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REPORT NLR - TR G. 6 

The complete solution for the problem of a ring wing around 
a circular cylindrical fuselage in stationary supersonic flow 

'OY 

P. J. ZANDBERGEN. 

summary. 

The linearized supersonic flow around a ring wing, concentric to a circular cylindrical fuselage, is considcred. Use 

The Ning has an arbitrary rotationally symmetric shape and in  addition has an axial curvature in the vertical 

The solution far the general cas0 can be obtained by suporposition of the eolutions of four more clementmy prebloms. 
These problems are: 

1. ' A case of a rotationally symmctric configuration. The ring wing has a symmetrical thickness distribution with 
respect to r=B, where R is tho ma- radius of the ring wing, 

2. A case of a rotatiomlly symmetric eonfigurstion. The ring wing has a cone angle that is B function of the oxinl 
coordinate, but has no thickness. 

3. Tho axis of ths ring wing has B certain curvature in tho vertical plane. 
4. Tho fuselzge and the ring wing have the same angle of attack. 

First, the pressure distrihution en the ring wing is obtained; onca this distribution is known, it is possible to 
obtain tho pressure distribution on the fuselage by moan8 of certain influeneo functions, such a8 B generalized Ward- 
function and Some analogous functions. 

has bcen made of the Laplace-transform method. 

plane; the fuselago and wing can have different angles of attack. 

No numerical values for these functions are given, although their properties hevo been investigated. 
. .  
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to the presmce of a ring wing with a finite 
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4.4 Solution for a ring wing with a curved axis. 
4.5 Solution for thc case of ring wing and 

fuselage at  the Sitme angle of attack. 
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Appendix A: Derivation of the pressure distri- 
bution on the innerside of a ring 
wing. 

Appendix B: Evaluation of the functions used 
to calculate the pressure distri- 
butions. 

Appendix C : Derivation of the expression for 
the potential behind the wing 
trailing edge. 

5 figures. 

a ( p )  , a* ( p )  , a(p) integration constanb. 
b ( p 1 , b . h )  integration constants. 
c, pressure coefficient. 
c ( 4  
CPf pressure coefficient on fuselage. 
f(p), f'(p), f(p) integration aonstants. 
dP), g%) integration constants. 

shape function of ring wing. 

half the pressure differents on 
the ring wing. 
distribution of ring wing thick- 
ness. 

k, expression given ;by eq. A (9). 
1 ring wing chord. 
2, variable in  transformed plane. 
T cylindrical coordinate. 
t - integration variable. 
u velocity in axial direction divid- 
- ed by V. 
u, velocity in radial dircction di- 

vided by V .  
ut velocity perpendicular to u and 

6 divided by V .  
2 axial coordinate, 
Y axial coordinate measured from 

A'@) 
C'(P) 

- 

ring wing trailing edge. 
Laplace-transform of a'($). 
Laplace-transform of I / (%)  
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modified Bessel-functions of the 
first kind. 
Bessel-functions of the first kind. 
modified Bessel-functions of the 
second kind. 
Mach-number. 
function defined by eq. A (2). 
function defined by eq. A (23). 
influence function defined by 
eq. A (20). 
influence function defined by 
ea. A (38). . .  
&diu of ring wing. 
Laplaee-transform of ~'(z). 
Unit step function. 
factor in asymptotic series cx- 
pansion of Bessel-functions. 
velocity of nndiqturbed flow. 
function defined by eq. B (20). 
Wa rd-f unctions. 
gcneralized Ward-function. 
Kessel-functions of the seoond 
kind. 
influenee function given by 
eq. B (53)s. 
influence function given by 
eq. B (58)a. 
function giving the curvature of 
thc ring wing &is 
= vnr.--1. 
dngle of attack. 
nirac deltafunction. 
cylindrical voordinate. 
integrttion variable. 
bhe i ~ t h  root of eq. A (7).  
tlie flth root of eq. A (27). 
density. 
velocity potential. 
Laplace-transform of velocity 
potential. 
additional velocity potcntial. 
Laplace-tramform of additional 
velocity potential. 9 * 
part  of velocity potcntial inde- 
pendant of 3. . 

prime denotes differentiation 
with respect to independent 
variable. 

1 Introduction. 

I n  the last ,ears mneh work has #been done on 
the problem of a l ing wing concentric to a given 
Enselage. 

Many approaches are possible for the dctermin- 
ation of the flow variables, as for instmee the 
graphical characferistics method of ERDMA" and 
O W A T ~ M  (ref, l) ,  an approximate method by 
VAC DEI% WALLE (ref. 2) and the analytic approach 
of H H ~  (ref. 3) .  

The 'prcssurc distri,bution on the ring wing inner- 
and outer side and on the fuselage can he ol,ta.ined 
by either of these methods. ( '  

On the , b d y  there is a region of influence, due 
to the presxice of a ring wing. This region ean 
be split up in two parts. The first past lies between 
tlie waves emanating from the wing leading- and 
trailing edge. The second part  lies ,behind the first. 

Although the graphical charaeteristiwmethd is 
useful tool in studying the properties of the 

combinations considered herc, i t  does not lead to 
analytical expressions which are generally valid. 
An advantage is the fact that arbitrary forms of 
fuselages and wings can be considered, 

Tlie method of VAN DER \%'&.LE, though giving 
analytical expressions, has the disadvantage of being 
only approximate. To >be able to use the method, 
the flow field around the fuselage alonc must be 
known. The effects of the approximation are felt 
most severely in the second part of the region of 
illfluenee on the # M y .  

Tlie only approach for an analytic solution of 
the problem stated herc, has 'been made hy EHLERS 
(ref. 3) who uses the linearized theory of super- 
sonic flow and m n m e s  the fuselage to be a eir- 
eulilr cylinder. 

1Iowever his work contains a number of errors 
and does not 'give thc complete solution. 

The purpose of the present investigation is to  
derive analytical expressions for the pressure dis- 
tribution on ring wing and fusclage. The fusclage 
is supposed to Ire a circular cylinder, while the 
ring wing ean have an arbitrary shape. 

Though sonic results have tbbeen obtained earlier, 
i t  ww decided to present all results in this report, 
f o ~  the sake of eompletmess. 

First, the pressure distribution on the ring wing 
outer- and inner side will be cibtained. Once this 
distribntion is known, it can be used to calculate 
the pressures 011 the fwelage by means of certain 
influence functions, such as 8 generalized Ward- 
function and some new functions. 

I t  is found, in  contrast to the results ,of E m ,  
that there is also a non-zero pressure distribution 
in the second above-mentioned part of the region 
of influenee on the body. 

2 General considerations. 

It k assumed that tlie lineasized theory is valid. 
This nieans that all disturbations of the free stream 
velocity are m m e d  to be small and that the 
boundary conditions at the ring wing may ,he ap- 
plied to a cylindrical surface with radius E.  
' I n  this case the problem can be stated in terms 

of a velocity potcntial qL, made dimensionlw with 
respect to the free stream velocity V ,  which is a 
solution of the following differential equation : 

.c, 1' and 3 are cylindrical coordinates and /3= vih? - 1. T,he dimensionless perturbation veloci- 
ties are given !by 
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- - - - - heen used as unit.y. To present the complete .wlu- 
tion the following problems 'must he solred: 

lo. the geometry of the configuration is rotation- 
ally symmetric. The fuselage is aligned with the 
free stream velocity V .  The ring wing has a 
symmetrical thickness distribution with respeet to 
r c K ,  where R is t,he mean radius of the ring 

- - - 

Fig. 1. Geometry of ring wing and fuselage in tho ease Fig. 4. Gcometry of ring wing and fuselage in the oa8e 
of 3 rotntionslly symmetric thickness distribution. of e o m m n  sngla of attack. 

in the vertical phase through the fuselage axis: 

To calculate the prcssurc, use will he made of the 1inea.rizd pressure eoefficicnt. This is given !by 

(2.3) a, 
1 ax - pl;' 

2 -  difference lietween local and main stream statiegreswre - _- c,, = 

2 

It, is tht:n possihle to fo im superpositions of the various eases mentioned. The solution of a general casa 
with acbit,rary distributions of thickness, cone angle, and incidence can be obtained in this way. 

To solve t,he aNhove-mentioned problems, use will bc made of the Laplace-t,ransfom method,. We define, 

R 

J 
n 

a? 
as 

Multiplying eq. (2.1) by e- j 'z  and integating from z = 0 to z -+ V I ,  there is obtained, since 'p = - = 0 

for z 5 0 

This angle is defined as the angle between the 

I n  the following scctiona this equation will be solnxl for the various cases by applying the appropriate 
boundary conditions. 
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I Using the convolution theorem, this van 6e written as 

3 The pressure distribution on the ring wing. 

3.1 Solution for the me of ring wing thickness. 

The thickness distribution of the ring wing which is symmetrical with respect to  r = R is given by 

h ( x ) ~ I r ( x ) - R I  r ( 0 )  =R. (3.1) 

T,lie $boundary conditions on the ring wing are 

(3.2) 

(3.3) 

I - dr(x) 
v,=-  = ' <(x) for the wing outer side 

UT = =- T'(z) for the wing inner side 

ax 
- 

The boundary condition on the fuselage is 5 - -0. r-?F- 
Since the flow is rotationally symmetric, the solution is independent of 9. Denoting the Laphe-trans- 
form of ~ ' ( x )  by R'(p) we have to solve the following problem 

- ' 1 -  - 
'PI. Jr - pr-,8*p21p = 0 (a) 

- E(P)  for wing outer side (b) 

- --R'(p) for wing inner side ( c )  

0 for r = l  (d) 

2 
- 

- 
(3.4) 

vr 

(PI 

9, 

- 

- - - 
The general solution of the differential equation is 

- 
Q , , = ~ ( P ) ~ , ( P P ~ )  + ~(P)K,(PP~) (3.5) 

where the index 01 denotes the thickness case. 
Since the potential p must vanish for r + m ,  the coefficient a(p)'must 'be zero for the region outside 

of the ring wing. This is equivalent to saying that only waves travelling outwards downstream are 
present. 

Applying the boundary condition g iven3y eq. (3.4,b) we find for this region 

when the second'index 0 stands for outerside. 
The pressure on the outside of the ring wing is given 'by eq. (2.3) 

X x-,t I'(.t) at + x ) - - p ( T )  2 1 1 
U 

P PR c, *,. (3.7) 

This solution has been obtained 'by WARD in ref. 4. The function W , ,  known as W m ' s  function is 
defined by 

To obtain the solution for the inner side of the ring wing use has to  be made of eqs. (3.4, c) and (3.4, d) 
together with eq. (3.5). It follows that the transformed potential is given by 

where the index i stands for innerside. 



The pressure on the ring wing innersid 
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~ 

is according to  eq. (2.3) - 

In appendix A the evaluation of this expression has been given. Using eq. A(21) the result can be 
written as 

This.result holds for 2(m+ l ) P ( R - l )  > z > Z m P ( R - - ' l ) .  
The function &, is defined by eq. A(20). 

. . ,  3.2 Solution for u conoidaUy shaped ring wing. . 

In this case the ring wing has no thickness, but only rotationally symmetric camber. The geometry 

r = c ( x )  (3.12) 

The only diffeiwce with the problem stat& in eq. (3.4) is that the 'boundary conditions on the wing 

They become 

of the wing is given by 

where r varies only slightly from r = R. 

have changed. 

- 
'pI= C'(p) for wing outer side 

Q,=.?(P) ': for  wing inner side 
(3.13) I' :: , - 

Herein C' (p )  denotes the Laplace-transform of' c'(z). 

by using the cqs. (3.6), (3.7), (3.9) and (3.11) 
Solving the differential equation (3.4, a) with the boundary conditions given ,by eqs. (3.13), we find 

(3.14, a) 

The index 02 applies to the ease of cone angle 

(3.14, b) 

(3.14, c) 

a h e  last equation holds for 2(m + 1)P(R-1 ) > z > Zm@(R-l)  

3.3 Solution for a ring. wing with a curved axis 
. .  

In this case the axis of the ring wing is assumed to have a certain curvature in the plane 'p 5 0. If 

. .  (3.15) 
the equation of the axis is given by 

r = a ( z )  . . ~~ 

. .  

the boundary conditions on the wing become 
- 

(3.16) 
,. v,='p,=.d(x) cos3  for the.wing outer,side ,. . . .  

, !. '. 

- 
v,=~,= .a ' (s )  cos9 for the wing inner side 

(3.17) 
,. , I Separating variables by putting . ,  - - .  

, >  ~. 
. ' 'p=@(xr)cos9 

a n d  applying the Laplace-tra&form method . .  the following equation . .  and: conditions, to be fuGilled by @, 
are obtained 
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. . .  . .  
(3.18, a )  

(3.18, b) S;=A'(p)' for ring wing outer and inner side " 

.~ ~ a9=o for r = l  (fuselage) , . (3.18, e) 

- ,  1 
ra 6, + 1 zr -[- -t pzpa) * = 0 

. .  

- 

where A'@) IS the Laplnce-transform of a'(z). 
The general solution of the differential cilnation is 

- 
'3 = f ( p ) I ,  (Pi+) + S ( P ) l G ( P P ~ ' ) .  (3.19) 

Using the same arguments as in scetion 3.1 it can he conelnded that the coefficient f(p) has to he zero 
in the region outside of the ring wing. Applying the hoiindwy condit,ion (3.18;b) one' gets for this 
region : 

where the index 11 stands for the cme of axis curvature. 
T,he pressure on the outside of the ring wing is given by eq. (2.3) 

Using the convolution theorem this, can he written as 

The function W , ,  mhich has heen discussed in appcnilix B, is defined by 

(3.20) 

(3.21) 

(3.22) 

The solution for the inner side of the ring wing can lie obtained 'hy wing the eonditiom (3.18; h; e) to 
determine the consta,nts f ( p )  and g(p)  of eq. (3.19). 

' !  \ 

. . .  ~. . . One gets: . .  

~~ . 
The pressure distri'bution on the wing inner 'side is blicn, given by 

I n  appendix A this expression has been investigated. The resnlt is given in cq. A(39). Using this equa- 
tion the following expression is obtained 

~. 
I , .  

(3.25) 
T,hhis' result hollds for 2(nz  + l )p (B- l )  > z > Z&(R'-l) .  The function &, is given by eq. A(38) of 
appendix A. . .  

- .  . .  
3.4 ;Solution for  th.e cme oj'ring iuing a& ftis&p-n,t the same A g ~ e  of attack. 

.~ .. . .  , 

If the angle of attack is taken t o h e  y,  the potential 9 can be written as 

It should'be'remarked here that the coordinate system is'fixed.t.0. the b d y .  The first term in this'ex- 
pression is the potential of the fuselage alone at an angle of incidence 7 .  . . .  
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The second tenn represents the additional potential due to the ling wing. - 
The boundary conditions are v,=O, for r = l  and for v=R. Since wV7 is given by 

- 

we get 

- - 0  for r = l  (3.27) a4 
ar 
- 

As can be seen from eq. (3.26) the Laplace transform a; of 0 satisfies eq. (3.15,a). Comparing these 
oonditions with the equations (3.18, h, e), equations for the potential and the prcsure  distribntion can 
lie written down by inspection of cqs. (3.20), (3.21), (3.23) and (3.25). 

For the onter side of the ring wing the expressiom become 

vliere the index 12 stands for the case of angle of attack and 

And for the inner side of the ring wing: 

(3.29) 

(3.30) 

(3.31) 

The last equation holds for'2(m + 1)/3(R-l) > z > 2@(R-1) .  

4 The pressure distribution on the fuselage due t o  the presence of a ring w k g  with a finite chord. 

4.1 Zxtroduction 

In the precctling sections the pressure on the wing inner and outer side has heen obtain&. This has 
l)ecn done hy assuming that the wing chord extends from 5 = O  to z+ cn. In rcality however the wing 
only extends from z 7 0 to z = 1. The solutions obtained so fa r  are  thus valid only in the region hetween 
the waves emanating from the \ring leading a,nd trailing cd,ge: It can he remarked that thesc solutions 
conk1 be wed to oht.ain the pressure on the fuselage in the first part of the region of influcllce: as here 
the correct, 1)oundary condition on the fuselage has  heen fulfilled. 

Elowever tis will 'be shown in the following sections, the prwsnre on the fnselagc can 1x written down 
more easi1.y in teims of the pressure :ind thickncs distrihntion of the ring ming. Thc method wed to  
find this solution will he outlined here. It consists of intrdncing an  additional potential in the 
region behind the wing trailing edge, wllieh has to lie chosen in such it way as to satisfy the conditions 
posed the physical picture. These condit,ions arc : 

1": Then: ca.n he no ,jump in the gutcntial across the xva.ves emaimtiny from the trailing edge 
2': There can he no jump in the radial velocit,y across the wake. 
3': There can h e  no jump in the pressnre across the wake. 
4': The radial relocity is equal to zero on the fnsclage, or written in mathematical terms 

where 1 is the chord of the ring wing. 
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(4.2) 
a,, a, aPai a,< 

a,,, + 3% = a,ai + a,, 
a?/ a!, ay av 

ar 

20: - ar fL=- + - y > O  and r = R .  ar ar ar 

'Phe indices 0 and i refer t,o outer side a,nd inner side of the wake respectively. 

y > O  and r = R .  (4.3) 

(4.4) 

30: ~ 

aQm 40; _- - 0  r = l .  

Introduce the Laplace-tra,nsfonn 
m 

(4.5) 
n 

Using eq. ( 2 . 1 )  together with eq. (4.1) it is found that has to satisfy the differential equation 

Multiplying eq. (4.2) by e-" and integrating from y=O to y +  m gives: 

(4.6) 

The integral may #he writtcn tu 

- 
Substituting this in eq. (4.7)  and^ recalling that 

ar  ar 
0 .  

Applying the same reasoning to eq. (4.3) results i n :  
I 

~ ~ 

(4.9) 
PI - - 1 e--P= 1% - 5.1 d s = p  ( qa, - 'Poo ) , ax ax P @  [%-!AI - - e  

0 

The fourth condition gives: 
- 

--0. aQa (4.10) 
ar 

These equations will be used in the derivation of the additional potential for the subsequent eases. 

4.2 Solution for the case of ring wing thickness. 

The flow is rotationally symmetric. Eq. (4.6) reduces thus to  

(4.11) 

The solution of this eq. is given [by different f o m  for the region inside or outside the surface r - R .  

La = a(p)Ko(ppr) . (4.12) 

Since the potential must vanish if T + m , the solution for the outside is given by 
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T,he solution for the inside is 
- 
p a i c 0 * ( ~ ) Z o ( ~ P r )  + b'(P)&(PPr)  . (4.13) 

With the aid of eqs. (4.8),  (4.9) and (4.10) the solution of the coefficients ab) ,  a'@) and b * ( p )  can 
be obtained. The evaluation of these coefficients has been perfomned in appendix C. 

!@he result is given by eqs. C(5), C ( 6 )  and C(7). 
Substituting these expressions into (4.12) and (4.13) and adding these to eqs. (3.6) and (3.9) a result 

is obtained which is valid in the whole region aft of the Mach-waves emanating from the wing leading 
edge. Tlhis has been proved in appendix C. The resulting expressions are 

1 

- I 'bPR)&'(PP) -K,'(PPR)ZO'(PP) ( p p r )  J e - ~ z  n(x)dx + 
Qo = D R ~ " '  

K,'(pP) 0 

(4.15) 

when g(z) 
The pressure on the fuselage can be calculated by using eq. (4.15) 

is half the pressure differcnce on the ring wing and +(s) is the local )half wedge angle. 

I 

Writing formally / e P L '  g(s)ds= [ e - / * '  ( g ( z ) U ( z )  - g ( s ) U ( z - - l ) } d x  and using the convolution 

theorem this results in: 
0 n 

(4.17) 

I n  appendix B the complex integrals: have been evaluated. Using the results ohtained there, the pres. 
sure coefficient on the fuselage become 

. R )  + 1 1~ + Z- t -p (R-1 )  
c,,t=2R 0 [s(t){U(t)--U(t--l) l  IpZ. ( P 

~ + ( Y + ~ - t - P ( R - l ) ] )  I at .  (4.18) - 
V E  
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Performing the integration gives 

I 
I cient becomes 

This expression is valid if P ( R - I )  > y > p ( E - 1 )  --. For y > @(E-1) the fuselage prcssnre eoeffi- 

With the aid of eqs. (4.20) and (4.19) it is possible tlherefore to  detemnine the pressure coefficient on 
the fuselage in the whole influence region of the ring wing. The pressure coefficient is directly deter- 
mined by the pressure differential 2g(z) across the ring wing and by the local half-wedge angle r'(z). 

4.3 Solution for  a WnOkkd2lJ shaped ring wing. 

In  this case too the potential will satisfy eq. (4.11). The additional potential can he written as in 

Expressions valid in the whole region hehind , the leading edge a.re prcwnted in eqs. C(20, a,) 

1 
eys. (4.12) and (4.13). The derivation of the rsu;tin'g expressi"s has been given in appendix C. 

and C (20, b) . 

where g,(z) is half the pressure difference on the ring wing. 

(4.21, e) with the first term of eq. (4.14), these expres9ion.s are completely identical. 
Using eq. (4.21, b) the pressure on the fuselage can he calculated. &4s can he seen (hy comparing eq 

Hence by using the same procedure applied when deriving eqs. (4.19) and (4.20) one gets 

if p(R--1) > y > P ( R - l ) - l  

and 

(4.22, b) 

if y >  P(R--1). 

Eqs. (4.19) and (4.22,a) give the pressure on the fuselagc in the first part of the region of influcnce. 
The main pai t  is given by the first terms which is the two dimensional result multiplied h y  the factor 
v z  This multiplication factor indicates the focussing effect of the inward directed Mach-wawx 

The second teims can he considered as corrections to  these terms which have trhe effect of advaticing 
in z-direction and thereby distort the purely two-dimensional result. Eqs. (4.20) and (4.22,~b) give the 
pressure in the second par t  of the region of inflncnce. 



1s 

4.4 Sulictiow. for ' u  r ing  wing with a curved nxis 

I n  this case the potential can he written as 

= cos y .  

Eq. (4.6) rediices therefore to . ' 

(4.23) 

(4.24) 

(4.25, a) 

(4.25, lh) 

Ajiplicat.ion of tho  cqs. (4.S): (4.9) and (4.10) gires bhe three equations which detelmine bhe unknown 
qiiant.ities T ( p ) ,  f*(p) i1nd g * ( p ) .  The derivation of these quantitics has 'heen given i n  appendix C. 
.Just, a s  in the former ,$wo ciises, expression for the potcnt,ial result which are valid in the whole in- 

where g,(z) is half the pressure difference hetween wing outer and inner surface. 
1Jsing cq. (4,26,,ti) an expression for t,he pressure 011 the fuselage can he derived 

rJsing the conrolntion theorem this gives 

(4.26, a)  

(4.26, b) 

(4.27) 

(4.28) 

The complex integral has lieen studied in appendix €3. It is ana1,ogous to  the first complex; integral in 
cq. (4.17). 

Applying t.he rcsult uhtained in t.he appendix we ham 

PerfoI"ng. the integration: 
' ~ + i - $ ( r s - i )  

c , , / = 2  l ' F g 2 ( y + L - p ( R - l ) ] + -  ' 1 g * ( t ) Z ,  . ( (y  + z - - t -p (R- l )  , R ) d t  . (4.29) . P  P 1, 

This expression is valid i f :  

P(1Z - I) > :I/ > p(n - 1) - 1 

For {I > P(Zi - I) the pressure coefhient  cjf  i s  given l,y 

The pressure on the.fusela,ge in the case of ring wing axis cuivaturc is given t,lierefore directly by the 
pressure on the  ring wing and a oharncteristie function Z , ,  which has to  he ealeulatod once. 
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4.5 Solution for the me of ring wing a d  fiaelage 
itit the same angle of attuck. 

The solution for this ease is completely identical 
with the solution for the m e  of ring mina,axis - - 
curvature. 

The pressure is thus given by eqs. (4.29) and 
(4.30), if the function g,(t) is replaced 'by the 
pressure differeuce on the ring wing calculated 
with the aid of section 3.4. 
Conclusions. 

Tthe supersonic flow around a ring wing cop 
centric t o  a circular cylindrical fuselage is con- 
sidered. Use has b e n  made of the linearized 
theory. With the aid of the Laplae-transform me- 
thod, the ,pressure distribution on the ring wing 
and the fnselage has been determined for four 
elementary cases. 

By superposition of these cases a more general 
problem can be solved. 

The pressure dist,ribntion on the ring wing has 
been givcn in terms of integrals contnining the 
product of a geometrical parameter and an  in- 
fluence function. Thesc iifluence functions arc 
dependent on only one varit~ble (the axial coor- 
dinates). 

To obtain the pressure distribution on the fuse- 
lage use has to 'he made of the pressnre.distribution 
on the ring wing since it is given in . tenns of iri- 
tegrah containing the pressure difference on the 

- 

ring wing multiplied by an influence function 
dependent on two variables - the axial coordinate 
dnd the radius of the ring wing. The properties 
of these influence functions have been investigated 
m d  expressions convenient for numerical calcula- 
tions are given. 
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i. . ~ ''( APPENDIX A," 

Derivation of the pressure distribution on the inner side of a h g  wing. 

.A,  1 . T h a  . p res sure_d~~r ibu twn- for - the ; ro ta t~o~ , l l~ . - s~mnle t r~c -~e~  -- - -  - - -  - 
~. , 

If it is' assumed that ' the flow is rotittiohally symmetric, the prcssure on the inner side 'of a ring wing 
is given by an equation of the type {3:10). Thus the evaluati,on of the .. folloning . . expression has . . t o  . . he 
considered : . . .~ . 

Introduce the function 

Differentiation of this expression under the integration sign gives an expression Tvhich is not defined 
in the ordinary sense, Since the. integral is diverging then. Eowever it can tbe given a meaning by using 
tihe concept of distribution'functions (ref. 5 ) .  

be performed under the .integration sign. Using the 
convolution theorem the result can be written as: 

In this case the diffeRntiation in eq. A ( l )  may 

... 
I -~ 

1 J .r'(t)Po'(x- t ) d t  A(3) 

. ,  
P o  

Thus the properties of the.following equation have to  be investigated: 
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Introducing p = i h ,  eq. A(4) transforms into: 
--n,+rr 

This integral can he expressed formally as the sum of the residues of the poles of the integrand. 

found to be a The numerator has a pole at A = 0. By expanding the Bessel-functions around X = 0, We residue is 

1 2 R  - ___ 
27ri P(R*-1) 

I The other poles are located at  the zeros of the denominator. If A. is the nth root of 

The numerator of eq. A(3) can be written now a: 

Performing tho differentiation and using the result of eq. A(9) and the relation J,(X)Y:(x) - 
-J,'(X)Y,(x) c - one obtains 2 

X X  

{ f L 2 -  1 ) . A(11) 
d 2 - [ Yi(XP)Ji(XPR) - J , ( V ) Y r ( V R ) l  A=>.n=- 
ah A K ,  

Collecting the residts of eqs. A(6), A(8), A(10) and A(11) it is found that:  

The singularities and discontinuities of Pd(x)  have to  be investigated now. This can he done by oon- 
sidering the asymptotic expmion  of the infinite series. This means the asymptotic expansion of k. and 
A. have to  be derived. The following expressions hold: 
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Using eys. A(13) it can he proved that for a sufficiently large 11 the root A, of eq. A(7) is given 11y 

n w  3 R - 1  
A. = +-- @(E-1)  87hp R .."" 

In deriving the a s p p t o t i c  expansion for k we use bho identit) 

IC, c - __ 2 1 
z A n P R  Jo(LPR)Yx(Ad) - J,(L$)Yo(LP) 

The result can be written hy using eqs. A(13) and A(14) as 

(- 1) *' j - -- 1 ...... 1 
R 

k -- 

Su'bstituting the expansions A(14) and A(16) in ey. A(12) gives 

m 

As the term 0 (E w3:)  does not possess singularities or discontinuities, all the singularities and dis- 

continuities of P((3:) are contained in the second term of eq. A(17). Considering the expansion of S ( 7 )  
it is found that 

, n2 

Using cq. A(Y), A(12) and A(18) : 

(2, is a eontinuons function which cran  be calculated by considering the equation: 

Substitiiting eq. A(19) in eq. A(3) the foUowing relation is obta ind  finally: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - ..... - 

This expression holds for 2(wi + l ) p ( R - l )  > x > 2 ? n / 3 ( R - l ) .  The equation A(21) e m  be proved 
also by the following considerations. The integral A(4) is diverging in the ordinary sense. 

However, using the asymptotic expansion of the integrand of ey. A(4) is is permitted to write: 

The first integral is convergent; the latter can be handled with distribution theory. 
Therefore : 
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1 1 - 
27ri , L ? ( K + l )  

The .other poles are located at the zerw of Y,(ha)J,(hPR) - J,(hp)Y,(XPR) and a t  the ,zeros of 
sin X p ( Z Z  - 1) .  It can be seen by using the results already derived that: 

m + S+(Z) + 2 s [ a-2zrqa(R-11)). 
1 

Suhst,ituting this exprcssion into eq. A(3) it will he seen that the result A(21) can be ubtained again. 
Then we 1iave.provcd in this case, bhat formaly t.aking the residuw in the p o l s  of the inte,gran&, 

without making use of the requirement of convergence of the integral, and making use of the concept 
of dist,ributioii theory, is equivalent to the more ordinary method of integration hy splitting off the 
sing~ilarities. 

A, 2 The prssslire distril~utwn for  the lifting eases. 

It the ring wiiig axis has a certain curvature, and as a consequence is carrying lift> the pressure 
distrihiition on the ring wing innerside is given !by an equation of the type (3 .24)  

Xow, introduce the functioii : 
,,+,a 

Using the sanie argumeuts as in section A. 1 cq. A(22) can bc written as 

where 
" A i _  

The evaluatioii of this function is quite analogous to  tjliat, of the function P,'(z). 
Thus by iutrodncing p=&, one finds: 

The oidy poles of the integrmd are located at the zero'8 of the deriominator. If ,,.,, is t,he nth root of 

Jl(APR)YI,'(AP) - Y,'(XPR)JI,'(W ~ ( 2 7 )  

then -pn is a root also. All the roots occur for real values of A. The sum of the residues of the poles 
a t  pn and -h is  given by: 
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This expression can be simplified by the same method as used in the simplification of eq. A(8) .  
Eq. A(27) gives: 

The numerator of cq. A(28) ean Ibc written as: 

Performing the diffeRntiation gives: 

Considering &e asymptotic expansions of q. and p,,, the propertie.; of P,'(x) can be investigated. 
T,he following expansions are needed: 

Using eq. A(33) it can be proved that the asymptotic expansion of f i  given by:  

mr 7 R-1 +- __ 
P(R-1)  8 m P  ' R  h== 

The asymptotic expansion of qn can be obtained by considering the numerator of eq. A (28). The result is: 

Substituting eqs. A(34) and A(35) in eq. A(32) gives: 

Usiug the result of eq. A(18) one can write: 
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Using eq. A(37), eq. A(24) can be writ,ten as: 

This expression holds for 2 ( m  + l )P (R- l )  > s > 2mp(R-1) 

APPENDIX B. . .  

Evaluation of the ftqtions used to ,calculate the pressure distributions. 

The funetioiw W, and IT,.. 

again together with some remarks, as these evalnatiom form the 'basis of. further considerations. 
The functions 17, has heen ektensively discus&, by Ward. However this treament will be given here 

W, is defined in eq. (3.8) a 

From this definition i t  follows that W,(z) = 0 for s < 0. K ,  has a branch,point at A = 0 and no zeros 
for 1 a r g p  I 5 ?I; the line of integration can be tramformed therefore into the real negative axis 

Sketch 1 Sketch 1 

Using the relations 

i. K , ( p e f 8 " )  =K, (p )  T i71,(p) 

K,(pe*'7 =-KK, (p )  T i ~ I , ( p )  I 
together with the Wronskian-relation one obtains 

Using the asymptotic series of K ,  and I , ,  it can be Shown that this provides the continuation into the 
strip -2 < R ( s )  < 0. To find the Taylor-expansion around s=O the asymptotic series for K,(A) and 
%(A) will be used together with eq. B(1) 

or 
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Substituting this in expression B ( l )  gives: 
o+1m 

1 3 3 63 +---- W,(z) / “’ I& 8p” 128p‘ 2 &  
- 

u-,m 
or 

Bt(6) 
1 3  3 
2 8  16 256 w,(z) = - - 2 + - $2- l z s  + o(z4). . 

This series will converge for I z 1 < 2 since W,(z) is singular at z =.- 2. 

ascending powers of p .  
To obtain the asymptotic expansion of W,(z) the expansions of the Bessel-functions will ‘be used in 

B(7) 

B(8) 
1 - 1  p 

K , ( p ) = - + + -  P A  2 64 

Substituting these expressions in eq. B(1) gives 

1 
+zn2-- p 3 h p  -- ppJ(zup)Z+o.. .  1 d p .  

2 ‘1 2 

Transforming the path of integration according to sketch 2 and on introducing p = u e *’=, one gets : 

W,(z)=-+ 1 - 6 Z*2z--+ 5 ...... , B(9) 
5% 5 4  x’ 

Equation B(3) can be used to calculate the numerical values of W,(z). 
can be derived ‘by rotating the path of integration over the angle 7712. Thus p=&, and 

However another expression 

Using the eqs. 
I 
2 
1 .  
2 
1 

I 
2 

K O ( & )  c - - m  ‘IJo(. \)--i  YOPA)) 

KO(-&) = -d( J&) + i Yo(.\)) 

K,(&)  ---?I 2 IJ,(.\) --i Y I W )  

Kl(-&) =- --?r { J , ( A )  ti  Y;(A)) 
the expression for W,(z) becomes: 
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Since W,(z) -0 fo r  z < 0, if defined as has been done here the result for W,(z) is either 

2 1 IeosAxdX 
b xA J,'(A) + Y,l(h) 

0 

or 

The function IV,(x) is given ,by eq. (3.21) 

K, ' (p )  has two zcrw for 1 arg 1 I x and a branch-point at, A = 0. Transforming the line of integration 
into the real negative nxis and using the relations 

~ , ( ~ ~ i i x )  - - e T n * i g  - "(PI TGZ"(1)) ~ ( 1 5 )  

there is obtained 

d p  
m e-Pz 

- + 2 ni I: RCS. ') 
w l ( z )  = + J K,'Z(p)  + x*Z?(p) p 

U 

It can be shown that lV,(x) according to t,his definition is singular at z = - 2 ,  just as in the ease of 
I.V*(X). 

I n  order to find the Taylor-expansion around x = 0, the asymptotic series will be used: 

4 n2 + 1 X 3 + (4n- 12) (4n2 + 3 X 5 )  K,,'(p) =- (A)'' e - ~  [I + l ! S p  2 ! ( 8 p ) *  + ......I B(18) 
2 P  

Su.hstituting this in eq. B(14) givos 

or 

I 1  5 121 2". TY, (2)  = + 7 + - x - -a9 + - L 8  iti 768 

*) Tho last term in eq. B (16) can he evaluated by observing that tha differontial oquation for &(p) is 

If the zeros of & ( a )  %ro given by a + b i  and o-b i ,  one gets 

Using the differential equation this gives: 

2m x Rea = - 2 eu= [{(a'-b*)(a'-ba.+l)+4a'b'] w s z b - Z a b  sinzb].  
(a'- b'+ l)'+ 4 a'b' 

The numeriosl vslues for ~1 and b %re given in ref. 4. 
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&.; ea11 be proved from cq. B(16) this exp,ansion is valid €or 12 1 < 2. It can be remarked here that 
the function V ( z )  introduced by Ward is equal to :  ' . ! \, 

.V(Z) c 1 - j W1(X)d%. 
n 

Bi(20) 

Performing the integration , 

V ( z ) = 1 - - z B 7 2 * + - @ - - -  1 1 5 121 
2 l b  48 4 X 768 "' 

Ward gives three terms of the expansion, whiah are in accordance with those given above. 

powers of p is used: 
To obtain the asymptotic expansion of W,(s) the following exbansion of Bessel-functions in ascending 

I It 
K,'(p) ==--Kn-Z,,-q. B(23) 

P 
Substitution of this cxpression gives 

W,(r) c + - 
$ 

L - p - p ~ 3 1 ~ ~ p - ( ~ - ~ n 2 ) p 3 - - - - p ~ ( ~ n p ) 2 - - ( ~ - ~ n ~ +  1 p " h p + +  4 . . .  1 d p .  
2 2n-i 

< I - , =  

Transforming tho path of integration, as has been done for lV,(x) : 
m . .  (r 

lv,(z)=+ J - e Z ' d U -  / c - m 2 L 5 h U d t 6 -  e + z u 5 d U f  ... 
0 U 0 

I 01' 

, _ _  .~ __ .... ~ 

To d e r k e q u a t i o m  for the function lV,(x) as a Fourier-sine or eosine-transform, the path of integration 
will be rotated over the angle ~ / 2  suoh that p = iX and the following cqs. will be applied : 

l or 
I 

I .. 
I - _  Hence the final result is: 

1 ~ ! l h x a h  
2 i 

nh J,'(h)Z + Y,'(X)Z lY,(x)=+ - 1-- 
n s m l  

0 
_ _  . -  ' . .  
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. .  The f t l n C t h S  P,'(S) UN4? P:(Z). . -~ 

The Taylor-expansions of P,,'(z) and P;(z )  'at. z=O and in particular thixe of Q 0 ( x )  and &,(z) 
will 'he giiven. It will bc shown that there is a simp10 r ~ l a t . i o n s h i p ' ~ c t w ~ n  Qo(z) and Wv,(-z) and 
hetwecn Ql(z) and IV,(-z) as ,long as 5 2 2 .  . . I I  

To derive the Taylor-expansion the asymptotic expansion of the integrand is ,needed : 

or 

.._._.... etc - (4n2-12 ) (4n2 - 32) 
2!(8z)' 

i 
4 112 - 1 2  

If u"(zl=l- 1 ! 8 2  

K , ( z ) =  ( L ) ' e - B U n ( - z ) .  2 2  . 

Introducing this into eq. B(28) : 

or 

1 This can ,lie written, 8 

i Assuming now, tha t  z < 2 P ( R - l ) , '  the. terms of 0 ( e-z .~@. (n - ' f~  } are very small eompafed . .  to the first 
term and asymptotically negligible. ' I r .  3 .  

I llhe Taylor-expansion for z < 2 p ( R  - 1) around z = 0 is obtjined hy considcring: 

This can be ivritten as 

This can be traasforined into: 1 

where: 
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An expansion is needed for: 

Comparing this with the formula for W,(y), one finds: i 

I The following expa,nsion exists 

U1(- A) - no(- A) a. = x  (-)m- 
VI(--) I A n  

From this equation it can he concluded that.: 

u , ( A )  - Uo(A) = 3 5 
Vl(A) ., A n  

I 
since hy substituting ( - A )  in the second formula,, the first must be nhtained. This gives the restilt 

if W,(y)= 6,yn for y < 2- , then 

R - 1  
for 7J < 2 __ 

T,his means that: \, 

R - 1  m 

0 R 
m 
7 

!fo(y) = z (-)% b,  y" 
0 R 

B(31) 
R - 1  

R W o ( - ~ )  =-TT,(y) for 1~ < 2  ~ < 2 .  
Tberefore it has been proved tha t :  

B(32) 
1 2: 

P ; ( S ) = S + ( ~ )  +-w,(--) if r < 2 p ( ~ - l ) . .  
PR PR 

This gives with eq. A(19) : 

I Thus if the pressure distrihntion on the outer side of tho ring wing is given by 

I the pressure on the inside is given by 
I 

B(35) 
2 1 :  t - x  e,; Y - I ?(z) +-J w, ( T )  ?(qa t  1 as long as z < 2 ( R - l )  
B P R  0 

Physically this means that the result is valid as long as the ring wing innerside is not influenced by 

out fuselage. The result B(35) was already quoted .by Ward in the case of a free ring. His expression 
I the presence of the fuselage. Therefore the pressuie on this side &.the same as if the ring were with- 

.for P d ( x )  is therefore less complicated. 

2.  The Taylor-expression of P:(z) around s=O. 
Consider : 

I on using the relations: 
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and on introducing the asymptotic formulae, the series- expansion around s= 0 can be obtained hy 
considering : 

The numerator can be written as: 

Thus we may write 

In  order to obtain the Taylor-expansion of E','() around $ G O ,  for z < Z P ( R - l ) ,  consider the 
following expressions 

P,'(s) = - J epz dP. B(38) 

n+im 

Uz(PPR) 
1 

0--Im U"(PPR) - __ PPR U,(PPB) 
2 n i  

This can 'be written as: 
1 

1 1 J ,AY A U o ( A )  - -Uv , (A)  -Uu,(A) o + i =  

dA . B(39) 1 P,'(s) = s, (5) - 7 . - 
P R  a - i m  Uo(A) - U ,  (A) 

2 na 

Introducing 
1 

U o ( A )  - UI(A) - U U , ( ~ )  o+im 

dA 1 
1 J .?,VI Tzh )  = - 2 Ti 

a - i m  U , ( A )  - U , ( A )  

and comparing this with the formula for W1(y), the result is: 

1 
A 

a + i m  - U o ( - A ) - -  U1(-i) + U,(-A) 
d A .  1 

A 

W1(y) = + - 1 J e% 
2 ri 

(I-im -Uo(-A) --.U,(-A) 

By t:he same arguments as in the previous case, one can state therefore: 

R-1 
R W,(-y)=-TT,(y) for y < 2 -  < 2  

Hence: 
1 5 

~ , ' ( s ) = ~ + ( s )  +-w,(--)  if s < 2 / 3 ( ~ - 1 ) .  
PR PR 

With eq. A(37) this results in:  

1 2 1 + -w.(--) if s < 2 ~ ( ~ - 1 ) .  
P(R-11) PR PR 

&I(%) 

Thus if the pressure on the outer side of the ring wing is given by:  
5 

a'(%)--/ 1 W, ( - ) d ( t ) d t /  x-t cos9 
PR 0 PR 

the pressure on the ring wing inner side is given by: 
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l 'he ftknction 1v,. 

'Phis function is dcfined according to eq. (4.15) %y 

This function has already hccn considered by Niclsen in ref. 7. EIowcver no further investigation of 
the function is given there. 

To find tho Taylor-expansion iisc is made of the asymptotic series for KO and K, .  Substitution of 
these expressions gives : 

a t i r  

3311'+ 6 R  4- 9 1 
128 Rz PZ 

. - +  
177 R3 + 33 RZ + 99 11 + 75 

1 

I 
1024 R3 P3 

1 d p  + 
or 

To obtain the asymptotic series of 1V,(y,Z1) the integrand has to be expanded around the singdarity 
at p=O. Using the cquations B(7) and B(8) : 

1 + pJ(7np)z+ ...)I' d p .  

Only the terms with Znp and ( 2 % ~ ) ~  are given with their coefficients since these are the terms that con- 
to-the-asymptotic-series,- --..- - - - -  

Integration gives : 

B(47) 
1 2 ( R - 1 )  6 3 8 3(R--1I2 + ,,, + -Zn2Z+-ZnR---+ lVO(!/, R )  = -- 

5 2  z3 x4 x4 x4 2 4  

To ohtain expressions suitable for numerical integration, the path of integration is rotated over 
7r an anglo - .  . .  2 

Thus p = i A ,  and 

Using equations similar to those used t o  derive eq. B(11) one gets: 
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J , ( A H )  J ,  (A)  + Y,(hl2) Y ,  ( A )  } cos A(1i - 1) - { J,(AR) Y ,  (A)  - Y,(AZi)J, (A) ) sin A (  R - 1) , sin AX dh . 
d J I Z ( A \ )  + YI2(A\) B(48b) 

Either of the two equations ca11 be used to calculate the numerical values of TVO(&R).  

The functions Z, and Zl. 

The following complex integral has to bo considered according to  eq. (4.17) 

Thi:: integral can be written as 

As can be seen from the asymptotic expansion of tho Bessel-functions, the first integral of eq. B(50) 
is now convergent, while the sccond can 6c  expressed as a delta function. In  the function Z,(y, R) is 
definod as follows: 

eq. H(50) can he written as 

B(52) 

In this section tho properties of the functio11 Z, (y ,R)  will .be investigated. To find the Taylor-expansion 
around y=O, the asymptotic series for K,,'(p) = - X K , ( p )  will 'be used, as given fhy eq. B(5) .  Sub- 
st,itut,ion of this exprcssioll into eq, B(49) gives: 

~ + { ~ , + ~ - t - p ( R - l ) )  
I q +  VE 

~- 1 Z" ( y + l - - i - - p ( R - I )  

P P 

a+#- 
3 +-- 35 + 5012 + 83RZ + ,,. 1 enldp 

R= 
1 3 5 + 1122 

R 1024 p- Z<,($f, I<) =- 2 T i  
"-la 

To get the asymptotic series of Z 0 ( y , X )  the in teeand  will be expanded around p = O .  Using eq. B(8): 

+ . . . l a p  1 r24--1 1 
K 

Since only the terms with Znp or ( 1 n p ) l  contrihutc to the asymptotic series this can be written as: 
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Performing the integration, the result is: 

R Z - 1  1 3 ( R - l ) ( R Z - - 1 )  1 122-1 zn2y 
12 ~ __ + ... -_ 

R Y4 R 115 
Z,(y, E )  = - - 7+- 

E*-1 3 R4-1 (RZ-l)(R-l)2 
R -  + ) l9--  -- __ + 6 R Z n R - 6  R 2 R  

Since t,he formulas for Zo(y,R) given by eq. B(49) is not in a form convenient for numerical con- 
pntations. integral expressions will be derived for Z,(y,R) by rotating the path of integration, or 

U Y ,  R )  = 

rising the formulae given with eq. B (10) this e m  ,be transformed into 

m 
Y ,  (hIZ)J>'(h) - J,(AR) Y , (h)  . 

sin h '{ y f R - I } dh  . B(55) 
U 

Since &(y, E )  = 0 for y < 0 this leads to: 

Z,(?/, R )  = 

Y,(hR) I ' , (A))cosh(R-l)+ ( Y , ( h R ) J ,  ( h ) - J , ( h R ) Y , ( h ) )  s inh(R-1)  + 
71 JIZ(h) '+ Y,'(h) 

0 

or 

Consi'der now the functi'on 2, , which is defined according to eqs. (4.27) and (4.28) ,by: 

To obtain the Taylor-expansion around y=O, the asymptotic expansion of K,'(p) will he used: 

Therefore : 

or 
1 57-41R 1 195t 594R + 3Q7R2 

R "-2048 R1 Z,(y ,R)  = ~ 

The asymptotic expansion can 'be obtained in the same way as ,has been done for Z , .  
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3 1-R* + -  1 ----(,y-ln2+--)-TZnR 1-RZ 1 1 ]p4Znp-- 
2 RZ 2 

Retaining only terms with Znp and ( l n p ) l :  

1 (1-R2)(R-1j  . 1 1-E2 
2 p%p i- - -- P Y ~ W Y  + 1 1-R2 

2 Ra RZ 4 Ra - - - p 2  lnp  f - Z,(y, R )  % -- 
a - i m  

2 m' 

3 1-R2 1 1-R2 1 1 ( l - I t Z ) ( R - l ) Z  -1 p41np ... 1 d p  R2 

+ - - . I n R +  

1 - R 2  1 

+ - ___ ( 7 - l n 2  + -) - 7nR + - 
2 R2 L 4 

1 I--* 3 ( 1 - R 2 ) ( R - 1 )  +12-- 1-R* __ h 2 z  6 
2 3  112 x' R2 RZ X5 5' 

Z > ( y , R ) = - -  -+ -  

- {21R*-24R+83) -  + ... B(60) 
2R' XJ 

To obtain integral representations of Z,(v, R)ni which arc convenient for numerical computations, i n t r e  
duce p=a in eq. B(57). 
Thus 

z, ( I / ,  K) = 

1 .  
2 Since X,'(iA) = - ni ( J , ' ( A )  - i Yl'(A)], and 

E:(-&) =- -A { J : ( h )  + ;Y,'(u)) 1 
2 

this can be written as: 
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': ,~ . .  
.~ APPENDIX C. 

I ,  

8 

, . .  . ,  . .  < , .  

Derivation of the expression for the potent& behind the &ng trailiq:e&ge. 

. ,  ' C .  1 The first case. , I 

T h e  coefficients a ( p ) ,  q"(p) and b'(p) of the following equations have to. be dctermined: 
~. 

- ,  , - 
Qno =a(P)&(PPr)  

, .  - 
~ ~ o i  =a*(p)l,(ppr) + b' ( f i )K, (ppr) .  ~. 

. ~ .  
. .  . ,  

Using eq. (4.10); the following relation is found: 
. . .  

C(1) 
I,' (PP) b " ( ~ )  =--*(p),  

! , K,'(PP) ' . I , 
. I  

Using eq. (4.8) together with tho eqs. (3.2) and (3.4) ' the following expression is 'obtained: 

2il'(p)ep1-2eepl 

Solving for 2 ( p )  : 

4 i 

epl J' 
e-PZ?'(z)dz. C ( 2 )  

When using eqs. (3.6) and (3.9) and denoting - 3% - ' - a,i ' I J ~  g(s) the condition given ,by ca. (4.9) 
as ax 

2 
f -  

. .  . PP ' K,'(PPz).; . I 
. . ; ; . ~  I : .~ 

. I  

.> !, 

becomes: 
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. . . ,  
1 

, . . .  :, , T'he a.dditiona1 potential is thus given by: 

If eq. C(8) ir compared with eq. (3.6), it is seen that the inversion of the first telm of eq. C(8) will 
give precisely the oppasite of eq. (3.6). Thus these two tenm cancel each other. The remaining part of 
the expression is then valid in the region aft of the leading edge Mach-wave of the ring wing. A similar 
result holcls for eq. C(9) and eq. (3.9). The expressions for the potential valid in the whole region are 
therefore given by 

d check on these equations can he made by considering 

aQo avi 
as ax . 
- _ _  

For r =  R this is equal to: 

x = y + l  

If l > x = t > o t h i s g i v e s  '---=g(x) avo aQi 
ax ax 

.ax ax 
and if x = t > l  this gives aQo ---IO. aQi 

This Aeck therefore yields the correct values for T = R 
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or 

1 Using eqs. (314, a)  and ( 3 . 1 4 , ~ )  togetlier with cq. (4.9) and denoting - ''f" - - "' by g,(z) leads to: 
ax ax 

1 Elimination of & ( p )  with the aid oi eq. C(16) and using the Wronskian-relation gives: 

I The additional potentials are thus given by 

With the same armments as used in section C. 1 ,it can ,be shown when comparing eqs. C(19, a) and 
C(19, b) with eqs. (3.14,a) and (3 .14 ,~)  that the first  terms of eqs. C(19,,a) and C(19, b) cancel ewh 
other. The remaining expressions are valirl in the whole region and are given by: 
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C .  3 The third w e .  

determined. 
In  this case the coefficients f(p), f ' ( p )  and g * ( p )  of the eqs. (4.25,a) and (4.25,h) have to be 

Applying eq. (4.10) it is found that: 

Using eq. (4.8) together with eqs. (3.16) and (3.18,h) gives 

Solving for f(p) gives: 

a*oo a*., 
Substitution of eqs. ( 3 W ,  (3.23), (4.25, a) and (5.25,b) in eq. (4.9) and denoting - - ~ by ax ax 
g , ( x )  gives: 

Using eq. C(23) and t,he Wronskian-relations the final result for g,'(p) is: 

Insert this result into eqs. C(21) and C ( 2 3 )  : 

The expressiotu for the additional potential thus Nhecome: 

Comparing cqs C(27, a) and C(27, b) with eqs  (3.20) and (3.23) and remembering that z=v + 2 it 
can he seen that eq. (3.20) consists the first term of eq. C(27,a) in the whole field. In the same way 
eq. (3.23) is cancelled hy the first term of eq. C(27, b). The resulting expressions thus become: 
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On the determination of optium shapes with finite nose angles 
by 

P. J. ZANDBERGEN 

Summary 

This report presents a method for the determination of axially-symmetric shapes with a given base area that are optimum with respect 
to wave drag in supersonic flow and which have finite nose angles. Use has been made of the exact non-lhear differentialequations for 
supersonic flow together with the shock equations. 

The computed results indicate that the optimum bodies with a finite nose angle have a lower drag than those with cusped noses. This 
would make their practical application of a certain significance. A number of such shapes have been presented in this report. 
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given value of P. 

List of symbols 

a - speed of sound 
q 
r - radial co-ordinate 
u - axial velocity component 
u - radial velocity component 
x - axial co-ordinate 
D -drag 
M - Mach number 

-total velocity non dimensionalized with Crm 

This investigation has been performed under contract with the 
Netherlands Aircraft Develooment Board. 

P - ratio of stagnation pressures of disturbed and 

RB - radius of base area 
Rc - radius of intersection of shockwave and aft- 

undisturbed flow 

characteristic surface 
Um - velocity of undisturbed stream 
B - V M T I  
y - ratio of the specific heats 
7 - variation in u 
OEd - semi-top angle of conical nose 
eW - semi-top angle of shockwave 
A - constant multiplier 
p - multiplier 
e - density; variation in u 
indices 
s - refers to surface; initial value 
w - refers to shockwave 
m - refers to undisturbed flow 

1 Introduction 

During recent years, a number of investigations have 
been carried out to determine the shape of axially- 
symmetric configurations which are optimum with 
respect to wave drag. Such shapes can be determined 
only when a sufficient number of constraints are de- 
fined. The most commonly used constraints are pre- 
scribed values for the base area, the length of the body 
and the Mach number of the undisturbed stream. These 
problems were first studied in the light of linearized 
potential theory (ref. 1). But when it became apparent 
that this theory, especially for interference problems, 
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yields unreliable results, it was decided to use a more 
accurate theory for the description of the flow proper- 
ties. 

Fortunately, the method used in ref. 1 can be ge- 
neralized easily and made applicable to cases for which 
the more exact non-linear differential equations are 
used. This is possible, due to the particular scheme fol- 
lowed in defining and solving the optimum problem. 
The scheme is based on the assumption that the body 
lies in a volume enclosed by a control surface. This 
control surface consists of two parts, namely the surface 
separating the regions of disturbed and undisturbed 
flow and the forward facing characteristic surface 
emanating from the base, the so called aft-character- 
istic surface (fig. I). 

Fig. 1 Optimum body embe'dded in a control volume. 

It is demonstrated that the wave drag and the base-, 
area can be expressed as integrals of a function de- 
pendent on the velocities along this aft-characteristic- 
surface. If the base area is assumed to have a prescribed 
value, while also the radius of the intersecting circle 
of the two parts of the control surface is given* together 
with the Mach number of the undisturbed stream, the 
optimum velocity distribution may be determined by 
solving a set of two ordinary differential equations. 
These equations are obtained by using variational 
theory together with the appropriate characteristic 
eqmtion along the aft-characteristic surface. 

For the case of isentropic flow inside the control 
surface the solution of the problem has been obtained 
along these lines in ref. 2. Since no shock-waves can 
form inside the control surface, the body must have a 
cusped nose generating a compression fan which will 
converge upon the circumference of a certain circle 
outside the region considered. This circle is found to 
coincide with the intersection of the two parts of the 
control surface. This case has'a more theoretical than 

It should be observed that this constraint is identical with the 
wnstraint of a given length when linearized theory is used. For 
the non-linear theory this is no longer true and the length is ob- 
tained = a result of the computations. 

practical value, however, because of the unrealistic 
nose shape. 

Therefore it seems recommendable to develop a 
method for finding optimum configurations with a 
nose of finite top angle. Contrary to the case of zero 
top angle treated in ref. 2 a shock wave will he generated 
by this nose and the flow inside the control surface in 
general ceases to be isentropic. Only in the case of a 
conical shock wave extending at least to the intersection 
of the two parts of the control surface the flow will 
still be isentropic inside this surface. However, the ex- 
pressions for the drag and the base area will change, 
since the ratio of the stagnation pressures of the distur- 
bed and the undisturbed flow is no longer equal to unity, 
due to the increase in entropy across the shock wave. 

It is this particular case that will be investigated in 
the present report. Before proceeding to its solution a 
few general remarks will be made on the interesting 
features of this problem. 

In the first place it is the purpose of this investigation 
to provide an answer to the question whether or not the 
minimum drag will be lower when a shock wave is al- 
lowed to exist. inside the control volume as compared 
to the minimum drag for a cusped-nosed body. Or in 
other words, how does the minimum drag value be- 
have as a function of the ratio of the stagnation pres- 
sures. 

In the second place it should be mentioned that for a 
given Mach number and given values of the radii of 
base and outer edge of the control surface, the present 
scheme does not present a physically adequate solution 
for arbitrary values of the cone angle. This is due to 
the fact that the solution itself provides a set of bound- 
ary conditions, which in essence require the existence 
of a shockwave followed by a compression fan con- 
verging at the juncture of the two parts of the control 
surface (fig. 2). As long as the strength of this compres- 
sion fan is positive a solution exists. The limiting value 
of the cone angle is obtained when this strength be- 
comes zero. Any smaller value of the cone angle hence 
gives a solution of physical significance. When the 
top-angle of the cone becomes greater than the limi- 
ting value, a solution according to the present scheme 

Fig. 2 General view of opthum configuration. 
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is only possible if an expansion fan starts a t  the outer 
edge of the control surface. This, however, could 
occur only if there were a fixed boundary at  the outer 
edge, which in general will not be the case. 
Although we will refrain from considering this in 
more detail, a solution can be obtained by allowing a 
discontinuity in the slope of the contour ofthe optimum 
body, giving rise to an expansion fan. The problem then 
becomes much more complicated due to the fact that 
part of the boundary conditions can only be given in 
numerical form. 

The present report consists of three main’parts. 
The first presents the mathematical formulation of 

the problem. Since most of the necessary formulae 
have been derived elsewhere, no detailed derivations 
will be given. Only the essential differences with earlier 
work will be discussed in some detail. 

In the second part a review will be given of the nu- 
merical methods used iii the actual computation. The 
schemes according to which. the computations have 
been performed will be illustrated by flow-diagrams 
contained in appendix A. 

A discussion of the results obtained will be presented 
in the third part of the report. In fact these results and 
their implications form the nucleus of the presentation, 
and it is believed that this is the first time that a number 
of optimum shapes with finite nose-angle and continu- 
ous slopes are given which are determined by fully 
exact-methods. 

In conclusion a few words will be said about further 
generalizations of the way of approach given here. 
Instead of having a conical nose of such a length that 
the ratio of stagnation pressures is constant along the 
aft-characteristic surface, the problem could be con- 
sidered with this ratio as a given function of the radial 
co-ordinate along this surface. This means that the 
nose of the body will have a finite radius of curvature. 
It should indeed be possible then to obtain blunt-nosed 
optimum shapes. This would constitute a subject for 
further investigations which is highly interesting. The 
numerical computations will be very complicated, 
however, and will require much research in order to 
become practical. 

2 The mathematical formulation and the solutlon of the 
optimum problem 

In this section the mathematical formulation of the 
optimization problem will be given, together with its 
solution by means of variational theory. It is assumed 
that we are considering an axially-symmetric configura- 
tion which is oriented along the x-axis. The radial co- 
ordinate of a point of the flow-field is given by r ,  
while the axial and radial components of the velocity a t  
that point are given by u and u respectively. Further- 
more the body of revolution is assumed to have a coni- 

cal nose of such a length that the flow inside the con- 
trol-surface, consisting of the shockwave and the aft- 
characteristic surface, is isentropic. In addition the 
Mach number Mm of the free stream, the radius RB of 
the base area and the radius Rc of the intersecting circle 
of shockwave and aft-characteristic surface have prescri- 
bed values. The geometry of the problem has been 
outlined in fig. 1. 

2.1 The mathematical formulation 

Under the circumstances discussed above the wave 
drag D experienced by the body can be expressed as 
the integral of a certain function taken along the aft- 
characteristic surface. According to ref. 2 the following 
expression is valid 

In this equation a number of dimensionless quantities 
occur that will be defined subsequently. The axial and 
radial velocity components u and u are made dimension- 
less with the free stream velocity U,. The dimeusion- 
less total velocity 4 is given by 

4 = (2.2) 
and the local velocity of sound u, also dimensionless 
can be expressed by the formula 

As is usual y is the ratio of the specific heats, while B is 
given by 

B = p F = l  (2.4) 
where the local Mach number M is defined by the ratio 
of q and a. 

Moreover the quantity P, which is the ratio of the 
stagnation pressures of the disturbed and the undis- 
turbed flow, occurs in formula (2.1). If this quantity is 
smaller than unity a shock wave exists ahead of the 
aft-characteristic surface. In accordance ‘with the 
assumption that the body has a conical nose of a cer- 
tain length, it will be assumed that the shockwave 
generated by this nose remains at least conical to the 
intersecting circle of the control surface, and hence 
that P as occurring in eq. (2.1) has a given constant 
value, which will be smaller than or at most equal to 
unity. 

In order to minimize the wave drag given by eq. 
(2.l), that is, to find such a distribution of u and u 
along the aft-characteristic surface that D attains its 
minimum value the accessory conditions inherent to 
the problem will have to be satisfied. 



The conservation of mass requires that the mass 
flowing through the shock wave surface be equal to the 
mass flowing through the aft-characteristic surface. 
The equation may be written as (ref. 2) 

Furthermore the flow along .the aft-characteristic 
surface has to satisfy the appropriate characteristic 
equation given by 

du du u q 2  a28 d P  
dr dr r U-BV yP dr ( u f i - u ) - + ( u + p ’ v ) - + - - - - - =  

(2.6) 

Since P is assumed to have a constant value along the 
aft-part of the control surface, equation (2.6) reduces 
to 

dv dv u 42 
( U B - 0 )  ;i; + ( U + f l O )  - + - - = 0 (2.7) dr r u-p’u 

The problem of finding the minimum value for the 
wave drag under the constraints represented by eqs. 
(2.5) and (2.7) is particularly adapted to solution by 
means of variational theory. With reference to the 
boundary conditions to be imposed at the end points 
RB and Rc of the interiial considered, the following can 
be observed. 

At the circumterence of the base no physical bound- 
ary condition is present and hence the variational 
procedure itself must yield a so-called “natural” bound- 
ary condition. At  the intersecting circle of fore and aft- 
part of the control surface the shock wave conditions 
must be fulfilled. 

Given the quantity P, the semi-top angle v& of the 
conical shock wave can be determined from the follow- 
ing well-known formula 

From the value of ZP,, the velocity components u and 
v just behind the shock wave can be computed by using 
the following equations (ref. 2) 

and 
v =  -(u-1) cotOw (2.10) 

It will be discussed furtheron, how these equations 
have to be used when determining the solution of the 
variational problem; this solution will be derived in the 
following section. 

2.2 Solution of the variational problem 

The determination of the minimum value of the wave 
drag, given by eq. (2.1) and under the conditions spe- 
cified by eqs. (2.5) and (2.7), is a particular case of a 
variational problem considered by Bolza (ref. 3). This 
problem can be solved by using the method of multi- 
pliers, a system of auxiliary constants and functions 
which enables an easy formal derivation of the solution. 
We then have to consider the following function, com- 
bining the integrands of eqs. (2.1) and (2.5) and the 
characteristic equatioii 

where ,I is a constant multiplier and p is a multiplier 
which is a function of r. 

The necessary conditions for a minimum are found 
by considering the variation of the integral over the 
function F and to require that this variation is zero, or 

Rc .du dv 
RB dr dr 

6 s  F(r,u, q-, -, p, A)dr=O (2.12) 

As a result of this variation, a set of two differential 
equations is obtained, known as Euler’s equations. If 
a prime denotes differentiation with respect to r, these 
equations can be written as 

(2.13) 

(2.14) 

Moreover the variational procedure yields boundary 
conditions which, when e and 7 denote the variations 
in u and v respectively, can be written’as 

aF aF 
aU au e + q = 0 in r=RB and r =  Rc respectively 

(2.15) 

Carrying out the operations indicated in eqs. (2.13) and 
(2.14) and replacingp by ,ZP, a set of equations results 
which are homogeneous in P and hence can be divided 
by this quantity. This means that the equations reduce 
to the same form as in the purely isentropic case con- 
sidered in ref. 2. 

As has been demonstrated there the resulting equa- 
tion, after elimination of the function p ,  takes the 
following form 



X do + uZ+pa4  (4u-& - 1 - A)-2ub -)] -+' [ Y dr 

in which the quantities X, Y and Z may be written as 

x= 202 + (u - 1 - A)(u - flu) (2.17)a 

Y=uZb-,Pa4 (2.17)b 

X 
7= Y+aZ {v2b(y+ 1 - y82)+84a4} - (u- 1 -,?)pub 

(2.17)~ 
and 

(2.18) 1 y - l  q2 
Mm2 U - p U  

b = -  +2 '  a 2 = -  

The complicated equation (2.16) derived by the vari- 
ational procedure forms together with the characteristic 
equation (2.7) a system of two non-linear first order 
differential equations for the functions u and u along 
the aft-characteristic surface. This system is identical 
to the one considered in ref. 2 for the case of zero nose- 
angle. Differences occur, however, as will be shown in 
the following, when the two boundary conditions 
necessary to solve the system are written down. These 
boulidary conditions will be considered next. 

At the circumference of the base, given by r =  RB, no 
physical boundary conditions are present, as already 
stated. This means that eq. (2.15) has to be satisfied 
for arbitrary variations Q and 7. Hence we have 

According to ref. 2 this condition means that ,2 has to 
be zero, which can be expressed by the following equa- 
tion giving the boundary condition for r =  Re 

@az - ub 
-2&(u-I-A) ((I-b2)-a2 [ pa4 31 0 

(2.20) 

It is evident now that only one boundary condition 
can be present at the intersection circle of fore and aft- 
part of the control surface, i.e. r =  Rc. It can be found 
by writing eq. (2.16) in the following form 

(bu- u)du+(@+u)du=O (2.21) 

This equation, which is readily recognized as the differ- 
ential-equation for the Prandtl-Meijer compression fan, 
has the following solution 
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(2.22) 
vu, - uv, - tan-' - b - h  + tan-' = o  

I +BBB uua + vue 

in which s refers to a known initial condition. 
In order to interpret this expression, the following 

should be remarked. The expression has to be valid at  
the point r=Rc;  this point is multivalued unless 
/J=&, u=us and u=ug. Then in general this point will 
be the point of convergence of a compression fan 
generated somewhere on the body. Its behaviour is 
found by the condition.tha1 in the point r = R c  the 
velocities are given by eqs. (2.9) and (2.10). This can be 
arranged by selecting these values of the velocities as the 
initial conditions y and us in eq. (2.22). 

The whole problem can be summarized as follows 
now : 

The condition for the wave drag as given by eq. (2. I )  
to attain its minimum value can be satisfied by specify- 
ing a certain velocity distribution along the afl-charac- 
teristic surface. This distribution can be found by 
solving the two differential equations (2.7) and (2.16) 
for the boundary conditions given by eqs. (2.20) and 
(2.22). The unknown multiplier A occurring in these 
expressions has to be determined by using the mass-flow 
conditions as given by eq. (2.5). 

It will be apparent that  the differences between this 
system and the one solved in ref. 2 for the case P= I ,  
occur only in the boundary condition (2.22) and the 
mass-flow condition (2.5). In fact the problem consider- 
ed here is a generalization of the procedure given in 
ref. 2 and it contains the solution of the problem solved 
there as a special case. With P equal to unity, u8= 1 
and u,=O, eqs. (2.22) and (2.5) are exactly identical to 
those used in ref. 2. 

We will now proceed with a review of the numerical 
schemes and methods used in the solution of the pro- 
blem. 

3 The numerical evaluation of the problem 

Although the two differential equations (2.7) and 
(2.16) are not amenable to an analytical solution, be- 
cause of their non-linear character, they can be solved 
without any difficulty, since a,variety of methods exists 
for the integration of such equations by numerical 
means. However, the amount of time required for the 
computation of a solution depends to a great extent on 
the form in which the initial conditious are expressed. 
The-most simple case is that in which these conditions 
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are given in one of the edge points of the region con- 
sidered, Then one integration will suffice to determine 
the solution, This is no longer true when for both edge- 
points boundary values are prescribed. In that case 
the non-linear character of the differential equations 
requires an iteration procedure, to obtain the solution. 
A closer examination of eqs. (2.20) and (2.22) reveals 
that this case is present here. Moreover, in one of the 
differential equations and in the boundary condition 
at  the circumference of the base the unknown multi- 
plier 1 OCCUIS. Its value cannot be determined in 
advance, since it is governed by the mass-flow con- 
dition eq. (2.5). This in itself leads to a new iteration 
procedure. Hence, in order to solve the problem set 
forth in the preceding section a double iteration pro- 
cedure is required. The details of the method will be 
described hereafter with the aid of appendix A, which 
contains the flow diagrams used in the computation. 

First the case will be considered in which the values 
for P, M,, RC and RB are given. With the given value 
for P, the value of the shock-wave angle t!lw can be 
determined from eq. (2.8). This is not so simple, how- 
ever, since for the determination of the parameter 
M, sin & with a prescribed accuracy, P has to be 
known with a far greater accuracy. When performing 
the calculations with a computer such a problem has 
to be treated with some care. The way in which this 
problem can be solved has been outlined in appendix B. 
Once 4 has been determined the velocity components 
us and u, just behind the shockwave can be obtained 
from eqs. (2.9) and (2.10). In order to be able to inte- 
grate the differential equations the values for u, tr and 2. 
for say r=Rc have to be known. By estimating the 
value of u, the velocity v can be determined from eq. 
(2.22). When also estimating J. *, the integration of the 
differential equations can be performed. Use has been 
made of the Runge-Kutta method in the version of Gill 
(ref. 4). When the integration has proceeded until 
r=Rn, in general neither eq. (2.20) nor eq. (2.5) will be 
satisfied. Then an inner iteration cycle is performed by 
using the same estimated value for u but a different 
value for A, until eq. (2.5) is satisfied. Then in general, 
still eq. (2.20) will not be satisfied yet. Thus an outer 
iteration cycle will have to be performed by taking a 
new estimated value for u and hence for u, going through 
the process already described till finally both eq. (2.20) 
and eq. (2.5) are satisfied. Then a solution of the pro- 
blem has been determined. All the computations were 
performed with a digital computer except the iteration 
procedures for 1 and u, since in advance no estimate 
could be made about their variation for different values 
of P for given values of M,, Re and Rc. Computation 
time was saved by using a larger interval Ar in the 

A good estimate for u and i can be found by using the line- 
arized theorv of ref. 1. 

initial phase of the iteration procedure wheii u and A 
are not known accurately, 

As has been put forward in the introductioii not 
every value of P gives rise to a physically significant 
solution. As long as u<ua in the point r=Rc, the 
strength of the compression-fan is positive; in other 
words the point r =  Rccan really be considered as the 
point of convergence of a compression fan generated 
by the body itself. For u>us, an instantaneous ex- 
pansion should occur at Rc and this is not possible 
unless a fixed boundary is present, which is not the 
case. It is clear now that a limiting value of P exists for 
which u=us (and thus u=u,) holds true. This means 
that no compression fan is generated by the body and 
that therefore the semi-top angle of the cone is the 
largest slope occurring. Since this case is a special one, 
it has to be treated separately. The scheme of the com- 
putations is given in the flow diagram b) of appendix A. 
Instead of performing a double iteration with respect 
to u and A ,  a double iteration with respect t o  P and A 
is performed in essentially the same way as in the pro- 
gram discussed above. 

Once the distribution of the velocities along the aft- 
characteristic surface has been determined the only 
problem which remains is the determination of the 
shape of the optimum configuration itself. This can he 
achieved by using the conical-flow solution and the 
method of characteristics; The procedure is as follows. 
First, from the known values of M,, ug and ua and the 
fact that the flow over the nose has to be conical, the 
flow and the value of the semi-top angle% of the cone 
can be calculated by using the known formula for 
conical flow (see f.i. ref. 2). Then the velocity distri- 
bution along the last characteristic of this conical re- 
gion, which passes through r =  Rc, is also known. 

Next the flow inside the compression fan has to be 
determined. This can be achieved by observing that 
Rc is a point which is multi-valued and that hence a set 
of characteristics converges in this point. The flow 
region inside the compression fan can then be computed 
by using the method of characteristics together with 
the velocity distribution along the last characteristic 
of the conical region. The contour of the body is de- 
termined by the condition that it should be a stream 
surface expressed by 

dr v 
& = i  

Before the flow over the aft-part of the configuration 
and the shape of its contour can be constructed, the 
shape of the aft-characteristic should be known first. 
This can be determined by using the equation for the 
characteristic direction 

dr u-pv _ = - -  
dx f l u + ~  
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In combination with the now known velocity distrihu- 
tion along the last characteristic of the compression fan 
the flow over the aft-part of the configuration can he 
computed. This completes the determination of an op- 
timum configuration. I t  should be remarked that the 
length of the configuration is determined by integrating 
eq. (3.2) using eq. (2.10). There follows that 

(3.3) 
0, E ’ B U + ”  I =  -__ Rc- f  --dr 

us- 1 RC U - P V  

For P = l ,  this becomes 

value of the drag D12/pmUm2Ri4. Some remarkable 
features are exhibited by this table. In the first place it 
is apparent that the length of the bodies which cusped 
noses ( P =  1) is materially greater than that of the bodies 
with a conical nose for the same valueof R ~ / K E .  This, 
however, could he expected, since shock waves tend to 
have much larger tangents than the characteristics of 
the undisturbed flow. Far more interesting is the he- 
haviour of the drag, since its value appears to be smaller 
for the cases with a conical nose. It should he observed 
that according to the linearized theory (ref. 1) the value 
of the dimensionless drag considered here is independ- 
ent of Mach number and can be represented by 

I=PmRc - (3.4) 
R.. U - 8 0  

A sketch of the different regions and notions together 
with the resulting body is given in fig. 2 .  

4 Discussion of the results 

Computations have been performed for a number of 
cases with different Mach numbers and for several 
values of the ratio of the radii Rcand RE.  In all cases 
considered the value of Re has been taken equal to 0.1. 
First for all ratios of Rc and RE the limiting value of P 
has been obtained as described in the foregoing section, 
after which the purely isentropic case was considered 
forP= 1. The results are given in table 1. It contains be- 
sides the given values of Mm and Rc, the values of the 
multiplier A, the quantity P (being either the limit value 
or equal to unity), the length I ,  and the dimensionless 

The values obtained by using this formula are also 
given in table I .  

The results obtained for the drag indicate a rather 
large difference between the results for P = 1 and for P 
equal to its limiting value. This difference tends to 
become larger for smaller body lengths and higherMach 
numbers. 

Thus the question whether or not the drag of an 
optimum configuration with a finite nose has a lower 
drag than that with a cusped nose has been partially 
answered. But how does the drag behave as a function 
of the ratio of the stagnation pressure, which is a direct 
measure of the shock wave strength? This question has 

TABLE I 

Results obtained for a number of cases for different Mach numbers 

Mm RciRn P I ,  IIRB DIz D P  (eq.4.1) 
em Umz R B ~  emUm2R04 

2 3.4641016 0.99994719 -0.029151 15 10.22948 4.89435 5.018493 

2.4748737 0.99955040 -0.06078521 6.70366 4.46678 4.781506 

2.0655911 0.9984~399 -0.09326397 5.19287 4.18319 4.714458 

3 3.4641016 0.99996877 -0.01079695 16.83735 4.91886 5.018493 

1 .oMx1oO0o -0.06061171 7.10101 4.92111 

2.4748737 0.99974104 -0.02210580 11.16637 4.52702 4.781506 
1.00000000 -0.0220713n 11.61946 4 . ~ 9 5  

2.065591 1 0.99915510 -0.03317775 8.77514 4.28331 4.714458 
1.wooooM) -0.03306169 9.33174 4.75345 

4 3.4641016 0.99997342 -0.00574590 23.09443 4.92528 5.018493 
~ ~ 

2.4748737 0.99978039 . -0.01172619 15.35467 4.54250 4.781506 
I .000ooWo -0.0117io8n 15.91093 4.82571 

2,0655911 0.99928674 -0.01753491 12.10126 4.30853 4.714458 

1.7oooo00 0.99729412 -0.027837zz 9.12277 4.03187 4.787189 
1 . o o o m  -0.02763601 9.98577 4.69860 
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The drag as function of the stagnation pressures lor a certain 
case 

TABLE 2 

M, = 3 Rc/RB = 2.0656 
P IIRB Dola acc. to ref. 1 ___ 

em U,2 RB* 
0.999155 8.77514 4.28331 
0.999400 8.83393 4.31738 
0.999700 8.93492 4.38720 
0.999950 9.11170 4.53702 
1 .MNKKx) 9.33174 4.75347 4.71446 

been answered in table 2. For a number of values of P 
between the limiting value and P= 1 the drag has been 
computed for a specificcase (Mm=3, Rc/%=2.0656). 

Its behaviour is shown in fig. 3. This figure shows the 
remarkable fact that the drag is sharply increasing 
when P approaches unity, and although no theoretical 
justification is available, it suggests an infinite slope 
for the drag curve at.that point. It should be observed 
that this figure gives all the information which can be 

t 

Fig. 3 The drag as a function of the ratio of the stagnation pres- 
sures for a certain case. 

gained by the present theory for this particular case. 
However, it raises as many questions as it provides 
answers. For instance, how does this curve behave 
continued for smaller values of the quantity P, a case 
which can be solved only by allowing a discontinuity 
in the slope of the body contour and which would in- 
volve a far more complicated analysis. Instead of 
speculating about the answer to  this question, it seems 
appropriate to give more insight into the significance 
of the present solution by  discussing some further data. 
So it is interesting to know whether there is a large 
difference in the velocity distribution along the aft- 
characteristic surface between the cases for P unequal 
and equal to unity. As can be seen from table 3 this 
difference is very small indeed, and thus the shape of 
this characteristic differs only slightly. Yet this small 
difference gives rise to  a rather important change in 
model configuration. 

Another point is the determination of the optimum 
shape. Since in ref. 2 certain'cases for cusped-nose 
bodies have been studied, the attention is focussed on 

TABLE 3 

Optimum velocity distributions along aft-characterirtics for 
different P values and for M,= 3 and Rc/Rs = 2.06559 

Mm= 3 P =  l.ooo000 P = 0.999155 

r 

0.206559 
0.204783 
0.201231 
0.197679 
0.194127 
0.190575 
0. I87023 
0.183471 
0.1199 I9 
0.176367 
0.17281 5 
0.169263 
0.165711 
0.1 62159 
0.358608 
0.155056 
0.151504 
0.147952 
0.144400 
0.140848 
0.137296 
0.133744 
0.130192 
0.126640 

0.119536 
0.1 15984 
0.1 12432 
0.108880 
0.105328 
0.101776 
0.100000 

0.1230n8 

u 

0.982290 
0.982363 
0.982511 

0.982820 
0.982982 
0.983149 
0.983322 
0.983499 
0.983683 
0.983873 
0.984070 
0.984274 
0.984485 
0.984704 
0.984932 
0.985 168 
0.985414 
0.985671 
0.985938 
0.986217 
0.986509 
0.986815 
0.987135 
0.987472 
0.987825 

0.988592 
0.989008 
0.989449 
0.989917 
0.990163 

0.9n2663 

0.98819n 

" 
0.045505 
0.045736 
0.046207 
0.046693 
0.047192 
0.047707 
0.048237 

0.049348 
0.049931 
0.050533 
0.05 1155 
0.051799 
0.052465 
0.053156 
0.053871 
0.054614 
0.055385 
0.056187 
0.057021 
0.057889 
0.0 5 8 7 9 5 
0.059739 
0.060726 

0.062839 
0.063972 
0.065161 
0.066412 
0.067729 
0.069118 
0.069842 

0.0487n4 

0.06175n 

u 

0.982195 
0.982268 
0.982416 

0.982726 
0.982889 
0.983056 
0.983228 
0.983407 

0.983781 
0.983978 
0.984182 
0.984394 
0.984613 
0.984841 
0.985078 
0.985325 
0.985581 
0.985849 
0.986129 
0.986421 
0.986727 
0.987048 

0.987740 
0.988113 
0.988507 
0.988924 
0.989366 

0.990081 

0.982569 

0.9n3591 

0.9873n5 

0.9n9835 

" 
0.045562 
0.045793 
0.046265 
0.046751 
0.047252 
0.047767 
0.048298 
0.048846 
0.04941 1 
0.049995 
0.050597 
0.051221 
0.051865 
0.052533 
0.053224 
0.053941 
0.054685 
0.055457 
0.056260 
0.057095 
0.057965 
0.058872 
0.059818 
0.060806 
0.061840 
0.062922 
0.064057 
0.065248 
0.066501 
0.067820 
0.069211 
0.069936 

the construction of a number of optimum configura- 
tions with finite nose angles. For the Mach numbers 
2,3 and 4 such configurations together with their slope 
and pressure distribution are given in figs. 4, 5 and 6. 
The ratio of Rc and RB has been chosen such that bodies 
of a practical shape occur. Only the case for the limiting 
value of P has been considered. This will be evident by 
considering the slope along the contour, which shows a 
kink at the end of the conical region. In order to check 
the accuracy of the computation, the drag has been 
determined by integrating the axial force along the 
configuration by means of the following equation: 

The results for the case considered in the figures 4, 5 
and 6 have been collected in table 4. As can be seen the 
values differ by a few units in the fifth significant 
figure which indicates that the accuracy can be quali- 
fied as very good. This is confirmed by the construction 
of the contour, which should pass through the point 



I =  Ro of the aft-characteristic surface and which 
misses this point only by a very little. The last point 
which has been investigated tries to give an indication 
whether or not an appreciable reduction in drag is 
obtained when using these optimum configurations. 
This has been done by calculating the drag for cones of 
the same length and the same base area. The results 
are presented in table 5 which shows that indeed a 
reasonable reduction is obtained and indicates that it 
might become less at  higher Mach numbers. 

TABLE 4 

Comparison of the drag as calculated by integrating the axial 
force along the body contour and by integrating along the aft 

characteristic surface 

Drag as found along the Drag as found by inte- 
aft-characteristic grating along the fuselage 

M ,  Dolz Dolz 

---- -- 4 

.. 
em Um2 Ra4 em lima R d  

2 4.46678 4.46669 
3 4.28331 4.28324 
4 4.03187 4.03212 . 

TABLE 5 

The drag for an optimum configuration as compared to that of a 
conical configuration with the same length and base area 

Dol2 Dolz “optimum” drag 
Mm emlJmaRd emUmzRd referred to 

(optimum) (conical) “conical” drag 
2 4.46678 5.60191 79.7% 
3 4.28331 5.22698 ~1.9% 
4 4.03187 4.73226 85.2% 

I I I I I I I I 0 a, a z c u ~ a 5  06 a7 
-X 

Fig. 4a Shape and slope of an optimum configuration with a 
conical nose for M, => 

Fig. 5b Pressure distribution along an optimum configuration 
with a conical nose for M,= 3. 
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Fig. 6a Shape and slope of an optimum configuration with a 
conical nose for Mm = 4. 

I I 
0 01 a2 a! 0. a, 0 8  0 7  a* 00 LO 

4 x  

Fig. 6b Pressure distribution along an optimum configuration 
with a conical nose for M, = 4. 

5 Conclusions 

In this report a generalization has been given of a 
method previously described by the author to determine 
optimum shapes for minimum wave drag by applying 
the exact differential equations (ref. 2). The analysis 
leads to the construction of optimum shapes with a 
finite nose angle. In general the flow has to be conical 
along a certain part of the body, succeeded by a region 
which gives rise to a compression fan behind which a 
gradual expansion occurs. 

The interesting result obtained is that the drag has 
its minimum value, in the case considered, for the 
strongest possible shock wave, that is when the strength 
of the compression fan becomes zero. The interde- 
pendence of the drag and the shock strength suggests 
that this function has an infinite slope for vanishing 
shock strength. 

To our knowledge this is the first time that optimum 
shapes with continuous slopes and of practical signi- 
ficance have been obtained by using the exact non- 

linear differential equations. The results for this par- 
ticular case of noses with an infinite radius of curvature 
cover, however, only a small part of the problem where 
noses with a variable curvature are considered. Further 
research on the latter would lead to a family of shapes, 
as for instance those with blunt noses. 

The question whether or not such shapes are of real 
practical significance will make it necessary to study a 
number of other problems as for instance the depend- 
ence of the drag on volume and base drag, while also 
the behaviour of the drag in off-design conditions will 
be a major problem. 
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APPENDIX A 
(contributed by J. Wouters) 

Flow diagrams 

a) Flow diagram for the case of given values for P, Mm, Rc and RB 

I 
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With this formula an estimate of z denoted by Zb can 
be found; this estimate can be made better by applica- 
tion of the following formula, which determines the 
correction LIZ which has to be added to zb to obtain a 
new and better value for z itself 

1 ,WEGRATE DIFFERENTIAL mU* I ,ONS 

FROM ~rons:EOI ,121, *ND(218)  

t 
TEST ON W.OO.FLOW CDNDlTlON i 

E0.125) L 

b) Flow diagram for the case u = us, u = v, at r = Rc and given 
values for M,, Rc  and Ra. 

IF NOT sATISFIE0,REPEIT 

WlTY NEW ETTIUA,.TE OP k 
IF SAT,EFIED,TEIT BWNOAR" 

aUlDlTlON FDR ..llg;Eo k20, 

By expanding the right-hand side of this equation into 
a power series, and by inverting this power series, the 
following result is obtained 

1FSliTISnE4 STOP: 

0Lml 

where 

a = ( y -  1) In P B(3) 

IF NOT sA,ISFIED.REPEnT 

WIW NEW ESTIMATE or P 

where ab is given by 

To ensure the required accuracy it is necessary to 
calculate a and ab by applying the following series 

( )znil B(6) 
m 1  

a = - 2 ( y - I ) X -  - o 2 n + l  2 AP 

2n-h - 2y  zb -q  y. 2 + -  ":, , )  ] 
Y + l  

By a few iteration steps z can be then determined with 
a given accuracy. 
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The transition of fatigue cracks in alclad sheet 
by 

D. Broek, P. de Rijk and P. J. Sevenhuysen 

Summary 

Some fatigue-crack-propagation tests with constant nett-stress amplitude on 2024 alclad sheet specimens were carried out in order to 
study the conditions for the transition of the crack. For different values of the stress amplitude the transition was found to occur at a 
constant crack rate for constant sheet thickness and testing frequency. 
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List of symbols 

a -constant 
C - constant 
F 

F, 

Kt 
I 
n -number of cycles 

-gross cross sectional area of specimen (in- 

-nett cross sectional area of specimen (area of 

- theoretical stress concentration factor 

- Half crack length from tip to tip (mm) 

cluding the notch) 

unbroken part of the specimen) 

- crack rate (mm/kc) dl 
dn 
- 

ny-nl; - number of cycles to extend 

S, 
thecrackfronii=xmm tol=ymm 

- gross mean stress kg/mm2 
Mean Load 

F s, = 

S,, -net mean stress (kgimm2) 
Mean Load 

F, smn = 

Sa - gross-stress amplitude (kg/mm2) 
Load Amplitude 

F so = 

S,, - nett-stress amplitude (kgimm2) 
Load Amplitude 

F, Son = 

.%” -Ss,ll+~all 
S, -ultimate tensile strength (kg/mm2) 
So., -0.2yo yield stress (kg/mm2) 
S -elongation 

I kc= IOCOcycles, 1c.p.m. = 1 cycleperminute 

1 Introduction 

Fatigue cracks in light alloy sheet materialconsistent- 
ly show a zone where the crack surface rotates around 
the growing direction as an axis (refs. 1,2, 3). Along the 
first part of the crack the failure surface is perpendicular 
to the sheet surface; at a certain crack length the failure 
surface rotates until the sngle with the sheet surface is 
about 45”, as it is for static failure in sheet (fig. 7a). 
In  ref. 2 it was suggested that this transition takes place 
if the crack rate exceeds a certain value. I t  was the aim 
of the present investigation to confirm this suggestion. 

According to Weibull (refs. 4, 5 ,6 )  a constant crack 
rate is obtained if in a crack propagation test the nett- 
stress amplitude is kept constant. This has to be realized 
by decreasing the loads at increasing crack length. For 
identical specimens the crack length is claimed to  be a 



function ofthe nett stress amplitude only. If this is true 
such tests would be very suitable for the present in- 
vestigation, since, depending on the stress amplitude 
the transition should occur either immediately (above 
a certain amplitude i.e. crack rate) or not a t  all (below 
that amplitude). Therefore this preliminary investiga- 
tion consisted of five tests with constant nett stress am- 
plitude. Also two conventional tests (constant gross 
stress amplitude) have been carried out. 

In the present report the test results are given and 
discussed. 

2 Experimental details 

The specimens (fig. 7c) were cut to a size of 345 x 
160 mm from 2 mm 2024 alclad (S,=48.5 kg/mm2; 
So.z=36.9 kg/mm2; 6(2")=16%). A small central 
notch (ref. 4) initiated visible fatigue cracks after a 
small number of cycles. The tests were carried outfin a 
vertical Schenck pulsator, type PVQ 002 S .  

The nett stress amplitude and the nett mean stress 
were kept constant by decreasing the load amplitude 
and the mean load after every 2 mm of crack propaga- 
tion. The new loads were chosen in such a way that the 
average nett stresses during the subsequent crack 
extension of 2 mm had the desired values. Adjustment 
of the loads occurred within 15 seconds without stop- 
ping the fatigue machine. 

At the start of a test the cycling frequency was in the 
order of 2000 c.p.m., at the end ofthe test this value had 
decreased to ca. 1500 c.p.m. due to the decrease of the 
loads. This frequency is in accordance with previous 
tests (refs. I ,  2, 3) which allows a comparison to be 
made. For the same reason a mean stress was adopted 
in accordance with the previous tests&,= 8,5 kg/mm2, 
in previous tests S,=8.18 kg/mmz). 

Recording of the crack growth occurred at  one side 
of the specimen only. Fine lines at 1 mm spacing were 
inscribed in the specimen and the use of a large magni- 
fying glass made it possible to read the crack length to  
an accuracy of 0.1 mm. Recording was stopped as soon 
as either the loads could not be adjusted further due the 
limitation of the fatigue machine or the total crack 
length including the notch exceeded 100 mm. 

3 Test results 

In four tests with S,,=5.7, 3.4, 2.9 and 2.5 kg/mmz 
respectively a transition was observed. In a fifth test 
with Sa,.=2.0 kg/mm2 no transition occurred. (The 
stresses Sa,= 5.7,3.4 and 2.5 kg/mm2 correspond with 
Sa = 5.49, 3.27 and 2.41 kg/mm2 resp. from previous 
tests). 

Numerical test results are given in table 1 and the 
crack propagation curves in figs. I to 5 incl. The 
transition points have been indicated. 

50 
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Microscopical el mination of the failure surfaces 
revealed growth lines in the specimen with Sa,= 
5.7 kg/mmZ only. In the other tests the crack rate was 
too low for such an observation to be made. This is in 
agreement with previous experiences (ref. 2). 

4 Discussion 

The crack rates as calculated from the test results 
have been plotted in fig. 6. In this figure also the 
transition points are indicated. It is seen that Weibull's 
hypothesis of constant crack rate at constant Sa, is not 
fulfilled in these tests. 
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at S,=5.49 kg/mm2 theotherat &=2.41 kg/mmZ. For 
reasons of convenience the tests were performed at 
constant load amplitude, &=constant. 

At S.=5.49 kg/mm2 no transition was observed 
now; from the start to the end the failure surface was 
at 45" with the sheet surface. On the contrary at Sa= 
2.41 kg/mm2, the crack, although forced to the start 
at an angle of 45", immediately rotated to a plane 
perpendicular to the sheet surface and at  a crack rate 
of 0.2 mni/kc the usual transition occurred. This is 
shown in fig. 7b. Frost and Dugdale (ref, 7) also car- 
ried out such a type of test. They too observed an 
immediate rotation of the failure surface to a plane 

Disregarding for a moment the test at S,,=5.7 kg/ 
mm2 it can be concluded that, in accordance with the 
suggestion made in Ref. 2, the transition occurs if the 
crack rate exceeds a certain value, this value being 
about 0.2 mm/kc. Therefore no transition occurred 
in the test with the lowest stress amplitude. 

At Sa,= 5.7 kg/mm2 the transition took place at  a 
much higher crack rate. The crack rate here is almost 
immediately much higher that 0.2 mm/kc. Therefore 
the crack should start a t  an angle of 45" and a transi- 
tion should not be observed at all. However, the geo- 
metrical shape of the notch forces the crack to start in 
a plane perpendicular to the sheet surface; the transi- 
tion can only follow as soon as possible. The transition 
is not a discontinuity, but it occurs gradually during a 
crack extension of several millimeters. Since in the 
figures the end of the transition is indicated as the 
transition point, see fig. ?a, the transition at Sa,= 
5.7 kglmmzseems to takeplaceat4mmfrom thenotch, 
but actually it will have started together with the be- 
ginning of the crack growth. 

In order to prove the above reasoning another two 
tests were carried out. A small artificial crack of ca. 
0.5 mm length was made in the root of the notch at  an 
angle of 45" with the sheet surface by making a cut 
with a fine frett saw. One of the specimens was tested 
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perpendicular to the sheet surface, thus confirming part 
of the transition on the crack rate. 

A comparison with previous constant load-amplitude 
tests has been made in fig. 8. With the exception of 
the curves for S,,=5.49 kg/mm2, as previously ex- 
plained,fig. 8 confirms the transition to occur atd//dn= 
0.2 mm/kc. 

I n  refs. 1 and 2 for which the same specimens were 
used as in the present investigation, it was shown that 
the crack rate for transition depends upon the cycling 
frequency and increases with decreasing frequency. For 
20 c.p.m. the transition occurred at  dl/dn=O.4 mm/kc. 
Also environmental circumstances and sheet thickness 
may have an influence. 

In ref. 7, for 2024 sheet of 1 mm thickness at 4ooo 
c.p.m., the transition was found to occur a t  dl/dn= 
0.08 mm/kc, if tested in air as a medium and at d//dn= 
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allows the following conclusions: 
I For a certain sheet thickness and certain testing 

conditions the transition occurs at constant crack 
rate independent of the stress amplitude. If forced 
bv the eeometrical shave of the notch the transition 

SCHIIVE, J., BROEK, D. AND DE RIJK, P., The effect of the fre- 
quency of an alternating load on the crack rate in a light alloy 
sheet. N.L.R. M. 2092. Sept. 1961. 

9 SCHUvE, j., BnoEK, D, AND DE RIIK, p,, Fatigue crack pro- 
pagation under variahle-amplitude loading. N.L.R. M. 2094 
Dec. 1961. 

L 

may take place at higher crack rates. 
2 The crack rate at which the transition takes place 

depends upon cycling frequency, sheet thickness and 
environmental circumstances, and possibly also upon 
other testing variables. 

3 For a certain sheet thickness the transition also 
occurs at a more or less constant value of the peak 
stress amplitude at the tip of the crack. 

4 Some shortcomings of the theory of Weibull and the 
theory of Mc. Evily and lllg emerged from the present 
tests. 
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TABLE I 

TEST RESULTS 

I nr - m (kc) 
(mm) Sa.= 5.7 kg/mme S,, = 3.4kg/mmz Sen = 2.9kg/mmz Sa. = 2.5 kg/mm2 Sa, = 2.0 kg/mmz 

5 6.8 21.3 38.2 48.1 149.0 
7 11.4 35.8 62.9 80.4 222.7 

I 9 14.6 47.0 80.2 103.9 272.7 
I1 17.0 56.9 93.7 122.3 308.6 
13 19.5 64.5 105.5 137.0 339.0 
15 21.3 71.2 116.1 150.9 367.0 
17 22.9 75.9 125.5 162.6 391.5 

I 19 24.5 80.5 133.5 173.1 411.7 
21 25.8 84.7 141.3 182.6 430.7 
23 27.0 89.4 149.0 192.4 449.9 
25 28.2 92.9 155.6 201.6 467.1 
27 29.5 96.6 162.1 209.6 483.4 
29 30.5 100.1 168.7 218.0 499.8 
31 31.6 103.9 174.8 225.8 516.0 
33 32.4 107.1 181.5 233.7 529.2 
35 110.3 187.5 242.0 544.8 
37 194.0 249.8 5m.8 
39 * 199.8 258.4 576.6 
41 206.0 267.3 594.0 
43 212.0 275.1 610.5 
45 218.0 284.6 625.9 
47 225.1 294.8 642.0 
49 232.5 304.6 662.4 
51 240.7 313.8 

I 
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Some experimental investigations on runway waviness') 
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Summnry: A review is givcn of the work concerned with surface waviness of runways and taxi-tracks carried out under the 
auspices of the Structures and Materials Panel of AFARD. The collection of statistical data and the advantages and dis- 
advantages of variou? forms of presentation of these data are discussed. Runway roughness critedia are dealt with very briefly. 

After, a discussion of the shortcomings of existing systems and methods for measuring the range of wavelengths from 4 f t  
to 2W ft the design of an NLR slope measuring system is explained in some detail. A description of a provisional realization af 
this system is given and the results of comparative measurements with the provisional system and with precision level-and-rad 
apparatus are presented. It is concluded that the NLR system shows favourable characteristics as a rapid and simple measuring 
system. A few current and possible future extensions of the work are briefly dealt with. 
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results. 

1 Introduction 

In this paper a brief review will be given of the work 
concerned with surface waviness of runways and taxi- 
tracks (runway roughness), that has been carried out 
under the auspices of the Structures and Materials Panel 
of the Advisory Group for Aeronautical Research and 
Development (S/M-Panel. of AGARD) over a period of 
more than five years. 

The problem was first felt in the U S .  where already 
in 1954 results of measurements of a few runways were 
published as NACA T N  3305. In this paper the frequency 
of occurrence of large load applications in routine ground 
airline operations was mentioned as the incentive to carry 
out the measurements. In an introductory paper for .the 
S/M-Panel in October 1958 Dr. Houbolt of the NASA 
mentioned the following difficulties encountered as a 
consequence of runway roughness: 
1.1 Structural failures of certain large aircraft carrying 

heavy masses on outboard regions of wings, such as 
engines, tanks and missiles. 

- 

I )  This report wiv~ submitted to the Structures and Materials 
Panel of AGARD in partial Fulfilment of a contract granted 
to the NLR upon recommendation of this Panel. 

1.2 .Difficulties in reading panel instruments in the cock- 
pit. 

1.3 Concern about the fatigue life of the aircraft struc- 
ture. 

1.4 Pilot complaints concerning taxiing behaviour, such 
as porpoising and a tendency to become prematurely 
airborne. 

Factors contributing to the increased severity of the 
problem have been the use of outboard masses mentioned 
under 1.1, _the use of higher pressure tires and the 
increased taxiing speeds. 

Since the problem was considered to he mainly of 
importance from the point of view of aircraft loads it 
was included on the programme of work of the S/M-  
Panel. Up to now the following aspects have been studied: 
- Collection of statistical data for a number of runways 

and taxi-tracks in various NATO countries. 
- An attempt to establish' criteria for runways, either 
L newly constructed or in  need of repair, based on a 

correlation of the statistical data with the operational 
experience on a number of runways. 

- A study of systems for measuring the waviness pro- 
perties of runways and taxi-tracks relatively quickly 
and inexpensively, followed by the design of a new 
measuring system and the testing of a simplified proio- 
type system. For the work under this item the National 
Ae6 ;  and Astronautical Research Institute (NLR). 
Amsterdam was granted with a few contracts and this 
work has now nearly been completed. 

This report is not concerned with the determination of 
the aircraft loads following from the runway roughness 
input; it is felt that this problem contains several aspects 
dcsfrving further study. 

2 Collection of statistical data of runways and taxi-tracks 

The NASA had kindly offered to evaluate the results of 



all the measurements obtained from an AGARD coope- 
rative programme in  the same way as it had evaluated 
previous US. measurements. Consequently, the measure- 
ment technique used in the US.  was also adopted by the 
other NATO countries contributing to the collection of 
 statistical^ data. Use was made of the standard level-and- 
rod apparatus; a vertical rod with scale division was 
moved along a line parallel to the axis of the runway with 
a measuring interval of 2 ft, and was read by means of 
a horizontal surveyor’s level, Jn this way the elevation 
of the runway surface was determined with respect to a 
horizontal reference plane. 

The measuring interval of 2 f t  was selected as half 
of the shortest wavelength one desired to include 2) .  This 
shortest wavelength L,i. is determined by the taxiing 
speed V and the highest resonant frequency f likely to 
be excited by the runway roughness. Taking V = 100 miles 
per hour (160 km/h) and f = 35 Herz it follows that 
L,,, = 4 f t  approximately. T h e  longest wavelength con- 
sidered in the NASA evaluation of the measurements 
was Lmzx = 160 f t  (50 m, approx.). The readings were 
made to an accuracy of 0.001 f t  (0.3 mm), the last 
decimal being estimated. This accuracy seems to be exag- 
gerated if it is observed that incidental surface irregula- 
rities are likely to he of the order of 0.01 ft. According 
to US. data the average speed of measuring amounted to 
250 ft (75 m) per hour approximately. 

The results of the measurements for 34  runways are 
summarized in Ref. [I]; detailed tabulated data are given 
in a series of AGARD Research Memoranda. Up to 1961 
a total of ahout 60 runways and taxi-tracks in the US.  
and Europe were processed. In Ref. [I]  the results are 
presented graphically in the form of surface profiles and 
cower spectra. 

The surface profile is useful to indicate locations where 
the runway is of good or had quality. It can-also be used 
to determine the deviations from imaginary straight edges 
which are commonly used as a criterion for runway 
construction. For example, a standard criterion is that 
there shall he no gap exceeding 0.1” or 0.125’’ under a 
straight edge of 10 ft  length placed anywhere on the 
runway surface. 

The power spectrum is generally used nowadays in the 
treatment of stochastic phenomena because it forms part 
of a modern mathematical theory of such phenomena. 
The theory was developed. some twenty years ago and 

the power spectrum was first used for aeronautical . 
applications in the U.S. ahout I O  years ago: Some insight 
into the significance of the power spectrum can be, 
obtained in the following manner. 

A periodic function y(x )  of, x with period Lo can be 
written in the form of a Fourier series 

m m 
y (x) = 2 A, sin f2,x + 2 B, cos 9 ,x ,  

whereQn = Znn/L, 
The constants A, and B, can be determined by means 

of the standard procedures of Fourier analysis. The com- 
ponents with the frequency SZ, can also he written as 
A, sin ~ , x  + B, cos S Z , ~  = C, sin @,x + 9%) 
where 
C,, = d A n z  + Bez 
and 
rpn = arc tan &/A, 

The series thus consists of sines which have different 
phases. If y (x) is supposed to be the, displacement of a 
vibrating system (x being the time), then C, is the amplitude 
of the component having the frequency SZ, and CnS is a 
measure of the energy contribution due to, this component. 
The total eneigy of-the system is equal to the sum of the 
energy contributions of the components (which is not true 
for the amplitudes). The bar graph of Fig. 1, where C,zL,,/4n 
has been depicted as a function of Q,, is called the discrete 
energy, or ‘power spectrum’ of y(x). In fig. I the area 
of thecolumn hetween9, ando,,, isequal to lI2 CnZ and the 
total hatchedarea is equal to the average value of y2 (x) over 
the period L,. The expression power spectrum is also used 
for other phenomena, such as runway roughney, where 
no real energy is involved. 

If now the function y (x) is non-periodic then the limiting 
case Lo- a3 mustbeconsidered. The discrete spectrum then 
becomes a continuous power spectrum having, as abscissa 
9 = 2n/L ,  where R and L are continuous variables. The 
ordinate is usually called the power spectral density function 
and denoted as @(R). @ (f2)dnnow is a measure of the 
energy contribution of the components having frequencies 
between f2 and f2 + d o ,  i.e. wavelengths between Zn/Q 
and 2 n / ( 9  + d9) .  If @ (9) is finite everywhere then the 
energy of the component having one discrete frequency R 
is equal to zero. 

An example of a power spectrum, relating to the elevation 
of a runway surface, is given in fig. 2. 3, This spectrum was 
computed for 0.0349 < 9 < 2.094 and thus covers wave- 
lengths ranging from 3. to 180 ft. 
Ifitisassumedthatthemeanvalueoftheelevation has been 

reduced to zero, then the standard deviation, or root-mean- 
square ( rms . )  value of y (x) can in principle he computed 
by integration of the power spectrum 

“ - 1  ” -0 

j (2) 

u = d A v e  . (y2) = @(.C2)dQ]”’, (3) 
0 

In ref. [l]  the power spectra of runway elevation are given 
for wavelengths ranging from 4 ft  to 160 ft (n/80 <G< n / 2 )  
and, in addition, the values 

, 

nl8a 
are presented. It is suggested in ref. [ I ]  that u’ is a good 

3) Figs 2 and 3 will be discussed in more detail in section 6 

measure of the average roughness of a runway. . ,  

Fig. 1. Discrete energy or power spectrum 

2 )  Sampling a disturbance at intervals of one-half the shortest 
w$velengtb present specifies the disturbance. 

2 
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Fig. 2. Power spgtra of 
runway elevations. 
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f t  

It is easy to show that the magnitude’ of u may give a ponents and cannot he considered as a measure of the 
completely wrong impression of the runway quality. This average roughness, Since i t  will strongly depend on the 
is apparent if a good runway is considered having a slope chosen lower limit of R, it will even be of dubious value as 
with respect to a horizontal plane. Such a runway will show a basis of comparison for the long-wavelength roughness 3. 
a power spectrum with a pronounced peak near 9 = 0 and The power spectral theory has the important feature 
can have a large value of a. This peak is cut off in the tal- that it is possible to compute from a given input spectrum 
culation of 4’. However, fig. 2 indicates, and this was con- (e.g. gust or runway waviness spectrum) the output spec- 
firmed by a recalculation for one of the runways of ref. 111, 
that the magnitude of a’ is nearly completely determined by 4) ~ and ,,I will give a impression the 
the part of the integral for values of R near the lower boun- runway quality if they are for a spectrum 
dary (wavelengths near the upper boundary). This means that is approximately a white spectrum. This may he the case 
that a’ has little to do with the shorter-wavelength com- for the power spectrum of the runway slopes. 

3 
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trum of the aircraft response (e.& acceleration or stress) 
if certain aircraft characteristics are known, and a few 
simplifying assumptions are approximately satisfied 5) ) .  

For this reason the power spectrum was considered in 
ref. [l] to .he the most important property of a runway, 
It is generally considered to yield a good overall picture 
of the quality of the runway. It is, however, impossible 
to deduce from the power spectrum the local properties 
of a runway, e.g. the existence and location of parts in 
need of repair. 

Recently, even the reliability of the power spectrum as 
an indication of the overall quality of a runway seems 
to be in doubt. In ref. [21 the responses of a simulated 
aircraft on two runways having nearly the same power 
spectra were determined by,means of an analog computer. 
It appeared that the two runways caused appreciably 
different aircraft responses; the response was defined as 
the magnitudes and number of acceleration peaks exceeding 
0.5 g in absolute value. It is therefore recommended in 
ref. [21 to determine the quality of 'a runway. and the 
location of places in need of repair by means of such 
analog computer studies. 

The method recommended in ref. [21 has not yet been 
considered in the work carried out under the auspices of 
AGARD. Another method of presentation of the measu- 
ring results, proposed by the Canadian Panel Member 
.A. H .  Hall, has however 'been used. This method $as  
certain advantages over the power spectrum but it cannot 
be used for load predictions. The ends of straight lines 

of various lengths I are put on the runway surface, .be- 
ginning at one end of the runway, and the lines are 
then shifted one measuring interval each time until the 
other end of the runway is reached. For each position of 
the straight line the vertical distance d between the middle 
of the line and the corresponding point of the runway 
surface is determined (fig. 3) 8). For each length /,the 
frequency distribution of the absolute values of' the devia- 
tions d falling within consecutive intervals of 0.01 f t  (i.e. 0. 
to 0.01 ft, 0.01 to 0.02 ft, etc.) are then computed. Fig. 3 
gives an example of the results so obtained. The per- 
centages for each interval of 0.01 f t  are given in the 
middle of the interval (at I = 48 ft 20 % of the devia- 
tions d are between 0.02 ft and 0.03 ft). The method of 
presentation of fig. 3 gives more information on local 
properties (e.& maximum deviations exceeding to!erable 
limits) than the power spectrum, although the location 
of bad parts of the surface does not appear from the 
final results. 

3 Runway roughness critena 

The problem of the establishment of criteria which should 
be satisfied by newly constructed runways or which can 
be used to determine if a runway is in need of repair 
has been treated in various papers (a.0. refs. [3], [41 
and [SI). It has been attempted to ,base the criteria on a 
correlation of'  the results\obtained by measuring the run- 

5 )  For readers not familiar with the subject the concise and (;) Hence, if the runway length is Lo and the measuring 
clear.summary of power spectral techniques given in ref. 141 interval a then the total number of values of d for a straight 
is recommended. , line of length.1 is equal to (l/a) ( L o - / ) +  1. 

R U N W A Y  SURFACE 

- .  
" . 2 4 0 a 10 

--d I N  0.01ft 

Vi::. 3. Frequency distributions of absolute values of deviations d from straight lines of various lenghts 1. 
~ = results of level-and-rod measurements. 

N.B. In the left-hand figure both curves coincide. , 

4 



way with the operational experience from the use of 'the 
runway. Proposals for criteria in the form of power 
spectra (Cj (Q) = constant X Q-*), maximum departures 
from straight edges of various lengths, and maximum 
and r.m.s. values of the deviations d defined in fig. 3 
have been made. 

Serious difficulties arose, however, when the proposed 
AGARD criteria were submitted for consideration to the 
NATO Airfields Section, because they were of an entirely 
different form than the criteria commonly used by run- 
way builders. The NATO criteria for runway Construc- 
tion specify a maximum deviation from the theoretical 
design profile (which consists of straight lines and tran- 
sition curves with a specified minimum radius) and 
maximum departures from a 10 ft straight edge placed 
on the runway surface. The main objection against the 
AGARD proposals was that they were impracticable for 
checking a runway during Construction, in particular as 
long as time-consuming measurements had to he made. 
Upon request of the Executive of the SIM-Panel the 
authors made an attempt to correlate the two sets of 
criteria. They reached the preliminary conclusion that by 
a few changes of the numerical values contained in the 
NATO criteria it would become highly probable that a 
runway built to these criteria would also conform to the 
AGARD proposals. No further action has as yet been 
taken, also because the S/M-Panel wished to reconsider 
the proposed criteria in the light of some new evidence. 

4 Existing runway of road measuring systems 

The measurement of runways by means of the classical 
level-and-rod method takes a long time, viz. about two 
days per 3,300 ft  ( I  km) with experienced personnel. 
This fact and the expectation that in future a periodic 
check of NATO runways in Europe would be necessary, 
gave rise to the desire of having available a means for 
obtaining the required 'data more quickly, At the end 

' of 1959 the principal design requirements for such a 
measuring system were considered to he: 
4.1 Measuring speed of the order of walking speed or 

more. 
~ "I._"._ , ,, . ~- , .. ,.I .. . . . . ._..I_ 

, ., .. 
.. . 

4.2 A range of wavelengths from 4 ft (1.2 m) to 200 f t  
(60 m) should be covered. 

4.3 The system should he relatively simple, inexpensive 
and foolproof in operation. . 

4.4 Preferably, the system should he easily transportable 
by air. 

4.5 It should he simple to evaluate the measuring data 
hy means of a digital computer. 

4.6 The primary final data produced should be the power 
spectrum of runway elevations. Later on, it was also 
required to obtain frequency distributions of devia- 
tions from straight lines of various lengths. The 
accuracy of these results should he of the same order 
as that of the data obtained from the classical method. 

4.7 The surface profile of a runway need not he obtained 
to a great degree of accuracy hut -it should be 
reproduced 'without loss of wavelengths' in the range 
mentioned under 4.2. 

Although a review of measuring systems given in ref. [6] 
had already shown that a system satisfying most of these 
requirements was unlikely to exist, it was considered 
useful to review the existing measuring systems again, 
in particular the European apparatus used for runways 
and roads, before making a design for a new system. 

The conclusions of the study carried out at the NLR 
were that several European systems enabled a satisfactory 
measurement of wavelengths up to about 33 f t  (IO m) 
hut that no system existed for measuring longer, wave- 
lengths. Two of t h e ,  said systems were the French 
'Viagraphe' and the very similar British 'Profilbmeter'. 
The latter is shown in fig. 4. It consists of four 4-wheeled 
carriages and a central box with. recording apparatus, 
'which remains at a constant height above the average 
level of the 16 wheels. A measuring wheel can slide 
freely up and down in the central box and the relative 
displacement of box and measuring wheel is recorded on 
a rotating drum. The total length of the Profilometer is 
22'6" (about.7 m). From a communication by the Road 
Research Laboratory it was learnt that up to wavelengths 
of 25 ft (7.5 m) the ratio between the recorded amplitude 
and the actual amplitude for sine waves is approximately 
equal to unity; for longer wavelengths, however. this 

. . .  

. . . .. . .. . 

Fig. 4. Profilometer of the Road Research Laboratory 

5 
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Fig. 5. Transfer factor of Viagraphe 
A = I- cos 1 a cos acos 2 a, where a = 2  IZ a / L  

ratio decreases and is about 0.5 at L = 40 ft (12 m). The 
measuring speed of the 'Profilometer is about 1 ft/sec 
( I  km/h). 

The French 'Viagraphe' and a 'Mauzin' measuring 
coach built, by the French railways are very similar in 
principle to the Profilometer. The 'Viagraphe' has one 
row of 8 equally spaced wheels (spacing 1.43 m = 4.7 ft) 
and a central measuring wheel. For this system the ratio 
of measured amplitude to actual wave amplitude when 
running over a sinusoidal surface of wavelength L is given 
in fig. 5. It 'will be seen that reasonable results are 
obtained for wavelengths in the range from about 5.25 ft  
to 45 ft (1.6 m to 14 m), hut that large errors occur both 
at shorter and longer waves. 

Other measuring systems are based on.the recording of 
the relative displacement of a mass supported by a weak 
spring in a running cart or of the acceleration of a wheel 
following the runway 'surface, hut these systems were 
not considered sufficiently promising to warrant further 
study. 

Interesting information was also obtained on a few 
systems under development in the US. A paper design 
of a simple cart measuring a quantity related to the slope 
of the runway surface had been made. by the NASA 
(see ref. [41). The same principle had meanwhile been 

\ 

' 

adopted at the NLR (see section 5). The NASA design 
was not developed further and the dimensions.of the 
proposed cart were too limited to make it satisfactory 
for fulfilling .the requirements 4.2 and 4.6 mentioned be- 
fore, but this information strongly encouraged the further 
evaluation of the .NLR system. 

Already in 1957 the Wright Air Development Center, 
now Aeronautical Systems Division (A.S.D.), Wright 
Field, had started the development of a system measuring 
the elevation of the runway surface with the aid of a 
horizontal light beam (refs. [6] and [7]). The principle is 
indicated in fig. 6. The system consists of two carts, a 
stationary one producing the light beam and a running 
cart carrying the recording apparatus. The' 'light cannon' 
produces a collimated light beam of 3 inch height and 
4 inch width (truncated circle) by means of a zirconium 
element (point source) and a special 'unique' lens. At 
1,500 ft distance these dimensions have grown to 
3.75 inch x 10.5 inch, Under favourable circumstances 
the beam can he used up to 2,000 ft distance; the normal 
distance is 1,000 ft (300 m). The running cart (speed up 
to 5 miles per hour) carries a battery of 2 x 5 photo- 
cells which automatically centres itself vertically on the 
light beam, and a profile follower wheel running on the 
ground surface. The mutual distance between the battery 
and the wheel is recorded in digital form on a magnetic 
tape to an accuracy of 0.03 inch (0.75 mm); the smallest 
measuring interval is 6 inches (15 cm). 

The ASD profilometer was not ready for practical 
application until 1961 and a few interesting results are 
included in ref. 171. From a comparison with standard 
level-and-rod measurements over a distance of 300 ft  
(90 m) it appeared that 84 % of the profilometer mea- 
surements were'within % 0.2 inch (5 mm) of the level- 
and-rod data. A comparison of .IO profilometer runs over 
a distance of 600 ft showed that 67 % of the measured 
elevations reproduced within * 0.1 inch (2.5 mm). 

For the purposes of AGARD the ASD profildmeter 
(apart from the question whether the design would he 
successfully completed) was considered to be too com- 
plicated, too vulnerable and much too expensive. 

I 

5 Choice of the principle of the NLR measuring system 

When in'the beginning of 1960 the results of the study 
of existing systems were available it was considered which 
measuring principle was the most promising for fulfilling 

_ .  

, .  SHAFT POSlTiON TO L I N E  O F  R E F E R E N C E  
D I G I T A L  ENCODER COLLIMATED LIGHT BEAM 

SENSOR LOCKED . I_ . 

Fig. 6. Principle of 
measuring system of 
Aeronautical Systems 
Division, Wright-Patter- 

FILE DATA ( P U N C H E D  PAPER T A P E )  son A.F. Base. 
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Fig. 7. Transfer factor of 
simple slope measuring 
cart. 
A = amplitude ratio of 
dope of cart and slope 
of mnway surface. 

the requirements mentioned in section 4. It had been 
suggested that the best choice might he the use of an 
instrumented aircraft, which would have a big advantage 
owing to its easy transportability. This matter was there- 
fore considered first, and discussed with various bodies 
where. taxiing tests of instrumented aircraft had heen 
carried out or were being planned. It then appeared that 
such tests were considered to he useful for special pur- 
poses, in particular for obtaining data on the transfer 
function of the tested aircraft or on loads on the aircraft 
or a similar one. For general purposes and especially 
for the measurement of runway roughness properties an 
instrumented aircraft was unanimously considered unsuit- 
able. The main disadvantages were formed by the fol- 
lowing features: 
5.1 The evaluation of the measured accelerations or 

strains is very difficult'and uncertain owing to the 
non-linear properties of an ordinary landing gear. 
Even when a simple cantilever spring-type under- 
carriage was used the aircraft properties appeared to 
depend in an unpredictable way upon the taxi-speed 
and the nature of the runway. 

5.2 The aircraft responds mainly to disturbances having 
a frequency equal to one of its resonance frequencies 
and tends to filter out all other frequencies. Hence 
for measuring a wide range of wavelengths a runway 
should he measured at a number of taxi speeds and 
possibly a few different aircraft would have to he 
used. 

' 

Finally, the advantage of easy transportability was 
thought to he illusory and the costs of using.an instru- 
mented aircraft high, 

Disadvantage 5.2 also applies to other systems based 
on measuring accelerations of a spring-mass.combination. 
A relatively simple method of direct measurement of 
runway elevations over the large range of wavelengths - 
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Fig. 8. Principle of NLR slope measuring system. 

from about 4 ft to 200 ft was not thought to he possible. 
The requirements 4.6 and 4.7 led to the investigation 

of the suitability of a slope-measuring system, since the 
first step in the calculation of the power spectrum is the 
determination of the differences of successive elevations. 
(prewhitening), which are used further. This means that 
in essence the power spectrum of the runway slopes is 
computed and converted into the power spectrum of the 
elevations as a final step (postdarkening). It was con- 
cluded that all requirements could be satisfactorily met 
by the use of the slope measuring principle. 

Fig. 7 presents a.graph of the transfer factor A of a 
cart having a wheel base a, running over a sinusoidal 
profile. The transfer factor is defined as the ratio between 
the amplitude of the slope of the cart and the amplitude 
of the profile slope. The figure shows that O I L  is an 
important parameter that should not exceed 0.3 to 0.4 
in order to keep the measuring errors within acceptable 
limits. For measuring the slope of the cart a horizontal 
reference is required and a satisfactory solution is 
obtained in the form of a distant light source photo- 
graphed by a camera mounted on the cart. However, the 
use of a stationary light source at a great distance has 
several disadvantages, so that the properties of the 
measuring system of fig. 8 were investigated. This system 
consists of two carts at a constant distance ma, the one 
carrying the light source being towed by the measuring 
cart carrying the camera. Various combinations of n 
.and a were investigated and for the required range of 
wavelengths (4 ft  < L < 200 ft) the values n = 100 and 
a = 1.5 f t  were selected as the most appropriate com- 
bination. The transfer facfor of this system is given in 
fig. 9; for a I L  > 0.3 the curve coincides with that given 
in fig. 7 7). 

The suitability of this design was further investigated 
by carrying out a number of calculations concerning a 
paper measurement of a known runway by means of a 
system having n = 50 and a z 2 ft  (which is less accu- 
rate). It is to he noted that the deviations d according 
to fig. 3 and the surface profile must he obtained by 
integration of the measuring results, so that in principle 
a cumulation of errors occurs, The results of the calcu- 
lations showed, however, that both the power spectrum 

7) Fig. 9 relates in fact to n 7 45 cm = 1.475.ft. which was 
later rounded off to 1.5 ft. 
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Fig. 9. Transfer-factor 01 
NLR system with 
n = 100. 
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and the  frequency distribu'tions of the deviations from 
straight lines of various lengths were in good agreement 
with those obtained from the data of level-and-rod 
measurements. It was therefore decided,to build a provi- 
sional measuring iystem and to carry out 'a number of 
comparative measurements with the NLR system and 
precision level-and-rod apparatus. 

The accuracy of the slope measurement aimed at was 
0.01", which was considered to be satisfactory on the 
basis of the calculations carried out. By taking a number 
of samples of known runway measurements i t 'was con- 
cluded that a measuring range of * 3' would be quite 
sufficient. 

6 Provisional NLR measuring system and measuring 
results 

The very simple provisional measuring system, which was 

intended to evaluate the actual characteristics of the 
proposed system, is shown in figs 10 to 13 incl. As was 
already shown in fig. 8 the light source (a flash light 
with a cross) i,s photographed by a camera mounted on 
the' small measuring cart proper. The boundary of thc 
image window on the film is used as a referenceJine, the 
distance between this reference line and the image of the 
light source (a small cross) being a measure of the angle 
between the optical axis of the camera and the light ray. 
In order to obtain a light flash every 1.5 ft the circuni- 
ference of the wheels of the camera cart has been made 
equal to 1.5 ft. A microswitch (fig. 13, foreground) is 
actuated once per revolution and gives an electric signal, 
transmitted along the towing cable to the flash light. At 
the same time a counter is actuated counting the,nuniber 
of revolutions (fig. 13, right), 

The. camera used was a continuous camera with 
variable film speed built at the NLR for other purposes. 

Fig. IO. Cart carrying flash light. 

8 

Fie. 11. Camera cart dismounted from its supporting cart 
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Fig. 12. Detail of 
mounting of camera 
cart. 

The lens is always open, which is not objectionable if the 
measurements are made i n  the dark or with a clouded sky. 
However, in order to enable the measurements to he 
made under sunny weather cohditions a butterfly shutter 
was added, driven in a simple mechanical way. Just before 
the light flashes the shutter is removed laterally and 
leaves the lens free during a short time (fig. 13). 

I n  fig. 11 the camera cart is shown dismounted from 
its supporting cart. I t  is mounted by means of a long pin 
and two adjustable spring dynamometers are used to 
press the camera cart to the ground with a .predetermined 
force (see fig. 12). The wheels of the camera cart are 
provided with hard rubber tires (70' shore). 

A series of runs with the NLR measuring system were 
made on a part of a runway of 3,300 ft ( I  km) length 
at the Air Force Base De Peel. The same stretch was 
measured with precision level-and-rod apparatus of the 
'Rijkswaterstaat'. The cart of figs. 11 and 12 was towed 
a t  a constant speed ranging from 1.6 to 6 ft/sec. (1.8 to 
6.6 km/h) and the force exerted by the spring dynamo- 
meters on the camera cart was 22 Ibs (10 kg) or 66 Ibs 

(30 kg). The cart of fig. 10 was towed by the other one 
by means of a cable also containing the electrical leads, 
and corrective steering action was taken if necessary. The 
measurements were made within * 6 inches (15 cm) . 
approximately from the centre line of the runway and 
the shots were taken near markings at 1.5 f t  spacing on 
this line, which were also used for  making the level and 
rod measurements. The records on the films (consisting 
of about 2,200 crosses and the reference line) were con- 
verted into a punched tape by means-of a Benson-Lehner 
Oscar digitizer and the further calculations were carried 
out on the X-1 digital computer of the NLR. The level 
and rod data were also evaluated on the X-1 after having 
been punched on a digital tape. 

The results of the measurements are presented in figs 2 
and 3. Power spectra were computed for five runs and 
they showed no systematic effect of the measuring speed 
or the magnitude of the dynamometer force. All five 
power spectra showed exactly the same trends, such as the 
S-shaped parts at B = 0.3 and B = 0.8. Hence, only the 
scatterband of the five runs and the power spectrum of 

~ 

Fig. 13. Detail showing 
camera, butterfly shutter, 
counter and measuring 
wheel with microswitch. 
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run 2 are presented in fig. 2 in comparison with the 
power spectrum obtained from the level-and-rod data. 
Run 2 was selected more or less arbitrarily for computing 
the frequency distributions of fig. 3; it was, however, 
avoidea to  select a run which might' present a too opti- 
mistic comparison with the level-and-rod data. 

The scatter between the fice runs in fig. 2 is considered 
to he small for power spectra, kspecially if it is observed 
that the various -runs were only approximate repetitions 
of each, other. Up to Q = 0.59 the maximum scatter 
factor (maximum @(Q) over minimum@(Q)) is 1.30 and 
for larger Q, i.e. smaller wavelengths, the maximum 
scatter factor is 1.91 at Q =  1.92. The 'IevelLand rod' 
power spectrum falls outside the envelope of the 5,runs 
only at a few places. The large discrepancy near 
Q = 0.035 is not quite clear,' hut it is known that at 
the upper limit of the range of wavelengths (B= 0.035) 
inaccuracies due to the method of calculation may occur, 
which cannot be considered to  be real errors of the 
measuring system. The most serious discrepancies occur 
at 0 = 0.38 and 9 = 1.12 where the 'level and rod' 
results are 14 % and 15 % less than the lower boundary 
of the 5 runs respectively. 

In view of the foregoing it may he concluded that 
the results of the comparison are quite satisfactory. The 
same conclusion 'can he drawn from fig. 3 for the com- 
parison of the frequency distributions. 

7 Current and possible future extensions of the work 

The work carried out  at the NLR for AGARD is now 
being rounded off. Principal design drawings of a definite 
version of the measuring system have already been, 
prepared and the preparation of detail drawings will he 
completed shortly. The  definite version of the system has 
been designed'such that one or two-small tractors can 
he used to  tow the measuring system. A camera suitable 
for use on the camera cart has recently become commer- 
cially available. A final report containing more detailed 
information on the design of the measuring system will 
be submitted in the middle of 1963. 

It has been experienced that the most cumbersome 
part of the evaluation of the measuring data is the con- 
version of the film into 'a digital tape. If many sets of 
measurements would have to he evaluated in the. future 
then it might be worthwhile to  modify the recording 
apparatus in such a way that the end, product of the 
measuring system is a punched tape instead of a film. 
Some preliminary thought was given to this problem. 

Another problem that was considered provisionally is 
an extension of the range of wavelengths to a higher 
upper limit, say about 300 ft. Recent information indi- 
cates that components of more than 200 ft wavelength 
are gaining importance for large modern aircraft, It will 
he seen from fig. 9 that the transfer factor of the present 
set-up is satisfactory up to wavelengths of about 500 ft. 
However, the inclusion of longer waves will necessitate 
a reconsideration of the programming for the compu- 
tation of the power spectra, in reipect of the amount of 
work and the accuracy of the calculation. Another 
method would he to  increase the wheel base a (say to 
2 ft) in which case there would be less increase of the 

10 
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computational labour hut some loss of information in 
, the  region of short waves. (see fig. 7). Finally, it could 
be considered to .adapt both a and n to the desired 
properties of the system. It is thought that in each par- 
ticular case the best compromise should he determined 
in view of the importance attached to the various aspects 
of the problem. 

In ref. [SI some ingenious measurements of the deflec- 
tion across a runway at Schiphol airport are described 
when a dead weight of 100 tons' was run along the 
runway at  a speed of 5 km/h. These tests were considered 
of interest in view of the weak structure of the ground 
in the western part of the Netherlands. One objection 
that can he made t o .  these measurements is that they 
give no information on the runway roughness caused by 
the deflections. The NLR system would he well suited 
to he towed along the runway, both without and with 
a similar dead weight or a large aircraft, and could thus 
give .an indication of the importance of runway deflections 
under. the load of the aircraft itself for the problem of 
runway roughness. 
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Models for helicopter dynamic stability investigations 
by 

L. R. Lucassen and F. J. Sterk 

Summary 

A mathematical model is described, which has been devised for improving the physical understanding of helicopter dynamic instability 
in hovering (two degrees of freedom). A demonstration model has been built according to this principle. The influence of parameters. 
artificial stabilization and sling load on the dynamic characteristics is shown. 

A short 16 mm film is available. 
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List of symbols 

See fig. 1 for positive directions. 
a 
a, 

-angle between thrust and rotor shaft centreline 
-damping in pitch or roU=change of a per unit 

of angular velocity of the rotor head, including 
the effect of artificial rate stabilization 

a', a,+ha, 
a, 

g -acceleration due to gravity 

-speed stability=change of a per unit.of linear 
velocity of the rotor head 

h 

I 

M 
4 
U 

P 

-distance of the rotor head above the helicopter 

- helicopter moment of inertia about axis through 

- helicopter mass 

-horizontal velocity of helicopter centre of 

- attitude angle of fuselage 
-linear scale of mechanical model with respect 

to mathematical model 
- mass scale of mechanical model with respect to 

mathematical model 

centre of gravity 

centre of gravity 

0 

gravity 

1 Introduction 

I t  is known from experience, that the motion of a 
normal helicopter without special provisions is dynami- 
cally unstable. This is also proven by several theoretical 
considerations, in which it is pointed out that certain 
criteria are not met o r  unstable roots appear. Only re- 
latively seldom a mechanical approach is used in order 
to improvethe physical understanding of the behaviour. 

The main object of this paper is to give a contri- 
bution in this direction, firstly by making use of a rather 
simple mathematical helicopter model. Thereafter it is 
explained how this model can be built at  a reduced size 
for demonstration purposes. 

2 Theoretical aspects 

2.1 General 

Before dealing with these models, it is necessary to 



recall some important theoretical aspects of helicopter 
and rotor dynamics. In order not to confuse the deriva- 
tions with too many details, it has been attempted to 
consider only essential quantities. This has resulted in 
the adoption of some rather drastic simplifications: 
- hovering helicopter 
- small deviations of the helicopter in two degrees of 

freedom (roll and side slip or pitch and forward 
speed). 
Other assumptions are mentioned in the next two 

chapters. 

2.2 The helicopter 

The helicopter quantities which are important for the 
analysis are : 
- the helicopter mass M ,  
- the distance h of the centre of gravity below the rotor 

head, 
the moment of inertia I about the axis through the 
centre of gravity. The aircraft is free to rotate about 
this axis. 

Some additional assumptions are: 
- helicopter centre of gravity on the shaft centreline 
- rotor thrust equal to weight. 

2.3 Therotor 

An important parameter in the theory of dynamic 
stability is the angle a between the centreline of the 
shaft and the thrust. This angle is generally assumed to 
he linearly dependent on the angular velocity of the 
rotor head and its linear velocity: 

a =a,d + a& + h6) (1) 

See fig. la. The damping in pitch a, and the speed 
stability au depend on geometric-, mass-, and operation- 
al characteristics of the rotor blades. The sign con- 

..." ".a$ i ' I 

DAMPER = M ~ ~ ~  U + 2 6  CONSTANT 

\ 

b. I MATHEMATICAL MODEL 
a .  

HELICOPTER 

t . 9  
Fig. I Comparison between helicopter and mathematical model 
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vention, as indicated in Eq. (I) and fig. la, leads to 
positive values for a,, and au in the normal case. 

In Eq, (I), two terms are proportional to 6. Taking 
these together, then 

a = a', 5 + a,u, 

a', = a, + ha, 

(2) 

(3) 
where 

As a'4 depends on h, it is strictly speaking no longer a 
rotor quantity. However, ha, is generally small in 
comparison with a,, so that a'4 is still mainly deter- 
mined by the rotor. 

The excentricity of the blade flapping hinges is as- 
sumed to he zero. This leads to zero moments from the 
rotor on the shaft. 

2.4 Helicopter dynamics 

The equations of motion for the helicopter in two 
degrees of freedom are, according to fig. la: 

translation: M i  = Mg(5-a) (4) 

rotation: I o =  -hMga ( 5 )  

Mli = Mg(O-a',o -a,u) (6)  

After substitution of Eq. (2), these become: 

I s =  - hMg(a',6+aUu) (7) 
These equations, although based on several assump- 
tions as mentioned before, give very reasonable ap- 
proximations for the type of motion, the period and the 
damping time of a hovering helicopter. 

Dynamic models, representing the helicopter, should 
also obey to these equations. 

2.5 Mathematical models 

In order to improve the physical understanding of 

Fig. 2 Mechanical model 
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the helicopter dynamic behaviour, it has been attempted 
to devise a mathematical model which is still simpler 
than shown in fig. la. This model is indicated in fig. I b. 
An important feature is, that it does not longer include 
the.rotor. On the shaft centreline, a point has been 
indicated at a distance a'q/au above the helicopter 
centre of gravity. This point is, for reasons which will 
soon become clear, called the damper point.  It moves 
with the helicopter fuselage and because of the chosen 
distance, its horizontal velocity components due to 
rotation and translation are a;d/ac and 11 respectively. 
The ratio between these velocities is exactlyequal to the 
ratioofthe rotor forces Mgdqd and h'gaga,u, these being 
two of the three horizontal components of the thrust. 
If therefore a horizontal damper is assumed to act a t  
the damper point, this will exert forces dependent on 0 
and u in the right proportion. I t  is important to note, 
that the distance between the damper point and the 
helicopter centre of gravity is by definition constant 
and almost fully determined by rotor quantities (if the 
small correction ha, on a, is disregarded). 

The damper point should not he confused with the 
so-called neutral point above a rotor, which is some- 
times used in rotor theory, particularly of German ori- 
gin. The neutral point is related to the moment which 
a rotor exerts on the shaft, for instance due to excentric 
flapping hinges. Such moments are not considered here. 

For normal helicopters, a',/au may be of the order 
of 100 ft, so the damper point is considerably above the 
rotor. 

The damper constant, being the ratio of the damper 
'force and velocity, should be equal to Mga, in order to 
produce a force of the right magnitude. 

The third horizontal component Mge of the rotor 
thrust in the mathematical model isassumed to act at the 
helicopter centre of gravity. This guarantees the absence 
of a moment dependent on 0, as in fact is required by 

The equation for the horizontal motion of the 
(7). 

mathematical model appears to be: 

(8) 
alp. . 
au 

~ z i  = Mge- Mga,, . (- O+ u)  

and this is equivalent to Eq. (6). In order to fulfill the 
moment equation (7), it is necessary to scale the moment 
of inertia with the factor dq/ha,. The reason for this 
scaling can also be explained in other terms. Consider 
the distance a',/a,, which is larger then h. However the 
damper force is equal to the two horizontal components 
of the rotor thrust. Therefore, the moment will be 
larger and in order to obtain the same angular accelera- 
tion, the moment of inertia should be scaled up. The 
corresponding equation is 

which is identical to Eq. (7). The mathematical model 
will therefore have the same dynamic characteristics 
as the helicopter. The time scale of the motions is 
equal to one. 

These considerations show, that the action of a 
helicopter rotor is equivalent to the combined action 
of a physically more understandable damper a t  the 
damper point and a force Mge at  the centre of gravity, 
both forces being horizontal. 

Some general results may be obtained by paying 
closer attention to this model. I t  is however prefered 
first to proceed to the description of the mechanical 
model. The discussion may be found in Ch. 4. 

3 Mechanical model 

In developing the mathematical model, the question 
did arise whether it would be possible to materialize 
this model and for which purposes it could be used. 

,-. 

Y A I R  DAMPER 

The first question is probably best answered by 
refering to figs. 2, 3 and 4, showing diagrams and a 
picture of the mechanical model. This is similar to the 
mathematical model, but constructed at a length 
scale 2 and a mass scalep. It consists of a horizontal 
rail, along which a car is allowed to move. This car 
represents the centre of gravity of the helicopter. A bar 
representing the moment of inertia of the helicopter is 
mounted on pivots in this car. The upper end of the 
bar, corresponding to the damper point, is equipped 
with an air damper. In  order to exert the force MgO at  
the centre of gravity, the car is connected to a second 
car on a sloping rail. Its gradient is varied hy a servo- 
mechanism. This receives an input from a potentio- 
meter in the first car, measuring the attitude angle 8 
of the bar with respect t o  the vertical. The weights of 
cars and bar together correspond to the helicopter 
weight (scalep). As only the second car is on the sloping 
rail, its gradient is somewhat larger than, but propor- 
tional to, the attitude angle of the bar. 

With regard to the model scales, the following re- 



marks apply (fig. 2). All lengths of the mathematical 
model are reduced by the linear scale 1. As a',/a, is 
large, A must be chosen rather small in order t o  obtain 
reasonable model dimensions. 

For the time scale, one must remember that g ,  having 
the dimension [l / t2],  is equal for the mathematical and 
mechanical models. So, a time scale of I/n must be 
accepted. Independent of these scales is the mass scale 
p. Scales for other quantities such as I,  damping con- 
stant, etc. are combinations of rl andp. 

Fig. 4 Mechanical model 

The model as shown in fig. 4 has been built from a 
universal construction system (Swedish FAC X-2), a 
servo component kit (English Feedback Ltd) and some 
model railway elements. 

4 ,Discussion 

4.1 General 

Having described the mathematical and mechanical 
models, it is possible to go into some more detail. The 
discussion will be given in terms applying to the mathe- 
matical model (fig. Ib); for the mechanical model, the 
scales have to be taken into account (fig. 2). 

4.2 Period 

The length a',/au of the mathematical model may 
for a moment be considered as the length of a simple 
pendulum. Its period of oscillation would then be T= 
2nl/(a'q/ga,). This equation was first derived by 
Hohenemser in 1944 by starting from theequations of 
motion and neglecting the helicopter moment of inertia. 
This approximation is however seldom appropriate. 
The mathematical model shows two reasons. First, the 
helicopter moment of inertia had to be scaled up with 
the factor a',/ha, and the presence of a moment of 
inertia (compound pendulum instead of simple pen- 
dulum) leads anyhow to larger periods. Secondly, the 
upper point of the length a'@/au is not fixed to space 
but attached to the damper. This also leads to an in- 
crease in period. 

4.3 Helicopter instability 

The action of the rotor thrust and weight on the 
helicopter may, according to the models, be considered 
as being equivalent to that of two horizontal forces 
(fig. Ib). The upper force, depending on a', and a,, is 
purely damping. Energy is permanently withdrawn from 
the system at the damper point. The only reason for 
instability must therefore he sought in the force Mge. 
If a', and a,  would be zero, then the damper would exert 
no moment about the centre of gravity and the angular 
velocity 6 would be constant. The translational motion, 
which is then only influenced by the force Mg8 at the 
centre of gravity, will have a linearly increasing accele- 
ration which is obviously unstable. The introduction 
of the forementioned damping leads to a statically 
stable motion, but the dynamic instability remains in 
the form of diverging oscillations. 

4.4 Artificial stabilization 

In its simplest form, artificial stabilization is obtained 
by cyclic control inputs io the rotor which make the 
thrust angle a dependent on fuselage attitude 8: 

a=a',B + a,u+anO (10) 

Substitution in the equation of motion, (Eq. 5) ,  shows, 
that artificial stabilization leads to an extra moment on 
the helicopter of -hMgasB about the centre of gravity. 
In terms of the mathematical model, this means. 
that the force MgB (or more precisely MgO (1 -as)), 
should act at  a point (a',/a,)an below the centre of 
gravity. 

I t  is obvious that such a force tends to decrease the 
angle 6 ,  thus having a stabilizing effect on the motion. 

As the moment arm is proportional to aa, larger 
values of this coefficient will naturally be more favour- 
able. 
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4.5 Sling load 

Helicopters are often used for the transportation of 
external loads. In several cases these may have an un- 
favourable influence on the flying qualities, thus restrict- 
ing the operational possibilities. 
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In order to avoid such restrictions, different methods 
of load suspension have been devised, their common 
idea being to avoid moments of the load about the heli- 
copter centre of gravity. 

Some preliminary tests on the mechanical model 
have been made to demonstrate the influence of the 
sling load on the motion. Fig. 5 shows this model with 
sling load attached. Because the bar represents the 
fuselage, the load may directly be suspended from this 
bar. 

5 Conclusions 

Theoretical considerations and experiments on 
models, representing the dynamic characteristics of a 
hovering helicopter with two degrees of freedom, with 
and without artificial stabilization and sling load, have 
led to the following conclusions. 

1 The damper point on the rotor shaft centreline at a 
distance dr /au  above the helicopter centre of gravity is 
a concept which may be used for improving the physical 
understanding of helicopter instability. 

2 The complicated action of rotor thrust and weight 
on a helicopter may for stability considerations be re- 
placed by that from IWO horizontal forces: one at the 
damper point and the other a t  the centre of gravity, 
proportional to the attitude angle. 

3 It has appeared possible to construct a simple me- 
chanical model on the basis of the mathematical model 
which can be used for demonstrating dynamic char- 
acteristics and amongst others the influence of ar- 
tificial stabilization and/or sling load on the motion. 

Fig. 5 Sling load on mechanical model 
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Analysis of a symmetrical 
swept-back box beam with non-swept centre part. 

by 

J. P. Benthem 

Summary 

The box beam has all its ribs parallel to the plane of symmetry. It is analysed for 3 symmetrical and 2 antimetrical loading cases without 
much idealization ofthe structure. In 3 cases rigid supports at the carners ofthecentre part arepresent. Approximatestress-distributionsare 
obtained by aid of the minimum theorem of the complementary energy. As an auxiliary problem also the stress-distribution of a swept 
part extended to both sides is calculated along the same lines. The solutions are judged by the degree of compatibility of some strains. 
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Notations 

E 
V 

Elasticity modulus. 
Poisson ratio. 

Shear modulus 

coordinates in an oblique 
coordinate system. 
coordinates in an orthogonal 
coordinate system. 
angle between x and y axes. 

stress components in an ob- 
lique coordinate system, 
5 is also a shear stress (in a 
rectangular system) in rib- or 
spar webs 

1, Y 

x‘, Y’ 

e 
h plate thickness. 
%, %, 
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VALENT STRINGER PLATE 

CARRIlNC PLATE 

FlNAL IDEALIZA710N 
IUPPDIiTlON i " * T  ,"E SPAR WEBS C l e m  "I 
S"E*RiiRiliii. W * i R E & I  T W l R  NOR" STRESS 

CLRR"~NCC*PACIT" 1 5 A O D l D T O  THE SPAR BOOMI 

Fig. 2 Idealization of the (normal) cross section in the sweptpart. 

contraction coefficient v=0.3, the bending stiffness 
is 28.275 x 108 kg cm2 and the torsionai stiffness is 
14.973 x 10s kg cm2. The ratio bending stiffness: 
torsional stiffness=I.89:1 is such as may occur in 
modern practice. 

The cross sectional area of the rib boom at the bend 
is like that of the spar booms 1.25 cmz, that of the ide- 
alized one 1.85 cm2, & of the cross-sectional area of the 
rib web at  the bend being added. The (normal) cross- 
sectional area of the other idealized rib booms is taken 
as 0.30 cm2, although only + of the normal cross- 
sectional area of the corresponding rib webs would just 
contribute this amount. A reduced amount for the total 
cross sectional area of the idealized boom is taken be- 
cause the ribs are considered not to be fully effectively 
connected to the skin, the connection being interrupted 
by all the stringers. 

3 Loading cases 

Fig. 3 shows the loading cases to be considered. In 
the cases a.1 and a.2 (constant moments) only a swept 
part of the box beam is investigated as if there were to 
both sides an infinite sequence of equal cells, and thus 
the stress distribution in all cells is the same. Also in 
case a.3 (constant shear force) the box beam is infinite 
to both sides. In that case the stress distribution in the 
cells is to be separated into a part equal in all cells and 

a part the stresses of which are proportional to the cell 
number, the cells being numbered starting from the cell 
for which the right hand rib is loaded by the external 
shear force. 

The other loading cases refer to the synimetrical 
swept back box beam discussed in section 2. In cases 
b.1, b.3 and c.1.2 the four corners A, B, C, D (fig. I )  
of the centre part are connected to supports that can 
carry only vertical forces and do so without any 
displacements (Le. these corners remain in one plane). 

In the symmetrical swept back box beam only the 
stress distribution in the middle cells and the first 
three swept cells from the middle part is considered to 
be unknown. Outside this region the stress distribution 
is supposed to be that which is obtained from the cor- 
responding cases of the infinite swept back bbx beam. 

4 Oblique coordinates 

4.1 Stressflows 
Fig. 4 shows the coordinate directions used in the 

middle part and in the swept part at the right-band side. 
Both coordinate systems are right-handed. A more de- 
tailed discussion of the use of oblique coordinates, as 
used for the swept part was given in refs. 2 and 1. The 
features needed here will be briefly repeated. 

The states of stress in a plate, which is parallel to the 
xy plane is described by the oblique stress components 
u2,0~,t or mostly by the stressflow components 

-R,GHTHLNDED YOHE" IN . DOWNWLRO FORCEIIN *g 
0 "PI.RD I O C L I I N  *4 

! l5 

L 

Fig. 3 Loading cases. 



Fig. 4 Coordinate systems used 

S, = ha# (4.1) s2=hax1 t=hz 

where h=plate thickness. Fig. 5 shows an elementary 
parallelogram with sides dx and i3y. On the right side 
dy of this parallelogram act forces szdy and tdy, on 
the lower side d n  the forces s,dx and tdx. From 
equilibrium considerations follows that both stress- 
flows t are equal and further that, in the absence of 
mass forces, the differential equations 

I where 

1 A,, = - 
Eh 

14 

1 cos2B-v sin28 2 ctn 8 - 
sin 0 sin 0 

sin 0 sin 0 

2 ctn 0 

- 2 ctn 8 

2 ctn 0 

cos28-v sin28 1 

2(l+cos20+v sin2B) 
sin 8 

hold, which equations have the same form as in the case 
of orthogonal coordinates. The stressflows sz and s, will 
be called axial stressflows, the stressflows f tangential 
stressflows. The corresponding quantities in the middle 
part are normal stressflows sz and s, and shear stress- ' 

Rows t .  
Also the notation 

(4.3) I SI = s, 
sz = s, 
S a = f  

will he used. 
The shear stressflows f in spar and rib webs in the 

middle as well as in the swept part are, of course, ex- 
pressed in orthogonal coordinates X,Z  and y,z respec- 
tively. 

4.2 Strains 
A displacement vector u in the x,y plane is indicated 

by its projections uz and u, on the coordinate axes 
(fig. 6). The state of strain is indicated in the same way 
as in orthogonal coordinates, by the oblique strain 
components 

(4.4) 
Fz = au,jax 
E, = au,/ay 

= au,jay + au,jax 
Also the notation 

E 1  = &z 

&2=&, (4.5) 
e3=y 

will be used. 

Eh 
(1-vZ)sinaO acj = 

4.3 Stress-strain relations 
The stress-strain relations for an isotropic plate parallel to the x,y plane are* 

&c=Arjs,, i=1,2,3, j=1,2,3 

1 cos28 + v sin20 -cos e 
c o s ~ e + v  sin28 1 -cos e 

, 1+cos20-v sin28 
2 -cos e -cos e 

a,) = 

- EAa 0 0 
a, 
0 0 0 
0 0 0  

The matiix ad, of the equivalent stringer plate is 

(4.8) 

(4.9) 

(4.10) 

The summation signs fori andj  an omitted everywhere 
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Fig. 6 Displacement projections in a plate parallel to the xy plane 
of the oblique coordinate system in fig. 4. 

Y AXIS 

Fig. 5 Stress flow components in a plate parallel to the xy plane 
of the oblique coordinate system in fig. 4. 

Ad is the (normal) cross sectional area of a stringer, ad the stringer spacing, measured in y-direction. 
To obtain the matrix atj of the combination of the isotropic plate and the equivalent stringer plate, the matrices 

(4.9) and (4.10) must be added. By inversion of the resulting matrix the stressflow-strain relations for the combination 
arise in the shape 

E{ = Aijsj (4.11) 
and the elements of the matrix At, are 

1 

E($ + h sin e)  
AII = 

+ 1) cos e Ad1 + v )  sin 0 
( a.h 

A23 = A32=2Ai1 

1 + 2(1 +cos20 + v  sin") 2A,(1 +v)sin 8 
A33 = A n (  

The elastic energy per unit of surface (square cm) is 
given by the expressions 

U=+st~t/sin 0 (4.13) 

U=+aijaieJ/sin 0 (4.15) 

U=+Aijstsj/sin 8 (4.14) 

from which only (4.14) will be used in the calculations. 
This expression reduces to 

U= +Aij st sj (4.16) 
if the strain energy is taken per unit rhomb of the coor- 
dinate system. 

5 Flexibilities of the structure 

The strain energy of an element dl of a boom is ( N  
normal force, A normal cross sectional area) 

N L  
EA U = i - d l .  

(4.12) 

In  the structure occur four classes of booms with 
different values of 

I 
EA . 

They are indicated in fig. 7a.* 
Fig. 7b shows the two sorts of combinations of 

stringers with isotropic skin which occur. Their values 
Atjxy (Atj of formulas (4.12) multiplied by the lengths 
of both sides of the parallelograms) are also given. 

- 

* The unit of force is the kg, the unit of length the cm every- 
where. 



16 

gjjp$ 3 
FIG. 7A. 

SKlh WITH OISlRIBUlED STRINGERS 

I FIELDS 1 

A.~w=IIO.S4 Arm7 =1952.757 

WEBS - 
WEBS I IO lcml 
WEBS2Wcm).  
WEBS 3 LO.lcd. 
WEBS 4 (0 2 c d .  

THICKNESS OF 

I 
- \  

Fig. I Flexibilities of structural components, multiplied with IO5. 
(unit of force kg, unit of length cm) 

In fig. 7c the different only-shear-carrying webs are 
shown, together with their values F/Gh (F=surface of 
one web). The strain energy of a web is 

lJ=+tzF/Gh. (5.2) 

6 Application of the theorem of the minimum of the 
complementary energy 

6.1 The theorem 
The theorem of the minimum of tbe’complementary 

energy can be stated in the following way (ref. 3, page 
286). 

Of all states of stress satisfying the conditions of 
equilibrium in the interior and on that portion of the 
surface where the surface forces are prescribed, the 
actual state of stress is such as to minimize the ex- 
pression for the complementary energy. 

V * = & f  S;Rdo-Jk.udf .  (6.1) 
U 

The scalar product S .  R is the sum of the scalar 
products of the stress components acting on the volume 

element du and the infinitesimal displacements accord- 
ing to the strains of the volume element; shorter: the 
scalar product of stresses and strains of volume element 
du. The product 4 S .  Rdu is called the strain energy of 
the volume element du and the first integral of (6.1), 
which extends over the whole volume of the body, the 
strain energy of the body. 

Further, k are the forces (per unit area); acting at  the 
surface f of the body and u the displacements through 
which these forces act. The symbol u at the integral 
sign means that the integral extends only over that por- 
tion of the surface where the displacements are pre- 
scribed. 

It must be kept in mind, that when applying the 
minimum principle (6.1), in the interior of the body 
primarily only the stress state is varied and that the 
strains R in (6.1) follow these varying stresses by means 
of the stress-strain relations. Unless V+ is indeed the 
minimum, these strains do not satisfy compatibility 
conditions. Thus, for a unit rhomh(of the oblique coor- 
dinate system) of the anisotropic combination of skin 
and equivalent stringer plate the expression (4.16) will 
be used. 

The state of stress S,  together with its external for- 
ces k, is now considered to be the sum of a number of 
states of stress, each with its external forces: 

(6.2) 
s= So + xr sr 
k = k o + x r k t .  

The state of stress SO, together with its external load 
ko, the so-called “zero system of stress”, everywhere 
satisfies the equilibrium conditions and where the 
external load is prescribed ko equals this prescribed 
load. A state of stress St, together with its external 
loads kt also satisfies equilibrium conditions, but where 
the external loads are prescribed the forces kt are zero 
and where the displacements are prescribed the resultant 
of these forces kt (of every system Sr) must be zero. The 
stress systems Sr, which must be linearly independent 
from each other, are called “internal systems of stress”*. 
In an n-fold statically indeterminate structure n such 
systems may be constructed, and in (6.2) the unknowns 
X t  are the statically indeterminate quantities, which 
have to be determined with the aid of the minimum 
theorem (6.1). The unknowns X, will be called the 
participation factors of the internal systems of stress. 

The equations (6.2) are substituted in (6.1). 

Io ref. 1 the “zero system of stress” is called “basic stress system” and the “intemal system of stress” are called “supplementary 
stress systems”. It is believed now that the nomenclature of ref. I is to be recommended. 
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must he satisfied. 
The solution for the unknowns Xj is 

Xj=(Atj)-l(-&c + udf)=O (6.7) 

where ( A t j ) - I  is the inverse matrix of the matrix Atj ,  

6.2 The “zero systems of stress” for the 8 loading 
cases. 

To the 8 loading cases described in section 3 (fig. 3) 
belong 8 zero systems of stress, which are shown in the 
figures 8 to 14. Note that the loading cases c.1.1. and 

NORMAL FORCES IN 
UPPER BOOMS 

Y 
\ 

- 
STRESSFLOW Sx 

i 
Y 

STRESSFLOW Sy 

-. -. c r y  \ 

Y 
STRESSFLOW t 

c 

\ 
Y 

\ 4s 

\ SHEARSTRESSFLOW IN WEBS FRONT SPAR 

REAR SPAR 

Y 7. 

Fig. 8 Zero system of stress in one cell of swept part for loading 
case a.1. Forces in kg. Stressflows in kglcm. Dimensions in cm. 

NORMAL FORCES IN 
UPPER BOWS 

FRONT SPAR 

--I93.790 
LI \ REARSPAR 

Y 
\ 

SHEARSTRESSFLOW IN WEBS 

REAR SPAR 

Y 1. 
1 

Fig. 9 Zero system of stress in one cell of swept part for loading 
case a.2. Forces in kg. Stressflows in kg/cm. Dimensions in cm. 

c.1.2 may have, of course, the same zero system of 
stress (fig. 14). There are reasons to choose the zero 
systems of stress as simple as possible, other reasons to 
choose them as good as possible in accordance with 
the expected stress distribution. The latter has been 
done in the present calculations. In the swept parts the 
stresses of the zero systems of stress are as they follow 
from the elementary theory for the hollow box beam . 
(i.e. the beam without ribs) loaded by a moment nr 
shear force. This can, however, not be seen immediately 
by inspection, because the stressflows in the skins with 
distributed stringers are expressed in oblique coordina- 
tes and because both constant moments which are used, 
are each a combination of a bending and a torsional 
moment. 

The figures 10-14 show the zero systems of stress in 
half of the middle part and the swept part at the right- 
hand side only. 



Fig. 10 Zero system of stress in one cell of swept part for loading 
case a.3. Forces in kg. Stressflows in kglcm. Dimensions in cm. 

Fig. 11 Zero system of stress at root of swept part for loading 
m e  b.1. Forces in kg. Stressflows in kg/cm. Dimensions in cm. 

'r. 

Fig. 12 Zero system of stress at root of swept part for loading 
case b.2. Forces in kg. Stressflows in kg/cm. Dimensions in cm. 



Fig. 13 Zero system of stress at mot of swept part for loading 
w e  b.3. Forces in kg. Stressflows in kg/cm. Dimensions in cm. 

,' 

\ 
1". 

Fig. 14 Zero system of stress at mot of swept part for loading 
case c.1. Forces in kg. Stressflows in kg/cm. Dimensions in cm. 

Fig. I5 Situation of internal systems of stress. 
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6.3 The internal systems of stress 

The figures 1632  show the internal systems of stress 
which are to be used. Fig. 15 shows their location in the 
structure. 

System nr. 1 (fig. 16) is a system with 4 external forces 
(with zero resultant) acting through the rigid support. 
For the other, pure internal systems of stress six types 
are to be distinguished. Type 1 (systems nrs. 2, 6, 12, 
18,24, figs. 17,21, 27) is convential for unswept wings 
and the only one to be used if it is supposed that all 
plates carry only shear stresses along their edges. The 
systems of type 2 (nrs. 3, 7, 13, 19, 25, figs. 18, 22, 28) 
leave the stressflows sz constant in y-direction, those 
of type 3 (nrs. 4, 8, 14,20 and 26, figs. 19,23,29) allow 
them to vary linearly in y-direction and those of type 
4 (nrs. 5, 9, 15, 21, 27, figs. 20, 24, 30) to vary para- 
bolically in y-direction. For all the types 2, 3 and 4, the 
stressflows s, remain zero and, consequently, they have 
the important restriction that the stress flows sz vary 
linearly in x-direction (as do the normal forces in the 
spar booms) and the stressflows t are constant in x- 
direction. 

Use of the afore mentioned systems only, applied to 
the box beam infinite in length to both sides, loaded by 
a moment or a shear force, leave the rib booms un- 
strained an3 as approximate solution the exact solution 
for the hollow box beam is obtained (In this case, 
where the zero systems of stress are already this 
solution the unknowns all become zero). Type 5 (sys- 
tems nrs. 10, 16, 22, 28, figs. 21, 25, 31) and type 
6 (systems nrs. 11,  17, 23, 29, figs. 22, 26, 32) con- 
tain non-zero stressflows s,, thereby allowing the tan- 
gential stressflows t to vary in x-direction within a 
panel. Of course, the systems 6 to 29 incl. have their 
counter part in the left-hand swept part of the box beam 
(nr. 6* . . .29*), which are pure reflections with re- 
spect to the (vertical) plane of symmetry of the struc- 
ture of the corresponding systems nr. 6 .  . .29. 

6.4 Matrix of the coefficients of the unknowns ( i t j )  and 
of the known terms (lot). 

Table 1 gives the values At,, i= 1 . . . 29 ;  j= 1 . . .29,  
of(6.5),table2thevaluesi~,,i=6.. . l l , j = 6 * .  . . 11* 

and table 3 the values lo< of (6.5) for the loading cases of 
the symmetrical swept back box beam. 

The values A<j and 20, were calculated according to 
systematic matrix procedures applied before (ref. 4), 
but these procedures bad to be adapted to this struc- 
ture in which skin elements with more than one flexibil- 
ity (the coefficients At,) occur; besides, these structural 
elements introduce surface integrals next to line inte- 
grals. In all cases however these surface integrals were 
of the shape 

J Jfi(x)hcV)dxdy= JfiW d x l f i O d r  

or in a few cases the sum of two or.three t e r m  of this 
form. The values of all integrals were not determined by 
actual integration, but all line and surface integrals 
were determined with the aid of table 4, which in fact 
is an extension of a table given in ref. 5. 

Table 5 gives a scheme of all occurring values At j ,  

extended for aU internal systems of stress 30.  . . 35, 
36 .  . .41,  30" . .? 35*, 36*. . .41*, which easily are 
imagined as a continuation of the systems given in 
fig. 15. 

The matrix is divided in matrices Mtj, where Mtj= 
Wjt. Each submatrix again is subdivided by horizontal 
and vertical lines, and as indicated, several suhmatrices 
have zero elements. The values of the other elements 
are to be derived from tables 1 and 2 if it is further 
noticed that 

&j ( i = 6 .  .. 17, j = I S . .  .29)= 
At, ( i=18. .  .29,  j = 3 0 . .  . 4 l ) .  

Table 5 shows also how the matrix of elements Aabr is 
divided into sub-matrices Br. 

7 Solutions of the unknowns for the M n i t e  swept back 
box beam 

7.1 First loading case constant momenf (Case a.1, fig. 3). 
Consider the swept part at  the right-hand side in 

fig. 15 extended to both sides. In that structure an 
intinite series of sets of internal systems of stress like 
the set consisting of the system 18 . . . 2 3  is possible, 
giving rise to an infinite number of equations (6.6) with 
an infinite number of unknowns. 

The shape of this set is 

0 5 - 9  + CZs-2 + BZa-,+ C'Z- + DZn+l = -HI  
= - H  DZn-a+CZ,-i +BZn +C'Zn+i+DZ,+g 

DZm + CZn+l +BZstz + C'Zn+3 + 
D Z - 1 +  CZn + BZs+1 + C'Znta + D'Zfi+3 

(7.1) 
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Fig. 23 Internal system of stress at mot of swept part. Type 3. 
Forces in kg. Stressflows in kgjcm. Dimensions in cm. 

Fig. 24 Internal System of Stress at root of swept part. Type 4. 
Forces in kg. Stressflows in kg/cm. Dimensions in cm. Fig. 22 Internal system of stress at root of swept part. Type 2. 

Forces in kg. Stressflows in k&m. Dimensions in cm. 
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NORMAL FORCES IN 
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Fig. 31 Intemal system of stress in one cell of swept part. Type 5.  
Forces in kg. Stressflows in kg/cm. Dimensions in cm. 
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x19 

x21) - - zn = 

xzz 
x23 

0 
0 
0 
0 

-346516 
0 

H =  10-5 

0 

0 
+ 0.268085 

+0.079286 
+0.733871 

(7.5) 

0 .  

XIS 0 
x19 +0.162806 

XZl +0.048150 
xzz +0.445676 
xZ3 0 .  

Xzn - 0 Z" = - 

(7.6) 

Suppose Z ,  is of the form 

Zm+r = (n  - i) U+ Y (7.8) 

where U and Yare unknown column matrices. 
Equation (7.8) substituted into (7.7) gives 

D{(n+2)U+ Y}+ C{(n+ 1)U+ Y}+B{nU+ Y }  
+ C'{(n- I)U+ Y) +D'{(n-2)U+ Y}+nR+ S=O 

or 

nFU+GU+FY+nR+S=O (7.9) 

0 
0 
0 
0 

0 

, s =io-5 R= 10-5 

-76053.34 

where F is according to (7.4) and 

Of course (7.9) separates into 
C={2D+C-C-20') .  (7.10) 

FU+R=O (7.11) 
GU+FY+S=O (7.12) 

and from the two matrix equations (7.11) and (7.12) 
with two unknown column matrices U and Y the solu- 
tions for U and Yare obtained. 

They are 

0 
0 
0 
0 

-38026.67 
-23819.30 

II 0 II 
+0.0357328 

0 
+ 0.0105679 
+0.0978169 

U =  

0 

+ 0.0609853 1 
0 

+0.2599130 
0 

Y =  11 +0.0489085 11 
f1.100151 

8 Solution of the unknowns for the symmetrical swept 
hack box beam (loading cases h and c, fig. 3) 

8.1 General 
In these cases the participation factors of the internal 

systems of stress nr. 1 . . . 29, 6' .  . . 29*, (fig. 14) are 
the unknowns. 

Both swept parts of the wing are still considered to be 
infinite in length, but systematic continuation of the 
sets ofinternal systems of stress, nr. 30 . . . 36,37 . . .42 
etc at  the right-hand side and nr. 30* . . . 36*, 37* . . . 
42' etc does not yield new unknowns and new equations 
because the participation of these systems is supposed 
to be as they follow from the solutions of section 7. 
In an earlier investigation (ref. 1) it was proved for a 
clamped swept box beam that this approximation is 
allowable for both loading-cases constant moment. 

The equations (6.6) for all the loading cases in dis- 
cussion take the form of table 5. The division of the 
matrix Agj into submatrices Mgj and of the matrix bbr 
into sub-matrices Br has already been discussed in 
section 6.4. 

8.2 Symmetrical loading cases (cases b, fig. 3). 

internal system of stress nr. 1 (fig, 16) is zero. 

to be solved read 

In these cases the participation of the antimetrical 

In terms of the sub matrices of table 5 the equations 

M33Y3*+M32Vz+MobV3=-M34V4*-B3* (8.1) 
hfZ3 &*+ MZZ vZ+ MZ3 &= -Bz (8.2) 
M % V ~ * + M ~ Z V ~ + M ~ V ~ =  -M34V4-B3 (8.3) 

1 
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in which thus column matrices V3*, VZ and V3 are 
unknown and the column matrices V4* and V4 are 
known from section 7. 

Since V3*= V3 V4*= V4 B3*=B3 

equations (8.1) and (8.3) are identical and from (8.1). .. 
(8.3) results thematrixequationcontaining28equations 
with 28 unknowns 

The solution of this matrix-equation is given in table 7. 

8.3 Asyrnmefrical loading cases. 

8.3.1 Casec.l . l ,$g.3.  

In the absence of supports at the corners of the middle 
part, again the participation of the internal system of 
stress no. 1 is zero. Also the participation of the sym- 
metrical internal systems of stress nr. 2 . . . 5 is zero. 
In the equations (8.1). . . (8.3) are now 

v3*=-v3, v4*=-v4, z 2 = 0  (8.5) 
B3*= - 8 3 ,  B z = O .  

The equations reduce to the 24 equations with 24 
unknowns 

(8.6) ( M n -  Mae) V3= - B3 - M a  V4 . 
The solution of this matrix-equation is given in table 8. 

8.3.2 Case c.2.1,fig. 3 

Again the participation of the symmetrical internal 
systems of stress nr. 2 .  . . 5 is zero, hut since rigid 
supports at the corners of the middle part are present, 
internal system of stress nr. 1 plays a role. In terms of 
the'suhmatrices of table 5 the equations to be solved 
read 

hf33 V3*-M31 Vl+Mab v3= - M34 v4* - B3* (8.7) 

-Bi (8.8) 

Mab V3* + M31 v i  + M33 V3 = - M34 V4 - B3 . (8.9) 

- M13 v3* f M11 v l +  M13 v3 = 

Equations (8.5) substituted into equations (8.7) and 
(8.9) gives for the latter equations the same resulting 
equation. 

So from (8.7). . . (8.9) remain 25 equations with 25 
unknowns 

The solution of this matrix-equation is given in table 9. 

9 Determination of stresses 

Figs. 33 . . . 37 show which 168 stresses are calculated 
for the 5 loading cases of the symmetrical swept back 

box with non-swept middle part. A part of these stresses, 
only occurring in a swept cell, were also calculated for 
the loading cases constant moment or constant shear 
force of the swept back box beam infinite to both sides. 

The stresses were composed from the zero systems of 
stress and the internal systems of stress by the matrix 
computation 

s= so + xrst 
where S is the column matrix of stresses in all points 
shown in the figs. 3 3 . .  .37,  and Sa and St are the 
matrices of stresses in these points due to the zero 
system of stress and the internal systems of stress 
respectively. 

10 Discussion of results 

The figures 38. . . 77 give calculated stresses for 
the three loading cases of the swept back box beam 
ikni te  to both sides and the five loading cases.of the 
symmetrical swept back box beam (fig. 3). On every 
figure in the upper right-hand corner a picture of the 
loading case in question is given. The sequence for 
every loading case is : 

Normal forces in upper booms, stressflows s,, 
stressflows s,, stressflows f (see the small squares and 
rhombs, which define the stressflows) and the stress- 
flows in'the webs. 

In parenthesis stresses as they follow from the "zero 
systems of stress" are given. These are stresses only 
satisfying equilibrium conditions and chosen as good 
as possible (they are the exact solution for the hollow 
box beam in the swept part). In this way clearly'the 
influence of the use of the internal systems of stress is 
demonstrated. 

The influence of the systems of type 1 (figs. 17,21, 
27) can be traced in figures 42,47,52,57,62,61,12,77. 
For the swept back box beam, infinite to both .sides, 
and loaded by a constant moment, the participation of 
systems of this type is zero (figs. 42, 47), which is to be 
seen from formulas (7.3) and (7.4). In the loading cases 
of figs. 57, 62, 67 there is a lowering in shear stress of 
some importance in the rib web at  the.bend and achange 
in spar web stresses near this bend. In fig. 77 part of the 
change of the shear stress 0 into -23.22 of the rib web 
at  the bend is due to the internal system nr. 1, fig. 16, 
which is not of type 1. 

The influence of the systems type 2, 3, 4 (type 2, 
figs. 18, 22, 28, type 3, figs. 19, 23, 29, type 4, figs. 20, 
24, 30) is not detected separately at first sight, but their 
collective influence is seen by considering values of 
stressflow ss in the skin-continuised stringer combina- 
tion along rib booms (figs. 39, 44, 49, 54, 59, 64, 69) 
and by considering values of stressflows f in the skin- 
stringer combination midway. between two ribs (the 
afore mentioned results are not affected by types 5 and 
6). From formulas (7.3) and (7.4) it is to be seen that 
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participation of type 3 is zero for the swept back box 
beam infinite to both sides which is loaded by a con- 
stant moment, and in view of the results also the parti- 
cipation of the two other types in question seems not to 
be strong. For the loading cases of the symmetrical 
swept back box beam, however, in the neighbourhood 
of the bend, considerable differences may arise, e.g. 
in figs. 64, 66, 74. 

The influence of types 5 and 6 (type 5, figs. 25, 31, 
type 6, figs. 26, 32) is revealed by stressflows s, being 
present, nonlinear variation of normal forces in spar- 
booms between two intersections with ribs, non-linear 
variation in x-direction of stressflows sz, between two 
ribs and the not-being constant in x-direction of stress- 
flows f. Further, for the swept back box, loaded by a 
constant moment, infinite to both sides, type 6 does 
not participate (formulas (7.3) and (7.4)), but the 
presence of type 5 is very clearly demonstrated by non- 
zero rib boom forces being present (figs. 38, 43). . 

In fig. 55 . . . 6 2  and fig. 6 8 .  . .77  (loading cases of 
the symmetrical swept back box beam) is also indicated 
the figure showing the stresses at infinity. Comparison 
learns that in general the stresses in the third cell from 
the root tend, as expected, rather well to the values 
which they must have at  infinity. Besides, as mentioned 
in section 8.1, it was assumed in the calculations that 
the stresses in the fourth and further cells would prac- 
tically be so, and the participation factors of the inter- 
nal stresses in these cells were taken equal to those ofthe 
swept beam infinite to both sides (that alone, of course, 
is not a reason why the stresses in the third cell should 
tend to the values of the fourth and further cells). 

The investigations of ref. 6 have learned that the 
participation factors or the stresses in the respective 
cells do not tend to their values at  infinity according to 
a simple geometrical series, but according to the sum of 
many convergent and sometimes oscillating series. 
So not always corresponding stresses change monoto- 
nously from cell to cell. 

11 Degree of compatibility 

The figures 7 8 .  . . 85 show for the 8 loading cases 
normal strains in booms and in the adjacent skins, as 
derived from the stresses of figures 38.  . . 77 and the 
flexibilities of fig. 7. If the solutions for the stresses were 
exact in a point of a boom the strain in that boom and 
in the adjacent skin had to be the same. Only the com- 
patibility of the strains mentioned is investigated, but 
of course there are numerous other tests, for example 
compatibility of displacements uz along rib booms and 
the degree to which the compatibility equations 
a 2 ~ ~ / a ~ y + a 2 ~ ~ / a ~ Z = 2 a 2 y / a ~ a y = O  in a skin plate are 
satisfied. 

In the figures 78,79,80 for the swept back box beam 
infinite to both sides the agreement is rather good. 
The incompatibility between the rib boom and its left 

and right skins near the spar booms is not astonishing, 
for the limiting case of a rib boom with vanishing stiff- 
ness gives a constant state of strain in the skin (with 
non-zero strain E@) and at the end point of a rib boom 
the strain in the rib boom is always zero for the present 
idealizations). 

In the figures 81 . . . 85 for the 5 loading cases of the 
symmetrical swept back box beam with middle part, 
strong incompatibilities still occur near the bend at the 
trailing edge. Obviously the chosen degrees of freedom 
are not sufficient to describe the stress singularities at 
this corner adequately. I t  is questionable if further ex- 
tensions with similar types of internal systems as used 
will give much improvement, since in the corner in 
question probably infinite tangential stressflows f 
occur. It is to be expected that the stress-singularities 
in this corner have to be attacked with the aid of the 
differential equations in question (ref. 6, 7). Where 
incompatibility exists between booms and adjacent 
skins it is to be expected that the values of the skins are 
the better ones. In general the booms are rather light 
with respect to the skins and their strain energy is a 
smaller part of the total strain energy. Along the rib 
boom at the bend it remains however unclear which of 
both strains in the skins right and left of this boom will 
yield the best approximation. But, again, other com- 
patibility requirements, such as the compatibility- 
differential equations are perhaps rather well fulfilled. 
There are other reasons to take the defects in the corners 
at the bend not too seriously. In the vicinity of the cor- 
ner the idealizations of the structure, such as booms 
which can carry only normal forces are longer valid. 
Moreover, in practice such a corner will be constructed 
with the aid of local reinforcements. 

12 Conclusions 
It is not possible to describe the stresses near the 

root of the swept part and in the middle part with the 
aid of the elementary beam theory of torsion and bend- 
ing, nor the stresses in all the rib booms.' 

The minimum theorem of the complementary energy 
with the use of 6 degrees of freedom for each cell yields 
a stress distribution which seems to he a good approxi- 
mation in view of the degree of compatibility of the 
strains. However, the stress-singularities which are pro- 
bably present at the trailing edge of the rib at  the bend 
are not described adequately. It is to be expected that 
these singularities have to be attackedalongother lines. 
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TABLE I 

Values of A<, (multiplied by lo5) i = 1 . . . 29, j = I ,  , . 29. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 +30058 0 0 0 0 + 13165 0 0 0 ,o 0 0 0 

2 0 t9989.2 0 -33639 0 - 16290 0 - 8409.7 0 0 t4204.9 + 2674.3 0 0 0 

3 0 0 +250610 0 +I36720 - 18638 -I05110 - 2588.6 - 73066 +I58054 0 0 + 7321.6 0 + 4706.8 

4 0 -33639 0 +56859 0 - 8409.7 + 2588.6 - 6875.0 f- 2218.8 0. +4783.0 0 

0 - 2674.3 

0 0 + 726.35 

5 0 0 +I36720 0 + 98765 - 11183 - 73066 - 2218.7 -' 48407 +lo7448 0 0 + 4706.8 0 + 3137.8 
6 +13165 -16290 - 18638 - 8409.7 - 11183 +204510 + 31752 -64392 + 22365 + 37276 +4204.9 - 2899.0 - 24161 - 23786 - 11183 

7 0 0 -105110 + 2588.6 - 73066 + 31752 +229800 + 7671.2 +I00330 - 68915 -2588.6 + 5523.2 - 95124 + 10259.6 - 77406 

8 0 - 8409.7 - 2588.6 - 6875.0 - 2218.7 - 64392 + '7671.2 +a6889 0 + 5177.2 -6475.5 - 23786 - 10260 + 4627.1 - 11424.2 

9 0 0 - 73066 + 2218.8 - 48407 + 22365. +lo0330 0 + 83469 - 38461 -2218.8 0 - 77406 + 11424.2 - 48811 

10 0 0 +I58054 0 +I07448 + 31276 - 68915 + 5177.2 - 38461 +258726 0 0 - 14643 0 - 9413.5 

I 1  0 + 4204.9 0 + 4783.0 0 + 4204.9 - 2588.6 - 6475.5 - 2218.8 0 f8654 0 0 -  726.35 0 

12 - 2674.3 + 2674.3 0 0 0 - 2899.0 + 5523.2 -23786 0 0 0 - 95145 0 0 +208640 

14 0 0 0 + 726.35 0 - 23786 + 10259.6 + 4627.1 + 11424.2 0 -726.35 - 95145 0 +124700 0 

13 0 0 + 7321.6 0 + 4706.8 - 24161 - 95124 -10260 - 71406 - 14643 0 0 +371770 0 +I69720 

15 0 0 + 4706.8 0 + 3137.8 - 11183 - 77406 -11424.2 - 48811 - 9413.5 0 0 +I69720 0 +I35680 
16 0 0 - 14643.0 0 - 9413.5 + 57744 - 89935 +I4954 - 40742 + 29286 0 - 20468 +I37040 - 9776.9 +I05170 

17 0 0 0 - 726.35 0 + 11893 - 7477.1 -14525 - 7285.6 0 + 726.35 + 11893 + 4888.5 - 3266.7 + 5066.8 
18 0 0 0 0 0 + 5348.6 0 0 0 0 0 - 8247.6 + 5523.2 - 23786 0 

0 + 29025 0 0 - 5523.2 -170780 - 7671.2 -126040 19 0 0 0 0 0 0 + 45150 

20 0 0 0 0 0 0 0 +4479.2 0 0 0 - 23786 + 7671.2 - 2878.5 + 9205.4 

21 0 0 0 0 0 0 + 29025 0 + 19350 0 0 0 --12M)40 - 9205.4 - 81235 

22 0 0 0 0 0 0 ~ 90300 0 - 58050 0 0 + 20468 + 61379 + 9776.9' +'56531 

23 0 0 0 0 0 0 0 - 4479.2 0 0 0 + 11893 - 4888.5 - 7019.5 - 5066.8 

24 0 0 0 0 0 0 0 0 0 0 0 + 5348.6 0 0 0 

0 + 29025 25 0 0 0 0 0 0 0 0 0 0 0 0 + 45150 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 + 4479.2 ' 0 

0 + 19350 27 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 - 90300 0 - 58050 

0 + 29025 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 - 4479.2 n 



16 17 18 19 20 21 22 ' ' 23 24 25 26 27 28 29 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 .  0 0 0 0 0 0 0 
3 - 14643 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 - 726.35 0 0 0 0 0 0 0 0 0 0 0 0 

5 - 9413.5 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 + 57744 +11893 + 5348.6 0 0 0 0 0 0 0 0 0 0 0 
- ' 'I 

- 
- . _  

0 + 45150 0 + 29025 - 90300 0 0 0 0 0 0 . 0  :~ 7 - 89935 - 7477.1 
8 + 14954 -14525 0 0 + 4479.2 0 0 - 4479.2 0 0 0 0 0 0 
9 - 40742 - 7285.6 0 + 29025 0 + 19350 - 58050 0 0 0 0 0 0 0 

10 + 29286 0 0 0 0 0 0 0 - 0  0 0 0 0 0 
11 0 + 726.35 0 0 0 0 0 0 0 0 0 0 0 0 

~~ ~- ~ 

..- 12 - 20468 +I1893 - 8247.6 - 5523.2 - 23786 o + 20468 +11893 + 5348.6 0 0 0 0 0 

13 +137040 + 4888.5 + 5523.2 -170780 + 7671 2 -126040 +61379 - 4888.5 0 + 45150 0 + 29025 - 90300 0 
14 - 9776.9 - 3266.7 - 23786 - 7671.2 - 2878.5 - 9205.4 + 9776.9 - 7019.5 0 0 + 4479.2 0 0 - 4479.2 
15 +I05170 + 5066.8 0 -126040 + 9205.4 - 81235 + 56531 - 5066.8 0 + 19350 - 58050 0 

17 0 +I3262 0 0 - 4479.2 0 0 + 4479.2 0 0 0 0 0 0 

0 + 29025 
16 +286445 0 0 - 90300 0 - 58050 +I80600 0 0 0 0 0 0 0 ' 0  

18 0 0 +211310 0 - 95145 0 .- 20468 +11n93 - 8247.6 - 5523.2 - 23786 0 + 20468 +11893 

19 - 90303 0 0 +409600 0 +194040 + 61379 + 4888.5 + 5523.2 -170780 + 7671.2 -126040 + 61379 - 4888.5 

21 - 58050 0 0 +I94040 0 +I51890 + 56531 + 5066.8 o -126040 + 9205.4 - 81235 + 56531 - 5066.8 

22 +I80600 0 - 20468 + 61379 - 9776.9 + 56531 +437765 0 0 - 90300 o - 58050 + 1 8 0 m  0 

23 o + 4479.2 + 11893 + 4888.5 - 7019.5 + 5066.8 0 +I7015 0 0 - 4479.2 0 

20 0 - 4479.2 - 95145 o +i28450 0 - 9776.9 - 7019.5 - 23786 - 7671.2 - 2878.5 - 9205.4 + 9776.9 - 7019.5 

0 + 4479.2 
0 - 20468 t11893 0 - 95145 24 0 0 - 8247.6 + 5523.2 - 23786 0 0 0 +211310 

25 0 0 - 5523.2 -170780 - 7671.2 -126040 - 90300 0 0 +409600 0 +I94040 + 61379 + 4888.5 
26 0 o - 23786 + 7671.2 - 2878.5 + 9205.4 0 - 4479.2 - 95145 0 +I28450 0 - 9776.9 - 7019.5 

27 0 0 o -126040 - 9205.4 - 81235 - 58050 0 0 +I94040 0 +I51890 + 56531 + 5066.8 
28 0 0 + 20468 + 61379 + 9776.9 + 56531 +180600 0 - 20468 + 61379 ~ 9776.9 + 56531 +437765 0 

29 0 0 + 11893 - 4888.5 - 7019.5 - 5066.8 0 + 44792 + 11893 + 4888.5 - 7019.5 + 5066.8 0 +I7015 
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(Continued frompoge 19) TABLE 2 
HADII-ARGYRIS, I. H. AND KELSEY, S., Energy theorems and 
Structural analysis, Part I: General Theory, Aircraft Engineer- Values A u ,  i = 6 . .  . 11, 6' .  . . 11- multiplied by IO5. 

ing. Vol. XXVI, No. 308, October 1954, p. 347; No. 309, 
November 1954, p. 383; Vol. XXVII, No. 312, February 1955; 

No. 315, May 1955, p. 145. (Issued together as reprint by 

6' 7' 8' 9. 10: 11' 

P. 42; No. 313, March 1955, p. 80; No. 314, April 1955, p. 125; 6 +5348.6 0 0 0 0 0 

Buttenvorths. London 19ho1 7 0 +45150 0 +29025 -90300 0 
I ~ ~~ , ~~~~ ...., ~. .. 

8 0  0 +4479.2 0 0 -4479.2 VAN BEEK, E. I., Practical analysis of statically indeterminate 
structures (in Dutch) De Ingenieur, Vol. 64, No. 52, page L 47, 

BENTNEM, I. P., On the stress distribution in anisotropic wed- 
ges. Quart. ofAppl. Math. Vol. XXI, No 3, p. 189, 1963. 10 0 -90300 0 -58050 +18OMx) 0 

ofsemi-infiniteand finite strip problems in stress analysis.Quart. 
Joum.of Mech.andapplied Math. Vol. XVI, Pt 4,p.413,1963. 

Dec. 1952. 9 0 +29025 0 +I9350 -58050 0 

BENMEM, J.  P., A Laplace transform method for the solution 11 0 0 -4479.2 0 0 +4479.2 

TABLE 3 

Values Aot (multiplied by IO5) far the loading cases: 

b.1 b.2 b.3 c.1.1 c.1.2. 

1 0 0 0 0 +857955.2 B1 

2 +185714.2 -185714.2 +571665.4 0 0 

3 -133299.6 - 91119.4 + 68503.8 0 0 

4 - 12541.0 + 12541.0 -102961.8 0 0 Ba 

5 0 0 + 88765.0 0 0 

6 -668929.1 +191415.0 -1675392 -256968.5 -256968.5 

7 - 98573.6 - 13634.6 -198270 -134449.7 -134449.7 

8 + 12540.9 - 12540.9 - 7075.8 + 6270.5 + 6270.5 

9 - 19154.4 + 19154.4 - 102202 - 55530.1 - 55530.1 

10 + 38282.8 - 88154 + 74484.9 - 16329.9 - 16329.9 

11 + 6270.5 - 6270.5 + 25730.1 + 6270.5 + 6270.5 

12 + 92857.1 - 92857.1 +315167.5 0 0 

13 0 0 + 70042.6 + 17735.6 + 17735.6 

14 - 6270.5 + 6270.5 - 21282.7 - 6270.5 - 6270.5 

15 0 0 + 44382.5 + 11401.5 + 11401.5 

16 -570590.1 -346516 -482325 -606062.2 -606062.2 

17 + 6270.5 - 6270.5 - 2536.6 + 6270.5 + 6270.5 

18 0 0 0 0 0 B3 

19 0 0 0 0 0 

20 0 0 0 0 0 

21 0 0 0 0 0 

22 -570590.1 -346516 -266186.7 - 570590. I -570590.1 

23 0 0 - 23819.3 0 0 

24 0 0 0 0 0 

25 0 0 0 0 0 

0 0 0 0 0 26 

27 0 0 0 0 0 

28 -570590.1 -346516 -190133.3 -570590.1 -570590.1 

29 0 0 - 23819.3 0 0 

BI, BP, B3 matrices of table 5.  
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TABLE 4 

TABLE 5 

General scheme of the matrix equation (6.6) which is discussed in 
section 8.1. 

T U L E  1 

1 - 1 1 1 1 1 1  ! I 

m 

= O  
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TABLE 6 

Matrices D,'C, B, C', D and F (multiplied by IO5) occurring in formula (1.2) 

Matrix D 6 7 8 9 IO 11 

18 4- 5348.6 0 0 0 0 0 

19 0 + 45150 0 + 29025 0 0 

20 0 0 + 4419.2 0 0 0 

21 0 + 29025 0 + 19350 0 0 

22 0 - 90300 0 - 58050 0 0 

23 0 '0 - 4419.2 0 0 0 

Matrix C 12 13 14 15 16 11 

18 - 8241.6 + 5523.2 - 23186 0 0 0 

19 - 5523.2 . -170780 - 1611.2 ' -126040 - 90300 0 

20 - 23186 + 1611.2 - 2878.5 + 9205.4 0 - 4419.2 

21 0 -126040 - 9205.4 - 81235 - 58050 0 

22 + 20468 + 61319 f 9116.9 + 56531 + 180600 0 

23 + 11893 - 4888.5 - 1019.5 - 5066.8 0 f 4419.2 

Matrix B 18 19 20 21 22 23 

18 +211210 0 - 95145 0 - 20468 + 11893 

19 0 +a9600 0 +I94040 + 61379 + 4888.5 

20 - 95145 0 + 128450 0 - 9116.9 - 7019.5 

21 0 + 19404O 0 +151890 + 56531 f 5066.8 

22 - 20468 + 61379 - 9716.9 + 56531 +431165 0 

23 + 11893 + 4888.5 - 7019.5 + 5066.8 0 + 11015 

Matrix C' 24 25 26 21 28 29 

18 - 8241.6 - 5523.2 - 23786 0 + 20468 + 11893 

19 + 5523.2 - 170180 f 1611.2 - 1 2 m  + 61319 - 4888.5 

20 - 23186 - 1611.2 - 2878.5 - 9205.4 + 9116.9 - 7019.5 

21 0 -126040 + 9205.4 - 81235 f 56531 - 5066.8 

22 0 - 90300 0 - 58050 +180Mw) 0 

23 0 0 - 4419.2 0 0 + 4419.2 

Matrix D' 24 25 26 21 28 29 

12 + 5348.6 0 0 0 0 0 

13 0 + 45150 0 + 29025 - 90300 0 

14 0 0 + 4419.2 0 0 - 4419.2 

15 0 + 29025 0 + 19350 - 58050 0 

16 0 0 0 0 0 0 

11 0 0 0 0 0 0 

Matrix F 

+205512 0 -142111 0 0 + 23186 

0 +I58340 0 0 - 51842 0 

-142711 0 f131651 0 0 - 22991.4 

0 0 0 + 28120 - 3038 0 

0 - 57842 0 - 3038 +198965 0 

+ 23186 0 - 22991.4 0 0 + 25913 
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TABLE 7 

Participation factors symmetrical loading cases 

loading case b.1 

2 +2.292343 

3 +3.834579 

4 +4.307852 

5 f4.110650 

6 +5.851091 

7 + ,697233 

8 +4.936828 

9 +1.208897 

10 -2.547948 

11 - ,0854942 

12 + .857906 

13 + ,417165 

14 +IS97541 

15 + ,720154 

16 +1.033200 

17 - ,365512 

18 - ,113771 

19 + ,340718 

20 - ,074807 

21 + ,415339 

22 + ,551032 

23 +1.540812 

24 - ,072694 

25 + ,285385 

26 - ,0852378 

27 + ,0536983 

2a + .874022 

29 + ,202830 

b.2 

-1,278502 

+I47124 

-3,284639 

- ,524756 

-4.079304 

+1.969909 

-3.851353 

t.0115231 

+ ,591134 

+ '.398591 

+ ,356053 

- ,259696 

- ,184259 

-2.498956 

+3.945093 

+2.857978 

+ ,642627 

+ ,0039861 

+ ,864025 

+ ,0331486 

- .0423101 

- 3.1 15509 

+ ,129805 

+ ,178887 

+ ,152045 

+ . 2 m  

4- ,179379 

+ ,539074 

b.3 

+ 10,8020776 

+ 3.5791863 

+ 19.3521490 

+ 5.3746518 

+20.3096612 

- 3.0631326 

+19.2625702 

+ ,7893845 

- 5.1070861 

- 2.8952024 

+ 1.9224102 

+ 1.1141007 

+ 4.6839652 

+ 5.8864388 

- 5.8242580 

- 3.9241115 

- 1.1255474 

+ ,5558026 

- 1.1670058 

+ ,9554938 

+ .6541282 

+ 9.7719453 

- ,3057630 

+ ,0967015 

- ,1664379 

- ,3170404 

+ l.M)98333 

+ .8004748 

TABLE 8 

Participation 
factors anti- 

metrical loading 
case without 

rigid supports 

loading case c.l.1 

6 - ,206579 

7 +1.982464 

8 -1.041746 

9 + ,425731 

10 -1,868359 

11 , - ,382547 

12 + ,557996 

13 - ,0202257 

14 + ,614178 

I5 -1.636491 

16 f3.720383 

17 + ,878594 

18 + ,369010 

19 + ,176913 

20 + 336691 

21 + ,216437 

22 + ,216421 

23 -1.390782 

24 + ,0533054 

25 + ,2852282 

26 + .0612044 

27 -t ,193275 

28 + ,612914 

29 + ,455042 

TABLE 9 

Participation 
factors anti- 

metrical loading 
case with rigid 

supports 

loadingcase c.1.2 

I -33.132315 

6 + 5.433665 

7 + ,637191 

8 + 4.143080 

9 + ,163858 

10 - 3.156394 

I1 - 3.971444 

12 + .959591 

13 + ,312512 

14 + 1.725572 

I5 + ,502524 

16 + 1.072252 

17 - 1.377486 

18 - ,0587047 

19 + ,331333 

20 - .Oil58767 

21 + ,455991 

22 + .425514 

23 + 1.455721 

24 - .063%10 
25 + ,288944 

26 - ,0748243 

27 + ,0685889 

28 + ,865529 

29 + .251026 
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Points where forces and stress Rows are 

AT FRU4TU(D REAR SPAR THE RIB 
BOOH FORCES ARE ZERO, THE RIB 
BOXATTHEBENDEXCWDED. 

n 

I 

10 

FRCUTSPAR 
\ 

REAR SPAR 
\ 

F R W  SPAR 

THESE POINTS ONLY. 

dculated for all 8 loading cases 

. I  
I 
I 

ATFRCWTANDREARSPARTHE 
STRESS F L M  ", ARE ZERO. 

IN THE APPUUTIOH OF THE 
YlNlWM THEOREM FOR THE STRESSES 
THE STRESS F u m J S y  ARE NOT 

DlRECTlM WITHINA SKIN PANEL 

% s?t;, t ALLOWED TO VARY IN SPAR 

\ 
91 

52. 

93. 

\ 
F R M T  SPAR F 

REAR SPAR 

I 

", THESE WNTS ONLY, 

SPAR 

REAR SPAR 

A. I ,  A.2 AND A . 1  
THESE POINTSMLY. 

Fig. 33 Normal forces in booms. At front and rear spar the rib 
boom forces are zero, the rib boom at the bend excluded. 

Fig. 34 Stress flows sz in skin-stringer combination. 

Fig. 35 S t r a  flows su in skin-stringer combination. 

Fig. 36 Stress flows I in skin-stringer combination 

Fig. 31 Shearstressflows in spar and rib webs. 
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AT FRONT AND R E M  SPAR THE RIB BOOS FORCES 
ARE ZERO. THE PIS AT M E  BEND EXCLUDED. 

Fig. 38 Normal forces in upper boom (kg). 
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Fig. 39 Stressflows sz (kg/cm). 
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Fig. 42 Shearstressflows in mar and rib webs (kg/cm). 
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AT FRONT AND REAR SPAR THE RIB BOOY FORCES ARE ZERO. 
THE RIB BOO" AT THE BEND EXCLUDED. 

Fig. 43 Normal forces in upper booms (kg). 

I-vl.rcn 

Fig. 44 Stressflows~~in (kg/cm). 

r.3.mx 

Fig. 47 Shearstressflows in spar and rib webs &g/cm). 



LOADINGCASE A . 1  

-1.19 . - 0.99 . 10) -up . 
AT FRONT *NO REAR SPAR THE ITRLIIFLOWl I" ARE ZERO. IN THE 

APPLICATIOH OF THE UlNlMUY TilEORLP FOR THE ITREIIEI THE 

ITREIIFLOWI fy  ARE NOT ALLOWED TO VARY IN I P l R  DIRECTION 

WlTHlN A I I l H  FIELD. 

Fig. 50 Stressflowss, in upper skin-stringer combination (kg/cm). 

Fig. 51 Stress flows f in (kglcm): 

I t17.77781 

r27.n . tn.7e *21.n 

Fig. 52 Shearstressflows in spar and rib webs (kgjcm) 
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Fig. 53 Normal forces in upper booms fkg). 

Fig, 55 Stressflows s,in (kglcm). 
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Fig. 57 Shearstressflows in spar and rib webs. (kglcm) 



Fig. 59 Stressflowss, in (kg/cm). 

Fig. M) Stressflows sv in upper skin-stringer combination (kgicm). 

Fig. 62 Shearstressflows in spar and rib webs. Ckgirm). 
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Fig. 63 Normal froces in upper boom (kg). 

Fig. 66 Stress flow f in upper skin-stringer combination (kg/cm). 

,.nm,, 
.,n .x,, .ns 

Fig. 67 Shearstressflows in spar and rib webs. (kgjcm). 





Fig. 18  E= in upper spar booms and adjacent skin. ey in upper rib 
boom and adjacent skin. Multiplied by IOs. 

\ \ "  

Fig. 19  E. in upper spar booms and adjacent skin. ey in upper rib 
boom and adjacent skin. Multiplied by IO5. 

Fig. 80 zr in upper spar booms and adjacent skin. ey in upper rib 
boom and adjacent skin. Multiplied by IO5. 

Fig. 81 E* in upper spar booms and adjacent skin. cv in upper rib 
boom and adjacent skin. Multipied by IO5. 

"*<CLlru 101 

Fig. 82 E, in upper spar booms and adjacent skin. sv in upper rib 
boom and adjacent skin. Multiplied by lo6. 

Fig. 83 E= in upper spar booms and adjacent skin. &v in upper rib , 

boom and adjacent skin. Multiplied by lo5. 

Fig. 84 &inupperspar booms and adjacent skin. cy in upper rib 
boom and adjacent skin. Multiplied by IO5. 

Fig. 85 in upper spar booms and adjacent skin. eV in upper rib 
boom and adjacent skin. Multiplied by IO5. 
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Results of strain measurements performed on a polystyrene 
swept back box beam with a non swept-centre part, and their 

comparison with theoretical results 
' by 

R. M. Lichtveld and P. J. Sevenhuysen 

Summary 

Strain gauge measurements were made on a polystyrene swept-back box beam. Three symmetrical and one antisymmetrical loading 
case were investigated. In order to minimize the influence of visco-elastic behaviour use was made of a constant-displacement method in 
loading the tat-specimen. 

The results are compared with theoretical results derived pIeviously by means of the principle of minimum complementary energy. 
Good agreement between test and theoretical results is found. For 2 of the 4 loading cases investigated the Comparison showed some 
differences in the region of high stress concentration. Indications could be found how the theoretical results might still be improved, 
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List of symbols 

A 
Au 
a 
b 

d 
E 
e 

e, 
G 
h 
h, 

I 
J 

k 

I 
M 
N 
P 

Q 
R 
S 

- Cross-sectional area (cm2) 
- Transformation matrix defined in table 3 
- Distance defined in fig. 11 
- Width of box beam measured perpendicu- 

- Height of box beam (fig. 5, table I) (cm) 
- Young's modulus 
- Voltage applied to the Wheatstone bridge. 

- Output voltage of the Wheatstone bridge 
- Shear modulus 
- Thickness of skins or webs (cm) 
- Thickness of the equivalent stringer plate 

as used in ref. I (cm) 
- Moment of inertia (cm4) 
-Torsional stiffness divided by the shear 

- Gauge factor of strain gauge, span of the 

- Length (see fig. 23) 
- Bending moment (kg cm) 
- Axial force in structural member (kg) 
-Load or reaction force applied to the 

- Force (see fig. 1 I) 
- Electrical resistance (Ohms) 
- Direct stress flow related to Cartesian co- 

lar to the spars (cm) 

Also: relative error 

modulus (cm3 

box beam 

model (kg) 

ordinates (kglcm) 
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S 

T 
t 

i 

U - Displacement or deflection 
x and y - co-ordinates 
yzy - Shear strain 
A 

box beam (see fig. 5 )  
E - Direct strain (cm/cm) 
e 
Y - Poisson's ratio 
F 

- Direct stress flow related to oblique co- 

- Torsional moment (kg cm) 
- Shear stress flow related to Cartesian co- 

- Shear stress Row-related to oblique co- 

ordinates (see ref. 1) (kg/cm) 

ordinates (kg/cm) 

ordinates (ref. 1) (kg/cm) 

- Half of the thickness of the boom of the 

- Sweep angle of swept back box beam 

- Rotation of cross-section around the elastic 
axis of a beam (fig. 23) 

Indices 

m " . - refers t o  measured strains 
C 

strain gauge stiffness 
x . - refers t o  x-direction 
Y - refers t o  y-direction 
45" 

- refers t o  the measured strains corrected for 

- refers t o  a direction making an angle of 45' 
degrees with the x-axis 

1 Introduction 

In refs. 2 and 3 BENTHEM discusses a method for the 
analysis of swept wing structures with discrete ribs in 
flight direction. The analysis allows for direct stresses 
in the'skins; thus the commonly used assumption of 
only shear-carrying skins has been dropped. The 
method of analysis is based on the principle of mini- 
mum complementary energy. 

In ref. 1 this method is applied in the analysis of a 
symmetrical swept-back box beam ,with a non-swept 
centre part. 28 internal systems of stress of 6 different 
types are used in these computations. 

In order to check the theoretical results of ref. I 
strain measurements were made on a plastic scale 
model of the hox'beam analysed in ref. 1. The results 
and a comparison of the results with the computed 
values of ref. I are reported in this paper. 

2 Test programme 

In conformity with ref. 1 the following four loading 
cases were applied to the model box-beam (see fig. 1): 

case B 1 - symmetrical torsional moments 
case B 2* - symmetrical bending moments 
case B 3 - symmetrical downward shear loads 
case C 1.2* - asymmetrical torsional moments 

Fig. i Loading cases investigated 

The magnitude of the loads on the model was chosen 
so that the maximum measured strains were about 
1200 ,u strain. The test results were afterwards cor- 
rected for the diiTerence in loads applied to the model 
and those used in ref. 1, as we1l.as for the differences 
in scale. 

The loads were applied in the centre of the end ribs 
of the model. To obtain a good load diffusion the end- 
ribs consisted of 10." thick polystyrene plates stif- 
fened with dural stringers. 

To reduce the creep effects associated with the use 
of plastics for structural.models the method of applica- 
tion of constant deflections was employed. The deflec- 
tions were applied at  the tips, while the forces neces. 
sary to apply these deflections were measured. In order 
to retain symmetry the deflections of both tips were 
applied in such a way that the loads at  both tips were 
equal at the moment directly after application of the 
deflections. The 'application of the deflections could 
be done in a very short time (< 1 sec.). 

The strains in the model were measured on the upper 
skin and booms and on the rib and spar webs of the 
starboard half of the model. On the port half a few 
strain gauges were applied in order to gain some infor- 
mation about the symmetry of the model and the loads. 

For the loading cases B 2 and C 1.2 the direction of the load- 
vectors in the tests was opwsite to that used in the calculations 
of ref. 1. In this report all numerical values refer to the loads 
applied in the tests. 
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In total 141 strain gauge bridges were used with 262 
active gauges (the gauges at both sides of skin and 
webs were combined in one Wheatstone bridge). The 
type of the gauges was Hottinger Impa 10/120 FA 1. 
In fig. 2 the locations of the strain gauges are shown. 

Fig. 2 Location of the strain gauges. 

Deflections of the model were measured at both wing 
tips a t  the front and rear spars. 

A special test was performed to compare the creep 
effects that appear in the case ofapplication of constant 
loads and in the case of application of constant dis- 
placements. 

3 The test set-up 

3.1 The model 

The layout and the cross-section of the box beam of 
ref. 1 are shown in figs. 3 and 4. The layout and the 

Fig. 3 The lay-out dimensions of the box beam of ref. I and those 
of the test model. 

The dimensions of the test model are given in parentheses. 

cross-section of the test-model are shown in figs. 3 and 
5. The length-scale of the test model was I : 2. The 
thickness scale of the stress carrying members was 
1 : 1, so that the scale for the cross-sectional area of 
these members was 1 : 2, and the scale for the cross 

- - - - n - - ? .  
l l l l Y Y  I - 56.5685 

125 cm= 

DIMENSIONS IN cm 

Fig. 4 Cross-section of the box beam of ref. 1. 

0.63 cm2 0.615 cm2 

i 

Fig. 5 Cross-section of the model box beam. 
Dimensions in cm 

sectional moment of inertia was 1 : 8 (the moments of 
inertia of the skin, stringers and spar booms with 
respect to their centroidal axes are neglected; see 
table 1). 

The test-model was built up from polystyrene plates, 
stringers and booms*-The stringers and booms were 
milled out of plates of 6 and 10 mm thickness. All 
plates used for the skin and the webs were milled to 
thickness. The deviation of the mean thickness of each 
plate with respect to the nominal thickness amounted 

Fig. 6 The situation of the plates which form the upper skin of 
the model. 

* This material was supplied in the form of plates with thick- 
nesses of I ,  2, 6 and 10 mm * l,O%, trade mark "Trolitul". The 
manufacturer was Dynamit Aktien Gesellschaft, vormals Alfred 
Nobel and Co, Troisdorf Bez. Kahn. 



after milling to  f0.02 mm. In addition a tolerance of 
f0.015 mm with respect to the mean thickness was 
allowed. The situation of the various plates in the 
upper and lower skins of the model is shown in the 
figs. 6 and 7. 

Fig. 7 The situation of the plates which form the lower skin of 
the model. 

All bonded joints in the structure were made with 
a solution of polystyrene in carbitol-acetate. Fig. 8 
shows a photograph of the model under construction. 

Fig. 8 The model under construction. 
The strain gauges at the inner side of the box beam are already 

fitted. The polystyrene strips carrying the dummies are sem to 
be placed in the direct neighbourhood of the active gauges. All 
lead wires were led along the stiffeners to the tip ribs (see left 

part of the photograph). 

In table 1 the bending and torsional stiffnesses of the 
actual test-model, measured after milling and assem- 
bling, are compared with those of the ideal test-model. 
The actual bending stiffness is 3.06% too high and the 
actual torsional stiffness is 1.43% too high. 

Reasons to choose polystyrene as the material to 
build the model were 
- The mechanical properties of polystyrene show 

little sensitivity to changes in the relative humidity 
of the ambient air. 

- Poisson's ratio for polystyrene shows very good 
agreement with that for aluminium. 
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- The creep properties are not more unfavourable 
than those of other plastics in use for model 
testing. 

A disadvantage presented itself when during the build- 
ing of the model unexpected difficulties arose with 
the bonded joints between the stiffeners and the skin. 
I t  appeared not possible to obtain satisfactory joints 
with benzol when large parts had to be bonded. After 
an investigation into the properties of some other sol- 
vents and cements it was found that carbitol acetate 
gave satisfactory results without the necessity to use 
complicated bonding procedures. In order to obtain a 
cement of higher viscosity some polystyrene was dis- 
solved in this solvent. 

The mechanical properties of polystyrene given in 
the literature are E = 0.320 ' IO5 to 0.349 ' IO5 kg/cmz, 
and Y = 0.31. A large number of strain gauge measure- 
ments on polystyrene test-specimens gave E =0.336' IO5 
kg/cm2 (ref. 4). The latter value is used in this report. 

3.2 The test-rig 

Fig. 9 gives a general impression of the test rig with 

Fig. 98 The test fig with the model 

the model. Fig. 10 shows the supports of the model. 
With these supports the boundary conditions, applied 
in ref. I, are satisfied. 

The application of the deflections to the model was 
done by means of a cable- and lever-system. Fig. 11 
shows schematically the method of application of the 
torsional moments. The bending moment was applied 
in a similar manner. The use of a loading lever made 
application of the deflections possible within a very 
short time. The application of deflection increments 
was performed by unloading, adjusting the pin-lever 
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Fig. 9b The scanning apparatus with the recorder and the 
calibrating apparatus. 

,N LOID," O S E  c I ?  ,"E I Y m R T 1 2 1 N D 3  
WFRF P U C E 0  hT r * i  "Pwn AND YVLR SmF 
cs ,*E HODEL IIFIILC,,"U_" 

Fig. 10 The supports of the model 

attachment and retightening the loading lever. The 
time necessary for applying a deflection increment was 
about 5 seconds. The cable spanner was used as a 
means to adjust the deflections of one of the end ribs 
of the model in order to equalize the measured loads 
at both tips. This was done immediately after each 
increment of the deflection. The loads following from 
the applied deflections were measured by means of 
strain gauge dynamometers (measuring range IS0 kg, 
linearity better than 1%) connected to a Peekel static 
strain indicator. The sensitivities of the dynamometers 
were determined from the calibration curves shown 
in fig. 12. This calibration was done before the tests 
were started. The highest load measured during the 
tests was 68 kg (loading case C 1.2). 

DISPLACEMENT 

CABLE-SYSTEEM 

CABLE-SPANNER 

DYNbMOMETER 

Fig. 1 I The cable and lever system for the application of the 
constant deflections. 

2 0 0  400 600 800 I W O  1 2 W  i4W 

A y -STRAIN IId'cmlcm ) 

Fig. 12 Calibration curves for the dynamometers. 

3.3 The strain and deflection measuremenls 

The positions of the strain gauges on the model are 
shown in fig. 2. At all rosette stations on the skin, spar 
webs and rib webs strain gauges were cemented at both 
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sides of the plate. This was done in order to eliminate 
the effects of plate-bending due to the crushing effect 
and initial imperfections. The type of strain gauges 
used was Hottinger Impa 10/120 FA 1 ,  R = 120 R, 
k = 2, helical grid in plastic base, grid dimensions 
2 X 10 mm. The dimensions of the gauges were cut 
down to 6 x 20 mm in order to reduce the stiffness. 
The gauges were bonded with Eastman 910 cement. 
Tests showed this strain gauge-cement combination to 
be usable up to strains of about 2000 p-strain (2.  10-3 
cmicm). The loading of the model box beam was 
therefore chosen at such a level that the highest 
strained gauges showed maximum strains of 1000 to 
1200 p-strain. 

Fig. 13 Measuring circuit of strain gauges on skin and web 
panels. 

The strain gauge measuring circuits were connected 
as follows. Each active gauge was provided with its 
own dummy gauge. The strain gauges at both sides of 
the skin and webs were combined to  form, together 
with their two dummies, complete Wheatstone bridges 
(fig. 13). The advantages of such a combination are: 

1 .  elimination of bending effects without having the 
disadvantage of doubling the number of strain 

' gauge bridges and measuring data. 
2. doubling of the voltage output. 

The strain gauges on  the spar and rib booms, provided 
with their own dummy gauges, were connected to the 
reference resistances built into the scanning apparatus 
(fig. 14), to form a complete Wheatstone bridge. The 
influence of the lead wires from the half strain gauge 
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Fig, 14 Measuring circuit of strain gauges on spar and rib booms. 

bridges to the scanner was negligible because these 
wires were short (i 5 m). 

All the dummy strain gauges were cemented on 

strips of polystyrene (six dummies per strip) and placed 
in the direct neighbourhood of the active gauges. The 
dummies belonging to the active gauges on the inner 
sides of the skin and webs were consequently placed 
inside the box-beam (see fig. 8). 

Because polystyrene is a bad conductor for the heat 
developed in the strain gauges special precautions have 
to be taken to keep the zero drift of the balanced strain 
gauge bridges within acceptable limits. 

As causes of zero drift the following differences, 
between active and dummy strain gauges can be men- 
tioned: 
( 1 )  difference in temperature coefficient. 
(2) difference in temperature and temperature history. 
(3) difference in gauge factor and the coefficient of 

(4) differences in chemical composition and physical 

The following,precautions were taken against exces- 
sive zero drift: 
(I) a constant bridge supply of low voltage,(l V) was 

used. 
(2) this bridge supply was applied during at least two 

hours before starting any tests in order to reach a 
temperature equilibrium. 

(3) the active and dummy strain gauges were shielded 
with cotton wool against draught. 

The strain gauge.bridges were connected to a scanner 
with a capacity of 203 bridges (7 groups of 29, see 
Fig. 9b). 

This semi-automatic scanner S.A.R.A. is provided 
with 203 pairs of reference resistances for the use of 
half strain gauge bridges, and with bridge balance 
facilities for each bridge. Provisions were also present 
to connect the strain gauge bridges in parallel in groups 
of 29, each of the seven groups having its own accumu- 
lator. With the scanner the strain gauge bridges were 
connected automatically or by hand to a millivolt 
recorder. A diagram of the complete electrical circuit 
is given in fig. 15. 

expansion of the grid material. 

properties due to manufacturing. 

I 

Fig. 15 The electrical circuit of strain gauges and scanner. 

The mV-recorder was a Philips Type PR 2210 Ai21 
Nr. D 3445. The response time ( I  sec. full scale) of this 
recorder determined the scanning time. The total of 
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156 strain gauge bridges were scanned in about 8 
minutes. 

Calibration of the recorder deflections in p-strain 
was done by shunting a resistance of known value over 
one of the arms of a calibration bridge, thus producing 
a recorder deflection corresponding to a fictitious strain 
of known value. For each of the seven groups of strain 
gauge bridges a calibration bridge was available. For 
this calibration use was made of an apparatus specially 
developed for the purpose of calibrating strain gauge 
apparatus (ref. 5). A circuit scheme of this calibration 
apparatus is shown in fig. 16. Fig. 9b shows the scan- 

, ning apparatus with the recorder and the calibrating 
apparatus. 

TO SCANNER 

Fig. 16 Circuitry of calibration apparatus. 

Deflection measurements were made with the use of 
dial gauges. With three gauges at each wingtip the 
bending deflections in two directions and the torsion 
deflection' were measured. Fig. 17 shows the position 
of these dial gauges. 

TIP RiB 

FRONT F? T A R  RE4R 5PPa 

Fig. 17 The position of the dial gauges at the wing tips. 

4 Method of testing and evaluation of test results 

As has been mentioned in section 2 there are 4 
loading cases. The test'procedure, which was the same 
for each loading case, went as follows. After the box 
beam had been pre-loaded by prescribing small tip 
deflections (about 2% of the maximum load level) at 
each tip, zero adjustment of the strain gauge bridges 
was performed. 

To take advantage of the full scale of the recorder 
(11") all gauges were 'balanced at approximately 5% 
of the scale. Hence, gauge circuits showing a negative 
output bad to .be connected reversely to the supply 
'connections. The sensitivity of the recorder was now 
adjusted in such a way as to give nearly full deflection 

at the highest expected bridge-output. After being bal- 
anced the'bridges were scanned; also the dial gauges 
at the tips were read and dynamometer readings were 
taken. These observations were used as a zero refer- 
ence. 

The maximum deflection was then applied in 5 steps. 
After application of each deflection step the cable 
spanner of the left wingtip was adjusted so as to 
equalize the applied loads at both wingtips, and the 
following observations were made: 
(I) the output of the strain gauge bridges was recorded. 
(2) the dial gauges were read. 
(3) at the same time a rough plot was made of the 
dynamometer readings as a function of time at  the 
prescribed deflection. 
The time necessary to perform such a series of observa- 
tions was about 10 minutes. 

The plot of dynamometer readings shows a decrease 
of load with time, due to relaxation of the material 
(Fig. 18). 

1 90% 

0 10 2 0  30 ' 4 0  50 SO 

-TIME.m," 

Fig. 18 The decrease of the load due to relaxation. 

The load curve for a complete test thus had the form 
shown.in fig. 19. Since the relaxation effects were small 
the loads, P I ,  Pz, P, . . . , measured directly after appli- 
cation of a new deflection step were assumed to be 
equal to the loads PI!, P,', P,' ... . The resulting 
error per deflection step is smaller than 1%, which 
results in an error of the order of Iph in the final test 
results. Because of the presence of an elastic aftereffect 
after unloading the box beam measurements could 
only be made during increasing load. 

-TIME 

Fig. 19 The effect of relaxation on the load curve. 

In table 2 the magnitudes of the applied maximum 
loads and deflections are given. 

The evaluation of the test results as described in the 
following was carried out for the greater part on an 
electronic digital computer. For each strain gauge 
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bridge the ratio de/dP was determined by the method 
of least squares. Corrections were applied for the gauge 
factor and for the influence of the strain gauge stiffness 
on the measured strains. The last mentioned correction 
is described in Appendix A. The numerical values of 
this correction are: 

skin and the webs with h = 0.2 cm eC = 1.1 19 em 
for the webs with h = 0.1 cm eC = 1.238 em 
for the booms eC = 1.014 em 
were eC denotes the corrected strain, and em denotes the 
measured strain. 

The shear deformations at the rosette stations were 
calculated from the expression (ref. 12) 

where E% and cy denote the strains indicated by the 
gauges which were orientated in the positive x- and 
y-directions respectively, and ~ 4 5 ~  denotes the strain 
indicated by the gauge which was orientated under an 
angle of 45” with the positive x- and y-directions. 

Since the strain gauges on the booms were not 
situated in the neutral plane of the booms a correction 
was made to allow for the strains due to bending. The 
bending-stress distribution has been assumed to be 
linear over the depth of the spars, and the strains 
measured on the booms were consequently reduced 
with a factor (see fig. 5): 

d 
d- = 0.9091 (4.2) 

Lastly a conversion factor was applied to transform 
the evaluated test results into strains that would occur 
in the metal box beam of ref. 1 when loaded in the way 
as shown in fig. 1. Thefinal test results as giuen in this 
report thus refer to the loading cases giuen infig. 1, and 
the metal box beam of ref. I .  The applied conversion 
factors are determined in Appendix B. for the loading 
cases B 1, B 2 and C 1.2. the conversion formula reads 

(4.3) I (&/M)p = O.O12(&/M), , 

that for loading case B 3 reads 

(E /P )~  = O.O24(e/P), 

where m refers to the model box beam and p to the 
prototype of ref. 1. 

For comparison with the test results, the results of 
ref. 1, which are given in the form of stresses related to 
oblique co-ordinates, were transformed into strains 
related to the Cartesian co-ordinates used for the test- 
model (fig. 3). The transformation formulas used are 
given in table 3. 

From a check on the vertical equilibrium between 
internal stresses and external loads (see section 5.2) it 
was found that two more corrections had to be applied 

to the test results. The first one was a correction for a 
small vertical load at the tip of the model that ap- 
peared in all loading cases where bending or torsional 
moments were applied (the cases B 1, B 2 and C 1.2). 
This vertical load was due to the resulting vertical 
deflection of the wing tips. As a result of this deflection 
the force applied by the cables of the loading system 
had a small vertical component (see fig. 1 I): 

t l  P = 2 - Q .  a 
The magnitudes of these “false” loads, computed 

from the measured vertical deflection u, were for all 
loading cases of the order of 2% of the vertical load’ 
in loading case B 3. The correction consisted of adding 
the relevant percentage of the strains of case B 3 to the 
strains to be corrected. For loading case C 1.2 this 
correction was somewhat more complicated because of 
the asymmetric loading in this case. In fig. 20 the 

- Right hawed L-pY5, msmcntr /” ig*m . Domwmrdr s l r L  
8 ”  kg 

0 ” P - d  ,n-cs ,” k9 

Fig. 20 Method of correcting for the “false” shear loads in 
loading case C 1.2. 

method of this correction is shown. In the computation 
of the stresses due to the load system C, shown in 
fig. 20, the engineer’s theory for bending has been 
applied to the wing centre-section only. This is not 
quite correct, but since only a correction is concerned 
the resulting error will be of minor importance. 

The second correction of the test results was neces- 
sary for loading case C 1.2 only. I t  concerns a correc- 
tion for the finite stiffness of the frontspar supports 
(see detail of fig. IO); the stiffness of this configuration 
proved to be too small in comparison with other stiff- 
nesses. In loading case C 1.2 a deformation of one or 
more of the supports under its loading results in a 
decrease of the reaction forces on the supports. For the 
symmetrical loading cases B 1, B 2 and B3 a correction 
was not necessary because the displacements of the 
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PI  481 kg p i  481 kg 

Fig. 24a Zero system of stress, SI 

Fig. 24b Internal systems of stress SL and Sa (participation factor 
0.88310 and -0.88310 respectively) SI and SI are symmetrical 

with respect to the axis of symmetry a.a. 

Fig. 24 The stress systems used to correct for finite stiffness of 
the supports. Case C 1.2. 

centrepart is zero because of the antisymmetric loading. 
Therefore this system of stress has not been used. In 
the figs. 41, 44 and 45 the corrected strains can be 
compared with the uncorrected values.. The latter ones 
are placed between brackets. 

5 Accuracy of the test results 

5.1 Thepossible error in the test results 
In the following a general impression will be given 

of the most evident error sources. The approximate 
error is given and the total possible error in the final 
test results is.calculated. Some of the given values for 
the errors are estimated, in which case the given value 
is conservativk. 

The error sources can be divided into: 

the relative errors: 
(a) errors in the measurement of the applied loads, 
(b) errors.in the measurement of the strains as far 

as these are due to the electronic equipment and 
the strain gauge itself. 

(c) errors in the measured strains as far as these are 
due to mechanical and other causes. 

the absolute errors: 

(d) zero drift of the strain gauge bridges due to bad 
heat transmission from the'strain gauges to the 
structure. 

(e) errors due to the imperfect reproducibility of the 
electronic equipment and the mechanical instal- 
.lations. 

Approximate numerical values for the relative errors 

0.3% 
are: 
ad (a) I .  non-linearity of the dynamometers 

2. error of the electronic strain meas- 
uring apparatus < 1% 

3.  other error causes 1% 

tor) 1.5% 
1% 

< 0.2% 

ad (b) 4. error of strain gauges (gauge fac- 

5. non-linearity of the recorder 
6. error of the calibration signal 

ad (c) 7. error in the corrections for the 
stiffness of the strain gauges* (see 
remarks at  the end of Appendix B) : 
for gauges on skin and webs (h = 

for gauges on rib webs (h = 0.1 

for gauges on the booms 

0.2 cm) < 6% 

cm) % < 12%" 
< 0.7%, 

8. for the strain gauge rosettes on 
. . skins and webs misalignment of 

one or two gauges of the rosette of 
2" results in an error of maximum 
2% (ref. 6 p. 426). 

9. error due to thickness tolerances of 
the structural parts (see sect. 3): 

. 

for skins and webs (h = 0.2 cm) 
for rib webs (h = 0.1' cm) 

dulus was determined 3% 

tion 5.3) < 2.5% 

1.5% 
3% 

for booms negligible 
10. accuracy with which Young's mo- 

11. error due to creep effects (see se'c- 

The total relative errors' expressed as e = ___ 
le12 + e22 + . . ., where el,  e2 are the above mentioned 
relative errors, amount to I 

7% for skins and sparwehs with h = 0.2 cm 

5% for spar- and rib booms 
12% for rib webs with h = 0.1 cm 

Measurements of.the zero drift of a complete strain 
gauge bridge during several hours indicated a mean 
zero drift of 18.  10-6 cm/cm/hr. If it is assumed that 
the zero drift increases linearly with time the approxi- 
mate value of 10-5 cmjcm for the possible absolute 
error in the final test results is obtained. 

In the given values for the possible relative errors 
the errors due to stiffness of the strain gauges dominate 
for the skin and webs. The equilibrium checks discussed 
in section 5.2 will show that these values are rather 
conservative. 

The given values are conservative. 
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5.2 Checks on the reliability of the test results 

In order to have a check on the reliability of the test 
results the equilibrium between the resulting internal 
forces (after application of all previously described 
corrections to the test results) and the externally ap- 
plied loads was investigated. The following equilibrium 
checks have been made. 

Fig. 25 The cross sections where eguilibrium-checks were made. 

(a) At cross-sections B and C (see fig. 25) the bend- 
ing couples corresponding to the normal forces 
in the skins, stiffeners and booms determined 
from the strain gauge measurements were com- 
pared with the externally applied bending mo- 
ments for loading cases B 2 and B 3. The devia- 
tion from equilibrium amounted to only 4%. 

(b) At the cross-sections B and C the torsional coup- 
les of the shearing stresses in the skins and spar 
webs and the torsion-producing components of 
the stringer and boom normal forces were com- 
pared with the externally applied torsional mo- 
ments for the loading cases B l and C 1.2. For 
these loading cases the deviation from equilibrium 
amounted to 1 and 6% respectively. 

(c) At all cross-sections of the box beam which cut 
2 or 3 web-rosettes (fig. 25, A to G inclusive), 
the vertical forces resulting from the shear strains 
in the cut spar and rib webs were compared with 
the externally applied shear loads including the 
reaction forces at the points of support of the 
model. 
The maximum absolute value of the deviations 
from equilibrium for all cross-sections, except 
section A, amounted for loading case B 3 to 8% 
(in cross section B). For loading cases B 1, B 2 
and C 1.2 the sum of the shear forces has to be 
zero (except for cross-sections D and E). For 
these loading cases the mean of the sum of all 
upward web shear forces and the sum of all 
downward web shear forces in the considered 
cross-section was taken as a basis of comparison. 
Compared to this basis the maximum absolute 

value of the deviations from zero for all cross- 
sections, except section A, amounted for loading 
case B 1 to 26% (in cross section G). For loading 
cases B 2 and C 1.2 these values were 7% and 
7% (in the cross-sections B and F respectively). 

For all loading cases the deviations in cross- 
section A were proportionally larger than the 
above given values, but the absolute values of 
these deviations were about as large as those in 
the other cross-sections. The values given above 
for loading case C 1.2 refer to the corrected test 
results as given in fig. 45. 

(d) At the points of support of the model the vertical 
forces resulting from the shear strains in the 
webs connected to the vertical supporting stiff- 
ener (see fig. 22) were compared with the exter- 
nal reaction force. This force was calculated 
from the external loads applied to the model. 
For loading case C 1.2 the reaction forces were, 
according to the discussion in sec. 4, assumed to 
amount to 1250 kg, and the web shear forces 
were taken as the corrected test results of fig. 45. 
For loading case B 1 the deviation from equili- 
brium amounted to 0.25%, both for the front 
and rear supporting points and for loading case 
B 3 to 0.8% and 6% respectively. For loading 
case C 1.2 these values were 3y0 and 3%. The 
reaction forces for loading case B 2 are zero. 
The deviations from zero of the resultant web 
shear force amounted for this loading case to 
12% and 3"/" respectively of the mean of the sum 
of all upward web shear forces and the sum of 
all downward web shear forces in the point of 
support. 

(e) Finally the equilibrium of the junction of the 
spar boom of the wing centre section, the spar 
boom of the swept part of the wing and the 
boom of the root rib was checked. The measured 
boom stresses were extrapolated to find the 
stresses at the junction. The deviation from 
equilibrium at  the junction of the front spar 
booms was in accordance with the order of the 
possible absolute error in the measured strains 
for all loading cases. 

For the junction of the rear spar booms the 
equilibrium was, however, rather poor. When 
the direct stresses in spanwise direction of the 
skin, stringers and spar booms at  both sides of 

, the root rib were compared with each other it 
appeared that also the measured strains in the 
skin-stringer combination aft of stringer number 
7 (see fig. 2) showed a considerable lack of equili- 
brium. 

I t  is concluded that the measured strains in the 
area around the intersection of the root rib and 
the rear spar are not sufficiently accurate. This 
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could be due to the very high stress gradients rn 
this region. 

5.3 Results of a comparison between a constant load 
test and a constant dejection test 

The model was loaded with a constant shear load of 
25,s kg at both tips (loading case B 3) by means of 
dead weight, while during 2 hours the indicated strain 
of one complete strain gauge bridge was plotted against 
time. For this purpose one of the strain gauges on the 
skin, bonded in x-direction and situated in the swept 
part of the box-beam in the region of the intersection 
of rear spar and root rib was selected. Here the strains 
and the strain gradients are largest and consequently 
this region can be expected to show the strongest visco- 
elastic effects. 

For the strain measurements use was made of a 
Peekel static strain indicator; the accuracy of the strain 
reading was & 2 x 10-6 cm/cm. 

The same test was made with constant deflections 
applied to the tips of the model. The load level corres- 
ponding with these deflections was 26 kg. 

The results of these tests were corrected for zero drift 
due to heat development in the strain gauges. Based on 
the results of special tests this zero drift was found to 
be 18 x 10-6 cmjcm per hour approximately (see 
sec. 5.1). 30 minutes after load application the fol- 
lowing values for the strain increase A&, expressed as 
a percentage of the strain EO indicated immediately 
after load application, were obtained: 

case of constant load: Aa = + 3.3% of EO 

case of constant deflection: Aa = -0.40/, of EO 

60 minutes after load application these values amount- 
ed to: 

de = + 4.5% of EO, and. Aa = - 1 .I% of EO 

respectively (the time necessary to complete a test was 
about 1 hour for each of the loading cases). The nega- 
tive values of Aa are most probably due to non-linearity 
effects (i.e. the rate of strain increases more than in 
the case of a linear relation between stress and rate 
of strain). Since the strain gauge with which this value 
was obtained was lying in the region of highest strain 
it is to be expected that in other points of the structure 
smaller absolute values for A& occur and that in the 
points of lowest strain Aa is of positive sign. 

In sec. 4 an error in the measured load due to relaxa- 
tion is mentioned, which resulted in a deviation of the 
values for da/dP of about + 1.5%. This error is of 
opposite sign compared with the value of AE for the 
case of constant deflection. Based on the foregoing the 
total error in the test results due to plasticity effects can 
thus be estimated to  vary between zero and about 
+2.5% dependent on the strain level. The smallest 
values are valid in the region of highest strain, the 

largest values in the regions of lowest strain. This 
accuracy is still favourable compared with the case of 
a constant load applied to the model. 

6 Test results and discussion 

6.1 Comparison between the test results and the theo- 
retical results 

In the figures 26 up to 45 inclusive the test results at 
all strain gauge locations on the upper skin and on the 
webs of the right winghalf are given together with the 
strains obtained from ref. 1. In these figures the num- 
bers placed in a box give the strains for an infinitely long 
hollow box beam. These values were also obtained 
from ref. 1. 

Because in ref. 1 the stresses were not always cal- 
culated at the points of location of the strain gauges the 
theoretical values given in the figures were obtained 
from graphical interpolation. 

In the figures 46 up to 55 inclusive the comparison 
between test results and theoretical results is given in 
graphical form. The solid lines in these figures are 
drawn through the theoretical values, whereas the 
test results are plotted as points. 

The tables 4, 5, 6 and 7 give a comparison between 
the strains measured on the right and on the left half 
of the model. The agreement between the strains on 
both halves is quite satisfactory. 

6.2 Discussion 

In tables 8 , 9  and 10 a survey is given of the maxi- 
mum deviations between test and theoretical results, as 
well as of the overall quality of agreement. From a 
study of this table and the figs. 46 to 55 inclusive it is 
to be concluded that the best agreement between test 
and theoretical results is found for loading case B 1. 
Also it can be seen that the strain distributions of the 
loading cases B 1 and C 1.2, which both involve a 
torsional moment, show a strong similarity. The same 
is the case with the loading cases B 2 and B 3 which 
both contain a bending moment. 

On the whole, the agreement between test and theo- 
retical values is somewhat less satisfactory for the 
bending moment-load cases than for the loading cases 
where a torsional moment is applied. From the latter 
two load cases (B 1 and C 1.2) case C 1.2 shows less 
agreement than load case B 1 ; this can partly be attrib- 
uted to the relatively large corrections applied to the 
test results to correct for the finite stiffness of the 
supports (see sect. 4). 

In the following the strains in all structural parts of 
the box beam will be discussed in more detail. 

The direct strains in the booms 

The agreement between test and theoretical results 



is satisfactory for loading cases B 1 and C 1.2. For 
case B 1 the gradients of the strain in the centre-section 
and in the first bay of the swept part are somewhat 
overestimated in the results of ref. I .  This discrepancy 
must be due to deviations in the participation factors 
of the internal systems of stress of the types 2 and 3. 
(see ref. 1, figs. 22, 23, 28 and 29; the internal systems 
of stress of type I cannot be the cause because the 
shear strains in the webs show good agreement be- 
tween test and theoretical values). 

The agreement between test and theoretical results 
for loading cases B 2 and B 3 (figs. 50 and 51) is rather 
poor. 

For cases B 3 and B 2 the calculated gradients of 
strain are considerably overestimated. This could he 
caused by deviations in the participation factors of the 
internal systems of stress of the types I and 3 (ref. I ,  
fig. 21 and 23). 

The discrepancies in the region of the root rib for 
all loading cases could be expected in view of the in- 
compatibilities between the calculated strains in the 
booms and the adjacent skin, shown in fig. SI to 85 
inclusive of ref. I. 

On p. 20 of ref. 1 it is conjectured that the calculated 
skin stresses adjacent to the spar booms are better 
approximations than the calculated boom stresses, 
because of the fact that the booms give a smaller con- 
tribution to the total strain energy than the skin stif- 
fener combination does. Comparison of figs. 81,82,83 
and 85 of ref. 1 with figs. 26, 31, 36 and 41:) respec- 
tively shows this expectation to he fully confirmed for 

.the loading cases B I and B 2 ;  for the cases B 2 and 
C 1.2 it is only true for the strains near the rear spar 
boom. 

For the loading cases B 1 and C 1.2 the computed 
strains in the boom of the root rib are better approxi- 
mations than the strains E, in the adjacent skin. This 
can be attributed to the fact that in the calculations 
the freedom of variation of the stresses in y-direction 
in the skin is very limited so that the strains cy in the 
skin are not very accurate. 

The direct strains in x-direction in the skin 

For Loading cases B 1 and C 1.2 the agreement be- 
tween test and theoretical values is quite good. In most 
points the difference is smaller than the possible abso- 
lute error. For case B 1 the “strain concentration” near 
the rear spar seems to he somewhat underestimated in 
the calculations. In this connection it should, however, 

* The values in parentheses given in the figs. 26 up to 45 
inclusive are the calculated strains at the locations of the strain 
gauges. These values are obtained by graphical interpolation 
from the figs. 46 up to 55 inclurive. This explains the differences 
between the calculated strains shown in the figures of this report 
and in those of ref. 1. 

be remembered that the measured strains in the area 
around the intersection of the root rib and the rear 
spar are expected to he not quite reliable (see sec. 5.2, 
suh(e)). 

,For loading cases B 2 and B 3 the agreement is 
somewhat less than for the other loading cases. In both 
cases the tendency of the theoretical strain cZ in the 
centre-section of the box beam is not in agreement with 
that of the test values. For this reason the strain con- 
centrations near the rear spar are not indicated by the 
theoretical results. 

The direct strains in y-direction in the skin 

For all loading cases the agreement between test and 
theoretical results is satisfactory or good, with the 
exception of the strains in the region of the root rib. 

In the cross-sections adjacent to the root rib, and for 
case C 1.2 also in the centre-section of the box beam, 
very large discrepancies occur. 

For loading case B 1 the cause of these discrepancies 
can be indicated. The relation between the direct strains 
cz and E,, and the stress flow s, as calculated in ref. I 
can be written in the form. 

. The contribution of the term V E ~  to the theoretical 
strains cy in the centre-section is smaller than 5% of cy. 

The large discrepancies between tests and theoretical 
results can thus be fully attributed to the calculated 
stresses s,. The cause of the discrepancies is the fact 
that in the calculations of ref. 1 the direct stressflow 
in y-direction, s,, are not allowed to vary in x-direction. 
This restriction does not allow the skin to he strained 
in compatibility with the boom of the root rib. The 
strains E, obtained from the calculated stresses in the 
rooi rib boom (in fig. 47, section 3, given as a dotted 
line) show much better agreement with the test results. 

In cross-section 4 of the swept part adjacent to the 
root rib the discrepancy is somewhat less severe. Here 
the term containing I, in the expression. 

amounts only to 23% of the value of YE%, and since the 
theoretical values show good agreement with the 
test results the effect of errors I, is not large. 

For loading case C. 1.2 the fact that the calculated 
values E, in the centre-section of the box beam all lie 
about halfway between the minimum and the maxi- 
mum test values also demonstrates the lack of freedom 
of variation for the stresses s, in x-direction in the cal- 
culations. 

From the character of the deviations between test 
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and theoretical values for E, it can be seen that in thc 
centre-section and in the first skin bay of the swept part 
internal systems of stress, allowing variation of s, in 
x-direction, are required in order to obtain agreement 
with the test results. 

The shear strains in the skin 

For loading cases B 1 and B 2 the agreement between 
test and theoretical results is good or satisfactory, with 
the exception of the cross-sections adjacent to the root 
rib. For loading cases B 3 and C 1.2 the agreement is 
rather poor. For case B 3, however, the strain gradients 
are very large, so that small effects may have a strong 
influence on the differences. For case C 1.2 the test 
values in the centre-section are not very reliable be- 
cause they were obtained after very large corrections 
had been applied. 

Whether the discrepancies in the swept part of the 
,box beam are due to the calculated stresses t or s, can 
be estimated as follows, The shear strain ysy in the 
swept part depends on the stress flows S, and i as cal- 
culated in ref. l : 

For loading cases B 1 and C 1.2 the value of i, in cross 
section 4 amounts only to 10% of the value o f f ,  so that 
the large discrepancies in this section must be mainly 
due to the shear flow f ;  for loading cases B 2 and B 3 
the value i, in cross section 4 amounts to 25% and 50% 
respectively of the value of i, so that errors in S, can 
also have had influence. 

The discrepancies between test and theoretical values 
in the first skin bay of swept part for loading cases B 1 
and C 1.2 lead to the conclusion that the calculations 
of ref. 1 still possess insufficient degrees of freedom 
for the stressflow i t o  enable a reliable calculation of 
the actual shear flow distribution. 

Especially the freedom of variation of i in x-direction 
in the skin bays adjacent to the root rib is insufficient. 

The shear strains in spar and rib webs 

The agreement between test and theory is extremely 
good for loading case B 1;  for the other cases it is 
satisfactory or good. The discrepancies for the loading 
cases B 2 and B 3 show again much the same tendency. 

pectation seems legitimate that by adding one or more 
internal systems of stress in the centre-section and the 
first bay of the sweptpartto theunknowns oftheprob- 
lem, the theoretical results could still be improved. 

For the loading cases B 2 and B 3 the agreement 
between test and theoretical results is less satisfactory 
than for loading cases B I and C 1.2. In both bays 
adjacent to the root rib rather important differences 
occur. These differences point to a lack of degrees of 
freedom in the calculations for the stresses in the 
centre-section and the first bay of the swept part. In 
this context it is interesting to note that for loading 
case B 2 the participation factors for the two stress 
systems which allow for stress distributions sz, that are 
non linear in x-direction in the first bay of the swept 
part (see ref. 1, table 14, stress systems nrs. 16 and 17), 
are very much larger than those of most other stress 
systems in the swept part (nrs. 1 2 ,  . . 29), and are of 
about the same magnitude as the participatiqn factors 
of the stress systems covering one bay of the centre- 
section and the first bay of the swept part (nrs. 6 . . .9). 
For loading case B 3 about the same indications 
though less pronounced, can be found. 

This points to the importance of the stress systems 
with non-linear stress distributions in x-direction 
(which are also the only stress systems that include 
stresses s, and allow variation o f f  in x-direction) for 
these loading cases. It should therefore be possible to 
improve the theoretical results by adding some internal 
systems of stress for the centre-section and the first bay 
of the swept part, which extend the number of degrees 
of freedom for the stresses in this region. The results 
of an improved calculation, using the stress-distribution 
obtained in ref. I as a basic stress system, will be report- 
ed later. 

I Conclusions 

7.1 In the loading cases where “torsional moments” 
are applied at the tips (fig. 1, cases B I and C 1.2) 
the agreement between test and theoretical results 
is very satisfactory for the most important strains 
(the direct strains parallel to the spars in the skin 
and booms, and the shear strains in the webs), 
provided that due consideration is given to the 
incompatibilities inherent in the theoretical Soh- 
tion. In the asymmetric loading case (case C 1.2) 
the agreement is somewhat less than in the sym- 

In summary it can be said that with reference to the 
most important strains ( E ~  in skin and booms, and yszr 
in the webs) the agreement between test and theoretical 
results for the loading cases B 1 and C 1.2 is quite 
satisfactory, provided that due consideration is given 
to the incompatibilities inherent in the theoretical solu- 
tion (e& the boom strains being approximated with 
less accuracy than the skin strains). However, the ex- 

metric loading case (case B I). 

7.2 In the loading cases where “bending moments” 
are applied (fig. 1, cases B 2 and B 3) the agreement 
between test and theoretical results is satisfactory 
in the swept part a t  some distance from the root 
rib (the rib at the root of the swept part). In 
the centre section and the first bay of the swept 

- 



part however rather important differences occur. 
The discrepancies show much the same tendencies 
in both loading cases. 

7.3 In all loading cases indications are present that a 
large part of the differences still present between 
test and theoretical results are caused by the fact 
that the calculations allowed only a limited number 
of degrees of freedom for the direct stresses in 
chordwise direction (sv) and the shear stresses ( t )  
in the skin bays adjacent to the root rib (the rib 
a t  the root of the swept part). It should be possible 
to improve the theoretical results by adding some 
internal systems of stress in the centre section and 
the first bay of the swept part. 

7.4 The method of applying constant deflections as 
used in the tests reduces the effects of visco-elastici- 
ty on the results of strain measurements appre- 
ciably. 
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APPENDIX A 

Corrections fur strain gauge stiffness 

Because of the low value of Young's modulus for 
polystyrene the attachment of strain gauges to a struc- 
ture consisting of this material can have a considerable 

influence on the local stiffness. Especially in the case 
of thin panels (in the order of 0.1 cm) with strain 
gauges bonded at both sides this stiffening effect can 
result in an error in the measured strains of up to 
about 20%. 

A correction for this effect is made by taking into 
account the stiffness (EA),  of the strain gauges as deter- 
mined experimentally in the following way*. 

Two strain gauges of the type used on the test-model 
were bonded back to back with the same cement as 
was used to bond the gauges on the model. These strain 
gauges were loaded in tension by means of dead weight, 
while the resulting strain was measured. As dummies 
were used two identical strain gauges, also cemented 
back to back. From 7 measurements on each of the 
two pairs of strain gauges (dimensions cut down to 
6 x 20 mm; see also sec. 3.3) the stiffness was found 
to be 

(EA), = (371 397) __ kg per bonded gauge. cmjcm 
(A.1) 

The relation between the measured strain, zm, and 
the strain corrected for strain gauge stiffness, E ~ ,  in the 
case of a simple structural member loaded in tension 
is (strain gauges at both sides and local effects neg- 
lected) : 

in which (EA), represents the stiffness of the bonded 
strain gauge and (E& represents the stiffness of the 
structural member considered. Application of this 
correction formula to the results of strain measure- 
ments on skin and web panels presents the difficulty 
of determining the value of (EA)o that has to be used 
for each strain gauge location. 

Considering a strain gauge bonded to a thin flat 
plate the following can be stated: 

1, the disturbance of the strain field due to the pres- 
ence of the strain gauge will extend itself at most 
5 times the width of the strain gauge (5b,). This 
gives a minimum for the correction factor: 

2. the minimum of the above meant width can be 
considered to be equal to the width of the strain 
gauge (bo). This gives a maximum for the correc- 
tion factor: 

In the present case the value of the correction factor 
for the strain gauge locations on skins and webs has 

* This method was derived from ref. 1. 
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been taken as the mean of its maximum and its mini- 
mum value. 

For skin and webs with strain gauges bonded at both 
sides the applied correction thus is: 

For the strain gauge locations on the spar and rib 
booms the value of Ao is taken equal to the cross- 
sectional area of the boom in question: 

The numerical values of the applied correction are: 

webs with h = 0.1 cm E< = 1 . 2 3 8 ~ ~  
skinsandwebswithh =0.2cm E~ = 1 . 1 1 9 ~ ~  

booms(A =0.81 cmz) eC = 1 . 0 1 4 ~ ~  

Concerning the accuracy of these corrections it may 
be assumed that this is in any case better than 50%. 
The maximum error in the strain measurements due to 
the stiffness of the strain gauges amounts than to less 
than 

(A. 7) 1 

6% for skin and webs with h = 0.2 cm 
12% for rib webs with h = 0.1 cm 

0.7% for the booms. 

APPENDIX B 

The scale factors to be used for the comparison of the test 
results and the theoretical results 

As mentioned in sec. 3.1 the geometrical scale factors 
used for the model are 

- km/kp = q = & for all length dimensions. 
- hm/hp = r = 1 for the cross-sectional thickness of 

The cross-sectional areas thus have a scale factor of 

The other scale factors are determined by means of 
a dimensional analysis (see for instance ref. 8). The 
pertinent variables which are of importance in the 
problem of the analysis of a beam with the two above 
mentioned geometrical scale factors, loaded by shear 
loads or moments (fig. I), are: 

k - span of the box beam 
h - cross-sectional thickness of a stress carrying 

M - loading moment 
P - shear load 
E - Young's modulus 
Y - Poisson's ratio 
u - stress 
y - deflection or displacement 

the stress carrying members. 

q . r = & .  

member (web, skin, stiffener etc.) 

The dimensions of the above mentioned physical and 
geometrical quantities are 

- the unit of force [F]  
- the unit of length [L] of all dimensions except the 

cross-sectional thickness 
- the unit of length [ I ]  of the cross-sectional thick- 

ness 

The dimensions of the pertinent variables are now 
tabulated as follows 

k h M P E v o y  
~~ 

1 1 1  1 
1 --I -1 1 

Of length 111 1 -1 -1 

With the help of this,table the following five (8-3) 
independent dimensionless groups (=-factors) can be 
formed (of course also other sets of groups are pos- 
sible): 

In the following the index m wilt- be added if the 
model box beam used in the tests is referred to; the 
indexp will indicate the prototype box beam of ref. I .  

Equations (B.l) give the scale factors to be applied 
in the model test: 

(a) ah = vP; as a" u 0.31 and vp = 0.3 
this condition is satisfied to a sufficient degree of 
accuracy 

The conditions (c), (d) and (e) of (B.2) yield the 
conversion factors to be applied to the test results: 

(-) & E m  = - q2r (G) 
(-) E =2v(;) , 

(B.3) M P  EP " 

P P  m 

or, with q = 1, r = 1, 4 = 0.336 ' 105 kg/cmz, 
En = 7. IO5 kglcmz 
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, to be applied in the loading 
cases B 1, B 2 and C 1.2 

Application of these conversion factors transforms 
the test results into strains that would occur in the 
prototype box beam of ref. 1 under loads as given in (B,4) 

, to be applied in loading fig. 1. 

case B 3 

TABLE I 

Bending and torsional stifnesses of the actual model and the ideal model 

actual test-model measured 
box beam ideal 

after milling and assembling 
min. max. 

of ref. 1 test-model 

cm 
cm 
cm 
cme 
cm2 
cm' 
cm4 
cm4 
cm' 
cm4 

cm4 

18.0 
56.56 
0.2 

1.25 

1.24 
916.27 
97.20 

101.25 
100.44 

4038.90 

5562.23 

9.0 

28.28 
0.2 
0.625 

0.62 

114.2 
12.15 
12.66 

12.55 
504.87 

695.27 

8.98 9.02 
28.21 28.27 

0.198 0.207 

0.63 0.63 
0.619 0.666 

112.M) 119.03 

11.95 12.66 
12.70 12.81 
13.08 13.55 

509.18 531.42 
520.30 

- 
683.32 727.12 

705.22 

TABLE 2 

The magnitudes of the applied maximum loads and deflections on the model 

Maximum load') Maximum deflection 
Loading Moment (kgcm) Vertical Rotationz) 

(rad) 
Type of loading case Shearing Force translation 

(kg) (cm) 

B 1  torsional moment 2070 0.757 '+ 0.0196 

B 2  bending moment 1885 0.719 - 0.0047 
B 3  shear load 26.3 1.41 + 0.0071 
c 1.2 torsional moment 2330 0.731 -0.0217 

(symmetrical) 

(asymmetrical) 

1) measured directly after application of the deflections. 
2) signconvention: + starboard tip front spar up 

. -starboard tip front spar down 
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where: 
1 

Eh (hJh 12 + sin 0) 
Kij = 

TABLE 3 
Transformation formulas used to transform the results of ref. 1, into strains related to Cartesian co-ordinates 

1 cos20 - Y sin20 2 cos 8 
cos28 - sin20 {I + ha/h 112 (I + v) sin 8 (1 + cosz8 - Y sin28)) 2{ I + h,/h 1'2 (1 + v )  sin 8} cos 8 

2 ha/h1/2 ( I  + v )  sin 0 + 2 (1 +cos2 8 
Y sin2 8) 

2 cos 8 2{ I + ha/h 12 ( I  + u )  sin 0 }  cos 8 

.I 

idealized structure 
of ref. 1 

spar booms I O 5 s r  = 0.116144 N A = 1.23 cm2 N 

root-rib boom 105r ,  = 0.077220 N A = 1.85 cmz 
spar- and rib webs (A = 0.2 cm) 105yzz= 1.85714 I h = 0.2 cm 2(1 + Y )  , 
rib webs (h  = 0.1 cm) IO5 yzz = 3.71428 f h = 0.1 cm Eh 

skin of box beam centre-section 
(Cartesian- co-ordinates) 

i = 1 , 2 , 3  
j = l , 2 , 3  
*- 

IO5 E, = 0.42079 sz - 0.12624 J~ h = 0.2 cm 
IO5 = 4 . 1 2 6 2 4  sz + 0.68787 sv h, = 0.139500 cm 
10Jyzu = 1.8571 1 

E (  =Aijsj 2, 

I 
i = l , 2 , 3  
i = l , 2 , 3  

skin of the swept part of the box beam 
(in ref. 1 oblique co-ordinates are used) 

1 0 5 ~ ~  = 0.50853&+ 0.17799jv+ 0.71917 € h = 0.2 
IO5 E~ = --0.15255&+ 0.40623?v-00.21575 € h, = 0.197283 cm 1 105 yzY = 1.3132 S,+ 1 3 5 7 1  i 

1) where Au is the matrix of coefficients of the stress-strain relations for the composite skin-stiffener plate (see ref. 2 and 3): 

for the oblique co-ordinates 
. used in ref. 1 

$2 = t 

'1 '1 = for Cartesian 
E2 = Ey I E l  = VI., 

LOADING CASE 82 

THE VALUES BETWEEN 
BRACKETS GIVE THE 

BUT AT THE UNDER- 

STRAINS MEASURED AT 
THE SAME STATION 

SIDE.OF THE MODEL. 

+22.5 

-78.2 

r29.2 
gl [ -29 .7 ]  I U 
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TABLE 6 
Comparison between the strains (lose) in the booms and skin. 

measured on the right and left half of the model 

, CCI 
THE VALUES BETWEEN 

STRAIN5 MEASURED 

BUT AT THE UNDER 
SIDE OF THE MODEL. 

BRACKETS GIVE THE 2 

AT THE %ME STATION3 

41 [-37.5~ 

r67.2  

9 

-47.41 RIGHT 

- 3 7 . 0  

+ 3 9 . 2  
[ -38 .4]  

t 6 7 . 2  H [ -67.31 

+35.8  

TABLE 7 
Comparison between the strahs ( I O W  in the booms and skin 

measured on the right and left half of the model 

LOADING CASE C 2.1 

t29 .5  
5 (  [-29.61 1 

Ex+l 8.5 
61Ev -6.1 1 

Ex +1 7 .8  

-29.7 

TABLE 8 
Comparison between test and theoretical results in summary 

Boom-strains 

Maximal deviation between 
test and theoretical results 

both cross-sffit. all other 
cross sections Boom Loading adjacent to root rib 

C a w  
% of max. 

in all booms 

% of max 

in all booms 
measured strain measured strain 

see 
Overall quality of agreement . fig. 

36 
5 

19. 
22 

Front 
Spar 

c 1.2 

Rear 
Spar 

B 1  31 
B 2  50 

8 3  51  
c 1.2 56 

15 very good, except near root rib 46 
14 good 50 
38 bad; strain gradients are overestimated by ref. 1 51 
14 quite good 55 

25 satisfactory 46 

50 
26 

30 bad; strain gradients are overestimated hy ref. 1 51 

bad; test values near root rib are not in equilib- 
brium 

17 good, except near root rib 55 

B 1  I 1  satisfactory 46 
65 bad 50 
30 rather had; strain gradients are overestimated by 

ref. 1 51 
boom c 1.2 14 quite good except near front spar 55 

Root 1 
rib . 
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TABLE 9 
Comparison between test and theoretical results in summary 

Skin strains 

Maximal deviation between 
test and theoretical results 

both cross-sect. all other 
Direction Loading adjacent to root rib cross-sections See 
of strain case fig. 

Overall quality of agreement 

% of max. % of max. 
measured strain measured strain 

in skin in skin 

20 
20 
21 
14 

E. 

c 1.2 

9 very good 47 
1 1  satisfactory 49 
9 satisfactory 52 

I I  quite good, near root rib somewhat less 54 

140 13 very good, except near root rib 47 
64 33 good, except near root rib 49 
IW 35 satisfactory, except near root rib 52 

33 10 satisfactory 48 
18 14 satisfactory, except in first skin bay of swept 

part 48 
B 3  21 26 not good, strain gradients are overestimated by 

ref. 1 53 
21 24 not good, probably due to large applied correc- 

lions on test results 53 

c 1.2 39 42 good, except near root rib and in centre-section 54 fu 1:;' 
Y W  j;; 

1 c 1.2 

TABLE 10 
Comparison between test and theoretical results in summary 

Shear strains in spar and rib webs 

Maximal deviation between test and theoretical results 
Loading in webs of, and adjacent Overall quality of agreement See 

case to root rib fig. 
in all other webs 

% of max. measured 
strain in all webs 

% of max. measured 
strain in all webs 

B1 2 3 veiy good 30 
8 2  12 10 satisfactory 35 
8 3  13 7 good 40 
c 1.2 9 6 good 45 

Fig. 26 Normal strains I05cE, in spar- and rib booms. 

/ CaLCUUTED VALVES ARE LilVEN IN ~ R E N I H E O E S  

Fig. 27 Normal strains IO%, in skin and stringer. 



' CALCULAIED VALUE5 ARE GIVEN IN PARENTHESES 

Fig. 28 Normal strains IOs E~ in the skin. 

/ CALCULATITED VALUES ARE GlMN IN PARENTHESES 

~ i ~ .  29 Shear strains IO~Y,, in the skin. 

Fig. 30 Shear strains lOsySs in spar- and rib webs 
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' 
CALCULATED ML'JEI MilE OWEN IN Pan.&sra 

Fig. 31 Normal strains IO5 E= in spar- and rib booms. 

/ wcuursn VAWLS ARE GIVEN IN PmmwEYs 

Fig. 32 Normal strains IO" E$ in skin and stringers. 

I 

7 C A L C U T E D  VALUES ARE GWEN IN PAENTHESES 

Fig. 33 Normal strains 10ky in the skin. 
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Fig. 35 Shear strains 105y.. inspar- and rib webs, 

*1Ual,. 

zs* , .>a  I( 

l d . ,  r LMaW CASE 83 

Fig. 37 Normal strains 106~. in skin and stringers. 

Y U L N U T E D  "AWES I R E  e l m  IN W N T K Y S  

Fig. 38 Normal strains IO%, in the skin. 

/ CALCULATED VAWES IRE W V o l  IN PmENTHWS 

Fig. 39 Shear strains IO5y,, in the skin. 
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Fig. 40 Shear strains 105yz, in spar. and rib webs. 

,.,.,l- 
,110 ., 

L W I M  CAY C I  2 

/...,. . 

CALCUUTLD VALUES ARRE 0,"W IN 6nIIENT"ESES. 

Fig. 41 Normal Strains IO5& in spar- and rib booms 

<e%, 

IIm I> r ,a,., LcA011c1 CASE c I 2  

' CALC"L&.TtO %L"ES ARE GWEN IN P*RENT"ESES. 

Fig. 42 Normal strains lO52, in skin and stringers 

~ , ". I^I~I.lnCIY 

Fig. 43 Normal strains 10s~,, in the skin. 

Fig. 44 Shear strains 10sy,, in the skin 

Fig. 45 Shear strains IOSy,, in spar- and rib webs. 
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a, m vi I 

lONT SPAR 
BOOM 

EAR SPAR 
BOOM 

I BOOM O F  ROOT RIB 
1 2 3 4 5 8 7 8 R S  

Fig. 46 Direct strains IO%, in the spar and rib booms 
Loading case B 1. 

Fig. 41 
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REAR SPAR 
BOOM 

Fig. 55  Direct strains 10kz in the spar and rib booms. 
Loading case C 1.2. 




