething should be said about the
boundary conditions which have to be imposed at the boundary boints B
and C, At the rim of the base of therconfiguratioh no physical boundary
condition is presents therefore the variational procedure itself must
yield a so called "natural" boundary-condition at this point, About the
boundary condition at the intersection of the fore and aft part of the
control surface nothing further will be said at this moment other than
that it must be such that a physically realizable transformation ocours
from the undisturbed to the disturbed flow,

First, the differential equations valid for the velocity distri-
bution along the aft charaéteristic‘eurface, will be derived by using

variational theory,

3.,2.2 Application of variational thsory.

In the foregoing section a prdblem has been formulated which in fact
comes down to the determination of the extremum of eq. (3.53) under the
conditiona (3.52) and (3.54). The variational problem presented here 1s

a particular case of a more general problem, known as the problem of




Bolza (ref,20). This problem can be solved by applying the method of
multipliers, a method given in essence by lagrange. To do 86, the follow-

ing expression has to be considered

2 u=vp u-v§
¥ ‘

1 1
Fs{-'l_ 1_(32@ -(u—l)(aZMi,) - ‘12 r+>\(aznw) P,

+ ulr) {(Bu-v) = (u+av) T ooy } (3.55)

where A and i are the multipliers, The essential difference'bétween the
two multipliers is that A is a constant, while y is a function of'r: This
difference is caused by the fact that A is the multiplier of an integrand,
whilg}¢ is the multiplier of a relation that has to be satisfied in every
point of ?he interval considered.

The necessary conditions for a minimum are found by considering the
variation of the int%gral over the function F and to require that this

variation is zero, or -

Rc . _
& J F(r,u,v, d.r ) gr ) U-y>\) dr = (5-56)
B _ ‘ , f

If the variations of u and v are denoted by.p and n and different-
ations with respect to r are indicated by a prime these equatlons can be

written as

R,
!{ a§n+g§,p +g§,n}dxf=0 . | (3.57)
Partial integration tﬁap'gives
R, ' " : | ' R R,
[[E-s @} -t @) & / i/

(3.58)

Since p and n are arbitrary along the characteristic surface, the
integrand has to be identically zero. This gives rise to a syastem of
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differential equ;ations, known as Euler's equations, viz.:

s E-£ - o (3.592)
4 aF |
& (av,) -5 = 0 . (3.59%)

According to sgquation (3.58) the boundary conditions Tequired by

v

the variational problem are

AP F

P 5T +ﬂ3;‘7=0 inrnRBandr=R° (3.60)

Performing the operations indicated in egs. (3.59) the following

result is found

r ﬂ%u@l + u{Qv' + -;--g-;; (va2)}= (up=v) %% (3.61)a
_ MM u{-?u' + % %-; (vaz)}= (u+pv) %% | (3.61)b
The quantities A and B are given by |
Y - -
1-a, -(u=1)a.a (3.62)a
o [
B = ﬂlﬂz 1 (3.62)b
' ¥-1
where a, = (azltfz,) ‘ (3.63)a
. a2 .
and % = TNE (3.63)b

By using thg following operations the system of differential
squations ( 3.'-61'.) can be brought in a more convenient form,

Multiplying eq. {3.61)a by u' and eq. (3.61)b by v! and adding the
result together, the following equation can be derived by using the
characteristic equation (3.54)

r g'f (A+ A B) +% g—r- (uva,) = 0 (3.64)
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-~ The second ralation can be derived by multiplying eq. (3.61)a by
(usvp) and (3.61)b by (up<v) and subtracting the results. By using the
characteristic equation (3.54) one obtains

- ' 2_ ' a 2, 2.4
ay | —2pv-(u-1-2) {(1—32)—a2 [—9—“ = 4Vb]} + 1 —g- vybpa 43 = 0 (3.65)
. Ba b o - pa’
: 1 Y-l‘ E
where ba =5 4 —= ,
T

It is important to remark, that eq. (3.65) is not a differential
-equation, but a functional relation between the unknown functions u, v
and p. This peculiar feature of the system makes it possible to elimimte
the multiplier function iy which in itself is not interesting, This
 elimination givea rise to the following result,

[“3+3234{-“"BV+(u-l-'?\)}j]' %;—1- + [VZ-l-Bza.4 {4V-B(u-1->\)-2vb }:' g: +

.2'{- pat | -2pv—(u=1-2) {(1“ﬂ2)-a2 [352;?’3]} =0 - (3.66)
In this ?ciua.tion the quantities X, i‘ and 2 are given by

X = 2v 4 (ﬁ-—l-?i)(u-sv) | (3.67)a

Y- vob-plad | (3.67)n

Z =Y+ a° ;F {v b(Y+1 -Yf )+ﬂ434} -(u-l-)i)Bvb | (3.67)c

The system of equations (3 54) and (3,66) is a set of non-linear
first order differential equations for the functions u and v. Such a system
has a unique solution if two boundary conditions are given, and A is a
glven quantity.

In order to obtain the boundary conditions, first the rim of the base
T = RB will ‘be considered., As has been said already no physical condition
is present there, This means that the variations p and n are arditrary.

From eq, (3. 60) there followe then

aF oF

=
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These equafions are satisfied by the condition;ﬂRg=0, which accord-
ing to eq., (3.,65) gives rise to the following boundary condition

_2ﬁv—(u~1€%){(1~32);a2 [Eﬂﬂ;:f!ﬂ =0 (3.69)
pa
Since only two boundary conditions are permitted, at the point

ro= Rc only one boundary coﬁdition can be present if a solution exists,
In the first place this condition has to satisfy the natural boundary
cendition giveh by eq. (3.60); on the other hand it aiso has to be such
that a physically realizable transformation from the undisturbed t¢ the
disturbed flow is presented,

The condition (3,60) is given by

(Bu—v)é + (Bv+u)n = 0 (3.70)

To find the fun%tion G{u,v) = O which satisfies this equation, the
differential equation synonymous with eq, (3.7C) has to be considered,

This equation is
(pu=v) du + (pv+uddv = 0. {3.71)

But this equation is the well=known differential equation of two-
dimensional theory, for the Prandtl-lleyer compression fan. This relation

between u and v is given by

-1 '
_ ({3-[3 ) B-Beo -
;i% tan 1'li}-if—£3—— - tan_l-T—~—~ + tan tyi_o , (3.72)
Y+1 " .Foo

This result can be interpreted as follows, To satisfy eq, (3,70}
at the point r = R, the relation (3.72) has to be valid. This point is
thus the place where a compression generated by the nose of the body
converges, From this point'on‘a shock wave will be formed in the outer
flow field, giving the rise of entropy which is responesible for the
wave drag.

chefer, it should be remarked that the flow conditions at the
point r = Rc, where the compression fan converges qnd the shock wave
starts, are in general such, that a reflection occurs, setisfying the
relations of equal pressure and slope at this point, This reflection

is either a shock wave or an expansion fan [see fig.15), The strength
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of this reflection is always very much smaller than that of the ocutgoing
shock wave, In the case that this reflection is an expansion fan, the aft
characteristic is the first characteristic of this fan and thus, according
to the assumptions, the flow inside the control surface is isentropic,
As calculations have shown; this éituation occurs, roughly spéaking, above
8 Mach number M_,= 2,3, Below this number, the reflection is a shock“wave
penetrating into the region inside the control surfaca, The‘theory as
given here should therefore not be applicable to this case,

Howevér, such an objection is purely theoretical, since in general
the strength of this shock wave is s67small, that 1t im actually-negli-
gibvle, ‘ | - - L

4s a solution of the variational problem, we have found now the
system of differential ‘equations (3.54) and (3.66) together with the
" boundary conditions (3,69) and (3,72), Moreover the mass flow equation
(3.52) has to be satisfied.
_ This is a set of three equations for the unknown functions v and v
and the unknown multiplier A . As will be shown in the following section,

it is possible to solve this system by numerical methods,

3.2.3 Determination of the optimum velocity distribution,
It will be clear at first sight that it is not possible to find
easily an analytical solution of the differential equations (3.54) and

(3.66). It would be possible to integrate the differential equations
numerically by a variety of methods if both the quantity A and the

velocities u and v oither Qt T = Rc or T = RB
“one condition is given in T = Ry and another one inr = R, whilst A

were given, But here,

is unknown and must be determined by using the mass flow relation
(3.52). Tor given values of r = RB,.r'= R, and ¥ thié problem can
only be solved by a double iteration, This can be done by the following
method. . B ' -
_- At the point r = RB the_values pf?\ and u are chosen arbitrary.
With the aid of equation (3.69) the velocity v can now be caloulated,
As has been remarked above, it is possible then to integrate the
~differential equations, thus determining the values of w and v a8 &
function of r, In general, the valuss found in this way at the point
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r = R, will not satisfy eq. (3.72), while moreover also both sides of the
mase flow equation.will not be equal,

By keeping the value of A constant an iteration with respect to u is
performed such that finilly the boundary condition at the point r = R_ is ’
satisfied.

However, a further value of A has to be determined for which the mass
flow relation is an identity, This can bte done by performing the above ex-
plained iteration with respect to u for different valuee of A and then to
perform an iteration with respect to A , It im clear that this is a very
complex programme, even when using a digital computer, Therefore a differ-
ent approach was used, where only one iteration step was necessary, thus
reducing the computer time by an order of magnitude. |

This has been achieved by not prescribing the %alue of Rc, but by
determining this guantity from computations, 7

In this approach, the values of uand A at r = RB are chosen, just
as before, However, now the solution is continued until eq, (3.72) is
satisfied, Thé value of r for which this occurs can be considered as a
value for r = Rc; By using the mass flow relation an iteration with
respect to A can be performed, until a solution is obtained which satim-
fies all the'equations{ .

This schéme for the sclution proved to be very satisfactory. The
actual integration of the differential qquations ﬁas performed by using
the version of (Gill (ref.21) of the Rungé-Kutta‘method.'To save compu-—
tation time, the itératiqn with respect to A was performed, by using
first a large step Ar and, if A was already sufficiently close approxi-
-mated, by choosing the final step width, To start the computations an
estimate of the values of u and A y necessary for a certain Rc) can be
obtained by using the linearized theory of ref.17.

The computations were performed on the medium sized digital come
puter Z.B.B.R.A.

As soon as the velocity disiribution is found, it is possidle te
cglctlate, the hitherto unknown shape of the characteristic surface by
using eq. (3.51). The total length of the body is then given by

{- R, +Rf vHug o (3.73)

u-vp
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The optimum veloclty distribution has been oalculated for several
Nach numbers, for a given value of RB. The attempt has been to obtain
body lengths that were not too different, In the tables 5 a=o the quanti-
ties u and v have been given together with the shape of the aft character-
jstic surface for the Mach numbers ¥ 2.5, 3.5 and 4.5, In addition the

values of R Rc and the length f of the body are given,

’
In therigs 16 a=c the rssults of a comparison of the present theory
with the linearized theory of fef.l has been gi#en. This theory is based .
on the first order relations for mass flow and drag as derived in section
3.1.1, .

It will be se€en that even for the very slender bodies considered,
theldifferences are 51gn1ficant and are rapidly growing with 1ncreas1ng
¥ach number, However, as will be clear, the importance of the method as
given here, con51sts in the fact that it enables the calculation of the
optlmum cond1t1ons in those cases where the 11nearlzed theory fails to
give reliable results, As has been shown, this is the case for non~
slender bodies and higher Mach numbers.

After the determination of the aft characteristic surface and the
velocity distribution along it the problem of calculating the shape of
the cptimum body has t6 be solved, This will‘be prescribed in the follow~

ing éection.

3,2.4 : Determination of the optimum shape,

The actual shape of the optimum body can bhe determined by calcu-
Jating the. flcw field inside the control surface,
The body itself is given. by the differential equatlon

dr v
& " u , (5.?4)

with the boundary conditions

T = 0] for x

1l

1)

0 . (3.75)a
and  r =R for x = { ' (3.75)b
- One of these conditions is sufficient to determine the contour,
but the other has to be satiafied because of the relation for the mass
flow, - |
sinoe the flow is isentropic, there is no shock wave present in-

side‘fhe control surface, This means that the backward characteristic
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surface from the nose of the body to the point of convergence of the com—-
preésion fan is a simple cirocular Mach_cbﬁe, along which fhe disturbance
velocities are zero., This fact has already been used in deriving eq.
(3.73). Tﬁus, tha_field between two characteristic surfaces has to be
found, This is a so-called pfoblem of Gourgat, It must be remembered,
however,‘that the point Rc is a multivalued point for the velocity and'
that a fan of characteristics converges here. Therefore, first the com=-
pression fan will be calculated by using the system of characteristic
equatiohs (3.45). Since along the first characteristic u'= 1 and v = 0,
according to eq., (3.74), the slope of the contour at the nose is equal
to zero, - _ :

This gives rise to the occurrence of a'cusped nose, The construction
ﬁf suéh a nose can cause large difficulties due to the. singular hehaviour
of the functions u and v for r approaching the axis, 3y observing that fhé
-cusped nose has to be parabolic over some distance and. by choosing a
suitable mesh length,.these difficiiities can be removed, As soon as the
compression fan has. been calculated, the construction of thé field
Betweenlthehlast characteristic. of this fdn and the aft characteristic
is an ordinary problem of Gourgat and can be ﬁerformed‘by,standard routine, -

The resulte of the computations made for M, = 2.5 and ¥, = 4.5

have been given in figs 17 a=-b togethef with the slope of the contoure

%% . The pressure coefficient which is given by |
: s
' Y-1 o :
o = L (Ch AN (3.76)
YN oo : . V
. { dDo
and the distridbution of the axial force i !
E’QnQnﬂ F'B
iD .
’ 0 ) dr
where —— = 2n ey T ax 0 7 (3.77)

héve been given in figs, 18 a-b,

A Oheck on the numerical accuracy of the results is provided by the
radius of the base area .as found'by‘determining:thgnzody contour, and by
a comparison of the drag as‘fougd by integrating T along the fuselage
and the prescribed minimum drag, The results obtained indicate that the




59

differences are of the order of one percent, showing that the accuracy of

the calculations is quite satisfaotory.

In conclusion a few words will pe said about the differences between:
"the overall results of the method prescribed here and the results of the
linearized theory. One very remarkable point is the cusped noée; whioch ia
in sharp contrast with the nose shape found with linearized theories,
where %—E— —»cofor. x—» 0,

For low Mach numbers this cusped nose is only a very small part of the
fuselage length, but for higher Mach numbers the length of this cusped
nosg grows rapidly.'Since apparently the largest differences occur at
the nose, this leads to the following result,

If the shaﬁes are slender and the Mach number is low the differencsee
at the nose are not able to influence the overall result very much and
the results of linearized theory will cémpafe reasonably with those of the
present theory over most of the body length.

However, Yor less slendér shapes and higher Mach numbers the results
will show raﬁidi& increasing differenoatpmking;linaar126dﬂ$hegry.a“tdol of
very limited value; These general observations ére fully in acbordance

with all the results already found,

4 Studies on quasi axially-symmetric flow, - ;
 Since one of the main interests to the aerodynamiéist is the study of
the 1ifting properties of flight-vehicles it is ﬁoﬁ'surprising that there
are many methods devised for making‘such studies, This is especially true
for the subsonic fegime, where a variety of theories exists for calcu-
lating the 1ift distributién on a’'wing, All these methods are based on
the linearized theory, which gives good results as long as the Mach num-
ber is not too near to unity. The influence of the‘bodj on the 1ift is
due to ite interference with the wing, a body alone not giving a net 1ift,
This situation is radically changed if the body, which is for instance
axially~-symmetrioc, 1s'moving fagter than the speed'of sound, It then can
develop . 1ift, provided its axis is curved or not aligned with the direct-
ion.of motion,, Thus the study of the liftiﬁg‘prOperties of such bodies

can have some merits on its own.




60

Rather early, some research in this direction was made, especially
with respect 16 the’ métion of ballietic projectiles, In 1938, Tsien pu-
blished a method to caloulate the supersonic flow over an inclined body
of revolution (ref.22), This method, which is in fact a generalization
of the treatment given by Kéirmdn Qnd Mobre, is based on the assumption of
‘small disturbances and thus use can be made of the linearized poténtial
flow equation, As in the case of purely axiailj—syﬁmetric flow, this
linearized theory can be expected to be valid only if the Mach-number is
not much greater than unity and if the bedy is sufficiently slender.

In the first part of this chapter therefars a method will be given
to obtain quantitative results on the limits of the applicability of the
linearized theory for the calculation of the flow-field around inclined
bodies, It appears also that for the field determined in this way, the
same conclusions are valid reached in the foregoing chapter, However, in
this case there is no opportunity to obtain more exact results, Only for
the cone & theory has been given for calculating, by a perturbation method
applied to the axially-symmetric flow field, the fl#w field due to incli-
nation of the axis, correct up to the first (and second) order of the
angle of incidence, The Tesults on the v#liditj of linearized theory for
more generél.body shé?es ihdioate that it would be worthwhile to devise
such a more exact method fdr genaral quasi axiaily-eymmetric shapes, The
second part of this chapter is devoted therefore to the presentation and
discussion of such a method, ‘

4,1 On the validity of linearized theory for quasi axially-symmetric flow,
As a corollary to the study of the validity of the linearized

theory for axially-—symmetric flbw, a treatment will be givaﬂ here, aiﬁed
at giving a quantitative value of the error made, when using the
linearized theory for the‘daterminétion of the flow field around an in-
clined body of revolution. Also in this case, the motive for the investi-
gation was'given‘ﬁy the striking differences between the preécribed value
of the 1ift and the 1ift as found by integrating the pressure along the
fuselage when constructing an optimum body for a given 1ift., It will be
clear, that tﬁe comparison betweeh the 1ift as integfateﬁ élong the body
and'és determined by a control surface approach, is the most simple and

ePfective method to measure the validity of the theory. Although in prin-
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ciple a second comparison coud have besn obtained by considafing the in-
duced drag, no use of this quantity has been made here.

'Aisb, very much attention has been paid here to the consideration

of the flow around an inclined cone. Due to the fact that more exact
solutions are also known a detailed Qomparison has baeen poasible. It
will be shoWﬁ by using the subsequently derived integral expréssion for \
the 1ift, that the first~order solution of Stone is a formally fully
consistent method for gohstructing these‘ﬁbre exact solutionay a fact

which will be of much importance for the second part of thie chapter.

4.,1,1 ihtegra] expression for the 1ift as found by using linearized
. ) theory.
In this section the same body will be considered as in section

3. 1 1. It will be assumed now, however, that there is a =mall ¢cross-flow
component of the velocity €U, where € is small compared with unity.
This means, that in fact a body with an angle of attack £ is considered.
The 1ift on this body can be determined by using the same control sur—
face as before and considering the momentum transport in thé‘z-direction.

. If the 1ift I is the force perpendicular to the axis of the body,
the following relation is obtained: :

L+é/ pycos y cos ¢ dOg +_(/3/ plvnlwldol +.{] P,c08 U cos¢d02+
1 2

1
+.'/] 0y Vn w2d02 =0 - : B (4.1)
Oy’ 2 _
where W. and W, are the velocity components in'z-direction and the

1 2

angle W, being the semi~top angle of the characteristic cone is given
. by ’ .

1

gin g = o | (4.2)

The velocities in the field of an inclined body can be given as

Ugo {lftﬂ + € con¢ o (4.3)a
_ Ubo { vl 4+ e v cos ¢ (4.3)b
W o= Ue v sin¢ (4.3)c
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The functions u", v" and w" here are the amplitude of the cross flow
disturbance velocities. The occurrence of the trigonometrical functions
cos{ and sin ¢ is required by the boundary condition on the body,

Using eqs. (4.3) the following relations can be derived:

-
o]
=t

c:"
il

8

-sin p + & Boo sin p cos ¢ (4.4)a

LY
i © {4.4)b
v

]

(L+u'+eu"cos ¢ )sin u+B(vi+ev" cos¢ )sin 1 (4.4)c

T- = (vi4ev" cos ¢ Joos § —ew" sin2¢ - (4.4)d

The preséu;-a and the density follow by a Taylor expansion of egs,(3.5)
and (3.6). (See also eq.(3.9) and eq. (3.18));
It is found that

Py = pm{l——mio(u'-réu”cos ¢ )} | (4.5)a

PZ-PCO = "‘pinE].-i-u'-i-Eu"cosq)' )- -21- B?w (1+ul+€u"cos q) )2 +
{4.5)b
+ %’ (V'+3V"008¢ )2+ % 52W"20082(PJ

where again quadratic terms are retained in the pressurs.

Substituting the equations (4.4) and ‘(4.5) into the expression for
the 1ift L and performing the integration with respect to ¢ the follow-
ing is obtained:

R
[+
| "'Tué = / ‘Boo{“"-ﬁfou'u"w‘v"} rdr +
P 'q,‘ﬂe R :
0 B
o]

R

+ 2 Rf {l-ﬂiuwﬁwv'-mi u'Z-Bwao u'v‘}rdr +
B

]

{v"-w"—Bi v'u"—BEo ulv'+28 v 'v"+;33° u'w'—g v 'w"}rdr (4.6)

"‘f'\.w
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Since u' and v' are considered smali'quaptities, the terms °°ut2 and
&JéLqu' can be neglected compared with unity. It should be observed that
thus only terms of the order € and ¢b are retained where % is of the order

of the axially-symmetric psrtiurbation velocities, Quantities of the order

e2 do not occur, Ey rearranging the terms, the following result is obtaineds
R ' . ‘
S jf {Qﬁp"—v"+w"+2}{1-ﬁiau'+ﬁﬁv'}-rdr (4.7) |
Peo"00 Ry .

In this expression, a certain coupling between the thickness field and the
lift field is present. Howeier, in the linearized tﬁeory, the 1ift field
is considerad as a perturbation of the undisturbed free stream, This means
that the diéturbance velocities u' and v' vanish in this case. Equation
(4.7) takes then the following form :
R . ‘ _ )

¢
L ne f { Beou"-fv"M"+2}rdr ' (4.8)
o U
0w -

Rp

By using eqs. (4.7) or {4.8) the 1ift can be calculated by an independent
method,‘giving the Opportﬁnity of éhecking the consistency of the linearized
theory &ftér calculation of the'fiow field. In the following sections these
expressions w111 be used therefore to study the applicability pf this theory.

4.1.2 Linearized theory for an inclined cons.

Coneider the flow around a cone which has a small cross—flow component
€Uy . If € is sufficiently small, the configuration sufficiently slender and
~ the Mach-number sufficientiy' low, then the linearized theory can be appligd.
However, it is very important to know what is meant by sufficiently. Thé in-
vestigation of the answer to this queétion will form the subject of thie
section. .

The differential equation, which has to be satisfied, has already been
given several.times, viz, eqs. (2,57) and (3,20), For the sake of completensss

it will be repeated. here once more

2

. 1 1
BooPxy + Opp + TP, + = g¢¢ = .0 (4.9)
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As has already been remarked, the perturbation due to the inclination is
considered as based onan undisturbed free stream, According to the re~
marks made when introducing the egs. {4.3) the potential for the cross

flow can -be written as

® =73 cos ¢ (4.10)
The amplitudes u", v', w" of the disturbance velocities are then given

by

u' = 3% (4.11.):\-
A = 3T (4 .11)b
w_ 13

T 59 (4.11)c

Sincs the flow is conical these quantities are constant along rays
through the vertex of the cone,

Introduce therefore, as before

t = (4.12)a

HH

and

'}

rP(t) (4.12)b

D

On substituting the expressions (4.10) and (4.12) into eg, (4.9) there
is obtained the following differential equation for the function Pt )

P L
2_2,4d°F ar
(Fbo) =7 - tq = O | (4.13)

while the disturbance velocities are gifen by

‘n _d.,'_lz

u = d-t (4 -14 )a
. ar

V= et Sz 4 F o . (4.14)b

wlp' = - F . (4.14)0

The boundary condition on the surface, viz. 17= q}s3 is given by




V' o= U e o — (4.15)

The boundary conditions on the Mach-cone through the vertex of the cone,

j.e. t = B, are given by
v' =z ew" = 1 ‘ - (4.16)

The solution of eq. (4.13) oan be written as
2_p2 2
Ct \/t B cp2) %

-1 o
= 5 ‘ - 5 cosh Fo_o+ D . (4-17)
Application of eq, (4.16) gives
D=1 " {(4.18)a
and of eq, (4.15)
C = - — (4.18)b
2 .2 ' :
-8 t
o ‘e 1 2 .2 1 .2 -1 o
T + 5 to VtoPot 5 B cOBh -6;)

while u”, v" and w" are given by

SR TL c\/tz-afo . (4.19)a

t
" 1 ,.1[2 2 1 -1 \
v = - E Ct 1 —ﬁm - E CBOOCOSh. B—'; + 1 (4 .19)‘b
% e
, 1 a1 1202 _ 1 2 -1 ‘o '
W o= -3 Ct |/t ~Bey ~ 5 CBoo COBN e~ 1 (4.19)c

In order to obitain quantitative limits of applicability of the above
equations use will be made of eq. (4.8). According to eq. (4.5)b, the
prossure coefficient can be given by
[¢] = " : ’ .20 a
. cpo + o} cos ¢ ‘ (4.2 )

where

H " 2 1 Mt
on = 2c {-u + B, utu" - v'rv } (4.20)b
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However, since the cross-coupling between the thickness~ and the 1if%
field is neglected, the laat two terms in eq. (4.20)b have to be omitted.
The 1ift on a cone with'length ‘t is then given hy

2n—£— ' . : '
to : B2
1 " 2,... dx RE 2 &0 2
L=-I-2-/f oy cos“p'r o= dr a¢ =—§cf \/1-—(§) ®o0 Yoo (4.21)
c 0O . :

If now the quantities u", v" and w" are substituted into eq. {4.8) and

the integratien is performed, the result is

' ) 2 B .2 2 t
2 1 ]/ SIS UPE O S|
1, = ne pm Um C {—é-{ l—(-_-i;; - -2- ('_t.;) ﬁw cosh ;‘i (4 .22)

Comparison of the egs. (4.22) and (4.21) shows that the 1ift as calcu-
lated by integrating the pressure along the fuselage, is higher than
the 1ift calculated by using the integral expression aleng a character-
istic, What now is the conclusibn which can be drawn from this part?

If the difference between the two expressions is small, it could
be concluded that sither the average error in the integrands of the ex—
pressions (4.21) and (4.8) is the same cT that there are no errors in
the iniegrands; if, however, a deviation is present the conclusion musi
be that the error in the field cuantities is greater or smaller than
those in the pressure distribution along the fuselage, If this deviation
is large the theory used is inconsistent and thus not valid.

The question which now has’to be answeréd is ¢ Can linearized
theory be considered to be valid if'the deviation is very small? From
the egs. (4.21) and (4,22) follows that the deviation is small if
t, - S
o is large, This is true if % is large or B, is small, The first
case means that the cone is very slender and certainly linearized theory
should be'applicablé in that case, The latter case means that the Mache-
number is véry near to one, it should then be permissible to have far
less slender cones, This possibilit& will be considered further on.
Mirst the devjation betweén the two expressions will be discussed,

If a deviatioﬂ of K percent is thought to be pérmissible, it can
be derived that ‘




The limit lines are given in fig,19. By comparison with fig.4 it can

be seen that for higher Mach-numbers the curves cqincide, ghowing that the
limite of applicability are the samse for axially-symmetric flow and the
flow with a2 small crosas componént._lt is interesting'to remark that the
treatment givan'in section 3.,1,2 leads to eq, (4.23) if use had been made
of the lineariied boundary condition .
vt = & | (4.24)

Apparently the use of the exact boundary condition leads to the
restriction in the vicinity of NMy,= 1.

In this case, however, it seems that linearized theory is able to
describe the flow éround an inclined cone very well for Mg, very near
to one, However, in the derivation it has been assumed that the cross
coupling between the thickness field and the cross flow field is ne-
gligible. Thus the results obtained have a meaning only if X as derived
from eq, (4.23), is small, and also at the same time the perturbation
velocities of the thickness field are very small oomparad with the fres
stream velocity‘Uoo .

Now it 18 obvioua that this is fulfilled for very slsnder cones,
An idsa about the influsnce of the cross coupling can then be obtained
by using eq.‘(4.7) instead of eq. (4.8). It turns out, though not more.
than the order of mégnitude of the influence ié given, that this can be
quite large sven for very small values of )( This means that for not so
glender cones the influence of the thickness field will ‘e quite large.
Thus very near to the Mach number unity the results of eq. (4. 23), which
indicate that qf-*n— without making a large error, are 1nvalidated by

2
the fact that no account had been taken of this croas coupling.

The conclusions reached here can be summarized as follows, In ordar

to calculate the flow field around a cone at an angle of attack, linearized
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theory can be used only for very slender conss, For higher Vach-numbers
(M>2) the situation is the same as for the axially-symmetric case. For
M< 2 the requirements on «TS are strongly deﬁendent on the Wach-number,
due to the influence of the cross coupling of the flow fields,

The c¢onclusions giveh above are independent of the valué of £ . Be-
sides ths requirements given here for the applicability of linearized

theory, it is nebesgary that eu”, ev”_and ew" are small against unity,

4.1.3 Llinearized theory for the flow around an inclined body,

 As it has been done in the case of axially-symmetric flow, here
too a study will be mads of the flow around an axiglly-symmetric body
at an angle'of attack to ses if the conclusions reached in the fore-

going section have 4¢ be changed,
.In the first place the 1ift generated by a body with a parabolic
shape has been investigated along several lines, The shape is given

by
r= 0,22182 x ~ 'o.19471 2 ogxgl a (4.25%)
%ith the aid of the linearized method of characteristics (ref,
23) the flow field has been calculated for M,,= 2.476. Thereafier the
1ift hes been calculated by using eq. {(4,7) and eq., (4.8), thus using
momentum flow considerations, and by intégrating the pressure distri-

bution along the fuselage using eq. (4.20) and its more usual form

o, = -2 eu" S T (4.26)

As it haé been already observed the use of the egs. (4.7) and
(4.20) is in fact not in accordance with the assumptions of the linea—
rizéd theory for cross flow, but on the other hand should these assumpt~
jons be valid, no large differences between the results of egs,(4.7)
and (4.8) and (4.20) 2nd {4.26) should be present. The four curves for
the 1ift are given in fiz.20. The results indicate that the influence
of the axially-symmetric flow field is Bo large, that it apparently
cannot be neglected, However, this leads to the conclusion that a theory
based oﬁ thé linearized équation (4.9) is unable to describe the flow
field for this particular case, Thus not one of the curves presented
haa 2 quaﬁtitative meaniﬁg. At the most they indicate the order of ﬁag—
nitude of the lift generated. ' |
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Also an investigation has been made of the flow field around the two
bodies already considered in section 3.1.3, The 1ift has been caleulated
by ueing eq. (4.8)Ifor the momentum flow approach, while eq. (4,26) has
been used for the integration of the 1ift along the fuselage, The results
have been éiven in figs. 21. aQb '

- The theory 15, according to the rasulis given here, rather accurate
for the case 47 =71, 5 and M, = 2, while for 1T = 12 5 and M_o= 2
the results seem to have a quantitative wvalue,

For xr = T. 5° and M = 5 and qT = 12, 50, = 4 only the order
of magnitude of the 1ift is indicated by the rasults,

In general therefore the conclusion hae to be the same as for the
axially-symmetric case.

If linearized theory is used to predict the flow field around an
axielly-eymmetric configuration under 1ncidenee, the resulte have only
a quantitative value if the shape is very slender and the Mach number
low, The average error 1o be expected can be predicted by using the
methode given here, together with the results obtained fer the purely
axially-symmetric cese,

It is a pity that these results cannot be subetantiataed in the same
way as in the case of the axially-symmetric flow by a direct comparison
with exact results, Cnly for the cons such a treatment has been given by
considering the cross flow field as a perturbation on the exact thickness
field, This theory will be discﬁssea in the next section;

4,1.4 The first order theory of Stone for the flow around an inclined

cone,

If a more reliable solution of the flow arocund an inclined cone ie
wanted .we must resort to a more exact treatment of the governing diffe-‘
rential eguations. Stone- (ref 8) has given a method to calculate the
fIOW'field around a cone at an angle of attack e, where € is small, In

rof, 24 he extends his method by taking account of the square 5

dc
fact he thus has tried to caloulate the quantities EE£ and 2 for —
e—+~0, wherse co is the 1ift coefficient, The first order de theory

of ref. 8 will be treated here for several reasons,
Firet it offers the poesibility of obtaining a direct comparison
with the results of the foregoing sections, while by the applloation of




the control surface approach which is now well known several interesting
results can bs obtained, On the other hand the description of the method
will give an easy access to the ocontents of the gecond part of this
chapter, where this first order theory is generalized for more general
configurations, The second order theorf will not be treated. Its mathe-
matical correctness is questionable, at least at the surface of the cone
and moreover it is a very complex theory, which does not give much hope
to extend it to the determination of the flow field around more general
configurations, . ‘

Ths following analysis presents only the formula which are appro-
priate for‘the above mentioned investigations. Por the details of the
method and the derivation of the_aquafions used, the feader is referred
to the papers by Stone, refs, B and 24,

Introducing a spherical coordinate system r, W and ¢ as given in
fig.22, the equation of a ocone inclined at'an angle &€ with respect to the

main flow direction is given By
r cos A dos € = 1 sin W sin ¢ cos P = r‘cos'JS (4.27)

It can be shown that correot up to first order terms in £, the

following expreseions are valid for the velocities, the pressure and ths

denaity
u=1u-¢x cosy (4.28)a
V=V =~cycos{ ' oo {4.28)b
w= =-¢tzsing (4.28)c
P=p=-¢ncosP : {4.28)3
p=p -ct cos : (4.28)e

The dashed symbols are the gquantities as caleculated by the theory
of Taylor and Maccoll for the axially-symmetric case, If the egs, (4.28)
sre substituted into the governing asrodynamic differsntial equations,
a éystem of differential equatione is obtained for the quantities x,y,.
zy £ and n, In order to solve ihe system the boundary cornditions hafe
to be known, The first boundary condition is that the solid surface of
the cone has to be.a stream surface, Moreover certain conditions should
be satisfied at the shock surface,

Correct up to the firét.order in e, the body contour is given by
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q7=.J;.— £ cos ¢

This can be checked by substitution into eq. (4.27).

The shock wave surface can be written as

q7=mxw - ex cos@ (4.29)v

where a is an unknown constant, which has to be determined,
Stone now solves the probiem‘by traqsforming the boundary conditions
along the cone surface and along the shock wave to conditions along
qr=1TB and qraﬁpw respectively, In fact he thus transforms the problem -
to one for the same doméin a8 in ths axially-symmetric case, It is in this
transformed field that the equations (4.28) are considered to be valid.
This transformation is based on the folicwing formulae, which are
given in ref, 22

oot esin® g4 ... .. © (4.30)a

qy= o - & cos ¢ + %{8
¢=¢+ecot @sing+ % e2 sin g cos g (2 cot® 6 +1)+ ... . (4.30)p

where © and @ are spherical coordinates referred to the axis of the
body. The equatiopalapply for the case of the transformation of the
boundary conditions on the fuselage, Only ths terms in e are actually
taken into account, _

Ons very important remark.should be made, however, regarding the
eqs. (4.30), Apparently the transformation is based on the fact that €
is small and that the squares of ¢ can be neglected therefore, but in
order that this ba true the defining parameter € cot €& has to be amall,
Since € cot & is the largest on © = va the requirement is that
€ cot 95 is small against unity or that approximately

%;1 . 4.31)
It should be noted that in the optef £low field transformations
similar to that of eq. (4.30)} are more rapid oon#ergent,
As soon as 5 % 1, the higher order terms are as important as
the lower order tgrms and the method breaks down,
Bven a second order theory along thesse lines is, mathematically

speaking, invalid, at least in the surrounding of the cone surface, The
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conclusion to be drawn from these arguments is thus, that for less slender
cones, i;é. having larger seml-top angles xrs,higher values of & are
permissible when using this theory.

If the theory gives the correct answer for the first order term ,
then the 1ift as ocalculated by integrating the pressure along the cone
surface, should be equal to the lift as calculated by the momentum
transport through a control surface, This comparison and the derivation

of the necessary expreséions will be given in the following section,

4,1.5 The 1lift on a cone according to Stone's first order theory.

If a cone is considered at an angle of attack € and if Z is the
direction perpendicular'to the free stream velocity Uco.(see fig.23),
the force zcting on the cone in the 2; ~direction can bs written as :

L + b{/pwcos(n,a)dol + é{ plvnlwldol +'0[£ pzcoa(n,a)clo2 +

+éf P2 Tn 12107 = Bfn RB2 -0 . ‘ (4.32)
2

The last term results from the fadt that it is assumed that the
free siream pressure is acting on the base of the cone.

Now, as has already been indicated, Stone transforms the problem
to one which has the same domain as the axially-symmetric solution of
Taylor and ¥acaoll. The results found are thus valid in this so called
transformed flow field. However, in deriving the 1ift from the momentum
equation the real flow field has to be used and a revefse transformation
has to be applied thereforé to the results of Stone. A '

In order to obtain the values on the true cone surface it is most
convenient to use a spherical coordinate system based on the body-axisj
to do the same for the real shoek wave a coordinate system based on the
axis of the inclined shock wave will be the natural one to chooss. Ac~
cording to eq. (4.29)b the angle of inclination is & = ae.

‘The flow quantities in these local coordinate systems are obtained
by using Taylor-sceries expansioﬁs to account for the required displace-

nents,
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The difficult question which arigea now is "What method has to

be used to calculate the value of the flow quantities in a point betwsen .'

the oone surface and the shock wave in the real flow field? "
With the aid of fig.24 this question will be answered,

A local coordinate system is defined, the axis of which makes an

angle A& with the free stream.direction in the vertical plane and where

_ A s dependent on o aé_measured'in the axially symmetric system used
by Stone, ' ’

It is éssumgd that the flow quantities on a cone with semi-top
angle 1r, when referred to the local cobrdinﬁte system of fig.24, can
be correlated to the results of Stone for the same angleﬂ? in the
azially—symmetric system by using Taylor-series expansions. The flow
guantities in the local coordinate system on this cone can be derived
by establishing the relations between the velocities in the two coor-
dinate systems, and using the transformation formula (4. 30) by repla=—~
cing & by e A , The result is (see also ref,25)

u= - (x +2T)e cos %  (4.33)a
VeV (y;AGEBEOOS wé (4.35)b
‘w = (~z4vhcosec f de sin qQ{ (4.33)c
D= ? - (lﬁ +>u'i5'l)€ 008 9 ' (4.33)a
p=p - ( +?\F‘)slcostp{ | | | o (4.33)e

' where'a,primefmaana_differentiation with respasct to qI «» The fﬁnction
A varies from ¢ to 1, and it will be assumed that this variation.is
‘linearly dependent on Wy as measured in the.axially-symmetric system.

This gives
3 aﬁr‘ ﬁr J' o o
. = Jw Js ’ | (4-34)

By using the egs. (4.33%) and (4.34) and the local coordinate
system, the flow quantities at any point of the real flow field are
defined, . | '
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The particular choice of control surface made to derive the force L
from aq. (4.32) consists. of a part of the shock wave and a sphere with
radius R (see fig.24).

The quantities occurring in aq. (4.32) are given, correct up to
firet order terme in e by

qos(n,a) = co8 JW cos {p{ + at sian on 0y (4.35)a
W, =0 ' (4.35)p
_cos(n,?) ~ sin A cos rp-{ - Ae cosJ on 0, | (4,35)0
Vn2 = U ) | ‘ | (4-35)‘1

‘.'12 .

(u sin ) + v cos v )cos vp =W sin 9p +

- Aef(u oosJ-v' sinJ) ' (4.35)e

In order tc derive the expression for the surface element of the
sphere, as a function of ‘Jand ] » consider the local coordinate
aystems characterized by A and A+ dA . They define the quantities

on the cones

I,
Jl + dJl

where '31 'is thé angle as measured in the wind axis system, These cones

Jhe oy (4.5

J+ av ~Oedd)e cos o _ (4.36)1

cut out a slice of the sphere considered with the surface alament (see
£ig.25)
a0 - R & ® sianQ{
Ch applying eas, (4.36)a and b this can be written as

2

d0 = R {1 - ¢ % cos q;f} sinvay dcpf (4.37)

with the aid of egs. (4.33), (4.35) and (4.37) ths integrals

occurring in eq. {4.32) can be written as follows :
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Y-
// P2°°B(n’i)d02 = e RQJf {_2>\'§ cos J—E %sinJ —(n+)\-g—5)sin\)%binwrdaf
8

Oz | : (4.38)a

‘\rw‘

'[/. Py 'V Wzdbe = ne n2 ’/ [.;Ti{x sinJ + ¥ cosJ-z} +
e :

02 , Js

- Eﬁ)\{'ﬁisMJ-\- '{FvoogJ *5}5}'} -25 N (T cosv -V sin\r) +

+{$Eg‘%-;(x +7\1?{_)} (x sin + ¥ cosw) sianJ (4.38)b
_ 2 .2 ‘

,2)A0, = mae Py RS sin®y (4.38)c

{{ P, cos(n 3_) 1 wE I)' sin WV )

j] o vmlv«rl‘do:1 =0 : . o (4.38)a

- These equations can now be integrated by using eq. (4.34) together
with the following exp!_l;essions for the. dsrivatives of the flow qixan- v
tities (ref.24 and 2%) '

TJ..? = ‘—r' i (4.39)"1
o , .
- __ (¥ £ ¥ ;otJ) _3 (4.39)%
a7
X 1 v(u ; vzc?tJ) (4.39)c
a =%
P :
3. 2 v(%ZQV oo‘t‘\n . _ (4.39)d
8 =~V ‘

If further use is made of egs, (3.5) and (3.14) to express the
density and the preesurs as a function ¢f the velocities, the integral
proves to be after some tedious algebraic caleulations as follows:

.2 . 2 '
1 gin 'J's-—a sin Jw

- = +
neRzpwU-so YMZOO‘
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Yoo X
Y=-1 . VXAV
- —--mgw JI (azlﬁ) 2 cos 4 uﬁ + -Y—g-asimr + Y %-Eﬂ sind +

B

AT T u s1nJ v cosJ } sianJ .
Jw 1 |

Y=1 | ,
-p / (azlﬂi,) -u(x sin J +y cos J -z )+ E(%-:—S:—ﬁ ?g-i-) (U siny +v cos® )+
w 3
s

+1) u s1naI+v cosJ sandJ

——-2

+('{i' Gx;-\:y -)(u sin W +v cosJ)-)\v (

a
(4.40)

It is to be undersiood _that‘ all the velocities are non-dimensionalized

‘ with Uy , while d is a constant dependent on a (see Stons ref.8).

| When considering the derivation of eq. (4.40) it is obvious that a
quite complex and not very satisfying result is obtained, since the quantity

= N has been assumed to be linearly dependent on ) . Therefore, at first

gight it would seem that thé result will be influenced by the particular

choice being made for the fumction A ,

! However, as it will be shown now, the lift correct up to first or-

| der is indeed independent of‘ the function 7\*.' To this end a more thorough

| investigation is made of the egs. {4,38) a and b, As it can be seen, the

first of these equations gives
W

[/p2cos(n a)ao - nsRJ/{-Z?\p cosy sina o sin?a) < —(%l sin%f}dJ

(4.41)
By integrating there is obtained .J' J

ff P, COS‘(“,i)doz = ne R? -P A sin 'J/ - 7 ein '\T dJ (4.42)

02 v 'Js

%= provided that thia fu.nct;lon takes the values 1 and a at J -J'
=Jw respectively.
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In the game way it can be derived that eq. (4 38 b reduces to

]/sz W40, = ne ' G 7\u(u siny + ¥ cos J)SinJ/
0, K ]

Jy | - | | .
' [;-E . {x SinJ+ v COSJ"Z}'{E E+p I} (w SinJ-&? cosJ) s\in’JdJ ‘ ‘

(4.43)

The 1ift can now be written as

L2 = pw{sians—a sin2 JW} + P & sinaJv-J-ps 'sing JS +

neR”

+ qu 'HW{EW sin qu-?wcos Jw)sin Jw_-asﬁs(ﬁs sin Jé+vscosJS)sian +
+J/ [n sian +p Tf{x sinJ+y dosJ—z} siny #+(ut+pz ) (u siny 4% cosJ)sinJ]dJ
P : , ‘

(4.44)

where s refers to the cone surface and w to the shock wave.

Inspection pf‘eq, (4.44) gives the affirmation that the function
has vanished from ths ‘integrand, only the known quantity a is occurring,
.Moreover the complicated derivatives of the axially-symmetric flow
guantities have wvanishad, As before the expression can be written in
terms of the velocities only, this, however, will not be undertaken.
here, _ | :

The starting point'for the investigation presented in this section
was the question whether or hot the 1ift as found by.momentum traneport
considerations was equal to the 1ift as found by integrating the pres-
sure along the bodj surfacé.‘Since fhe quantity n, as can he foun@ by
using the results of Stone and expanding eq, (3.14), proves to be
equai to ‘ .

n=3{-;i—1- -rlﬂ‘:gl'z} (4.45)

.the 1ift along the fuselage can be calculated to be
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L 1 1 . J- : J’( 2.2 d UX+V

= - = 5in cos a Moo) P(—-- + Y —2—-1 ) +
neR%p_V2 we, | ° s ° i a :

o0 00

Y
5
-,{(aQM‘Ea y P-l} siny), (4.46)

where the values of the quantities are those forﬂr=xrs.

For a number of cases the 1ift has been calculated according to
eq, (4.46) and eq. (4.40). The results are given in table 6, together
with the quantities P and algivihg an idea about the entropy rise and
the angle of yaw of thé shook wave résPectively. The agreement is within
the numerical accuracy of the fesults. The conclusions which can be based
upon these considerations are therefore that the figg; order theory of
= for e—+0, It has
to be remarked that this agreement was obtained by using the assumption

Stone is a valuadle tool to calculate the quantity

forjh given by eq. (4.34). In fact this led to the derivation of eq.
(4.44), affirming the statemsnt that this agreemént was not dependent
on the particular choice made for the funetion A , -

This leads to a very important conclusion, for, from the above
mentioned results it must be clear that the first order theory is not
able to give the actual flow field, Cnly the valués at the shock wave
and at the bod& surface are given correctly, ‘

"However, it may be expected that the linear dependence of A <n1«7‘
gives arfairly acéurate picture of the true-flow field, In each case it
is as good'aé any other assumption, while it is moreover the most simple
one to make,

Before finishing the discussion presented in this section, some
words should be said about the induced drag., This drag is of the order 52
and is only found partially by applying the theory presented here. This
is so, because the change of the axially-symhetric flow field due to the
aﬁgle of attack, which is of the order 82 as follows from ref.24, is
not taken inta account, Thus only the component of the 1ift in the
direction of the free siream is found as induced drag. Hence, the theory
is not able to pradict'tpe quantitative value of the ﬁrag, although it
is found in most of the cases that the component of the 1ift is the

largest part.
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In the following sections a direct cbmparison of the results of this

theory with the results of the linearized theory will be given,

4.1.6 Comparison of the pressure distribution as obtained by different

theories for an inclined -cone,

The results thus far obtained concerning the validity of the linea-
rized theory for the prediction of the flow field arocund an axially-symme—
tric configuration at an angle of attack aré, what may be called, gldbél.

" A mean error is giveh, but no indication about the distribution of the
error in the flow fiéld. | _ ,

(ne of the-main_interests of the aerodynamicist is the pressure

' distrihution over a certain configuration. In order to check the validi-
ty of the linearizéd theory with réspecﬁ to this quantity, & comparison
has to be made with the results of an exact theory. This is only possible
for a cone, because this is a configuration for which, as has been shown,
a more exact theory is available. | .

In figs, 26 a—d the pressure coefficient according to the 11nearized
theory and aecbrding to the first order theory of Stone is given,

' For the 1inéarized pressure coefficient the two versions of this
formula, viz. eqs. (4.20) and (4.26), have been used, The value of the
pressure coefficient according to the first order theory of Stone is éiven

by o

Py

" n - 1 )
Op = =g = 28 5 + 5
1.2 18, |
2 P L o0

(4.47)

g =

c"
(In the flgures the quantities -—E are used).

It should be empha81zed again that the second and third term in
eq. (4.20) are terms gzving the influence of the thickness distribution )
on the field with an angle of attack, while in the derivation this
coupling between the two fields is neglected, This is an inconsistency
which ia worfhwhile to think over., Seen from a purely formal point of
view the use of eq, (4:20) instead of eq. (4.26) is not allowed.

Now, if looking at fig. 26 the remarkable fact is noted that tha
curve according to eq. (4.20) gives a far better agreement with eq. (4. 47)
than the application of eq, (4.26), The error is even decreasing with
increasing Méch—number. The approximation &iven by eq. (4.26), however,




shows a very large deviation, rapidly increasing with the Mach-number and
tﬁe half-top angle, Thus it would eéem that the approximation given by
eq. (4.20) is the best one which Eanlﬁe obtained,

However, its validity being not more than empirical, it is shown
that the results according to this approximation, give rather good agree-
ment with the exact results, at least for & cone, But a more rigorous
investigation reveals that this wstonishing behaviour is obtained by the
introduction of the second and third term in eq. (4.20) containing the
flow quantities of the thickness field, which are largely in error accord-
ing to the foregoing discussions, oertainly at the higﬁer Mach-numbers,

Moreuvér the theory used to ﬂefermine'the flow field around an in-
clined cone is only valid if the thiockness field can be neglected, that

means, when the second and third term in eq. (4.20) are small as'compared

to the first ome, As follows from figs. 26 a-d, this is not true for the
higher Mach-nuﬁbers.-Thus the conclusion has -to be drawn that the approxi-
mation according to eq. (4.20)gives a good agreement by chance, but that

if has no theoretical justificationL Thus it would seem dangerous to use
such a formula, because of the possibility that it.ﬁill be applied to

more general'coﬁfigurations, where the validity of its application is

not affirmed. ,

On the other hand the results given by eq. (4.26) show that linea-
rized theory in this case is not very valuable for obtéining quantitétive
resﬁlts,'The investigations to be performed in the fellowing section will
learn how the situation is in the actual flow field, with respect to the

validity of using linearized theory,

4.1,7 Comparison of the flow fields for inclined cones,

In order'to'obtain an insighf into the validit& of the linearized
theory, for instance in the case of interference problems, it ie worthwhile
to make a comparison between the flow fields as calculated by the linea-
rized theory and by the first order theory of Stone. This comparison is,
as is. evident,  -only possible for a ocone, - - 7

‘Using eqs. (4.18)b and (4.19) the flow field according to linearized
theory, can be‘cglculated as a function of the spherical variable J.

The flow quantities, as derived by using the first order theofy of

Stone, can be obteined from section 4.1.5 by using egs. (4.33),
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However, some care has to be éxeroized; since these quantities are
referred to the so called body-axis coordinates. :
In figs, 27 a—¢, the quantities u", v" and w" as measured in a
wind axis system are given for a cone with a semi—top angle of 7.50 and

for the Mach-numbers 2,0108 and 5.103%,

In figs. 28 a=c the same quantities are given for the flow field
around a cone with a éemi—tOp angle of 12,5 degreea for the Mach~numbers
M, = 2.1496 and M, = 4.3002,

From the figures it is evident that even for low Mach-numbers and

small top angles the agreement between linearized and "exact" results
is very poor. The deviations in this case again are increasing with in—
creasing distance from the fuselage, ' .

A detailed analysis revéals that the curves for u" have the same
trend at least for the lower Nach-numbers, although they show an apprec1a—_
bly error for each case, The curves for v'" show a rather good agreement
in the vicinity of the fuselage. This is due to the boundary conditions
valid at the surface of the cone, In the outer flow field, however, the
curves becoﬁe more and more deviating, The curves for w" show a complete
disagreement near to the surface of the body. Only at the shock wave
the values are close to éach other, which is again due to the conditions
to be’ fulfilled at this placs. , ‘

_ From these curves ano{her fact can be noted, The value of u" accord-
ing to the linearized theory, seems to be in each case appreciably lower
than according to the exact theory. Now equation 4,22 indicates that the
1ift as calculated by momentum transport considerations, in its turn is
lower than the 1ift as calculated by integrating the pressure along the
fuselage, which, since it is proportional to u", is lower than the exact
value. This agraementgleads-td the conclusion that the mean error for
the 1lift case will be much larger then éiven in table 1. This fact seems
to be confirmed by the figs. 27 and 28,

It is clear that in calculating interference éffects with the aid of
linearized theory,'the results obtained are expected to be very suspect,

if not to say quite misleading.
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4.1.8 Concluding remarks on the flow over inclined bodies,

In this part of the present chapter the investigations on the flow.
around axially-symmetric bodies have been supplemented by those pertain-
ing to the flow field of inclined bodies of revolution. Therefore use is
again made of a comparison of the same quantity as derived by different
methods, The quahtity used is the 1ift as derived ffém momentum transport
considerations and as integrated along the fuselage. It is shown by the
results of this comparison that the conclusions of the first part of the
third chapter afe also valid in this case, This means that the results
obtained by application of the linearizéd theory in practicaliy every
case do not give more than the correct order of magnitude of integrated
values, such as 1ift, In 1argé parts of the flow field itself the errors
are enormously large, at least for a cone, the only case for which a more
refined theory is available,

These rather discouraging results about the validity of linearized
thebry'make the search for more advanced methods of calculation for
the flow around inclined bodies essentiai,'if reliable results about the
flow quantities itself are wanted.

Since, even nowadays,. the application of truly three dimensional
methods is prohibitive, because of the large time of calculation which
is required (there may be hoped that this statement will be disproved
within the following five years), a mcre simple method should be used,
if possible. - - ' do

Such a method, which gives the correct value of the gquantity To
for ¢-+»0 will be set forth in the following part of this chapter, Its
principls goal is to present a theory which does not have the disadvan-
tages of the linearized one, while the cost and time of calculation

are within reasonable limifs.

4.2 A first order perturbation theory for the calculation of the

inviseid supersonic flow around axially-symmetric configurations

with arbitrary axis inclinations,

As has been shown ih the first part of this chapter, the linearized
method for calculating the flow ardund an inclined bedy - in essence

being due to Tgien - does not give much hope to obtain reliable results,
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‘Although already at several places in this paper something has been said

about the available,'more‘exact methods, it seems worthwhile, as an intro-
duction to.the general method set forth here, to :emind the reader of the
progresses made and the insight obtained thereby,

After the publication of the paper by Tsien (ref.22), a more refined
method was given by Sauer in 1942 (ref Zﬁ). He does not linearize the
equations, but calculates the shape of a body which gives a rotationally
symmetric shock wave,'which is inclined to the free stream, The effects
of the entropy rise and the non-rotationality of the flow are neglected,

Since in practicel problems almost always the body is given beforehand and

not the shock wave, this second method, although theoretically less restrict-

ed, has a great disadvantage. In fact it is only usable for a cone at a
constant angle of attack,

‘In 1947 a table‘(ref.9) appeared which gives the numerical values
of the flow quantities afound é cone inelined with respect to the free
stream, The caleulations were based -on the thaory devised by Stone
(ref.}. As has been discussed in sectlon 4.1.4, this theory assumes that
the flow quantities can ba given as the sum of the axially-symmetric term
and a term which depenﬁs'on the circumferential variable qi . The boundary
conditions on the shock wave and the fuselage are transformed to the po-
sitions of these surfaces in the axially-symmetric flow field.

In fact it is assumed that the flow guantities can be given as a
power series in the angle of attack &, and in ref.8 only the term linear
in ¢ is considered, while in a later publication (ref.24) also the term
in 62 is determined.

Thus it seems that the slope and the curvature of the 1lift curve
for ¢ =0 can be determlned exactly., In this approximation the induced
drag consists of a part due to the streamw1se component of the 1lift
(e term) and a part due to the dlsturbance of the axially-symmetric flow
field by the inclination (s term)

However, the theory given for the determination of the term in 82
lacks mathematical soundness, at_least in the neighbourhood of the suz~
face of the come,

Meraover, in 1951 Ferri pointed ocut a fundamental inconsistency
in the assumptions on whish the theory for the term in ¢ was based (ref.

12), In ref, 8 it is assumed namely that the entropy in the inclined flow
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field can be given as the sum of the axlally~-symmetric term and also a
term which depends on the cosine of the circumferential angle § , This
would mean that the entropy is not constant along the surface of the cone,
which is the case in the real situation, In fact there should be a dis-
continuity in the entropy aloﬁg the surface of the cone, This means that
the cone is a singular-surfacé for the entropy distribution and that the
assumption of ref.8 is, therefore, invalid. However, it can be shown that
the region in which this so called "vortical layer" influemrces the
solution of Stone is very small and does not influéﬁce the pressure up
to the term in 62, although the velocity components are changesd, An ana-
lysis of these facts has been given by Willett (ref.E?).

Therefore it follows that with the exact first order theory of
ref.8, exact resulis can be obtained for the 1ift on a cone at a small
angle of attack, in spite of the fact that no accouﬁt'is taken of the
vortical layer. ' | ' ..

There has been some criticism against the method of Stone, becauss
the 'flow quantities are given in a transformed space and not in the
real space, However,-tﬁé method given in section 4.1.5 foi calculating
the real‘flcw.field”from the Tesulis of Stone is fully successful, as
has 5een proved by consideration of the momentum transport through a
surface surrounding the cone.

After what has beéﬁ said about the possibilities of using truly
thres-~dimensional methods, it will not be very surprising that an general-~
jzation of the method of Stone seeme the only acceptable possibility
to 6btain a more relisble calculstion method for the flow field around .
inolined bodies, S

A firest try in this direction has been made by Ferri, in ref,ll.
The treatment given is not very lucid, and is not quite analogous to
the method of Stone, Two methode are given by Ferri, one that is mostly
graphical and a ‘second one for a complete numerical treatment., Due to
the fact that in the seéon& method the perturbation terms have been
considered as the only unknowns, this method yields the same character-
istics as the axially-symmetric flow field. The reasoning by which this
reault is obtained is somewhat dﬁbidus, although the result iteself is

_probably correct, It seems advisable to use a more systematic approach,where,
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for instance, first the full equations for the characteristic surfaces
.shcﬁld'have been derived, and thereafter these squations should have
beenklinearized, thus avoiding the possibility of an incorrect treat-—
ment of the cross coupling terms.

It must be remarked here, that such an error does not. have any in~-
fluence in the linearized potentlal_theory, because it is assumed be-
fqre#and that there 18 no coupling between the flow field in the
_axiaily-aymmetric case and the flow fisld in the inclined case, However,
Iit does lead to false results if.this coupling is not neglected, The
difference in this respect between truly linearized- theories and the
first order theories considered here, can also be explained in this way,
that linearized theory comsiders the lifting flow field as a first order
perturbation of the undisturbed flow field, whereas the first order
theories consider it as a first order perturbation of the exact thicknesa
flow field. _ ' ' |

Because of the fact that the first method of ref.l] gives rise to
a pew characteristic network it is not very wall ddapted to numerical
calculations, while moréqver both methods are not apﬁlicablé to bodies
with axis curvature,

From'thisireview iﬁ will be clear now, that the search has been for
developing a mathod which is menageable from the numerical point of view;
whioch is applicable to bodies with arbitrary axial inclirations and which
givea exact results for the 1ift if the inclination is small,

The method developed in this paper, is essentially a generalization
of the method of Stone. Because of the fact that only the first order
term of the inclination will be taken into account, a consideration of
the inflﬁenoa of the vortical layer can be left out of the analysis,
according to the remarkas already made with“reapect to this subject,

' The analysis is béaed on a transformation frdm the rgal flow field
to the axially-symmetric field., This is done by transform;ng the bomn-
dary conditions that have to be fulfllled on the fuselage and on the
shook wave in the real field, to the position of these surfaces, in the
axially-symmetric case..This-transformation canlbe obtained by using a
Taylor-series expansion to connect the flow quantities in the -real field
with those in the transformed field, _ o

The caloulation of the transformed flow fisld is performed along the
~axially-symmetric characteristics, Though thege are not the character-
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istics of the inclined transformed field, the relations along these latter

lines can be given inliermsrof the quantities occurring-along the axially-

aymﬁetriclcharacteristics, by using again the concept of the Taylor-series,

transformation, : \
To have the opportunity to calculate the real flow field, the con-
nection between the quantities in this field and in the transformed field

will be.discussed. Moreover an expression will be dsrived for the 1ift as

caloulated from the momentum transport through a control surface. This

gives a means to check the calculations, since it should yield the same
value for the 1ift as derived by 1ntegrat1ng the pr98sure along the fuse-
lage surface,

To start the calculations the conditions at the nose of the body have
to be known. By assuming that this nose is conical the results of Stone -
‘can be used as a starting point,

The analysis consists of five main parts,

i }First, the calculation of the‘quantities at a point of the inside
field is considered. The equations valid along the characteristics of the
axially-eymmetric field in the transformed field are given. Ths derivation
of these equations is given in full, starting from the results obtained
in chapter 2,

In the second place, a detailed derivation of the boundary condltion
on the fuselage is given, l

In the-third place, the conditions which have to be fulfilled at the

ghock wave are derived from the general shock wave equations given in

“chapter 2,

Thess three parts contain the material necessary to construct the
calcﬁlation procedure, which is also disoussed to some extent,

.Pinally the method for calculating the real flow field from the
transformed one is outlined, By applying it td the calculation of the
1lift a8 an integral over a confrol surface, it is found that it is not

possible to determine this real flow field in a unique way,

4.2,1 Outline of the method, ,
In this section an outline will be given of the fundamental ideas

underlying the present method, It is assumed that the shape of an axially-

symmetric configuration, together with its rotationally symmetric flow
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field including the shock wave are given, Such a2 flow field c¢an be cal-

culated by applying the method of characteristics as explained in chapter

%, Since it is the only method available to calculate the flow field by
exact methods, it will be assumed that actually fhis method is used for
. the determinatibn of the axially-symmetric flow field. .

Now the configuration is given a small deformation by deforming its
axis by an amount €A (x) where € is a small parameter and E%éﬁl— is of
the order unity (fig.29), It is assumed that the cross sections remain
' perpendicular to the axis. A apecial ‘case of sﬁch a deformation is a
body with a constant angle of attaqk e, It is obtained by rotating the
axis thfough the vertex of the configuration, Up to the first order in
€. the functionA(x) is determined by x in this case. '

~ As has already been said it would be possible to construct the flow
field by using the method of characteristics into three space cooidihates.
Hewever, up to now, the numerical application of such metﬁods is scaféeiy
known and the actual computation remains a tremendous task, evenffor
high speed computers,

Therefore, in this paper, a method is derived whore the flow guan—
tities generated by the deformation are considered as perturbations on
the already known, axially-symmetric flow field, It is assumed that the

total value of the flow gquantities cah be written as a pbwer series
in the small quantity €, Here, we will restrict ourselves to the term
that is linear in ¢, ] .

To make the method arplicable from the numerical point of view, it
wpuld be desiraﬁle to be able to . caleculate simultansously the axially—'
symretric flow field and the flow field due to the dsformation. However,
at first sight, this may seem a rather strange desire, For this would be
poseible only if the boundaries.of‘the flow fields were the same for the

two fields to be calculated, whereas it is obvious that this is not true,

' One of the main points of the method thefefore is thae transfopmation'

of the conditions valid on the deformed surfacs of the body and on the
deformed shock wave to conditions along the axially-symmetric boundaries
of the flow fleld, just as this has been explained for the case of the
‘cone in the foregoing sections, )

Now the deformation of the body is a known function of the coor-

dinates,
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As will be shown in section 4.2.3 it proves to be of the form
dx = 0 (¢ cos¢) (4.48)a

dr = 0.(e cos ) (4.48)b
The deformation of the shock wave is a still unknown function of the
coordinates. By making an assumption about the relation between the
axially—syﬁmetric gnd the deformed shock wave, an unknown function a(r)

is introduced which ‘enables one to present the deformation as follows:
dx = 0 (ea cos ) (4.49)a

dr = 0 (eq cos¢p) {4.49)
The equations (4.48) and (4.49) now strongly suggest that the total
velocities can be written as the sum of an axjally-symmetric term and
a perturbation term depending upon cos ¢ and sin¢ , It is therefore
assumed that the flow quantities in the traneformed field; i.e. in the
field where the boundary‘conditions'afe given along the axialij—symmetric

boundaries, have the following form:

Uy = u + Eu” cos ¢ (4.50)a
Vy =V + eV" cos @ : (4.50)%
W, = ew" sin ¢ (4.50)¢
P, = D + €p" cos ¢ (4.50)8
Py = p + €o" cos | (4.50)e
2 =5+ 8" cos - : (4.50)F

where the first terms in the right-hand eide refer to the already known
quantities in the axially-symmetric flow field.

By inserting these expressions into the governing differential
squations, this proves to be a formally consistent assumption, i.e.
all the terms of the order ¢ have the same trigonometric form,

From the eqs, (4,50) the boundary conditions in the real flow
field can be written in terms of the quantities occurring in the trang=
formed flow field by observing that up to the first order in ¢ the quan-
tities in the real flow field are given by, for instance,
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u, = u + Bu dx +‘QE dr + Eu" cos q) _ _ (4.51)

1 Ix ar

It can be noticed that due to eqs. {4.48) and (4,49) the displacement
terms -are, as they should be, also of the order -ccos . '

There is only one point which is troublesome. As has already been
pointed out in the intreoduction, the model given here is noi conéistent
with the requirement of constant enfropy along the body. It can be shown,
however; that this does not influence the pressure up to the first order
in ¢, Only the velocities have to be correqted'in a small layer near to

the surface, These difficulties, which will be neglected here, can be im-

pbrtant.for boundary value problems (ref.27).

The prob1em ie now posed in such a way that the axially-symmeiric
flow-field and the flow field generated by the deformation of the body
san be calculated simultaneocusly. The domain of the calculation is the
same for both flow fields, » | | , .

As has been remarked the actual calculations are performed by
using the method of characteristics, This gives no difficulty for the
axially—symmetric Plow- field, But since the characteristics of the
transformed field are not the same as those for the aiially—symmetric
field, there is rgason to fear a rather complex calculation scheme,

This difficulty can be removed by deriving expréssions_for the
transformed field, which are valid along the characteristics of the
axially-symmetrioc field. This is one of the main advantages of this
method, '

After the determination of the flow fields, the quantities ocourr=
ing along the oontoui of the body can be determined, Moreover, the shape
of the real shock ocan be comsiructed. However, it is impossible to
construct the real.flow field itself, Althcﬁgh a reasonabls assumption’
can be made, .there are no theorstical means to determine this fisld,
This is in accordgnCe with the results‘obtained earlier for the flow
around a cone, Just as in that casa, the pressure distribution along
the fuselage and thus the lift, are correct up to}}he first order in €,
This can be assured by applying a momentum transport theorem to a
control surface., The value of the 1ift as found by these two different
methods has to be the sama, Along the lines sketched above, a detailed
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derivation and discussion of the method will be presented in the follow-

ing sections,

4.2,2 The calculation of the transformed flow fiald,

In this seotién‘it will be explained how the quantities u, v, s, u",
v',-w" and s" can be calculated in the transformed field, ﬁor this purpose
it will be assumed that this set of quantities is given along an arbitrary
surface which does not coincide with a characteristic surface, It is im;"
poriant to remark that p, p, p" and.p" are derived quantities, thus they
can be calculated once the set of valueé given above is known at a
certain point,

If it is assumed that the effects of viscosity,.thermal conduction
and diffusion can be neglected and that the gas can be considered as ideal,
the maet of goferning_relations congists of the continuity equation to-
gother with the three equations of motion, while a thermodynamic relation
gives the expression for the entropy as a function of the temperature
and the pressure.

By eliminating all quantities except the components of the velocity
and the entropy, a system of four equatlons can be derived composed of
the well-known''potential flow" equatlon together with the three com-
ponents of Croccofs theorem. It must be remarked that the occurrence of
an entropy gradient makes it impossible to define a potential function
in this case, The-equations are derived in chapfer 2 and are given by
the system (2.24).

' Since we are dealing with supersonic filow, the problem is hyper-
bolic and thus there exist real characteristic surfaces, With a view to
the suggested ﬁay of solution of the problem, it is convenient therefore
-to write the system of governing squations in the characteristic form.

First the direction cosines.of the characteristic surface-through
a certain point have to be determined, As is proved in chapter 2, through
each point three different characteristic.surfaces can be traced (in
fact there are four)}, It turns out that they are given by the stream sur-—
faces counted twice and a cirounlar cone with the stream line ithrough the
point considered as an axis, The semi-top angle of this cone is such .
that ths component of tha loeal velocity normal to the cone surface

is: preclsely equal to the local velocity of sound.




By the techniques explained in chapterVZ it is possible to derive
the equations which are vaiid along the characteristic surfaces, They
contain derivatives along these surfaces only, making thém extremely
useful for a numerical calculation of the field. The four characteristic
equations have been derived and are given by equations (2.40), (2.41)
and (2.25)., | | |

Until now only the general case of a wholly three—dimens;onél flow
has been considersed, But the purposs was to derive the equations for the

transformed flbw field, Therefore the expressions for the flow quantities

ag giveh in egs, (4;50) are substituted into the squations so far obtain-
ad in chapter,fwo; From the analysis as given here, not only the equations
valid for the transformed field are derived, but also ths equétions valid
for the truly axially—symmétric flow, equations which have been used al-
ready several times, To obtain a Sysfa@atic presentation of the matefial, .
firgt the equations for the characteristic.surfaces_wiil ﬁé derived in'
terms of the set of'quantities'mentioned_in the beginﬁing of this
section. Thereafter these equations will be used to obtain the appro-
priate relations aldng_the axially—symmefric characteristic surfaces,
Consider a characteristic surface through the circle x =X,y Ta=r
where (xo,ro) is an arbitrary point of the domain considered., In that
¢ase the charaoteristic'directions"(Tl an@ CTE in a point of the ocircle
a8 introduced in chapter 2, can be written correctly up to the first .

order in £ as

Crl = %% a2 G + &g" cossp' ‘ : (4.52)a

Here the quantity " is thes characteristic direction for the
"axially-symmebric flow field. | .
The characteristic directions are given by the eqs. (2,32)a and
(2.32)v, | o
At first equation (2.32)a will be considered

vy - 1110_1'— wiG, = O - (4.53)
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Using eqs. {4.50) and (4.52) and neglecting second ordef terms in

92 the result can be written as

v -ulG + e_{v" - utr"-aﬁ'}cosq.’ =0

- From this equation the wellknown result for the quantity ¢ can
ba derived together with the expression for the unknown quantity G ".

o

(4.54)a

e

0=
) 7 ouvteyu” : -
and 0= —= (4.54)b
u _ :
These equations' give the directions of the stream surface. The

equations fo:tj the other characteriétic directions are given by eq.

(2-52)b
o ,/ 2 .2
vy —ulﬁ‘l -.WIG'2=1 G'|+0-2.+1

To svaluate this equation,at first the expression for the velo—
city of sound aq has to be derived correct up to the first order in e,

Applymg eq. (2.23) there is found

a; = a {1 - YE]‘ € gq;gw" costp} , (4-55).

‘Together with the egqs, (4.50) and (4, 52) the equation for the .

characteristic directions obtains the following form

o

v —-ﬁG‘ + a{v" - ug- uG"}cos(P =

=iaVGZ-+i{1-+s~g:'-cosq) _,!;2'_1_821_15_"1'_', cdsq)} (4.56)
a ‘

G'+1

If the minus sign on the right-hand side of eaq. (4.56) is taken,
so called "backward running" characteristics {in a plane § is constant)
are obtained They are characterized by a'positive slope ar > C. The
expreesion for the axially-symmetric slope is given by the pa.rt undapen=-

dent of ¢ and rveads

G- B o (4.57)a

Bu=—v



Together with eq, (4,57)a-an'axpressibn for the perturbation term
(Tvean be derived: from eq. (4.56). After some calculations . the result-
can be written as o
G" = ~——EL——§-{B(uv"-vu") - {1+ I%l M2)(uuﬂ + v } (4.57)b
~ B(Bu-v)

where ¥ is, as before, the local Mach-number of the axially~symmetric
flow, . L : .
If the p031t1ve sign on the rlght—hand side of eq. (2 .32)b is taken,
the "forward running” characteristjcs (——-cCD are obtained The results

in this case are glven by

q = 'E%% - (4.58)a
anééy" = ETE%?;TZ {B(uv“—vu") + {1+ I%l. Mz)(uﬁ"+vv" }' oo (4.58)

The equations (4,57)a and (4.58)a giving the characteristic
directions for pursely axially-symmetric flow have been used in several
sections of chapter 3, It turns out, from the analysis given, that the
characteristic.directions in the transformed field are different from
those in the axially-symmetric field. Along these lines the character-—
istic equations (2.40), (2.41) and (2.45) are valid and thus the flow’

field could be constructed by using this set of characteristics. However,

it is very important from a numerical peint of'view, to be able to con~
struct the flow field for the axially-symmetric as well as for the
transformed field, along thé same set of linses,

" The natural set:of lines for thé construction of the axially—-sym-
metric flow field are the axially-symmetric characteristics, -

| Therefore, if is desired, if possible, to replace the character=-
istic equations by differential relations which are valid along the

aiially-symmatric characteristies,

bui 1' 6u.
To do so, the differential quotients Tx and ¥ ¢ along the

characterlstlcs of the transformed field, have to be expressed in differ-
ent1a1 reélations along the axially-symmetric characteristics. If it is’
assumed, as hefore, that 0-2_= O and thus that a characteristic surface

ig considered that passes through the circle x = Xy T =T the

o!
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bu,
relations E-Sar-offer no d1fficu1ty and can be obtained by differentiating
the expressions (4,50) with respect to the %ngular variable ¥ .
To obtain the correct expressions for 321 more care is needed. The

differentiation along a certain direction can be given by

o} ) 3
I "% TV 3F (4.59)

where u'is the slope of the direction considered.

Applying eq. (4.59) to the present case gives for instance

If higher order terms in ¢ are neglected this relation can e

. [
bu :
-6-;}- (u + €u” cos )+ 0“+eG""cos(.]J) (u + eu"costp) (
written as

\

su " : |
-—ﬁls.@.‘}..g' {.g.‘%..+(|"3“ +0-"--}s cos § (4.60)

This can be simplified further by observing that elong‘the axially=-
symnetric characteristics there holds
8 3 a
. = w05 | (4.61)

X

o

where X is measured along the axially—eymmetrie characteristioc, .
Applying this equation to eq. (4.60) it follows that

du, ‘
1 3 du" 2
TT Tote B+ G R cosg (4.62)

bx - bx
This relation is the desired expression. It expresses.the

differentiation along the characteristics of the transformed field into
a rolation along the characteristics of the axially-symmetric field,
This maj seem eurprisiﬁg since the term %% is present, but ey using
eq, (4.61) along the two different axially-symmetric characteristics,
this term can be expressed as a function of the differential quotients,
along these characteristics., Along a backward running characteristic
there holde‘_ |

(Qg. _ 3u

D =g + T
5% b x b ar
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‘Along a forward running charactéristic there holds

) g o
tu f

From these two.eguations the quantlty EE can be found viz,

f ar

(6 )b (6 F
du X X :
E o (4.63)

. Now sufficient knowledge is available for deriving the final ex~
pressions'that are valid for the transformed field along the axially-
" symmetric characteristics, |
Along a stream surface there holds, according to egs., (2.39)
and (4.62)

(uscu" cos ) s .(E-E-'-'-'-;cr"a )a cos - 8—2» é"w"sin‘?q) =0 -
5% 6% x ¥ )

The terms‘independentfof £ give the equation valid for the axially-
gymmetric flow field, or
bs : )
= =0 - (4.64)a
bx :

The equation valid for the transformed field is given by

bs" t _93
= =-0" 5
ox -

Using eq, (_4.63) together with (4.54)a,(4.57)a and (4.58)a, ihe final
result can be written after some algebraic—operations_as

2 ' :
e, M (uv"-vuw{(“) - ¢ } G
-~;§ bx b Bx

where the indices b and_f ;efer to backward and'forwérd running character—
istics respectively. .

This equation thus is valid along an axially—aymmetric stream sur-
face., The second relation valid along such a surface is given by eq. :
(2.21). The result obtained reads as followss |
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. 1Y
s")=u LA

-_. r " L]
| (uu + ugv" + uGw +YY1 -

On introducing the relation given by eq, (4.54)a for G , this
equation can be written as |

" 2 -
u -:-%— + %;{uu" + vlv" + w) + T?T-T) a"}s 0 (4.64)a

The twe other equations, valid along the axially-symmetric character-
istics given by egs. (4.57)a and (4.58)a, can be derived by using
equation (2.45). First of all this equation will be simplified by he-
glecting all- the second order terms in €. The equation is then given by

: 2
(u. Gy Nt S oy woy,  bsp a? - 08y N
Aty U B Y(r-1) "1 B * YY=I) M Bx
: 2
u du v.u bv ow v
1 1 1" 1 1M 1
"("1‘“10-1){(1" 7 )% " B Ot*T Y] _}’ ©
8.1 8 )

(4.65)

The derivation of the relation along the axially-symmetric
characteristics will be given in a fairly comi:lete form in order tb
show how the final and rather simple result is obtained, Using eqs.
(4.50) toge‘th'er- with eq. (4.63) and eq, (4.55) there results for the

various terms occurring in this equation
: , . :

(ul 1) B = - (u-t;G?\r) 6—-: + (W'+@"veGv") QE_ E cos8 LP +
bx bx
PR O ST T 1 R (4.66)a
>X : :
08 '
o1

(V ) 1 6]{ = (V-‘lﬁ-) u —b‘E +

bx

+

[(v-u(?)u"+ (v"-uG'"-u"G‘)u] =— ¢ cos ‘P +
vx

o=

+ (v=uglu [65 +q" ] € cosQ) | (4.66)b |
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o 08
a, Gy 55 = a G- (Y-l)(u‘-l"'l'w") G cos ¢ +
. E)x. : 5X
: n. \ i
el 2y g g %;-)}e com§ . (a.66)e
&x &x ‘
i u 2 du v.u ov | bw v
1 1 171 11771 1
(Vl—ulﬁ'l) (1-. ;—2-) hx a 2 bx + 7 b_q)_ A
[ u2 ol vu b v
= (v=u@) 1 (1- %) Z -5 2 )y
-— - r
a bx a8 b&x
o

> {y-1) (wa"4vv'" )+ 2un" .
Caedutt -l 3 - a . . du{ .
‘ +(vqu) (1= l'1--5)(-----_1_1-__-— + g 3% - - > - - ~—= e cos ¢
. a” bx a bx
uvtavut+(Y-1) (uu" st ) = .
" 1" Sv! av - sV
+(v-uG‘) A4 F——-—m(—-—-‘*-(;‘"-—— 4 S~te cos
{ tE ;E 2X or . af ' &x
(4.66)a

By taking together the terms that are independent of €, the
characteristic aquations for ths axially—symmetrio flow field are ob- ‘
tained '

) .
(w+vg) E (v -ug) [ (1= G BB E Y|,
] .o o _ :E bx ? bx r
Y %—1 % {(v—uG)u + o’ u‘}= 0 _ : (4.67)
ox - ‘ :
Whaen uze is made of tha followihg relations
(v ~ud) - P 4c?)  (4.68)a
v=ul" v2 a ) | ' '
and u+vg = F —(1-— -—2- ) - --é-G- . : - (4.68)b

the squations can be simplified considerably. Fquation (4.67) takes
the form




2 2 )
5u 1 5v v 1 58 u+vg
(1-% )24z (1-*)_+__ === = 0 (4.69)
a® ax @ a? 8x T v{y-1) 5% 1+02 '

By usihg the eqs., (4.67) and (4.68) the equation for the transform-
- ed-field can be written as :

uMv-y'y G—rr qv ( bu .&u " v
1 Ty e By W .
{ a® 1+GZ}6X g prt ¥ 7T
1 v2 bv". av uu”+§v" uv &.v u2 dbu | |
—a_(l— —-é—)(“:- +qg" ) +(y- 1)——'—'— *-2--:+—2- — |+
\ a dx a a dx a Bx
L2 uu;. % + uv';vu' @,: N 7(11(_1) u+vg' 6i +G" %i_ 4
a &x a Ex 1+ | &x

‘1 0 0'"v uu'' +vv"
+ (V"‘-‘U."G (Y-l)G(V-\lG') ---' = C
Y(v=1) [ W a (1+02 fox

(4.70)

The equations (4.69) and {4.70) will now be simplified further by
using the expressions derived for the characteristic directions, i.e,
eqs. {4.57) and (4.58) and the equation for the radial derivative
(4.63). When again the indices b and f are used to indicate the backward

and forward running characteristigs the following results can be ob-
tained, Along the backward running characteristics the equation for ths
axially=-symmetric flow is

2

) U SRR AN A 2’ 8 _ o '
(Busv) — (gv-u) T R *YED o 0 (4.71)a

The equation for the transformed field, which is obtained after

some tedious algebraic calculations reads:

buri . V@—'\l Bt . W 1 3'2& hat
- uc - -
- r(l- ) Y(Y=1) Bu+v 5%

— ug-v
sop () 40y m ‘I‘TlT ) say (D) b
bx b bx 0x f

A +
bx
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' 2vu Y1 2 o0 .
+ , v(uv“—vu") 4+ ———u" +
r(32 2)2 [ 2 Mib

Ez' - . 2 ) .A . 1 b8 S
+ ﬁufv ‘B(.'uu' +VV )_EH?(Y-I)M + (‘uv'_vu') mg = O (4,71)1) —

Along the same 1iheé the result for the forward running character-
istics can be derived. The sgquation for the ax1a11y-symmetr1c flow proves

to be in this case

> | . .
bv . _ x q ag@r bs

Phe equation for the transformed field aibng such a charactsristic

is given bj:_

du" u#ﬁv XA Wiyt + — : azﬁ ba" + )
8% pu=v = 7 u2 Y(Y-J:) Pu-v =
. 1‘(1— _5) )

ok (Z—;jb NN (*"’) +—W-ﬂ yz{o-f" (5‘42)b + Gy (22 )f}«»

bx &x
Y=l 2
_ ovu |yl . oy WY
+ 5 —o v{uv"=vu"} + - 5 u +
r{a®-u®) : _ Moo '

. M2 . 1 N ! - &8
¥ S {.B(uu"-wv." [1+(Y-1)M2]+ (uvA"-vu" -Y-ﬁ:-i-)- :5_:;:'- =‘.O (4.7?)'9 .
Thus complete sets of equations are.derived, that are vaiid along
the axially-symmetric oharadteriatioa. Thay give the squations neoossary
for the oaloulation of the flow quantities for the axially-symmetrio
field as well as for the transformed field, The set of equation for the
axially~-symmetric flow field is given by the equations (4.64)a, (4.17)a
and (4.72)&. These are thres equations to calculate the flow quantities
u, v and 8., These equafionaihave been used already at several ﬁ;acas
in chapter 3, to study the flow around axially-symmetric bodies, The
derivation of these é@uationa has been postponad until this Ahapter,-
beoause the transformed field depends on the knowledge of the axiallye
aymmetrio'field.Ag goon namely as the quantities u, v and s are known ‘
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the four unknown quantities u”,v'yw" and s" of the transformed field can be
éalculated by using the set of four relations given by eqgs. (4.64)b,
(4.64)c, (4.71)b and {4.72)p. In one of the following sections it will

be shown how the transformed field can be constructed by using these
equations, Béfafentbis, a derivation will be given of the conditions which
haveto be satisfied on the body surface and at the shock wave, First,
however, a version will be given of the eguations which have been derived,
that are valid for the case of isentropic flow,

An interesting simpiification of the equations follows if the region
of interest is separated from the undisturbed stream by a conical or near-
conical shock of vanishing strength, such as it will occur for small
values of the top angle of the nose and for low Mach-numbers,

In that case.it is permittéd‘to neglect the entropy.terms.in the
flow equations, The set is then reduced to a system of thrae eguations,

In this case, éécordin& fo-eq. f4.64)c, there holds along a stream-—

line

u w + %’{uu" + v{v' + w" } = 0 (4.73)
dx ' '

Along a backvard running characteristic there is obtainsed, éccording
to oq. {4.71)b '

5un vi-u E‘-V” W" +V" " &V ' " ‘g\i
— 4 E%I? —— + _fw-—-3;~-+CTf 01:) + G}) (

3 4 bx 41‘(1- 11_2_) ' x b bx f
a
Y1
| 1+ Rk,
+ 2vy y-l v(uv'=vu") + a2 0 (4.74)a
5 o2 |72 i
r{a”=u o0

and along a forward characteristic one has

" . (LI " n ' 1" 1]
du + %[34-11 bv + w4V + T _E:‘_y_) + G (b_v) +
— p=v = 2 f - b -
&x bx u 3x b 0x T
1‘(1- —E)
. &

Y1
2vu Y-l 1+ 2 M%O

+ vi{uvt=vu") + ' 0 (4.74)0
r(a2-u2)2 2 E%n

t



This system is considerably simpler thanlthe complete system,
moreover it can be simplified even further, since eq, (4.73) in this
‘case can be replaced by an equation valid aloﬁg every surface in the
flow field. This will be proved as the final step in this investigation
of the flow equations, It may be recalled that for an iseﬁtropic flow
fiéld, the usual zerd iorticity relations are valid. These relations
are given by the equations (2.54). Along an arbitrary surface with
direction numbers (Gi, —1,(?2) the equations (2,26) are valid. Using
these equations it can be proved that the system (2,54) can be combined
to give along an arbitrary surface

1M g, G
r oY 2 &x - bx T

T

T 5%

. wy = 0 | (4.75)
. . -
asg follows by taking n,rot u = 0 ,

- Choosing a point on this surface for which 0'2 = 0 and on using
the eqs. (4.50) and (4.52) there is obtained

T %gl st + GV W) =0 _ (4.76) .

This equation holds along -an arbitrary surface and hence also
along a characteristis surface. The advantage thus is, that it is not
necessary to use stream surfaces, but‘that only the use of the backward
and forward running characteristiecs is needed,

It should be observed that for a conical shock of finite strength
such a simplification is not possible, due to the fact that 85 is a
function of the circumferential variable ¢ . Although egs. (4.74) are
valid in this case, use has to be made of eq. (4;64)0. The only simpli-~

fication resulfs from the fact that 8" is a constant than,

4.2.3 The boundary conlition on the bbdy.

The boundary condition on any solid body submerged intc a gas
flow is that no particle can cross the boundary. Or stated in other
words: The velocity Eomponent nbrmal to the bbundary has to be zero.
This is the only condition which has to be fulfilled at the boundary
of the solid body if the effects‘of:viscosity are neglected,

In a cartesian coordinate sjstem with correspondingly defined

components of the velocity, this condition can be written as




cos (n,d) = 0 : (4.77)

u, cos (n,x) + u, cos (n;¥) + u

1 3

'where n is the normal td the surface,

Before this equation can be applied fwo problems must be solved.
First the geoometry of the deformed body has to be known, In the second
place it should be observed that equation (4. 77) is valid for the real
flow field, whereas the boundary condition for the transformed field has
to be derived. In the following exposifion first the gaometr& will be
considered and thereafter the derivation of the boundary éonditidn itself,

As has been discussed in section 4.2,1 it is assumed that the quasi-
axially-symmetr1e body can be obtalned by deforming an originally
ax:ally—aymmetrlc body.

To this end. it is assumed that the axis of the body in the deformed
state 1ies in the X, 2 plane and that its shape can be given by the

aguation
z = =A(x) with A(x) =0 - for x =0 (4.78)

The cross sections remain perpendicular to the axis and attached

to the same point, This means that the distance from the nose of ‘the

body along the deformed axis to a certain c¢ross section is the same as
the original axial distance of this section. This situation is given
in fig.30, It may be remarked that this shape can be obtained by bending
the axis of the original axially-symmetric body,

If 2 cylindrical coordinaté system'is used the shape of the unde=-.
formed body can be given by | '

x = ¢ (r) : _ ' (4.79)a
yarT sin(p_ o ‘ . ‘ (4.79)b
2z = T cos{ - | | (4.79)0

If the distance élong the deformed axis is denoted by 8, at a
certain position x°, this distance is given by

o 2 , .
8 = Z\/uez(%) at | (4.80)
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At this point the radius of the cirole, as measured in the plane

perpendicular to the axis, is therefpré

»
¥ 2 .
T = r(éf Vlw?(%) d*;) _ | . (4.81)

Now the problem is to derive the coordinates of such a circle in

the coordinate system (x, _r,qJ). To show the procedure in some detail,
terms to the second degree of £ will be retained, Fquations (4,80) and
(4.81) can then be written as

=™ o o |

s = x* & .;_ e‘_?f (%%) ar ‘(_4.82)_&1 ) }

0 ‘ - ‘

: . x* 2 . \

‘ 1 _2dr AT s |
r=r(x*) +5e° == | () a - (4.82)b
2 ax* 'o/ dg : ' )

If now a local coordinate system (_x', ¥', z') is introduced which
has its origin in the point where the tangent to the deformed axis
cuts the x-axis (fig.31), the equation of the circle in this eystém is
given by | ' .

={r(x ) + 5 e a[ () dr.} sing (4.83)a
dx

| | Y o

z! = {r(xﬁ)»-! % e %—i:- of (%?) dr,} co8 ¢ : (4.83)b

where ¢ is the circumferential variable as measured in the local coor-
dinate system, '

If now this local system is rotated through an angle Y given by

« 2 ' (4.8)

it coincides with the original coordinate system, except that the

"tan ¥ =

origin has been shifted by amount x - az% .
The coordinates of the ocircle in the original system are therafore
given by '




104

x* .
2
¥ = {r(x") + = 1 2 ii-z-.;- f (%?:) d!',} sing (4.85)a
: | ax* 8
. s
z = {'r(X') + %‘ & ng f(%'}‘é') di}{ 2(d>‘ ) }008 P = EA
dx o .
' ' (4.85)b
, 1 2 x‘dh 2 2,8
g
x = x* + g{r(x*),,, e -c;-z: B[(EE) df,}{ 1- 2 )J—-— cos
(4.85)c

whereuse has heen made of the values for =in vy and cos Y Te obtain the
final result it is necessary to settle the relation between v and c[) -
From egs, .(4.85)‘11 and (4.85)b there follows

tan ¢ = : ‘ sin 9

If it is assumed now that 9 can be given as

P = q) +E&Eh«+ 52 k
the quantities h and k can be calculated by using °q. (4 86). To the
first order in ¢ thera resulis

¢=¢-@

r(

aincp (4.87)

Inserting this result into the system (4.85) the final expressions
for the circle considered can be obtained,

Correct up,I:o the first order in € they prove to be

¥ = r 8in ¢ - ¢ A sin ¢ cos ’ (4.88)a
z=rcos Pmceh coszq.) ‘ (4.88)v
X =x + € %—_2 T cos - | (4.88)(:

If it should be necessary to give these formulae correct up to the
second order in ¢ this should be equally posaible along the same lines.
It will be evident that the equations (4,.88) are valid for. the whole

surface by considering x*, and thus r,' as running coordinates,
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Acoording to eq. (4.77) the expressions for the direction coeines in
an arbitrary point of the surface have to be known,

These expressions will be derived by using the results obtained in the

appendix for the geometry of an arbitrary surface, Therefore the
equations (4.88) have to be differentiated with respect to r and ¥ . On
using eq.A(11) the result reads correct, up to terms in e,

2 ;3 x
dx d°A dx dx dx
sy m b (@) 2 e{a”"??ﬁ'}m‘l’ 2 E &Y

: - fia;r.dQAd_xt'-@ix; ]
VE—_fr 1+ (%——)- {l—e%cosq)+e dx Ed% dx dr cos.‘-P'(4._89)

d,x'
1+ (F)
Using eqs. A{7) and A(13) there )follows :
cos{n,x) = -—-}ﬁ i-r + & A cos ) + er %—5? g:; cosq}}v | (4.90)a
o " 2 "
cos(n,y) = L sin ¢ %—;%— . erc -(-1-—7-\-%';;- cos¢Y sin¢ +
dxl
-26 A o sin¢ cosCP} (4.90)%
2
coa(n,z) = —}-V-E-?- T cos (P%;— + EP %‘ + ex2 g—%g‘-x;* coa%lH-
dx

- 3\ (coa ¢ - sin? ¢ ) } (4.90)c

The equations (4,.88), (4.89) and (4.90) give the required geome=
trical relations, which will be used when applying the bounda.ry condition
given by eq. (4. T? ).

As has besn remarked the boundary conditidn valid in the transform-
ed fisld has to be darived To this end it is necessary to express the
quantitiea ul, vl and w occurring in eq. (4 77) in terms of the velo~
eity componments in the transformed field, Now, according to egs. (4,50)
in this field the following equations are valid |




u o= u + € u" cosq ' _ (4.91)a .
vy=v+e v coSQJ (4.91)b
Wy = e w" sin{ ' ‘ ‘(4-91)'c

The velocities at the surface of the deformed body are then given
by (see ea. (4.51))

du du

ug = u 4+ 5 dx * 5 dr + eu" cos¢ (4.92)a
v v " _

Ve =V 4+ 5 dx +-5;dr+sv‘coslp (4.92)b

W = _ : ew" sin{ {(4.92)c

8

where the index s refers to the surface,
Herein dx and dr are the axial and radial distances betweeh cof-
responding points of the deformed and undeformed eurface, These distan—
. ces can be obtained by comparing egs, (4.88) with (4.79). The results

are 1
r dx = ¢ %}% r cosq - ' B (4.94)a
dr = = A cos ¢ _  (4.94)0

Herswith the eqs, (4.92) can be rewritien as

,us=u+e{r%$l%%-+-7\-g—:-+u"} cos ¢ (4395)&
Vo=V o+E {r %? % -7\2—:_-‘-; v"} cos o (4.95)b
w_ = e w' sin¢ o - | {4.95)e

These axpreséions give the velocities at the surfacs of the dé-

formed body, correct up '1_50 terms in €,

The problem at hand is to translate the boundary condition for
the real flow field at the surface of the deformed body into one for
the transformed flow field at the Burface of the undeformed hody.
With the aid of the results already obtained, this will be possible.
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To apply eq. (4.77) it is necessary to express u2 and us in terms of .

" and ws. The results arer

u, = vy sin ¢ 4-!wEI cos P = v einq}} sw'l'-oosq) sincpf

+ s{ di g; p Al a"' v"} cos'q} sin tp A (4.96)a
u3 = v cosd - W si,ncp = .v cosq - eﬁ" Binzq.v +
se { 22 g; A EE + v“} cosz¢ S .(4'96)b.

On using eqs. (4.95)a, (4.96) and (4.90), the fn-oundé,ry condition

can now be wri‘tten, correct up to first order terms in e, as 3

o ax™ 2. . dx 2,
~ru + TV T sint +rv(—i-1-_-—c‘os_(p ¥

- "y ax ax® \_cu 4
+ £ cosq u()\-@-r,?ﬁ--&%-).r(?a.; = )\._.__!_uu)} +

" »
+&coqu r‘—i—h-+ 25}_2_&_95_ -7'\-(-1-5—)4»
d.x2dr

. o .
+rg-x—(rlv—g—>3—>\-aj-+v")} =0

(4.9'(,)

‘The first part of this equation which is independent of £ gives
the‘b'bnndary condiition _f'dr the purely axially symmetric field, or

v =1 %% | ’ . (4-98)

The second part of eq, (4. 97) givea the boundary condition for
the transformed fleld., since all the quantitms occurring in it are
referring to this field. Using eq. (4.98) the condition can be written
w2 {r Judh 5, u"} __dr‘ + v{r —-d?>‘2 + A dr_ }+

dx dx dx ar _ dx dx dx dx'

+{;%%-7\%+v~}=o | |  (4.99)
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. fhis equation although giving the correct Boundary condition is,
however, not very useful for numerical calculations since it contains
the partial derivatives of u and v,

However, thesecan be written in terms of derivatives along the -
fuselage by using the continuity coﬁdition and equation (4.98).‘0n

using the following re}ationé that are valid aloﬁg the fuselage:

du 2u , dudr (4.100)a

dv  dv ., dv dr ‘
and St v o (4.100)b

equatidn‘(4.99) can be transformed into @
an  fdudr dv) _ ax  (ou dr  av ax dr
“a‘"{a;a—x“a“}rar{“a;a;"a;}{’“ra—xdx}

&,

" _@E 1t ......?‘_ ..di .
-u" s V4 { 2 dx_dx} = 0 . | _ (4.101)

du dr ~ 3v
or dx ~ or
by using the continuity equation for ax1ally-symmet:;c flow (3.44)a.

Together with the.condition (4,98:) the following equation, valid along

-The term — will now be brought 1nto a more sultable form

the surface of the body is obtained . -
3u | u2 du v v _vu v
woZatwrro2E (4.102)

Using eq. (4.100)a it follows that .

udr v _du o wy v _vudv |
ar dx  or _ ax (1_-32) Yr- 28 o (4.103)
dv - Lo du .
Moreover Ix can be expressed in terms of u and i by different-
jating ea, {4.98). The result is
2
dv dr du dr .
Z ULt E & (4:104)

Introducing egs. (4.103) and (4.104) intc the boundary condition
(4.101) the resulting expression is '



2 ‘ 2
dA ax 4d°r d» dA  ax dr
(1ut)zz +(d+ut)r 2 E}’-u" ax * ""*“"“') (1‘ "é‘ tE It
u2 du v wvu ,d2r dr du . dA dr .
B G r- 20 S g (M &m0
a ’ a

Taking togethef some terms the final result is

: 7) 2 2
dr dr\“|ax d°r dX  &°A dr
veu'" ax + (1+u') [1“”(?&') ]E’x" + r(j i E?Ex- Y.+
A dr 5 Lt ar (14u’)’ dr d°r N ' (4.105)
THEax T X 2 &Lz P & Sk

a® dx

This éxprassion is ths required formulation of the boundary con-
dition along  thé'fﬁsa1age'in the transformed field. It should be remarked
that only the first two terms contain the unknown functions v' and uﬁ,r
whila the complicated rest of'the-equation can be calculated as soon
as the axially-symmetric field and the function A are known.

As an sxample the. boundary condition for a cone with semi-top
angle QT will be .derived, If the angle of attack is equal to ¢ tha
function Ais given by . :
A=x
The equation of the cone reads

T = x cota

‘ 8
The boundary condition for a cone proves to ba then,

2

~—*~.—~é—'§- (1+u‘) = 0 : (4.106)
cos 8

V" _.un tﬂ.n Js +

where use is made of the faet that along the cone surface %% = 0,

It can be shown that th:s equation is identical with tho boundary
" condition derived by Stone in ref B,

To finish the derivation of the equations necessary to construct
the transformed field, in the following section, the conditions valid .
at the shock wave will be derived by app1y1ng the general equations ob=-

tained in chapter 2,
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4.2.4 The boundary conditions at the shock wave.

Cne of the most important phenomena that occur is the change in the

shape of the shock wave due to the flow around the deformed body. To de-
termine this flow field in a unigue way certain conditions have to be -
satisfied at the shock wave. Since the problem has beeh reduced to the
determination of the transformed flow field, the boundary conditions at
the real shock have to be given as conditions for the transformed field
at the position of the shock for the undeformed body.

First of all, the geometrj of the shock wave has to be determined.

As indicated in fig.32 the shape of the deformed shock wave has been

derived by rotating the cone tangent to the axially~symmetric shock wave,

at the point under consideration, through an angle ea around the vertex
of this cone in the ¥z plane, This assumption is, as will be shown, in
aécordance with the analysis up to terms of the order &. The function a
depénds on the radial variable r and is, as yet, an unknown quantity.

~ The velocities at the point P' of the deformed shock can be derived
by using equations similar to aq.‘(4.51); The geometry of the deformed
shock surface can be derived analogous to the investigation.giveh in

the preceding section, It is given by

y=1 sin - ¢ex r cot ,stincp cos{ : (4.107)a
. | : ) ]
‘% =1 cos -car cot Jw cos” ¢ | (4.107)b
X = x(r) + ET « coétp - (4.107)c

where J denotes the semi-~top angle of the local tangent cone to ths
' ax1a11y-syrmnetrlc shock surfaca, '
‘From these equations is readily derived that the local deformations

are given by

dx = £ * a cosy (4.108)a
dr = = r a cot JW cos ¢ (4.108)b
Herewith the equatioﬁs for the velocities prove to he

Ju

uy = U+ Ear {'é; - ar qot PJ' }cosq) + eu" cost[) o (4.109)a
av

vy =V 4+ Ear {'E'E - - cot N } cos(p + ev" cos( . (4‘.109)1)

w = e osing (42090
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_ From a numerical point of view the oocurrence of the partial deri-
vatives is ﬁndésirabla.'Just as before they can be eliminated by ﬁéing
the derivatives along more suitable 1lines. In this case use will be made
of the derivative along the shock wave and along a charactaristic,

Along a backward fpnning characteristic one has
du du gu - , '
(-a;)b " % +Gy 3 . (4.;10)a
and along the shock wave

duy _ du Bu N _'
(@ -3 tan) | 8 _' |  {4.110)p

Solving for —— and~—; from these equations it follows that

Ju o1 ) rdu du ' : :
& T F-teny, {(asa)b - (‘a;)w} o (4.111)a
% —-—,,‘,—' @, tany - (i‘i) Gyt (4.111)
ax (., ~ta dx W d.x, b ' *
oV v - |
Similar expressions can be derived for I and <~ e Substltuting

these expressionse into eqs, (4 109) the following relations are obtain~ -
ed for the first two equations:

. egr . )4 1 Cpdu
u, = u+0?-_%?ﬁf; {(a-g-) (G' +cot J )= siancos{)W (E)b}cos? +

[
I

+ en" cosp A (4.1125&

‘ EQr ' . 1 du
! 'V+'€;"EEET' {( Y, (G%fCOt‘q;)_ sin wcog . (E;)b}cosqj +

+ ev" cos¢ (4.112)v
The  third equation remains unchénged. '
The conditions which exist at the shock wave can be given in the
" easiest way by decdmposing-the unifgrm velocity before the shock into
three components, one normal to the shock wave, whilé the other two
are tangent to the shock. The relétions‘valid for these components
behind the shock as a function of those in front of it have been derived
in chapter 2, First the equations for the.taggential compghents will bé
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considered, They are, according to eqs, (2,47), given by

U =u (2.47)a

uf = U (2047)1)

If the relations given in, the Appendix are used, the diresction num-
bers of the vectors tangent tec the Shock wave are given by

{tl} - {%f" %%" %%‘} ' - - (4.113)a
{'t2} ’-'{'g'%p' g ’%%} (4.113)b

_ - : *
Observing that cot q7w can be written as %%— s and remembering

the relations between the euclidean éndrcylindfieal velocity components,

the eqs., (2.47) give rise to the following system of eqqétions

' , . N N 2 *
oy Jax® day dx™ da dx™ d“x
V1= —(ul-l ){EI"_. +£ ((I+I' 'a';‘)cos CP}{ 1+ (0’- E— +T E ar +To dr2 )Oosq-‘ ‘

(4.114)a

! To obtain the third relation between Uy Yy and‘wl use will be made
of eq, (2.50) ‘ '

) '3
a (v=1)M 42
no_ 1 n | (2.50)
uf Y+1 -2 )
M .
n n

Now it is easily verified that.the component v is given by
. . n
w, = ocos (nx) (4.115)

f
n

Then Mﬁ is given by

A
'n

o COS (n,x)2 ' | ’ (4.116)
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To apply the egs. (2.50) and (4.116) the expressions for the

direction cosines have to be derived. According to eq, A(7) they are

given by
' ; 2w
cosfyx ax™ dg dx* d°x '
X a I‘{l—e(ﬂa—-‘-r.a;ir—-l-ra F)OOB‘P +

~ Yy
-€q -g-;—- cos(P} (4_.117)3-
. " i
cos{n,yl . Siﬁq’ 935__4,-1-5 g-g:. coqu Sinﬁp. +
X -7 dr o -
- 7
| —“a (-a-}) sin 2cp} (4.117)b
COS!!I,Z) cos dx + Ea+4TE EE cos —E (---—-)20052 | (4 ]17)0
X = r{co ¢ i atre T3 ¢ a ¢ _ .

F‘rcm these equations. 'there follows for the Mach-—number M

. 2 | dx da dx x _
¥ "= } sinZ {1 —2e(a o+ T gt T dr2 } cos ¢ +

2 o . )
. + 2€era ~———2— gin J cos(P} (4.118)

Now eq. (2.50) can be written into the following form :

cos(n,x) = (ra1 )Mn

{ulcc%s(n,x)'-r(vlsintp +w cos8 (P _)cos(h.y) +

2
(Y-I)Mn +2 |
f(vlcos(P' -wlsintp)cos(n,z)}' (4.119;

By using eq. (4.115) together with egs, (4.117) and (4.118) this

equation can be written as follows:

: ' - “
ax* da dx* d°x dx _
-r{l—a(a -d—r— + T "&'i: F + Tra drz, )GOS‘«P V—-E.o‘. a‘f—-} .

S % 2 w -
[—2Misin2J { —ze(a e + g: gi +ra ‘}._’é‘_)coscp +2era & ; sianc'os cp}+2 -
- dr dr
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21

) 2 2 ax™ da ax™ :
={1+1)M, sin myw{?—2e(a T tTL Lt Te ——5—) cos § +

2 n
+ 2era d ; sinz’J cos ‘P} .
dr

[-(ul-—l) {l-e(a %.f'_.*' T %—E— dr + Ta —é-)costp -t g coscp} +
L3 : ;n 2
+ vy {r%-;-'—-qn- era cos | +r23§§-oosq) -€ 0T (——-) roosq)}

+w1.0(6)] ' | (4.120)

. Since_only terms up to the order & are included and since vy is of
the order ¢ according to eq., (4.109)c, the term containing w) can be
dropped from eq. (4.120), Moreover the term v, ocan be eliminated by
using eq, (4.114)a, Performing these operations and rearranging the
resultlng equation for (u -1) the follow:ng is obtained-

2 2
I—M sin J' "
: 2 _4e 2 da dx
(ul-l) = 57 — 4 o7 AL sin qT (a 4 i T e -—7 oos J')oos¢
¥o -

- (4.a21)
This equation gives together with eq. (4.112)a the conditions for
u' and u". which have to be satisfied at the shock, For the axially-syp-
metric flow the familiar result is derived
: 2
l-Mfosin J;

Y+1 M%o

and for the transformed field one has

(4.122)a

ut =

ar

uoo-alfm ( ) (G. +00t'J) W(dx) OCE"P +

2 w
4 2 ax* da ax™ d°x 2
T sin Jw(a S+t T i o+ Ta 2 cos ’Jw) (4.122)b

dr dr

To find the values of v' and v" use will be made of egs, (4.112)b
and (4.114)a, together with eq. (4.121), Por the axially-symmetric flow
the following condition is found



o » .
vie -t & o cut cot o (4.123)a

while for the transformed flow the condition is given by

V" x - —-——;ny—— {(dx w +00t 'J ) W } +
W

G£~

. . o l - »
-4 sinJ cos'\)" {(a—;-r ) dx + ra d‘ = coszJ } +
1. w w | drz w

x 2 .
1l - da dx” d'x ,
- ul == ax
u {a—uﬁar (a *’r_dr') + ra o drz. } o (4.123)0
'From eq. (4.114)b together with eqe. (4.114)2 and (4.121) the con-
dition for the quantity w" can be derived, It takes the following simple .
form 3 : . ;
woa —oul .
) sin%J | | '(4.124)
w
So far the velocity componants of the transformed field u", v" and
w" are expressed as functions of the axially-symmetric velocity compo-
. ’ .
nents u', v' and the geometry of the shock wave together with the

deformation function «a.

To complete the discuasion of the boundary conditions at the shock
the rise in entropy given by eq. (2. 52) has te be analyzed. The entropy
rise behind the deformed shock can be written in analogy with eqs.

(4.109)a ang (4,109)b as

By = 8 + €ar {%'31- ot J }cost{J + es" cos ¢ (4.125)

To gliminate the partial derivatives use will be made of the
characteristic equation along a streamline and of the derivative along
the shock wave, Thus the following relations are valid:

.. OB as
A‘uax-b- v 3}-:0
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and
ds s as
(E)w = x + tan w. ar
g as a8 . . .
Solving for 35 and I and substituting into eq. (4 .125) gives
v+u cot JW ds
By = B + eqr mam (E)w cos ¢ 4+ es" cosd (4.126)

By using eq. (4.118), which gives the quantity M_ and retaining

only the terms in & the entropy rise can be written as follows:

. ' -Y.
. 5 (Y+1)M§° sinz'Jw
8y = {n [1+Y+1 (M sin-J—l], 5 23 +
' _ || (y=1)M5, sin®y _+2
_ y Ylfi sinEJw .
+ 4€ . - .
. 2 , 2
(r=1 )Mzm sin Jw+2 (v+1) {14- (M sin Jw-l )}
day dx™ aPr* '2,J' | |
[(a+r -d—r-) I— + Ta —%— cos w] cos ¢ (4.127)
i ‘

where uée is made of the fact that +to the first order in £ one has

{-n(l +EX ) = EX
Comparing eq. (4.127) with eq. {(4.126) the quantities s and s" can
bs obtained, For the axially-symmetric flow the following alredﬁy used
relation is found:

- o [ .ﬁ(v

-

‘ 2 2
QIJ B ] - (r+1)K, 8in Jw
(Y-I)MEO sin° »J;v-n-? ‘~
. (4.128)a
For -the transformed fie]d one has '

v+l cot J
w

1" -
8 “ y=u tan ;’ (dx w
_ w

+ 4Y - L .

(v-1 )Mgo éianw+2 (‘Ml){l Y+1 (M E'Jw—l)}
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| | - 2_m : : .
da y dx™ d 2
[ o+ -a-g- ) EEH- ‘ + T ;-;%— co8 '\Tw] , . ) (4 .128)b

The cqndifions given by the four equations (4.122)b, (4.123)b,
(4.124) and (4.128)b constitute quite a complicated system, which can

impeds th® numerical computations oonsidarably. This is mainly dus to

the occurrence of the der1vativas of u, \£ and E;— ; In this connection
it should be observed that elimination of phe partial derivatives of:
u and v is not unique and that another aéheme of elimination might lead
to more usable forms in some cases, . ) A

In the following section a scheme will be given by which the actuél

computation can be performed in principle,

4. 2 5 The calculation proqedure.

In the preceding sections the equations for the flow around a de—
formed axially-symmstric body have been derived in such a way that the
caloulation of the axially-symmetric flow field and the transformed
flow field can be performed esimultaneously, The principal features of .

| such a calculation scheme will be discuased heare,

- The method described relies on & step—by—step computation, The
flow quantities in a certain péint are derived by using the known quan-
tities in sbme other point, To start the computation, the flow quan-
tities for the .axially symmetric and the tranasformed field along a
certain surface; not céinciding with a characteristic surface, have to
be known, o ' ' , ,

HOwever, the situation encountered here is different Certain con-—

ditions are given along two surfaces, namely the body ‘and the shock wave, .

-To consiruct the flow field it is necessary that in‘thia case the flow

quantities are known along a characteristic surface commecting shock
wave and body, Since the analysié,héé been restricted to bodies with a
pointed noaé, it is possible to considaf this nose over some ¢iétgnoe‘
as conical. Then the £low over the nose will be known, since use can be
made of the resulis of Stone, Taylor and Maccoll as disoussed bqfore.‘
As is indicated in fig.33 the quantities are hence known along
the backward running characteristic which emanates from the end of the
conlocal region, This chgraoteriétio will be called the "first character-
i=stieo”,
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The numerical method, which in fact reduces the governing different=-
ial equations into difference equations can be gplitted into three
eseential ﬁarts, namely the calpulafion of a boundary point, a field
point and a2 point cn the shock wave, These will be analyzed sﬁbsequentl?-
It will be assumed that the computation of the axiallyhsymmetric flow
field i5 a known technique.

The caleulation of the quantities u", v", w" and 8" in a boundary
pioceéds as follows, Assume that the points Py and P, are lying on a
backward running characteristic (in the meridional plane) and that Py
is itself a boundary point. Now the quantities u", v" and 8" have to bé ‘
determined_in the point P3
running. charaoteristic through P2, provided that these quantities are

lying on the boundary and ¢n the forward

given in the points P, and.P, (fig. 34). Along the boundary the egs,

(4.64) and (4.64)c are valid, Along the forward running characteristic
eq. (4.72)b is valid, In the point P,
(4.605), has to be satisfied. If the equations are written as difference

itself the boundary condition, eq.

equatiohs a aystem of four seguations for the four unknown quantities is
obtained Thig system can in genaral be solved giving the required

result

To caloulate the £low guantities in a field point, it will be as—
sumed that they ars already known in three points of the field (see
fig 35) These points are denoted by Ql’ Q2 and Q3 They are chosen
such that the backward running characteristic through Ql' the forward
running characteristic through Q3 and the stream line through the point

_Q2 are cutting each other in the point Q4. In fhis point the four un-
known quantities u", v", w" and s" have to be calculated,

Again a system of four squations ean be derived, since along
Q 4 sq. (4.72) is valid and along @, Q, eq,. (4.71)b is valid, while
along the stream line Q, Q, the egs, (4.64)b.and (4.64)c have to be safia-
fied. Thus the flow quantities in a field point can be determined in a
unique way, Once & new boundary point has been determined, the character-
istic can be constructed in the manner describsd here, until the shock |

wave. There, use has to be made of the conditions derived for the flbw

quantitieé behind the shock wave'by applying the procedure-sketbhed balow,
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in the

on -the shock wave, the problem is to com-

Assuming that the flow quantities are given in the point R
flow field and in the point R2
pute the velocities in the'pqint R5 on the shock wave and on the backward

1

running characteristiocs throughAﬂl (fig.36).

However, not only. the velocities and the rise in entropy, but also
the quantity «, determining the deformation of the shock wave, have to be
calculated. Thus five unknown quantities u", v", w", 8" anﬁ a have to be
determined. From the last section it fellows that'in'the poipt R3 four
equations have to be satisfied, viz. egs. (4.122)b, (4.123)b, (4.124) and
(4.128)1, ¥oreover along R;R 3 the-cheracterieticgequation (4.71)b has to
be satisfied, This gives rise to a system of five equations. Thus the
required values can be determined., The point R2 is needed in this case to e
. give-a measure of the value of the gquantity %%-. |

It will be evident that the above eketehed_solution is not the only
way to calculate the flow field. In fact, in the aeove_given edhehe the
calculation is performed along backward running characteristics, Thie can
be changed at will 1o a calculaficﬁ procedure along forward'running
characteristics, There is no essential differeﬁée; It is perhaps neadless
to say, that the whole calculation is performed in the plane ¢ = O, and
that the.quantities in an arbitrary point ¢‘— ¢ can be obtained by '
multiplying the obtained results with the approprlate trigonometric
quentity, viz, cos qJ or sin ¢ o

The numerical calculation, although only. dependent on two variablee,
forms .a programme of great complexity. No essential difficulties are
present, however. | | a |

Since all of the caloulations are performed in the transformed field,_
in the following section something will be said adbout the calculation of
the real flow field and on the determinetion of the lift by using the

now known mamentum traneport method

4.,2.6 On the caloulation of the real flow field and the 1lift. :
' To caloulate the real flow field from the transformed field use has
to be made of eg, (4.51). In order to be able to use this formula, the
quantities dx and dr have to be known, ' _
‘ However, these Quantitiee are so far only known on the fuselage
and on‘the'eheek wave. In the flow field itself no method is available

to determine these quantities, This is analogous to the statement made
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about the. first order theory of Stone for the flow round an 1ne11ned cone
in paragraph 4.1, A check on this conclusion and on the whole procedure
given hers can be obtained by the calculation of the 1ift as the defi-
ciency of the momen tum transport through a control surface, This will be
g9t forth below,

The 1ifting force working on a configuration moving through a
gaseous moedium can be derived by two different metheds, The usual one is
to integrate the pressure'along the fuselage, However, the result can
also be obtained by considering the momentum flow through a suitably
chosen control surface, From the point of view of the accuracy of the
numerical caleulations it is very desirable to calculate the same quan-
t1ty using two eesentially different expressions, In thie case, where
care-is taken that the flow guantities are correct up to the first order
in the small parameter &, these two expressions should be identical, A
special case of such an investigation has already been given in jara;
graph 4.1 whare for the case of a cons, complete agreement between the
two expressions for the 1ift was found, '

"Woreover it is desirable to have the expression for the lift as an
integral over a control surface-with a view on the application to op-
1t imum problems: To derive such an expression first the control surface
has to be chosen.‘The most convenient choice seems to be to take & part
of the shock wave togsther with an arbitrary closing surface:(fig.57)y
although in most casés it will ba of advantage to consider this closing
gurface as generated ﬁy an axially-symmetric characterietic surface, '

The part of the shock wave considered is denoted by O; and the
closing surfaoe;by Ozt The coord;nate system is defined suoh that the
x~8xis 1lies in the direction of the uniform siream velooity U, through
the vertex of the body, '

The force I, exerted by the body on the air is then given bygan
equation which is nearly identical to eq. (4.32) ! '

L+ meeos(n,g)dol +.Of Py an Wl dol + 6/"1:2 eos(n,z)d% +
' 2

. ‘ 2 ‘ .
+ fp ¥, W, d0, ~pn R, & a =0 (4.129)
_02 2 n, 2 2‘ o B » A
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Herein the index 1 refers to the shock wave and the index 2 to the
closing surface, Vh is-the_velocity componént normal to the surfacé,
whereas W is the velocity in the positive z~direction, The quantity &o«*
gives the angle between the tangent to the.deformed axis and fhe x~axls
at the point where the closing surface is attached to it, Since the
solution of tﬁa problem has been obtained in the transformed field which
is axiallyasymmeiric; the connection between this field and the real
flow field should be given,

It may he reaalled that the real shock wave can he obtained from
 ths ax1a11yasymmetric ones by applying a transformation, which is in
fact a small rotation of the tangent cone., Also the deformed fusélage
is obtained by a given transformation. The assumption is made now that
the closing surface is generated by the tranaformation of‘an'axiallyh
symmetrlc surface in the transformed field. To this end it is amsumed
that a certain cone with semi-top angle qr‘ is rotated through an angle
eam as indicated in fig.38. Here QT and a are functions of the radial
coordinate r as measured along the transformed closing surface, It
must be siressed that nT and @, are unknown quantities in the flow
field, Omly at the ehock wave and the fuselage these quantities are -
known, At tha moment no further assumption about-J' and @ will be
mde,

First of all, the geometry of the two parts of the control surface
- will be analyzed, The geémetry of the shock wave has been given in
section 4.2.4., The geometry of the closing surface can be given along

the same lines as

Z2 =T cos¢ - ra_ & cot Jm coach (4.130)a
y=rs&ind -ra_ ¢ coynym cos ¢'sin(P | (4.130)v
Xs x4+ ra € cos (4.130)¢

The quantity x* is the axial distance of the transformed closing
surface, x ’.“m andqu_are funotions of r, From egs, (4,130) there
follows, by applying the results obtained in the Appendir, for ths

direction cosines of the clousing surface
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-

coa(n,x) = é [r-—er %}— (r“m_ cotJm)cos ¢ -r % cot'J;n cosq;] (4.131)a
cos(n,y) = —\1/-; |:-r sin %t -r %-r- (amr)coslp sin ¢ + .

" .
+ 2era cotJm %—;— cos ) siny + eray ein ¢ coan] (4.131)%

, »
cos(n,z) = —J_—; [—r cos P %:;— - T %r- (amr) ooszq) £
a . . .

. .
+ eram cotqu %—‘;#—(0032(%—‘ sin‘?,gp )-erum'sinzq)] (4 131}

The terms of eq. (4.129) will now be calculated one by one. The
firset integral of this equation can be found ‘by applying the expressions
derived in section (4.2.4) for the geometry of the shock wave. Tt folw~

lows that
R
2n e

% a2
_/pwoos(n,z)dol-pm ff{%_rx;_ cos P +ea + re % -ea(%&x——) coszqi} rdr d¢
0 o o C ‘
1 .

or R R
q : Cc
p..coe(n,z)d0, = ne p f (2a+r g-c—‘)rrdr € r2a /
0 ’ 1" @ ar = "& P
g o 0
1

Thus the first term gives
2

D, cos{n,z)d0, = ne p R (4.132)
co 1 eoaw ]

0

where o is the quantity a in the point r = R, on the shock wave. The
second term of eq, (4,129) is very easy, ¥, being egual to zero, because
in front of the shock wave the siream is uniform and directed along
the x-axis, -

Hence ‘
[pl_ an ¥, 40, =0 (4.133)
1




The thirdéd term will give some’ more trouble, Firsi the quantity P,
has to be evaluated, According to the techniques known now, the following

can be written :
Py =D+ {—g% dx+—g-f:dr}+ ep"__cos&')
Using eq. {(4.130)a this ‘becomes
P, = DP+E a-r 32 _ cot ' cosP+e p" cos | (4.134)
2 m | 8x " Vmoar | ‘ )

The third term of eq. (4.129) can be found by applying eq. {4.134)
together with eq., (4.131)c. It then takes the form

-+ -2 R -
i . '_ . c - ’ A
13,: f Py cas(n;z)do2 = f f {p:l-samr(-gi- -cot;' _'__Jm —g%)-i—ep"cos ql}
"0, - o o

{-r cos § %;: (a r)cos ¢ Mra‘ncotJ = cos 2 +

_ 1g2 '
eray sin q:} dr d¢

Integrating with respect to () gives
o .
—r L —prg - _2 Y:E e P
135 En /[_pr = (ar) pra ra ( -cot; J ar)dr -r E—r—p']dr

By integrating the firat term on the right—hand side pa.rtially,
the following is o'bta:l.ned '

. 2 a dx'
Iy= -ul-:PI' @ / +en /T =T G '°°t 'Jm ar ar

.—r‘g_z_ p"]dr .

Observe now that -g-f—_ can he wri'tten in terms of —g—% and %ﬁ- as

| . |
d ) agp dx~
35‘_ " E R E (4.135)
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Substituting this into the expression for I, the final result is

. 3
¥ 2 2 %
f Py cos(n,z)d02 = —nE [pwach -p Ry « ]+
0

c RO .
~nE f T "dr+n€- f 2 a; {1+cot '\j’ d‘i) dr (4.136)
RY ,

Ry

Finally the fourth integral of eq. (4.129) has to be analyzed. This.
is the most complicated term occurring in this sxpression, First of all
the expression for the factors occurring in the integrand will be

given, viz, :

P o= pgamr {-g-% —cot. '\fm %E_-}cosqa +ep"'cos | | (4.137)a

2

[r-er %:F (famcot Jm)coqu ~€To cot Jmcosq.r] +

+[v+eram {%‘xi -cot‘ Jm -g%}_oosq) +& V" costp]

' ax™ a dx™ 2 '
[—r o T E (amr)e: cos lP-c-sr“rumc,.zot Jm -a%- cos (IJ] + 0(e“) (4.137)b
7W2=.-‘v cos(P-waian =

= v_cbskP +era {%—- cot Jm g‘;} cos‘?q, +ev"c:032L|) -ew"sinzq).‘ (4.137)c

Multiplying the various quantities with each other and integrating

: - au , du " .
Vn = [1+u'+am1‘€ {3-1- -cot, o _51_"} cosLP +eu cos&l)] .

with respect to ¢ .gives
0 2 - :
. Rc ‘ . .
» n
= e / { [1+u‘-v %5—-] ViV I:u"-v" %‘;-?-] +p [l+u'-—v %-;-—J (v!—w" )}rdr+

Ry
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R

o ] ,
2 dx _p_ - avil .
+TE / @r [1+u!—v ‘—ﬁ.—]{ ( cot " ar ( cot n 3 }dr-t-

Ry

R_ ,
¢ :
4+1E / pv | =(14ut)¢r gr—",(ramcot Jm)+ﬁa cot Jm}-pamrz(%% ~cot 1)1_;1 %lrl-)]dr +
R ) 9T,

B .

Ry

R .
c
| d | ax* | 2. ax* cav v
”E/ W”%E“JHWMKH}*%E“%°W%$ﬂd

(4.138)

To simplify this complicated expression, first the terms containing
derivatlves of am will bve cons:.dered It should be observed that presu-— ‘
'mdbly the unknown functions % and’ 'J can be eliminated, just as the
function A in the case of the cone,

R | _ |
ne Rgf p\‘r[-(l-g-ui){r %.—r' (ramc{:t ij-i-ra cot Jm}+
—v{r—(a r)-ra cot'J }] dr =

R

o
= -nspvream{(lﬂx‘)cot Jm + v} : / +

Ry

R .
A
+ ne f e a OotJ { — 4 p(1+u‘) Z w(1sut) —-&}dr +
B )
R

R .
c ' : ’ Rc,
2 dv . 2 dp
+ ne Rf ov amr_{1+cot 'J —-——}4.1-:5 Rf T {Epv = + v dr}
B , B
- (4.139)

If now dp ~du and dv are replaced b th.e e;c ressions correspond-

ar ' ar dr P J P |

ing to eg. (4.135), the following result is obtained
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2 .
.fpz V. Wzdo2 = -nep v R« {(l-l-u')wcot ‘Jw+vw} +

2
0,

. :
+ nep v, RBza {(’1+u‘)B cot JB-;-VS} +

R .
ax™ .

/ {p"[ 1+u!)=v 3}—] VPV [u" -v" %——-] +p [(1+u')-—v -—-—] (v'ew")}rdr

B ‘ : .

) 2 3u
1+00tJ """' (1+u ) -5% .Q-v _.E + 9 =— 4+ pov _a_. + .
B : .
+ p{lyut) % + 2 pv %}] dr : (4.140)

Taking all terms together in eq, (4.129) gives the desirsd result,
However, first of all the tefms cont’aining the unknown quantity o in
the integrand will be taken together, The result is obtained by using
oq. (4.136) and eq, (4.140). It reads

R .
. Ry ,
2 . .
2 4 dx* 3 .23 v du dv
Ta = "eﬁf BT {1+°°" A dr_} [(1“')"'3‘% WU SE R T Y g3 Y g [
'B : A .
Rc _ ; ' ‘ :
2 ¥ odx v v ‘_g
+ne Rf T {1+cot Jm a;—-}[p(l-ru') ErdlAi ] (4.141)
' : -

This equé.tion ias written in such a way that the important featu.res
can be easily seen, They become apparent when the continuity equation -
and - the equation of motion in radial direction for an axially-aymetric
flow are written dqwn. o

They are:

= 55"(1‘“")} *'g?{m} o  (a.42)a

and p{(l+u')%+v%}+-g-% = 0 T (4.142)%
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Inserting these equations into eq. {4,141) it follows that

Due to this very important and interesting result, the éxpression

for the 1ift becomes

| 2 2 |
L = ne R a(p_=p )-ne Ry o® (p-p ) +

2 ' 2w . . Y
+ne R, apWVW{FWOOtﬂIW+Vﬁ}-ﬂ€ RB a psvs{uscot«Jg+vs} +

¢ ' : : ‘ _
L » L . .
+ME R[ { " %._ —(u—\" g‘%—- )[P"pr (V""\“V") ] —pv(u"-v" .g'_rx_._) I‘dI‘ |
: (4.144)

In the cass of a cone this result is in accordance with eq. (4.44)

.The equatibn for the 1ift is thus felatively simple and containe
only known guantities, whereas the total expression was derived by
using the unknown quantities o and mT )

These quantities are only known on the shock wave and on the
fuselage and, indeed, only these ocour in the exprassion.-As can be
~ seen this remarkable result is due to the fact that I is equal to zero,
which in its turn is effected by the ocecurrence of two of the governing
differential equations for the axiaily-Symmetric flow. This leads to
the following important conclusion,

Although it is Boaszble by the tachniques given here to calculats
the pressure distribution along the contour of a given fuselage, it is
not possible to calculate. the real flow field, Only if an assumption

is made about the functioné & ﬁnd q)m suoh‘a'qélculation is possible,

Thers ars, howéver; no means to determine such functions.
Thesse statements'geherglize the result already obtained for the

cone,

4.2.7 Summary of the investigation of the flow around a deformed
‘axiaily-eymmetrio configuration, '
In the sscond paragraph of;thie ohapter a method has been given
to obtain the lifting pfoperties of a deformed axially-symmetric hody,




128

This deformation is caused by rotating the axis, The analysis is exact
up to the firet order in €, which is a esmall parameter defining the deo=
formation.

The influence of the vortical layer is left out from consideration
because of not disturbing the pressure diatrxbutlon in an approximation
of this order,

The calculation is get up in such a way that the determination of
the axially~symmetric flow field and of the deformed flow field can be
done together, To this end the caloulation of the deformed field is made
in the go-called transformed field. This fiéld ié obtained by transform-
ing the boun@ary coﬁditions on the fuaelagg and ‘at the shock wave to
conditions on the boundaries for the axially-symmetric field.

The equations goverﬁing thé flow'in the franéfbrmed field are
written in such a way that they bacome characterist1c equations for the
transformed field along the ax1allyusymmetrlc characteristics,

A full account of the derivations nacessary‘to use this method has
been given, ihcluding the daterminafion of-the 1ift by momentum trﬁnapqrt
considerations. - _ | -

The equations are given in such a form that they can hé reduced
immediately te difference squations: for use in numeriocal caloulétions.
As a ptart for sthvﬁalculations the already-known results for the flow

around a cone will be used,
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Agpendix A

On certain geometric relations of an arbitrary surface

In this thesis at several placss the geometry has to be known of a
so~called deforﬁed surface, the equation of which is given by referring
to the variables as measured on the undeformed axially—symmetric boﬁy.

In general the directicnr cosinés and the slament of surface area arse the
guantities which-are of the greatest interest, It seemed -advantageous
to present the derivation of these guantities here together,

If the arbitrsry surface is given by the following equations, with

rand P considered as surface coordinates

=f (r,¢) R A(1,a)
=g (1‘,"{-’) o ' ‘ A(1---13)
z=h (r,¢) - | A(1.¢)

the radius vector can bé_written as

ot
2
¢

i-' .
= x4 + y.j + z.Kk S a(2)

where -;, ?and—f are the unit vectors along the coordinate axes.

- If now the cﬁange in the vector'E is considéred by holding r con-
- stant and giving an increment d4? to ¢'and'vice versa, the following
is obtained

+

- - .
d?rzc = {% 1+ -g%, i o+ %ZI-J E}d‘{) for r = constant A{3.a)
- axr v ay ” qz * l ) ‘
davnc = {g;‘ 1+ 3;'31 + 3o 0k }dr - for ¢ = constant é(}.b)

As will be immediately clear, the vector E; of eq., A(3.a) is tan-
gent to the curve r = constani, whereas eq. A(3.b) gives a vector which
is tangent to the curve ‘P = constant, '

The plane through these two vectors is thus the plane tangent to
the =surface in the point consideréd.

The itwo following vectors tangent to the surface are now intrc-
duced,

- : - -»
2 = XY oy + %% k

13 * Y o (a(4.a)
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and .
-~ x~T aI - gz >
= m— b 'b
B T3t Y Yt 9 k a{4.)

Bow a vector norma.l. to the surface in thse point considered can be

: —i —ip
found by taking the vector product of ay and ay.
This gives - , ' _
— -— —
m o= ap X a3, | A(5)
It is not possible to say in this general case when this vector
is pointing inwards or ouiwards, This depends on the orientation of E;
with respect to _;2. Performing the operation indicated in eq.A(S)
oives ‘ v 7 ' T
—_ v ]
ar 3¢  ar 3 ar 3¢ 3r Y
x 9y _ Ay x|
* {ar 3¢ " Ir acp}k AC8).

To obtzinh the dirsction cesines it is sufficient. to remark that

aoccording to eq, A{6) it can be written

cos(n,x) = {-g—g:- -g-% - %f'-’ %}X | A(T)a
éos(n,y) = {%—E— -g-% - '2'2;' %%}x | A(Tv)
sos(n,z) = {2 P -3 Eix e

Using the relation

' cosz(n,x) + cosz(n,y) + cosz(n,z) =1
it follows that’

X- — 1 A(8)

BN 2 21
flox 22 _ 23 3 0z 3x _ 3x 2217 fox oy _ 3y x
, {ar 3P ar_"a%} *{ar 3 ~ ar a(p}*{ar'a% 'a%aqp}

Thus the form of the direction cosines is now completely deter—~
mined. The element of the surface area is now immediately obtained by
remarking that it must be equal to the absolute value of the vector

product of eqs.A(3)a and A(3)b. It follows by applying eq.A{8) that

d6¢ = = dr d¢ : 4(9)

1
X
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- Tt is perhaps illustrative to show the relation between this result L

and the first fundamental tensor of the surface. According to eqe.A(2)

2 _ (37 A L LBy P
ds€ = (dﬂpnc +dp )" = 2,p GU du

where a__ is the first fundamental tensor and du® = dr

af
and du® - a¢
It follows from 5q.A(10) that

2 2 2
B e L G A
811 © &l‘él - (ar) + (ﬁr) +_(ar)
T3 3 dyoy, ded
*1°%2 = 3r 3¢ or 3¢ * or 3¢

812 = 8py =

e I
8,08

2 5 2
Bpp = Bp.dy = (%$) * (%%) * (%%)

Now it is known that

N L]
4C = \Tadr a¢p = 2

a)18pp78p 4r 49

Prom this it can‘be concluded thaf

X ==

a

" and A(3) the first Pundamental tensor is given by (see f.i. ref.28)

A(10)

A(ll)g

4{11)v

A‘A(ll)c

A(12)

A(13)

Herewith the required relations for the geometry of. the surface

are obtained.
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Summary in Duich,

In dit proefschrift is het resultaat van een aantal onderzoekingen
betreffende de supersone stroming van een gasvormig medium over axiaal-
gymmetrische~ en daarvan afgeleide — lichamen neergelegd, Bij de bestu=-
dering van dergelijke stromingen maakt men vrijwel steeds gebruik van de
zogenaamde gelineariseerde poteniiaaltheorie, hoewel reeds vrij vroeg geble=-
ken is dat het gebruik van deze theorie in bepsalde gevallen tot grote fouten
kan leiden, Men beschikt echter -in de meeste gevallen niet over een betere
methode van berekening, omdat dit bijna altijd leidt tot de behandeling
van de oplossing van niet-linezire differentiaalvergselil jkingsn waarvoor
slechts in sen 1ncldantee1 geval aen practiseh bruikbare berskenings~
methode bestaat,

Het doel van de h1er vermelde onderzoekingen is daarom tweeledig.
Enerzijds is het van belang, indien mogelijk, een quantitatieve bepaling
te geven van deo fout die in een bepaald geval ontstadt door het toepassen
van de gelinearisesrde theoris en zodpende tot een uitspraak te komen
over ds mogelijke tospasbaarheid van deze theorie, Anderzijds is het
gewenst in die gevallen, waarin het blijkt dat het gebruik van de gelinea-
‘rigseerde theorie tot onijuiste resultaten voert, zo mogelijk methodes te
ontwikkelen die tot een juister resultaat voeren, Daarbij zal het gewenst
zijn deze in een zodanige vorm te presenteren, dat zij gemakkelijk toegan-~
kelijk zijn voor een numerigke berekening,

Door de massa- en de impulsstroam te beschouwen met behulp van ge-
schikt gekozen controle~oppsrvlakken kan men op esnvoudige wijze sen
quantitatieve waarde voor de gemiddelde fout verkrijgen die door het ge—
gebruik van de gelinasarisecerde theorie ontstaat, Ter toelichting van de
waarde en de bruikbzarheid van deze methode wordt een gedetailleerds ver=—
gelijking tussen de resultaten van deze theoris en die van andere, minder
benaderende thecrieén gegeven,

Voor axiaal-symmetrische lichamen, die volgens hun asric¢hting worden
aangestroomd kan men zulk esen vergelijking verkrijgen door gebruik te
maken van een exakte karakteristiekermethode. De resultaten tonen aan dat
in het beschouwde geval de waazrde van de gelineariseerde thecrie sterk
beperkt is, vooral wanneer interferentieverschijnselen belangrijk zijn,

Dit inzicht leidt tot het onderzcek van vormen die een zo klein moge-
1i jke golfweerstand bezitten, Hierbij wordt gebruik gemaakt van de niet-
lineaire differentiaalvergslijkingen voor isentrope stroming, Door uit te
gaan van dezelfde massa~ en impulsstroom-vergeli jkingen, als gebruikt voor
ds .studie van de toepasbaarheid van de gelineariseerde theorie, kan men
met behulp van de variatierekening een oplossing verkrijgen, Voor het ge-
val dat de oppervlakte van de basis van het lichaam is gegeven zijn
enige voorbeelden voor verschillende Machgetallen berekend.

Bij de bestudering van de stroming om axiaal-symmetrische lichamen
onder invalshoek of met askromming is slechts in het geval van de kegel
onder invalshosk een vergelijking mogeli jk tussen de gelineariseerde
theorie en een minder benaderende theorie, Ook hier blijkt dat de gelinea-
riseerde theorie in de meeste gevallen slechts de orde van grootte van de
stromingegrootheden kan geven, doch dat men voor een meer nauwkeurige
berekening van deze grootheden gabruik zal moeten maken van andere,
betere theorieen
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"Tot dat doel wordt hier een methode afgeleid waarbij men uitgaat
van de volledige vergelijkingen voor een supersone sitroming, Het veld
om esn quasi axiaal-symmetrisch lichaam denkt men daarbij te bestaan
uit het oorspronkelijke axiaal-symmetrische veld en een daarop gesupsr-
poneerde verstoring, overeenkomstig de door Stone opgestelde theorie
voor de stroming om sen kegel onder invalshoek. Het onderzoek blijft.
beperkt tot termen van de eerste orde van een kleine vervormingsparameter.
Br wij opgemerkt dat reeds Ferri een poging heeft gedaan toil een derge-
lijke theorie te komen, Het hier beschouwde geval is echter iets alge~-
mener van opzet en sluit mebr aan bij de door Stone gageven afleiding.
Speciale’ aandacht wordt besteed aan het afleiden van de voorwaarden cop
de romp en ter plaatse van de schokgolf, terwijl met behulp van de reeds
eerder genoemde impulsstroom-vergelijking wordt aangetoond dat het in
feite niet mogelijk is een uitspraak te doen over het echte stromingsveld.
De methode, die het mogelijk maakt de berskening als een karakteristieken-
methode gabaseerd op de axiaal-symmetrische karakteristieken, uit te
voeren, is in een zodanige vorm gegeven dat men haar zonder verdere bewer-
king voor de numerieke behandeling kan gebruiken,




Tabls 1,a - The quantity K ag a function of Mach number M,
: ‘and semi-angle :\J’S.

S| 15 | 2.0 3.0 | 4.0 | 500
5,0°] s.30) 7.8 | 14.51 ] 22,40 | 31.18
7.5°| 9.82 [11.80 | 26.82 | 40.66 | 55.78

0

10,0° 115,34 122,84 | 40.68 | 60.91 | 82,70

12,5 | 21.40 31,60 | =5.56 | 8240 -

15,0° 127,83 [ 40.82 [ 71.10 - -

20,0° § 41,25 | 60,09 - - -
o

25.0° | 54,96 7992 | - | - -

Tahle 1.b The quantity K, as a function of Mach number M,
and sami—angle qfs.

ool 15 | 200 | 3.0 | 4.0 | 5.0
5,0°1 5.98| 9.30.| 17.38 | 26,69 | 36,67
7.5° 111,61 17.65 | 31.72 | 46.92 | €2.22
10,0° ] 18216 | 27,08 | 46,91 | 67,11 | 86.36
12,5° [ 25,24 | 36,97 | 61.97 | 86.10 ~
15.0° | 32,57 | 46.95 | 76.41 | - -
20,0° ] 47.22 ] 66.26 - - | -
25.0° 61,17 84,01 | - - -
Table é “Compérison of Body raﬁius and drag-és obtained

by different methods for cones,

Y

' I .2 . 2 o
Cones . RB.as given R acc,to ace,to 5 ace,to
‘ S eq.(3.7) | velleo 00 (5.32)] pello eq.(3.17)
¥ .5 M=2 © 01,0000 0,99998 0,10303 0,10303
=T7.5 . — '
S " M=5 11,0000 | 1.00012 0.07139 0.07140
Y= 2 1.0000 0.99999 0.23577 0.23576
_ o 7 .
J;=12.5 V=4 © . 1,0000 - 1,00021 0.18334 0,18337




Table 3 The compa:éiaon of the body radius and the drag calcula;ted.by different met‘hods}

Cha.ra.cterisfic 2 2 ] 2
from x/ 8 = Ry Ry D/ po_oufo D/ mecn
. ’ along along lalong
_— characteristic| fuselage characteristic

=757 w22 0.4466 | 0.00121 0.00122 0.4070.107% | 0.4086.1074

P=1,0 ' 0.8399 0,00044 0.00C45 0,8421.,10-4 [0,8421.10-4

N=7.5° %s2 0,4466 | 0,00121 0.00122 | 0.4070.1074 | 0.4092,107¢

P=0,999997 0.8399 0.00044 0. 00045 §.8421.10~4 10,8435.10-4

W=7.5° Mg2 0.4666_ | 0,00121. 0.00122 | 0.4070.10~% {0,4092,107%

P varigble - 0.8399 0,00044 0,00045 0,8421,10-4 [ 0,8435,104

¥-12.5 =2 C.3966 1 0,00321 0.00322 | 0,3005.10-3 { 0.2974,10=> |

P=1,0 0.7184 0, 00249 0.00251 0.4040,10-0 10.3966,.109

J=12,5° ¥=2 0.3966 0.,00321 0.00321 0.2994.20~0 |0.3013,107>

P=0.999600 70,7184 | 0,00249 0.00248 | 0.4033.10-3 | 0,4090.10-7

W=12,5° 22 0,3966 0,00321 0.00321 0.2994.10~> | 0,3008.1077

P variable 0.7154 0.00249 0.00249 0.4033,10-3 10,4050.10~3

¥=7.5° ¥=5 0.3975 * | 0,00113 0.00115 0.3481.10~% |0.3345.107%

p=1 0.7275 0. 00085 ~0.00086 0.4430.10-4 [0.4194.10°4
W=7.5° =5 0.3975 0.00113 0.00112 0.3399.10~% |0.3453.107%

P=0.593965 0.7275 0.00085 0.60083 04557, 1074 |0.4608,10-4

W=7.5% M5 0.3975 ) 0,00113 0.00113 | 0.3399.10~% |0.35424.107%

P variable 0.7275 ] 0.00085 0,00086 0.4357.10~4 10,4416.10-4
e12.5° ¥z4 0.3946 0,00318 0,00333% 0.2674.107> 0.2480.1077
1P=1 0.7704 0,00198 0.00226 0,3528,10-3 [0,3184,10~3

¥=12,5 Mg4 0.3946 0,00318 0.00312 0.2465.107 lo,2572,1077

P=0.970768 0.7704 0.00198 0.00171 0.3344.10-3 10.3116.10-3

W=12.5 Mz4 _ 0.3946 | 0,00318 0.00519 | 0.2465.10> |0.2547,107>

P variable 0.7704 0.00198 0.00204 0.3344.10=3 |0.3463.10=3

BET



Table 4 The quantity X ag a function of Mach number
"and semi-angle '
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-

8
M ' .
y N\ | 15| 2.0 | 3.0 4.0
2]
10° 7.26 | 7.31] 10,50 13.50
15° | 11.72]1%3.02{15.52 | -~
20° | 17.55{16.56| - | -
30° | 32.85] - - -

Mg
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Vglocity distribution along the aft characteristic
surface,and the shape of this surface for My, = 2.5
L= 3.2773

Table 5a

R, = 0.0845 R, = 0.7541

B =

u=1

>

~0,001205%
-C,0011896
-~0,0011727
-0.0011550
~0,0011366

| =0.0011174

-0.,001C973

-0,0010761

~0.0010539

-0,0010306

-0,0010060
-0.,0009800
~0,0009526
-0,0009235

0,0027474
0.0027842
0.0028233
0.0028641
0.0029068
0.0029513
0.0029980
0.0030469
0.0030983
0.0031524
0.0032094
0,0032696
0,0033332
0,0034008

1,72794
1.77312
1.81915
1.86519
1.91124
1,95730
2.,00336
2.04943
2,09551
2,14161
2,1871
2,23382
2.27994
2.32607

0.75413
0.7345
0.7145
0.6945
0.6745
0.6545
0.6345
0,6145
0.5945
0.5745
0.5545
0.5345
0.5145
0.4945

0,0034726
0,0035491
0.0036309 |
0,0037186
0,0038129

0.4745
0.4545
0.4345
0.4145
0.3945

-0,0008925
-0,0008595
~0,0008243
~0,0007865
-0,.0007459

2.37222
2.41838
2,46456
2,51074
2,55695

~C, 0007021
~0,0006545
-0 ,0006028

~0,00054 62

-0,0004839
-(,0004148

-0,0003378
-0.0002510"
|=6,0001522
- |=0,0000386

0.0000943
0,0002524
0.0004443
0.0006861
0,0010014
0,0012000

0.0039147
0.0040251
0.0041453
0,0042769
0.0044218
0.0045823
0,0047615
0.0045634
0.0051931
0.0054576
0,0056667
0.0061345
0.0065820
0,0071428
0.0076742
0.0083342

2.,60317
2.,69568
2.74197
2.78828
2.83462
2.88099
2.92739
2.97384
3 .,02033
3 ,06687
3.11347
3 ,16015
3,20692
3,25381
3.27731

0.3745
0.3545
0.3345
0.3145
0.2945
0,2745
0.2545
0.2345
0.2145
0.1945
0.1745
0.1545
0.1345
0.1145
0.0945
0.0845
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~ Table 5b. Velocity dlstribution along the aft characteristic
"surface. , and the shape of this surface for M°°= 3.5

By = 0.0845 Ry = 0.4982 L. 3.0867

‘u-1

X

~0.0013026
~0,0013017
~0,0012831
~0,0012637
~0.0012435
~0.0012222
~0.0011999
~0.0011765
-0,0011519
~0.0011259

~=0,0010985

~-0,0010694
-0,0010386
-0,0010058
~0,0009708
-0 ,00089%3
-0.0008502
~0,0008035
=C.0007529
-0,0006976
-0 ,0006371
-0.0005704
-0,0004134
~0,0003198
~0,0002130
~0, 0000895

1 0,0000555

0,0002250
10,0004418
0.0005680

0,0043242
0.0043274
0,0043909
0.0044572
0,0045266
0,0047993
0,0046757
0.0047559
0,0048403
0.0049294
0,0050235
0,0051231
0,0052289
0,0053414
0.0054614
0,0055898
0.0057276
0,0058759
0,0060363
0.0062104
0.0064002
0,0066083
0,0068378
0,0070927
0,0073778
0.0076997
0.0080670
0.0084913%
0,00898¢9

0.0095838
0,0103115
0,0107420

1,67103
1,67342
1.72090
1.76840
1.81592
1.86345
1.91100
1.95856
2,00615
2,05375
2,10138
2.14903
2.19670
2.24440
2,29212
2,33988
2,38766
2.435417
2.48333
2,53122
2.57915

2,62713
2.67516

2,72325
2,77140
2.81962
2.86792
2.91631

1 2.96482

3.01345
3.06224

3,08671.

| 0.4982

- 0.3155

10,0845

0.4975
0,4835
0.4695
0.4555
0.4415
0.4275
0.4135
0.3995
0.3855
0.3715

0.3575
0.3435
0.,3295. |

0,3C15
0.2875
0.2735
0,2595
0.2455
0.2315
0,2175
0.2035
0.1755
0.1615
0,1475
0.1335
0,1195
0.1055
0.0915
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Table B¢ Velocity distribution along the aft oharacteristic
surface, and the shape of this surface for Mgo= 4.5

Ry = 0.0845 Ry = 0.3886 {- 3.0816

u-1l v x T

-0.0012669 | 0,0054712 | 1,70497 | 0,3886
-0,0017603 { 0,0055012 | 1.72330 | 0,3845
~-0.0012436 | 0,0055765 | 1,76803 | 0,3745
-0.0012263 | 0,0056549 | 1.81277 | 0.3645
-0.0012082 | 0,0057367 | 1.85754 | 0,3545
~0,0011894 | 0.0058221 | 1.90233 | 0.3445%
~0,0C11697 | 0,0059114 | 1.94714 | 0,3345
~0,0011491 | 0,0060048 | 1,99198 { 0,3245
~C, 0011274 ( 0.0061028 | 2,03684 | 0,3145
~-0,0011048 | ©,0062056 | 2,08173 | 0,3045
-0,0010809 | 0,0063137 | 2,128664 | 0,2945
~0,0010558 | 0,0064275 | 2.17159 | 0.2845
-0,0010294 | 0,0065477 | 2.21657 | 0,2745
=0,0010014 | 0.0066747 | 2.26158 | 0,2645
-0,0009717 | 0,0068092 | 2,30662 | 0,2545
-0.0009403 | 0,0069521 | 2,35171 | 0.2445
~0,0009C68 | 0,0071043 | 2.39683 | 0.2345
~0,0008710 | 0,0072666 | 2,44159 | 0.2245
-0,0008328 | 2,0074404 | 2.48720 ] 0,2145
~0,0007917 | 0.0076270 | 2.53246 | 0.2045
-0,0007474 | ©,0078282 | 2,57718 { 0.1945
=0.0006996 | 0,0080457 | 2.62314 | 0.1845
=0,0006476 | 0,0082821 | 2,66857 | 0,1745
-0,0005908 | 0,0085400 | 2,71407 | 0.1645
~0,0005285 | 0,0088231 | 2,75964 {0.1545
~0,0004596 | 0,0091356 | 2,80530C | 0.1445
-(,0003831 | 0,C05483%0 12.85104 | 0.1345
-0,0002973 | 0,0098721 | 2,89689 | 0.1245
~0.0002001 | 0,0103119 [2.94285 [ 0.1145
-0,0000889 | 0,0108144 {2.98894 { 0.1045
0.C000400 | 0,0113958 | 3,03519 | 0.0945
0,0001920 | 0,0120788 ) 3,08162 | 0.0845




143

Table 6 Comparisbn between the 1ift on a cone as integrated along the
cone surface and determined from momentum trangport consider-—
‘ations according to the first order thsory of Stone,

"Js ¥, P ’a :I;-é-;—li-—g—é-_(along body)‘ 2 L . (morqentum)
a" Peo o ‘ * Bepgo o

5% 11,1554 | 1.0000 | 0.0060. 0.007188 ~ 0.007177
12.5°% | 1.6530 | 0,9999 | €.2155 0,03761 . . 0.03762
12,5° | 1,8810 | ©.9997 | 0.2688 0.03791 | 0.03792
12,5°( 2,1496 | 0.9993 | 0.3322| = = 0,03821 0,03819
12.5° | 2,4760 | 0,9982 | 0,2059 | 0.,03853 0.03851
12.5° | 2.8907 | 0.9950 | 0.4900 0.03896 - 0.03895
12.5°| 3.4532 | 0,9861 {0.5834 | =~ 0.03947 " 0.03948
12,5° | 4,3002 | 06,9590 | 0.6891 0.04014 0.04014
©30° 3.8497{ 0.5712 | 0.9714 0.11476 1 0.aum

|
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FIG.1 THE CARTESIAN AND THE CYLINDRICAL COORDINATE SYSTEMS

WITH THE ASSOCIATED VELQCITY COMPONENTS.




FORWARD FACING
CHARACTERISTIC SURFACE
WHERE VELOCITIES ARE
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FIG.2 THE -FURWARD FACING CHARACTERISTIC SURFACE,
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FIG. 3 MERID{ONAL SECTION OF BODY AND CONTROL SURFACES.
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FIG. 5 ARBITRARY AXIALLY SYMMETRIC BODY WITH
CONICAL NOSE REGION.
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FIG. 6a COMPARISON OF THE TWO SIDES OF THE MASS FLOW AND
MOMENTUM EQUATION FOR THE BODY WITH s:13.7 AND M =2.
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FIG.7a THE PERCENTUAL DIFFERENCE K OF THE LEFT-HAND SIDE AND THE RIGHT-HAND
SIDE OF THE MASS-FLOW EQUATION FOR THE CASE s=12.5° , Mo=2.
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FIG. 24 LOCAL COORDINATE SYSTEMS USED IN THE REAL FLOW FIELD.

- FIG.25 DEFINITION OF A SURFACE ELEMENT OF THE SPHERE .
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