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Summary. 

The supersonic flow around axially-symmetric and quasi axially- 

symmetric bodies is investigated with a twofold purpose. One purpose 

is to determine whether or not the linearized potential flow theory 

can give an adequate description of the flow-field around such bodies. 

The other purpose is to forward more reliable methods of computation 

for those cases where the results of the investigations lead to the 

conclusion that this theory is inadequate. 

A oonsideration of the mass- and momentum flow through conveniently 

chosen control surfacea, proves that one can obtain a quantitative 

measure for the error made by using linearized theory. The usefulness 

of this concept is emphasized by making a direct comparison between 

the results of linearized theory and those of more exact theories. 

For axially-synrmetric bodies such a comparison can be obtained 

by using an exact method of characteristics. The results show that 

the linearized theory is of only limited value, particularly so when 

an interference between various parts of a configuration occurs. 

This leads to the investigation of optimum shapes of axially- 

symrnetrio bodies with a given base area by using the non-linear 

differential equations of isentropic flow. The same mass- and momentum 

flow equations are used here as for the determination of the adcquate- 

ness of linearized theory. 

For the quasi-axially-symmetric bodies a comparison can only 

be obtained for the f l o w  around an inclined cone, since it is 



the only caae which has been studied by using more advanced methods. 
. ,  

Once more it is found that in most cases thq linearized theory does 

not give reliable results. Therefore a method is presented for the 

calculation of the f l o w  field around axially-symme%rio bodies with 

axis-inclinations. This method consists, analogous to that for the 

cone, of superposing a perturbation on the purely axially-symmetrio 

flow field. It is given in such a form that it is possible t o  perform 

the calculations by using a method of oharacteristios based on the 

oharaoteristios of the axially-symmetric flow field. The analyeis is 

restrioted to terms which depend on the first order of a small 

deformation parameter. 



- 1 General introduction. 

was initiated by investigating the wave phenomena related to the propa- 
gation of sound. A now classical paper was written in 1860 by Riemann 
(ref.1) on the theory of waves of finite amplitude paving the way for the 
development of the mathematical theory of hyperbolic equations. 

The study of eupersonic flow has a history of about one century. It 

Although the possibility of discontinuous solutions was recognized 
rather early, it was not until the publication of the works of Rankine 
(ref.2) and Hugonict (ref.3) that the equations for shock-waves were 
established as they are known today. At about the same time the first 
practical applioation of supersonic f l o w  was made by the Swedish engineer 
Custave de Laval, the discoverer of the nozzle named after him. This type 
of duct is and has been of fundamental importance for the development of 
supersonio aerodynamics, since it plays an essential role in the operation 
of w i n d  tunnels. 

In the beginning of this century progress into the study of plane 
supersonic flow was made through the important work of Prandtl and his co- 
workers. They discovered and elaborated the so called simple wave flow, 
thus making it possible to design two-dimensional de Lava1 nozzles that 
are perfect. 

However, it may be stated that the great impetus to the investigation 
of supersonic aerodynamics wae not made until about 1930. Two distinct 
lines of approach were then initiated. 

The first approach relies on the assumption that the disturbance 
velocities, caused by bodies moving faster than the speed of sound, are 
small compared to the undisturbed velocity. It is evident that such a 
theory is restrioted in its range of applicability, i.e. the bodies have 
to be slender and the Mach number not too high. On the other hand, the sim- 
plification reached by linearizing 'the governing differential equations 
opens the possibility to obtain results, which otherwise can not be found. 
The researches of Ackeret on plane flow (ref.4) and of von KBrmh and 
Moore (ref.5) on axially-symmetric flow were the starting point for nume- 
rous applications of these perturbation methods. 

The second approach tries to find physically acceptable solutions of 
the non-lineas differential equations, governing supersonic flow. For plane 
flow several exact solutions were known. The first exact solution for an 
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axially-synrmetric supersonic flow was given by Taylor and Maccoll (ref . 6 ) .  
Their work on the flow around a cone, can still be considered the starting 
point for later investigations of more general flow fields, by the method 
of characteristics. 

It is interesting to see how these two approaches have developed 
since their initiation. 

Especially during the second world war and thereafter the number of 
problems studied and solved by using perturbation methods, leading to 
linearized equations, are uncountable. Attention may be dram to examples 
such as the supersonic flow around inclined bDdies, and the study of the 
optimum ehape of axially-eymmetric configurations with respect to wave drag. 
To account for suoh broad applications of in fact only approximate methods, 
various reasons may be given. 

One of the most important reasons in the opinion of the author , is the 
faot that there was slready a well-developed mathematical theory for linear 
partial differential equations, which together with the principle 
position could be used to reduce many very complicated problems to a f e w  

simpler ones. 

of supsr- 

The study of exact f l o w  fields around axially-symmetric configurations 
was stimulated by the publication of a comprehensive table of the flow 

around a cone by Kopal st.al. in 1947 (ref.7). This table was obtained by 
numerical integrations of the equations of Taylor and klaccoll. It is 
interesting to note that these computations were performed with the aid of 
ordinary desk computers. 

A further step forwa.rd in this field was made by Stone, who determined 
the flow around an inclined cone,correct up to the first order in the angle 
of inoidence(ref .8) .The second order term has subsequently been determined. 
Rtensivs tables of the data obtained have a h 0  been glven by Kopal (ref.9 
and 10). 

In the mean time several papers had appeared, exploring the applicabi- 
lity of the theory of characteristic eurfaces and charsoteristic equations 
pertinent to hyperbolio equations, f o r  the numerical calculation of the 
flow field around axially-symmetric bodies. The researohes of Ferri may be 
mentioned here, eapecially since he tried to generalize the method of Stone 
far bodies at an angle of attack (ref.ll), by using a method of charaoter- 
istias. Ferri (ref 2 2 )  was also the first to point out an inccnsistencg 



i n  the  theory of Stone who ignored the  singular behaviour of the entropy 

a t  t he  surface of an inc l ined  cone. This c r i t i c i sm,  leading t o  t h e  oonoept 

o f  a v o r t i c a l  layer ,  does not influence,  however, t h e  pressure d i s t r ibu -  

t i o n  obtained by t h e  first order theory of Stone. 

A na tu ra l  and important quest ion i s P H o w  do t h e  r e s u l t s  obtained by 

t h e  l inear ized  and the exact theory compars?"A d i r e o t  comparison, however, 

is only possible  i f  there  a r e  bodies f o r  which the  flow can be oa lcu la ted  

by using both methods. A s  i s  evident from the foregoing discueaion, 

t h i s  is t he  case f o r  the cone. Already i n  1947 t h i s  oomparieon w a s  made 

by Kopal (ref.13). Although only v a l i d  f o r  a cone, t h i s  work c o n s t i t u t e s  

a sharp c r i t i c i s m  against  the use of the l i nea r i zed  theory. Already at  
t h a t  time i t  was remarked: "if we wish t o  progress wi th  q w n t i t a t i v e  in- 
ves t iga t ions  of  supersonic flow around s o l i d  bodies....., we cannot avoid 

the  non-linear oharaater  of these problems". It is q u i t e  as tonishing t h a t  

t h i s  se r ious  warning against  t he  use of l inear ized  theory seems t o  have 

had no e f f ec t ,  f o r  since tha t  time a tremendous number of papers on 

l i nea r i zed  methods have appeared. 

Rowever ,  though it is very easy t o  say t h a t  problems should be solved 

by more exact methods, suoh a remark ha8 l i t t l e  s ign i f ioancs  when suoh 

more exact methods are not ava i lab le ,  or i f  t i m e  and  money a r e  p roh ib i t i ve  

t o  t h e i r  appl ica t ion ,  which was c e r t a i n l y  the case a t  the time they were 

proposed. On the  other hand, q u i t e  a number of papers have appeared which 

have attempted t o  def ine the range of v a l i d i t y  of t h e  l inear ized theory. 

A s  an example of euoh a paper, t h e  one by Miles may be mentioned (ref.14). 
However, a l l  t he  r e s u l t s  of these researches have t h e  drawback that they 

lead  t o  r a t h e r  vague requirements, not giving a quan t i t a t ive  measure for 
t h e  e r r o r  which is made by using l i nea r i zed  theory. 

Itoreover a v a r i e t y  of methods have been proposed t o  improve t h e  re- 

su l t s  of the f i r s t - o r d e r  l inear ized  theory. Such a procedure f o r  instanoe 

is given by van Dyke (ref.15). This second-order theory,  however, does 

not  extend t h e  range of v a l i d i t y  very muoh, E O  t h a t  i t s  p rac t i ca l  useful  - 
ness  is only l imited.  A comparison of t he  r e s u l t s  obtained by using these  

improved methods has been given by Z h r e t  (ref.16). The conclusions reached 

a r e  t h a t  the range of body shapes, f ineness  r a t i o s  and Mach numbers for 
which these theor ies  give acceptable r e s u l t s ,  i s  l imited.  It should be 

born i n  mind that t h i s  appl ies  only t o  the pressure d i s t r ibu t ion  along 
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the body. Researches on the validity of the linearized theory for the 
determination of the whole flow field, show that the deviations between 
linearized and exact results become larger in the outer f l o w  field. This 
makes it rather doubtful if linearized theory can be used to solve pro- 
blems of interference in a reliable sense. One important representative 
'of these problems is the searoh for optimum shapes with respect to wave 
drag. In this case a certain part of the fuselage has to interfere with 
all the other parts in such a way that the wave drag is as low as possible. 

The point of view suggested by the results of the mentioned research- 
es can be summarized now as follows: 

Evidently the linearized potential theory is the simplest tool 
available for analysing supersonic flow around a certain configuration. 
However, in practice no measure of the quantitative error made is possible, 
if no comparison can be made with exact results. Up to now, there are only 
very few problems which can be solved by using exact methods. 

On the other hand the application of exact methods for the nw3ricaI 
determination of a flow field, which required a large amount of time 
because no electronic computers were,available when they were proposed 
for the first time, has become much simpler due to the rapid development 
of these devices. Therefore it eeems advisable to use these exact methods 
wherever poss ib le ,  in order to avoid the ruloertainty of the values obtain- 
ed by using the linearized theory. This implies the development of  ap- 
propriate methods f o r  a variety of problems. 

The task set forward by these considerations can therefore be 
' 

described as follows: 

1. A method should be found to measure the quantitative e r r o r  in the 
results of the linearized theory which would not require making a direct 
comparison between 
more exact theories. 

these results and the results obtained by using other 

2. For caees where it has been s h m  that linearized theory oannot be 
applied, methods should be developed which would be both numerically 
applicable to, as well as based on the exact diff3rential eqwtions of 

supersonic flow. 

It is the purpose of this thesis to investigate along these lines 
a rather small domain of the theory of supersonic flow. 
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Two classes of problems will be considered: In the first place the 
flow around axially-symmetric configurations where the axis is aligned 
with the direction of the undisturbed free stream) in the second place the 
flm around a quasi axially-symmetric body will be considered (such a body 
is obtained by deforming the axis of an initially axially-symmetric body. 
A configuration at an angle of attack is one of the most simple examples). 

To achieve a systematic representation the paper has been divided 

l 
I - 

into three main parts. 
The first part gives a general account of the equations governing 

supersonio flow and shock waves, deriving thereby the frequently used 
equations needed in the other two parts. 

The seopnd part contains the results of investigations on the super- 
sonic flow around axially-symmetrio configurations. F i r s t  a quantitative 
measure for the e r r o r  in using the method of linearized theory is given 
by considering mass Plow and momentum f low through conveniently chosen 
control surfaces. Espeoially for the flow around a cone simple results 
are obtained, but the method is equally applicable to more general axially- 
symmetric bodies. For greater understanding of the usefulness of this CQn- 

I 

I 

I 

I cept, a direct comparison is systematioally given between the results of 
flow phenomena obtained by caloulating with an exact method of character- 
istics and those results obtained by using the linearized ;theory. The re- 
sults obtained show that linearized theory is of only limited value, 
especially when it is used on those problems where interference occurs. 

Wen using the non-linear equations of supersonic flow this insight 
leads to the inveetigation of optimum shapes of axially-symmetric bodies 
with a given base area. The discussion will be restricted here to the 
case where the flow in a certain part of the flow is isentropio. 

In the third part the supersonic f l o w  around quasi axially-sy”etri0 
oonfigurations will be investigated. Here also will be given a quantitative 
measure of the error made by using linearized theory. Here, however, the 
situation is less favourable far a direct comparison, since only the flow 
around a cone at an angle of attack has been solved by using more advanced 
methods. Therefore after having shown with momentum transport oonsider- 
atiom, that this analysis of the flow around a cone is fully consistent, 
an attempt is made to forward a theory which enables the numerical cal- 
culation of the flow field around a quasi axially-synnnetric body. The 
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method proposed is, in fact, analogous to that of Stone, a perturbation 
theory superposed on the purely axially-spetrio flow field. The in- 
vestigation is limited to the determination of the perturbations up to 
the first order of a smll deformation parameter. 

- 2 The basic equations. 
Here a rather detailed derivatior? will be Riven of the basic 

equations. Subsequently the equations for a supersonic domain and for a 
three dimensional shook wave will be given. The equations valid for the 
linearized potential flow will bo summarized. 

2.1 The field. equations. - 
' In this seotion the basic equations will be given which are valid 

for a dokin of supersonic flow not oontaining shock waves. 

and diffusion can be neglected, with the medium considered an, ideal gas.  

will'be used (see fig.1.). 

It will be assumed that the effects of viscosity, thermal conductjon 

A Cartesian coordi&te system xl, 3,  x3 
The velocitiea in the direotions of the respective axes are given as 

U1' U3' 

Using~the summation oonvention of Binstein the squations of motion 
and the equation'of continuity can be written as 

d 
where p is the density, p the pressure and t denotes time. The symbol= 

is the substantial derivative. The assumptions about the physical pro- 
perties of the medium give rise to the equations 

dQ dS -=.T-= 0 at dt 

P 
P 

rind - = RT 

where Q is the heat added, S the entropy and T the absoluto temperature. 
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Use w i l l  be made of the f a c t  t h a t  for a r e v e r s i b l e  process 

(2.5) P 

P 
dQ = TdS = dE -7 dp 

The in t e rna l  energy dE f o r  an i d e a l  gas i s  given by 

dE = c V dT (2.6) 

where cv is  a constant,  v iz .  t he  s p e c i f i c  heat with constant volume. 

Introducing eq. (2.6) i n t o  ( 2 . 5 )  the  entropy can be wr i t t en  as:  

s = ' c  Pn T - R Pn p 
P ( 2 . 7 )  

where c is t he  spec i f io  heat with constant pressure.  

It is preferab le  t o  def ine a spec i f i c  entropy by 
P 

S s = -  
C 
V 

If t h e  values i n  t he  undiaturbed stream, which i s  assumed t o  be 

uniform, a r e  given by p = pm , p = pm 
wri t ten  by using eq. (2.4)  a s  

and s = 0, equation (2.7) can be 

-Y +S PP = C e  ( 2 . 9 )  

ds 
d t  It should be remarked t h a t  whereas - =  0, t he  value of 8 i s  not 

i n  general  equnl t o  zero, because shockwaves may have occurred outs ide 

the  domain considered. 
Di f fe ren t ia t ing  eq. (2.9) and using the  r e l a t i o n  f o r  t he  v e l o c i t y  

of sound and eq. (2.3), there  i e  obtained 

where 

(2.10) 

(2.11) 

The analysie  w i l l  be r e s t r i q t e d  t o  the case of steady flow hence 

d a - 
d t ' U k E  (2.12) 

K 



If account i s  taken of eq. (2.12) equation (2.10) together with eq. 

(2.1) and eq. (2.2) mult ipl ied by ui, gives  r i s e  t o  the  fundamental I 
au . ax 2 1 

uk’i axi axi 

r e l a t i o n  
- - a  - = O  . (2 .13)  

I To obtain another s e t  of equations, use w i l l  be’made of t he  enthalpy H. 

This i s  defined by 

(2.14) P 
P 

H = E + -  . 
Using eqs. ( 2 . 5 )  and (2.5) and s u b s t i t u t i n g  eq. (2.1) times ui i n t o  

the  d i f f e r e n t i a l  equation which can be obtained from eq. (2.l4), there  i s  

obtained a f t e r  in tegra t ion  

H + $ uiui = constant along a stream l ine .  
Since the f l o w  i s  assumed t o  be uniform f a r  upstream, there  holds: 

H + - u.u = constant i n  the  whole flow f i e l d .  (2.15) 1 
2 l i  

Dif feren t ia t ing  t h i s  equation w i t h  respect  t o  % and subt rac t ing  

eq. (2.1) t he re  follows; 

(2.16) 

-om eqs. (2.14) and (2.5) t he  following general  r e l a t i o n  can be 

obtained 

(2.17) I dH - - d p = T d S  . 
This means t h a t  the value of a contour i n t e g r a l  has t o  be zero i.e.: 

P 

d p - T d S  = O .  (2.1e) 1 /(?- 1 
From t h i s  r e s u l t ,  w i t h  the a i d  of eqs. (2.3)? (2.5) and (2.14) 

together w i t h  the condition t h a t  t he  flow i s  uniform far upstream, i t  can 

be derived tha t  

Introdubing t h i s  r e l a t i o n  i n t o  eq. (2.16) there  is f i n a l l y  obtained 

(2.20) 
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or in vector notation 
2 

4 --c 
u E rot u - grad s r r-1 (2.21) 

which equation is known as Crocco's theorem. 
By using eq. (2.15) and 0bservi.w that for an ideal gas the enthalpy 

is equal to c T, it follows that P 

2 r-i 2 Y-i a = (-$-+T)u, - -  2 ui'i 
M a 7  

(2.22) 

where M, is the Mach number and U, is the velocity of the uniform 
undisturbed flow. 

Substituting eq. (2.22) into eq. (2.13) and into the system of 
eqs. (2.20) there is obtained a set of four non-linear differential 
equations for  the four unknown quantities ui and s. 

remainder of this section. 
This system of equations will be investigated further in the 

It is of advantage to use a cylindrical coordinate system x,r,q 
and associated velocity components u, v, w, because hare our main 
interest is the study of axially-symmetric bodies (see fig.1). 

The transformation formulae are given by 

x1 = x 

x2 = r sing 

x3 I r cos@ 

and 
u - u  1 
u2 ,, v sing + w oos(I, 

v ooaQ - w sin$ u3 

On using these equations, eq. (2.15) and eqs. (2.20) can be transform- 

ed into the following system of four equations 
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2 
= o  a v a  h 1 au a v(- - -) + w ( - - -  ax rq)+mz ax a r  

Thie system will now be brought into the form of a set of  relatione 
valid along aharacteristic surfaces. 

These surfaces are thus defined that the relations that are valid 
along them contain only derivatives along the surface. 

Hence, it is not possible to construct a solution for the flow field 
starting from quantities given along such a characteristic surface. 

To find the characteristic surfaces it will be assumed that such a 
surface can be written as 

= f (x,9) 
The derivatives along this surface or the so called "inner" deri- 

vatives are given then by 

a a =-+u - b - 
bx ax 1 a r  

a f  where Gl = 

1 af where G2 = ; 3 (2.26)b , 

Substituting these equations into the system (2.24), the result 
oan be written as: 

(2.27) 

This set of equations has been given in full on the following page. 
This is a system of equations from which the quantities & can 

along 

aw 

j 
be solved, provided that the surface and the f l o w  quantities w 
the surface are given. In that case the right hand side is known, to- 
gether with the ooefficients of the unknown derivatives. 

Now as has already been remarked, the requirement for r = f(s,$) 
to be a characteristic surface, is that it is not possible to continue 
the solution starting from quantities given along the surface. This 
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&. 
means t h a t  there  cannot be found unique so lu t ions  f o r  t h e  q u a n t i t i e s  2. 
holds 

The system should be e i the r  dncompatible or dependent. Then there  

(2.28) 

T h i s  requirement leads t o  ’an equation f o r  t h e  unknown quan t i t i e s  

Bow the  only physical ly  possible c a s e  is tha t  theequat ions  are de- 

pendent. This means t h a t  for each associated pa i r  of values for Gl, and 

E2 obtained from sq. (2.28) an “annuling vector“ can be found such tha t  

Si a i j  = 0 . (2.29) 

This is only possible  i f  a t  t h e  same time the following r e l a t i o n  

is s a t i s f i e d .  

qibi = 0 (2.70j 

* T h i s  equation is  t h e  compatibil i ty equation, f o r  i t  is v a l i d  i f  

equation (2.29) i s  va l id .  Now b is  an expression containing only the  

funct ions and t h e  inner der ivat ives  a long  the su r face  r = f(x,$),  and 

thus eq. (2.50) is  a r e l a t i o n  which sa t i s f ies  t h e  requirements for f 

t o  be a cha rac t e r i s t i c  surface.  

i 

The c h a r a c t e r i s t i c  d i rec t ions  can be found by applying eq. (2.28). 

If the  operation of determining the determinant of a .  :is performed, the 

r e s u l t  obtained i s :  
1 J  

Now the vector (G ,-l,G2) is proportional t o  the  uni t  normal 

Equation (2.31) gives as c h a r a c t e r i s t i c  d i r e c t i o n s  therefore  

1 
n ) of t h e  surface r = f (x ,+) .  1’ O2’ 3 vec tor  ( n  

or 
un 1 + vn 2 + ~ 3 = t a  



It should be observed that the relation (2.32)a has tb be counted 
twice according to eq. (2.31). The interpretation of the eqs. (2.32)a 
and (2.32)b is in fact quite simple. equation (2.32)a states that the 
normal vector in a certain point P of the surface r = f(x,+) should be 
perpendicular to the vector (u, v, w). The set of characteristic sur- 

faces obtained in this case is therefore the set of stream surfaces. The I 
I streamline can be considered as a characteristic line in this case. 

Equation (2.32)b states that the velocity normal to the character- 
, istic surface is equal to the local velocity of sound. This means that 

this surface is locally a cone with a half top angle u with respect to 
the vector u, v, w, where 1.1 is defined by 

where M is the local Nach number. 

istic surfaces, first the annuling vectors 3 
To find the relatlons (2.30) which are valid along the character- 

have to be determined. 
If eq. (2.32)a is valid, the matrix a Of eq. (2.27) reduces to 

i j  
0 I 1  I 1  . 

a- 
yo where c = 

It can be seen immediately that the annuling vector has to satisfy the 
the relations 

Glq2 - $,, + G2g4 = 0 i$ = 0 (2.55) 

If the components J,, 3 and 9 are considered to be the compo- 
--c 3 4 

nents of a veotor 9 , equation (2.35) can be written analogous to eq. 

(2.32)s as 
- - D  
n.3 = o 
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This equatiokhas the two independent solutions 

* _ )  3 =  u 
+ + *  

and $ = u x n  
as follows by using eq. (2.32)a. 

The Orto annuling vectors f o r  this case are  therefore given by 

3 - 0, 11, v, w (2.38)a -I and 

I The compatibility equation for the annuline vector (2.38)a is 
given by 

From this equation, by using the eqs. (2.26)a and (2.26)b it 
follows, that 

as as w .as de 
dt + - - = @  cr - = O  + v -  u -  3~ 1' 39 ax 

Thus the result is found that the entropy has to be constant along 
a streamline. This cannot be too surprising, sinca in fact this is a 
direct consequence of ths assumption made about the physical behaviour 
of the medium. Equation (2.40) is the same as eq. (2.5) as It ought to be 

The compatibility equation for the annuling vector (2.38)b is given 

by 
n 

where use has been made of eq. (2.39). 
It can be shown that this equation expresses the fact that the 

component of the rotation vector, normal to a stream surface for which 
the entropy is constant, vanishes. 

Bow the annuling vectors and the compatibility equations will be 
determined in case that eq. (2.32)b holds. 

In that case the matrix a. of eq. (2.27) reduces to 1 3  . 



-U 

"02 
c L 

where the + sien refers t o  v-uGl-wG2 = afGl + G2 +1 

the - sign to v-uG1-viU2 = -a/-;. 

and 

Again the components $,, Q 3  and $4 of the annuling vector have to 
satisfy the relation 

Gl$2-$3+G2 $4 = @ 

- 4  

or n.9 = @ . 
Now according t o  eq. (2.32)b there holds 

*-D - n.u = + a . 
These two equations tcgether with eq. (2.42) give 

The complete expressions f o r  the annuling vectors are then given by: 

The compatibility equation for the annuling vector (2.44)a is given 

by 
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As can be seen, the characteristic equation (2.45) in this form is 
equally valid f o r  the annuling vector (2.44)b. The equaticn thus is valid 
along the two different surfaoee given by eq. (2.32)b. The difference liee 
In the faot that the quantities G 1  and G 2  are related by a different 
formula in the two oases. 

Thus the original set of four partial differential equations has 
been transformed into a system of four characteristic equations given by 
eqs. (2.4O), (2.41) and (2.45) together with the characteristic directions 
given by the eqe. (2.j2)a and (2.32)b. It is this set of relations which 
will play an important role in the following inveetigatione. 

- 2.2 The equations f o r  shook transition. 
Since in the following paragraphs the noticn of a shook wave w i l l  be 

used frequently, here an accouht will be given of the equations valid for 
the transition. 
can be considered to change discontinuously. In reality it ie in general 
a domain of the flow with a thickness of a few mean free molecular pathee, 
where due to viscosity and thermal conduction rapid changes occur. 

gae is ideal, and that outside the &hock the effects of viscosity and 
thermal conduction are negligible. The general conditions for shock 
transition are given by 

In fact a shock wave is a surface where the f low quantities 

In the treatment given here, it will be assumed a8 before that the 

0 3 conservetion of mass 
2' conservation of momentum 
5' conservation of energy. 

Koreover the transition should be such that the entropy cannot diminish 



i n  accordance w i t h  the seocnd fundamental l a w  of thermc .manics. 
With t h e  assumptions made here, t h e  r e s u l t i n g  equations get  a r a t h e r  

simple form. To der ive these  equations i t  w i l l  be assumed tha t  i n  a cer- 

t a i n  a r b i t r a r y  point of t h e  shock sur face  the normal vector T a n d  two 

tangent vec tors  tl and 

the d i r ec t ion  of these vectors  will be denoted by un, u 
respect ively.  

- 
a r e  given. The oomponent of the ve loc i ty  Tin 2 

and ut 
tl 2 

The shock wave i t s e l f  is assumed t o  have zero velocity.  

If the  index f r e f e r s  t o  the  s t a t e  i n  f ron t  of t he  shock and the  in- 
dex a t o  t h e  s t a t e  aft  of the shock the  r e l a t i o n s  can be wr i t ten  as: 

U 
E Pa ua a 

= P a l l a  a P U  U 

f n  f t2  t2 

1 2 2  2 1 2  2 Xf+ 7 (Uf +Uf +uf ) = Ha+ -(u +ua +u: ) 
t2 an tl t 2  

Sa'sf = A S  >/ 0 (2.46)f 

These equations together  with t h e  equation of s t a t e  (2.4) and t h e  

equation for t he  change i n  entropy ( 2 . 9 )  suf f ioe  t o  determine a l l  t h e  

q u a n t i t i e s  a f t  of t he  shook wave, i f  those i n  f r o n t  of it a r e  given. It 
must be notioed t h a t  equation (2.46)e has a l ready been derived (see 

eq . ( 2.15 1). 
The system (2.46) can be g rea t ly  s implif ied by observing t h a t  from 

eqs. ( 2 . 4 6 ) ~  and (2.46)d follows by using eq. (2.46)a 

= u  a 
tl tl 

(2.47 )a 

and 

Uf = u a 
t2 t2 
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If now the Mach number M is introduced by n 

(2.48) 
n Ec = -  n a  

f 

f 

U 

the system gives, by eliminating pa and pa, rise to the following 
equation 

U l+YMn 2 +(lan 2 ) 
or  

1 - 
2 

a n 

n 'n 

- = -  
Y + 1  Uf 

(2.49) 

As can be shown the condition (2.46)f allows only the + sign in 
eq. (2.49). The final result is therefore: 

U a n 1 (Y-l)M2+2 
U Y+1 2 

From this equation it is readily derived that 

-- - 
fn 'n 

2 

2 
pa (Y+l)Mn 
- =  
'f (Y-l)Mn +2 

and 

Pa 2Y 2 
Pf Y+l - = 1+ - (Mn -1) 

I Equation (2.9) gives then: 

(2.52) 

The general shock conditions for an ideal gas and a shock velocity 
zero are thus derived. The equations that are important for the follow- 

ing investigations are the four relations (2.47)a, (2.47)b, (2.50) and 

(2.52)- 
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- 2.3 ?he equations f o r  linearized potential flow. 

Here a short derivation will be given of the equations valid for a 
linearized potential flow. To that end it will be assumed that the pertur- 
bation velocities are small as compared with the velocity IT, of the free 
stream. 

Hence u = 0 (u,) (2.55 )a 
v << ulw (2.5J)b 
w << u, (2.53)C 

Furthermore it will be assumed that the effects of  entropy production 
can be neglected. According to the interpretation given of eq. (2.41) 
this means that the rotation vector is identically zero  in the whole flow 

field. Thus there holds: 

From eq. (2.24)a together with eqs. (2.53) there fo l lows  by 
neglecting products of small quantities 

2 au av law v 
+= s ar r a+ r + -  + - - + - =  0 

(2.54 

(2.55) 

where pm=w 
The eqs. (2.54) allow the introduction of a velocity potential 

Q 'JY 
u = 2  ax 

acp 
a r  v = -  

w = - -  lac, 
ray,  

The f l o w  is then governed by one linear partial differential 
equation of the second order. .This equation follows by inserting e q s .  

(2.56) into eq. (2.55). The result is 
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This is the wellJEnown linearized potential equation for supersonio 
f l o w .  It should be observed that eqs. (2.56) are valid in every f l o w  

domain where the entropy is  a constant throughout this domain. 

5 Studies on supersonio flow around axially symmetric bodies. 
To study the characteristics of supersonic flow past a certain oon- 

figuration, in most of the cases use has been made of the linearized 
potential theory. However, as has been already indicated in the intro- 
duction, this theory has the disadvantage of being only approximate, the 
approximation being poorer if the configuration is less slender and the 
Mach number is higher. 

Bo direct estimates, however, are known about the limits of appli- 
cability of this theory, other than by comparison with the results of 
exact theory. This is only possible in very few cases, f o r  instance bn 
the case of flow around cones. 

In this chapter, the validity of linearized theory as applied to 
the study of aupersonio flow around axially symmetric configurations 
will firat be investigated. It will be ehom that the linearized theory 
is inadequate in predicting the flow field around bodies of practical 
importance for nearly every Maoh number. Eqeo ia l ly  in the oaee of inter- 
ference no other result can be expected than the correct order of magni- 

tude, since on the basis of the present inveatigatione, it appears to be 
that the flow quantities at a certain distanoe from the configuration q-0  

more in error than those nearer to the body. 
Acoording to these argumenta, the determination of optimum body 

ehapes by using linearized methods should be suspected. Therefore it 
seemed wanted to deviee a method using the non-linear equations for 
deriving optimum conditions. In the second part of this chapter such a 
method will be discussed f o r  a body with a 
area and f o r  a given Mach number. The method of analysis is closely re- 
lated to the study of linearized f l o w  since in both cases use will be 
made of the notion of a control surface. 

preecribed value of the base 



- 3.1 On the validity of linearized theory for axially symmetric flow. 
The present investigation, whose aim it is to give a quantitative 

value of the error made by using linearized theory, was undertaken after 
certain inconsistencies were discovered by applying the theory of ref.17. 

There a method is given, based on linearized theory, which aims at 
constructing axially symmetric configurations of optimum shape with a 
given base area, by prescribing the value of the disturbance velocities 
on the forward characteristic emanating from the base (see fig.2). 

The method of characteristics was used to construct these bodies 
and due to the properties of the configuration investigated, the first 
part of the body contour could be chosen freely. It then proved, however, 
to be impossible to reach the proper value of the radius of the base area, 
and moreover the drag as found by integrating along the body contour was 
not equal to the prescribed value. The differences were rather large and 
this seemed very surprising since the prescribed disturbance velocities 
were such as to give the correct mass- and momentum transport. 

It was found along the lines outlined below, that this difference 
was due to the use of the linearized theory, in particular because of the 
rather thick nose of the configuration and the interference of flow 
between various paris of the configuration. 

A method to study the validity of linearized theory, can be found 
by observing that the body area at a certain distance from the nose of 
the body and the drag on that part of the body can be expressed as inte- 
grals of functions of the disturbance velocities over a control surface. 

This surface emanates from the section considered and intersects 
the shock wave from the nose of the body (see fig.3). In most of the oases 
it is convenient to take as a control surface the forward directed 
oharacteristic surface. 

The method of comparison between these integrals and body area, and 
integrated drag offered itself as a natural tool to study the applioabi- 
lity of linearized theory. 

The order of magnitude of the average error in the f l o w  quantities 
can be predicted correctly on the basis of this comparison. It should be 
remarked that this method of estimation of error is independent of the 
use of more exact theory. 



Bere, the case of an axiallg-symmetric body w i l l  be considered, where 

the  f r e e  stream is i n  alignment with the  a x i s  of the t d y .  The simplest 

case of  such a body is a cone, and much a t t e n t i o n  w i l l  be focussed upon 

t h i s  configuration. 

To give more i n s i g h t ,  a de ta i led  comparison of f l o w  f i e i d s  and 

pressure d is t r ibu t ions  i s  presented for oer t a in  configurations,  

The invest igat ion w i l l  start wi th  a der iva t ion  of integral expressions 

f o r  body area and drag. 

Integral  expressions f o r  body area  and drag. 
In t h i s  sect ion a d e r i v a t i o n  w i l l  be given for o e r t a i n  integral  ex- 

pressions which a r e  s u i t a b l e  t o  discuss the v a l i d i t y  of l i n e a r i z e d  theory. 

The der ivat ion will be given first without making any assumptions about the  

order of magnitude of t h e  quan t i t i e s  occurring. 

There a f t e r  a s i m p l i f i e d  vers ion  w i l l  be given, by making t h e  same 

assumptions used f o r  d e r i v i n g  the l i nea r i zed  poten t ia l  equation. I n  parti- 
cular i t  i s  th i s  latter version which w i l l  be used t o  disauss  t h e  v a l i d i t y  

of the r e s u l t s  obtained by using l inea r i zed  theory. 

To derive the i n t e g r a l  expressions use w i l l  be made of the  conoept of 

a oontrol surface. This is a surface whiahenvelops a c e r t a i n  volume, i n  
whioh a par t  of tho body i s  imbedded. The cont ro l  surfaoe which w i l l  be 

used here consists of two opposing pa r t s ,  one of the  two being par t  of t h e  

shookwave, the other emanating from t h e  body sec t ion  which is considered 

t o  in t e r sec t  the shookwave i n  a c i r o l e  with a c e r t a i n  radius .  

The integral  expression f o r  the body area  is found by observing that 

the  i n g o i w  m a w  has t o  he  equal t o  t h e  outgoing mass. This can be m i t t e n  

as  

p n  vn do = 0 ( 3 . 1 )  

where Vn i s  the outward d i r e c t e d  component of the  v e l o c i t y  a long a normal 
t o  the surface and dO is an  element of the cont ro l  surface. 

In  f ac t ,  eq. (3.1) i s  the maoroscopic form of the  c o n t i n u i t y  equation. 

If the  part of t h e  shook wave belonging t o  the  cont ro l  surfaoe is 
denoted by 01, and t h e  rest of the cont ro l  surface by 02, eq. (3.1) can 

be written as 
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If nm--$l is the angle between the tangent to the first part of the 
control surface and the axis of the body at a point at the radial distance 
r and y2 the supplement of the corresponding angle for the aft part of the 
control surface (8.38 fig.3), sq. (3.2) can be written as 

where RB is the radius of the body section considered and Rc is the radius 
of intersection of the two parts of the control surface (see fig.3). It 
should be observed that the velocities u and v are made dimensionless with 
respect to the free stream velocity TJm . 

muation ( 3 . 3 )  can be brought in a more elegant form by choosing for 
the aft part of the control aurface a oharacteristic surface. It will be 
shown later that in this case there holds (according to eq. (2.32)b) 

v2P,-u, 

u2f32+v2 
tan.1; = - . (3 .4 )  

Voreover from equations (2.9) and (2.22) there follows 
3 - 

(3.5) 2 2 y-l 
P:, = P, (a2 43) p 

Eere "a" is the velocity of sound, made dimensionless with respeot to W,. 
The function P, which is i n  fact the ratio of the stagnation pressures of 
the disturbed and tho undisturbed flow,. is given by 

s - -  
( 3 . 6 )  Y -1 P = e  

Substituting eqs. ( 3 . 4 )  and (3.5) into eq. ( 3 . 3 )  there is obtained 

+ v2, and where the subscripts 2 have been dropped. This where q = u 
is the required equation, expressing the body area as an integral of a 

2 2 
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function of the velocities and the entropy only. 
Now this equation will be simplified by using the assumptions that 

the disturbances are small and that the effects of entropy are negligible. 
In this case eqs. (2.53)a-b are valid while P = 1. 

As can be seen immediately eq. ( 3 . 4 )  can be written then as 

tanJz = 1 (3.8) 

indicating that in this case the characteristics are straight parallel 
lines, which is in accordance nith eq. (2.57). 

Foreover, as can be found by expanding eq. (3.5), the density can 
be mitten as 

( 3 . 9 )  

where ug is the perturbation velocity defined by 

Inserting these equations into equation ( 3 . 3 )  gives - 

where V I  has been written instead of v. 
Equation (3.11) c-in be considered as a first order expression for 

the body area, and thus should be consistent with the w e  of linearized 
theory. 

The second integral expression can be obtained by applying the 
momentum equation in an axial direction to the air within the control 
volume. If D is the drag force exerted by the air on the body and if it 
is assumed that the pressure p of the undisturbed stream is acting on 
the base of the body the momentum equation oan be written as 
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Since U1 is equal t o  the f r e e  stream ve loc i ty  U,, eq. (3.12) can be 

simplif ied by using t h e  mass flow r e l a t i o n  (3.2). The r e su l t  obtained is  

Now t h i s  equation w i l l  be brought i n t o  a form vhere  t h e  integrand is  

dependent on t h e  v e l o c i t i e s  only. To t h i s  end it i s  observed tha t  by 

using eq. (3.5) together wi th  eq. (2.9) there  follows 
Y 

1ntroduc.ing t h i s  equation i n t o  eq. (3.13) and us ing  eqe. (3.5) and (3.10) 
there  i s  found . .  

Taking again f o r  the a f t  p a r t  of the cont ro l  surface a c h a r a c t e r i s t i c  

surface,  t he  f i n a l  r e s u l t  can be obtained by using eq.(3.4) together  w i th  

the  following evident r e l a t i o n  

If the  subscr ip ts  2 are omitted, t he  in t eg ra l  expression can be written 
' then a s  

( 3 . 1 7 )  

If the  f l o w  f i e l d  is ca lcu la ted  c o r r e c t l y  t h i s  equation has t o  give t h e  

same value of the drag as found by in t eg ra t ing  the a x i a l  oomponents of 
t he  pressure forces  working on the body. 
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Also here, the first order form of this equation will be given. To 
do this, the Taylor-expansion of eq. (3.14) will be given. It turns out 
that up to the squares of the disturbance velocities 

Substituting this equation together with eqs. (3.8), ( 3 . 9 )  and (5.10) 
into eq. (3.15) there is found 

R 

One of the interesting features of this simple expression is the 
fact that the integrand is quadratic, thus leading to the result that the 
drag is at least zero. A far more important remark must, however, be made. 
The usual approximation for the pressure coefficient is given by the first 
term of eq. (3.18), while eq. (3.19) has been derived by using also the 
quadratic terms. In fact the drag would be identically zero if only the 
first term of eq. (3.18) had been used. This result  indicates the necessi- 
ty of using the form for the pressure coefficient given by eq. (3.18). 
This, statement will be further’cm”mnted on. 

The integral expressions (3.7), (3.11), (3.13) and (3.19) are the 
basic tools which will be used in the following investigations on the super- 

sonic axially symmetric flow. 

j.1.2 The linearized flow around a oone. 

a cone w’ith the aid of linearized theory. By using the already derived 
integral expressions, the validity of this theory for a oone will be 
investigated. 

In this section a study will be made of the supersonio flow around 

According to eq. (2.57) the linearized potential equation f o r  super- 

sonic flow l,n the case of a cylindrical coordinate system, is given by 

Here, ‘p is defined in such a way, that the disturbance velocities, made 
dimensionless with respect to the free stream velocity U, a r e  given by 



and 

Since the flow is coniaal, the disturbance velocities are constant 
along rays through the origin. Introducing 

(3.22)a 

and 'p = rtC(t) (3.22)b 
equation (5.20) can be written, after observing that 'p 

to the axially symmetrical character of  the f lm,  as 

X t = -  r 

vanishes due 99 

Solving this equation there is3 obtained 

t 
+ K cosh -'L+Q, 

t Pa, G = -K (3.24) 

The disturbance velocities are given by 

2 dG 
V I =  - t  - at 

Since along the first characteristic t = the quantity 
p,,,ut+vq has to be equal to zero, it fo l lows  that Q - 0, 

Equations (3.25)a and (3.25)b can then be written a8 

The integration constant can be determined from the condition that 
the body has to be a stream surface, or if - dr 

dr 
contour: 

is the tangent to the b o o  



I 

30 

dr (l+ut) = v' . (3.27) 

It should be observed that here the exact form of the boundary con: 

If the semi-top angle of the conical body is denoted by .$,, it 
dition will be used. 

can be shown that 
-1 I C =  

where to = c o t  s,. 
a cone according to linearized theory. 

The equations (j.26)a-b and (3.28) thus give the flow field, around 

The question that will be raised now, is t 

"What is the range of Mach-numbers Maand semi-top angles .s', for 

This question will be answered by using the integral expressions 
which this result is approximately valid?" 

derived in the foregoing section. 
First use will be made of the expression for the square of the 

radius of the body cross section eq. (3.11). The'integral at the right 
hand side of this equation can be calculated by using the expressions 
f o r  the perturbation velocities u1 and VI. The result is 

It is evident from eq. (3.29) that eq. (5.11) is not sathfied. This 
o m l d  be expeoted since only an approximate theory is used. The important 
point concerning these two equations, however, is tha't eq. (3.29) gives 
the possibility to obtain a judgement on the wlidity of.the linearized 
theory. Due to the f o r m  of the integrand of eq. (3.ll),  the difference 
between the left-hand side and the right-hand side of this equation gives 
a measure of the average error in the f l o w  quantities. 

If a difference of %percent between the left-hand side and the 
right-hand side is considered as permissible, there can be oaloulated 
limits of applicability of the linearized theory for a cone by solving 



lowing equation the fc 

In fig.4 the limits for K = 5 and x = 10 have been given. As can be 
seen from these curves the region of applicability is very small. If the 
flow field has to be known accurately, the lower bound has to be applied. 
This indicates that only the f l o w  around very slender cone8 can be 
calculate& 
say 10 , linearized theory is unable to give the flow field accurately. 

One important aspect of the curves given in fig.4 is, that f o r  Ma 

by using linearized theory. For a practical semi-angle, 
0 

very near to unity, 
showing that linearized theory is invalid around M m =  1. This fact about 
the linearized theory, long since known, can thus be shown to be true in a 
very simple way. 

top angle d s  it appears that with increasing Mach number and increasing 
semi-angle the average error in the flaw field characterized by Kin- 
creases rapidly, ae is shown in table la. 

the value of J s  which is allowed decreases rapidly, 

If K is calculated as a function of Each number M w  and of semi- 

To substantiate these results an analogous investigation will be per- 
formed by using aq. (3 .19) .  The right-hand side of this equation proves 
to be 

The right-hand side, of eq. (3 .19)  can be obtained, as has already 
been remarked, by integrating the axial component of the pressure force 
acting on the body. Thus it is found that 

where c ie the pressure coefficient, which is given by 
P 



Now, different expressions can be obtained for D, according to the 
different approximations, used for the pressure coefficient. Here use will 
be made of the formula given in eq. (3.18), which was used also when de- 
riving eq. (3.19). Performing the integration indicated in eq. (5.32) 
there follows 

Again there i s  an apparent difference between the two expressions for 
the drag, eqs. (3.31) and (3 .34) .  It should be observed that both are oal- 
culated by using approximate values for the perturbation velocities. If 
both the drag acoording to the integral expression and that found by 
direct integration of the axial forces along the fuselage are equal, then 
no other conclusion can be reached than that both contain an e r r o r  of equal 
order. But they are not equal, and therefore, this difference must be a 
measure for the consistency of linearized theory. Thus again limits of 
applicability can be calculated by solving the equation 

2 t 1 2 2  2 -1 0 
2 0 -  

t 

G) - -(t -p )= G(cosh - 
Pal 

(3.35) 
where %, is the difference in percents between the expressions (3.51) and 
( 3 . 3 4 ) .  In table 1 b the quantity %, has been given as a function of 
M, and Js. The results are in complete agreement with those of table 
1 a, leading thus to the same conclusions about the validity of linearized 
theory. 

A detailed comparison between the flow fields as determined by 
linearized theory and exact methods respectively shows how large the 
aotual error is at each point. This will be done in section 3.1.4. BOW- 
ever, first the f l o w  field around pointed axially symmetric bodies will 
be studied along the same lines as given here, to see if the conclusions 
reached for a cone have to be altered with more general configurations. 

3.1.3 The linearized flow around a body, - 
To obtain the flow field around a general axially-symmetric confi- 

guration in the linearized approximation, a solution of eq. (2.57) must 
be obtained which fulfills the boundary condition along the body contour 
as given by eq. (3.27). 



J J  

This problem can be solved, by means of an analytical method, such 
as a distribution of sources along the axis, or by a numerical method. 

An excellent numerical method for the solution of hyperbolic 
differential equations is the method of characteristics, where the flow 

field is calculated step by step by using the characteristic equations 
along characterietic surfaces. A detailed description of the derivation 
of such equations has been given in chapter 2. It can be shown by using 
the results of this chapter that in the linearized approximation these 
equations take the following form 

5 0  1 v' + - -  + - -  1 dv' du - 
dr P c o b  P o o r  

and dr  along the c5aracteristic with - = - - 
dx BOO 

dr 1 along the characteristic with - = - 
dx Pu, * 

The f l o w  field can be determined by using these relatione if beside 
the boundary, the flow around the nose of the body is also given. The 
shape of a pointed nose can always be considered as conical. This gives 
the possibility to use the results of the preceding section. In that 
case the flow quantities are known along the last characteristic of the 
conical region (see fig.5). The method of characteristics to be used here 
is straightforward and the most advisable for quantitative results if the 
f l o w  field has to be known. 

For the study of the applicability of linearized theory the flow 
field around t w o  bodies is calculated for different Mach numbers. In fact 
each body represents a whole family, since the base can be selected at 
arbitrary values of the axial coordinate x betwetin the nose and the base, 
because the flow is supersonic. This means that the flow aft of a given 
value of x cannot influence the flow field before the backward directed 
Characteristic emanating from the cross section at x. 

The two bodies chosen have a conical nose over 0.025 of the length 
and are followed by a parabolic shape which is symmetric with respect to 
the line x = 0.5125. The base lies at x = 1.0. The conical noee Of 

. 
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0 
3 f i r s t  body has a eemi-top angle de L? 7.5 and tha t  of the secon 

has ds = 12.5'. If the  slenderness is given by 

1 

(3 .37)  

t he  bodies have s = 13.7 and 8 = 8.4 respect ively.  The flow f i e l d  around 

the  body w i t h  

numbere M m  = 2 and M m =  5. The flow f i e l d  around the  body w i t h J s  = 12.5' 
and s = 8.4 has been determined for the Yach numbers MODs 2 and Mw- 4. 

Along severa l  oharac te r i s t ios  f o r  d i f f e ren t  values of x, the  r i g h t -  

hand s ide  of the i n t e g r a l  expression for t h e  mass flow eq.(3.11) has been 

calculated.  The r e s u l t s  found thus have t o  be compared with the funct ion 
RB2 a8 prescribed by the  body contours. The r e s u l t s  for the  various caees, 

have therefore  been given i n  f i g s  6 ( a d )  together with the prescribed 

d i s t r i b u t i o n  of t he  oross sec t iona l  area of the  bodies. 

= 7.5' and s = 13.7 has been determined for t he  Maoh 

The deviat ion between the t w o  curves gives,  j u s t  a s  for the cone, a 

measure of t h e  average e" i n  the  flow f i e l d .  It is found t h a t  t h e  d i f f e r -  

ences a re  r e l a t i v e l y  the  la rges t  a t  the nose and a t  the end of the body. 
The curves ind ica te  that for bodies which have a pos i t ive  slogs over most 
of the length,  the e r ro r  decreases w i t h  increasing slenderness. However, 

i f  a negative slope i s  present over an appreciable length of t h e  body the  

deviation grows rap id iy  with increasing negative slope. 

From t h e  f igures  6 ( a d )  i t  can be seen t h a t  the general trend of in- 
creasing deviat ions with decreasing slenderness i s  very striking. The 

great  importance of these  f igures ,  however,-is t h a t  they give a quantita- 

t i v e  answer t o  the question of the v a l i d i t y  of l inear ized  theory for the 

oaloulat ion of the flow f i e l d  around these p a r t i c u l a r  configurations.  

Seen i n  t h i s  l i g h t ,  although i n  general t he  deviat ions for bodies a r e  

l e s s  pronounced than for cones, the only case t h a t  may be given a r e l i a b l e  

numerical value,  is the case where Js o 7.5' and Mw= 2. The differences 

for the o ther  cases a r e  eo large t ha t  l inear ized  theory determines apparent- 

l y  only the order of magnitude o f  the flow quan t i t i e s .  

As was done f o r  the cone, a comparison w i l l  a l s o  be made of t h e  drag 
as found by in tegra t ing  the a x i a l  pressure foroes working on the body, 

and the drag a s  found by ca lcu la t ing  the loss.of momentum through a sui- 
t ab ly  chosen control surface,  The respeot ive expressions a r e  given by 



difference.apparent  h e r e  underlines t h e  conclusions based already on the  
inves t iga t ion  of t he  expression f o r  the mass f low. ,  

One important remark t o  be made is t h a t  t h e  &ag of the body is 

apparently generated f o r  t he  largest par t  by the  nose and the end of %he 

hody, which i s  evident f r o m  f i g s  6 where t h e  drag does not increase midway 

between the  ends. In  those terminal  par t s ,  however, t h e  l a rges t  errors a r e  

present i n  the flow f i e l d  according t o  ' the r e s u l t s  a l ready  obtained. Thus 

i t  may be concluded t h a t  t h e  drag on r a t h e r  s lender  bodies i s  not predict-  

ed mcre accurately,  . than f o r  cones which have a slope of the order o f  t he  
slope a t  the nose of t he  body. 

I 
From the  f a c t  t ha t  t he  curves which are compared a t  t he  end of t he  I 

body f o r  instance a r e  c loser  t o  each other  than a t  t h e  nose, no other 



the flow field around axially-symmetric configurations. 

u p  e exact flow around a cone. 
One of the first exact solutions for the inviscid supereonic axially- 

symmetric flow was given in 1933 by Taylor and hfacccll for the flow around 
a cone. Assuming that the f low quantities are constant along rays through 
the vertex of the cone, the governing differential equations take a 
simple form 

2 - -  dj a (wv cot 
u + i i =  - 2 2  v - a  

where u is the velocity along the ccne with semi-top angle 
velocity orthogonal with respect to u in a meridional plane, "a" is as 
usual the velocity of sound. The system (3 .38 )  is a set of two first 
order differential equations which can be derived from the general ex- 
pressions given in chapter 2. The second equation states in fact that 
the flow is irrotational, since the entropy rise across the shock wave, 
which is itself conical, is a constant. 

and 7 is the 

A comprehensive compilation of numerical data,solutions to the 
non-linear differential equations (3.38) far flow around a cone, has been 
given in ref .7 for various semi-tcp angles and Mach numbers M,. 

If the flow around a cone has to be known f o r  a particular case it 
is best in general to interpolate the results in rsf.7. Especially ac- 
curate calculations of flow fields require then a large amount of wmk. 

Rcwever, with present day electronic ccmputers, numerical integra- 
tion of particular equations can be easily handled. 

Because all the calculations are performed in a cylindrical CC- 
ordinate system, it is easier to work with the axial and radial veloci- 
ties u and v than with other velocity components. These are given by 

- 
u = u cos J + v sin J 
v = -u sin$ + v cos$ 

(3.39)a 

(3.39)b 
- 



Substituting these equations into the system (Ir.38) there is 
3b tained 

2 du - a v  
2 2  (v COSY-u s in& -a 

a =  
dv ;T;T = -cot 

3 . 4 0 ) ~  

( Z .40 )b 

':he boundary conbition at the cone surface,according to eq.(j.27), 
i a  Xiv-n by 

11 i v cot J for J = J S  (3.41; 
8 

':he conditions on the a s  yet unknown shock wave $= 3, are given Dyr 

and 

1 
Y + l  2 2, = 
-T (u-~)+sin Yw 

The derivation of these two equation8 will be given with some 
details in section 42Aof  the following chapter. They are based on the 
general results for shock transition given in chapter 2. 

The method of solution of the equations (3.40) with the boundary 
conditions (3.41) and (3.42) is analogous to that of Kopal, and need not 
therefore to be discussed here. The rise of entropy across the shock wave 

is given by Y -1 

For a flow which is determined exactly the integral expressions 
( 3 . 7 )  and (3.17) have to be identities) the deviations will give an insight 
in the numerical aceuracy obtained. Aa a test case the flow around two 

cones with Js = 7.5' and J s  = 12.5 have been used, f o r  the Mach numbers 
M O O  = 2, M W  = 5 and M m  = 2, .Mm = 4 respectively. In table 2, the two 
sides of equation ( 3 . 7 )  have been given together with the drag a8 calcu- 
lated by using eq. (3.17) and eq. (3.32). The agreement obtained shows 

0 
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that the numerical accuracy is very good. 

The exact flow around a body. 
The solution of the problm to determine the flow field around an 

axially-synrmetrio body, can be obtained by using the exact inviscid flow 

equations and then to transform these equations into characteristic 
equations according to the treatment given in chapter 2. Ey using a nume- 
rical method of solution, based on these equations, the flow field can be 
constructed. This construction is greatly aided by the use of electronic 
computers. 

The governing-differential equations are according to eqs. (2.24) 
a d ,  f o r  an axially-symmetric f l o w  given by 

where it is unbrstood that all the velocities are made dimensionless with 
respect to the free stream velocity U, ; henoe the speed of sound “a” ia 
given by 

2 1  Y-1 Y-1 2 2 a = T + T - T ( u + v )  . 
MW 

Instead of working with the specific entropy a, use will be made of 

the ratio of the stagnation pressures P, as defined by eq.(3.6). 
From the system of characteristic equations (2.4O), (2.41) and 

(2.45) it can be derived that for axiallpsymmetric f l o w  the following 
charaoteristic equations are valid; 

P = constant *) (3.45)a 
d r v  along linea with a slope = - (i.e. streamlines). U 

“)It should be observed that this constant can be different for 
each streamline. 
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d r e  along a line with the slope = pu-v 

and 

dr * 
pu+v ' along a line with the elope = - 

From these equatiom, it is evident that the influence of the 
quantity P on the velocity components u and v is determined by the 
gradient - alon,qthe characteristic surfaces. If ;E: is identically 
zero in the whole domain of the flow considered, u and v can be oal- 
oulated without any knowledge of P. This is the case for  a conical body. 
In those cases w h e r e , z  is small along both the families of characteristic 
surfaces, the last. erms in eqs. (3.45)b-o can be neglected, thus in fact 
neglecting the influence of.the curvature of the shook waves on the flow 
field. 

This will be a valid assumption if the curvature .of the'shook wave 
is small. Since according to eq. (2.52) the entropy rise across a shook 
wave oan be oalculated as scon'as the shape of the shook is known, it i e  
poesible to oheok the assumption of having a small by caloulating the 
quantity'P as a funotioh of r along the shock wave. 

to complement the results' obtained in section 3 .1 .3  by a direct oomparieon 
of the flow fields, as calculated by wing linearized and exaot .theory 
respectively. 

For that purpo6e the flow field around the same bodies as considered 
in that section will be determined'by using exact methods. However, an 

dP assumption will be made, viz. that s i s  negligible along both families of 
,characteristic surfaces. This means that eq. (J.45)a will not be used in 
the actual computations. The influenoe of this assumption w i l l  be measured 
by using the integral expressions for drag and body area. 

Tq start. the f l o w  field construction by' using the characteristic 
equations, the flow around the conical nose.has to be known just as in 
the linearized case. The soiut.ion for this problem has already been given 

dP dP 
dr 

dP 

t 

dP 

To establish the accuracy of the'linearized thaory it will be useful 

' .  



i n  the preceding sect ion.  

The boundary condition along the fuselage is given by eq. (3.27), 
while the boundary condi t ions along the shockwave ape very analogous 

t o  those for the  cone, i . e .  

riin2J” 8 
Y+1 2 (u-1) = - 

JJUJ 

i 

v 5 - (u-1)cotJ  (3.46)b 

where now J* is the angle  between the shock wave and the x-axis, and 

is  i n  genera l  dependent on t h e  r a d i a l  coordinate. The t h i r d  shock con- 

d i t i on  is given by eq. (3.43) when $, i s  replaoed by Jm. Because no 

use is made of eq. (3.45)a, t h i s  condition need not be used i n  the ac tua l  

calculat ion,  but w i l l  senie  t o  determine the entropy r i s e  along the 

shock wave afterwards.  

The pressure  coe f f i c i en t  is given by the following formula (see eq. 

( 3 . 3 3 )  and eq. (3.14)) Y 

(3.47) 

A f t e r  determining t h e  flow f i e l d  around t he  two bodies, a oheok on 
the  r e s u l t s  has been appl ied by calculating the  r i g h t  hand s i d e  of t he  

mass flow equat ion (3.7) and by comparing the  drag as found by integra- 
t i o n  along t h e  control  sur face  and along the  body. 

has been negleoted,  it can not b8 expected t h a t  a pe r fec t  agreement w i l l  
be obtained. By applying the mass flow- and drag equations, i t  should be 
observed t h a t  there  a r e  b o  reasons for a deviat ion.  In t h e  f irst  place 

the  v e l o c i t i e s  ca lcu la ted  a r e  incor rec t  due t o  t h e  neglect ion of 
Emever, a s  has been argued the  inf luence of t h i s  approximation is indeed 

negl igible  if t he  gradient  is small. In the  second place a deviat ion will 
be caused by the  f a c t  t h a t  the entropy r i s e  across  shock waves is neglect-  

ed, which means that the  quan t i ty  P occurring i n  the  expressions considered 

is  unknown. It is immediately c l e a r  (for instance by comparison with a 
cone) 

Sinoe, as has a l ready  been remarked, the gradient  of t h e  entropy 

dP . 

dP t ha t  t h i s  lat ter reason is  t he  most important fw  small . 
To see i f  t h i s  reasoning i s  acceptable  the  integral expressions 

have been calculated n i t h  var ious  assumptions on t h e  func t ion  P‘. 
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In the first p l a c e , i t  is assumed tha t  there is no rise i n  entropy 

o r  P = 1, thus physically no shock wave is present. 
A second choice is that P has the value presoribed by the  oonical 

par t  of the shook mve. 

However, t he  best  r e s u l t  should be obtained by adjusting t o  every 

f i e l d  point  a value of P i n  an approximate way. It should be remembered 

that the entropy has t-o be constant a long ax ia l lpsymmetr ic  stream sur- 
faces .  I f  now the  assumption i s  made tha t  the dens i ty  and the d i s tu r -  

bance ve looi ty  a r e  constant along a c h a r a c t e r i s t i o  surface, the shape of 

a stream surface cay be oonstruoted i n  an approximate way. Since along 

the shock m v e  the function P oan be mloula ted ,  t h i s  assumption together  

with the masa flow equation s u f f i c e s t o  ca l cu la t e  t h e  function P i n  an 

a r b i t r a r y  point of the flow f i e l d  i n  the following way. If D is a point 

on the  shock wave and C the f i e l d  point then 

= P  
(RD) P 

provided t h a t  and I$, a r e  r e l a t e d  by the following ezzre- "sion 

Eo 2 -RD 2 

'D2 - RA 

Bo2 - %2 
2 "  9 

where the  var ious quan t i t i e s  ooaurring a r e  indioated i n  fig.8. 

In t ab le  3 the resul ts  of the.oalculat ions for body radius  and drag 

a r e  given with the various assumptions for P, mentioned above. Par each 

of the f o u r  bodies considered these quan t i t i e s  have been compared for tvfo 

d i f f e ren t  cross sect ions.  

It is evidont from these r e s u l t s  t h a t  the assumptions of a constant 

entropy r i s e  across  the shock nave give r i s e  t o  appreciable differences,  

while t h e  t h i r d  method, a6 presoribed above, g ives  en agreement which i s  

-remarkably good. This suggests tha t  the influence of the neglect of the  

gradient of the entropy (s) on the f i e l d  q u a n t i t i e s  u and v is  indeed 0 

very small. 
"hue, here again, the importance of the i n t e g r a l  expressions found 

by using n cont ro l  surfaoe for estimating the quan t i t a t ive  error when 

c e r t a i n  f a c t a r s  a r e  negleoted, i s  shown. 
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In the four last sections enough results have been obtained ) give 
a detailed comparison between the results of the lineariesd and the exaot 
theories. This comparison will be given i n  the following sections. 

j.1.6 Comparison of the pressure distributions. 
In this section a more detailed analysis will be made of the pressure 

distribution along a fuselage as calculated by using linearized and exact 
methods. 

Although already in ref.13 a rather camprehensive analysis is given 
for the oase of the oone, part of this analysis will be repeated here, 
in order to give the connection with what has been already said. 

In the sections 3.1.2 and 3.1.3 it is proved that the mean error in 
f l o w  quantities inoreases rapidly with higher Llach numbers, and not 
slender bodies. A question now arises, being one whioh has been asked by 
many investigators before, whether or not the pressure distribution over 
the body is as muoh in error as the quantities in the outer flow field. 

A s  will be s h m  the answer to this question depends largely on the 
approximation which is made in the formula for the pressure coefficient. 

First the pressure distribution on the surfaoe of a cone will be - 
oonsidered. 

In the figures 9 a-d the pressure ooeffioient is given as a function 

In eaoh oase four different curves are given for the pressure coef- 
of the Maoh number Nm for several valuefi of the semi-top angle Js. 

ficient. The correct one is calculated with eq. (3.47) by using the theory 
of Taylor and Eilaoooll as set forward in section 3.1.4. If the same formula 
(3.47) is used with P E 1, and the flow quantities according to the 
linearized theory, the approximtion 
If the expression for the pressure ooeffioient is expanded by using the 
binomial theorem and if only linear and quadratic terms are retained, the 
formula (3.18) results. One step further is to omit the quadratic terms 
and to put the formula for o 

aooording to KbrmlIndoore is found. 

in the usual form for thin wings P 

0 3 -2u' (3.49) P 

It might be expected that the error would increase with inoreasing 
approximation of the formula for the pressure distribution, This, however, 
is not true. From fig.9 it is evident that the absolute best approximation 



is obtained with the most simple form for c i.e. eq. (3.49). P’ 
The approximation whioh can be considered the most valuable is given 

by the expression (3.18). Although absolutely more in error than eq.(3.49) 
it gives the same trend for all Maoh numbers and semi-top angles as the 
correct solution. The approximation aoocrding to X6rdndBoare gives t4e 
greatest deviations, the error in that case being about two times larger 
than that found on using eq. (5.18). This indicates that the values of the 
f l o w  quantities differ appreoiably from those of the correct ones, and 
that by using an approximate formula for the pressure coefficient part 
of this error can be corrected for. This result cannot be based on a rig- 
rous analytical investigation. It must be considered as rather arbitrarily. 

To see how the deviation between the pressure-coefficients, aocording 
t o  the linearized approximation and the exact ones is related to the 
mean error in the f l o w  as given in table 1, table 4 is given indioating 
this deviafisn as a function of Xach number Ma and semi-top angleJs. 
It has been defined by the quantity in the following way 

In fact this R is the peroentage by which the pressure coefficient 
according to eq. (3.18) differs from the exact one; 

Comparing table 4 with table 3 it is remarkable that the error in 
the pressure-ooeffioient as oalculated by using eq. (3.18) is not as 
strongly dependent on the Mach number as the mean error K is. On the 
other hand the amount that linearized theory differs from the exact 
theory, does not allow quantitative meaning be given to the linearized 
theory for praotioal shapes. 

To see how these conclusions have to be modified for more realistic 
configurations, the pressure distributions for the four different cases 
already studied in the sections 3.1.3 and 3.1.5 have been given in figs. 
10 ad. In each case three different ”res are given, based respectively 
on eq. (3.47) which gave the exact v~Pue of c 
mtions to the formula for the pressure coefficient, based on eqs.(3.18) 
and (3.49) f o r  the linearized theory. 

and of the two approxi- 
P 
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One property which the f igures  have i n  common is, that the slope of 
t h e  exact curve is l a rge r  than those cf the linear curves over t he  for- 
ward par t  of the configurations,  while t h i s  s i t u a t i o n  is reversed a t  the 

af t -par t .  T h i s  ind ica tes  that the a w e s  based on the l inear ized  theory, 

i n  a l l  cases, do not give the ac tua l  trend of the exact o w e .  If a choice 

has t o  be made upon which of the two versions of the l inear ized  pressure 
coe f f i c i en t  i s  preferable ,  it m i l l  be seen that this question i s  hard t o  

answer. In some cases ,  aver c e r t a i n  parts of t he  oonfiguration eq.(3.49) 

w i l l  give a b e t t e r  r e s u l t  than eq. (3.18), while on other parts t h i s  

s i t u a t i o n  is reversed. 

The m e  b a s e d p n  eq. (3.18), however, can i n  a l l  cases be r e l a t e d  

t o  the exact curve i n  a unique way. This curve shows i n  a l l  cases a steady 

increase i n  deviat ion w i t h  increasing Mach number c r  decreasing slender- 

ness. 

fuselage than on t he  forward par t .  Even i n  t h e  case J ,  = 7.5 , M, = 2 
these deviat ions a r e  very large.  

In figs 11 a d  the r e s u l t s  obtained have been shown i n  another way 

It is remarbble tha t  the daviat ions a r e  l a rge r  on the a f t  part of the  
0 

by oalcu la t ing  the percentunl difference between the exact c 

pressure coe f f i c i en t  a s  given by eq. (3.18). Here more c l e a r l y  the  indeed 

l a rge  differenaes are o h m .  In conclusion, it can be sa id  that the re- 
markEl already made for oones, apply as w e l l  for bodies. The deviat ion i n  

t h e  pressure coef f ic ien t ,  a t  l e a s t  along the p a r t s  cf the contour with 

a posi t ive slope, is  always smaller than the mean er ro r  i n  the f l o w  f i e l d  

based on the  mass-flow and momentum oonsideratione. The conclusion for a 

p a r t  w i t h  negative slope, however, must be, that i n  each oase the r e s u l t  

of t h e  l i nea r i zed  the- for the  pressuze coe f f i c i en t  is highly question- 

ab le ,  apart  f r o m  those pieces of t he  contour where the use of l inear ized  
theory is  admitted by a very lm mean error i n  the f i e l d  quant i t ies .  

far less than the mean error. This ind ica tes  that the  flow field a t  a 
c e r t a i n  dis tance Prom the body is more i n  error thaq the  f l a  f i e l d  

c lose ly  smrtXnding t h i s  b e .  In the  following sect ion,  i t  w i l l  be in- 
ves t iga ted  if t h i s  suggestion i s  true. 

and the 
P 

As has been sa id  above the er ror  i n  c is f o r  some par t s  of t he  body 
P 
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3.1.7 

linearized theory have been restricted to global results based on the 
control surface approach, which gave a kind of mean error of the flow 
quantities and to a dirsot comparison of the pressure distribution. In 
many problems, however, not only the value of the f l o w  quantities on the 
body is important, but also the values in the outer flow field. A simple 
example, where this is important, is the interference between the body and 
another configuration. 

Comparison of the flow fields. 
Until nom the comparison between the results of the exact and the 

Again the conical body presents the most simple example f o r  dis- 
cussing the differences between the exact- and the linearized theory in 
the outer flow field. 

To this end, in fig.12 a-d, the disturbance velocities u 1  and vl 
caused by a cone, are given as a function of the spherical coordinate J . 
In eaoh figure the results, as derived by using the exact theory of Taylor 
and Maccoll and according to the linearized theory of section 3.1.2, a r e  

given. This has been done for the Kach numbers Idm = 2.1469 and ITm = 4 .  

f o r  a cone, gives results that best approximate the exact values at the 
fuselage, while the deviation between the two theories increases very 
rapidlJr in the outer flow field. It is clear that the region of disturbed 
flow, caused by the body, even for rather l o w  Vach numbers, is much larger 

according to the exaot theory than with the linearized theory. Norewer 
another serious drawback of the linearized theory f o r  a cone, which must 
be noted, is that it is not able to give a shock wave. This means that 
in the outer parts of the f l m  completely different phenomena are pre- 
dicted by linearized theory than oocur in reality. The limits of applioa- 
bility are therefore even more severe than those given in the table 1 
(where the mean error in the flow quantities is given), if interference 
effects ars important. 

From these figures It is evident that linearized theory, at least 

In figs 13 a d  and 14 a-d a trial is made to indicate the differen- 
ces between linearized theory and exact theory for bodies with respect 
to the flow field. The alreay earlier investigated body with a semi-top 
angle of 12.5' has been studied f o r  the Each numbers ?Lm = 2 and Ma= 4 .  
In eaoh case the velocity distribution along a forward directed character- 
istic surface has been given. The characteristics start from about the 
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X 0.4 and - - 0.8. The r e s u l t s  must be t r ea t ed  with cross  sec t ions  a t  

some care, f o r  it was nc t  possible  t o  s e l e c t  t he  same pos i t i on  of f o r  

t h e  l inear ized  and the  exact case. They were taken, however, a s  near t o  

each other a s  could be accomplished. These f igu res  display the  same 

fea tures  which e r e  a l ready evident i n  those f o r  t he  cone. The la rger  

region of  disturbance given by the exact theory together wi th  the existen- 

ce of a shock wave give r i s e  t o  very la rge  differences batween the r e s u l t s  

of the two theor ies  f o r  the outer flow f i e ld .  This t rend i s  s t rongly de- 

pendent on the Xech number. The r e s u l t s  obtained i n  t h i s  s ec t ion  thus give 

r i s e  t o  t h e  statement, t h a t  the l inear ized  theory is  very inadequate, 

which i s  p a r t i c u l a r l y  t r u e  when t h e  theory has t o  be used i n  cases  where 

the f l o w  phenomena i n  the cuter  flow f i e l d  a r e  important. 

? =  Q -  
7 

3.1.8 Concluding remarks. - 
I n  t h e  foregoinc sec t ions  the v a l i d i t y  of l inear ized  theory Por the 

study of t h e  flow around axially-symmetric configurations has been in- 
vest igated.  Use has been made of i n t e g r a l  expressions f o r  t h e  body area 

and the drag, derived by using s u i t a b l y  chosen cont ro l  surfaces .  

It has been shown that by using these i n t e g r a l  expressions a quan- 

t i t a t i v e  est imate  can be given of t he  e r r o r  made by applying the  l inear iz-  
ed theory. The rksu l t s ,  which a r e  given i n  terms of the s o  ca l l ed  mean 

e r ro r ,  ind ica te  tha t  only i n  those cases where t h i s  mean e r r o r  i s  very 

small ,  the  differences between the  l inear ized  and the  exact theory can 

be considered a s  negl igible .  

T t  occurs t ha t  t h i s  i s  only t h e  case f o r  shapes, which a r e  impracti- 

c a l .  

Furthermore i t  has been shown by a de t a i l ed  comparison tha t  t he  

l inear ized  theory gjves  r e s u l t s  which a r e  mcre i n  e r r o r  a t  some dis tance 

from the body, than near t o  the body i t s e l f .  This statement i s  r e l a t e d  

t o  the f a c t  t h a t  t he  l i nea r i zed  theory f o r  pointed bodies is unable t o  

give the exis tence of a shock wave. Such f a c t s  should lead t o  t o t a l  m i s -  
leading impressions of the phenomena occurring i n  r e a l i t y ,  i n  cases where 

t h e  e f f e c t s  of interference a r e  important. Some of such cases  a r e  indeed 

known i n  t h e  l i t e r a t u r e .  

The above given reasons lead t o  the  necess i ty  of giving the  utmost 
c a r e  t o  t h e  study of t h e  axially-symmetric optimum configurations.  In all 
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oases the condition f o r  an optimum shape can be given by a prescribed 
velocity distribution on a closed surface, surrounding the body. To de- 
termine now the shape of such a body, the flow field has to be calculated. 
However, if use is made of linearized theory, the same large e r r o r s  are 
present in the flow field as in the flow field around given shapes, de- 
pending of course on slenderness and Mach number. Therefore the shape con- 
structed by using such a theory has little chance to be the actual shape 
of the derived optimum configuration. 

For this reason it is necessary to have resort to more exact methods 
of investigation f o r  the f l o w  field of an axially-symmetric configuration. 
Since already methods a re  known f o r  constructing the flow field if suffi- 
oient conditions are  given, the only remaining problem is to find these 
conditions. 

In the following part of this section the important problem of the 
necessary conditions for an optimum shape with given base area, will 
therefore be solvid by using the exact equations for isentropic, inviscid 
flow. 

- 3.2 

to suspect optimum-shape configurations as determined by the linearized 
theory. To remedy this situation a more exact description of the pro- 
perties of supersonic f l o w  must be given. This means that the non-linear 
differential equations as given in chapter 2 have to be used. 

On the determination of optimum axially-symmetric shapes. 
In the first part of this chapter a variety of reasons were given 

The problem which will be studied, is the determination of an Op- 
timum shape with a given base area at a given Mach number Moo Of the 
free stream. 

It is to be understood that an optimum shape is such a configuration 
f o r  which the wave drag is as low as possible under certaiii restraints. 

This problem has been solved already in 1935 with the aid of 
linearized theory by von KArmAn (ref.18). 

However, the method used there can not be generalized for a treat- 
ment where non-linear differential equations are used. A scheme which per- 
mits such a generalization is given in ref.17. 

There, use has been made of a control surface approach. A s  has been 
set forth in section 3.1.1, the drag and the body area can be written as 

X)  with the accessory condition of given length 

. 



i n t e g r a l s  of func t ions  of t he  v e l o c i t i e s  along the control  surface. It 

w i l l  be assumed tha t  t he  body whose shape has t o  be determined, is i n  the  

volume enolosed by the cont ro l  surface.  This cont ro l  surface w i l l  cons is t  

of t w o  parts5 namely the  surface separa t ing  the regions of undisturbed and 

dis turbed flow, and the forward facing c h a r a c t e r i s t i c  surface emanating 

from the base. In t h i s  case, the whole flow f i e l d  in s ide  the  cont ro l  sur- 
face  is governed by the  ve loc i ty  d i s t r i b u t i o n  along the aft-character-  

i s t ic  sur face .  The problem reduces, therefore ,  t o  t he  determination of 

such a v e l o c i t y  d i s t r i b u t i o n  along t h i s  surface,  t h a t  the drag has the 

smallest  va lue  possible ,  and t h a t  t he  base area has a given value. 

To so lve  t h i s  problem us’e w i l l  be made of va r i a t iona l  theory5 w i t h  

t h e  d i f f e r e n t i a l  equation thereby derived, together with the appropriate  

c h a r a c t e r i s t i c  equation and the  boundary conditions,  the optimum ve loc i ty  

d i s t r i b u t i o n  along t h e  a f t - c h a r a c t e r i s t i c  surface can be determined. 

To make the  problem as  simple a s  possible ,  i t  will be assumed t h a t  

t h e  f low is  i sen t ropic  i n  the  volume enclosed by t h e  cont ro l  surface.  

This has t h e  consequence t h a t  the f l o w  is a l s o  i r r o t a t i o n a l  i n  t h a t  

domain. 

A remark should be mads about t he  isoperimetr io  conditions i n  the 

opt imizat ion procedure. If t h e  exact f lm equations a r e  mied, the charac- 

t e r i s t i c  sur faces  have a slope which v a r i e s  from point t o  point i n  a 
meridian plane,  s ince  i t  depends on the  v e l o a i t i e s .  Thus t h e  shape of t h e  

a f t d h a r a o t e r i s t i c  surface is  not  known beforehand, but follows as a re- 
s u l t  of t h e  so lu t ion  of the problem. 

Th i s  makes i t  hard t o  prescr ibe a given length, a s  i s  usual i n  the  

l inear ized  treatment of t h i s  problem. Instead therefore  it w i l l  be assumed 

t h a t  the base area  of  t he  body a s  w e l l  as the  r ad ius  of t he  i n t e r s e c t i n g  

c i r c l e  of  front-  and a f t  p a r t  of the cont ro l  sur face  is  given. 

Another, very important point is the  followings Far behind the body, 

the drag of the coefigurat ion tha t  is considered i s  accompanied with a 

r i s e  i n  entropy. This may seem qu i t e  amazing s ince  i t  has been assumed that 

the  f l o w  is isentropic .  However, i t  must be emphasized t h a t  t h i s  is anly 
true ins ide  the cont ro l  surface.  Somewhere i n  the  outer  flow f i e l d ,  a shock 

wave w i l l  be formed which gives the expected r i s e  of entropy. This shock 

wave w i l l  b e  formed a t  t h e  point of convergence of t he  compression fan 
which has t o  be generated by the nose of t h e  optimum body, i n  order t o  
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fulfill the condition of isentropic f l o w  inside the control surface. The 

point of convergence together with the optimum distribution will now be 
determined in the following sections. These sections contain a revised 
version of the subject matter of ref.19. 

3.2.1 The requirements for minimum drag. 
In this part a summary will be given of the equations which have to 

be used for deriving the optimum conditions along the aft characteristic 
surface. All these equations have already been derived but for the sake 
of the clearness they will be given here in the proper order, together 

with the fundamental assumptions underlying this analysis. 
In the first- place it has been assumed that the aft part .of the 

con(tro1 surface consists of a characteristic surface. Due to the analysi 
being restricted to rotationally By”etriC flow fields, this surface it- 
s e l f  is axially-symmetric. 

According to eq. (3 .4 )  the slope of this surface is given by 

- dr u-vg 
dx = - v+up 

The base area and the drag of the configuration imbedded in the 
volume enclosed by the control surface are given, if eq. (3.51) is valid, 
by the equations ( 3 . 7 )  and (5.17). Since it is assumed that the flow in- 
side the control surface is isenbopic, the function P of eq. ( 3 . 6 )  i s  in 
this case equal to 1. 

The equation for the drag is according to eq. (3.17) given by 

F - ( a w T - Z ‘ x d  (u-l)(ax) u Bv rdr 

1 - 
Y - 1  2 RO Y RC 

= 2n 

( 3 . 5 3 )  Po0 OQ 

In these expressions RB is the radius of the base area, while Rc 
is the radius of the intersecting circle of the fore and aft psrt’of the 
control surface. As before, all velocities are made dimensionless with 
the aid of the velocity U, . The quantities RB, Rc and M, have certain 



prescribed values. 
The problem to be solved, therefore, is to minirrdee the expression 

for the drag given by eq. (j.53), while at the same time satisfying eq. 
(5.52). Voreover it is necessary for the quantities u and v to satisfy 
the characteristic equation for axially-symmetric flow which is valid 
along the aft-characteristic surface. This equation can be found from 

dP eq. (3.45)c, if it is remembered that 
Then there is found: 

= 0 in this case. 

(3.54) 

The expressions (3.52), (3.53) and (3.54) enable the formulation of 
the problem. This problem is to find such a distribution of the veloci- 
ties u and v as a function of the radial distance r ,  that the drag D 
has its minimum value at a given value of Rc2 in eq. (3.52), while the 
characteristio eq. (3154) has to be satisfied f o r  every value of r in- 
side the interval R E < r . $ R c .  This problem is stated in such a form that 
it is particularly suited for application of the variational theory. Be- 

fore this theory will be applied, something should be said about the 
boundary conditions which have to be imposed at the boundary points B 
and C. At the rim of the base of the configuration no physical boundary 
condition is present; therefore the variational procedure itself must 
yield a so called "natural" boundary condition at this point. About the 
boundary condition at the intersection of the fore and aft part of the 
control surface nothing further will be said at this moment other than 
that it must be such that a physically realizable transformation occurs 
from the undisturbed to the disturbed flow. 

First, the differential equations valid for the velocity distri- 
bution along the aft characteristic surface, will be derived by using 
variational theory. 

J.2.? Application of variational theory. 
In the foregoing seotion a problem has been formulated whioh i n  fact 

ccmes down to the determination of the extremum of eq. (3.53) under the 
conditions (3.52) and (3.54). Ths variational problem presented here is 
a particular oase of a more general problem, known as the problem of 



Bolza (ref.20). This problem can be solved by applying the method of 

mul t ip l iors ,  a method given i n  essence by Lagrange. To do so, the  follow- 

ing  expression has t o  be considered 

(3.55) 

where and p a r e  the mult ipl iers .  The e s sen t i a l  difference between the  

two mul t ip l ie rs  i s  t h a t  i s  a constant,  while p i s  a function of r. This 

difference is  caused by the f a c t  t h a t ) \  i s  the mul t ip l i e r  of an integrand, 

w h i l e p  is the mul t ip l i e r  of a r e l a t i o n  t h a t  h a s  t o  be s a t i s f i e d  i n  every 

point  of the i n t e r v a l  considered. 1 
The necessary conditions f o r  a m i n i m u m  are found by considering the 

v a r i a t i o n  of the in t eg ra l  over t he  funct ion F and t o  requi re  t h a t  t h i s  

v a r i a t i o n  is zero, or 

(3.56) 

If the va r i a t ions  of u and v a r e  denoted by p and T) and d i f f e ren t -  

a t i o n s  with respect  t o  r a r e  indicated by a prime these equations can be 
wri t t en  as 

(3.57) 

P a r t i a l  i n t eg ra t ion  then g i v e s  

(3.58) 
Since p and q a r e  a r b i t r a r y  along the c h a r a c t e r i s t i c  surface,  t h e  

integrand has t o  be i d e n t i c a l l y  zero. This gives r i s e  t o  a system of 
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differential equations, known as Euler's equations, vie.: 

-(+-= d aF aF = 0 . 
d r  av (3.59%) 

According to equation (5.56) the boundary conditions required by 
the variational problem are 

Performing the operations indicated in eqs. (3.59) the follorTiIlg 

result is found 

The quantities A and B are given by 

B = ala2 
1 
L - 

Y -1 
where al = (a2?& 

2 
9 a2 = -- 

U-Up 
and 

By using the following operations the system of differential 
equations (3.61) can be brought in a more convenient form. 

hlultiplying eq. (3.61)a by ut and eq. (3.61)b by V I  and adding the 
result together, the following equation can be derived by using the 
characteristic equation (3.54) 



The second relation can be derived by multiplying eq. (3.61)a by 
(utvp) and (j.61)b by (up-v) and subtracting the results. By using the 
characteristic equation (3.54) one obtains 

r -1 + -  1 
2 .  where b -  E 

It is important to remark, that eq. (3.65) is not a differential 
equation, but a functional relation between the unknown functions U, v 
and p. This peculiar feature of the system bakes it possible to elimirnrte 
the multiplier function p, which i n  itself is  not interesting. This 
elimination gives rise to the following result. 

In this equation the quantities X, Y and Z a r e  given by 
) 

2 

Y = v2b - p2a4 
2 = Y + a* + {v2b(r+l-rpZ)+p4a4} -(u-l-)l)pvb 

x 3 2v + (U-l->)(u-pv) 

The system of equations (3.54) and (3.66) of non-linear 
first order differential equations for the functions u and v. Such a system 
has a unique solution if two boundary conditions are given, a n d h  is a 
given quantity. 

r = RB will be considered. As has been said already no physical condition 
ia present there. This means that the variations p and 11 are arbitrary. 

In order to obtain the boundary conditions, first the rim of the base 

From eq. (3.60) there fol lows then 

dF aF - * - =  0 au 1 av' RE for r = 
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These equations are s a t i s f i e d  by the condition u(l$)= 0, which acccrd- 

i ng  t o  eq. (3.G5) gives  r i s e  t o  t he  following boundary condition 

-2pv-(u-i-A) ( 3 . 6 9 )  

Since only two,boundary conditions are permitted, at the point 

r = R only one boundary condi t ion can be present i f  a so lu t ion  exists.  
In the  f i r s t  place t h i s  condi t ion has t o  s a t i s f y  the na tu ra l  boundary 

cendi t ion given by eq. (3 .60 ) ;  on the other hand it a l s o  has  t o  be such 

tha t  a physically r e a l i z a b l e  transformation from the undisturbed t o  the 

dis turbed f low is  presented. 

0 

The condition (3 .60 )  i s  given by 

: (pu-v)p + (pv+u)q = 0 . (3 .70 )  

To f ind the fun t i o n  G(u,v) = 0 which s a t i , s f i e s  t h i s  equation, the 9 
d i f f e r e n t i a l  equation synonymous w i t h  eq. (3.70) has t o  be considered, 

This equation is  

(Pu-V) du + (pv+u)dv = 0 . is .71 )  

But t h i s  equation i s  the won-hvm d i f f e r e n t i a l  equation of' two- 

dimensional theory, f o r  the Prandtl.-Keyer compression fan. T h i s  r e l a t i o n  

between u and v is given by 

(3.72) 
-1 I/= Y+1 (P-P,) -1 P-Pm -1 v + t a n  - = C  , - t an  - U Y-1 l + P  Pco 

$i$ t an  
I+ u+l p Pu, 

T h i s  r e s u l t  can be in t e rp re t ed  as follows. To s a t i s f y  eq. (3.70: 
dt t he  point r = Rc, the r e l a t i o n  (3.72) has t o  be va l id ,  This point i s  

thus the place where a compression generated by the nose of the body 

converges. From th is  point  on a shock wave w i l l  be formed i n  the outer 

Flow f i e l d ,  givlng t h e  r i s e  of entropy which i s  responsible for  t h e  

wave drag. 

However, i t  should be remarked tha t  the flow conditions a t  t h e  

point P = R where t h e  compression fan converges and the shock wave 

s t a r t s ,  a r e  i n  general  such, t h a t  a r e f l e c t i o n  occurs, s e t i s f y i n g  t h e  

r e l a t i o n s  of equal pressure and s lope  a t  t h i s  point. Thio r ey lec t ion  

is e i t h e r  a shock wave o r  an expansion f an  ( see  fig.35). The s t rength  

C' 
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of this reflection is always very much smaller than that of the outgoing 
shock wave, In the case that this reflection is an expansion fan, the aft 
charaoteristic is the first characteristic of this fan and thus, according 
to the assumptions, the flow inside the control surface is isentropic. 
As calculations have shown, this situation occurs, roughly speaking, above 
a Mach number M-= 2.3. Below this number, the reflection is a shock wave 
penetrating into the region inside the control surface. The theory as 
given here should therefore not be applicable to this case. 

However, such an objection is purely theoretical, since in general 
the strength of this shock wave is s o  small, that it is aCtuallg negli- 
gible. _ .  

AS a solution of the variational problem, we have found now the 
system of differential equations (3.54) and (3.66) together with the 
boundary conditions (3.69) and (3.72). Moreover the mass flow equation 
(3.52) has to be-satisfied. 

This is a set of three equations for the unknown functions u and v 
and the unknown multiplier2 . A s  will be shown in the followihg section, 
it is possible to solve this system by numerical methods. 

3.2.5 Determination of the optimum velocity distribution. 
It will be clear at first sight that it is not possible to find 

easily an analytioal solution of the differential equations (3.54) and 
(3.66). It would be possible to integrate the differential equations 
numerically by a variety of methods if both the quantitya and the 
velocities u and v either at r = Rc or r = R 
one condition is given in r = RB and anothsr one in r = Rc, whilst> 
is unknown and must be determined by using the mass flow rslation 
(3.52). For given values of r = RBI r = R and M, this problem oan 
only be solved by a double iteration. This can be done by the following 
method. 

were given. But here, B 

C 

4 

At the point r = RB the values o f h  and u are chosen arbitrary. 
With the aid of equation ( 3 . 6 9 )  the velocity v can now be calculated. 
As has been remarked above, it is possible then to integrate the 
differential equations, thus determining the values of u and v as a 
function of r. In general, the values found in this way at the point 



r = R w i l l  not s a t i s f y  eq. (3 .72) ,  while moreover a l s o  both s ides  of the 

mass flow equation w i l l  not be equal, 
C 

By keeping the value of constant an i t e r a t i o n  with respect t o  u i s  

performed such t h a t  f i n a l l y  the  boundary condition a t  t h e  point r = R c  is 

s a t i s f i e d .  

However, a fu r the r  value o f ) \  has t o  be determined for  which the mass 

f l a w  r e l a t i o n  is an iden t i ty .  T h i s  can be done by performing the  above ex- 
plained i t e r a t i o n  w i t h  respect  t o  u f o r  d i f f e r e n t  values of h and then t o  

perform an i t e r a t i o n  w i t h  respect  t o  h . It is c l e a r  t ha t  t h i s  is a very 

complex programme, even when using a d i g i t a l  computer. Therefore a d i f f e r -  

ent  approach was used, where only one i t e r a t i o n  s t e p  w a s  necessary, thus 

reducing t h e  computer time by an order of magnitude: 

This  has been achieved by not  prescr ibing the value of  Ro,  but by 

I n  t h i s  approach, the values of  u a n d >  a t  r = R B  a r e  chosen, j u s t  

determining th i s '  quant i ty  from computations . 
a s  before. However, now the so lu t ion  is  continued u n t i l  eq. (3.72) is 

s a t i s f i e d .  The value of  r f o r  which t h i s  occurs can be considered as a 

value for  r = R By using the  mass f l o w  r e l a t i o n  an  i t e r a t i o n  w i t h  

respect  t o  can be performed, u n t i l  a so lu t ion  is obtained which s a t i a -  
f i e s  a l l  t h e  'equations. 

0. 

This  scheme f o r  t he  so lu t ion  proved t o  be very sa t i s f ac to ry .  The 

ac tua l  i n t eg ra t ion  of  the d i f f e r e n t i a l  equations was performed by using 

the version of G i l l  ( ref .21)  of the Runge-Kutta method. To save compu- 

t a t i o n  time, the i t e r a t i o n  with respect t o h  was performed, by using 

first a l a r g e  s t e p  A r  and, if 

mated, by choosing the f i n a l  s t e p  width. To s t a r t  the computations an 

estimate of t he  values of u and 

obtained by using the l i nea r i zed  theory of  ref.17. 

was a l ready  s u f f i c i e n t l y  c lose  approxi- 

, necessary f o r  a c e r t a i n  Rc,  can be 

The computations were performed on the medium sized d ig i tL l  com- 

puter Z.F.B.R.A. 

A s  soon  a s  the ve loc i ty  d i s t r i b u t i o n  is  found, i t  i s  possible  t o  
0 

c a l c t l s t e ,  t h e  h i t h e r t o  unknown shape of t he  cha rac t e r i s t i c  surface by 

using eq. (3.51). The t o t a l  length of t h e  body i s  then given by 
n 

( 3 . 7 5 )  
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The optimum veloc i ty  d i s t r i b u t i o n  has been .oalculated f o r  several  

Mach numbers, f o r  a given value of  RE. The attempt h a s  been t o  obtain 

body lengths t h a t  were not too  d i f f e r e n t .  In  the  t a b l e s  5 a-c the  quanti- 

t i e s  u and v h a k  been given together  w i th  the shape of  the a f t  character-  

i s l i c  surfac'e for t he  hjach numbers N d  2.5, 3.5 and 4.5. I n  addi t ion '  the 

values of R Rc and the , length !of t h e  body a r e  given. . .  E' 
In the f i g s  16 a-c the  r e s u l t s  of a comparison of t he  -present theory 

with the l inear ized  theory of ref .1  has been given. This  theory is  based 

on the f i r s t . o r d e r  r e l a t i o n s  f o r  mass f16w and drag as  derived i n  sec t ion  

3.1.1. 
It w i l l  be seen t h a t  even f o r  the very  slender bodies considered, 

the ld i f fe rences  a r e  s ign i f i can t  and a r e  rap id ly  grcwing w i t h  increasing 

Mach number. However, as  w i l l  be c l e a r ,  t h e  importance o f - t h e  method as  

given here, cons i s t s  i n  the  fa 'c t ,  t ha t  i t  enables the ca lcu la t ion  of the 

optimum .condi t ions i n  those cases  where t h e  l inear ized  theory f a i l s  ' t o  

give r e l i a b l e  r e s u l t s .  As has been shown, t h i s  i s  the case for.non- 

s lender  bodies and higher l!ach numbers. 

I 

A f t e r  the  determination of the a f t  cha rac t e r i s t i c  surface and the 

ve loc i ty  d i s t r i b u t i o n  along i t  the  problem of ca lcu la t ing  the shape of 
the, optimum body has t o  be solved. This w i l l  be prescribed i n  t h e  follow- 

ing  sect ion.  

- 3.2.4 ~ ,Determination of . t h e  optimum shape. 

l a t i n g  t h e . f l o w  f i e l d  in s ide  the cont ro l  surface.  

The body i t s e l f -  i s  g iven .by  the d i f f e r e n t i a l  equation 

The ac tua l  shape of the  optimum body can be determined by calcu- 

d r  v 
dx u 
- = -  (3 .74)  . . ' 

with the  boundary conditions 

r = O  f o r  x = 0 ( 3 . 7 5 b  
and r = R, f o r  x = (3.75)b 

One of + h e m  conditions is  s u f f i c i e n t  t o  determine the contour, 

but the other has t o  be s a t i s f i e d  because of t he  r e l a t i o n  f o r  t he  mass 

flow. 

Since t h e  flow is i sen t rop ic ,  t h e r e  i s  no shock wave present in- 
s ide  the cont ro l  surface.  This means t h a t  t he  backward cha rac t e r i s t i o  



surface from the nose of the body to the point of convergence of the com- 
pression fan is a simple circular Mach cone, along which the disturbance 
velocities are zero.  This fact has already been used in deriving eq. 

(3.73). Thus, the field between two characteristic surfaces has to be 
found. This is a so-called problem of Gourpat. It must be remembered, 
however, that the point Rc is a multivalued point for the velocity and 
that a fan of characteristics converges here. Therefore, first the com- 
pression fan will be calculated by using the system of characteristic 
equations ( 3 . 4 5 ) .  Since along the first characteristic u = 1 and v = 0, 

according to eq. (3.74), the s l o p e  of the contour at the nose is equal 

to zero. 

This gives rise to the occurrenc'e of a cusped nose. The construction 
of such a nose can cause 1arge.difficulties due to the, singular behaviour 
of the functions u and v for r approaching ths'axis. By observing that the 
cusped nose has to be parabolic over'some distance and.by choosing a 
suitable mesh length, these difficGities can be removed. As soon as the 
compression fan has. been calculated, the construction of the field 
between .t,he last characteristic- of this fan and the aft characteristic 
is an ordinary problem of Gourpat and can be performed .by standard routine. 

The results of the.computations made for Mo = 2 . 5  and M m  = 4.5. 
have been given in figs 17 a-b together with the s lope  of the contour- 
dr . The pressure coefficient which .is given by 

" 

I and the distribution of the axial force 
1 2  2 - p U n R B  2 caw 

dDO dr where - = 2n c dx p r z ,  

dDO - 
dx 

( 3 . 7 7 )  

have been given in figs.' le a-b. 
A Check on the numerical accuracy of the results is provided by the 

radius of the base area.as found by determining th body contour, and by 
a comparison of the drag as found by integrating dx along the fuselage 
and the prescribed minimum drag. The results obtained indicate that the 

ZDO 
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differences a r e  of the order of one percent,  showing tha t  the accuracy of 

the ca lcu la t ions  is qu i t e  s a t i s f ac to ry .  

I n  conclusion a few words w i l l  be s a i d  about t he  differences between 

' t h e  overa l l  r e s u l t s  of  t he  method prescribed here and the r e s u l t s  of t he  

l inear ized  theory. One very remarkable point i s  t h e  cusped nose, which is, 

i n  sharp cont ras t  w i t h  the nose shape fo'und w i t h  l inear ized  theor ies ,  

where - + w f o r  x-0. dr  
dx 
For low Maoh numbers t h i s  cusped nose is only a very small p a r t  of t he  

fuse,lage length,  but f o r  higher Mach numbers the length of t h i s  cusped 

nose grows rapidly.  Since apparently the  l a rges t  differences occur a t  

the nose, t h i s  leads t o  the following r e s u l t .  

a t  the nose a r e  h o t . a b l e  t o  influence the overa l l  r e s u l t  very much and 

tly r e s u l t s  of l inear ized  theory w i l l  compare reasonably with those of t h e  

present theory 'over most of the body length.  

If the  shapes a r e  slender and the hrlach number i s  l o w  the d i f fe rences  

However, )for l e s s  slender shapes and higher Miikch numbers the  r e s u l t 8  

w i l l  show rap id ly  increasing differences,  making l i n e a i i e d '  fheorg. a : ' t d o l  ,Of 

very l imited value. These general  observations ape  fc i l ly , in  accordance 

w i t h  a l l  the r e s u l t s  already found. 

- 4 Studies on quasi axially-symmetric flow. 

Since one of the  main i n t e r e s t s  t o  the aerodynamicist i s  t h e  s tudy of 

the l i f t i n g  proper t ies  of f l ight-vehicles  i t  is  n o t  surpr i s ing  t h a t  t he re  

a r e  many methods devised fo r  making such s tudies .  This i s  espec ia l ly  t rue 
fo r  the subsonic regime, where a v a r i e t y  of t heo r i e s  ex i s t s  f o r  calcu- 

l a t i n g  the l i f t  d i s t r i b u t i o n  on a wing. A l l  these  methods a r e  based on 

the  l inear ized  theory, which g ives  good r e s u l t s  as long a s  the Mach num- 

ber is not  too near t o  unity.  The inf luence of t h e  body on the l i f t  is 

due t c  i t s  in te r fe rence  with the wing, a body alone not giving a ne t  lift. 

This s i t u a t i o n  i s  r ad ica l ly  changed if the body, which i s  f o r  iriEtanCe 

ax ia l lpeywne t r io ,  i s  moving f a s t e r  than the  speed of sound. It then can 
develop 

ion of motion,. Thus the  study of the l i f t i n g  proper t ies  of such bodies 

can have some meri ts  on i ts  own. 

lift, provided i t a  ax i s  is curved or  not  aligned with the  d i r ec t -  
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Rather early, sosue research  i n  t h i s  d i r ec t ionwae  made, espec ia l ly  
wi th  respect  t o  t h e  mbtion of ballistic p ro jec t i l e s .  I n  1938, Tsien pu- 

b l i shed  a method t o  ca loula te  t h e  supersonic flow over an incl ined body 

of revolut ion (ref.22).  This method, which is i n  f a c t  a genera l iza t ion  

of t h e  treatment given by Kdmdn and Moore, is  based on t h e  assumption of 
small disturbances and thus use can be made of t he  l i nea r i zed  po ten t i a l  

flow equation. As i n  the  case of purely axially-eymmetric flow, t h i s  

l i nea r i zed  theory can be expected t o  be v a l i d  only i f  the  Mach-number is 

not much greater  than un i ty  and i f  the  body is s u f f i c i e n t l y  slender.  

In  the  first p a r t  of t h i s  chapter therefore  a method w i l l  be given 

t o  obtain quan t i t a t ive  r e s u l t s  on the limits of t he  a p p l i c a b i l i t y  of t he  

l i nea r i zed  theory f o r  t he  ca l cu la t ion  of t h e  flow-field around inc l ined  

bodies. It appears also that for the  f i e l d  determined i n  this way, t he  

same conclusions a r e  v a l i d  reached i n  t h e  foregoing chapter.  However, i n  
t h i s  case there  is no opportunity t o  obtain more exact r e s u l t s .  Only for 
t he  cone a theory has been given f o r  ca lcu la t ing ,  by a per turbat ion method 

appl ied t o  the axially-symmetric flow f i e l d ,  t he  flow f i e l d  due t o  inc l i -  
nat ion of the a x i s ,  cor rec t  up t o  the  first (and second) order of t he  

angle  of incidence. The r e s u l t s  on the  v a l i d i t y  of l i nea r i zed  theory for 
more general  body shapes ind ica t e  that i t  would be worthwhile t o  devise  

such a more exact method for general  quasi  axially-sgmmetric shapes. The 

second pa r t  of t h i s  chapter is devoted therefore  t o  the presentat ion and 

discussion of such a method. 

4.1 On the v a l i d i t y  of l i n e a r i z e d  theory f o r  quasi  axially-symmetric flow. 
As a co ro l l a ry  t o  the s tudy of the  v a l i d i t y  of t he  l i nea r i zed  

theory for axially-eymmetric flow, a treatment w i l l  be given here, aimed 

a t  g iv ing  a q u a n t i t a t i v e  value of t he  error made, when using the 

l i nea r i zed  theory for t he  determination of the flow f i e l d  around an in- 
c l ined  body of revolut ion.  Also i n  t h i s  case,  t h e  motive far the inves t i -  

ga t ion  was given by the s t r i k i n g  d i f fe rences  between the prescribed value 

of t h e  l i f t  and t h e  l i f t  as found by integrating the pressure along the  

fuselage when cons t ruc t ing  an optimum body f o r  a given l i f t .  It w i l l  be 

c l e a r ,  that the  comparison between t h e  l i f t  a s  i n t eg ra t ed  along t h e  body 

and as determined by a cont ro l  sur face  approach, is the  most simple and 

e f f e c t i v e  method t o  measure the  v a l i d i t y  of t he  theory. Although i n  prin-. 
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ciple a second comparison coud have been obtained by considering the in- 
duced drag, no use of this quantity has been made here. 

Also,  very much attention has been paid here to the consideration 
of the f l o w  around an inclined cone. Due to the fact that more exact 
solutions are also known a detailed comparison has been possible. It 
will he shown by using the subsequently derived integral expression for 
the lift, that the first-order solution of Stone is a formally fully 
consistent method f o r  constructing these more exact solutions; a fact 
which will be of much importance fo r  the second part of this chapter. 

4.1.1 Integral expression for the lift a8 found by using linearized 
theory. 

- 
In this section the same ,body will bo considered as ln section 

.3.1.1. It will be assumed now, however, that there is a small cross-flow 
component ,of the velocity &UOO where & is small compared - .wl th' unity.' 
This means, that in fact a body with an angle of attack E is considered. 
The lift on this body can 'be, determined by using the same control sur- 

face as before and considering the momentum transport in the z-direction. 
. .  

If. the lift L is the force perpendicular to the axis of the body, 
the following relation ia obtained: 

L+/ /  picos p cos (I, do1 plVn~ldOl +4 P ~ C O S  cos$d02+ 
O1 

where W1 atid W2 are the velocity components in z-direction and the 
angle u,  being the semi-top angle of the characteristic cone is given 
by 

1 sin = - 
MCa 

The velocities in the field of an inclined body can be given as 

u = u, (1 + u' + E U" cos9 

v = uco { v' + E V" cos$ 
w =  'i,C w" sin+ 
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The functions u", v" and w" here are the amplitude of the cross flow 

disturbance velocities. The occurrence of the trigonometrical functions 
c o s 9  and sin $ 

Using eqs. ( 4 . 3 )  the following relations can be derived: 
is required by the boundary condition on the body. 

V 

= (l+u'+Eu*tcos (I) )sin p+p,(v'wv" cos + )sin 
- w2 = (vfwv" cos(C))~os(I) -EW" sin 2 

(4.4)c 

(4 -4 )d 

n2 
U-3 

Ga 

-- 

? 'he  pressure and the density follow by a Taylor expansion of eqs.(j.g) 
and (3.6). (See also eq.(3.9) and eq. ( 3 . l e ) ) .  
It is found that 

L ( 4 . 5 ) a  p2  = p,{l-Edco(u~+'"~.oos 2 (I) ) 

l+u'+Eu"cos((,)- 1 p2 (l+U~+EU"CCS$) 2 + 
2 - 3  P2-Pw = Too L30 

( 4 . 5 b  + 1 (v'+Ev"cos (I' )2+ 1 e2wl.200s2$] 
$1 

2 

where again quadratic terms are retained imthe pressure. 
Substituting the equations (4 .4)  and ( 4 . 5 )  into the expression for 

the lift L and performing the integration with respect to((, the follow- 
ing is obtained: 

R 
,C 
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I 

Since ut and V I  a r e  considered small quan t i t i e s ,  t he  terms $-ut2 and 

pm&ulvt can be neglected compared with unity.  It should be observed t h a t  

thus only terms of t he  order E and ~b a r e  r e t a ined  where b i s  of t h e  order 

of t he  axially-symmetric per turbat ion ve loc i t i e s .  Quant i t ies  of the order 

e 2  do not occur. By rearranging the  terms, the following r e s u l t  is obtained; 

(4.7) 

I n  t h i s  expression, a c e r t a i n  coupling between the thickness  f i e l d  and the  

l i f t  f i e l d  i s  present.  However, i n  the l ineapized theory,  the l i f t  f i e l d  

is considered as a per turbat ion of the undisturbed f r e e  stream. This means 

t h a t  t he  disturbance v e l o c i t i e s  ut and V I  vanish i n  t h i s  case. Equation 

(4.7) takes then the following form : 

. 

R 
.C 

By using eqs. (4.7) or (4.8) t he  l ift can be calculated by an independent 

method, giving the opportunity of checking the consietency of t he  l i nea r i zed  

thedry a f t e r  ca l cu la t ion  of the flow f i e l d .  I n  the following sec t ions  these 

expreesione w i l l  be ueed therefore  t o  study the a p p l i c a b i l i t y  of t h i s  theory. 

4.1.2 

EU,. If E i s  s u f f i c i e n t l y  small, the  configuration s u f f i c i e n t l y  s lender  and 

the Wach-number s u f f i c i e n t l y  

However, i t  is very important t o  know what . ie  meant by su f f i c i en t ly .  The in -  
ves t iga t ion  of the answer t o  t h i s  question w i l l  form t h e  subject of t h i s  

sect ion.  

Linearized theory f o r  an incl ined cone. 

Consider t he  f l o w  around a cone which has a small cross-flow component 

low, then the l inear ized  theory can be applied.  

The d i f f e r e n t i a l  equation, which has t c  be s a t i s f i e d ,  has  a l ready  been 

given severa l  times, viz .  eqe. (2.57) and (3.20). For t h e  sake of completenees 

i t  w i l l  be repeated here  once more 



As has a l r eady  been remarked, t he  per turbat ion due t o  t he  inc l ina t ion  is  

considered a s  based onan undisturbed f r e e  stream. According t o  t h a  re- 

msrks  made when introducing the eqs. (4.3) t he  po ten t i a l  f o r  the cross  

flow can be w r i t t e n  a s  

m = T C?SCy (4.10) 

The amplitudes u", v", w" of the  dis turbance v e l o c i t i e s  a r e  then given 

by 
a? 
ax u" = - (4.11 j h  

Since the flow is  conical these quan t i t i e s  a r e  constant along rays 

through t h e  ver tex of t he  cone. 

Introduce therefore ,  aa before 

(4 .12)a  
X t = -  r 

On s u b s t i t u t i n g  the  expressions (4.10) and (4.12)  i n t o  eq. (4 .9)  t he re  

is obtained the following d i f f e r e n t i a l  equation f o r  t he  funct ion F ( t ) c  

2 2 d'F dF ( t  -pa) - - t = 0 
d t2  

while the dis turbance v e l o c i t i e s  a r e  given by 

dP u" = a 

(4  .I4 )b v" = -t - + F 

w" = - P  (4.14)c 

dF 
d t  

The boundary condition on the surface,  v i z .  g= $,, is  given by 



The boundary conditione on the Mach-cona through the vertex of the  cone, 
i.e. t = P, are given by 

v" = IR" = 1 (4.16) 

The solution of eq. (4.13) aan be written as 
Ct (W CP; t - - cosh-I 2 + D 

2 2 B, 
F S  

Application of eq. (4.16) gives 

D -  1 

and of eq. (4.15) 

while u", v" and w" are given by 

(4.17) 

In order to obtain quantitative limits of applicability of the above 
equations uee will be made of eq. ( 4 . 8 ) .  According to eq. (4 .5)b ,  the 
pressure coefficient can be given by 

c = c + c" cosy 
P PC P 

where 
2 c" 1 2c -U" + p, UWU" - V'Y" 

P t 



66 

However, s ince  the cross-coupling between t h e  thickness- and the lift 

f i e l d  is neglected,  t he  last two terms i n  eq. (4.2O)b have t o  be omitted. 

The l i f t  on a cone with length c is  then given by 
0 

If now the quan t i t i e s  u", v" and w" are subs t i t u t ed  i n t o  eq. (4.8) and 

the  in t eg ra t ion  is performed, t he  r e s u l t  is 

Comparison of the eqs. (4.22) and (4.21) shows t h a t  the l i f t  a s  calcu- 

l a t e d  by in t eg ra t ing  the pressure along the  fuselage,  is higher than 

t h e  l i f t  ca lcu la ted  by using the  i n t e g r a l  expression along a character-: 

i s t i c .  Yhat nmv i s  the conclusion which can be drawn f r o m  t h i s  par t?  

If t h e  difference between t h e  two expressions i s  small, i t  could 

be concluded t h a t  e i t h e r  t he  average e r ro r  i n  the .integrand.s of the  ex- 

pressions (4.21) and (4 .e )  is  the  same cr t h a t  there  a r e  no e r ro r s  i n  
the integrands; i f ,  however, a deviat ion is present the conclusion must 
be tha t  t h e  e r ro r  i n  the  f i e l d  quan t i t i e s  i s  g rea t e r  o r  smaller than 

those. i n  t h e  pressure d i s t r i b u t i o n  along the fuselage.  If t h i s  deviation 

is large t h e  theory used is' inconsis tent  and thus not va l id .  

The quest ion which now has t o  be answersd i s  : Can l inear ized  

theory be considered t o  be va l id  i f  ' the deviat ion i s  very small? fiom 

the eqs. (4.21) and ( 4 . 2 2 )  follows t h a t  t h e  deviat ion is  small if 

- is l a rge .  T h i s  i s  t r u e  i f  t 
case means t h a t  the cone i s  very slender and c e r t a i n l y  l inear ized  theory 

should be 'appl icable  i n  t ha t  case. The l a t t e r  case means t h a t  the i::ach- 

number i s  very near t o  one, i t  should then be permissible t o  have SU 

l e s s  s lender  cones. T h i s  p o s s i b i l i t y  w i l l  be considered fu r the r  on. 
F i r s t  the deviat ion between the t w o  expressions w i l l  be discussed. 

0 
i o  l a rge  or pco i s  small. The .first 

Po0 0 

If a deviat ion o f  X p e r c s n t  i s  thought t o  be permissible,  i t  can 

be derived t h a t  
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If x <  5 

The limit lines are given in fig.19. comparison with fig.4 it can 
be seen that for higher Mach-numbers the curves coinoide, showing that the 
limits of applicability are the same far axiallpsymmetric flow and the 
f l o w  with a small cross component. It is interesting to remark that the 
treatment given in section 3.1.2 leads to eq. (4.23) if use had been made 
of the linearized boundary condition 

.. 
dr v' = (4.24) 

Apparently the use of the exact boundary condition leads to the 
restriction in the vicinity of Ma= 1. 

In this case, however, it seems that linearized theory is able to 
describe the flow around an inclined cone very well for Moo very near 
to one. Rowever, in the derivation it has been assumed that the cross 
coupling between the thickness field and the cross flow field is ne- 
gligible. Thus the results obtained have a meaning only if K as derived 
from eq. (4.2j), is small, and also at the same time the perturbation 
velocities of the thiokness field are very small compared with the f r e e  
stream velocity U, . 
An idea about the influence of the cross coupling can then be obta'ined 
by using eq. (4.7) instead bf eq. (4.8). It turns out, though not more 
than the order of magnitude of the influence is given, that this can be 
quite large even for very small values of x. This means that f o r  not so 

slender oones the influence of the thickness field will be quite large. 
Thus very near to the Mach number unity the results of eq. (4.23), which 
indicate that JS+$ without making a large error ,  are invalidated by 
the fact that no account had been taken of this cross coupling. 

Row it is obvious that this is fulfilled for very slsnder cones. 

- 

The conclusions reached here can be summarized as follows. In order 
to calculate the flow field around a cone at an angle of attack, linearized 
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theory can be used only far very slender cones. For higher E'ach-numbers 
(M,>2) the situation is the same as for the axially-symmetric case. For 
M,<2 the requirements on Js ars strongly dependent on the Vach-num5er, 
due to the influence of the cross coupling of the flow fields. 

The conolusions given above are independent of the value of & . Bs- 
sides ths requirements given here for the applicability of linearized 
theory, it is necessary that EU", EV" and EW" are small against unity. 

, 

4.1 .5  Linearized theory f o r  the f l o w  around an inclined body. 
As it has been done in the case of axially-aymmetrio flow, here 

too a study will be made of the flow around an axially-symmetric body 
at an angle of attack to see if the conclusions reached in the fore- 
going section have to be changed. 

- 

In the first place the lift generated by a body with a parabolic 
shape has been investigated along several lines. The shape is given 

2 
by 

O$X$l (4 .25 )  r = 0.22182 x - 0.19471 x 
With tha aid of the linearized method of characteristics (ref, 

23)  the f low field has been calculated for M,,,= 2.476. Thereafter the 
lift has been calculated by using eq. (4 .7 )  and eq. ( 4 . 8 ) ,  thus using 
momentum flow considerations, and by integrating the pressure distri- 
bution along the fuselage using eq. (4 .20 )  and its more usual form 

c 1' = -2 EU" (4 .26)  P 
As it has been already observed the use of the sqs. ( 4 . 7 )  and 

(4.20) is in fact not in accordance with the assumptions of the linea- 
rized theory for cross flow, but on the other hand should these assumpt- 
ions be valid, no large differences between the results of eqfi.(4.7) 
and ( 4 . 8 )  and (4.20) end (4 .26)  should be present. The four curves for 
the lift are given in f ig .20.  The results indicate that the influence 
of the axially-symmetric flow field is so  large, that it apparently 
cannot be neglected. However, this leads t o  the conclusion that a theory 
based on the linearized equation (4.9) is unable to describe the flow 
field for this particular case. Thus not one of the curves presented 
has a quantitative meaning. At the most they indicate the order of mag- 
nitude of the lift generated. 



1 Also an investigation has been made of the flow field around the two 
bodies already considered in section 3.1.3.  The lift has been calculated 
by using eq. (4.8) for the momentum flow approach, while eq. (4.26) has 
been used for the integration of the lift along the fuselage. The results 
have been given in figs. 21.a-b. 

The theory is, according to the resulte given here, rather accurate 
f o r  the case J S  = 7.5' and Idw = 2, whi'le for $, = 12.5 and Idm= 2 

the results seem to have a quantitative value. 
and M, = 5 and 

0 

0 = 12.5 , M, = 4 only the order 0 For Ys = 7.5 
of magnitude of the lift is indicated by the results. 

I In general therefore the conclusion has to be the same as for the 
axially-symmetric case. 

If linearized theory is used to predict the flow field around an 
axielly-symmetric configuration under incidence, the results have only 
a quantitative value if the shape is very slender and the Mach number 
low.  The average error to be expected can be predicted by using the 
methods given here, together with the results obtained for the purely 
axially-symmetriq case. 

~ 

It is a pity that these results cannot be substantiated in the same 
way as in the case of the axially-symmetric flow by a direct comparison 
with exact results. Only f o r  the cone such a treatment has been given by 
considering the cross flow field as a perturbation on the exact thickness 
field. This theory will be discussed in the next section. 

4.1.4 The first order theory of Stone for the flow around an inclined 
cone. 

- 
- 

If a more reliable solution of the flow around an inclined cone is 
wanted, we muat resort to a more exact treatment cf the governing diffe- 
rential equations. Stone (ref.8) has given a method to calculate the 
flow field around a cone at an angle of attack E ,  where e is small. In 
ref. 24 he extends his method by taking account of the square f E. In 
fact he thus has tried to calculate the quantities 
e - 0 ,  where of dE theory 
of ref. 8 will be treated here for several reasons. 

f o r  - act d9cg 
a r  and 2 

is the lift coefficient. The first order 

First, it offers the possibility of obtaining a direct comparison 
with the results of the foregoing sections, while by the application of 



the control surface approach u ch is now well known several interesting 
results can be obtained. On the other hand the description of the method 
will give an easy access to the contents of the second part of this 
chapter, where this first order theory is generalized for more general 
configurations. The second order theory will not be treated. Its mathe- 
matical correctness is questionable, at least at the surface of the cone 
and moreover it is a very complex theory, which does not give much hope 
to extend it to the determination of the flow field around more general 
oonfigwaticns . 

Tha following analysis presents only the formula which are appro- 
priate for the above mentioned investigations. For the details of the 
method and the derivation of the equations used, the reader is referred 
to the papers by Stone, re f s .  8 and 24. 

Introducing a spherical coordinate system r, and (1, as given in 
fig.22, the equation of a cone inclined at an angle E with respect to the 
main flow direction .is given by 

r cos J cos E - r sin J sin E cos J, = r cos J (4.27) 

It can be sham that correot up to first order terms in E ,  the 
fo l lowing  expressions are valid f o r  the velocities, the pressure and the 
density 

U = U - E X  COS0 (4.2818 
(4.28)b v = v - Ey cosy, 

w = - EZ siny (4.2810 
p = 5 - r q  cos y, 
p = p - E t  cos9 (4.28)e 

- 

(4.28)d - 
The dashed symbols are the quantities as calculated by the theory 

of Taylor and Niaccoll f o r  the axially-symmetric case. If the eqs. (4.28) 
are substituted into the governing aerodynamic differential equations, 
a system of differential equations is obtained for the quantities x,y,. 
z, 5 and ?-I. In order to solve the system the boundary conditions have 
to be known. The first boundary condition is that the solid surface of 
the cone has to be a stream surface. Moreover certain conditions shculd 
be satisfied at the shock surface. 

Correct up to the first order in B ,  the body contour is given by 



J= Js - E cos 9 

This can be checked by substitution into eq. (4.27). 
The shock wave surface can be written as 

(4.29 1. 

where K is an unknown constant, which has to be determined. 
Stone now solves the problem by transforming the boundary conditions 

along the cone surface and along the shock wave to conditions along 
d=Js  and J=Jw respectively. In fact he thus transforms the problem 
to one for the same domain as in the axially-symmetric case. It is in this 
transformed field that the equations (4.28) are considered to be valid. 

This transformation is based on the following formulae, which are 
given in ref. 24 

(4.3O)a J = 0 - E  c o s $ + $ c 2 c o t ~ s i n  2 $ + .  . . . . 
q = $ + c  c o t 0 s i n $ + F  2 

E *  sin $ cos $ (2 cot 0 +1)+ . . . . (4.30)b 

where 0 and $ are spherical coordinates referred to the axis of the 
body. The equatiope apply f o r  the case of the transformation of t h e  
boundary conditions on the fuselage. Only the terms in E are actually 
taken into account. 

One very important remark should be made, however, regarding the 
eqs. (4.50). Apparently the transformation is based on the fact that E 

is small and tha? the squares of E can be neglected therefore, but in 
order that this be true the defining parameter E cot 0 has to be small. 
Since E cot 8 is the largest on 8 = Os, the requirement is that 
E cot es is small against unity or that approximately , 

E 

It should be noted that in the outer flow field transformations 
similar to that of eq. (4.30) are more rapid convergent. 

As soon as 3 1 ,  the higher order terms are as important as k the lower order terms and the method breaks down. 
Even a second order  theory along these lines is, mathematically 

speaking, invalid, at least in the surrounding of the cone surface. The 
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conclusion t o  be drawn from these arguments i s  thus,  t h a t  for less slender  

oones, i . e .  having l a r g e r  semi-top angles J s , h i g h e r  values  of E a r e  

permissible when using t h i s  theory. 

If the theory g ives  the cor rec t  answer tor t he  first order term , 
then the  l i f t  a s  oalculated by in t eg ra t ing  the  pressure along the cone 

surface,  should be equal  t o  the  l i f t  as ca lcu la ted  by t h e  momentum 
t ranspor t  through a c o n t r o l  surface.  This comparison and the  der iva t ion  

of t he  necessary expressions w i l l  be given i n  the following sect ion.  

4.1.5 The l i f t  on a cone according to Stone's first order theory. 

If a cone is considered a t  an angle of a t t a c k  E and i f  i s  the  

d i r ec t ion  perpendicular t o  the  free stream ve loc i ty  U, (see fig.231, 

t he  force  ac t ing  on t h e  cone i n  t he  -direct ion can be wr i t t en  a s  : ri- 

The l a s t  term r e s u l t s  from the f a c t  t h a t  i t  i s  assumed t h a t  t h e  

free stream pressure is aot ing  on the  base of t h e  cone. 

Now, as has a l ready  been indicated,  Stone transforms the  problem 
t o  one which has the same domain as the  ax ia l lpsymmetr ic  so lu t ion  of 

Taylor and Yacooll. The r e s u l t s  found a r e  thus v a l i d  i n  t h i s  so c a l l e d  

transformed f l o w  f i e ld .  However, i n  der iving the l i f t  from the momentum 

equaticn the  r e a l  flow f i e l d  has t o  be used and a reverse  transformation 

has t o  be applied therefore  t o  the r e s u l t s  of Stone. 

- 

I n  order t o  obtain the values on the t r u e  cone sur face  i t  i s  most 

convenient t o  use a sphe r i ca l  coordinate system based on the  body-axis8 

t o  do t he  same f o r  the r e a l  shock wave a coordinate system based on the  

a x i s  of the inol ined shock wave w i l l  be the  natural one t o  choose. AC- 

cording t o  eq. (4.29)b t h e  angle of  i nc l ina t ion  i s  6 = a€. 
The f l o w  q u a n t i t i e s  i n  these l o c a l  coordinate systems a r e  obtained 

by using Taylor-series expansions t o  account for t he  required displace- 

ment s. 



The difficult question whioh arises now is :"What method has to 
be used to calculate the value of the flaw quantities in a point between 
the oone surface and the shock wave in the real flow field? " 

PJith the aid of fig.24 this question will be answered. 
A local coordinate system is defined, the axis of which makes an 

angle )\E with the free stream direction in the vertical plane and where 
h is dependent on as measured'in the axially symmetric system used 

by Stone. 

angle Y ,  ahen referred to the local coordinate system of fig.24, can 
be correlated t o  the 
axially-symmetric system by using Taylor-series expansions. The flow 
quantities in the local coordinate system on this cone can he derived 
by establishing the relations between the velocities in the two coor- 
dinate systems, and using the transformation formula (4.30) by repla- 
cing E by & h  . The result is (see also ref.25) 

It is assumed that the flow quantities on a cone with semi-top 

reeults of Stone for the same angle I$ in the 

- 
Q u = u - ( x  + ~ ' ; I ) E  coe 'p 

where a prime meane differentiation with respect to . The function 
varies from a to 1, and it w i l l  be assumed that this variation is 

linearly dependent on 3 as measured in the axially-symmetric system, 
T h i s  gives 

(4.34) 

By using the eqs. (4.33) and (4.34) and the local coordinate 
system, the flow quantities at any point of the r e a l  flow field are 
defined. 
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The particular choice of control surface made to derive the force 1, 
frcm eq. (4.32) consists of a part of the shock wave and a sphere with 
radius R (see fig.24). 

The quantities occurring in eq. (4.52) are given, correct up to 
first order terms in E by 

In order to derive the expression for the surface element of the 
sphere, as a function of yand q 

systems characterized by 
on the cones 

, consider the local coordinate 
and h + d h  . a e y  hefine the quantities 

e 

(4 .36)a 

(4.36)b 

Q Jl = J - A ~  coe q 

P J + d J 1  = $+ alY -(A+&)€ cos q 
1 

where 4 ,  is the angle as measured in the wind axis system. These cones 

cut out a slice of the sphere considered with the surfaoe elament (see 

fig.25) 

dO = R d 4  R sinJ&p( 

C n  applying eqs. (4.j6)a and b this can be vmitten 36 

) 

With the aid of eqs. ( 4 . 3 3 ) ,  (4.35) and (4.37) th? integrals 
cccurring in eq. (4.32) can be written as follcm : 

(4.37) 
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p2 Vn2V2d02 = n& R x s i n $  + y C O S L }  + 

O2 

- i; i i ~  {ii' s i n  Y + ~ l c o s  Y + - 2 i i ~  (U o s J -  s in$> + - 1  -l 

- - d h  - + { -p u a- p(x +A;' 1 
J 

These equations can now be in tegra ted  by using eq. (4.54) together  

w i t h  t he  following expressions f o r  t he  der iva t ives  of the f l o w  quan- 

t i t i e s  ( rsf .24 and 25) 

If f u r t h e r  uee i s  made of  eqs. (3.5) and (J.14) t o  express the  

densi ty  and the  pressure as a funct ion of t he  v e l o c i t i e s ,  the in t eg ra l  

proves t o  be a f t e r  some tedious a l sebra ic  ca lcu la t ions  a s  fo l lows :  
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ii s i n  J +V cos J } s inJdJ  + 

2 - 2  +AY v 
a -v 

J 
(4.40) 

It i s  t o  be  understood t h a t  a l l  the ve loc i t i e s  a r e  non-dimensionallzed 

w i t h  U, , w h i l e  d i s  a constant dependent on a ( see  Stone re f .8) .  

?!hen considering t h e  der iva t ion  of eq. (4 .40)  i t  i s  obvious t h a t  a 

q u i t e  complex and not very s a t i s f y i n g  r e s u l t  is obtained, s ince  the quant i ty  

h has been assumed t o  be l i n e a r l y  dependent on . Therefore, a t  first 
s i g h t  i t  would seem tha t  the r e s u l t  w i l l  be influenced by the pa r t i cu la r  

choice being made f o r  t h e  function >\ . 
However, a s  i t  w i l l  be shown now, the l i f t  co r rec t  up t o  first or- 

der i s  indeed independent of the funct ion > *. To t h i s  end a more thorough 

inves t iga t ion  is made of the eqs. (4.38) a and b. As i t  can be seen, the 

first of  these equations gives 
J, 

(4 .41)  

fl pa cos(n, )do2 = H E  R‘[ -:A s in2J /  - 1 q sin2$ i i J ]  (4.42) 

By in t eg ra t ing  the re  i s  obtained Jw JW 

J s  Js 
? 

O2 

provided that  t h i s  funct ion takes the values 1 and a a t  
J = J w  respect ively.  

=$, and 



I n  the  same way i t  can be derived tha t  eq. (4.38)b reduces t o  

I The l i f t  can now be wr i t t en  as 

2 -.= L pm{ s in2Ss-a  s i n 2 J w  + qVa s i n  Jw-pS s in2  Js + 
ncR 

I 

(4.44) 
where s r e f e r s  t o  the cone surface and w t o  t h e  shock wave. 

Inspection .of eq. (4.44) gives the a f f i rmat ion  tha t  the func t ion>  

has vanished f rom the integrand, only the known quant i ty  a i s  occurring. 

?:oreover the complicated der iva t ives  of  the axially-symmetric flow 
quan t i t i e s  have vanished. As before t h e  expression can be m i t t e n  i n  

terms of the v e l o c i t i e s  only, t h i s ,  however, w i l l  not be undertaken 

here. 

The starting point f o r  t he  inves t iga t ion  presented i n  t h i s  s e c t i o n  

w a s  the question whether or not the l i f t  a s  found by momentum t ranspor t  

Oonsiderations was eqza1 t o  t he  l i f t  as found by in t eg ra t ing  t h e  pres- 

sure  along the body surface.  Since the quan t i ty  q ,  as  can be found by 

using t h e  r e s u l t s  of Stone and expanding eq. (3.l4), proves t o  be 

equal t o  

t he  l i f t  along the fuselage can be calculated t o  be 

(4.45 1 
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where the  values of t he  quan t i t i e s  a r e  those fo rq=ZfS .  

For a number of cases the l i f t  has been ca lcu la ted  according t o  

eq. (4.46) and eq. (4.40). The r e s u l t s  a r e  given i n  t ab le  6, together 
with the q u a n t i t i e s  P and a giving an idea about t he  entropy r i s e  and 

t h e  angle of  yaw of the shook wave respect ively.  The agreement is within 

the  numerical accuracy of t h e  results. The conclusions which can be based 

upon these considerations a r e  therefore  tha t  t he  first order theory of 

Stone is  a valuable too l  t o  ca l cu la t e  the quant i ty  dCQ 

t o  be remarked tha t  t h i s  agreement was obtained by using the assumption 

f o r >  given by eq. (4.54). I n  f a c t  t h i s  l ed  t o  the der iva t ion  of eq. 

(4 .44) ,  aff i rming the  statement t h a t  t h i s  agreement was not dependent 

on the pa r t i cu la r  choice made f o r  the f u n c t i o n h  . 

f o r  E+O. It has 

T h i s  leads t o  a very important conclusion, fo r ,  from the above 

mentioned r e s u l t s  i t  must be c l ea r  t h a t  the f i rs t  order theory is  not  
a b l e  t o  give the ac tua l  flow f i e l d .  Only the values a t  the shock wave 

and a t  the body surface a r e  given cor rec t ly .  

However, i t  may be expected t h a t  t h e  l i n e a r  dependence of h on J 
gives a f a i r l y  accurate  p ic ture  of the t rue  f l o w  f i e l d .  I n  each case i t  

i s  a s  good a s  any other  assumption, while i t  i s  moreover the  most  simple 

one t o  make. 

Before f in i sh ing  the discussion presented i n  t h i s  sec t ion ,  some 
2 words should be s a i d  about t he  induced drag. T h i s  drag is of the order E 

and i s  only found p a r t i a l l y  by applying the theory presented here. This 

i s  so, because the change of the axially-symmetric flow f i e l d  due t o  t h e  

angle  of a t t ack ,  which i s  of  the order e 2  a s  follows from ref.24, i s  

not taken i n t o  account. Thus only the ccmponent of t he  l i f t  i n  t h e  

d i r ec t ion  of t he  free stream is found as induced drag. I+”, the  theory 

i s  not ab le  t o  pred ic t  the quan t i t a t ive  value of  t h e  drag, although i t  
i s  found i n  most  of  t he  cases tha t  the component of the l i f t  is t h e  

l a r g e s t  par t .  
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In the  following sec t ions  a d i r e c t  comparison of t he  r e s u l t s  of t h i s  

theory w i t h  the  r e s u l t s  of t he  l inear ized  theory w i l l  be given. 

4.1.6 Comparison of t he  pressure d i s t r i b u t i o n  a s  obtained by d i f f e r e n t  

theor ies  for an inc l ined  cone. 
- 

The r e s u l t s  thus f a r  obtained concerning the v a l i d i t y  of t he  l inea-  

r i zed  theory f o r  the predict ion of  t h e  flow f i e l d  around an axially-symme- 

t r i c  configuration a t  an angle  of a t t a c k  a re ,  what may be ca l led ,  global.  

A mean e r r o r  is given, but no ind ica t ion  about t he  d i s t r i b u t i o n  of t he  

error i n  the flow f i e l d .  

One of t he  main i n t e r e s t s  of the aerodynamicist is the pressure I 
I d i s t r i b u t i o n  over a c e r t a i n  configuration. In order t o  check the  va l id i -  

t y  af the l inear ized  theory w i t h  respec t  to this quant i ty ,  8 comparison 

has t o  be made w i t h  t he  r e s u l t s  of an  exact theory. This i s  only poss ib le  

for a cone, because t h i s  is  a configurat ion f o r  which, a s  has been s h m ,  

a more exact theory is avai lable .  

In f ig s .  26 a 4  the pressure Coeff ic ient  according t o  t h e  l i nea r i zed  

theory and accbrding t o  the first order theory of Stone is  given. 

For t he  l inear ized  pressure coe f f i c i en t  the two versions of t h i s  

formula, v i z .  eqs. (4.20) and (4.26), have been used. The value of t he  

pressure coef f ic ien t  according t o  the  first order theory of Stone i s  given 

It should be emphasized again tha t  the second and t h i r d  term i n  
eq. (4.20) a r e  terms giving the influenbe of t he  thickness d i s k b u t i o n  

on the f i e l d  w i t h  an angle of a t t ack ,  while i n  the der iva t ion  t h i s  

coupling between the  two f i e l d s  is neglected. Th i s  i s  an inconsistency 

which is  worthwhile t o  think over. Seen from a purely formal point  of 

view the use of eq. (4:20) i m t e a d  of eq. (4.26) is not allowed. - 
Now, i f  looking a t  f ig.  26, the  remarkable fact is noted tha t  t h e  

curve according t o  eq. (4.20) gives 8 far b e t t e r  agreement w i t h  eq. (4.41) 
than the appl ica t ion  of eq. (4.26). The e r ro r  i s  even decreasing wi th  

increas ing  Each-number. The approximation given by eq. (4.261, however, 



shows a very large deviation, rapidly increasing with the Uach-number and 
the half-top angle. Thua it would seem that the approximation given by 
eq. (4.20) is the best one which can be obtained. 

Fdarever, its validity being not more than empirical, it is shown 
that the results according to this approximation, give rather good agree- 
ment with the exact results, at least f o r  a cone. But a more rigorous 
investigation reveals that this astonishing behaviow is obtained by the 
introduction of the second and third term in eq. (4.20) containing the 
flow quantities of the thickness field, which are largely in error accord- 
ing to the foregoing discussions, oertainly at the highar Mach-numbers. 

Morewer the theory used to determine the flow field around an in- 
clined cone is only valid if the thickness field can be neglected, that 
means, when the second and third term in eq. (4.20) are small as compared 
to the first one. A s  follows from figs. 26 a-d, this is not true for the 
higher b?ach-numbers. Thus the conclusion has to be drawn that the approxi- 
mation according to eq. (4.20)gives a good agreement by chance, but that 
it has no theoretical justification. Thus it would seem dangerous to use 
such a formula, because of the possibility that it will be applied to 
more general configurations, where the validity Of its application is 
not affirmed. 

On the other hand the results given by eq. (4.26) show that linea- 
rized theory in this cass is not very valuable for obtaining quantitative 
results. The investigations to be performed in the following section will 
learn how the situation is in the actual flow field, with respect to the 
validity of using linearized theory. 

4.1.7 Comparison cf the f l o w  fields f o r  inclined cones. - 
In order to obtain an insight into the validity of the linearized 

theory, for instance in the case of interference problems, it is worthwhile 
to make a comparison between the flow fields as calculated by the linea- 
rized theory and by the first order theory of Stone. This comparison is, 
as is evident, only possible f o r  a cone. 

theory, can be calculated as a function of the spherical variable J . 
Stone, can be obtained frorh section 4.1.5 by using eqs. (4.33). 

Using eqs. (4.l8)b and (4.19) the flow field according to linearized 

The f low quantities, as derived by using the first order theory of 
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However, some care has t o  be exeroized, s ince these quan t i t i e s  a r e  

r e fe r r ed  t o  the  so ca l led  body-axis coordinates.  

I n  f igs.  27 a-c, the quan t i t i e s  u", v" and w" as measured i n  a 
0 wind axis system a r e  given f o r  a cone with a semi-top angle of 7.5 and 

f o r  the Each-numbers 2.0108 and 5.1055. 
In figs. 28 a-c the same quant i t ies .  a r e  given f o r  the f l o w  f i e l d  

around a cone with a semi-top angle of 12.5 degrees f o r  t he  Mach-numbers 

M, = 2.1496 and M, = 4.5002. 
From the f igu res  i t  is evident t h a t  even f o r  low Mach-numbers and 

small top angles the agreement between l inear ized  and "exact" results 

i s  very poor. The deviations i n  t h i s  case again a r e  increasing w i t h  in- 

creasing d is tance  from t h e  fuselage.  

A deta i led  ana lys i s  revea ls  t h a t  t he  curves f o r  u" have the  sqme 

t rend a t  

b ly  error f o r  each case. The curves for v" show a r a t h e r  good agreement 

i n  the v i c i n i t y  of the fuselage. T h i s  i s  due t o  t he  boundary conditions 

va l id  a t  the sur face  of the cone. I n  t he  outer  flow f i e l d ,  however, the 

curves become more and more deviating. The curves for w" show a compl.ete 

disagreement near t.0 the surface of the body. Only a t  the shock wave 

the values a r e  c lose  t o  each other ,  which is  again due t o  the conditions 

t o  b e ' f u l f i l l e d  a t  t h i s  place.  

l e a s t  f o r  the lower Mach-numbers, although they show an.appr_ecia- 
~ ~~ 

Frob th'ese curves another f a c t  can be noted. The value of  u" accord- 

i ng  t o  the  l i nea r i zed  theory, seems t o  be i n  each case appreciably lower 

than according t o .  the exact theory. Now equation 4.22 ind ica tes  t h a t  the 

l i f t  a s . c a l c u l a t e d  by momentum transport'conaiderations, i n  its turn  i s  

lower than the l i f t  a s  calculated by i n t e g r a t i n g ' t h e  pressure along the 

fuselage,  which, s ince  i t  is  proportional t o  u", is lower than the exact 

value.  This agreement" leads . t o  the conclusion t h a t  t he  mean error fo? 

the lift case w i l l  be much l a rge r  then given i n  t a b l e  1. This f a c t  seems 

t o  be confirmed by the f i g s .  27 and .28. 

. .  

It is  c l e a r  t h a t  i n  ca lcu la t ing  in te r fe rence  e f f e c t s  with the  a i d  of 

l i nea r i zed  theory, the r e s u l t s  obtained a r e  expected t o  be very suspect,  
i f  not t o  say q u i t e  misleading. 
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4.1.8 Concluding remarks bn the  flow over incl ined bodies. - 
I n  t h i s  pa r t  of  the  present  chapter the inves t iga t ions  on t,he flow. 

around axially-symmetric bodies have been supplemented by those pertain- 

ing t o  the flow f i e l d  of incl ined.bodies  of  revolution. Therefore use i s  

again made of a comparison of the same quant i ty  a s  derived by d i f f e ren t  

methods. The. quant i ty  used i s  the lift a s  derived f r k m  momentum transport  

considerations and a s  in tegra ted  along the fuselage.  It i s  shown by the  

r e s u l t s  of t h i s  comparison t h a t  t h e  conclusions of t h e ' , f i r s t  pa r t  of the 

t h i r d  chapter are a l s o  v a l i d  i n  t h i s  case.  This means tha t  the r e s u l t s  

obtained by appl ica t ion  of the l inear ized  t h e o r y , i n  p r a c t i c a l l y  every 

case do not g ive  more than the  cor rec t  order of magnitude of integrated 

values ,  such as l i f t .  I n  l a rge  pa r t s  of  the flow f i e l d  i t s e l f  the e r ro r s  

&re  en,ormously large,  a t  l e a s t  f o r  a cone, the only case f o r  which a more 

re f ined  theory is  ava i lab le .  

These r a t h e r  discouraging r e s u l t s  about the v a l i d i t y  of 1inear.ized 

theory 'make t h e  search f o r  more advanced methods of calcula , t icn for  

the f l o w  around incl ined bodies e s sen t i a l ,  ' i f  r e l i a b l e  r e s u l t s  about t h e  

f l o w  quan t i t i e s  i t s e l f  a r e  wanted. 

Since, even nowadays,'. the  appl icat ion of t r u l y  three dimensional 

methods i s  prohib i t ive ,  because of the la rge  time. of ca lcu la t ion  which 

is  required ( t h e r e  may be hoped tha t  t h i s  statement w i l l  be disproved 

within the following f i v e  years ) ,  a more simpla method should be used, 

i f  possible.  

Such a method, which gives  t h e  cor rec t  value of t he  quant i ty  do 
f a r  E - 0  w i l l  be s e t  f o r t h  i n  t h e  following pa r t  of t h i s  chapter.  Its 

pr inc ip le  goal '  i s  t o  present a theory which does not have the disadvan- 

t ages ' o f  the l inear ized  

a r e  w i t h i n  reascnsble l i m i t s .  

m e ,  while the cost  and time of  ca lcu la t ion  

4.2 A f i r s t  order  per turbat ion theory for the ca l cu la t ion  of the 

inv isc id  supersonic flow around axially-symmetric configurations 

with a r b i t r a r y  ax i s  i nc l ina t ions .  

A s  has been shown i n  the f i r s t  pa r t  of t h i s  chapter,  the l inear ized  

- 

method f o r  ca l cu la t ing  the flow around an inc l ined  body - i n  essence 

being due t o  Tsien - does not give much hope t o  obtain r e l i a b l e  r e s u l t s .  



.' 
' Although already at several places in this paper something has been said 
abokt the available, more exact methods, it seems worthwhile, as an intro- 
duction to the general method set forth here, to remind the reader of the 
processes made and the insight obtained thereby. 

After the publication of the paper by Tsien (ref .22), a more refined 
method was given by Sauer in 1942 (ref.26). He does n?t linearize the 
equations, but calculates the shape of a body which gives a rotationally 
symmetric shock wave, which is inclined t o  the free stream. The effects 
of the entropy rise and the non-rotationality of the flow are neglected. 
Since in practical problems almost always the body is given beforehand and 
not the shock wave, this second method, although theoretically less restrict- 
ed, has a great disadvantage..In fact it is only usable for a cone at a 
constant angle of attaok. 

In 1947 a table (ref.9) appeared which gives the numerical values 
of the flow quantities around a cone inclined with respect to the free 

-d stream. The calculations were based on the theory devised by Stone 
(ref.?,). A s  has been discussed in section 4.1.4, this theory assumes that 

J the flow quantities can be given as the sum of the axially-symmetric term 

# 

and a term which depends on the circumferential variable 9 . The boundary 
, conditions on the shock wave and the fuselage are transformed to the po- 
sitions of these surfaces in the axlally-symmetric flow field. 

In fact it is assumed that the flow quantities can be given as a 
power series in the angle of attaok E ,  and in ref.8 only the term linear 
in E ie considered, while in a later publication (ref.24) also the term 
in e' is determined. 

Thus it seems that the slope and the curvature of the lift curve 
for E --0 can be determined exactly. In this approximation the induced 
drag consists of a part due to the streamwise component of the lift 
(E term) and a part due to the disturbance of the axiallpsymmetric flow 
field by the inclination ( E ~  term). 

2 However, the theory given f o r  the determinatlon of the term in E 

lacks mathematical soundness, at least in the neighbourhood of the SW 

face of the cone. 
Mcraover, in 1951 Ferri pointed out a fundamental inconsistency 

4 in the assumptions on wbi:h the theory for the term in E was based (ref. 
12). In ref. 8 it is assumed namely that the entropy in the inclined flow 

I, 



f i e l d  can be given as the sum of t he  axially-symmetric term and a l s o  a 

term which depends on t h e  cosine of t he  ci rcumferent ia l  angle (c) . This 

would mean t h a t  t he  entropy i s  not constant a long the surface of the  cone, 

which is the case i n  the r e a l  s i t ua t ion .  In f a c t  there  should be a dis-  

cont inui ty  i n  the entropy along t h e  surface of t he  cone. This means tha t  

t he  cone is a singular surface f o r  t h e  entropy d i s t r i b u t i o n  and t h a t  the 

assumption of ref.8 i s ,  therefore ,  inval id .  However, it can be shown that 

the region i n  which t h i s  so c a l l e d  "vor t i ca l  layer" inf luences the 

so lu t ion  of Stone is  very  small and does not influence the  pressure up 
t o  t h e  term i n  c2 ,  although the  ve loc i ty  Components a r e  changed. An ana- 
l y s i s  of t hese  f a c t s  has been given by Wi l l e t t  (ref.27). 

1 

Therefore i t  follows t ha t  w i t h  the exact first order theory of 

ref.8, exact r e s u l t s  can be obtained for t he  lift on a cone a t  a small 

angle of a t t ack ,  i n  s p i t e  of t he  f a c t  that no account i s  taken of t he  

v o r t i c a l  layer. 
There has  been some c r i t i c i sm against the method of Stone, because 

the f l a w  q u a n t i t i e s  are given i n  a transformed space and not i n  the 

r e a l  space. However, the method given i n  sec t ion  4.1.5 for ca lcu la t ing  

the  real flaw f i e l d  from t he  r e s u l t s  of Stone is f u l l y  successful,  as 

has been proved by consideration of t h e  momentum t ranspor t  through a 

sur face  surrounding the cone. . 
After what has been s a i d  about the possibilities of using t r u l y  

three-dimensional methods, i t  w i l l  not be very su rp r i s ing  tha t  an general- 

i z a t i o n  of the methoa of Stone seems the only acceptable p o s s i b i l i t y  

t o  obtain a more r e l i a b l e  ca l cu la t ion  method for t he  flow f i e l d  around 

inc l ined  bodies. 

A first t r y  i n  t h i s  d i r ec t ion  has been made by Ferri, i n  ref.11. 

The treatment given is not very luc id ,  and is not q u i t e  analogous t o  

the  method of Stone. Taro methods a r e  given by Ferri, one tha t  is mostly 

graphical  and a eecond one for a complete numerical treatment. Due t o  

t he  f a o t  that i n  t h e  eecond methot t h e  per turbat ion terms have been 

considered as the only unknowns, t h i s  method y i e lds  the  same character- 

ist ics as t h e  axially-agarmetric flow f i e l d .  The reasoning by which t h i s  

r e s u l t  i e  obtained is somewhat dubious, although t h e  r e e u l t  i t s e l f  is 
probably cor rec t .  It seems advisable  t o  use a more systematic approach,whm, 



for instance,  first the  f u l l  equations for t he  c h a r a c t e r i s t i c  sur faces  

should have been derived, and the rea f t e r  these equations should have 

been l inear ized,  thus avoiding the p o s s i b i l i t y  of an incor rec t  treat- 
ment of the cross ooupling terms. 

It must be remarked here, t h a t  such an e r ro r  does not have any in- 
f luence i n  the  l inear ized  po ten t i a l  theory, because i t  is assumed be- 

forehand tha t  t h e r e  is  no coupling between the  f l o w  f i e l d  i n  the  

axially-symmetric case and the  f l o w  f i e l d  i n  the  inc l ined  case. However, 

i t  does lead t o  f a l s e  r e s u l t s  if t h i s  coupling is  not neglected. The 

difference i n  t h i s  respeot  between t r u l y  l inear ized- theor ies  and the  

f irst  order t heo r i e s  considered here,  can a l s o  be explained i n  t h i s  way, 

t ha t  l inear ized  theory considers t he  l i f t i ng  flow f i e l d  as a first order 

per turbat ion of t he  undisturbed flow f i e l d ,  whereas the  first order 

theor ies  consider i t  as a first order per turbat ion of t he  exact thickness  

flow f i e l d .  

Because of t he  f a c t  t h a t  t h e  first method of re f .11  gives  r i s e  t o  I 

a n e w  c h a r a c t e r i s t i c  network i t  is  not very w e l l  adapted t o  numerical 

oalculat ions,  while moreover both methods a r e  not appl icable  t o  bodies 

I with axie  curvature.  
I From th i s . rev iew i t  w i l l  be c l e a r  now, t h a t  t h e  search has been f o r  

developing a method which is manageable from the  numerical point of view, 

which is  appl icable  t o  bodies wi th  a r b i t r a r y  a x i a l  i nc l ina t ions  and which 

gives  exact r e s u l t s  f o r  the l i f t  i f  t h e  inc l ina t ion  i s  small. 

The method developed i n  t h i s  paper, i s  e s s e n t i a l l y  a genera l iza t ion  

of t h e  method of Stone. Because of t he  f ac t  t ha t  only the first order 

term of the i n c l i n a t i o n  w i l l  be taken i n t o  account, a considerat ion of 

t h e  influence of t he  v o r t i c a l  l ayer  can be left out of the ana lys i s ,  

according t o  t h e  remarks already made wi th  reapect t o  t h i s  subject. 

The ana lys i s  is  based on a transformation from the  r e a l  flow f i e l d  

t o  the  axially-symmgtric f i e l d .  Th i s  i s  done by transforming the  b m -  

dary conditions tha t  have t o  be f u l f i l l e d  on the fuselage and on t h e  

shock wave i n  t h e  r e a l  f i e l d ,  t o  t h e  pos i t ion  of these  surfaces ,  i n  the  

axially-symmetric case. This  transformation can be obtained by using a 

Taylor-series erpansion t o  connect t he  flow q u a n t i t i e s  i n  the- rea l  f i e l d  

with those i n  t h e  transformed f i e l d .  

The oaloulat ion of t h e  transformed flow f i e l d  is  performed along the  

axially-symmetric cha rac t e r i s t i c s .  Though these are not  the character-  



istics of the inclined transformed field, the relations along these latter 
lines can be given in 'terms of the quantities occurring,along the axially- 
eymmetric characteristics, by using again the concept of the Taylor-series 
transformation. 

To have the opportunity to calculate the real flow field, the con- 
nection between the quantities in this field and in the transformed field 
will be discussed. Moreover an expression will be derived for the lift as 
calculated from the momentum transport through a control surface. This 
gives a means to check the calculations, since it should yield the same 
value for the lift as derived by integrating the pressure along the fuse- 
lage surface. 

To start the calculations the conditions at the nose of the body have 
to be knowh. By assuming that this nose is conical the results of Stone 
can be used as a starting point. 

The analysis consists of five main parts. 
First, the caloulation of the quantities at a point of the inside 

field is considered. The equations valid along the characteristics of the 
axially-symmetric field in the transformed field are given. The derivation 
of these equations is given in full, starting from the results obtained 
in chapter 2.  

In the second place, a detailed derivation of the boundary condition 
on the fuselage is given. 

In the third place, the conditions which have to be fulfilled at the 
shock wave are derived from the general shock wave equations given in 
chapter 2. 

These three parts contain the material necessary to construct the 
calculation procedure, which is also disoussed to some extent. 

Finally t h e  method for calculating the rea l  f l o w  field from the 
transformed one is outlined. By applying it to the calculation of the 
lift as an integral over a control surface, it is found that it is not 
possihle to determine this real flow field in a unique way. 

4.2.1 Outline of the method. 
In this section an outline will be given of the fundamental ideas 

underlying the present method. It is assumed that the shape of an axiallp 
symmetric configuration, together with its rotationally symmetric flaw 
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f i e l d  including the  shock mve a r e  given. Such a f l o w  f i e l d  can be cal-  

culated by applying the method of c h a r a c t e r i s t i c s  a s  explained i n  chapter  

3 .  Since i t  is  the  only method ava i l ab le  t o  ca loula te  the flow f i e l d  by 

exact methods, i t  w i l l  be assumed t h a t  ao tua l ly  this method is  used for 
t h e  de t" iMt i0n  of t he  axially-symmetric flow f i e l d .  

li& the  configuration i s  given a small deformation by deforming its 
i W -  i s  of a x i s  by an amount EA (x) where e i s  a small. parameter and 

the  order un i ty  (fig.29).  It i s  assumed t h a t  the c r o s s  sec t ions  remain 

perpendicular t o  t h e  axis .  A spec ia l  *case of such a deformation is a 

body with a constant angle of a t t ack  e .  It i s  obtained by r o t a t i n g  th,e 

a x i s  through the ver tex  of t he  configuration. Up t o  t he  first order i n  

E .  

dx i 

the func t ion 'h(x)  i s  determined by x i n  t h i s  case. 
. ,  

As has a l ready  been s a i d  i t  would be possible  t o  construct t he  flow 

f i e l d  by using the  method of c h a r a c t e r i s t i c s  i n to  t h r e e  space coordinates.  

Hmever, up t o  now, the numerical appl ica t ion  of such methods i s  scarce ly  

known and the .ac tua l  computation remains a tremendous task,  even f o r  

high speed computers. 

Therefore, i n  t h i s  paper, a method i s  derived whore the flow quan- 

t i t i e s  generated by the deformat ion~are  considered as per turbat ions on 

the  already known, axially-symmetric flow f i e l d .  It i s  assumed t h a t  the 

t o t a l  value of t he  flow q u a n t i t i e s  can be wr i t t en  a s  a power s e r i e s  

i n  the small quan t i ty  E :  Here, we w i . 1 1  r e s t r i c t  ourselves t o  the  term 

tha t  i s  l i n e a r  i n  E .  

I 

To make the method a rp l i cab le  from the numerical point of view, i t  

wpuld be des i rab le  t o  be a b l e  t o . c a l c u l a t e  simultaneously the axial ly-  

symmetric flow f i e l d  and the  flow f i e l d  due t o  the deformati.on. However, 

at first s i g h t ,  t h i s  may seem a r a t h e r  s t range des i r e .  .For t h i s  would be 

possible  only if the boundaries' of t he  flow f i e l d s  were the same f o r  the 

two f i e l d s  t o  be calculated,  whereas i t  is  obvious t h a t  t h i s  i s  not t rue .  

One of the main points  of the method therefore  i s  the transformation 

of the conditions va l id ' on  the deformed surface of the body and on t h e  

deformed shook wave t o  ccndit.ions along the axially-symmetric boundaries 

of t he  f lm  f i e l d ,  just a s  t h i s  has been explained f o r  the case of t he  

'cone i n  the  foregoing s'ections. 

Now the  deformation of the body i s  a known funct ion of t h e  coor- 

dina t e s  . 



As will be SA" in section 4.2.3 it proves to be of the form 

dx t 0 (E coscy) 

dr I 0 (E cos c y )  
(4.48)a 

(4.48 )b 
The deformation of the shock wave is a still unknown function of the 

coordinates. By m a k i n g  an assumption about the relation between the 
axially-symmetric and the deformed shock wave, an unknown function a ( r )  
is introduced which enables one to present the deformation as follows: 

dx = 0 (Ea cos+) (4.49b 
dr = 0 (Ea cosCy) (4.49b 

The equations (4.48) and (4.49) now strongly suggest that the total 
velooities can be written as the sum of an axially-symmetric term and 
a perturbation term depending upon cos $ and sin (I . It is therefore 
assumed that the flaw quantities in the transformed field, i.e. in the 
field where the boundary conditions are given along the axially-symmetric 
boundaries, have the following form: 

U1 = U + EU" COS (4.50)a 

v1 = v + EV" 00s 0, 

p1 = p + EP" cos(() 
p1 - p + E p "  cos 0, 

w1 = EW" sin Cy 

s1 = 9 + S" COS v, (4.50)f 
where the first terms in the right-hand side refer to the already known 
quantities in the axially-symmetric flow field. 

By inserting these expressions into the governing differential 
equations, this proves to be a formally consistent assumption, i.e. 
a l l  the terms of the order E have the same trigonometric form. 

From the eqe. (4.50) the bcundary conditions in the real flaw 
field can be written in terms of the quantities occurring in the trans- 
formed flow field by observing that up to the first order in E the quan- 
tities in.the real  f l a w  field are given by, for instance, 



It can be noticed t h a t  due t o  eqs. (4.48) and (4.49) the displacement 

terms a r e ,  a s  they should be, a l s o  of the o r d e r ' s a o s  9.; 
There is only one point  which 'is troublesome. A s  has  a l ready been 

pointed out i n  the introduct ion,  the model given here is not cons is ten t  

with the.requirement of constant entropy along the body. It caxi be shown, 

however, t h a t  t h i s  does not inf luence the  pressure up t o  the f irst  order  

i n  c .  Only the v e l o c i t i e s  have t o  be corrected i n  a emall layer near, t c .  

t he  surface.  These d i f f i c u l t i e s ,  which w i l l  be neglected here, can be i m -  

por tant  f o r  boundary value problems ( r e f  .27). 
The problem i s  now posed i n  euch a way t h a t  the ax ia l lyeymmetr ic  

f l m - f i e l d  and the flow f i e l d  generated by the  deformation of the  body 

can be ca lcu la ted  simultaneously. The domain of t he  ca l cu la t ion  is  the  

eame for both f l o w  f i e l d s .  ~ 

I 
i As has been remarked the ac tua l  calculataons a r e  performed by 

using the  method of c h a r a c t e r i s t i c s .  T h i s  gives no d i f f i c u l t y  'for' t he  

axially-symmetric flow. f i e l d .  But s ince  the  c h s l a c t e r i s t i c s  of t he  

transformed f i e l d  a r e  not t he  same a s  those f o r  t he  axially-symmetric 

f i e l d ,  there  is reason t o  f e a r  a r a the r  complex ca lcu la t ion  scheme. 

This d i f f i c u l t y  can be removed by der iving expressions for t he  

transformed f i e l d ,  which a r e  v a l i d  along the  c h a r a c t e r i s t i c s  of t h e  

axially-symmetrio f i e l d .  This is one o f  t he  main advantages of t h i s  

method, 

After  t he  &termination of the flow f i e l d s ,  the q u a n t i t i e s  ocaurr- 

ing along the  oontour of t he  body can be determined. Moreover, t h e  shape 

of t h e  r e a l  shock can be construoted. Rmvever, i t  is impossible t o  

construct  t he  r e a l  flow f i e l d  i t s e l f .  Although a reasonable assumption 

can 'be  made,.there are no theore t ioa l  means t o  determine t h i s  f i e l d .  

This i s  i n  aocorflar&e with the  r e s u l t s  obt,ained e a r l i e r  f o r  t h e  flow 

around a cone, Just a8 i n  that case, t h e  pressure d i s t r i b u t i o n  along 

the fueelage and thus the l i f t ,  a m  co r rec t  up to; the  first order i n  E. 
This can be assured by. applying a momentum transport  theorem' t o  a 

'control  s&face. The value of the l i f t  as found by these  two d i f f e r e n t  

methods has t o  be t h e  same. Along the  l i n e s  sketohsd above, a de ta i l ed  



derivation and discussion of the method will be presented in the follow- 
ing sections. 

4.2.2 The calculation of t h e  transformed flow field, - 
Xn this section it will be explained haw the quantities u, v, 8 ,  u", 

v", w" and 8" can be calculated in the transformed field. For this purpose 
it W i l l  be assumed that this set of quantities is given along an arbitrary 
surface which does not coincide with a characteristic surface. It is im- 
portant to remark that p, p ,  p" andp" are derived quantities, thus they 
can be calculated once the set of values given above is known at a 
oertain point. 

If it is assumed that the effects of viscosity, thermal conduction 

. 

and diffusion can be neglected and that the gas can be considered as ideal, 
the set of governing relations consists of the continuity equation to- 
gether with the three equations of motion, while a thermcdynamio relation 
gives the expression f o r  the entropy as a function of the temperature 
and the pressure. 

By eliminating all quantities except the components of the velocity 
and the entropy, a system of four equations can be derived composed of 
the welT-kncsr"'potentia1 flow" equation together with the three com- 
ponents of Crocco'e theorem. It must be remarked that tho cccurrence of 
an entropy gradient makes it impossible to define a potential function 
in this case. The equaticns are derived in chapter 2 and are given by 
the system (2.24). 

Since w e  are dealing w i t h  supersonic f l o w ,  the problem is hyper- 
bolic and thus there exist real characteristic surfaces. With a view to 
the suggested way of solution of the problem, it is convenient therefore 
to write the system of governing equaticns in the characteristic form. 

First the direction cosines of the characteristic surface through 
a certain point have to be determined. As is proved in chapter 2, through 
each point three different characteristic surfaces can be traced (in 
fact there are f o u r ) .  It turns cut that they are given by the stream sur- 
faces counted twice and a circular cone with the stream line through the 
point considered as an axis. The semi-top angle of thiE cone is such 
that the ccmponent of the local velocity normal to the cone surface 
is precisely equal to the local velocity of sound. 

1 



By the techniques explained i n  chapter 2 i t  is  possible t o  der ive  

t h e  equations which a r e  v a l i d  along the Charac te r i s t ic  surfaces. They 

contain der iva t ives  along these surfaces  only, making them extremely 

use fu l  f o r  a numerical ca lcu la t ion  of t he  f i e l d .  The f o u r  c h a r a c t e r i s t i c  

equations have been derived and a r e  given by equations (2.4@), (2.41) 

and (2.45). 
Until now only the general  cas8 of a wholly three-dimensional flow 

has been considered. But t he  purpose was t o  derive t h e  equations f o r  t he  

transformed flow f i e l d .  Therefore the expressions f o r  the flow q u a n t i t i e s  

a s  given i n  eqs. (4.50) a r e  subs t i t u t ed  i n t o  the equations eo f a r  obtain- 

ed i n  chapter,two. *om the ana lys i s  a s  given here, n o t  only t he  equations 

v a l i d  f o r  t he  transformed f i e l d  a r e  derived, but a l s o  t h 9  equations v a l i d  

f o r  t he  t r u l y  axially-symmetric f l o w ,  equations which have been used a l -  

ready several  times. To obtain a systematic presentat ion of t he  mater ia l ,  

first the  equations f o r  the oha rac t e r i s t i c  surfaces w i l l  be derived i n  
terms of t he  s e t  of quan t i t i e s  mentioned i n  the beginning of t h i s  

sect ion.  Thereafter these equations w i l l  be used t o  obtain the  appro- 

p r i a t e  r e l a t i o n s  along the axially-symmetric c h a r a c t e r i s t i c  surfaces .  

where (xc,ro)  is an a r b i t r a r y  point of t h e  domain considered. I n  t h a t  

case the  c h a r a c t e r i s t i c  d i rec t ions  C, and 5, i n  a pc in t  of t h e  o i r c l e  

as introduced i n  chapter 2, can be wr i t t en  co r rec t ly  up t o  the first 
order i n  t a s  

Consider a c h a r a c t e r i s t i c  surface through the c i r c l e  x = xo, r r 
0 

, 

Here the  qriantity C7 is  t h e  cha rac t e r i s t i c  d i r ec t ion  f o r  t he  

The c h a r a c t e r i s t i c  d i r ec t ions  a r e  given by t h e  eqs. (2.32)a and 

A t  first equation '(2.32)a w i 1 l . b ~  considered 

axially-symmetric f l o w  f ie ld ' .  

(2.32)b. 
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Using eqs. (4.50) and (4.52) and neglecting second order terms in 
E2 the result can be written as 

v - u C  + €{VI! - mq9-d o s $  21 0 1. 
From this equation the welbknmn result for the quantity Gaan 

be derived togethsr with the expression for the unknown quantity (i ' I .  

ana 

These equations give the directicns of the stream surface. The 
equations for the other characteristic directions are given by eq. 

(2.52)b 

To evaluate this squaticn,et first the expression for the velo- 
city of sound al has to be derived correct up to the first order in e .  

Applying eq. (2.25) there is found 

(4.55) 

Together with the eqs. (4.50) and (4.52) the equation for the 
characteristic directions obtains the follming form 

If the minus sign on the right-hand side oE eq. (4.56) is taken, 
so called "backward running" characteristics (in a plane 9 is constant) 

dr are obtained. They are characterized by a positive slope - > 0. The dx 
expressicn for the axiallpsymmetric slope is given by the part undepeu- 
dent of E and +ea& 

C= %& 
pu-v (4.57 1. 
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Together with eq. (4.57)a an expression for the perturbation term 
G" can be derived from eq. (4.56). After some calculations the result 
can be written as 

where K is, as before, the local hlach-number of 'the axially-symmetric 
flow. 

If the positive sign on 'the right-hand side of 'eq. (2.32)b is taken, 
dr the "forward running" characteristjcs (z.fC0) are obtained. The results 

in this case are given by 

The equations (4.57)a and (4.58)a giving the characteristic 
directions for purely axially-symmetric flow have been used in several 
sections of chapter 3 .  It turns out, from the analysis given, that the 
characteristic directions in the transformed field are different from 
those in the axially-symmetric field. -41011~ these lines the character- 
istic equations (2.4O), (2.41) and (2.45) are valid and thus the flow 
fiald could be constructed by using this set of characteristics. However, 
it is very important from a nmerical point of view, to be able to oon- 
struct the flaw field for the axially-symmetric as well as for the 
transformed field, along the same set of lines. 

The natural set of lines for the construction of the axially-sp- 
metric flow field are the axially-symmetric characteristics. 

Therefore, it is desired, if possible, to replace the character- 
istic equations by differential relations which are valid along the 
axially-symmetric characteristics. bu . bui 1 1 

bx r a+ To do so, the differential quotients - and - -along the 
characteristics of the transformed field, have to be expressed in differ- 
ential relations along the axially-symmetric characteristics. If it is 
assumed, as before, that C2 = 0 and thus that a characteristic surface 
is considered that passes through the cirole x = xo, r - r the 

0' 
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bll. 

W relations - 2 offer no difficulty and can be obtained by differentiating 
the expressions (4.50) with respect to the angulfar variable 9 . 

bui To obtain the correct expressions for - hore care is needed. The bX 
differentiation along a certain direction can be given by 

(4.59) 

where p is the slope of the direction considered. 
Applying eq. (4.59) to the present case gives for instance 

If higher order terms in E are neglected this relation can be 
written as 

This can be simplified further by observing that along the axially- 
symmetric characteristics there holds 

where ? is measured along the axially-symmetric characteristio. 
Applying this equation to eq. (4.60) it follows that 

This relation is the desired expression. It expresses the 
differentiation along the charaoteristics of the transformed field into 
a relation along the characteristics of the axially-symmetric field. 
This may seem surprising since the term - is present, but by using 
eq. (4.61) along the two different axially-symmetric characteristics, 
this term can be expressed as a function of the differential quotients, 
along these oharacteristics. Along a backward running characteristic 
there holds' 

au 
ar 

bU au au 
(y) = -  ax +'bZ bx b 
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Along a forward running characteristic there holds 

au From these two.equations the quantity 5 can be found, viz. 

Now sufficient knovledge is available for deriving the final ex- 
pressions.that are valid for the transformed field along the axially- 
symmetric characteristics. 

and (4.62) 
Along a stream surface there holds, according; to eqs. (2.39) 

The terms independent of E give the equation valid for the axially- 
symmetric flow field, o r  

(4.64)a b S  - = o  
ZIX 
- 

The equation valid for the transformed field is given by 

Using eq. (4.65) together with (4.54)a,(4.5'f)a and (4.58)a, the final 
result can be written after some algebraic operations as 

where the indices b and f refer t o  backward and forward running character- 
istics respectively. 

This equation thus is valid along an axiallJcsymmetric stream sur- 

face. The second relation valid along such a surface is given by eq. 
(2.41). The result obtained reads as follows: 



h!P 2 
1 511)- u - = 0 

87 
- ,, (UU" + U GV" ,+ UCW" + 

On introducing the relation given by eq. (4.54)a for G , this 
equation can be vrritten as 

2 
u- 8w" +I: { llu" + VEVl' + w" ) 4. %) 0 

a: 
The two other equations, valid along the axially-symmetric character- 

istics given by eqs. (4.57)a and (4.58)a, can be derived by using 
equation (2.45). First of all this equation will be simplified by ne- 
glecting a l l  the second order terms in E .  The equation is then given by 

+ sl 
2 

bvl 1, 1 1 bsl al v -u u 
(9 + v 1 k  - u1 K + y(y-1) Cj.1 ET 

(4.65) 
v u  1 1  
a 

2 
1 U -- - 2 Bx 

The derivation of the relation along the axiallJrsymmetric 
characteristics will be given in a fairly complete form in order to 
show how the final and rather simple result is obtained. Using eqs. 
(4.50) together with eq. (4.65) and eq. (4.55) there results f o r  the 
various terms occurring in this equation 

o +  BVl BV BV 
(Ul+U..V1) = ( U O )  - + (u"+U"v+(j~") - E 00s  

a;; b z  
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uv"+vu"+(Y-1)(uu"+w") 

a2 
+ F** -)- av 

ar 

(4.6616 
By taking together the terms that are independent of E ,  the 

characteristic equations far the axially-symmetric flow field are ob- 
g ,  

I tained 

1 (v-uG)u + a 

Vhen w e  is made of the followihg relations 

2 2 (v - u r 1 2  = a ( 1  +G 

and u + v G  = 
a 

the equations can be simplified considerably. Equation (4.67) takes 
the form 



(4.69) hs u+vr -- 3 0 (1 - - )E+-( l -+-  U 1 v2 bv v 1 2 

a bx - + r - m r  a G (3- 

By using the eqs.  (4.67) and (4.68) the equation f o r  the transfcrm- 
ed field can be written as 

u"v-v"u hv u2 bu" iju m" v" - - (1- -?)(-=- +@" -)- - - - , 
b r  r r 1 2  ax a 6x 

The equations (4.69) and (4.70) will now be simplified further by 
using the  expressions derived for the characteristic directions, i.e. 
eqs .  (4.57) and (4.58) and the equation for the radial derivative 
(4.63). When again the indices b and f are used to indicate the backward 
and forward running characteristiqs the following results oan be ob- 

tained. Along the backward running characteristics the equation for the 
axially-symmetric flow is 

2 bu h v  v q (pu+v) = + (pv-u) - - - - + 
6x r pu-v 6x b;; 

The equation for the transformed field, which in obtained after 
some tadious algebraic calculations reads: 
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+ 2 2)2 
r(a .-u 

Along the same lines the result f o r  t,he forward running character- 
istics can be derived. The' equation for the axially-symmetric flow' proves 
to be in this case 

2 
(4.7218 t u  bv v 9 (pu-v) - + (ucpv) - - - 

a; a? 
The equation' f o r  the transformed field along such a characteristic 

ie 'given by; 

Thus complete sets of equations are derived, that are valid along 
the axially-symmetrio oharaoterietice. They give the equations neoessmy 
for the calculation of the f l o w  puantitiee for the axiallpsymmetrio 
field a8 well ae for the transformed field. The set of eaPation fo r  the 
axially-symmetrio flow field is given by the equations ( 4 . 6 4 ) ~ ~  (4.17)a 
and (4.72)a. These are three equations to caloulate the flow qUantitie8 
u, v and 8. These equations 'have been used already at several PlaOee 
in chapter J ,  to study the f l o w  around axially-symmetrio bodies. The 
derivation of these oquatione hae been postponed until this ohapter, 
because t h e  transfarmed field depends on the knowledge of the axially- 
symmetric field.Ae Boon namely as the quantities u, v and s are known 
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the four unknown quantities u",v';w" and 8"of the transformed field can be 
calculated by using the set of four relations given by eqs. (4.64)b, 
(4.64)c, (4.71)b and (4.72)b. In one of the following sections it will 
be shown how the transformed field can be constructed by using these 
equations. Before this, a derivation will be given of the conditions which 
haveto be satisfied on the body surface and at the shock wave. First, 
however, a version w i l l  be given of the equations which have been derived, 
that are valid for the case of isentropic f l o w .  

An interesting simplification of the equations follows if the region 
of interest is separated from the undisturbed stream by a conical or  near- 
conical shock of vanishing strength, such as it will occur for small 
values of the top angle of the nose and for l o w  Kach-numbers. 

In that case it is permitted to neglect the entropy terms in the 
flow equations. ?he set is then reduced to a system of thrae equations. 

In this case, according- to eq. (4.64)c, there holds along a stream- 
line 

Along a backvard running characteristic there is obtained, according 
to eq. (4.71)b 

and along a forward characteristic one has 

1+ 9 &T& 

.', 
u" ] = 0 + v ( uv"-vu" ) + 2 2 2  r(a -u ) 
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T h i s  system is considerably simpler, than the  complete system, 

mcreover i t  can be s implif ied even fu r the r ,  s ince  eq. (4.73) i n  t h i s  

' case  can be replaced by an equation v a l i d  a long every surface i n  the  

flow f i e l d .  This w i l l  be proved a s  the  f i n a l  s t e p  i n  t h i s  inves t iga t ion  

of  the f l o w  equations. I t  may be r eca l l ed  t h a t  f o r  an i s en t rop ic  flow 

f i e l d ,  the usual zero v o r t i c i t y  r e l a t i o n s  a r e  va l id .  These r e l a t i o n s  

a r e  given by the equations ( 2 . 5 4 ) .  Along an a r b i t r a r y  sur face 'wi th  

d i r ec t ion  numbers (G1, - l ,G2)  the  equations (2 .26 )  a r e  va l id .  Using 

these equations i t  can be proved, t h a t  the system (2 .54)  can be combined 

t o  give along an a r b i t r a r y  surface 

(4.75) - -w 
a s  follows by taking n.rot  u = 0 . 

Choosing a point on t h i s  surface f o r  which G 0 and on using 2 =  
the  eqs. (4.50) and ( 4 . 5 2 )  t he re  i s  obtained 

This  equation holds along an a r b i t r a r y  surface and hence a l s o  

along a c h a r a c t e r i s t i s  surface.  The advantage thus is ,  t ha t  i t  i s  not  
necessary t o  use stream surfaces ,  but t ha t  only the use of t h e  backward 

and forward running c h a r a c t e r i s t i c s  i s  needed. 

It should be observed t h a t  f o r  a conical shock of  f i n i t e  s t rength  

such  a s impl i f ica t ion  i s  not possible ,  due t o  the f ac t  t h a t  s 

function of t he  circumferent ia l  var iab le  . Although eqs. (4 .74)  a r e  

v a l i d  i n  t h i s  case,  use has t o  be made of eq. ( 4 . 6 4 ) ~ .  The only simpli- 

f i c a t i o n  r e s u l t s  from the  f a c t  t h a t  s" i s  a constant than. 

i s  a 1 

4 .2 .3  The boundary con t i t i on  on the  bbdy. - 
The boundary condition on any s o l i d  body submerged i n t o  a gas 

flow i s  t h a t  no p a r t i c l e  can cross the  boundary. Or s t a t e d  i n  other 

words: The ve loc i ty  component normal t o  t he  boundary has  t o  be zero. 

T h i s  i s  the only condition which has  t o  be f u l f i l l e d  a t  t h e  boundary 

of the s o l i d  body if the e f f ec t s  of  v i s c o s i t y  a r e  neglected.  

In  a Cartesian coordinate system with correspondingly defined 

components of t he  ve loc i ty ,  t h i s  condition can be wr i t t en  as 
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u c o s  (n,x) + u2 cos (n,y) + u cos (n,z) = o (4 -77 1 1 3 

where n is the normal t o  t h e  surface.  

Before t h i s  equation can be appl ied two problems must be solved. 

First t h e  geometry of the deformed body has t o  be known. I n  the  second 

place i t  should be observed t h a t  equation (4.77) i s  v a l i d  for t he  r e a l  

flow f i e l d ,  whereas the boundary condition f o r  t he  transformed f i e l d  has 

t o  be derived. In the  following exposi t ion first t h e  geometry w i l l  be 

considered and t h e r e a f t e r  t h e  der ivat ion of t he  boundary condition i t s e l f .  

As has been discussed i n  sec t ion  4.2.1 it is  assumed t h a t  the quas+- 

axially-symmetric body can be obtained by deforming an o r ig ina l ly  

axially-symmetric body. 

To t h i s  end it is assumed that the  axis of the body i n  t h e  deformed 

s t a t e  l i e s  i n  the  x, z plane and t h a t  i t s  shape can be given by the 

equa t i on 

z = d h ( X )  with h (x) = 0 for x = 0 (4.78 1 
The cros6 sec t ions  remain perpendicular t o  t h e  a x i s  and at tached 

t o  the same point. This meana that t h e  dis tanoe from t h e  nose of the 

body along the deformed a x i s  t o  a c e r t a i n  cross s e c t i o n  i s  the same as 

t h e  o r i g i n a l  ax ia l  d i s tance  of t h i s  sec t ion .  This s i t u a t i o n  is given 

i n  fig.30. It may be remarked tha t  t h i s  shape can be obtained by bending 

the  ax i s  of the o r ig ina l  axially-symmetric body. 

If a cy l ind r i ca l  coordinate system is used the shape of t he  unds- 

formed body can be given by 

z = r cos$ (4.79)c 

If the  distanoe along the deformed a x i s  is denoted by 8, a t  a 

c e r t a i n  pos i t i on  x", t h i s  dis tance is given by 



A t  t h i s  point t he  r ad ius  of the c i r c l e ,  a s  measured i n  the plane 

perpend'icular t o  the ax i s ,  i s  theref,ore 

Now the problem is t o  der ive the coordinates of such a c i r c l e  i n  

the coordinate system (x, r , $ ) .  To show the  procedure i n  some d e t a i l ,  

terms t o  the  second degree of E w i l l  be re ta ined.  Equations (4.80) and 

(4.81) can then be w r i t t e n  a s  

If now a l o c a l  coordinate system ( X I ,  y', z') is introduaed which 

has its or igin i n  the  poin t  where the  tangent t o  the deformed a x i s  

cu te  t h e  x-axis  ( f ig .Tl) ,  the  equation of the c i r c l e  in t h i s  system is 
given by 

where is the  ci rcumferent ia l  var iab le  as measured i n  the loca l  coor- 

d ina te  system. 

If now t h i s  l o c a l  system is ro t a t ed  through an angle  Y given by 

i t  coincides with the  original coordinate system, except that t h e  

origin hae been s h i f t e d  by m o u n t  I*- h . - 
dx 

The coordinates of t he  c i r c l e  i n  t h e  or ig ina l  system are therefore  

given by 
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whereuse has  been made of the values for s i n  Y and cos Y. To obtain t h e  

f i n a l  r e s u l t  i t  is neoessary t o  s e t t l e  the r e l a t i o n  between m and (I, . 
From eqs. (4.85ja and (4.85)b there  follows 

(4.86) 
If it is assumed now t h a t  q~ can be given as 

q = q + ~ h + ~ ' k  

t h e  q u a n t i t i e s  h and k can be ca lcu la ted  by using eq. (4.86). TO the  

first order i n  E there  r e s u l t s  

I n s e r t i n g  t h i e  r e s u l t  i n t o  t h e  eyatem (4.85) the f ina l  expressions 

f o r  the c i r c l e  considered can be obtained. 

Correct up t o  the first order i n  E they prove t o  be 

y = r s i n  (I, - E h s i n  ~y c o s q  (4.88)a 

(4.88)b 

( 4 . 8 8 ) ~  

If i t  should be neoessary t o  give these formulae co r rec t  up t o  the  

second order  i n  E t h i s  should be equally poss ib le  along the  883118 l inea .  

It will be evident t ha t  t h e  equations (4.88) a r e  v a l i d  for  t he  whole 

sur face  by considering x", and thus r, as running coordinates.  

z = r o o s J ) - c h  c o s 9  2 

+ E 2 r cos+ 52 x - x  
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Acccrdlng t o  eq. (4.77) t he  expressions far the d i r e c t i o n  cosines  i n  
an a r b i t r a r y  point of t he  surface have t o  be known. 

These expressions will be derived by using the  r e s u l t s  obtained i n  t h e  

appendix 

equations (4.88) have t o  be d i f f e r e n t i a t e d  with respect  t o  r and 9 . On 
using eq.A(l1) the r e s u l t  reads  cor rec t ,  up t o  terms i n  E, 

far the geometry of an a r b i t r a r y  surfaoe. Therefore t he  

L 
a22 = r - 2 ~ h  r c o s 9  

Using eqs. A ( 7 )  and A ( l 3 )  there  follows 

cos(n,x)  = - - r + c X c c s ( I I + E r -  ah - dx* 
dx d r  

dx* 2 d2>\ &* 
dx2 dr 

cos(n,y) = - r s i n  + e r  - - cos (I' s i n 9  + 

J 
The equations (4.88), (.4.89) and (4.90) give the required geome- 

t r i c a l  r e l a t i o n s ,  which w i l l  be used when applying t h e  boundary condi t ion  

given by eq. (4.77). 

A s  has been remarked, the boundary condition val id  i n  the transfom- 
ed f i e l d  has t o  be derived. To t h i s  end it  is necessary t o  express t he  

q u a n t i t i e s  ul, v1 and w1 oocurring i n  eq. (4.77) i n  terms of t h e  velc- 
c i t y  components i n  the  transformed f i e l d .  Mow, aocording t o  eqs. (4.50) 
i n  t h i s  f i e l d  t h e  following equations a r e  va l id  
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U1 = U + E U" COS(# 

V1 = V + E V" C O S 9  

E w" s i n $  w1 = 

The v e l o c i t i e s  a t  the surface of the deformed body a r e  then given 

by (see eq. (4 .51))  

(4.92)a 

(4.92)b 

au au 
S 3X ar 

S = v + z  ar 

u = u + - dx + - dr  + EU" c o s y  

+ - dr  + EV" cos(# 3V av dx 

w =  EW" s i n 9  ( 4  -9210 S 

where the  index 8 r e f e r s  t o  the  surface.  

Herein dx and dr a r e  the a x i a l  and r a d i a l  dts tances  between COP- 

responding points  of t he  deformed and undeformed surface.  These distan- 

ces can be obtained by comparing eqs. (4.88) w i t h  (4.79). The r e s u l t s  

are : 
r 

(4.94 )a dh  dx = E - dx 

dr -E c o s y  (4.94)b 

r c o s 9  

Herewith the  eqs. (4.92) can be rewr i t ten  a s  

These expressions give the veloc i t ies  a t ' t h e  surface of the de- 

formed body, correot up ' t o  terms i n  E .  

The problem a t  hand i s  t o  t r a n s l a t e  t he  boundary condition for 
t h e  r e a l  flow f i e l d  a t  the surface of the deformed body i n t o  one f o r  

t h e  transformed flow f i e l d  a t  t h e  sur face  of t h e  undeformed body. 

With the a i d  of the r e s u l t s  a l ready obtained, t h i s  will be possible.  
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2 u = Y cos4 - w sine = v cos9 - EW" sin 9 + 3 s  S 

dx ax a r  (4.96)b 

To apply eq. (4.77) it is necessary to express I+ and u in terms of vs 
and ws. The results are: 

J 

I 

U = v sin Q + ws cos (I, = v sin 9 + Ew" 00s C# sin 9 + 2 s 

av - x - + v" cos O, sin 9 + E I r -- ax ax a r  " 1  

dx* 
dr - A - ) +  

+ r F ( r  - - - X - + v") 

dA 2 d% dx* + d cos9 v(r - + r -- { .dx &2 ds 

dx* aV d h  av 
ax dx a r  

(4.97) 
The first part of this equation which i s  independent of E gives 

the bbundary ccndition f o r  the purely axially symmetric field, or 

(4.98) dr 
dx v = u -  

The second part of eq. (4.97) gives the boundary condition f o r  
the transformed field, since all the quantities occurring in it are 
referring to this field. Using eq. (4.98) the condition can be written 
as 

(4.99) 
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This equation although giving the correct boundary condition is, 
however, not very useful for numerical calculations since it contains 
the partial derivatives of u and v. 

However, themcan be written in terms of derivatives along the 
fuselage by using the continuity condition and equation (4.98). On 
using the following relations thet are valid along the fuselager 

du au a~ dr 
dx ax a r  dx 

dv av av dr 
dx ax ' 

- = - + - -  

-_- and 

equation (4.99) can be transformed into I 

(4.1cO)a 

(4.100)b 

au dr 3v 
a r  dx a r  The term - - - - will now be brought into a more suitable form 

by using the continuity equation for axially-symmetric flow (3.44)a. 
Together with the condition (4.98 ) the following equation, valid along 
the surface of the body is obtained c 

Using eq. (4.lOO)a it follows that 

by different- dv Moreover - can be expressed in terms of u and - dx dx 
iating eq. (4.98).  The result is 

" 
dv dLr du dr -=u-+-- 

2 dx dx dX dx 
Introducing eqs. (4.103) and (4.104) into the boundary condition 

(4.101) the resulting expression is 
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Taking together 80118 terms the final result is 

This expression is the required formulation of the boundary con- 
dition along 
that only the first two terms contain the unknown functions v" and ut', 
whila the complicated rest of the equation can be caloulated as soon 
as the axially-symmetric field and the function )r are known. 

angle JS will be derived. If the angle of attack is equal to E the 
function A i s  given by 

the fuselage in the transformed field. It should be remarked 

As an example the boundary condition for a cone with semi-top 

X P  X 

The equation of the cone reads 
r = x ootJs 

The boundary condition for a cone proves to be then, 

du 
dx where use is made of the fact that along the cone surfaoe - = 0. 

It can be shown that this equation is identical with the boundary 
condition derived by Stone in ref.8. 

To finish the derivation of the equations necessary to construct 
the transformed field, in the following section, the conditions valid 
at the shook wave will be derived by applying the general equations ob- 
tained in chapter 2. 

. 



4.2.4 The boundary conditions a t  t h e  shock wave. - 
One of t he  most important phenomena tha t  occur i s  the change i n  t he  

shape of t h e  shock wave due t o  the f l o w  around the  deformed body. To de- 

termine t h i s  f l o w  f i e l d  i n  a unique way c e r t a i n  conditions have t o  be 

s a t i s f i e d  a t  t he  shock wave. Since the problem has been reduced t o  the  

determination of t b e  transformed flow f i e l d ,  the boundary conditions a t  

t he  r e a l  shock have t o  be given as conditions f o r  the transformed f i e l d  

a t  t h e  pos i t ion  of the shock f o r  the undeformed body. 

First of a l l ,  t h e  geometry of the shock wave has t o  be determined. 

A s  indicated i n  fig.32 t h e  shape of  the deformed shock wave has  been 

derived by r o t a t i n g  the cone tangent t o  t he  axial lpsymmetr ic  shock wave, 

a t  the point under consideration, through an angle Ea around t h o  ver tex 

of t h i s  cons i n  the xz plane. This assumption is ,  a s  w i l l  be shown, i n  

accordance wi th  th s  analysis  up t o  terms of t he  order E .  The func t ion  a 

depends on t h e  r a d i a l  va r i ab le  r and is, as ye t ,  an unknown quant i ty .  

The v e l o c i t i e s  a t  t he  point P '  of t h e  deformed shock can be derived 

by using equations similar .to eq. (4.51). The geometry of t he  deformed 

shock surface can be derived analogous t o  the inves t iga t ion  given i n  
t h e  preceding section. It i s  given by 

y = r s i n  (r) - E U  r cot s i n  c o s 9  (4 .lo7 )a 
2 

4 
(4 .lo? )b E = r c o s 9  - E a  r c o t  Jw cos qJ 

(4.107)c 
A x = x (r)  + E I  a c o s +  

whereJW denotes the  semi-top angle of t he  l o c a l  tangent cone t o  tha  

axially-symmetric shock surface.  

From these equations is r e a d i l y  derived t h a t  the loca l  deformations 

a r e  given by 

dx = E r a cos+ 

dr  = -E. r a co t  J, cos(1, 

( 4 . 1 @ 8 ) ~  

(4.108)b 

Herewith the equations f o r  t he  v e l o c i t i e s  prove t o  be 

(4 m 9 ) a  

(4.109)b 

au cot JW c o s 9  + CU" cos? u1 = u + car {- - - ax ar 
cot  GW\ c o s y  + EV" cos(# ifv av v1 = v + E a r  [- - - ax a r  
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From a numerical point of view the occurrence of the partial deri- 
vatives is undesirable. Just as before they can be eliminated by using 
the derivatives along more suitable lines. In this case use w i l l  be made 
of the derivative along the shock wave and along a characteristic. 

Along a backward running characteristic one has 

and along the shock ways 

au 
ax ar Solving for - and z. from these equations it follows that 

(4.111 )a 

and - 3v . Substituting ax Similar expressions can be derived for 
these expressions into eqs. (4.109) the following relations are obtain- 
ed for the first two equations: 

+ EV" cosy, (4.112)b 
The third equation remains unchanged. 
The conditions which exist at the shock wave can bo given in the 

easiest way by decomposing the uniform velocity before the shock into 
three components, one normal to the shock wave, while the other two 
are tangent to the shock. The relations valid for these components 
behind the shock aa a function of those in front of it have been derived 
in chapter 2. First the equations for the tangential components will be 
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considered. They are, according to eqs. (2.47), given by 

U = ua 
ftl 

U = u  a 
t2 

If the relations given in,the Appendix are used, the direction num- 
bers of the vectors tangent,to the $hock wave are given by 

(4 -113 )b 

ax* Observing that cot I), can be written as , and remembering 
t he  relations between the euclidean and.cylindrica1 velocity components, 
the eqs. (2.47) give rise to the following system of equitions 

and 

-ena(ul-l)sin 9 +VIEar dr sin9 +wl "* c o s y }  = C (4.114)b 

I To obtain the third relation between ul, v1 aqd w1 uee will be made 

of eq. (2.50) 

(G1)Mn 2 +2 
n 1 

U Y + 1  

*a 

2 - = -  

fn %l 

(2.50) 

Now it is eas i ly  verified that . t he  component uf is given by 
n 

u = cos (n,x) (4.115) 
fn 

2 .  
n Then M IS given by 
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To apply the  eqs. (2.50) and (4.116) t h e  expressions f o r  t he  

d i r ec t ion  cosines have t o  be der ived.  According t o  eq. A ( 7 )  they are 
given by 

dxY + r a  - ) c o s 9  d2x* + + r -- 2 
dx* 

d r  co.gs.) x = - rb -e (a  - dr dr dr 

-sa - d r  c o s q }  (4.117)a 

From these equations there  fol lows f o r  t he  Mach-number Mn 
2 +  

1rn = s in2  Jw ( a  dx* + r - da - dx* + r a  s) cos 9 + dr  dr  
2 

1 2 *  
a s in2  J cos (O 

+ 2Era z- 
NOW eq. (2.50) can be w r i t t e n  i n t o  the  following form : 

2 

ycos(n ,x)+(v ls in+ +wlcos 9 )cos(n.y) 
( V+l )En 

cos(n,x) (Y-l)Kn 2 +2 

+(vlcoso) -wlsin (y)coe(n,z) (4.119) 

By using eq. (4.115) together  with eqs. (4.117) and (4.118) t h i s  

equation can be m i t t e n  as follows: 

2 *  a x  
dr 

+ r a  - )cos$ -&a - da dx* + r -- dr d r  2 d r  
ax* 

d2x* 2 *  dx* da dx* +ra -)cos9 +2cra + a i n 2 J c o s q  
d r  2 +r - - 

d r  d r  d r  
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e W1.0(6) (4.120) 

Since only terms up t o  the  order 6 a r e  inoluded and s ince  w1 is of  
t he  order E according t o  eq. (4.109)c, t h e  term containing w1 oan be 

dropped from eq. (4.120). Bloreover the  term v1 can be eliminated by 

using eq. (4.114)a. Performing these  operations and rearranging the 

result ing cquation f o r  ( ~ ~ - 1 )  t h e  following is obtained: 

1+&,sin2J LE s i n 2 J w ( a  F dx* +r da e r a  dx* 7 d2x* c o a z J w ) o o s ~  
dr Y + 1  + 2 ( 1 ) = -  u1- y+l 2- 

(4.121) 
T h i s  equation gives together  with eq. (4 . l l2)a  the condition8 for 

uf  and u" which have t o  be s a t i s f i e d  a t  t h e  shock. For t he  axially-sy/p- 

metric flow the  fami l ia r  r e s u l t  i s  derived 

(4.122 )a 

and for t h e  transforme6 f i g l d  one has 

2 n  
cos22) ) (4.122)b s i n 2 J w ( a  &* + r - da - dx* 

W + drdr Y + 1  
+ 

To f ind  the  values of V I  and v" use will be made of eqs. (4 . l l2)b 

and (4.114)a, together  with eq. (4.121). For t h e  axially-symmetric flow 
the  following condition is found 



while for the transformed flow the condition is given by 1 

From eq. (4.114)b together with eqs. (4.114)a and (4.121) the con- 
dition for the quantity w" can be derived. It takes the following simple 
form : 

i 

I 
all' W?' 3 - 

s in2Jw 

So far the velocity components of the transformed field u", V" and 
w" are expressed as functions of the axially-symmetric velocity compo- 
nents u', V I  and the geometry of the shock wave together with the 
deformation function a. 

/ 

To complete the discussion of the boundary conditions at the shock 
the rise in entropy given by sq. (2.52) has to be analyzed. The entropy 
rise behind the deformed shock can be written in analogy with eqs. 

(4.109)a ana (4.109)b as 

To eliminate the partial derivatives us8 will be made of the 
characteristic equation along a streamline and of the derivative along 

the shock wave. Thus the following relations are valid: 

u-+ as v - as - 0  
ax a r  



and 

as as 
a r  ax Soiving ' for  - and - and subs t i t u t ing  i n t o  eq. (4.125) gives 
L. 

v+u cotJ ,  ds 
cos J, + €8" cos J, .SI = + == ( d w  

By using eq. (4.118), which gives the quant i ty  Mn and r e t a i n i n g  

only the  terms i n  € . t h e  entropy r i s e  can be wri t t en  as follows: 

sin2$ 
W - Y .  + 4E { 

( y - 1 ) b & s i n 2 ~  W +2 ( r+l)  

d'2x* + r a  - cos da dx* (a+r -) - [ d r  dr dr2 
(4.127 ), 

where use is  made o f  t he  f a c t  t h a t  t o  t he  first order i n  E one has 

Q n ( l  + Ex = Ex 

Comparing eq. (4.127) with eq. (4.126) the q u a n t i t i e s  s and 8" can 
/- 

be obtained. For the axially-symmetric flow the following a l ready  used 

r e l a t i o n  i s  found: 

For the.transformed f i e l d  one has 
L 
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The conditions given by the four  equations (4.122)b, (4.12j)b, 
(4.124) and (4.128)b constitute quite a complicated system, which can 
impede the numerical computations considerably. %is is mainly due to 

the occurrence of the derivatives of u, v, and - . In this connection 
it should be observed that elimination of the partial derivatives of 
u and v is not unique and that another scheme of elimination might lead 
to more usable forms in some cases. 

dr 

In the following section a scheme will be given by which the actual 
computation can be performed in principle. I 

I 
4.2.5 The calculation proqedure. - 

I In the preceding sections the equations for the flow around a de- 
the l formed axially-agmmetric body have been derived in such a way that 

I calculation of the axially-symmetric flow field and the transformed 
flow field can be performed simultaneously. The principal features of 
such a calculation scheme will be discussed here. I 

The method described relies on a step-by-step computation. The 

I flow quantities in a oertain point are derived by using the known quan- 
tities in some other point. To start the computation, the f l o w  quan- 
tities for the axially symmetric and the transformed field along a 
certain surfaoei not coinciding with a characteristic surface, have to 
be known. 

However, the situation encountergd here is different. Certain con- 
ditions are given along two surfaces, namely the body and the shock wave. 
To construct the flow field it is necessary that in this case the f l o w  
quantities are known along a characteristic surface connecting shook 
wavs and body. Since the analysis has been restricted to bodies with a 
pointed nose, it is possible to consider this nose over some distance 
as conical. Then the flow over the nose will be known, sinoe use can be 
made of the results of Stone, Taylor and Maccoll ae discussed before. 

As is indicated in fig.33 the quantities are hence known along 
the backward running characteristic which emanates from the end of the 
conical region. This characteristic will be called the "first character- 
hti0". 
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The numerical method, which in fact reduces the governing different- 
ial equations into difference equations can be splitted into three 
essential parts, namely the calculation of a boundary point, a field 
point and a point cn the shock wave. These will be analyzed subsequently. 
It will be assumed that tbe computation of the axially-symmetric flow 
field is a known technique. 

The calculation of the quantities u", v", w" and 8'' in a boundary 
proceeds as follows. Assume that the points P1 and P2 are l y i n g  on a 
backward running characteristic (in the meridional plane) and that P1 
is itself a boundary point. Now the quantities un, v" and 8" have to be 
determined in the point P lying on the boundary and on the forward 
running characteristic,through P2, provided that these quantities are 
given in the points P1 and P2 (fig.34). Along the boundary the eqs. 
(4.64)b and (4.64)~ are valid. Along the forward running characteristic 
eq. (4.72)b is valid. In the point P itself the boundary condition, eq. 3 
(4.605), has to be satisfied. If the equations are written as difference 
equations a system of four equations for the four unknown quantities is 
obtained. This system can in general be solved, giving the required 
result. I 

3 

' 
To calaulate the flow quantities In a f i e l d  point, it will be as- 

sumed that they are already known in three points of the field (sere 
fig.35). These points are denoted by Q1, % and Q3. They are chosen 
such that the backward running characteristic through Q,, the forward 
running characteristic through Q 
% are cutting each other in the point Q In this point the f o u r  un- 
k n m  quantities u", v", d' and 8'' have to be calculated. 

Again a system of four  equations can be derived, since along 
Q Q eq. (4.72) is valid and along Q1 Q4 eq. (4.71)b is valid, while 
along the stream line 
fied. Thus the flow quantities in a field point can be determined in a 
unique way. Once a new boundary point has been determined, the character- 
istic can be constructed in the manner described here, until the shock 
wave. There, use has to be made of the conditions derived f o r  the flow 
quantities behind the shook wave by applying the procedure sketched below. 

and the stream line through the point 3 
4' 

3 4  
Q4 the sqs. (4.64)b and (4.64)~ have to be satis- 



Assuming that the flow quantities are given in the point R1 in the 
flow field and in the point R2 on the shock wave, the problem is to com- 

pute the velocities in the point R 
running characteristics through Rl (fig.36). 

the quantity a ,  determining the deformation of the shock wave, have to be 
calculated. Thus five unknown quantities u", v", w", e" and a have to be 
determined. From the' last section it follows that in the point R four 
equations have to be satisfied, viz. eqe. (4.122)b, (4.123)b, (4.124) and 
(4.128)b. Noreover along R R 
be satisfied. This gives rise to a system of five equations. Thus the 
required values can be determined. The point R2 is needed in this case to 
give a measure of the value of the quantity . 
way to calculate the flow field. In fact, in the above given scheme the 
calculation is performed a36ng backward running characteristics. This can 
be changed at will to a calculation procedure along forward running 
characteristics. There is no essential difference. It is perhaps needless 
to say, that the whole calculation is performed in the plane 4 = 0, and 
that the quantities in an arbitrary point 9 = (1, 
multiplying the obtained results with the appropriate trigonometric 
quantity, viz. coe 9 

on the shock wave and on the baokward 3 

However, not only the velocities and the rise in entropy, but also 

3 

the characteristic ,equation (4.71)b has to 
1 3  

da 

It will be evident that the above sketched eolution is not the only 

can be obtained by 

or sin (1, 0 .  

The numerical calculation, although only dependent on two variables, 
forme a programme of great complexity. Bo essential difficulties are 
present, however. 

Since all of the caloulations are  perfarmed in the tramformed field, 
in the following seotion something will be said about the calculation of 
the real f l o w  field and on the determination of the lift by using the 
now known mmen?mn transport method. 

4.2.6 On the oalculation of the real flow field and the lift. - 
To calculate the real f l o w  f i e l d  from the transformed field use has 

to be made of eq. (4.51). In order to be able to use this formula, the 
quantities dx and dr have to be known. 

However, theae quantities are so far only known on the fuselage 
and on the shock wave. In the flow field itself no method is available 
to determine these quantities. This is analogous to the statement made 



about t h e . f i r s t  order theory of Stone f o r  the f l o w  round a n  incl ined cone 

i n  paragraph 4.1. A check on t h i s  oonclusion and on the 'whole procedure 

given here can' be obtained by t h e  ca. lculat ion of t he  l i f t  as t h e  def i -  

ciency of the momentum t ranspor t  through a control  surface.  This w i l l  be 

s g t  f o r t h  below. 

The l i f t i n g  force  working on a configurat ion moving thr0ugh.a 

gaseous medium can be derived by two d i f f e r e n t  methods. The usual one is 
t o  i n t eg ra t e  the pressure' along the  fuselage.  However, t he  r e s u l t .  can 

a l so 'be  cbta.ined by considering the  momentum flow through a su i t ab ly  

chosen oontrol E,urfaoe. Yrcm the  point of view of  t he  accuracy of the 

numerical ca lcu la t ions  it is very des i rab le  t o  ca l cu la t e  t h e  same quan- 

t i t y  using t w b  e s s e n t i a l l y  d i f f e ren t  expressions. I n  t h i s  ca.se, where 

o a r e . i s  taken t h a t  t he  flbw quan t i t i e s  a r e  correct  up t o  t he  first order 

in  the small parameter. e ,  these two expressions should be i den t i ca l .  A 

spec ia l  case of such an inves t iga t ion  has ,  a l ready been given i n  para- 

g a p h  ?.1 ivhare for the  case of a cone, compiete agreement between the 

two expressions ' for  the l i f t  was found. 

* 

Iflorewer it is  des i r ab le  t o  have the  expression for t he  l i f t  a s  an 
i n t e g r a l  over a cont ro l  sur face  with a vi" on the appl ica t ion  t o  op- 
timum problems. To der ive suoh an  expression first the  cont ro l  surface 

has t o  be chosen. The mast ocnvenient ohoioe seems t o  be t o  take a pa r t  

of the shock wave together  with an a r b i t r a r y  c los ing  surface '  (fig.372, 
although i n  most cases i t  w i l l  be of advantage t o  consider t h i e  c los ing  

surface as generated by an axially-sgnrmetric charaoter i s t ic '  eurfaoe. 

The p a r t .  of t he  shock wave considered is. denoted by O1 and the  

c los ing  surface .by'02., The coordinate system i s  defined suoh t h a t  the 

x-axis l i e s  i n  the d i r e c t i o n  of t h e  uniform stream velooi ty  U, through 

the ver tex  of the  body. 

The force I, exerted by the  body on the  a i r  is then given by,an 

equation which i s  near ly  i d e n t i c a l  t o  eq. (4.32) I 

(4.129) 
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Herein the  index 1 r e f e r s  t o  the  shock wave and the index 2 t o  the 

c l o s i n g  surface.  Vn is the ve loc i ty  component normal t o  the surface, 

whereas YJ i s  the 

g ives  the angle between the tangent t o  the deformed axis  and t h e  x-axis 

a t  t h e  point where the  c los ing  surface i s  at tached t o  it .  Since t h e  

s o l u t i o n  of t he  problem has been obtained i n  the transformed f i e l d  which 

is  axially-symmetric, the connection between t h i s  f i e l d  and the real 

flow field should be given. 

ve loc i ty  i n  t h e  pos i t ive  z -d i rec t ion .  The quan t i ty  Ea* 

It may he m a a l l e d  t h a t  t h e  r e a l  shock wave can be obtained from 

the axially-symmetric one by applying a transformation, which is i n  
f a c t  a small r o t a t i o n  of t he  tangent cone. Also t h e  deformed fuselage 

is obtained by a given transformation. The assumption is made now t h a t  

t h e  closing eurface is generated by the  transformation of an a x i a l l g i  

symmetric sur face  i n  the  transformed f i e l d .  To this end i t  is assumed 

t h a t  a c e r t a i n  cone with aemi-top angle .Im is r o t a t e d  through an angle 

as indicated i n  fig.58. Here .)b, and am a r e  functions of t h e  r a d i h l  

coordinate  r as measured along the transformed c los ing  surface. It 

must be s t r e s sed  t h a t  sm and am a r e  unknown quan t i t i e s  i n  the flow 
f i e l d .  Only a t  the shock wave and the fuselage these  quant i t ies  a r e  

known. A t  t he  moment no f u r t h e r  aaaumption about Jm and a,,, w i l l  be 

made. 

“am 

F i r s t  of a l l ,  t he  geometry of the  two p a r t s  of the control sur face  

w i l l  be analgzed. The geometry of the  shock wave has been given i n  
s e c t i o n  4.2.4. The geometry’cf t h e  c los ing  surface can be given alcng 
t h e  same lines as 

z = r cos 

y = r s i n  + -ram E cot  Jm cos 9 s i n  

. 
(4.1X))a 

(4.130)b 

+ ram E c o s 9  (4.1JO)c 

The quant i ty  x ”  i s  the a x i a l  dis tance of t h e  transformed ClosiI43 

2 - ram e cot Jm cos (I) 

92 
E - X  

92 su r face ,  x , am andz);, a r e  funct ions of r.  From eqs. (4.130) t h e r e  

follows, by applying the r e s u l t s  obtained i n  t h e  

d i r e c t i o n  cosines of the  c los ing  surface 

Appendix, f o r  the 
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. 
tJ ccs(n,x) = - 1’ [,-E, d (ram cctym)cos J)  -cr am c c  cos$] (4.13l)a P 

cos(n,z)  = - 1 [-r c o s ~ r  ax” d (amr) cos 2 (1, + 

+ cram cct3,  F(coa ax* 2 q-- sin 2 )*ram sin (I, 

- o r  
F 

(4.15110 ‘ 1  
The terms of eq. (4.129) w i l l  noa be ca l cu la t ed  one by one, The 

first integral  Of t h i s  equation can be found by applying the expressions 

derived in s e c t i o n  (4.2.4) f o r  the geometry of the shock wave. It fol- 

lows that ,. 

Thus the f irst  term gives 

2 J p, cos(n,z)dOl = Po0 Cbr Rc (4.132) 

where % is the  quan t i ty  a i n  the point  r o Rc on the  shock wave. The 
second term of eq. (4.129) is very easy, W1 being equal t o  zero, because 

i n  f ront  of the shock wave the stream is uniform and d i rec ted  a long  

the  x-axis. 

Henoe 



The third term will give some more trouble. First the quantity p2 
has to be evaluated. According to the techniques known now, the following 
can be written x 

{ g  a x + $ p r  t E p " C 0 Y y l  1 P2 .= P + 

Using eq. (4.lJO)a this becomes 

The third term of eq. (4.129) can be found by applying eq. (4.154) 
together with eq. (4.131)~. It then takes the form 

Integrating with respect to 9 gives 

By integrating the first term on the right-hand eide partially, 
the following is obtained, 

3 as d Observe now that 2 can be written in terms of and ax 



Substituting this into the expression for I the final result is 3 / p2 ocs(n,z)d02 = -m 2 -psR:au] + 
O2 

Finally the fourth integral'of eq. (4.129) has to be analyzed. This 
is the most complicated term occurring in this expression. First of all 
the expression for the factors occurring in the integrand will be 
given, viz. t 

v!~ = v cos 9 - w sin Cy = 

Multiplying the various quantities with each other and integrating 
with respect to gives 



+ne IC pv[-vk a ( a  r ) - r a c o t y  s } - r 2 a  * dx* ( E - c c t t  $91 d r  d r  m m d r  m dr ax 
RB 

(4  3 8 )  

T c  simplify t h i s  complicated expression, f i r s t  the terms containing 

der iva t ives  of am w i l l  be considered. It should be observed t h a t  presu- 

mably the unknown funct ions am and .$ 
function A i n  the case of the cone. 

can be eliminated, j u s t  a s  t h e  m 

RC 

+ nc J pv*amr (,+cot J~ 
RE 

(4 3 9 )  
du dv If now , and a r e  replaced by the expressions correspond- 

i n g  t o  eq. (4.1J5), t he  following r e s u l t  is obtained 
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/ p 2  VnYO2 = -mpwvw R:a {(l*uf)wcot Jw+vw] + 
O2 

ax" dx* 
+IIE jl I+u I )-v $1 v+pv [ uit-vtt F] +p [( l+u')-v s] (v"-w" )}rdr 

RB 

au 
r ax 

2 RC 
+ne 1 am'* { l+cot .I, g } [ ( l t u ' ) v  +v2 + p - V + pv - + 

RB 

av ar 3 av + p(l+ut) - + 2 pv - dr 
8% 

Taking all terms together in eq. (4.129) gives the desired result. 
Iiowever, first of all the terms containing the unknown quantity am in 
the integrand will be taken together. The result is obtained by using 

eq. (4.136) and eq. (4.140). It reads 
n 

This equation i a  written in such a way that the important features 
can he easily seen. They become apparent when the continuity equation 
and the equation of motion in radial direction f o r  an axially-symmetric 
flow are written down. 

They are: 
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Inserting these equations into eq. (4.141) it follows that 

I = o  
a (4.143) 

h a  to this very important and interesting result, the expression 
for the lift becomes 

2 2 
L = n~ Rc u(p -p )-is RB a* (P,-P,) + w o o  

+ne R~ apwvw uwootJw+vW -e R~ 2 *  a psvsfscat Js+vs) + 2 i  I 

In the case of a cone thie result is in accordance with eq. (4.44) 

The equation fo+ the lift is thus relatively simple and contains 
only known quantities, whereas the total expression was derived by 
using the unknown quantities am and 4,. 
fuselage and, indeed, only these occur in the expression. As oan be 
seen this remarkable result is due to the fact that Iu is equal to zero, 
which in its turn is effected by the occurrence of two of the gwerning 
differential equations fo r  the axially-symmetric flow. This leads to 
the following important conclusion. 

These quantities are only known on the shock wave and on the 

Although it is poasible by the techniques given here to calculate 
the pressure distribution along the contour of a given Puselsge, it iS 
not possible  to calculate the real flow field. Only if an assumption 
is made about the functions am and $, such a calmlation is poas ible .  

There are, however, no means to determine such functions. 
These statements generalize the result already obtained f o r  the 

cone. 

4.2.7 Summary of the investigation of the flow around a deformed 
axially-symmetrio configuration. 

In the seoond paragraph of this chapter a method has been given 
to obtain the lifting properties of a deformed axiallpsymmetrio body.  
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This deformation is caused by rotating the axis. The analysis is exact 
up to the first order in E ,  which is a small parsmeter defining the de- 
formation. 

The influence of the vortical layer is left out from consideration 
because of not disturbing the pressure distribution in an approximation 
of this order. 

The calculation is qet up in such a way that the determination of 
the axially-symmetric flow field and of the deformed flow field can be 
done together. To this end the calculation of the deformed field is made 
in the so-called transformed field. This field is obtained by transform- 
ing the boundary conditions on the fuselage and at the shock wave to 
conditions on the boundaries for the axially-symmetric field. 

* 

The equations governing the flow in the transformed field are 
written in such a way that they become characteristic equations for.the 
transformed field along the axially-symmetric characteristics. 

been given, Acluding the determination of the lift by momentum transport 
considerations. 

A full account of the derivations necessary to use this method has 

The equatione are gilren in such a form that they can be reduced 
immediately to difference equationwfor use in numerical calculations. 
As a start f o r  such calculations the already known results f o r  the flow 

around a cone will be used. 
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Appendix A 

On c e r t a i n  geometric r e l a t i o n s  of an a r b i t r a r y  surface 

I n  t h i s  t h e s i s  a t  several  places the geometry has t o  be known of a 

sc-called deformed surface,  the equation of which is given by r e fe r r ing  

t o  the var iab les  a s  measured on the  undeformed axially-symmetric body. 

I n  general  the d i r ec t ion  cosines and the  element of sur face  a rea  a r e  the 

quan t i t i e s  which a r e  of the grea tbs t  i n t e r e s t .  It seemed advantageous 

t o  present the der iva t ion  of these quan t i t i e s  here  together.  

If the  a r b i t r e r y  surface i s  given by the  fo l lowing  equations, w i t h  

rand 9 considered a s  sur face  coordinates 

x = f ( r , , q )  
Y = g' ( p , ' q )  . .  

z. = h (.r, v )  
t h e  radius  vec tor  can b e  wri t t en  as 

+ -f t p = X.1  + Y.J + 2.k 
- 

A (  1 .a) 
A(1.b) 

A ( 1 . C )  

- *  -.. 
where i, j and k are t he  u n i t  vectors  along the coordinate axes. 

If now the change i n  the vec tor?  is considered by holding r con- 

s tant  and giving an inorement d q  t o  $ and v ice  versa ,  the following 

is obtained 

+ 
As w i l l  be immediately c l ea r ,  t he  vector  dp of eq. A ( 3 . a )  ia tan- 

gent t o  t h a  curve r = constant,  whereas eq. A(3.b) gives  a vector  which 

i s  tangent t o  the curve Q = constant.  

The plane through these two vectors  i s  thus  the plano tangent t o  

t he  surface i n  the  point considered. 

The two following vec tors  tangent t o  the surface a r e  now in t ro-  

duced. 



Nmv a vector normal t o  the surface i n  t h e  point considered can be 
+ 4 

found by taking the vector  product of al and a2. 
T h i s  gives 

A ( 5 )  

It is  not  poss ib le . to  say i n  t h i s  general  case when t h i s  vector  

--c 4 - 
a2 n = a x  1 

-c 
is point ing invards o r  outwards. Th i s  depends on the o r i en ta t ion  of a1 

with respect  t o  a2. Ferforming tho operation indicated i n  eq.A(5) 
gives : 

* 

'io obtain the d i r ec t ion  cosines i t  is s u f f i c i e n t  t o  remark t h a t  

aocording t o  eq. A ( 6 )  i t  can be m i t t e n  

Using the  r e l a t i o n  

2 2 2 cos (n,x)  + cos (n,y)  + cos (n,z)  = I 

i t  fo l lows  t h a t  

A ( 8 )  1 x -  

Thus the form of the  d i r ec t ion  cosines  is now completely deter-  

mined. The element of t he  surface area i s  now immediatoly obtained by 

remarking t h a t  i t  must be equal t o  the absolu te  value of t he  vec tor  

product Of eqS.A(j)a and A(j)b .  It fo l lows  by applying eq.A(8) t h a t  

dG = - a r d +  A ( 9 )  x 



It is perhaps illustrative to show the relation between this result 
and the first fundamental tensor of the surface. According to eqs.A(2) 

and A ( 3 )  the first fundamental .tensor is given by (see f.i. ref.28) 

wher’e a 

and dup = dc), 

is the first fundamental tensor and dua = d r  
a8 

It fo l lows  from B q . A ( l 0 )  that. 

N m  it is known that 

A ( l 1 ) a  

A (  1 l ) b  

A(1l)c 

Prom this it can be concluded that 

A(l5) 
1 x =  - 
F 

Herewith the required relations f o r  the geometry of. the surfaoe 
are  obtained. 



Summary in lhtch. 
In dit proefschrift is het resultaat van een aantal onderzoekingen 

betreffende de suporsone stroming van een gasvormig medium over axiaal- 
symmet,rische- en daarvan afgeleide - lichamen neergelegd. Sij de bestu- 
dering van derEelijke stromi'ngen maakt.men vrijwel steeds gebruik van de 
zogenaamde gelineariseerde potentiaaltheorie, hoewel reeds vrij vroeg'geble- 
ken is dat het gebruik van deze theorie in bepsalde geval.len tot grote'fouten 
kan leiden. Nen beschikt echter .in de meeste gevallsn niet ovsr een betere 
methode van berekening, orndat dit bi jna alti jd leidt tot de behmdeling 
van de oploesing van niet-lineaire dif.fsrentiaalvergelijkingen waarvoor 
elechte in een incidenteel geval een praotisch bruikbare berekenings- 
methode bestaat. 

Enersijds is het van belang, indien mogelijk, een quantitatieve bepaling 
te geven van a3 fcut, die in oen bepaald geval ontstaat door hat toepassen 
van de gelinearisearde thearia en zodoende tot een uitspraak te komen 
over de mogelijke toepasbaarheid van deze theorie. Anderzijds is het 
gewenst in die gevallen, waarin het blijkt dat het gebruik van de gelinea- 
,riseerde theorie tot onjuists resultaten voert, zo mogelijk methodes te 
ontwikkelen die tot een juist.er resultaat voeren. Daarbij zal het gewenst 
zijn deze in een zodanige vcrm t e  presenteren, dat zij gemakkelijk toegan- 
kelijk zijn vcor een nwnerigke berekenine. 

schikt gekozen controle-oppervlakken kan men op eenvoudige wijze een 
quantitatieve waarde voor de gemiddelde fout verkrijgen'die door het ge- 
gebruik van de gelineariseerde theorie ontstaat. Ter toelichtini van de 
waarde en de bruikbaarheid van deze methode wordt een gedetailleerde ver- 
gelijking tussen de resultaten van deze theorie en die van andere, minder 
benaderende theorieh gegeven. 

Voor axiaal-eymmetrisohe lichamen, die volgens hun asrichting worden 
aangestroomd kan'men zulk een vergelijking verkrijgen door gebruik te 
maken van een exakte karakteristiekenmethode. De resultaten tonen aan dat 
in het beschouwde gevkl de maarde van de. gelineariseerde theorie 'sterk 
beperkt is, vooral. wanneer interferentieverschi jnselen belangri jk zi jn. 

lijke golfweerstand bezitten. Iiierbij wordt gebruik gemaakt van de niet- 
lineaire differentiaalvergslljkingen voor isentrope stromine. Door uit te 
gaan van dezelfde massa- en impulsstroom-vergelijkingen, als gebruikt voor 
de studie.van.de toepasbaarheid van de gelineariseerde theorie, kan men 
met behulp van de variatierekening een oplossing verkrijgen. Voor het ge- 
val dat de oppervlakte van de basis van het lichaam is gsgeven zijn 
enige voorbeelden v o w  verschillende Xach&tallen berekend. 

Sij de bestudering van de stroming om axiaal-symmetrische lichamen 
onder invalshoek of met askromming is slechts in het geval van de.kege1 
onner invalshoek een vergelijking mogelijk tussen de gelineariseerde 
theorie en een minder benaderande theorie. Ook hier blijkt dat de gelinea- 
riseerde theorie in de meeste gevallen siechts de orde van grootte van de 
etromingsgrootheden kan geven, doch dat men voor een meer nauwkeurige 
berekening van deze grootheden gebruik zal moeten. maken van.andere, 
betere theoriezn. 

IIet doe1 van de hier vermelde onderzoekingen is daaxom tweeledig. 

Door de massa- en de impulsstroqm te beschouwen met behulp van ge- 

Dit inzicht leidt tot het ondsrzoek van vormen die een zo klein moge- 

http://studie.van.de


Tot dat doe1 wordt hier een methode afgeleid waarbij men uitgaat 
van de volledige vergelijkingen voor een supersone stroming. Het veld 
om een quasi axiaal-symmetrisch lichaam denkt men daarbij te bestaan 
uit het oorepronkelijke axiaal-symmetrische veld en een daarop gesuper- 
poneerde Yerstoring, overeenkomstig de door  Stone opgestelde theorie 
voor  de stroming om een kegel onder invalshQek. Het onderzoek blijft 
beperkt tot termen van de e e r s t e  orde van een kleine vervormingsparametar. 
ZI- cij opgemerkt dat r eeds  Ferri een paging heeft gedaan tot een darge- 
lijke theorie te komen. Het hier beschouwde geval is echter iets alge- 
mener van opzet en sluit mebr aan bij de door Stone gegeven afleiding. 
Speciale'aandacht wordt besteed aan het afleiden van de voorwaarden op 
de romp en ter plaatse van de schokgolf, terwijl met behulp van de reeds 
eerder genoemde impulsstroom-vergelijking wordt aangetoond dat het in 
feite niet mogelijk is een uitspraak te doen over het echte stromingoveld. 
De methode, die het mogelijk maakt de berekening als een karakteristieken- 
methode gebaseerd op de axiaal-symmetrische karakteristieken, uit te 
voeren, is in een zodanige vorm gegeven dat men haar zonder verdere bewer- 
king voor de numerieke bshindeling kan gebruiken. 
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Cones 

Mm=2 

b- 5 

ngp-2. 

w.34 

{*7.50.. 

&=12.5* 

Tnbl s  1.a The quant i ty  K a8 a func t ion  of Mach nllmber M, 
,and semi-angle Js. 

NO 0 R~ a s  given R~ acc. to  7 acc.to acc.to 
2 . .  

. . eq.(3.7) poDU,eq.(3.J2) pdt-eq.(3.1TJ B 
. ,  

1.0000 0.99990 b.lC303 n.10303 

1 * ocoo ' 1.00012 0.0713 9 0.07140 

1.0000 0.99999 0.23577 0.23576 

l.OO0C ' 1.00021 0.18334 0.18337 
1 

2 .O 3 .o 4.0 5.0 

Table 1.b' The quant i ty  g1 as a funct ion of Nach number Em 
ana semi-angle J e ;  

Table 2 
. .  

Comparison of body rad ius  and d r a g - a s  obtained 
by ddfferent  methods f o r  conefi. 



. .  

Table 3 The comparison of the body radius and the drag calculated by different methods'. 



Table 4 The 
and 

quantity j l  as a 
semi-angle. J 

function 

, .  

of Mach number 

4.0 

13-50 



Table 5a Velocitv distribution a l o m  the aft characteristic 
surfacGand the shape of this surface for M w  w 2.5 
RB s 0.0845 Rc = 0.7541 e = 3.2773 

. .  

u-1 

-0.0012055 
-C.0011896 
-0.0011727 
4.0011550 
-0.OOllj66 
-0.0011174 
-0.0010973 
-0.00107bl 
-0.0010539 
-0.0010306 
-0.0010060 
-0.0009800 
-0.0009526 
-0.OOO92 3 5 
-0 .a008925 
-0.0008595 

-0.000786$ 
-0.0007459 
-0.0007021 
-O.OOO6545 

-0.00054 62 
-0.0004 85 9 
-0.0004148 
-0.OoO3378 
-0.0002510 
-6.0001522 
-0.0000386 
0.0000943 
0.0002524 
0.0004448 
0.0006861 
o .0010014 
c.0012000 

-0.0008?43 

-0 .ooo602a 

V 

O.OO274 74 
0.0027842 
0.002823 5 

0.002906E 
0.00295 15 
0.002998C 
0.0030469 
0.0030985 
0.0031524 
0 .OOj2Q94 
0.0032696 

0.0034008 

0.0035491 
0.003 6309 

0.0038129 
0.0059147 
0.0040251 
0.0041453 
0.0042769 
0.0044 218 
0.0045823 
0.0047615 
0.0049634 
0.0051951 
3.0054 576 
3.0056667 
0.0061345 
9.0065820 
Q ,0071428 
Q. 007874 2 

0.0028641 

0 0033 3 32 

0.0034726 

0.003 7186 

3.0083342 

X 

1.72794 
1.77312 
1.81915 
1 .e6519 
1.91124 

2.00336 
2.04943 
2.09551 
2.14161 
2 .18771 
2.23382 
2.27994 
2.32607 
2.37222 
2.41838 
2.4 64 56 
2.51 074 
2.55695 
2.60317 
2.64942 
2.6956a 
2.74197 
2.78828 
2.83462 
2.00699 
2.92739 
2.97384 
5.02033 
5.06687 
5.11347 
5.16015 
3.20692 
5.25301 
5 -27751 

1.95730 

r 

0.75413 
0.7345 
0.7145 
0.6945 
0.6745 
0.6545 
0.6345 

0.5945 
0.5745 
0.5545 
0.5345 
0.5145 
0.4945 
0.4745 
0.4545 
0.4345 
0.4145 
0.3945 
0.3745 
0.3545 
0.3345 
0.3145 
0.2945 
0.2745 
0.2545 
0.2345 
0.2145 
0.1945 
0.1745 
0.1545 

0.1145 

0.0845 

0.6145 

0.1345 

0.0945 



Table 5b Velocity distribution along the aft characteristic 
surface,, and the shape of this surface for Ma= 3.5 
RB = 0.0845 BC = 0.4982 < =  3.0867 

u-1 

-0.0013i)26 
-0.0013017 
-0.00128Jl 
-0.0012637 
-0.00124 55 
-0.0012222 
-0.0011999 
-0.0011765 
-0.0011519 
-0.0011259 
-0.0010985 
-0.0010694 
-0.0010386 

-0.0009708 
-0.000933 5 
-0.0008933 
-0.0008502 

-0.0007529 
-0.0006976 
-0.0006j71 
-0.0005704 
-0.0004963 
-0.0004134 
-0 .OOOj198 

+.0000895 
0.0000555 

0.0004418 
0.0005680 

-0.0010058 

-o.00080~5 

-0.0002130 

0.0002290 
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Table 5c Vclocity distribution along the aft characteristic 
su-face, and the shape of this surface for M o o -  4.5 
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Table 6 Comparison between the  lift on a oone a s  in tegra ted  along the 
cone sur face  and determined from momentum transport  oonsider- 
a t ions  according t o  the  first order theory of Stone. 

- 
J€l 

5 O  

_I 
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3 oo 
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MUl 
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2.4760 
2 3 9 0 7  

4.3002 
3 -4532 

3.8497 

_c 

P 
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0.5712 

__I 

- 
a 
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0.03853 
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C.ll.476 

(momentum 
nR2Cp 8 B cow 

0.007177 
0.03762 
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0.03 89 5 
0.03948 
0.04 014 
0.11471 





FIG.  I THE CARTESIAN AND THE CYLINDRICAL COORDINATE SYSTEMS 
WITH THE ASSOCIATED VELOCITY COMPONENTS. 
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FIG. 7a THE PERCENTUAL DIFFERENCE K OF THE LEFT-HAND SIDE AND THE RIGHT-HAND 
SIDE OF THE MASS-FLOW EQUATION FOR THE CASE QS=t2.5” , M =2. 00- 
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FlG.29 THE AXIALLY-SYMMETRIC CONFIGURATION AND THE DEFORMATION A(x l .  

X -- 
FIG.  30 THE CORRESPONDENCE BETWEEN THE AXIALLY-SYMMETRIC 

__ AND ~~ THE 0UAS.IAXtALLY-SYMMETRIC SHAPE. 

FIG.31 THE GEOMETRY OF THE CIRCLE AT-THE POINT x OF THE 
DEFORMED BODY. 
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SHOCK W A V E  

FIG .32 __~  THE SHAPE OF THE DEFORMED SHOB..CA,VEL FIG .32 THE SHAPE OF THE DEFORMED SHOCK CAVEL 

FIRST CHARACTERISTIC / 
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FIG .33 THE BODY CONSIDERED WITH THE - FIRST CHARACTERISTIC.  
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F 1 6 . 3 4  T H E  BOUNDARY POINT P3: 
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F lG.35 __ THE FIELD .. POINT Q 41 

-- F I G . 3 6  - THE - POINT __ R,_LT . -- THE - SHOCK _. - - WAVE.  - 

F I G . 3 7  LHE CONTROL SURFACE USED TO CALCULATE THE LIFT-  



-__ NG.38 THE'CONNECTION BETWEEN THE REAL AND THE TRANSFORMED 
CLOSING SURFACE. - 






