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m - mass flow 

- moment about point F (see figure 1) 

P - pressure 
q = + p ,  (ii -dynamic pressure 
r - radius 
R - ring-wing radius 
Rc -radius of intersecting circle of two 
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Indices 
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outside 
inside 

- incomplete elliptic integral of the first 

- velocity normal to Mach cone 
- axial coordinate 
- = X - X I  

- variation of (P 

- constant 
- Mach angle. 
- Legendre's integral of the third kind 
-density 
- =rwi  

-meridian angle 

kind 

- =J@z 

- -  - 'Poutside - (Pinridc 

applies to minimum drag case 
applies to forward Mach cone 
applies to aft Mach cone 
applies to minimum induced drag case 
applies to outside surface or ring wing 
applies to inside surface of ring wing 

1 Introduction 

One of the problems that has always been'a challenge to the aerodynamicist is to find shapes that attain a low 
drag under certain constraints. Especially if a configuration is considered that flies at  supersonic speed this problem 
becomes important. The reason is that in that case a form of drag occurs, which does not exist at subsonic speed. 
This is the wave drag, generated in fact by the shockwaves, which are one of the more spectacular aspects of 
supersonic flow. It will be evident that the search has been to find methods to reduce this drag. 

Now, fortunately, the problem of finding shapes for minimum wave drag is not so complicated as, say, finding 
shapes for minimum viscous drag. This explains why much 'work has been done on it, particularly as far as 
axially symmetric bodies are concerned. In the latter case, mast of the solutions are obtained by using the concept 
of a potential field as generated by a distribution of singularities along the axis of the body. The shape of this 
body is usually found by solving an integral equation by purely analytical methods. (see for instance ref. l).*) 

However, such methods are only applicable to rather simple problems and give rise to great diEulties for 
more complicated shapes. In order to escape these difficulties one would like to have a different approach to the 
problem ,of finding shapes for minimum wave drag, giving rise to a formulation of the optimum conditions which 
even in complicated cases lead to a simple calculation procedure for finding the shape. Now this approach can 
be found by considering the following arguments. 

It is known that the flow field ar0und.a given axially symmetric body with or without axis inclination can be 
found by using linearized methods of characteristics (refs. 2 and 3). It is further known that the flow field can 
be calculated if the velocities along two characteristics which intersect each other are given. Now the conditions 
along the characteristic surface through the vertex of thebody are given by the fact that the incoming stream 
is uniform. If it were possible to express the, optimum conditions in terms of the perturbation velocities along a 
characteristic surface intersecting the first one, it would be possible to construct the flow field inside these charac- 
teristic surfaces, which in its turn determines the shape of the optimum body. The purpose of this report is to 
show that this approach is indeed successful and to present some results found by this new method. 

The optimum shape will be determined for a configuration that lies within two circular Mach cones. The straight 
line joining the vertices is assumed to be parallel to the undisturbed stream. The base contour is a closed curve 
that lies on the surface of the aft Mach cone. It is not assumed beforehand that the base area is flat, only its pro- 
jection on a plane perpendicular to the direction of the undisturbed stream has a prescribed value A. Owing to 
the presence of a body-wing system within the volume enclosed by the two Mach cones disturbance velocities 
will be generated on the surface of the aft Mach cone. Applying the momentum theorem to the enclosed volume, 
the lift I, the drag D and the moment "dl can be expressed as integrals along the aft Mach cone. The problem 
which.will now.be investigated is to determine the conditions for minimum drag when the lift and the base area 

*) Needless to say that all these problems are solved by using the linearized potential equation. This equation is algo the base of the investi- 
gations described in this report. 
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have prescribed values. This results in a number of requirements for the disturbance velocities on the aft Mach 
cone. 

a)  the mass of air flowing through the forward Mach ~~ cone must be equal to that flowing through the aft.Mach 

b) A suitable combination of the equations of motion and the continuity equation. 
The reason for the choice of the particular control volume bounded by two opposing Mach cones is, in fact, 

that the last condition furnishes equations for the disturbance velocities and its derivatives along the Mach cone 
only. This makes it possible to calculate the distribution of these velocities along the control surface explicitly. 

The report includes two main sections. 
Section 2 derives the expressions for the lift, the drag and the moment as found by applying the momentum 

theorem and gives the equation for the mass flow together with the characteristic equations along the aft Mach 
cone. 

Section 3 consists of two parts. In the first the optimum conditions along the aft Mach cone are derived for 
purely axially symmetric now; thus the lift L equals zero, while the base area A has a prescribed value. In the 
second part the case is considered when also the lift L has a prescribed value. In both cases the results are eluci- 
dated by.calculating an example. 

2 Derivation of the expressions for the lift, the drag, the moment, the mass flow and of the characteristic equations 

In this section the expressions for the drag, the lift and the moment are derived by using momentum theorems. 
It is shown that these quantities can be written as integrals over functions of the disturbance velocities on the 
aft Mach cone. A similar expression is derived for the base area by using the mass flow equation, while further- 
more the so-called characteristic equations are established. 

The coordinate system has been defined in figure 1. The cylindrical coordinates of a point P are: x, r and I). 

When the drag is minimized the following conditions for the disturbance velocities have to be satisfied: 

cone. 

I' 

., ~ 

.. , 

Fig. 1. Definition ofthe coordinate system 

The velocities in a point P are: 
a) the axial velocity U ,  
h) the radial velocity V, 
c) the tangential velocity W 

index 2. 

for the lift L, and the drag D : 

The conditions in the undisturbed stream will be indicated by an index 1, those on the aft Mach cone by an 

Applying the momentum theorem to the air within the control volume, the following expressions are obtained 

L + i t p l  cos p cos I) dS + p2 cos p cos $ dS = p 2  VN2(W2 sin I) - V2 cos I))dS. (1) 

The term pl .A represents the force due to a pressure pl on the base area, while D is the drag without base drag 
and friction drag. 



4 

Applying.the moment of momentum theorem, the following expression for the moment A = L.b is found: 

L.b+ 12(p2-pl ) ( -rcos$s inp+xcos$cosp)dS= ' p ~ V N 2 ( U Z ~ c o s $ - V z r c o s $ + W 2 x s i n $ ) d S  (3) 

Here b. is the distance between F and the center of pressure (see figure 1). In the above' formula the following 
symbols are used : 

p = pressure 
p = density 
S1. = surface of forward Mach cone 
S ,  = sarface of aft Mach cone.outside of base contour 
VN, . = velocity normal to surface of forward Mach cone (positive when directed inwards) 

6; 

" 

I for the drag: 

P and sin p = __ 1 , while B = m  m cos p =.m 

I for the distance b :  

V', = velocity normal to surface of aft Mach cone (positive when directed outwards) 

In addition, we have : 
V,, = UI sin p (4) 

VN2=U2 s inp+Vzcosp  (5 )  

p * = p l  i 4 (9) 

x=2PRC-Br (10) 

Substitution of equations (4H10) included in equations (l), (2) and (3) and introduction of the dimensionless 
quantities : 

I yields, when higher-order terms are neglected: 
for the lift: 

{(u-u) cos $ + w  sin $}dS ; 
L 

{(u - u)' + w'}  dS ; 
D 1 __- 

PI u: - 2p" L* 
(14) 

b . L  
[2&{(u-u) cos JI+ w sin $} - r { 2 ( u - 0 )  cos $ + w  sin $}]dS , 

where R, is the radius of the intersecting circle.of the two Mach cones (see figure 1) 
! 
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Considering that dS = m r d r d $ ,  equations (12), (13) and (14) can be written as fnllows: 

{ ( u - u )  cos $ + w  sin $} rdrd$,  
PI$ - li jL 

{ ( U - U ) ~ + W ~ }  rdrd$ ,  
D 

[2R,{(u-u)cos$+w sin$}-r{2(u-u)cos$+w sin$)] rdrd$,  

or, when (15) is substituted in (17): 

/ ~2{2 (u-u)cos$+ws in$}r2drd$  

{ ( u - V )  cos i + w  sin $} rdrd$ 
2 -  

b 
-=  

R, 
PR, 

As already mentioned in the introduction, the disturbance velocities must satisfy the following conditions: 

(a) The massflow through both Mach cones must he the same, i.e. 

After substitution of equations (4), (5) and (9) this can be simplified to:  

represents the difference between the projection of the Mach cone areas S, and S, on a s1-s2 The expression ~ 

plane perpendicular to the x-axis, so that: 
m 

where A is the projected base area. 
The final equation for the base area can therefore he written as:  

A = iJs, (u-u)rdrd$ 

From the derivation of the expressions for I, 0, A! and A it is evident that no explicit use has been made of the 
property that the forward boundary of the control volume is a Mach cone. The sole condition used is that no 
disturbance velocities are generated in front of this Mach cone. This means that the wing-hody configuration 
cannot extend ahead of this Mach cone. I t  is not necessary, on the other hand, for the wing and body noses to 
lie on this forward Mach cone. 

However, from the derivation of the optimum velocity distribution along the aft Mach cone it will appear 
that ut least one contour part of the configuration has to start on the forward Mach cone. 

It will be seen from the derivation of equation (22) that the same equation is valid for configurations consisting 
of a nose inlet on the forward Mach cone. In this more general case the quantity A is equal to the difference 
between projected base area and projected inlet area. All the results derived in this report are applicable to this 
more general case. 

(b) The continuity equation and irrotutionulity condition : 
The continuity equation is, in cylindrical coordinates: 

After substituting equation (9) and again introducing the quantities (11) this can be written as: 

(23) 

(24) 
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The conditions for irrotational flow are : 

au au _ -  
- P ,  or 

au av 
dr ax ar 

- 

The equations (24) and (25) will now be applied to the disturbance quantities on the surface of the aft Mach 
cone. 

Differentiations along the aft Mach cone surface surface will be indicated by: 

Then : 
d(rw) a(rw) 1 a(rw) 1 au 1 au 1 d(u-o) __- 

dx ax B ar P a* P a *  BF 
Therefore, equations (25)b and (25)c lead to the following conditions for the velocities on the aft Mach cone: 

From equations (24) and (25)a we easily obtain: 

and 

Substitution of these two equations in (24) leads to: 

dw du 
dr r dr rd* 
-+ - - -  1 d(ur) - -- (27) 

Equations (26) and (27) are the so-called characteristic equations, which have to be fulfilled along every forward- 
directed. Mach cone. 

The problem under consideration is to minimize the expression for the drag (eq. 16) whilst keeping the lift 
(eq. 15) and the base area (eq. 22) at a prescribed value and, at the same time, fulfilling the characteristic equations 
(26) and (27). 

A comparison of equations (15), (16), (22), (26) and (27) reveals that equations (15), (16), (22) and (26) are com- 
pletely determined by the quantities (u -u )  and w. The only relation between u and u is given by equation (27). 
It is possible, therefore, first to determine the optimum distribution of (u-u)  and w on the surface S2 from equa- 
tions (15), (16), (22) and (26). Afterwards the quantities u and u can be determined from the known solutions for 
(u - u)  and w by means of equation (27). 

3 The optimum conditions along the aft Mach cone 

3.1 The minimum drag for a giuen base area 
When it is only, specified that the drag should be at a minimum for a given projected base area A ,  equations 

(16), (22), (26) and (27) have to be considered. Inspection of equations (16) and (22) reveals that this problem 
is analogous to the wellknown problem of minimizing the induced drag of a plane wing for a given lift in incom- 
pressible flow. 

According to equation (22) a mean value for (u -u )  is prescribed on the surtace S2, whereas equation (16) shows 
that the drag is given by a mean value of ( U - U ) ~ + W ~ .  
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Considering only equations (16) and (22). therefore, it is evident that the optimum values for ( u - u )  and w are: 

( U - U ) ~ , , =  uo-uo=cl (constant) (28) 

wop, = wo=o.  (29) 
~~ ~ 

The subscript 0 denotes the optimum, distribution of the perturbation quantities for the minimum drag case. 
As relations (28) and (29) also satisfy equation (26), they represent the correct solution of the problem. 
Substitution of eqs. (28) and (29) in eq. (15) shows that the first-order terms of the lift are zero in this case, 

The constant c1 can be determined by substituting equation (28) in equation (22). The result is: 
which could be expected a priori. 

A 
c1 = ne 

with R,=radius of the intersecting circle of the two Mach cones (see figure 1). 

deriving equation (30). 
In accorqance with the linearized approach the base dimensions have been neglected with respect to R, in 

Substitution of (28), (29) and (30) in (27) gives: 

2 - + - = o  duo uo 
dr r 

Integration of (31) results in: 
- t  v o = c 2  ‘ r  

Combining (28), (30) and (32) gives for u :  

The constant c2 is determined by the requirement that equation (27) is also valid for the transition of the disturbed 
flow along the aft Mach cone to the undisturbed flow at r=&. 

On the forward Mach cone the flow is undisturbed and thus u=u=O. 
From equation (27) it can be concluded therefore that on the aft Mach cone for r = & :  

u o + v o = o .  (34) 

Equations (32), (33) and (34) yield for the constant c2:  

The expressions for u and v on the aft Mach cone become: 

The drag of an optimum configuration can be found by substitution of eq. (28), (29) and (30) in eq. (16). 
The result is: 

Again the base dimensions have been neglected with’respect to &. The expression for R, is: 

I & = -  
2P ’ 

where I is the length of the straight line joining the two vertices F and G of the Mach cones (see figure 1). 

(39) 
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Therefore : 

or : 

Do 2A2 
plu: - X P  ' 

Do 4A2 - = _ .  
q X P  ' 

with q =dynamic pressure. 
In the case of a circular base area of diameter d the drag coeficient of the optimum shape becomes: 

It should be stressed that in deriving expression (40) no assumptions have been made regarding the shape of the 
configuration. The only requirement is that the shape gencrates disturbance velocities on the aft Mach cone 
according to equations (36) and (37). 

These disturbance velocities are axially symmetric with respect to the line FG (see figure 1). 
.One possible solution for the optimum shape problem is therefore given by an axially symmetric shape. 
However, in principle also'less simple shapes are possible with the same minimum drag value. 
When a pointed fuselage,alone is considered it is most probable, however, that only an axially symmetric fuse- 

lage can realize the disturbance velocity distribution given by equations (36) and (37). 
In this case the results can he compared with those of Heaslett and Fuller in ref. 1. These authors have restricted 

their analysis beforehand to axially symmetric fuselages. The drag given by equation (40) is exactly the same as 
their result. 

1nstead.of the fairly simple equations (36) and (37), however, they find'a more complicated expression containing 
elliptic functions that cannot be reduced to the form of equations (36) and (37). 

A critical examination of the final results of ref. 1 reveals that the derivation of these results involves an error. 
A'correct derivation based on the approach of ref. 1 is given in appendix B. The correct solution for the disturb- 
ance velocities in the region between.the two Mach cones does contain elliptic functions; on the surface of the 
aft Mach cone, however, these functions degenerate into the simple expressions (36) and (37) of this report. 

From equations (36) and (37) it follows that for r = R ,  the disturbance velocities io and uo are different from zero. 
This means that the optimum configuration, when consisting only of a fuselage without nose inlet must have 
a blunt nose, as the nose shock strength becomes zero for a pointed fuselage in the linearized approach:This is 
confirmed~by the well-known characteristic of optimum body shapes (as, for instance, the von Karman ogive). 

. .  

As already remarked, the optimum configuration does not necessarily consist of a fuselage only. 
An axially symmetric fuselage with a ring wing is also possible (see figure 2). 

Fig. 2. General body-ring wing configuration. 

The following remarks can be added: 

ever, that the ring wing lies within the two Mach cones. 

known velocity distribution along characteristics AC and CE.  

then determined by the velocity distribution along AC and CE. 

a) The diameter and the length of the ring wing can be chosen arbitrarily. The combination must be such, how- 

b) The contour parts AL and M E  of. the fuselage and FGN of the ring wing are completely determined by the 

c) Of the four remaining contour parts, F H N ,  LK, XP and P M ,  two can be chosen arbitrarily; the others are 
" 
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This means that for instance the ring-wing thickness distribution and the shape of thefiont part of the fuselage 
can be chosen arbitrarily, whilst the drag will remain equal to the minimum value predicted by equation (40). 

This freedom in the choice of parts of the contours is an essential consequence of the presence of a ring wing. 
--When the ring-wing~nose~F lies on the~forward Mach cone it is not even necessary that the fuselage nose be 
situated in point A (see figure 3). The shape A ' K ,  indicated by a dotted line, leads to the same minimum drag given 
by equation (40). 

v 
Fig. 3. Bady-ring wing canfigurdtion with wing leading edge on forward Mach cone. 

On the other hand, it is not necessary for the ring-wing leading edge to lie on the front Mach cone AC nor is *i. 
it necessary for the ring-wing trailing edge to lie on the aft Mach cone. In that case, however, the fuselage nose 
must lie in the vertex of the forward Mach cone. Of course, the shape of the two chosen contour parts influences 
the. pressure distribution and the shape of the other parts. 

An example of an optimum fuselage ring-wing combination is shown in figure 4a. The front part of the fuselage 
has been chosen as that of a parabolic fuselage with a slenderness ratio of 9. The ring-wing thickness is 2% and -,< 
the Mach number 2.5. 

Fig. 4a Optimum fuselage-ring wing combination for M=2.S .  

The contour and the pressure distribution have been determined by means of the linearized graphical charac- 

The minimum drag according to equation (40) is, for this configuration, given by: 
teristics method of Erdmann and Oswatitsch (ref. 2). 

- =  Do ,00285. 
qA 

The drag coefficient for a parabolic fuselage of the same front shape and a base area of 18.4% of the frontal 
area appears to be S20. 

The possibility of this large decrease in drag is a direct consequence of the flow phenomena at supersonic 
speeds. 

In supersonic flow the pressure distribution around a fuselage is characterized by positive pressures on the 
front part and negative pressures on most of the aft part of the,fuselage. Owing to the existence of a ring wing 
around a fuselage the pressures over the rear of the fuselage are increased (see figure 4c). The pressure distribution 
resembles rather the type peculiar to subsonic flows in that the positive drag of the front part is compensated 
by a negative drag of the aft part. However, the discontinuous behaviour of the pressure distribution is typical 
of supersonic flows only. 

Summarizing, it .  may he stated that it is always possible to design a fuselage ring-wing combination for which 
the drag is equal to the very low value given by equation (40), whilst freedom exists in the choice of a large part 
of the contour. From the pressure distributions of figure 4b and 4c it may further be concluded that, apart from 
the leading edge region of the ring-wing inner contour; the only possible difficulty with respect to the boundary 
layer flow is connected with the sharp pressure rise on the fuselage; everywhere else the pressure gradient is always 
negative or zero. 



I 10 

The small region with a positive pressure gradient on the ring-wing inner side can he removed by more selective 
shaping of the ring-wing thickness distribution. 

In the case of figure 4c the sudden increase in c p  amounts to .15. It may he expected that this pressure rise can 
he withstood by a turbulent boundary layer without introducing separation. 

A final remark should be made regarding the very small value of the drag coefficients derived from equation 
(40). This small value is a consequence of the optimization of the configuration; it means that the lowest-order 

Fig. 4b. Pressure distribution along the ring wing for the optimum fuselage-ring wing combination of fig. 4a. 

Fig. 4c. Pressure distribution on the fuselage contour of the optimum configuration of fig. 4a. 

terms in the drag equation nearly cancel each other. For a reasonable, estimate of the exact drag value, therefore, 
it will be necessary to include higher-order terms in the drag equation. The result will probably be a higher drag 
than predicted by equation (40); however, the reduction in drag will be appreciable anyway. 

In addition, it can be remarked that the influence of the shape on the base drag has not been considered. 
The approach used here for designing optimum body-ring wing combinations can be employed also in other 

fields. 
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One interesting application.would be in the field of engine inlets at supersonic Mach numbers (see. figure 5). 
In designing these inlets it is often necessary to compromisebetween the requirements for optimum pressure 

recovery and those for minimum'nacelle drag, spillage drag, etc. 
 when the~Eigine&nlef is equipped with a ring wing, as shown in~figure 6, it is possible to design ihe &mer 

contours for maximum pressure recovery without having to compromise for nacelle drag, etc. The resultant 

Fig. 5. Supersonic engine inlet configuration. 

1_ 
Fig. 6. Supersonic engine inlet configuration with ring wing. 

nacelle drag and spillage drag is minimized to the low figure given by eq. (40) by the introduction of the ring wing 
and the indentation P E  on the aft side of  the engine cowling (see figure 6). 

Here again, one is free to choose contour parts BK and FHD,  whereas parts FGD, K P  and PE are prescribed 
by the optimum velocity distribution along CE , 

The quantity A of equation (40) is in this case: 

A = base area of engine nacelle minus cross-sectional area of undisturbed stream tube area ending at inlet lip B. 

3.2 The minimum induced drag for R given l @  for wing-body configurations with circular cross-sections 

with circular cross-sections. 

be expressed as follows: 

The determination of the optimum shape for minimum induced drag for a given lift will be restricted to shapes 

In this case the dependence of the disturbance quantities u, u and w on the independent variables r and $ can 

u = uo+ui'cos $ 
v = u o +  vi cos $ 
w = wi sin $ . 

The lift vector is assumed to lie in the meridian plane $ = O  (see fig. 1). uo, uir uo, ui and wi are functions of r only. 
Substitution of (43)a, b and c in eq. (16) gives: 

The cross products of the symmetric and asymmetric quantities cancel out after integration, as they contain 
uneven powers of cos $ and sin I//. 
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The induced drag Di becomes : 

The points E and C are defined in figure 2. 
Substitution of (43)a, b and c in eq. (15) gives for the lift: 

uo-uo) cos $ + w o  sin $ ] rdrd$ + /12 { ( U ~ - ~ ~ ) C O S ~ $ + W ~  sin2@ 

or : 

Substitution of eq. (43)a, b and c in eq. (22) leads to: 
. .  

This equation does not result in a relation for the asymmetric flow quantities. Introducing eq. (43)a, b and c in 
(26) and (27) results in the following expressions for the asymmetric flow quantities: 

on C E ,  __- - ui-ui  d(mi) 
dr 

wi on CE 
du; 1 d(u.r) -+-A=-- 
dr r dr r (49) 

The problem at hand, therefore, is to minimize the induced drag D;, given by eq. (45), for a given value of the 
lift L, according to eq. (46), while equations (48) and (49) have to be satisfied. 

Here again it is suficient first to consider equations (45), (46) and (48) in order to find the optimum distributions 
for ui-ui and wi on S,. 
Subsequently the optimum distribution of ui and ui can be deduced from this result with the help of eq. (49). 

From equation (48) it can be seen that a function rp exists such that 

and 
9 = rwi , 

rp, = ui-ui .  

Transformed into the variable rp, the problem is therefore to minimize the inauced drag given by (see eq. 45): 

the given lift following from (see eq. (46)): 

Equation (48) is satisfied automatically by the introduction 0f.p. 

teristic line CE (see figure 2). 

a) The quantity rp is equal'to zero for r=R, as the tangential disturbance quantity wi  is zero in the undisturbed 
stream and is continuous in C (no transverse pressure discontinuities are present in-the flow around axially 
symmetric shapes). 

b) In point D or, in general, in the intersecting point of the characteristic CE with a voriex sheet emanating from 
a trailing edge a discontinuity in rp is possible. The jump Arp in rp when crossing point D is related directly to 
the total lift carried by the ring wing 

The problem can therefore be formulated as that of finding the optimum distribution of 9 along the charac- 

The following boundary conditions have to be fulfilled: 
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If the ratio ring-wing lift/total lift is put equal to a, it can he shown that (see appendix C ) :  

with &'=(Pw,si.je - (Pinride 7 (53)h 
and R = ring-wing radius. 
It is shown in appendix A that the optimum distribution of q has to satisfy the following equation along CD as 
well as along DE : 

(54) 

a) r = R ,  $7 = o  (55)a 
h) r = R  (P, = -2 'on both sides of the vortex sheets (55P 
c) r = R ,  I&= -2 (55)c 

1 (P 
(Pr ,  + ; (P, - ;i = 0 2 '  

with the boundary conditions: 

where J. is a constant, as yet undetermined. 
The general solution of equation (34) is: 

c4 
r (P=c3 ' r  + -. 

The constants c3 and cq on part CD of characteristic CE (see figure 2) can he determined,with the aid of boundary 
conditions (55)a and (55)b. 

The resuitant expression for 9 becomes along CD: 
1 - (:y 
1 + (:I2' (P= -2r 

and hence : 

.. 

and 

i.e. along CD the term (ui-ui+ wi) in eq. (46) is a constant. 

conditions (55)h and (55)c. The resultant expression for 9 is: 
The values for constants c3 and c4 in eq. (56) along DE can he determined in a similar way from boundary 

and hence : 
'p= - t ,  

and : 
ui-ui=(P,= -1. (58)c 

In this region also ui-ui+ wi is a constant; it is different, however, from the value along.CD owing to the discon- 
tinuity in wi in point D. 

The constant A can he determined by substitution of (57.)h and c and (58)b and c in equation (52): 

The analysis is restricted to linearized flow, i.e. R,IR,< 1. 
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Thus, the expression can be simplified to: 

L - 2 d R f  

or : 

Substituting equations (57)a and (58)a in equations (53)a and b gives for the jump in cp across the ring-wing 
vortex sheet: 

Substitution of (59) in this expression yields for the lift parameter: 

ring-wing lift 
a =  = 1 ,  total lift 

(59) 

i.e. the total lift must be carried by the ring wing alone. 
The net 
Substitution of equations (57)b, (57)c, (58)b and (58)c in equation (17) gives for the distance b between the 

ofthefuselage i s  zero in the optimum configuration. 

center of pressure and the vertex of the forward Mach cone: 

~ ~ ~ , ( 2 ( u ~ - u i ) c ~ s z $ + w j  sinz$ 

PR, R, Jjs, {(ui-ui)cos’$+wi sin2$ 
- b - = 2 -  

= 2 -  = 1  -2Lrdr 
Rc [LE - 22rdr + j R  71 1 +  

Therefore 

b=D& = +[, (60) b 
where I is the distance between the vertices of the two Mach cones (see fig. I), i.e. the lift uector lies in the plane 
of the intersecting circle of the two Mach cones. 

ui and ui can be determined with the aid of equation (49). Substitution of (57)b and (57)c in (49) leads, for region 
CD, to the expression: 
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The.general solution for ui is: 

~ 

and therefore with eq. (57)c: 

For the same reasons that led to equation (34) the boundary condltion for u,  and u, in point C is: 

u,+u,=O for r = R ,  
The final expressions for ua and u, are therefore: 

with 1 given by equation (59). 
Substitution of (58)b and c in (49) results in: 

c6 u .  = - 
' J r '  The solution is: 

and : 

The constant c6 is determined by the boundary condition that ui and v i  are continuous in D (r=R). 
Thus, combining eq. (64)a and (63)a for r=R gives: 

Substitution of (65) in (64)a and (64)b yields for DE: 

and 

Upon equation (59) being introduced into equations (57)b, (63)a and b, (58)h and (66)a and b the results can 
he summarized as follows: 
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Along CD Along DE 
I 

or 

%="E, n 2n ui,= n q 2n 

The disturbance velocities given by equations (67)a-(68)c incl. can be obtained by an inclination i of the axis 
of the ring wing or fuselage with respect to the undisturbed flow. The inclination i will be different for ring wing 
and fuselage and in general i will he a function of the axial coordinate x. 

The required axis inclination i is dependent, of course, upon the chosen thickness distribution of ring wing and 
fuselage. The result obtained can, therefore, be summarized as follows: 

a) The zero-lift drag can he minimized by determining a suitable thickness distribution for the fuselage and ring 
wing (see section 3.1): 

b) For this optimum thickness distribution the optimum axis inclination'i can be determined from the results 
derived in this section. 
It is equally possible, however, to apply these results to another thickness distribution than the optimum one. 
In that case the zero-lift drag will not be optimum but the induced drag will have the optimum value connected 
with the disturbance velocities given by eq. (67)a-(68)c incl. 

Just as is the case for uo and uo in the minimum drag configuration at  zero lift, the disturbance velocities ui 
and ui are different from zero in point C .  

When the ring-wing leading edge lies on the forward Mach cone (as in figure 3) the axis inclination of the nose 
station, necessary to generate these velocities in C, is different from zero but finite. However, in case these velocities 
must be generated by a sharp fuselage nose, as for instance in the configuration of figure 2, an infinitely large value 
of the local axis inclination is necessary. This is analogous to the blunt nose of fuselages for optimum zero-lift 
drag (see section 3.1). 

(a) The axis inclinations of the ring wing and of fuselage parts AL and M E  are completely determined by the 
known velocity distributions along AC and CE. 

(h) Of the three contour parts LK, K P  and PM of the fuselage, the inclination of only one can he chosen arbi- 
trarily, with the restriction that the value for wi in point D is prescribed (see eq. (68)~).  This means that fuselage 
part LK must generate sufficient upwash or downwash in flow-field LKDHF in order that the total ring-wing 
lift has the prescribed value. 

The freedom in the choice of the axis inclinations is smaller than that in the choice of the thickness distribution, 
due to the fact that in remark (a) the axis inclination is assumed to be the same for the outer and inner surfaces 
of the ring wing. 

This restriction is not necessary for a ring wing with a blunt trailing edge, in which'case, therefore, the freedom 
in the choice of the axis inclinations is larger. 

For the configuration shown in figure 2 the following qualitative remarks can be made: 



i7  

For the optimum fuselage-ring-wing combination shown in figure 4a axis inclinations i that yield the velocity 
distributions given by equations (67)a-(68)c have been determined by means of the graphical linearized charac- 
teristics method of ref. 2 with the extensions of ref. 3. 

The results have been~plotted in,figure ?a; the torr-esponding lift loading is represented in figure 7b. The quan- 
tity uJn on the inner side of the fuselage has been chosen to vary linearly~with x. 

= 

Flg. 7a. The axis inclinations for the optimum configuration of figure 4a 

Fig. 7b. The lift distribution on ring wing and fuselage far the aptimum.configuratibn Of figure 4a. 

As the disturbance velocities along characteristic CE are proportional to the desired lift, the quantities uJn, 

The induced drag distribution is shown in figure 7c. Both lift and induced drag distributions are plotted dimen- 
vJn, wJn are used to calculate values for i /n rather than i. 

sionless in the forms: 

respectively with l,=fuselage length, 
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Fig.7~.  The induced drag distribution lor the optimum configulation of figure 4a. 

It may be remarked that the total lift of the fuselage is not zero as it should be according to equation'(60)a. 
The reason is that the linearized characteristics method which bas been used for the determination of the axis 

A more detailed treatment of this problem is given in ref. 8. 
The induced drag is obtained by substitution of equations (57)b and c, (58)b and c, and (59) in eq. (51).  The result 

inclination is not accurate enough when flow around a fuselage is considered. 

is : 

as R E 4  R and R E <  R, this can be simplified to: 

or : 

It follows.from (69)a and. b that fo ra  given value of R, the. induced drag.is a t ' a  minimum when R=&. In this 
case, however, the ringwing length is zero and the lift is concentrated in an infinitely small region. The absolute 
value of the local axis inclinations of the fuselage necessary to produce this result are infinitely large. In practice, 
therefore, the solution is not valid for values of R too close to R,. From figure 8 it follows that the induced drag 
does not increase too rapidly when R/R, is decreased from I. It is noted that.the induced drag given by equation 
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(69)b for R=R,  is exactly the same as that given in ref. 9 for the optimum wing system within a double Mach- 
cone space. The important point to note is that, according to the results given here, such low induced-drag values 
can be realized without necessitating the use of very large wing surfaces (see figure 8). 

-= -n-~~~---- ~~~ ~ 

_L 
P , . " X  

$&$ 
0.7, I I I I I 

(69)b for R=R,  is exactly the same as that given in ref. 9 for the optimum wing system within a double Mach- 
cone space. The important point to note is that, according to the results given here, such low induced-drag values 
can be realized without necessitating the use of very large wing surfaces (see figure 8). 
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Fig. 8. The induced drag for the optimum configuration as a function of RIR,  compared with the ring wing at constant angle of attack and 
the diamond wing. 
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Fig. 8. The induced drag for the optimum configuration as a function of RIR,  compared with the ring wing at constant angle of attack and 
the diamond wing. 

Use has to be made, however, of the interference effects between fuselage and ring wing in order to realize 
the optimum velocity distribution on the aft Mach cone. 

The optimum value for the induced drag can be compared with that of a ring wing without fuselage at a constant 
angle of attack and with a chord c=2p(R,-R)52pR; i.e. the maximum chord possible within the two Mach 
cones. This has been computed by the graphical characteristics method of ref. 2. 

In figure 8 the quantity DJpl  :'$ has been plotted against RJR, for both cases. It is evident that an ap- 

The induced-drag value for the diamond wing of maximum dimensions within the two Mach cones (span=ZR, 

The induced drag of.the optimum ring-wing configuration is smaller than that of the maximum-sized diamond 

In the optimum configuration, however, the fuselage lift loading is partly positive, partly negative, whereas 

The realization of the above-mentioned favourable interference effect on the induced drag depends, therefore, 

LJbI  UI 4 )  
preciable reduction in induced drag is possible. 

and.Iength=20&) is indicated by the dashed horizontal line in figure 8. 

wing for values of RJR, greater than ' .68. 

the net lift of the fuselage is zero.(see figure 7b). 

on the possibility for the fuselage boundary layer to withstand the associated pressure distributions. 

4 Conclusions 

It has been shown that the requirement for a configuration enclosed between two circu1,ar Mach cones with 
a given base area to be optimum with respect to drag is that the disturbance velocities generated on the aft Mach 
cone have to be axially symmetric. With body-ring-wing combinations the same minimum drag can be realized 
as with the optimum axially symmetric fuselage alone, whilst a certain freedom exists in the choice of part of the 
shape. Furthermore, a method has been presented to determine the optimum axis inclinations for a body-ring-wing 
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combination for minimum induced drag at a given lift. An expression has been given for this minimum induced 
drag as a function of the ring-wing diameter and the length of the body. It is shown that through the optimum 
choice of body axis and ring-wing axis inclinations an appreciable reduction over the induced drag of a ring wing 
alone can be obtained. In the optimum configuration the net lift of the fuselage appears to be zero. 
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APPENDIX A 

Determination of the equations for the optimum distribution of the potential cp on the aft Mach cone 
. ~~ = 

~ ~~ ~~ ~ 
~~ ~ 

~~ 

According to equations (51) and (52) of section 3.2 the optimum distribution of q is a distribution'that minimizes 
the expression : 

for a given vahe of: 

The boundary conditions are (see section 3.2): 
for r = & ,  q = O ,  

whereas for r=R a discontinuity in m exists with: 

where Q is a constant, as yet undetermined (see App. C). 

eq. (A.3). 

satisfied (see, for instance, ref. 7.): 

In order to solve this variational problem a variation tj of the function p is considered. 7 also must satisfy 

For optimum conditions to exist, it is known from variational theory that the following equation must be 

where i. is a constant. 
Therefore, for every small value of 7: 

Integration by parts of the first term gives: 

0" 

boundaries 

The third term of equation (A.5) yields in the same way: 

Substituting eq. (A.6) and (A.7) in ( A S :  
0" 

houndarks 

0" 

houndarias 

Equation (A.8) must be satisfied for every small value of q ;  the necessary conditions for this are: 

(A.9) 
9 1 9 7 9 , , + q , - - = O  r or q , , + - p , - - - o ,  r r2 - 

and on those boundaries where q #O (i.e. r=R, and r=R): 

The boundary condition for r=&, where q"0, is given by eq. (4.3). 

(A.lO) 
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APPENDIX B 

Comparison with the results of ref. 1 for the minimum zero lift drag of an axially symmetric fuselage 

The source strength found in ref. 1 for pointed fuselages is in the notation of this report (see eq. (70)h of ref. 1): 

or : 

2Ul RE ' 
B ( x )  = - - & G j ,  

bz (R,) 

where the prime denotes differentiation with respect to x. 
The disturbance velocity in axial direction is: 

I - 2 x ,  d x ,  __- 
or : U JiJGJ ,/(x-xI)z--p2r2 ' 

with the substitution of y = x - x ,  and using eq. ( B . l )  this becomes: 

In the region between the two Mach cones is: 

01: 
x - b r > O  and x + p r S l ,  
x > b r  and / - x Z p r .  

Hence: x > flr > -81 >= - ( I - x )  . 
Therefore, the first integral of equation (B.4) can be written as: 

According to ref. 4 (eq. 256.13 and 339.01) this is equal to:  

with: a = x  

b = p r  

( a  - b ) ( c  - d )  (x - &)( I - x - br)  k' = - 
( a  - c ) (b  - d )  - (x + pr)(  I -  x + br)  ' 

L - L ' =/- - , / ( x + B r ) ( / - x + f i r ) '  

The second integral of equation (B.4) can be written as: 

(see ref. 4 eq. 256.14 and 338.01). 



or : 

On the aft b &cone: x + p r = f  or k=O.  

1 Substituting this in (8.8) yields: 

~ or: 

' where I=2p(R, has been substituted. 
Equation-(B.9) is exactly the same result as eq. (36). 
The radial velocity V is determined by : I 

or : 

With y=x-xl  this equation becomes: 

The first integral of eq. (B.10) can be written as (see ref. 4 eq. 256.16 and 362.17): 

'(B.10) 
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Substitution of (B.5) and (B.6) in (B.4) yields: 

= ( b - c ) ( b - d ) g [  - 1  ( r 2 E + ( k 2 - 4 K + ( 2 a 2 - z b - k 2 ) ~ L J ( ~ ,  a2,k)] ] .  (B.11) 
2a (u -1) 
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The third integral is, according to ref. 4 (eq. 362.16): 

a Z E + ( k Z - a 2 ) K + ( 2 k Z a Z - a 4 - k 2 ) . T I  
1 

= (a-b)(b-c)g [2a ' (kz -a ' )  { 
Substitution of eq. (B.11) and (B.12) in (B.lO) leads to: 

For x+/3r=l  this is equal to: 

or : 

u = f @J E. ' 

Equation (B.14) is exactly equal to eq. (37). 

APPENDIX C 

Determination of the discontinuity in cp across the vortex sheet aft of a ring wing 

To a first approximation, the lift of a ring wing with radius R can be written as (see ref. 2 eq. (35)): 

DmLr inner 
svrracr surface 

Within the linearized approximation the integrals in eq. ((2.1) are equal to (see ref. 2 ) :  

or : 

with: 

(8.14) 

When the ring-wing trailing edge does not extend to the aft Mach cone equation (C.3) is still valid, as the dis- 
continuity in 'p across the vortex sheet is constant (see refs. 3 and 5). 
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than those based on the so-called linearized potential theory. Although a few other general schemes were known. 
.their application was prohibited, because of the large amount of time and money involved. 

Especially in the field of the computation of supersonic flow regions the assistance furnished by electronic 
computers is more o r  less crucial to the solution of certain problems. In the following lines this statement will 
be discussed in more detail. 

As is known by now, for a reliable solution of the flow field around a certain configuration, the use of linearized 
theory is not permissible in most cases. To remedy this situation use has to be made of the governing non-linear 
differential equations. Fortunately an attractive numerical scheme can be developed for the computation of the 
solution of these equations. This scheme is based on the concept of characteristic surfaces. These are in fact the 
surfaces separating the region where a disturbance ‘occurring in a certain point is experienced from the region 
where it is not. At this moment the calculation schemes for the supersonic flow around two-dimensional and axially, 
symmetric configurations have obtained a high degree of generality. The development of such schemes for three- 
dimensional flow fields is still in its earliest phase, due to the enormous difficulties attached to it. 

Since the differential-equations are non linear, the computation of the values in a certain point can be achieved 
only by an iterative. procedure. This is why the use of electronic computers is necessary. Even then much skill 
is required to make the numerical scheme and the programme in such a way that the computation time and thus 
the costs are not unreal. 

In order to use such schemes, we have to start’from a set of initial data. From the general theory of hyperbolic 
equations it is known that for given initial data along a surface, not coinciding with a characteristic surface, a 
solution can. be constructed in the neighbourhood of this surface. This solution, however, cannot be extended 
outside the volume enclosed by the characteristic surfaces through the boundary of the region for which the 
initial data are given. A sketch of this situation is given in fig. 1. For practical cases the situation is totally different. 

Fig. 1 .  The largesl region whcre a solution exisls 

There it will be required to calculate the flow field around, a given configuration and for a given Mach number 
of the undisturbed stream. Along the surface of the configuration the flow quantities are related to  each other 
because this surface is a stream surface. I t  can be shown then that the construction of the flow field with the method 
of characteristics is possible only if the values of the flow quantities are known along a certain surface in this 
flow field. This may be a characteristic surface as well. The determination of such a surface is in fact the key to 
the solution of the whole problem. It is evident from fig. 2 that we should have such a situation if we knew the 

SHOCK WAYE 

THE LO CALLED ..FIRST CH4RACTER,STIC” L /- CONTOUR OF THE CONFIWRhTION 

Fig. 2. The inilial dara necessary lor the computation of the flaw field. 

flow field around the small region near the nose of the configuration. Then it is possible to ohtain the flow quan- 
tities along a characteristic surhce, which is necessary for the construction Qf the complete flow-field. As M ~ C  

deal in the following only with cases for which the flow is axially or quasi-axially symmetric we will refer to this 
surface as to the “first characteristic”. In the case of pointed bodies this means that the flow is conical in a small 
region near the nose. It must be observed that this does not necessarily mean that the configuration itself has 
to be axially-symmetric. 

The study of the flow around cones has been very extensive, and in fact already in 1933 a solution, based on 
non linear differential equations, was obtained by Taylor and Maccoll (ref. 1) .  A table of computed results was 
published in 1947 by Kopal and his staff (ref. 2). It is interesting to’note that this table was computed with the 
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aid of ordinary desk computers. Further progress was made when Stone succeeded in solving the problem for 
the flow around an inclined cone by using the technique of superimposing a small perturbation term on the purely 
axially-symmetric flow (ref. 3). This solution was tabulated by Kopal as well (ref. 4). 
-The question may he raised~now, if~there~is any~need~to present_hsre=onz mrre~a rather thorough investigation 

of such flows. However, these conical solutions are so important, because of the fact that~they~furnish the initial 
conditions necessary for the determination of the whole flow field. It will then be clear that for a reliable solution, 
these initial data have to be known accurately. Moreover it will be necessary to have the ability to determine 
these initial conditions for arbitrary values of semi-top angle, ratio of specific’heats and the Mach number of 
the undisturbed stream. Such a solution can be obtained in principle by interpolating in the tables of refs. 2 and 4. 
Besides of causing a large amount of work, this solution will almost always be too inaccurate for the use it is 
intended for. 

It was therefore decided to develop a very universal programme for the calculation of the flow around cones 
with and without inclination. This program gives all the information along the “first characteristic”. 

Although a second order perturbation theory for cones at large angles of yaw has been developed, this case 
will not be considered because of the fact that no method exists for the calculation of more general flow fields 
using this second order theory. 

The purpose of this report is to present the details of the above mentioned universal programme and the way 
followed to formulate i t  

Therefore, the first part of this report gives a review of the theoretical formulation of these problems and dis- 
cusses the requirements for the programme. 

The programme itself and the numerical schemes on which it is built will be described afterwards. It has been 
presented in this report in the form ofan ALGOL programme, because this is an internationally accepted machine 
language. 

The original programme, however, was written in the code of the computer actually in use at the NLR, since 
this works faster than ALGOL. 

The main features of the programme are shown in a block diagram.,An example is discussed to show the results 
which can be obtained. 

2 The formulation of the conical problems to be solved 

In this section the differential equations and the boundary conditions that govern the flow around circular 
cones will be reviewed both for the cases of zero and nonkero inclination. In this presentation, only those formulae 
are given which pertain to the problem. 

2.1 The case of zero inclination 
In fig. 3 the coordinate systems for analysing this case are presented, namely the spherical system (R ,  9) and 

the system (x, r). The velocities in these systems are (17, 5) and (u, u )  respectively. The semi-top angle of the cone 

Fig. 3. Coordinate systems and related velocities. 

surface is given by GJ, while 9 ,  denotes the half angle of the shock-wave. M, is the Mach number of the undis- 
turbed stream. 

The differential equations governing the problem are given by 

d i  _ -  i7=0 
d9 

(2.l)a 

(2.l)b 
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where the local speed of sound 6 is given by 

and U ,  is the velocity of the undisturbed stream. 

The following relations exist 
In most of the applications, use will be made of the velocity components u and u which are non-dimensional. 

u=U,{  u c o s 9 + u s i n 9 )  (2.3)a 

6 = U,{ - u  sin 9+u cos 9) (2.3)b 

The system of differential equations is then transformed into 

du -a2u 
d9 
- =  

(u cos 9-u sin 9)2-a2 

dv du - = -cot 9 - 
d9 d 9  

where 
a 2 = - + - -  1 Y-1 ? 4 ( u 2 + u 2 )  

Mi 2 2 

(2.4)a 

(2.4)b 

The boundary conditions pertain to the cone surface and the shock wave respectively. The condition for the cone 
surface to be a stream surface is given by 

u = u  cot 9,. (2.6) 

The conditions at the shockwave are given by 

u-1  = - u  t a n 9  v (2.7)a 

(2.7)b 

The equations (2.4)-(2.7) contain the complete description of the problem. 
We will first discuss some of its features. As has been said in the introduction in most cases the Mach number 

M-, the semi-top angle 9, and the value of y will be given. It is dear  that the problem is, to solve the two non- 
linear differential equations (2.4) given the edge conditions (2.6) and (2.7)b, while the value of the shock angle 9, 
defined by eq. (2.7)a is still unknown. This can only be achieved by an iteration procedure. One of the more 
easy schemes is the following. 

Choose a value for u a t  9=9,. From eq. (2.6) u can be calculated and hence it is possible to start the solution 
of the differential eqs. (2.4)a and b. The solution procedure is continued until a value of 9 is reached which satisfies 
eq. (2.7)a. From eq. (2.7)b there follows then the value of M,. In general this will not be equal to the prescribed 
value. Hence by choosing a slightly different value of u at 9=9, an iteration with respect to M, can be made, 
until a certain required accuracy is obtained. Another probably more attractive scheme is to choose a value for 9,. 
Then from eq. (2.7)b the value of u can be computed and from eq. (2.7)a the value of u. The solution can now be 
started and continued until ?=9,, where in general eq. (2.6) will not be satisfied. In that case an iteration with 
respect.to 9=9, is performed until eq. (2.6) is satisfied. 

Although there is in principle no difference between the two methods, the latter appears to be the better one. 
When the value of the shock-wave angle is determined, it is possible to calculate the rise in entropy, accom- 

This can be expressed in terms of the ratio P of the stagnation pressures behind and before the shockwave. 
panying the shockwave. 

Once the velocities u and u are known as a function of 9 it is possible to construct a first characteristic by using 
the equation for the characteristic direction. For a positive slope the direction is given by 
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where 

Usually, as an initial condition, the coordinate x of a point at the cone surface will be given. In constructing a 
characteristic a dificulty is encountered, which should be discussed here. In solving the dilferential equations 
use will be made of a dilference method based upon a certain stepwidth A9. At first sight, it may seem advanta- 
geous to use a constant stepwidth, since a variety of numerical schemes has been developed for that particular 
case. However, in that case the points lying on the first characteristic are distributed unequally as is shown in 
fig. 4, especially for low Mach numbers and small values of the semi top-angle. 

Fig. 4. Stepwidth A X  an first characteristic for constant V ~ U C  of A s  

Since this characteristic has to be used for the calculation of the flow-field such a distribution is not very ap- 
propriate. It is desirable to have a distribution with a more or less constant stepwidth Ax. (Although a better 
numerical accuracy is obtained with a constant stepwidth A S  for the same number of points). In that case the 
stepwidth A9 cannot be held constant but has to vary from point to point. Therefore a numerical scheme has 
to be used which permits the continuous change of the stepwidth AS.  The actual choice made will be discussed 
in the section devoted to the description of the programme. First we will.proceed to the theoretical formulation 
for the case of an inclined cone. 

2.2 The case ofnon-zero inclination 
The flow around a cone with a small angle of inclination E can be determined by superimposing a perturbation 

term on the axially-symmetric flow. Taking into account only terms linear in E a scheme can be developed for the 
determination of the first order perturbation velocities. Such a scheme has been given by Stone in ref. 3. For a 
good understanding it is necessary to recall its main features, although for a more thorough presentation the 
reader is referred to refs. 3 and 5. The problem is solved not for the actual flow field, but for a so-called transformed 
field which is obtained by transforming the conditions on the actual boundaries to conditions along the surface 
of cone and shock wave for the axially symmetric case. It is assumed that the total velocities in a spherical coor- 
dinate system are given by 

(2.10)a u = U + E X  cos * 
v = C+Ey cos * 
W =  EZ sin II,, 

(2.10) b 
(2.10)c 

As is shown in ref. 3 the inclined shape of the shock wave again is a cone with an angle of inclination given by UE. 
The coefficient a follows from the analysis, and is dependent on the quantity d .  This quantity defines the pertur- 
bation in the ratio of the stagnation pressures. If the total ratio is defined by P I  then 

P,=P 1 - E -  cos* . (2.1 1 )  1 ? - I  d l  
Before turning lo tlic equations used in this report, we will first give the system of equations derived by Stone for 
this case 

d'x dx - + A ~ + B x + C d = O  
d3' d 3  

(2.1 2)a 

dx 
d9  
_ _  y = o  (2.12)b 

= o  Cd sin* 9 
l+LV 

X + Z  sin 3 - (2.12)c 



6 

where 
.=f = cot $+,?[(<+E cot $){(y+ l ) i .6+2)+9 cot 31 

B = 1-~0t'3+A[A(y-1)<(<+6 C o t  3)- 9 ~0t '3 ]  

The quantity 2, the pressure p and'the density p are given by 

From a numerical point of view the quantity C causes difficulties because the integrand is highly singular for 
3,=3, (since 6 tends to zeroas -2<(3-9,)) although C itself remains finite. This difficulty will be discussed and 
solved in the following presentation of the same formulae but now based on the cylindrical flow quantities given 
by u", u", w" and P' .  The total values are then given by 

u1 = U + E U "  cos * (2.13)a 
u1 = U+EU" cos* (2.13)h 

wI  = EW" sin $ (2 .13 )~  
PI = P+&P" cos * (2.13)d 

The relations between the two systems have the following form' 

x = u" cos 3+u" sin 9 (2.14)a 
y = -u') sin $+u" cos 3 (2.14) b 
z = w" (2 .14)~ 

(2.14)d 
P' d = -(y-1)- P 

The system now reduces to a set of two simultaneous first-order differential equations for u" and u". 

du" - + a p cot 9u"-p2u(u COS 9 - u  sin 9) j (y -  I)([, cos 8 - u  sin 3). d 3  
P 
P ' (uu"+I: I :~ ' )  + 2a2(L"' cos 9-u" sin 8 ) )  + c = 0 ( 2 . 1 5 ) ~  

du" du" 
cot 9 - + - = 0 

d3 d9 
( 2 .  I S )  b 

where 
p sin 'p 1 -9 

d'p and p = a' - (u cos 3 - u  sin 3)' sin 9 sw M - ~p sin q} 

By partial integration this highly singular integral can be written in a much easier form, as regards numerical 
computation. 

As can be seen the value of c' for $=9, is given by the first term of eq. (2.16)a, while the integral C" does not 
give any dificulty for the numerical calculation. Due to the fact that the first derivate of C' becomes infinite at 
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8 = SS, a succesful integration of the dikrential equations (2.15) is possible only when a more thorough investiga- 
tion is made of the solution in the region near to the body. This analysis has been given in appendix A. 

The set of equations (2.15) can be solved now for a given set boundary conditions, given by 

a' P" 
P P  

u', = -u" cot 9 + - for 9=9, 

while on the cone surface 8=3 ,  it can be prescribed that 

2u u" - u" tan 9, + __ - - 0  
cosZ8, 

(2.17)a 

(2.17) b 

(2.18) 

It must be observed that some of the equations contain the hitherto unknown constant P". Due to the linearity 
of the equations it is quite obvious that the system can be solved easily by considering the quantities ( u " / P ) P  
and (u"/P' )P,  Then eqs. (2.17) are sullicient to start the solution, calculating just as in the axially symmetric case, 
from the shock wave surface towards the cone surface. The value of P '  and hence those of the quantities d' and 
u" themselves follow from eq. (2.18) once the solution has been continued until 9=9,. 

The tangential perturbation velocity w" is given by 

c (2.19) 
P 

w'' = - u" cnt 9 - - ~ 

u"P 

while the quantity a, representing the inclination of the shock wave follows from 

u2P" cos 3 sin 9 
U.= for a,= 8, (2.20) 

It should be observed that contrary to the definition used by Stone, the angle E is considered as positive if the 
axis is deflected downwards (fig. 5). 

Fig. 5. Position of cone surlace and shock wave far a positive angle of attack 

The formula given above for the flow around a cone with and without inclination contain the information 
needed to construct the programme, at least in principle. This programme ,will be discussed in the following. 

3 Discussion of the programme 

This'section consists of two parts, the first giving the general layout of ihe programme in connection with the 
requirements to be met, while the second part gives more detailed information about the programme itself. 

3.1 Preliminary considerations 
In order to construct a programme, it is needed to formulate what kind of input data will occur and what is 

the best form in which the output data can be given. Furthermore some details which have not been-considered 
in the foregoing analysis will have to be discussed. 

As has been said in the introduction the purpose of the programme is to give a set of initial data for the con- 
struction of the flow-field around an axially symmetric or quasi-axially symmetric configuration. Then nearly 
always the Mach number M,, the semi-top angle 8, of the nose and the ratio of specific heats y will be given. 

These data, however, are not sufficient for the construction of a characteristic; in addition the axial coordinate 
of ihc point.at the cone surfaci through which the characteristic passes has to be given. Although it  is possible 
to coiistrucl a forward facing or a backward facing characteristic, only the latter case is considered here. Moreover 
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we have to recall the fact that the computation includes an iteration with respect to the initially unknown quantity 
9,. being the semi-top angle of the shock surface. Therefore, it is necessary to provide two estimated values for 
9,. Starting with these values the iteration procedure, which includes the computation of the complete axially- 
symmetric solution for each itep, can he performed automatically. Obviously much work can be saved by using 
a very close estimate. To facilitate this, diagrams have been given in figures 6 and 7, prescribing the values of 9,. 
as a function of M, and 9, for two values of y. In each case there is a lower limit for 9, given by 

Another point which has to be referred to with respect to the input data is the following. Not always one will 
be interested in obtaining the flow field for an inclined cone:Thus it is feasible to give as input data a code for 

OW 

2 3  4 5 6 7  8 9 10 1 1  12 13 

Fig. 6.  The shock wave angle 9 ,  as a function of Mach number M and semi-lop angle 9, for y =  1.405 
Mco 
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Fig. 1. The shack wave angle 9 ,  as a function of Mach number M and semi-top angle 9, for g=4/3. 

either "zero inclination" or "non-zero inclination". In the first case the programme will compute the axially- 
symmetric flow and stop, while in the second case it will continue with the computation of the inclined field. 
(As will be clear from the theoretical description, the latter field cannot be computed without a knowledge of the 
axially-symmetric flow). Since, as has already been remarked a constant stepwidth A9 gives a better accuracy for 
the same number of steps compared to a method where Ax along the first characteristic is approximately constant. 
the programme is made such that by a suitable input code either the one or the other possibility is used. The 
most common form'for the output data will he a table giving the geometry of the characteristic constructed 
and the velocity distribution along it. Thus for the axially-symmetric flow the table will consist of a set of columns 
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giving the corresponding values of u, u, x and r .  For the "non-zero inclination" case the set of values will he 
u, u, u", u", w", x and r .  However, this is not the complete set of quantities which are needed, since, as follows 
from- ref. 5, for the computation of the flow around an inclined body also the values of r(su/bx), and r(Su/Gx)l 
have to be known. These quantities are the-defivatives with respect to x of the~radial;axially-symmetric velocity u 
along the constructed characteristic and along the set of characteristics intersecting this characteristic, respectively. 
They are given by the following formula 

= ~~ 

(3.2)a 

(3.2)b 

In addition it seems advantageous to give a set of quantities characterizing the solution. For the axially-symmetric 
case these are, the shock wave semi-top angle 9,, the ratio of stagnation pressures P,  the coeficient cp, and the 
Mach number M, both on the cone surface. The latter two are given by 

(3.4) 

For the inclined field this set will be completed by giving the values of the shock wave inclination factor a and the 
perturbation terms P" and c;, where the latter quantity is defined by 

c,,=c,+&C; cos (I. (3.5) 
The value of e;, is given by 

(3.6) 

This is as far as the input and output data are concerned. 
The problem which comes next is, by which method the differential equations should be integrated. As has 

been argumented in section 2.1 the methods available are dependent on the choice of the stepwidth. For the 
computation of the flow-field an approximately constant stepwidth Ax would be desirable. This means that A9 
is no longer constant and hence that any.scheme for integrating differential equations using starting procedures 
is prohibitive. Then only those remain which are based on the method of Runge-Kutta. In the current programme 
use has been made of the fourth order version of this method. 

To obtain an approximately equal stepwidth A x  the following procedure has been followed. Through a point 
at  the shockwave a straight line has been drawn, tangent to the backward facing characteristic at this point. This 
line has been intersected by a set of lines through the vertex of the cone, such that along it a number of points 
is obtained with equal stepwidth.Ax. In this way a distribution of stepwidth A9 is obtained which can be expressed 
by the following formula, where n is the total number of steps required to cover the region 3,-3, atid k is the 
index given to the kth step. 

(3.7) 
n sin($, -9J sin(a- 9,) sin+ 9,) 

k(k  - l)sin2(9,- 9,) -n(2k- I)sin(9,- &)&(a - 9,).cos(a -8,) + nzsin2(a -8J ' 
AS, = -tan-' 

The angle g is given, accorqing to the above explanation by 

u+Bv 
Bu-v 

tan OL = __ for 3=8, (3.8) 

Although eq. (3.7) will not give an exactly equal stepwidth Ax along the characteristic, it may be expected that 
this distribution leads to an acceptable order of constancy of this stepwidth. Another point to be discussed, in 
connection with the computation procedure, is the following. When calculating the inclined field, the application 
of Runge-Kutta's method requires the knowledge of the quantities u and u at the middle of the step. This necessi- 
tates the computation of a double number of points for the axially-symmetric field. Since the knowledge of the 
results at  the middle of the step is not necessary for a set of.accurate values, these values do not occur in the output 
data. They are used and handled in the programme in a rather elegant way, as will be explained later. 

Last but not least something should be said about the required and obtained accuracy of the program. A 
prescribed accuracy F: is given for the fulfillment of the boundary condition (2.6), while the integrations are per- 
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formed following a procedure which has an error proportional to the fifth power of the stepwidth. The actual 
accuracy can best he checked by performing a computation with half the step. The differences will give an’indi- 
cation of the accuracy, and a quick determination can usually be made about the number of points required to 
obtain a given accuracy. 

The analysis of the programme itself, will be given in the next section, with the aid of the appendices, B and C 
containing a flow diagram and ,the programme respectively. 

3.2 Analysis of the programme 

this will he of great help in understanding its layout. 

3.2.1 Description of the most important parts of the programme 
The programme, roughly speaking, consists of a number of procedures, the performance of which is controlled 

by so-called “labels”. The results are stored in “arrays”. In order to be able to make a certain’choice, use is made 
of “switches”. 

(a) Procedures: 
- The procedure dudv(h, u, v) computes the derivatives of u and u at the angle h after eqs. (2.4)a and b. This 

procedure is called in by the integration procedure. Note’that the ALGOL notation for 9 is h. A full list of 
the correspondence between the various symbols is contained in the list of symbols. 

- The procedure du2 dv2 (h, u2, v2) calculates the derivatives of u” and u” at the angle h, after eqs. (2.15)a and b. 
The quantities u and u necessary fpr this computation, are taken from the array H (see below). This procedure 
also is called in by the integration.procedure only. 

- The procedure dfldfZ(h,f,,f,) calculates the derivatives off and f a t  the angle h, according to eqs. A(4)a and 
A(4)c. This procedure is used only for the integration of the last step of the functions u” and u”. The’ same 
remark pertains to the following procedure. 

- The procedure dgldg2(h, gl, g,) calculates the derivatives of $ and e at  the angle h, according to eqs. A(4)b 
and A(4)d. 

-The procedure integrate (dh, Y, h, u. v) integrates with stepwidth dh, the differential equations specified by the 
procedure Y(dudv, du2 dv2, dIldt2 or dgldg2). These are the equations (2.4)a and b, (2.15)a and b and A(4) 
respectively. The integration is performed by applying the method of Runge-Kutta in its fourth order version. 
This means that the procedure Y for the determination of the derivatives has to be called in four times at . 
one integration’step, although always with other parameters. 

- The procedure integrate (dh, Y, h, u, v) integrates with stepwidth dh, the differential equations specified by. the 
procedure Y (dudy or du2dv2). These are the equations (2.4)a and h or (2.15)a and b respectively. The inte- 
gration is performed by applying’the method of Runge-Kutta in its fourth order version. This means that the 
procedure Y for the determination of the derivatives has to he called in four times at one integration step, 
although always with other parameters. 

-The procedure integral (dh, h, u,v) effects the computation of the expression C as given by eq. (2.16)a. This 
expression contains the integral C (eq. (2.16)b) which has to he evaluated between 9, and 9. The computation 
is performed by using the trapezoidal rule. To this end the last obtained integral ((22) is kept in the store and 
the following (C3) is added. 

Before giving a description of the total programme, the most important parts of it are described first, since 

- Finally the procedure betas (u.v) calculates the quantity p (see eq. (2.9))for the given values of u and v .  

(b) Arrays: 
- The array result (O:n+ 1, 1 :6) is the matrix in which the computed values of 9, u, u, u ” P / P ,  u”P/P’and w “ P / P  

are stored. Hence this’matrix has six columns,, while it has n + 2  rows to store the appropriate quantities be- 
longing to the coordinates B,, 9,+dh,, B,+dh,+dh,. . . S,+dh,+dh,+ . . . +dh.=B,. Thus the matrix has 
one row more than is necessary for the storage of the coordinates. This has a special reason which will become 
clear subsequently. In the case of zero inclination the u is stored in the second column and the u is stored in 
the third column. (These quantities are also stored in the fourth and fifth column, but this is due to the peculiar 
scheme used for the non-zero inclination case). 
In the case of non-zero inclination not only the values of u and li have to be calculated at S,.+dh,, 9,.+dh, + 
dh,, etc. but also at S,++dh,, 9,+dh, +fdh,, etc. The storage of the values of u and ~i at the center of the step- 
width is carried out by using a two-fold count, by which the results appear in the fourth,and fifth column of 
the array.’This procedure will he presented in some more detail when describing the programme itself. 
When these results are known it is possible to calculate the values of u”, u” and w” at the different coordinates. 
They are stored in the fourth, fifth and sixth column, thus deleting the former information on the fourth and 
fifth column which is no  longer necessary. 

-The array H is used in two different ways. 
During the computation of the axially-symmetric field (u and v )  the values of the estimates of the shockwave 
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semi-angle 9, are stored at H[O] and H[1] while the corresponding values of the quantity u - u  cot 9, are 
stored at H[2] and H[3]. These data are necessary for the interpolation of a new 9,. During the, calculation 

~ ~  of-the-inclined field the  array^ is used_together with the procedure du2dv2. Then it contains the values of u 
and u at the points 9, 9++h and 9+h,  as well as the values of  the^ quant i ty~c-a t  these points. (The values at 
9+@h are stored twice, hence the array consists of 12 places). 
The array c2[0:3] is used to store the values of the integral C“ when calculating the last step with the functions 

= 

f , . f , g  and 3. 

(c) Switches: 
There are four switches: zero; first; switch and theta. 
The switch “zero” indicates either z=O (zero is false) or z # O  (zero is true). The first case means that only the 

axially-symmetric field is calculated while in the second case also the inclined field is calculated. 
The switch “first” is in part independently used when iterating the value of 9,, where it controls the interpolation 

between two estimated values. 
Furthermore it is used conditionally, since for .z#O it controls the value of.the quantity C at the cone surface 

(at the.surface C must equal zero). 
The switch “switch is conditiona1,’that means that it is only used when zZ0. It controls the calculation of 

u and u at half the intewal. 
The switch “theta” indicates either th=O (theta is false) or th#O (theta is true). In the first case the flow is 

calculated with an approximately constant stepwidth Ax, while in the second case the stepwidth in 9 direction 
is constant. 

(d) Labels: 

AA Start of the integration cycle for the zero inclination-velocity field. 
BB Sublabel of AA, controls the integration cycle for the determination of the quantities u and u for x#O,  hence 

CC Computation of the initial values of u and u. 
DD Interpolation of a new value of 9,. 
EE Start of the integration cycle for the determination of u”, u” and w” (inclined field). 
FF Start of output. 
GG Output of the data characierizing the solution. 
HH Integration of the last step when determining u”, v” and w”. 

(e) Special procedures : 
PUNLCR 
FIXP (n,m,x)  : punches the fixed point number x with n figures before and m figures after the point. 
FLOP (n,m,x):  punches the floating point number x with a mantisse of n figures and an exponent of m figures. 
PUTEXT 1 (< text 4): punches the text between the strings. 

Since the material, which is necessary.for the understanding of the programme has been covered now, we can 
give a more extensive analysis of the performance of the programme. 

3.2.2 Description of the programme 

appendix C .  

The following labels have been used. 

when also the values halfway of the interval dh are needed. 

: punches new line, carriage return on the output tape. 

This section is based on the flow diagram contained in appendix B.and the programme itself contained in 

The programme begins with reading the input data:,mO, g, hs, hw, hwt, x, eps, n, z and th (see list of symbols). 
The switches: zero, first switch,and theta are set. 
The programme starts the calculation by computing the initial values of u and u at the shock wave. They are 

stored in the array result (0 : n + 1, ‘ 1  : 6). After the calculation of some constants necessary for the computation 
of the dh distribution, two counts i and j are set. The programme proceeds by computing the first step dh (label 
AA). This quantity is halved if “zero=true” thus enabling the determination of u and u halfway of the interval. 
Then one integration step is performed and this is repeated, in the manner to he described next until 9=9,. 

Assume that the (k- 1)th step has been performed. The situation will be then as described in the array results 
for the two cases z = O  and zfO.  

z = o  z # O  

9,-1 u k - i  v k k l  u k - l  vk-,l 9 k - l  ~ u k - l  v k - l  Uk-+  vk-+ 

,Uk-l ’ 4-1 
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i u halfway tk 
and fifth column on the row 3*-,. We will now consider the calc 

interval ( g k - ? ,  3k-1) are stored in the fourth 
ation of the next values for 11 and u in both 

cases. At the end of the step (k--l).in both cases the counts i and j are set equal to k. The programme now executes 
one integration step being dh for z=O and dh/2 for z#O. The results are stored as follows: u in (i,2) and 0,4) 
and u in (i,3) and ( i ,S).  The array results will now be as follows. 

z = o  Z # O  

3 k 7 1  u k - l  v k - i  , u k - l  vk-l 3 k - I  u k - i  vk-l U k - +  % - j  

' k  uk 6 uk % # k - +  U k - +  Vk-t  U k - +  %-+ 

Hence for z=O, simply the following row is calculated, while at the end of this step the counts i and j are both 
increased with one unit to k + 1. In the case z#O the situation is a little more complicated. In the row k the results 
u and u halfway of the interval (Sk- 3J are stored. Note that the values Uk- and Vk_ I in the fourth and fifth 
column of this row are deleted'and replaced by Uk-+ and After the calculation of the first half of the step, 
the count j is increased one unit and the calculation of the second half of the step is performed. When the results 
are stored after this step, the array takes the following shape 

Z#O ' 

$ k - l  u k - l  4-1 u k - j  6 - 3  

9k uk vk Uk-+ %-+ 

Hence the first three columns of the kth row are deleted and' replaced while also the fourth and fifth column 
of the row (k-1) are used. The situation is now similar to that shown in the array result after the calculation 
of the step (k-1). Therefore the calculation can proceed in the same way from here on, when it is increased by 
one unit and j is decreased by the same amount, thus setting them both equal to k +  1. 

If i = n +  1 the programme tests the boundary condition. If i t  is not satisfied the whole program is repeated with 
a new value of $,(h,t). By using the'first four places of the array H, an iteration procedure is performed until 
finally the boundary condition is satisfied for a given accuracy eps. In that case the quantities P and cp  are cal- 
culated, while also the characteristic through the given point x is computed. In the case of zero inclination the 
quantities M,, 3,, y and n together with the appropriate text is punched. The j count is set equal.to zero and the 
programme jumps to label FF. 

In the case of non-zero inclination the inclined velocity field has to be computed now. First the initial values 
of u"P/P',  u"P/P" and w"P/F"' are computed for 3=3, and the value of the integrand of C ' , a t  the shock is de- 
termined. The quantities u " P / P ' ,  u"P/P" and w"P/P" are stored in the array result (0:n + l ,  l :6) at the places 
(0,4), (0,s) and (0,6) respectively. 

The programme starts the integration cycle for u" and u".at label EE. At this label the j count is increased by 
one unit and the necessary dh is computed by subtraction of results (i,O) and 0'- 1, 0). 

The integrals ( C )  from 9, to 9,-iAS and from 3, to 9,-A9 are stored in the array H just as the values of 
u and u necessary for the execution of one integration step, This integration step is now performed and the 
results are stored at 6,4), (i,5) and fj,6). The first two results replace the values for u and u halfway of the interval 
considered. As long as j <  n - 1  the programme proceeds with the determination of the solution u", u" and w" by 
repeating the same operation. If j=n ,  the programme jumps to label HH and performs the last integration step 
by using the appropriate formula for determiningj;i g and e. Finally the values of P and Cp" are computed. 
Thenjust as for z=O the quantities M,, 9,, y and n ate punched together with the necessary text and the program- 
me jumps to label FF. 
' The programme punches the values of u, u, x and r along the characteristic and if z # O  also the values of u", 

u", w", r (duidx), and r (du/dx),. At last the characteristic quantities S,, P, cp  and M ,  are punched and if z f O  also 
P", c i  and a. 

3.3 Some~results" 
In'the tables La and 1.b the results of routine computations with the programme has been given for z=O, i.e. 

axially-symmetric flow for the cases th=O (Ax is constant) and- t h = l  (d3 is constant) respectively. The results 
in these tables appear in standard form, as they are produced by the computer facilities themselves. 
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l a  Conical now without inclination, d.x is constanl TABLE Ib Conical w without inclination. db is constant 

M ha 8 n  

i4.154 + .34%&56 +1.&5 rZ6 

" " X r 

+.e525762 +.3103l@,Z7 + .O2owoOO + .00727940 

+.85423150 +.%3516e57 .02026905 + .00150115 

+.85583%9 +.%1357& + .02055217 + .00713320 

+.85151232 + . 2 f l o 6 b 6  + .n2085o47 + .oai¶bhi 

+.a5912753 r.2926l473 + ,02116522 + .WE22637 

+.%07p48 + . 2 m 8 1 7  + .0214¶83 + .00848gBo 

+.6233345 t.28416353 + .C2184994 + ,008I6518 

+.86392464 +.2@€Q@59 + .@22223% I .00505546 

+.86551833 +.27693956 + .02&021 + .009j6011 

+.6711469 +.273110g4 + .02304290 + .00%8141 

+.&@I123 +.a5932538 + .02%W4 + .01002091 

+.@0329% +.26557350 + ,02397749 + .@in3&70 

+.B/195535 +.%184576 + .C214%Zo + .01076313 

+.@359898 +.25813223 + ,02505581 + . C l l l l O ¶  

r.67526505 +.25*22% + .02566086 + .01160754 

+.@595&33-+.25010415 + .02631823 + .01201683 

+.BTE68539 +.24696614 + .027035% + .01258%7 

+.880454m +.243193% + .02782405 + .0131)408 

+ .mi5070  +.23547310 + .025fX535 + .Olk39775 

+.8&272& +.239%%3 4 .02869511 + .01373556 

r.8861o177 +.231ml% + .Ox115615 + .01513% 

hv P CP ns 

'+ .'+5725% +.I91 X95 +126694131 +2.%X267 
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The tables give the quantities u, u, x and r along a characteristic through the point x=O.O2, from the surface 
to the shock wave. In the tables 2.a and 2.b the results for the same cases are given for zfO. The top row has the 
same designation as for z=O. The tables give the quantities: u, u, u", u", w", r (du/dx),, r (duldx),, x and r in that 
order. The designations in the top and bottom row are given in the list of symbols. 

TABLE 2a Conical flaw wilh inclination, dx IS constant 

m ha g n  

A.19 + .349%58 +1.405 +20 

U V u2 v2 v2 rdvdxb rdvdxf x r 

r.85257060 r.31031027 + .99390846 -1.56527553 - .Ill53427 -.12795191n+0 +.9841867,1 + .0200000@ + .00727940 

+.85543845 +,B2543Z 4 ,97282659 -1.51216H - .8123@16 -,r11)2Wl9.+0 +.1~~839%.+0 + .n2047374 + .on766938 

+.85mb702 +.295665rlk + .~s=% - 1 . 4 6 5 n s ~  - .79373509 -.i065619,+0 r.10329128n4 + .02095232 + . 0 0 8 3 m  

+.60@160 +.28951583 + ,94041841 -1.47/69& - .nO2b69 -,10143?77,+0 r.10585206.~) + .02143575 + .008wlog4 

+.E6265664 +.283951I6 + ,52835784 -1.39666472 - ,74628844 -.%JO7685,1 +,10852532.+0 + .02192416 + .00882372 

+.E6471901 +.2le8@% + ,91757156 -1.3706555 - .I2317604 -.9303@43.-1 +.ll128493m4 + .02241775 + .Of1920525 

+.@666%15 +.27421933 + ,90872218 -I.J4950¶2 - .701X651 - .8544Wrl  +.l141b553n4 + .02291678 + .on9585n5 

+.E6846746 +.26991164 + .%128222 -1.33187254 - .6&84383 -.814100&rl +.11711213n+0 + .02%2159 + ,00996665 
+ . @ o i E w  +.2659366 + .89507574 -i.31740~65 - ,66170~01 -.n&2L9iri +.12019366.+0 + .02393255 + .010975k 

+.87181557 +.26216109 + .@956554 -1.x1566668 - .64382645 -.74610115p-l +.12358l87+0 + .02@saO9 + .01072543 

+.873%849 +.25&64973 + .6?5&&0 -1.2%337@ - ,62711759 --.71712*7rl +.126711391+0 t .024¶470 + .@1111222 

+.87485269 +.25533559 + .&E62772 -1.28915381 - .61141629 -.69083157,-l +.13~6993,,+@ + .02550691 + .0114¶02 

+.07627564 +,25215785 + .8eo250* -1.28391121 - .5%8J590 -.66682100~1 +.13371355& + .02604729 + .Olle8414 

+.m6k3@ +.&921613 + ,87856429 -1.28345204 - .58X11629 -.6@78185,1 +.1375F'12s+0 + .n265%5n + .Oln?410 

+.87&563ii +.MY7267 + .@7831@ -1.P765559 - .57002@ -.62h45)16,1 +.141460720+0 + .OZT15522 + .01266745 

+.8832)W +.&j65283 + .817/2141 -1.27843251 - .55775688 -.60%1725rl +.1457165.+0 + .Om2422 + . o i x 6 4 n  

+.88147@1 +.24101w60 + ,81853791 -1.P79l2058 - .5461&53 -.588393%-1 +.149@8175n+0 + .028JO4% + .01%665 

+.=7514 +.23@533)8 + .@S6582? -1.2&481@ - .535126@9 -.57171878sl +.15k40958n+0 + . 0 2 w %  + .Olm374 

+."35 +.2%10560 + .ea169510 -1.28670071 - ,52464895 -.55%&&-1 +.15917632.+0 A . o2%0i8~  + .nie867i 

+.e&%W +.233?5q9 + .e8445685 -1.29238335 - .51466104 -.541?2359r1 +.16420633.+0 + .OX12133 + .014706)2 

+.@&lo177 +.231481!!4 + .@87V37> -1,29955744 - .50511814 -.5282&57pl +.t695m272.+0 A .OXrr%B + .01513335 

hw P CP Ha F2 Cp2 II 

+ .457259 +.7981XJ95 +.266*137 +2.%%267 +1.&716230 - 1.25%71)2 4 .%@lo& 



It should he noted that the data necessary for an operator to use the program are: Mm, y. 9,, 9,, S,,, x; eps, 
n, z and th. With this set of quantities the results are completely determined. 

4 Conclusions 

This report contains a programme for the computation of the axially-symmetric flow, and for the perturbations 
to be superimposed on this field due to a small angle of inclination. 

For purposes of general usefulness the programme has been written in the international machine language 
ALGOL and should he operative on all computers having an ALGOL compiler, except for minor changes to 
be made due to the peculiarities of the actual ALGOL compiler. The programme is contained in appendix C of 
the report. 

It was decided to write this programme in the present form because of its importance for delivering the initial 
values aloiig a characteristic for the calculation of the flow around a configuration having a nose shape which 
may be considered as conical for some distance from the vertex. 

The first part of the report gives a compilation of the governing equations, together with the formula for all 
those quantities' which seem of interest. 

The second part is devoted almost entirely to a rather detailed description of the programme. First the require- 
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ments which must he fulfilled by the programme are discussed, after which it is shown how all these requirements 
are met in the actual programme. Although written with a view to the applications intended at the NLR, it is 
constructed in such a way that it can he changed to meet special requirements without large alterations of its 
basic lay-out. 

The necessary data which enable the operation of  the programme are the Mach number of the undisturbed 
stream M ,  the value y of the ratio,of the specific heats, the semi-top-angle S,, two estimates for the semi-shock 
angle a,, and S,, the coordinate x through which the desired characteristic passes, the desired accuracy eps, 
the number n of points along the characteristic, the quantity z, which by taking the values 0 and 1 determines 
the calculation of the zero-inclination and non zero-inclination case respectively and the quantity th which governs 
the choice of a variable or constant stepwidth A S .  

Four examples of results obtained wiTh.the programme are given. All data necessary for proceeding with the 
calculation of the velocity field,around a conftgura&on by the method of characteristics are supplied by these 
results. 

In conclusion the authors want to express the hope that their programme will he used as frequently as the now 
famous tables of Kopal, which in a sense are superseded hy this programme, for all those, who want a larger 
accuracy than these tables afford. 
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APPENDIX A 

The integration of the last step 
~~ 

~~ 

~~ 

A thorough investigation of the equations (2.15) reveals that they are not very well adapted to be solved by a 
Runge-Kutta method in the surrounding of 9=SS This because of the fact that the second derivatives of u" and 
u" behave as follows 

Omitting the details of the analysis it  is found that the following relations are valid 

It should be observed that D e O ( m ) ,  while it is assumed that the other functions occurring are regular 
in 8-9,. 

Using the equations (2.16) it is readily found.that 

Substitution of the equations A(2) into the system of equations (2.15) and equating to zero the coefficient of 
4-6 and the rest in each differential equation gives rise to the following system of equations 

p" df  - + a Z ~ c o t 8 ~ f - ~ 2 u ~ { ( ~ - ~ ) f i ( u ~ + ~ J 1 + 2 a ~ ~ c o ~ ~ - f s i n ~ 9 ) } + p -  = o 
d ,9 P A(4)a 

- ua2u 

P" 
P + ~ ~ ) + 2 a Z ( ~ c o s 9 - - ( 7 s i n 8 ) )  + q- = O  A(4)h 

df d3 cot 9- t - = 0 
d9 d 9  

a'(ii+i, cot 9) 
d9 

The next problem to be solved is the determination of the necessary boundary conditions. Due to the particular 
nature of the problem these conditions are given by the equations themselves. A careful analysis of the equations 
A(4)b and A(4)d gives as a result 

g = - g cot 8, for 8=$, A(5)b 

This means that the functions g and g can be solved in principle by starting at  9-9,. However, the necessary 
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villucs of dgjd,? and dg/d9 cannot be obtained directly from the equations, since their coefficients become zero 
for :$=9,. This difficulty can he solved by differentiating the equations A(4)h and A(4)d and evaluating the result 
at 9=9,. It is found then that 

ds = 1-' for 9 = 9, A(6)a 
d9  Io' 

+ &cot29, for 9.=9, A(6)b 

. .  

I 9 = + 3 
d9 5 sin*9, 

It will be discussed now in which way the above derived equations can be used to find the @antities u" and I:". 

Using the equations A(4)b and A(4)d together with A(5) and A(6) the functions g and g can be determined 
' without difficulties by using a Runge-Kutta procedure from 9, unto 9,. With the aid of the equations A(2)a and 

A(2)b and from the known values of u", 0'' g and Q at 9=9" the starting values for f a n d f a r e  obtained. Then 
using eqs. A(4)a and A(4)c the quantitiesfandfare determined for the interval 9.4,. Finally the values for u" 
and u" in this interval are obtained by using the equations A(2)a and A(2)b. 

If it is assumed, that these quantities are known up to a certain angle 9. the procedure is as follows. 

- 

I n  the program as given in this report only the last step'has been treated in the manner described here. 
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APPENDIX B 

C~ Flow-diagram ' 

start L7 
Y, 9, 9,, 9,,, x, 8, n, 

first is set no, 
zero is set no if 
inclination is zero 
else zero is set yes, 
theta is set no if 
dx is constant else 
theta is set yes. 
i=O,  9=9, 

1 calculate u and u for 9=9, 1 

I 
I compute dli I 

I no 

compute u abd u for (9+dh) 
by the method of Runge Kutta 
in subroutine dudu for the calculation 
of (du/d9) and (du/d9) and subroutine 

9+dh + 9 

no no 
I 
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no 

compute 9, by equation 
(2.6) 

t 
compute by interpolation 
a new value for 9,, 

2% compute p by (2.8) first is set 

- 

~~ ~ 

compute u", 11'' and w" 
for 9 = 9,, j.= 0 

compute dh/2,J+ 1-J, 9,-9 

compute Integral C '  from sw 
to 9+dh/2 and C 
(subroutine integral) 

4 

no 

compute u" and u ~ '  for (9fdh) 
by the method of Runge-Kutta 
(subroutine du2du2 for the 
calculation of du"/d9 and du"/d9 
and subroutine integrate for 
the integration.) 

(9,-dh) by the method 
of Runge Kutta 
(subroutine dg,dg, for 
the calculation of 
dg/dil and dgId9 and 
subroutine integrate 

9 =$.-ah 
I 

4 
I 

compute f and f for 
9, (subroutine dS,df,) 
and subroutine integrate 

1 compute P ' / P  I 
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print text u2, 02, w2, rdl;dxf 

print New Line Carriage 
Return (NLCR) print 
text “conical flow” 

“P t 
print text print text v theta 

no 
I 

“dx is constant” 

print NLCR, NLCR, NLCR 

“dlr is constant” 

print text M,, hs, g, n 
print NLCR, NLCR, M,, 9,,y, n 
compute r = x  tan 9., j = O  

print NLCR, NLCR 
print text u, u 

I 
I no 

t - 1  print x , r  

I 

“P 1 

compute next 

eq. (2.9) 

Yes 

I 

print NLCR, NLCR 
print u and u for (S.-.j.dh) 
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print text hw, P, 



r A  

Integer n , j ,  1, z, th; 

real a r r q  H [0:11], c2[0 :3 l ;  

no, g, b, hw, x, du. dv. k, 1, e, hut, e ,  u, Y ,  Cl, C 2 .  m, s, c ,  t,Ck,glQ,gZQ ,& 1 2 , g 2 2 , d g l . d g 2 , ~ l . ~ 2 . 1 1 2 . r 2 2 . a 2 ~ .  
p, p, r,  C3, E, b s t a , l 1 , 1 2 , 1 ~ , 1 4 , k l , k 2 , k ~ , k 4 , h , d h , e p s ;  

b- Zero, switch, first, theta; 

procedure du dv (h, u. V) ;  real h, U, V; 

b e  a2:- l/(& X v+ (E-I )X(l-(u 
du :- ( a Z ) x r / ( (  Vx c t x  (hb UX 

* dv :- (COS (h)/ s i n  (h)) x( - du) 

v, 
X 



mO:-rcad; g:-relld; ha:-mad; hw:-remd; hvt:mad; x:-ad;ep:-ad; n:-reed; =:-reed; th:-ad; firat:--; sYitCh:-tz; Eero:-l(z-O); thcta:-l(th-O)i 

begin res1 uo, M, dh, *, u02, v02, cp, e*; 
arrqy resat [o:(n+l),1:61; 

cc: g first then kbe H[OI:-H[l]; H[Zl:-X[Jl; hv:-hvt; 9 
s:-sin(hv~:-rcault[0,2~:-1~~(l/(~)-Qts)/(g+l ); M:~eault[O,~]:-(l-uO)xcos(hw)/s; result[O,l I:-hv; 
betas(u0, m);.:-ctan( (Uo+betswvo)/(betwuO-vC)); c:-~in(a--he); s:-sin(h&s); p:-nXaxc; Q:-mcos(a-hv); 
p:-a(sin(a-hw); r:-(nXc); r : m ;  t:-8(6; i:-J:-l; 

&:-E theta then (hs-hu)/n c~(-arctM(p/(iX(l-l )Xt-(2%i-1 ) X I + = ) ) ) ;  

integrate (dh, du dY.mBult [J-1, 1 1 ,  rcault[J-l, 21, result [J-1, 3l):result[i, 2]:-reault[J, L11:mault[J-l, 2lrk; 

AA: 

RB: 

% zero t x  dh:-dh/c 

rcmlt[l, >I:-sult[J, 51:-rerult[j-l, 31.1; result[i, 11:-rcsult[J-l. I]+&; J:-3'1; 
if  zero W - 

switch then 
be- switch:-fmlse; goto BB 

DD: 

EE: 

N a 



EE; 
HH: 

FF: 

GO: 
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Flight operational evaluation of approach and runway 

bY 
J. 6. de Boer and ir.T. van Oosterom 

summary: 

The effectiveness of . 3  systems far approach and runway 
lighting - basically 2 existing centre line and crossbar systems 
and a Netherlands proposal - has been judged on the 
basis of data on the quality of the approach and landing and 
on the pilot's effort to carry them out. These data have been 
recorded during flight tests executed by a group of 18 pilots 
from' different countries. 

A,  specially designed screen has been installed behind the 
cockpit window to simulate visibility in '  marginal weather 
conditions. 

An interpretation procedure has been developed by which 
Contents 

1 Introducthn 

2 

3 Procedure of evaluation tests 

4 Method of fog simulation 

Description of evaluated light configurations 

4.1 Basic principles 
4.2 Construction and operation of cockpit 

screen 
4.3 Adjustment and calibration of screen 

mechanism 
4.4 Filter assembly 

5 Measuring equipment 

6 Interpretation of test data 

I. Introduction 

During the last few years representatives of the Nether- 
lands have repeatedly made ,proposals for improving 
existing visual aids at international conferences on standard- 
ization of airport lighting. The purpose of this lighting 
is to- give the, pilot the visual information which he 
needs during the approach and landing manoeuvre in order 
to perform a successful landing, even when weather 
conditions, especially fog, deprive him of the natural 
visual references. These proposals are based on several 
considerations, founded primarily on extensive experience 
and .critical study of the typical merits and imperfections 
of standardized systems for approach and runway lighting. 
Secondly, there is the need, becoming more and more 
economically pressing, for lowering the weather limits 
imposed for safety reasons and hence for making the 
regularity of scheduled airline operations 'less dependent 
on weather conditions at destination. Lastly, the light 
systems must satisfy the demands posed by future aircraft 
types, due to the hcrease in speed and decrease in 
manoeuvrability during landing. 

In  other countries, e.g. the USA, the UK and Australia, 
visual aids for approach and landing are also a subject 
of extensive study 'and research. All these studies are 

the mass of recorded data could be reduced to a numerical 
form, suitable for statistical analysis. This analysis gives rise 
to a preference of the Netherlands system over the 2 others 
investigated with regard to dircctional inform,ation and height 
guidance w,hen passing the threshold. No preference was found 
with respect to the approach height before the threshold and 
thc. quality of the lauding. 

Pilots' comments have also been collected, but only general 
conclusions could be drawn on the basic principles of the 
different configurations. 

7 .  Results and their statistical analysis 

7.1 Results 
7.2 Quality of approach 
7.3 Quality of landing 
7.4 Heart-beat factor 
7.5 Wind speed and direction 

8 Verbal comments 

9 Conclusions 

9.1 Test procedure and interpretation of 
results 

9.2 Verbal comments 
9.3 Flight operational conclusions of results 
9.4 Future work 

Acknowledgements 

Appendix 1, II and 111 
characterized by. the point of view that the guidance 
required during the approach is available from standardized 
patterns. The configuration of lights applied before the 
threshold of .the runway according to these standards is 
assumed to offer a suitable solution to the problem 
although the desire to land at  still lower limits always 
remains. TheXudies carried out in the USA and the UK, 
for, example, have therefore been concentrated on trying 
to find the right configuration of lights in the landing 
zone! i.e. io the vicinity of' the ideal aiming poiit for 
touch-down. On the .other hand, the views.expressed by 
Netherlands experts in international circles for a consider- 
able time past, are based on the principle that the 
approach and runway lighting configuration ought to 
form an inregrated guidance system. This implies. that 
considering the efficiency of a ,  single part - e.g. the 
lay-out of the lights in the landing zone - isolated 'from 
the system as a whole, can hardly lead to effective 
improvement. 

Until recently, these ideas have been put forward as 
il result of theoretical studies and on the basis of experi- 
ments performed with models. In order to be able to 
support the Netherlands proposals with the convincing 
power of practical experience, the Netherlands Depart- 
ment of Civil Aviation set up  a study group of experts 
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interested in this problem 4). The task of the study group 
was to conduct flight tests for the 'purpose of evaluating 
the quality of a visual aid system conforming to the 
Netherlands proposals in comparison with that of system? 
hitherto accepted as international standards for this 
'subject. To this end, the study group was allowed to carry 
out a flight test programme and consequently to install 
the necessary experimental equipment on Eelde Airport, 
a modern airfield in the northern part of the Netherlands, 
extremely well suited for this purpose because of its low 
traffic density at night and its facilities as standard 
alternate to Schiphol Airport (Amsterdam). 

The following pages contain a description of the test 
procedure worked out by the study group and applied in 
this investigation, followed by a survey and an analysis 
of the results obtained. 

2. Description of evaluated light configurations 

With respect to approach lighting, the International Civil 
Aviation Organization (ICAO) has restricted its recom- 
mendations to the 'centre line and crossbars' pattern 
showing, by means of rows of lights before the threshold 
the extended runway centre line in co'mbination with at 
least one 'crossbar' perpendicular to this line. Two variants 
of this system are considered acceptable: the . system 
favoured by the Airline Pilots' Association (ALPA) and 

The chief characteristic of the ALPA system is that 
one long crossbar is located 1000 feet before the thres-. 
hold, whereas the Calvert system has a number of long 
crossbars at distances of 500 feet. The basic idea of the 
Netherlands proposal is to create an integration of non- 
visual and visual aids and of guidance during the approach 
as well as during the landing. To realize these principles 
the Netherlands system, contrary to both configurations 
mentioned above,' has an additional double row of red 
barrettes before the threshold and a red T, interrupting 
the centre line over the last 500 feet before the threshold. 
The purpose of this proposal is to obtain a better height 
and roll guidance, particularly in the phase immediately 
preceding the flare-out. In order to continue roll guidance 
until touch-down and to 'fill up the black hole' in this 
final stage of the landing manoeuvre, the double row 
is extended between threshold and aiming point 5).  

The flight tests were conducted to compare the light 

, the Calvert system. 

The study group was composed of experts representing: 
-- the Netherlands Department of Civil Aviation (RLDj. 
- the National Aeronautical and Astronautical Research 

Institute (NLR), 
- Schiphol Airport Authority, 
- Eelde Airport Inc., 
- the Netherlands Illuminating Engineering Society (NSvV), 
- the Laboratory of the Coastal Lighting Servicc, 
- the National Aeromedical Centre, 
-- KLM-Royal Dutch Airlines and 
- the Lighting Laboratory of N.V. Philips' Glaeilampen- 

5, Further discussion of the motives which have Icd to the 
various configurations is beyond the scope of the present 
paper. More details of the principles of visual guidance 
during landing underlying the Netherlands proposal have 
been put forward at various ICAO and IATA meetings. 

fabrieken 

configuration according to the Netherlands proposal with 
2 centre line and crossbar systems as standardized by 
ICAO. The Netherlands system has heen completed hy a 
two-gauge longitudinal system in the deceleration zone, 
the 2 other configurations by visual aids in the landing 
and deceleration zone according to existing systems in the 
U K  and the USA. The 3 complete configurations have 
been illustrated in fig. 1, from which the following details 
can be seen: 

System A .  This configuration contains the ALPA approach 
system, consisting of barrettes of lights at distances 
of 100 feet over a length of 3000 feet along the centre 
line of the runway before the hard surface and of one 
150 feet long crossbar of lights at a distance of 1000 
feet before the green-marked runway threshold. This 
approach system has been completed by a 60-feet narrow 
gauge runway light pattern with lateral barrettes at 
longitudinal distances of 200 feet over a length of 2400 
feet. 

Sysrem C .  In this configuration the centre line and cross- 
bars system of Eelde Airporl is incorporated, which 
consists of the same centre line configuration as system 
A with additional 150-feet long crossbars every 500 feet 9. 
The crossbar located at 1000 feet before the green-marked 
runway threshold consists of red lights. The system has 
been supplemented by runway lights in accordance with 
a principle indicated by the Royal Aircraft Establishment 
(UK): a 75-feet narrow gauge system with lateral barrettes 
at longitudinal distances of 250 feet over a length of 
2500 feet. The aiming point for touch-down (AP in fig. 1) 
is indicated by large barrettes. 

System B. This system differs from the preceding configur- 
ation by an additional double row lateral barrettes 
at intervals of 100 feet, beginning in red at 1000 feet 
before the runway threshold and extending in white from 
the threshold to the aiming point. A red T interrupts the 
centre line over the last 500 feet before the runway 
threshold. The threshold is emphasized by green longitud- 
inal bars 250 feet in length. The .runway lighting accord- 
ing to the Netherlands proposal'differs from the previous 
systems by a change-over from the white lateral bars to 
white longitudinal bars beyond the aiming point.. These 
longitudinal bars are placed in a 150-feet wide gauge 
system, each bar being 250 feet long with gaps of 250 feet, 
and in a 75-feet narrow gauge system of longitudinal 
elements 50 feet in length with gaps of 200 feet. Moreover, 
the aiming point is emphasized by lateral .bars between 
the inner.'and the outer gauges, ,resulting in a double 
L-shaped pattern. 

I t  should be mentioned that, as shown in fig. 1, the 
Netherlands system installed at  Eelde Airport had only 
1 block 500 feet in length between the runway threshold 
and the aiming point instead .of 2 blocks of 500 feet 
each, as recommended for. .normal circumstances. This 
single length of 500 feet was selected in the tests at Eelde 
on account of the local site of the ILS reference point 
a i d  the desire to bring the ideal aiming point of the 

6) In accordance with the approach light configurations on 
civil aerodromes in the Netherlands, the crossbars are of 
equal length. 
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visual configuration as close as possible to the ILS 
reference point. 

Many of the lights required for the 3 configurations to 

Fig. 2. One of the expeiimental lights (bottom) and one of 
the runway.lightS (top) aut of the permanent installation. 

. .  . .  * .  

Fig. 3. Experimental lights mounted on timber boards. 

be compared were already available at Eelde Airport io 
the permanent light system installed there. Actually, this 
contained all the lights needed for the approach configur- 
ation of system C (see fig. 1). The necessary extension of 
this system for the landing zone and the provisions for 
switching to the other 2 configurations were obtained by 
adding an experimental installation. 

One of the lights used before the threshold or along 
the outer edges of the runway is shown in fig. 2 in front 
of one of the runway lights forming pan of the permanent 
installation. It consists of a very light wire frame in which 
a prefocussed incandescent lamp with mirrored bulb is 
suspended and to which a colour filter can be attached. 
As a number of these lights had always to he combined 
into a long or short crossbar (see fig. l), the lights were 
mounted on timber hoards as illustrated in fig. 3. Immed- 
iately prior to the tests, these hoards could be placed 
at points previously marked on or in front of the runway. 
This ensured correct positioning and adjustment of the 
light bars. 

The experimental lights for the inner gauge of the 
landing mat consisted of a thin transparent plastic housing 
containing a miniature tubular line lamp in a small 
reflector. A permanent magnet mounted in the base of 
the light permitted it to be stuck to a thin steel plate glued 
on the runway surface. As the light distribution is fan 
shaped in azimuth, its orientation in this direction is not 
critical. This construction allowed the lights to he quickly 
placed before and removed after the tests. The whole 
assembly is of such light construction that no damage 
could be done to the lyres of an aircraft running across. 

3. Procedure of evaluation teN 

The principle of the procedure followed in the evaluation 
tests is that the effectiveness of the guidance obtained 
from a certain configuration of lights during the approach 
and landing must for a given type of aircraft he apparent 
from 
1 .  the quality of. the approach, 
2. the quality of the landing, 
3. the pilot’s effort to carry out the approach and landing. 

The effectiveness may, moreover, be illustrated by the 
pilot’s judgement and understanding of -the guidance 
obtained. 

The quality of the approach and landing as well 
as the pilot’s effort and judgement will be greatly influ- 
enced not only by the effectiveness of the guidance of a 
certain configuration of lights but also by the prevailing 
weather and.by the initial flight condition of the aircraft. 
Moreover, the performance of different pilots, even if 
flying under exactly the same condition, will by no means 
he the same. Fundamentally, the test procedure, therefore, 
must be such that data, enabling the above mentioned 
3 criteria to be assessed, are recorded in marginal weather 
(real or simulated) with a number of pilots large enough 
to eliminate personal influence on the final results and 
for different initial flight conditions.. A complete evalu- 
ation should, moreover, he based on tests with different 
types of aircraft. The present investigation, however, had 
for practical reasons to be restricted to one aircraft (type 
c-47). 
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In experiments of this nature the influence of the 
weather is perhaps the most troublesome 'problem. Far 
the purpose. of the investigation these tests, have. to be 
performed under marginal and invariable visibility cnn- 
ditions, which, however, occur hut seldom. In view of the 
continuity and the reliability of the tests, therefore, it is 
of utmnst importance tn find a method of simulating 
consistent marginal conditions. This simulation has been 
achieved by fitting, immediately behind the cockpit 
window, a movable screen, especially ,designed for the 
purpose of limiting the pilot's visual field to obtain a 
constant visual range such as prevails in homogeneous 
fog, independent of the longitudinal attitude and the 
height of the aircraft. For this constant visual range the 
rather low value of 1000 'feet has been chosen in order 
to emphasize possible differences in guidance character- 
istics of the light patterns to be compared. A detailed 
description of the movable screen and its control mechan- 
ism has been given in chapter 4 together with some 
illustrations indicating what part of the light configurations 
is visible to the pilot underneath the lower edge of the 
screen from different points on the flight path. In order 
IO simulate seeing conditions in fog as realistically as 
possible, a reduced value of the luminous intensity of the 
lights was chosen. Moreover, a neutral and a slightly 
diffusing filter were placed before the pilot's eyes. This 
simulation of seeing conditions in fog requires a meteoro- 
logical visibility during the test flights of at least 2 miles. 
Details of this part of the fog-simulation have also been 
given in chapter 4. 

In order to eliminate the influence of personal character- 
rstics of the pilot as far as possible, the number ot 
pilots involved in the tests must be such that the overall 
result can he regarded as characteristic for a great many 
pilots. The scatter of the results of a preliminary investi- 
gation carried out with 5 pilots, indicated that at least 
15 pilots should be included in investigations of this type, 
if each pilot carries out one test flight on each light 
pattern and from each initial position (see below), as was 
planned for this investigation. 

To ensure that the results would not be entirely depen- 
dent upon the influence of the drill followed by a parti- 
cular company, 18 pilots from 10 different companies, 
organizations and government institutes (see Appendix ~ 1 )  
participated in the tests. Sixteen of these pilots performed 
a complete set of approaches according to the test flight 
programme to be mentioned here below; 2 pilots could 
not complete their tests because of weather conditions. 

A complete assessment of the influence of the initial 
flight condition, when the pilot establishes visual contact, 
on the quality of the approach and landing would 
require a very extensive. flight test programme in view 
of the great number of variables involved (e.& horizontal 
and vertical deviation from the ideal flight path, angles of 
pitch and bank, heading and speed). ln'order to restrict 
the number of flights, 3 standardized initial positions 
have heen chosen: 
a. the ideal position: on the ILS glide path and on the 

runway centre line, 
b. on the centre line and 2 dots ILS deflection above the 

glide path (i.e. about S O  feet above the glide path at 
the locator where the glide path height is 200 feet) 
and 

c. on the. glide path and I dot ILS deflection left of the 

centre line (i.e. about 100 feet left of the glide path at 
the locator). 

These 3 positions were furthermore characterized by: 
- a IO-degree flap Hetting, 
- an airspeed of 100 kts IAS, 
- wings level, 
- a power setting consistent with an approach on the 

ILS glide path (initial positions a and E )  or with a 
somewhat steeper trajectory corresponding tn a 2-dots 
ILS deflection above the glide path (initial position b), 

- a heading equal to the runway heading corrected for 
drift (initial positions a and b) with - in case of the 
lateral displaced approaches (initial position c)  - an 
additional minor correction for a' trajectory corres- 
ponding to a I-dot ILS deflection left nf the centre 
line. 

It was decided to have each pilot carry out 1 approach 
from each of the 3 initial positions on each of the 3 light 
configurations. With the number of test flights per pilot 
thus obtained, no appreciable familiarization with local 
conditions could occur to .cause the differences in the 
systems under examination .to be largely levelled nut. 
As 16 pilots performed a complete set of approaches, the 
total number of test flights amounted to 16 x 3 x 3= 144. 
Of course all these flights could not be made in one 

9 flights per night. The actual order of flights has been 
given in Appendix 11. The order of the light systems and 
the order of the flights with a specific light system has 
been chosen at random in view of unavoidable influences 
such as fatigue, variations in direction and speed of the 
wind etc. 

On each test flight the safety pilot in the right hand 
scat carried out the first stage of the approach. For this 
purpose, this pilot had at his disposal all the available 
visual guidqnce without any limitation in addition to the 
information provided by the instruments. The aircraft was 
thus brought through a right hand circuit at 1000 feet 
to one of the 3 initial positions for the desired approach 
flight at about 500 feet height. The test pilot took' over as 
soon as visual contact was established. Commands of 
power settings could he given by the test pilot. The 
landing lights were switched on by, the safety pilot shortly 
before touch-down. The safety pilot took over control 
again as soon as the touch-down was definitely completed. 

A I  the beginning of this chapter it has been mentioned 
that the basic idea underlying the recordings carried out 
during each approach and landing is that the effectiveness 
of the guidance of a configuration of lights can he 
examined from the quality of the approach and landing 
and from the pilot's effort to carry them out. 

It was considered feasible to  obtain a fairly good 
assessment of the quality of an approach and landing 
from data on: 
- the actual flight path in horizontal and vertical pro- 

- the height at the moment of passing the runway 

- the distance between the threshold and the actual 

- the vertical deceleration of impact at touch-down. 
The pilot's effort  was assessed from information on: 

- the deflections of elevator, rudder and ailerons and 
- the frequency of the pilot's heart beat. 

I 
night. It was decided, therefore, to have each pilot do - 1  

jection until touch-down, 

threshold, 

touch-down point, 



6 

'The data required. for the assessment of approach and 
landing quality and of the pilot's effort .were obtained by 
recording the ,indications of the relevant aircraft instru- 
ments and of 'special instruments installed for this purpose 
in the,aircraft and on the ground. The deterinination 
of the flight. path of 'the approaches before passing 
the runway threshold was based upon the deflections 
from the, ideal ILS flight-path. For this purpose the 
outputs'of the ILS glide.path and localizer receivers were 
recorded, this. being a typical in-flight measurement. The 
landing flight-path (beyond the threshold), on the other 
hand, was reordedchy'ground .cameras. A detailed de- 
scription of the recording equipment with some samples 
of recordings has been given in chapter 5.  

The pilot's judgement on .the guidance obtained from 
a certain system was derived from the answers collected 
by. systematically and carefully -questioning the pilot 
shortly after the performance of each test flight. Details 
on this information are given in chapter 8. 

4. Methnd of fog simulation 

4.1 Basic principles 

The National Aeronautical and Astronautical Research 
Institute (NLR) was' requested to design and build a 
device, capable of simulating a constant visual range as 
prevailing in fog. of homogeneous density. This . visual 
range should he kept constant irrespective of the longi- 
tudinal attitude and the height of the aircraft during the 
approach.and the landing manoeuvre. The desired simu- 
lation is obtained by limiting the pilot's visual field by an 
opaque movable screen attached to the cockpit window. 
As illustrated in fig. 4 the upper limitation of the visual 
sector is determined by the lower edge of the movable 
screen and the lower limitation is defined by the shape 
of ,the cockpit cut-off:To avoid a reduction of the visual 
range with decreasing height, the screen has to he raised 
slowly during the approach at a rate dependent on the 
rate of descent of the aircraft. When the aircraft is flying 
at high altitude, the cockpit window is completely masked 
by the screen: When the aircraft has descended to the 

I d M 0 V A B L E  SCREEN 

height where the distance from. the ground - measured in 
the direction of the cockpit cot-off - is equal to the visual 
range to he simulated (the visual sector and segment thus 
still being zero), the driving gear of. the screen is switched 
on so that the bottom edge of  the cockpit window begins 
to clear. Provision  to ensure that the visual range is not 
affected by alterations in the longitudinal attitude of.'the 
aircraft is made by gyroscopic' siabilisation. A constant 
value of the visual range is obtained with the scieen 
moving according.to the principles just described, provided 
that the pilot's eyes have a fixed position relative to the 
aircraft. This has been obtained by means of a head- 
support firmly attached to the screen frame. The head- 
support also carries.a combination of filters which, to- 
gether with a convenient setting of the luminous intensity 
of the lights, simulates seeing conditions in fog. 

Fig. 5 shows which part of the' 3 light configurations 
is visible beneath the screen when the aircraft is at heights 
of '160,. 130, 100. and 70 feet respectively for a visual 
range of 1000 feet. Fig. 6 gives an impression of what 
i s  really seen by the test pilot of the configurations at 
these heights. 

4.2 Construction and operation of cockpit screen 
The' following. gives an explanation of the design prin- 
ciples of the screen system. If (see fig. 4): 
Z denotes the constant visual range to he 

e 
simulated, 
the longitudinal attitude of the aircraft, 
the sight ,angle, i.e. the inclination of the 
upper limitation of the  visual^ sector, 

h the height of the pilot's eyes above the 
ground, 

W the 'rate of descent of the aircraft, 
S the displacement of the movable screen 

measured from the intersection of the screen 
with a line. through the pilot's eye parallel 
to the longitudinal axis of the aircraft, 
the distance of the pilot's eye to lhe screen 
measured in the oirection of the longitudinal 
axis, 
the angle between the screen and the longi- 
tudinal. axis, 
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,pig. 4. Relation between screen position 5,  longitudinal altitude 8, height h and sight angle qfor a given visual range z 
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Fie 5. Visual segments,as determined by screen position at heights of 160, 130, 100 and 70' feet  for a visual range E 
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Fig. 6. Visual segments as seen by test pilot at heights of 160, 130, 100 and 70 feet 
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then it appears from fig. 4: 

As stated before, the device has to satisfy the basic 
requirement: 

From (1) and (2) it follows that s must be controlled by 
8 and h in order to obtain a constant visual range z .  For 
practical reasons not h but the rate of descent w is used 
as the second controlling variable. 

The relation between h and w is given by 

A device has been developed which performs the 
integration according to (3) mechanically. A description 
of this device - denoted by 'height-control unit' - is given 
below. 

The controlling variable 8 is obtained from a vertical 
gyro. 

I VERTICAL GYRO 
/ T h  1' 

ELEVATOR 
CHANNEL 
OF AUTOPILOT 

HEIGHT - 
CONTROL UNIT 

The device developed 'to carry out. the screen control 
according to the principles just mentioned is diagram- 
matically illustrated in fig. 7. Its main part consists of the 
elevator channel of a Bendix PB-IO autopilot, containing 
the following basic elements, forming a servo system: 

1. a vertical gyro measuring the longitudinal attitude B 
by means of a rotating differential transformer A, 
coupled to the lateral gimbal axis, 

2. a rotating differential transformer B, giving an output 

signal proportional to h,-h. The transformer is con- 
trolled by the height-control unit mentioned above. 
This device (see lower part of fig. 7) consists of a dc 
constant speed motor, driving the differential trans- 
former by means of a variable cone-cylinder trans- 
mission. During the approach the gear ratio is manually 
controlled by turning a transparent disc over an angle 
equal to the deflection w of a quick-response rate-of- 
descent indicator which is placed below the disc. The 
remainder of this apparatus is described below. The 
signal obtained in this way from the differential trans- 
former B and the signal 8 from the differential traos- 
former A determine the screen positions s io accordance 
with equations (1) and (2). 

3. a servo amplifier and a servo motor which drives the 
screen. The rotating differential transformer C is 
coupled to the axis of the servo motor. 

SERVO AMPLIFIER SERVO MOTOR 
/ #, - 

,/ ' ' I  o+q 

e t "FLE~BALL" 
SCREEN DRIVE 

ADJUSTABLE 
STOPS AND SIGNAL 
SWITCHES 

FRICTION COUPLING 

RATE- OF- DESCENT INDICATOR 

R E V E R ~ B L E  
D.C. CONSTANT 
SPEED MOTOR 

U 

Fig. 7. Schematic diagram of screen control system 

The practical application of the screen control apparatus 
requires the adjustment of an initial screen position so at 
a given altitude h, and a given longitudinal attitude 8,: 
the value of so is determined by substitution of h, and 
8, in equations (2) and ( I ) .  

The outputs of the 3 identical differential transformers 
A, B and C, having .a common electrical supply, are 
connected in series; the sense of the output of C is opposite 
to that of A and B. The resultant voltage is fed to the 
servo amplifier, driving the servo motor which comes to 
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rest when the resultant input voltage of the amplifier 
becomes zero. 

A potentiometer G is used to adjust the input-to-output 
ratio of this servo system. The potentiometer P controlling 
the supply voltage of B provides adjustment for equal 
output voltages of A and B per degree of rotation. 

The servo motor is provided with an adjustable eccentric 
disc driving a steel tape, which is coupled to a 'flexball' 
driving cable to the end of which the moving sireen is 

attached under spring load. The shape of the eccentric 
disc is determined by the equation (11, i.e. the tape moves 
over a distance s for an input angle 8 + according 
to (1). 

In the height-control unit a second transmission (with 
constant gear ratio) incorporates a friction coupling, 
enabling the differential transformer B t o ' be  at rest in 
both its limit positions, defined by 2 adjustable stops, 
without stopping the driving motor. Small in-flight correc- 

Fig. 9. Manual  t,pcrntion 
of hciphl-cunlrol unit 
during test flighlr 
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Table 1. General data of screen instaNation in C-47 
aircraft 

Visual range = 1000 ft  

e = + I .oo,  
@ at 276 ft = 16.0°. 
IAS = 100 kts . 
w = 445 ft/min (2.3 m/w)  

Slope of glide path = 2.5". 
at zero wind. 

e = + 6.0'. 
fp = 0.8". 
Height of pilot's eyes 
above runway = 14 ft. 

u = 57'. 
a = IS inch. 
Screen movement 
initiated at 295 ft. 
Screen opens at 276 ft.. 
Nominal duration of 
upward screen movement 
34.3 sec. 
Overall accuracy of p 
better than * 0.25'. 

tions of the screen position and, consequently, of the 
actual visual range can be applied if this should deviate 
from the prescribed nominal value due to a possible error 
of the PB-10 vertical gyro or to other circumstances. This 
is done by rotating the mounting plate carrying the stops 
by means of a band-operated gear (see fig. 1, below right). 
The correction is checked by means of a graph of s vs 0 
for the minimum sight angle p when the differential 
transformer B is turned to its stop for 'screen upward'. 
In this case according to (1) the position of the screen s 
is only controlled by the longitudinal attitude 8. The 
check may thus he performed at any convenient altitude, 
e.g. during the flight preceding the test approaches. 

In order to move the screen downward to the initial 
condition for a new approach, the motor driving the 
differential transformer B is of the reversible type. 

Fig. 8 shows the SCNO motor and eccentric-disc assembly 
as well as the instrument panel for checking the proper 
functioning of the installation.'On the left side of this 
panel is a precision instrument indicating the longitudinal 
attitude 8, which is sensed by a Sperry A 12 vertical gyro. 
A pendulum inclinometer, intended as a stand-by instru- 
ment, is situated at the right side. At the centre of the 
panel a desynn indicator measuring the screen position 
s is mounted. 

Fig. 9 shows the operator of the height-control unit 
turning the perspex disc on the rate-of-descent indicator. 
To the right of this indicator the correction device for 
small deviations from the nominal visual range can be 
seen. The instrument panel in the background is provided 
with: 
- a turn and hank indicator (left) to avoid untimely 

corrective action of the operator when the aircraft 
is turning, 

- an altimeter (centre) used to determine the moment. 
when the upward screen motion has to be started, 

- 2 signal lights for the screen-position limits and 
- a switch for moving the. screen up- and downward. 

Before the flight tests the position error of the aircraft's 
static-pressure system in the approach configuration has 
been measured. It appeared that with the altimeter 
adjusted to zero at the moment of touch-down, the 
readings during the approach were in very good agreement 
with the true height of thc,aircraft. 

A sketch of the screen itself is given in fig. 10. The 
screen is moved by 2 pivoting rods in such a way as to 

obtain a displacement which is a combination of a 
rotational. and a rectilinear motion, ensuring that the 
plane through the pilot's eyes and the lower edge of the 
Screen is always perpendicular to the aircraft's plane of 
symmetry. The screen is made of a.light-weight and rigid 
sandwich construction and is guided by ball bearings 
moving in slits mounted on a flexible base plate, thus 
ensuring a smooth motion even in case of slight distortion 
of the base plate when secured to the cockpit-window 
frame. Fig. 11 shows the screen device as installed in the 
aircraft. 

For the installation in the C-47 aircraft some important 
data are given in table 1. 

4.3 Adjustmeqt and calibration of screen mechanism 
h i t s  original form the PB-IO servo motor is equipped 
with an electrically operated coupling to the elevator 
control system. This coupling can he activated in any 
desired combination of longitudinal attitude, screen pos- 
ition and height, obeying the basic equations ( 1 )  and (2); 
However, it is most practical to accomplish the coupling 
during the ,pre-flight check (see below), so that during 
flight the screen position needs only to be. checked by 
means of the s vs @-graph as mentioned before. 

For the adjustment and calibration of the installation 
on the ground a hoard provided with a (0 + p)-scale is 
mounted on ttie cockpit nose perpendicular to the longi- 
tudinal axis of the aircraft; the intersection of this axis 
with the board is :he point for which '0 + p = 0 (see 
fig. 4). The scale on the board is observed from the test 
pilot's eye position. Increasing or decreasing the longi- 
tudinal attitude of the aircraft (or only of the case 
containing the PB-lO"vertica1 gyro) by a known angle 
should result in a variation of 0 + p by the same angle. 

The calibration hoard also provides. the possibility of 
accurate and efficient coupling of the eccentric-disc and 
screen-drive assembly in the required position relative to 
the servo motor on the ground. For  this purpose the 
screen, with the differential transformer B in its .limit 
position for 'screen upward, is placed in a position so 
that on the (0  + p)-scale of the hoard the sum of the 
actual attitude angle 0 and the minimum value of fp 
is read. Then the coupling is energized directly from the 
aircraft battery in order to avoid inadvertent uncoupling. 

The height-control unit is calibrated separately by 
applying increasing static pressure to the rate-of-descent 
indicator and altimeter, and determining the time to 
'descend' from a known altitude with the disc manually 
operated to follow the pointer of the rate-of-descent 
indicator. 

4.4 Filter assembly 
As mentioned before, seeing conditions in fog were 
simulated in the first place by adjusting the luminous 
intensity of the lights on the ground to a low value and, 
moreover, by applying a combination of filters, adapted 
to this value, in the pilot's head-support. The luminous 
intensity of the lights was turned down to 50 cd, a value 
at which no intolerable color distortion or non-uniformity 
of luminous intensity occurred. The combination of 
filters, placed 4 inches in .front of the 'pilot's eyes in the 
head-support, consisted of a clear neutral filter with a 
transmission of 10 % , and a. slightly diffusing sheet of 
perspex with a transmission of 80 % . The shape of the 
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Fig. 10. Sketch of cockpit' screen 

1 AND 2 PIVOTS ON SCREEN 
DRIVE 3 AND 4 FIXED PIVOTS 

filter and the perspex sheet allowed the pilot an unob- 
structed view of his flight instrument panel. 

An impression of the diffusing properties of the penpex 
sheet can he obtained from results of measurements 
which have been carried out in an arrangement shown 
schematically in fig. 12. A light source L with a diameter 
of 1 cm has been placed at a distance of 10 m from the 
perspex sheet PS. From the point P at a distance of 0.5 m 

DETAIL "FLEXBALL" CABLE 

on the opposite side of PS, the bright spot visible through 
PS is viewed through a microphotometer. Fig. 13 gives 
the relative luminance of the bright spot as a function 
of the radius r indicated in fig. 12. These measurements 
have been done at .a distance of 0.5 m between the 
photometer and PS as the diffusing perspex sheet was 
placed originally on the cockpit window, thus roughly at 
a distance of 0.5 m from the pilot's eyes, 

Fig. 11. Cockpit 
installation. 

screen 
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Fig. 12. Measuring 
arrangement for 
determining diffusing 
characteristics of perspex 
sheet. 

In  real homogeneous fog, lights at distances near to 
the visual range will he attenuated more than in the 
simulating device just described. This can be seen from 
fig. 14 giving the illumination on the pilot's eyes from 
a light source with a luminous intensity of 50 cd as a 
function'of the distance from the pilot to this light source. 
The curved line A shows the eye illumination when the 
light source is seen through a homogeneous fog with a 
meteorological visibility of 1000 feet. The straight lines 
B and C apply to a clear atmosphere when the source is 
seen directly (!3) and through a filter with a transmission 
of 8 % (C) (i.e. the transmission of the combination of 
the neutral and ,the diffusing filter). The figure shows 
that in the latter case the lights at a distance from the 
pilot almost. equal to the visual range simulated by the 
movable screen (1000 feet) are seen brighter than in real 
homogeneous fog, while at short distance the lights are 
seen more dimly. 

There is another reason why visibility conditions in 
homogeneous fog have not been simulated exactly by 
the device described in this chapter. When the aircraft 
hanks, the plane through the pilot's eyes and the lower 
edge of the movable screen does not intersect the ground 
plane along a line which is seen parallel to the horizon 
by the pilot. Consequently, instead of a limitation of the 
visual segment of the light pattern according to a line 
perpendicular to the centre line, as would occur in homo- 
geneous fog, the far limit of this visible segment is 

RELATIVE LUMINANCE 
OF BRIGHT SPOT 

0 0 2 5  050 0 7 5  100 125 
-RADIUS 7 O F  BRIGHT SPOT I N  mm 

Fig. 13. Results of diffusion measurements on perspex sheet. 

.LIGHT SOURCE L 
DIAMETER I c m  

determined by a tilted line, the amount of tilt depending 
on the angle of bank of the aircraft. The number and the 
pattern of lights visible to the pilot at each moment may, 
therefore, differ slightly from what can be seen under 
conditions of real homogeneous fog with the simulated 
meteorological visibility. At a certain moment, e.g. the 
extreme end of a long crossbar may become visible, the 
remainder of it still being obscured, whereas in homo- 
geneous fog all the:lights of the crossbar enter the visual 
field simultaneously. However, as the angle of bank was 
always small during the test flights, some influence of 
the movable screen, following the roll of the aircraft, in 
favour of one of the light patterns is hardly imaginable. 

As.the test flights have been carried out by night, the 

E I N  t m / r t z  

10' 102 loJ,, IN rt 

Fig. 14. Illumination E on the pilot's eye in homogeneous fog 
with a meteorological visibility of 1000 feet (A), clear 
atmosphere (B) and through neutral filter (C) as a function 
of distance r hetween pilot's eye and ohserved light source. 
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Fig. 15. Measuring equipment. 

luminance of the movable screen and that of its immediate 
surroundings in the cockpit, as well as that of the ground 
autside as seen by the test pilot (through the filter comhin- 
ation with a transmission of 8 %) were so low, that the 
lower edge of the movable screen could hardly he 
discerned. This is an important circumstance, as the 

permanent presence of a line under a fixed angle to the 
aircraft frame in the most important part of the pilot's 
visual field would provide him with some information on 
the hank of the aircraft when comparing this line with 
the horizon information 'obtained from the crossbars in 
the light pattern. 

Finally, the filter set before the pilot's eyes does not 
simulate exactly the luminance distribution in a field 
consisting of a pattern of lights in fog. The immediate 
surroundings of the lights obtain a certain luminance 
depending on the total luminous flux and on the beam 
spread of the individual lights.'The more lights a pattern 
contains, the higher the average luminance of the fog 
through which the lights are seen, and the shorter the 
range at which lights of a certain luminous intensity are 
revealed. The same is true for the average luminance of 
the diffusing sheet of perspex before the pilot's eyes. 
However,' in a homogeneous fog of the simulated density 
the effect will he more pronounced. At first sight, there- 
fore, it seems that the chosen simulation of fog favours 
the system with the largest number of lights. If such an 
effect should exist, however, it has nothing to do with 
the comparison of light configurations. It would only 
affect the optical design of the lights which must be 
chosen such that the required visual range of the lights 
is obtained in 'the configuration considered, taking into 
account the atmospheric absorption and the scattering of 
the light corresponding to the simulated fog density. 

As a whole, there is a good agreement between simul- 
ated and real seeing conditions and this was confirmed 
by the test pilots and by many other pilots who have 
inspected.this test installation. In their opinwn it provides 
a realistic simulation of what is generally observed in fog. 

5. Measuring equipment 
Measuring equipment has been installed in the C-47 test 
aircraft for continuous recording of the quantities men- 
tioned in chapter 3 necessary to assess the quality of the 
approach and landing and the pilot's effort. A multiple 
trace recorder and a photographic observer have been 
used for this purpose. A second automatic observer used 

TIME BASE VENT MARKER TOUCH- DOWN 

HEART-BEAT FR=\ SYNCHR. W i H  PHOTO. OW. \ 
Fig. 16. Typical multiple 
trace recording. 

REFERENCE LINFJ HEART-BEAT PULSE \ 
ILS INNER MARKER L A M P  
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Fig. 17. Typical picture of photographic observer (1. airspeed indicator, 2. altimeter, 3. artificial horizon (pitch and bank), 
4. gyrosyn slave indicator (magnetic heading), 7. topaxis accelerometer, 9. elevator deflection indicator, IO. rudder deflection 
indicator, I I. aileron deflection indicator, 13. screen position indicator, 14. precisian gyroscopic longitudinal attitude indicator, 
19. synchronizer (one rev. long pointer in 0.75 sec, closing contact in 12 o'clock position exactly), 20. split second watch (one 
rev. every 6 kc), 21. light signals for 'up' and 'down' position of height-control unit, 22. event marker, 23. counter). 

in preparative tests did not contain instruments of essential an 'on-off' signal every second and omitting an 'off' 
imponance for the underlying investigation. .In addition, signal every 10 seconds. 
some instruments for checking the proper functioning of The photographic observer equipped with a modified 
the screen installation were installed. 16-mm cine camera running at a speed of 4 frameUsec, 

The equipment is shown in fig. 15. On top of the was used to record indications of the instruments shown 
upper photographic observer, the heart-heat frequency in fig. 17 (numbers of instruments agree with those of 
measuring equipment may be seen in front of a servo- parameters, etc. mentioned below). 
amplifier and supply box of the attitude indicator belong- On the airfield 2 Leica cameras were placed beside the 
ing to a Sperry A 12 vertical &IO, the latter being mounted runway and perpendicular to it for the purpose of record- 
on the base plate in front 'of the trace recorder. ing the landing flight-path. 

In the trace recorder (type Beaudouin A-1320) light The following parameters, events and signals were 
spots create traces on photographic paper - moving with recorded by the trace recorder (referred to below as 
a speed of 0.22 inch/sec - by means of galvanometers tr. rec.), the photographic observer (ph. obs.) or the 
installed in the recorder. A typical recording is reproduced ground cameras: 
in fig. 16, showing 2 types of traces. First, there are the a. parameters describing general flight condition: 
continuous traces produced by the galvanometers. The 1. airspeed indicator connected to the co-pilot's pitot- 
deviation of these traces, measured against a constant static system (ph. obs.); 
reference line at the bottom of the film, are proportional 2: altitude: altimeter connected to the co-pilot's static 
to the current through the galvanometers. The' relation 
between trace deviation and input signal must be deter- 3. longitudinal attitude (angle of pitch) and lateral inclin- 
mined by calibration. Secondly, marker traces are p r e  
duced consisting of parallel straight lines off-set slightly by 4. magnetic heading (ph. obs.); 
an instantaneous 'on-off signal. These traces, in fact, b. parameters determining quality of approach and landing: 
only mark the exact moment at which an event takes 5 .  ILS localizer deflection: the input current of the 
place. For instance, the time base is formed by a marker localizer indicator, giving sideways angular deviation 
trace connected to an electrical chronometer producing from the centre line (tr. rec.); 

system (ph. obs.); 

ation (angle of hank) (ph. obs.); 



Fig. 18. Typical recording of ground camera. 

6. ILS glide path deflection: the input current of 'the glide 
path indicator, giving vertical angular deviation from 
the ILS glide path (tr. rec.); 

7. top-axis kceleration (deceleration of impact at touch- 
down) (ph. ohs.); 

8. actual flight path from threshold until touch-down: the 
recordings are made by the ground cameras with the 
shutters continuously open during the landing. The 
successive images of the aircraft's anticollision light 
(the timing of which is recorded as described in item 
16) together with the images of fixed reference lights 
on the ground and of a synchronization lamp behind 
the cabin window make it possible to determine the 
flight path in the landing region in correlation with 
the test data recorded in the aircraft. A typical recording 
of a ground camera is given in fig. 18; 

E. parameters determining pilot's effort:  
9, 10 and 11. elevator, rudder and aileron deflections 

12. heart-beat frequency: this signal is derived from a small 
unit incorporating a miniature light bulb and a photo- 
electric cell, which is clipped to the ear-lobe of the 
test pilot. Blood pulses through the arteries vary the 
amount of light received by the photo-electric cell. 
Two types of traces are recorded. Both show deviat- 
ions for each blood pulse, hut in one of them the 
height of the pulse is proportional to the blood pulse 
frequency also (tr. rec.) 7); 

d. parameters determining the visual range acrually ot- 
tained: 

13. position of cockpit screen (ph. obs.); 
14. longitudinal attitude (precision measurement) (ph. ots) 

(For the calculation of the actual visual range the 
true height must also be known (see 2 and 8)); 

e. event marks and other signals: 
15. moment of ignition of the synchronization light behind 

a cabin window. The recording is needed for establish- 
ing the correlation between the flight path recordings 
on the ground and the recordings of the airborne 
equipment (tr. rec.); 

(ph. ohs.); 

7) Far further details, see: 
'A transmission cardiotachometer for continuous measure- 
ments on working persons' by G. A. Harten and A. K. 
Karoncai, Philips Technical Review 21, p. 304, 1959/60. 

16. the rotations of the aircraft's 'anti-collision light by 
means of a photo resistor in the (perspex) navigation 
dome (tr. rec.); 

17. moment of touch:down. The event marker was con- 
trolled manually (tr. rec.); 

18. ILS inner-marker beacon signals, facilitating the 
identification of the recordings (tr. rec.); 

19. correlation between the -recordings of photographic 
observer and trace recorder: an instrument with 2 
pointers rotating at a constant speed of 1.3 and 0.13 
revolutions per sec respectively, is mounted in the 
photographic ohserver. Each time the fast pointer 
passes the zero mark of the dial a contact is closed 
resulting in an 'on' signal of a marker trace in the 
trace recorder; 

20. time: 'on-off' signals every second (tr. rec.) and split 
second watch (ph. obs.); 

21. light signals, indicating 'up' and 'down' positions of 
the screen (ph. ohs.); 

22. event marker for the indication of other important 
moments (ph. obs.); 

23. counter number of every shot (ph. obs.). 

A normal tape recorder and a miniature .wire recorder 
(as stand-by) were used to record all remarks made by 
the test pilot or the test personnel during the test flights 
in order to facilitate an explanation of irregularities in the 
approaches and landings Bfterwards. It turned out, how- 
ever, that there was no need for these recordings. 

The stability of the ILS system was frequently checked 
by carrying out a perfcct cross needle approach and 
recording the actual flight path by means of a ground 
tracking cine-camera, the latter being synchronized with 
the trace recorder in the aircraft. 

Calibration of the ILS signals was achieved by determin- 
ing the relation between 'the difference in depth of 
modulation (DDM) of the ILS transmitters for various 
deviations from the ILS glide path in azimuth and 
elevation, followed by the calibration of the trace recorder 
for various signals applied to the input of the ILS localizer 
and glide path receivers. 

The actual visual range obtained during the flight tests 
could he calculated from the recorded values of longi- 
tudinal attitude 0 and height h by applying equations (1) 
and (2) of chapter 4; the value. of h was taken from the 
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ground-camera pictures and, for larger altitudes, from 
the altimeter recordings. These calculations showed that . a deviation of f 100 feet from the nominal visual range 
- which was 1000 feet for all tests - was generally not 
exceeded, except during the final part of the flare-out. 
This agrees with the overall accuracy of the sight angle 
cp governed by the cockpit screen installation which, as 
stated in table I ,  was found to he better than 10.25". 

TO ensure the deviations of the visual range to be 
small also at very low heights just prior to touch-down, 
a much higher accuracy of the sight angle and, conse- 
quently, a better class of vertical gyro for the attitude 
stabilization of the cockpit screen would be required. 

Generally, the simulated visual range in the touch-down 
region exceeded to some extent the nominal value due 
to deceleration effects on the vertical gyro. 

6. Interpretation of test data 

From the recordings obtained with the equipment described 
in the preceding chapter the following data have been 
derived: 
a.  on the quality of the approach 
- approach height (actual flight path projected on a 

vertical. plane parallel to the runway centre line) 
until threshold, 

- approach ground-track (actual flight path projected 
on a horizontal plane) until threshold, 

b. on the quality of ihe landing flight path and the touch- 
down: 
- height (as a .  function of distance) from threshold 

- distance of touch-down point from runway threshold, 
- vertical deceleration of impact at touch-down, 

- control movements, 
- pilot's heart-heat frequency during approach and 

The data on the actual flight path derived from the 
recordings, if not. stated otherwise, are related to the 
lowest point of the main undercarriage, projected to the 
aircraft's plane of symmetry. 

Some of the data on the quality of the landing and on 
the pilot's effort can be analysed and compared between 

until touch-down, 

c. on the pilot's effort: 

landing. 

NOT TO SCALE 
QUALITY 

light patterns in a rather simple way. Others, specially 
those determining the flight path and the data on the 
control movements, do not easily lend themselves to 
direct comparison and to statistical analysis. In  view of 
this, a special evaluation procedure *) has been applied 
in order to he able to express the quality of the flight 
path during approach and landing in one or two figures 
of merit. 

The quality of rhe approaches and landings has been 
expressed in marks based on the shape and the location 
of the actual flight path. The marks varied linearly from 
0 to I O  between unacceptable and ideal performance 
respectively. 

For the approach quality the actual flight path is 
considered from a point 3000 feet before the threshold, 
when the pilot should establish visual contact, until the 
threshold. The assessment of the quality of the approach 
has been based on the 'relative ease' with which the pilot 
can bring the aircraft into an 'entrance portal' at the 
runway threshold. This portal is of a rectangular shape 
and has a height of 16 feet and a width of 30 feet (see 
fig. 19 and 20). The centre of the portal is chosen 'at 
37 feet above the runway, equal to the average height 
above the threshold of all flights made during the 
preliminary investigation referred to in chapter 3. .  The 
relative ease is in the first place determined by the 
minimum size of a straight tapered channel by which 
the actual flight path can he enclosed. The channels 
corresponding. to the quality marks 1 to 10 have a 
rectangulk cross section with horizontal and vertical 
sides. The linear dimensions of the entrance cross sections 
of the channels are 3.6 times those of their exit sections 
(lorated at the runway threshold), permitting a certain 
channel to he defined completely by its exit section only. 
Additionally, the axis of an approach channel should 
run through the above mentioned entrance portal at the 
theshold. Two marks for the quality of the approach 
have been determined, one for approach height with the 
aid of fig. 19 and one for approach ground-track ,with 
the aid of fig. 20. 

8 )  This procedure has been proposed by ir. F. E. Douwes 
Dekker of the National Aeronautical and Astronautical 
Research Institute (NLR), Amsterdam. 

THRESHOLD MARKS 

CENTRE OF CHANNEL EXIT TO 

HEIGHT .OF 
16 ft. ENTRANCE 

3000 f t  
\ 

Fig. 19. Principle of assessment of approach height quality. 
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NOT TO SCALE THRESHOLD 

CENTRE OF CHANNEL EXIT TO 
BE WITHIN ENTRANCE PORTAL 

QUALITY 
MARKS 

APPROACH CHANNELS 

Fig. 20. Principle of assessment of approach ground.track quality. 

To obtain full marks (10) for approach height the 
actual flight path slope should he constant, in other 
words, the vertical dimensions of the enclosing channel 
must be zero (see fig. 19). To obtain full marks (10) for 
approach ground-track it must he possihle for the actual 
flight path to he enclosed by a channel with an initial 
width of 1 I feet tapering to 3 feet at the threshold (see 
fig. 20). All approach channels with an exit height of ' 
more than 27 feet or  an exit width of more than 31 feet 
are judged unacceptable, giving no marks (0)  for approach 
height and approach ground-track respectively. It follows 
from what has been stated before that no marks (0) are 
given also in case the axis of an approach channel does 
not intersect the entrance portal. It ought to he remembered 
that the slope of the approach channel was not prescribed, 
because the actual initial position, 3000 feet before the 
runway threshold, could not be influenced by the test 
pilot. 

The process of judgment of the approach quality u'ah 
amended, in so far as ground-track is concerned. in case 
the initial approach position of the aircraft was purposely 
deviated sideways from the centre line hy the safety pilot. 
The tapering ratio of the channel wils than douhled to 
7.2, while its axis was curved gradually from the initial 
direction on to the centre line at the threshold. 

The quality of the landing flight potlr ond rke rourk- 
down has only been evaluated in height from the threshold 
over a length of 2700 feet down the runway, when the 
touch-down should have been completed, and in the 
location of the touch-down point. Here also 2 quality 
marks, one for hrishr from threshold until touch-down 
and the other for dirrance of touch-down from threshold, 
have been determined. The quality mark for height from 
threshold until touch-down is again considered to be 
determined by the minimum size of a tapering channel 
by which the actual flight path can he enclosed. 

THRESHOLD 

TO BE WITHIN 

NOT TO SCALE 
ACTUAL 

ACTUAL 
TOUCH - DOWN 

1000 f t  1500 f t  

Fig. 21. Principle of assessment of quality of landing flighf-path and touch-down. 
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The shape and the dimensions of the channels are 
chosen on the hasis of the following considerations 
(see fig. 21). 

For a landing flight path and a 1ouch:down judged 
with the highest quality mark (IO), the aircraft should 
pass the threshold at some height within the entrance 
portal and descend with a constant slope of 2.5" until 
flare-out. Moreover, the landing should be cdntinued 
by following a flight path parallel to the one corresponding 
to a height at threshold of 31 feet and a distance of 
touch-down from threshold of 1000 feet, the flare-out 
starting at a height of 11 feet and covering a distance 
of 400 feet. This defines the channel of zero thickness 
of fig. 21, to which the highest quality mark for height 
from threshold until touch-down and for the touch-down 
itself ( IO)  is attached. To~allow for passing the threshold 
at an arbitrary height within the entrance portal, the 
channels may be displaced 200 feet forward or backward 
which also means that a touch-down qualified with mark 
10 may occur at a distance between 800 and 1200 feet. 

No marks (0) are given for height from threshold until 
touch-down, when the touch-down takes place at a 
distance of 1000 feet from the threshold after having 
passed the threshold at a height of less than 1 foot. The 
vertical distance between this height of I foot and the 
height of the centre of the entrance portal (37 feet) is 
divided equally over the channels belonging to the marks 
1 to 9. The vertical position of the upper and lower 
boundaries of.the channels near the threshold i s  symme- 
trical with respect to the channel with mark IO.-The 
upper boundary of the channel with mark I is further 
determined hy the requirement that the point of touch- 
down is not allowed to be more than 2700 feet beyond 
the threshold. This means that the height above the 
runway is considered unacceptable (quality mark 0 )  when 
it surpasses a value varying from 89 feet at threshold 
to zero at 2700 feet beyond threshold. The height of 
89 feet corresponds with the point of intersection of the 
upper boundary of the channel, carrying quality mark 1, 
with the vertical line through the extreme left threshold 
position, when the grid of fig. 21 is displaced 200 feet 
in the landing direction. 

n e  second quality mark (for the distance of touch- 
down from the ,threshold) is read off from the scale along 
the horizontal axis of fig. 21. It has already been stated 
that full marks (10) are obtained when the touch-down 
occurs between 800 and 1200 feet. The scale shows that, 
when making allowance for passing the threshold at an 
arbitrary height within' the entrance ~ portal, no quality 
mark (0) for touch-down distance is obtained when the 
distance from the threshold is less than 300 or more than 
2700 feet. 

Some corrections bad to be applied to the several 
quality marks determined according to the procedures 
just described. The quality marks for approach height 
and approach ground-track have been corrected for 
deviations in actual runway visual range from the intended 
1000 feet. One point was added to or subtracted'from 
both marks in a few cases, where this deviation was'.more 
than 100 feet shorter or longer than the nominal one 
respectively. The quality mark ' for  touch-down was 
cbrrected for  rough landings by subtracting one point for 
every 0.5 g vertical deceleration at the impact. 

For the appraisal of the pilot's effort  based on the 

recordings of the control movements and of the pilot's 
heart-beat frequency, a .'travel index' and a 'heart-beat 
factor' have been introduced respectively. For the travel 
index a figure proportional to the total travel of elevator, 
rudder and ailerons over a certain period has been 
deduced from the recordings. This period was taken 
from 5 seconds before until 10 seconds after. passing the 
inner marker. The heart-beat factor is the ratio of the 
heart-heat frequency of the test pilot at touch-down and 
that just prior to the approach, when the test pilot was 
already in his cockpit seat but not yet flying the aircraft. 

7. Result and their. statistical analysis 9) 

7.1. Results 
Appendix 111 contains a complete survey of the results, 
obtained with the 16 pilots who carried out the whole 
test programme. These results contain the quality marks 
for approach height, approach ground-track, height from 
threshold until .touch-down, touch-down and furthermore 
the travel indices for the. control movements as well as 
the heart-beat factors. These marks, indices and factors 
have bcen dcduced from the recorded results as described 
in the foregoing chapter. The appendix cant?' .ins moreover 
the heights above the threshold and data on the wind 
speed and wind direction. 
7.2 Quality o f  approach 
7.2.1 Quality of approach height, travel index for elevator 

and heighi o f  the aircraft at the moment of  crossing 
the runway threshold 

Table 2 shows the average of the quality marks of the 
approach height and the average of the travel indices of 
the elevator for each combination of initial position and 
light system. 

Table 2. Average of approach height quality marks and 
of elevator travel indices 

Initial position Ideal High Left Average 

3.9 3.7 3.7 
3.8 3.9 5 C 2.8 4.2 2.6 3.2 

Approach 
height 
quality 
mark 

Elevator E A 18.8 ' 19.6 18.0 18.8 
travel B 20.4 21.9 16.0 19.5 
index 2 C 19.4 17.6 20.8 19.3 

The standard deviation of the averages per system IS 

0.32 for the approach height quality mark and 1.04 for 
the elevator travel index. This means that it can be 
concluded with a confidence of 95 % that there is a 
real difference in approach height between the systems 
B and C .  

Naturally, the scaling of the quality marks given in 
chapter 6 may be criticized and therefore it may be 

O) The statistical analysis has been carried out under the 
supervision of Prof. ir. I. W. Sieben of the Technological 
University, Delft. 
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declared inadmissible to attach technical verdicts to the 
differences between the averages mentioned above. How- 
ever, if one is convinced that the (unknown) score which 
ought to be,used is a monotnneously increasing function 
of the score used here. the conclusion stated in this 

be seen from Appendix 111, quite a lot of test data are 
lacking. However, from this appendix the average dif- 
ference in height for the 3 systems for each pilot, shown 
in table 4 can be derived. 

paragraph may still he reached .by slightly different .,. Average difference in height above threshold 
reasoning, and these conclusions will then .depend ' to  a 
much lesser extent on the appraisal scale. 

As already marked, 16 pilots each made 3 flights with 
each of the 3 systems. The sequence of the systems was 

Pilot . System B -System A System B - System C 

chosen at random. For each pilot the average quality I -11.3 - 5.3 
marks for amroach heirht of the 3 systems can he ranked 2 -19.5 -30.5 .. - 
according to magnitude with rank 1 for the system with 
the lowest average, 3 for the system with the highest 
average and 2 for the third system. If the average marks 
for 2 systems are equal, each system is given the average 
of the corresponding ranking numbers. The same can be 
done for the elevator travel indices. In this way the 
ranking numbers of table 3 will he obtained. 

If there were no difference between the 3 systems, the 
same total for each system would be expected at the 
bottom of the table. If that is not the case, it may be 
due to chance or to a real difference between the 
systems. The latter can only be decided upon when the 
differences hetween the totals are large. A yardstick for 
this is provided by the Friedman's test for m rankings. 
It can be concluded from this with alnjnst 9 7 5 %  
confidence that on average system C gets a really lower 
appraisal of approach height than systems A and B. The 
data on elevator movement, however, do' not show 
significant differences between the light patterns. 

Table 3. Ranking numbers of t u t  flights according fo 
magnitude of approach height qualify marks 
and of elevator travel indices 

Approach height Elevator 
Pilot quality mark travel index 

A B C  A B C  

1 3 1 2 1 2 3 

3 3 2 1 3 2 1 
4 1 3 2 1 3 2 
5 1 3 2 3 2 1 

. 6  3 1 2 2 1 3 
7 2Y2 2'h 1 3 2 1 
8 1% 3 1 Y2 1 3 2 
9 2 1 3 3 2 1 

10 3 2 I '  3 2 1 
11 I 3 2 2 3 1 
I2 2 3 1 3 2 I 
1 3  3 2 '1 1 3 2 
14 2% 2% 1 2 1 3 
1 5 '  2 3 1 3 1% 1% 
16 2 3 1 1 2% 2% 

2 2'h , 21% 1 1 2 3  

Total 35 37% 23% 33 34 29 

3 
4 
5 
6 
7 
8 
9 
IO 
I 1  
12 
13 
14 15 

16 

- 4.5 
-29.5 
-11.0 
-13.0 + 9.7 
-13.0 
t l O . 0  
- 3.0 - 2.1 
+ 4.0 
- 5.2 

-12.0 
- 9.7 . 
+ 4.7 

-25.7 
-15.0 
- 2.3 
-20.7 
- 7.3 + 1.0 
+lS.O 
-20.0 
-34.0 
+22.0 
f 5.5 
-10.7 
-10.0 
-14.5 

From these figures, with the aid of the 'Wilcoxon 
symmetry test' it can he concluded with 95 % to 97.5 % 
confidence that the average height above the runway 
threshold for the systems A and C is greater than for 
system B. There is not much difference between A and C. 

The average height above threshold with system C 
(54 ft) proves with great confidence (more than 99 %) 
to be really greater than .with system B (44 ft), whilst 
with system A this height (51 ft) is also really greater 
than in the case of System B but now to a level of 
confidence of 98 %. The test used here is commonly 
referred to as 'T-test'. Its use is in 'fact not entirely 
justified for this kind of experimental data. It can be 
argued, however, that this unjustified application of the 
T-test results in a decrease of the level of confidence. 
Therefore, the values of 99 % and 98 % can"he considered 
as conservative. The standard deviation of the height at 
the individual flights with the systems ,A, B and C is 17.3, 
14.8 and 15.3 respectively. The differency in this standard 
deviation are of no importance. 

From the date in this paragraph the following general 
conclusions can he drawn: 

The quality of the approach, as demonstrated in the 
approach height is worse for light system C than for 
A and B. With the light systems A and C. the runway 
threshold is generally cro'ssed at a greater height than 
in the case of system B. 
As will he indicated in paragraph 7.3, this has no 

The distance hetween this light and the lowest point of the 
main undercarriage (being the reference point of the flight' 
path interpretation of chapter 6) is 14. feet in the approach 

Appraisal of the height of the aircraft at the moment 
of passing the threshold lo) is difficult because, as mY 

attitude. Ir the aircraft follows the ILS glide path exactly. 
the height of the lowest point of the undercarriage at the 
runway threshold is 30 feet. 

la) The heights above the runway threshold mentioned in 
Appendix 111 are related to the aircrafts anti-collision light. 
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Table 6. Ranking numbers of rest flights according to  
magnitude of approach ground-track quality 
marks and rudder ond oileron !ravel .. indices 

Approach Travel index of 
.1 

ground-track 

A B C  A B C  A B 6  
Pilot quality mark rudder aileron 

influence on the quality of the landing and moreover, 
the average height for B is roughly equal to the height 
of the ILS glide p>th a! the threshold. , - - .  - 

7.2.2 Quality of approach ground-track and of travel 

Table 5 shows the averages of all pilots with respect to 
the approach ground-track quality marks and to the 
rudder and aileron travel indices for each combination 
of system and initial position. 

Table 5. Average of  approach ground-track quality marks 

indices for  rudder and aileron 

and of  rudder and aileron travel indices 

Initial uosition 4 Ideal High Left Averane 

Approach A 6.6 6.9 4.4 5.9 
ground- 
track $ B 7.8 8.2 5.4 7.2 

vi 

C 7.2 7.3 5.0 6.5 
quality 
mark 

Rudder E A 25.7 17.1 21.9 21.5 
travel 2 B 17.8 13.7 20.4 17.3 
index &' C 18.4 16.2 21.2 18.6 

Aileron E A 46.7 37.7 51.7 45.2 
travel B 40.0 31.9 47.2 39.7 
index 2 C 43.6 41.5 60.1 48.4 

Ul 

The standard deviations of the average per system are 
0.21 for approach ground-track quality mark, 1.59 for 
rudder travel index and 3.35 for aileron travel index. 

From the average values in table 5 and from their 
standard deviations it is evident that there is a difference 
between the systems, and also between the initial positions, 
in the average approach ground-track quality. With at 
least 95 % confidence it can be established that the 
differences between the 3 systems in average score are 
significant, in the sense that B is better than C and C is 
better than A. There are differences in control movements 
too. However, the only significant difference in this 
respect is that the rudder is used more with A than with B. 
This difference is significant on the 90 %-confidence 
level only. 

Using the method of m rankings as in paragraph 7.2.1 
the results of table 6 are obtained. 

Two real differences are now found: 
(1. the quality of the approach ground-track for system 

B is really better than for system A, 
b. the travel index for rudder in system A may be regarded 

as really higher than in system B. 
The difference between B and C in quality of approach 

ground-track and those in the aileron or in the rudder 
travel index, other than between A and B, are not 
significant. 

The foregoing gives rise to the following conclusion: 

With respect to keeping the aircraft on the extended 
centre line of the runway, system B is better than system 
A and C: the adherence to the centre line with system 
B is significantly better than in the case of system A 
and this better result is achieved with less total move- 
ment of the rudder. 

I 2 2 2  3 1 2  1 2 3  
2 1 2 % 2 %  3 1 2 2 1 3 
3 1 2 % 2 M 2  3 1 1 2  3 
4 2 3 I 3 IY2 11% 2 1 3 
5 1 3 2  1 3 2  1 2 3  
6 1 2 3  1 2 3  2 1 3  
7 1 3 2  3 2 1  1 1 7  ~ . -  ~~ 

8 2 3 1  1 3 2  2 3 1  
9 1 2 3  3 2 1  3 2 1  

10 11% 3 IM 3 2 1 3 2 I 
11 1 3 2  3 1 2  3 2 1  
12 1 2 3  3 1 2  3 1 2  
13 2 3 1  3 2 1  2 1 3  
14 1 % 3  1% 3 1 2 2 1 3 
15 1 2v2 21% 3 2 1 3 1 2 
16 2 3 1  2 1 3  1 2 3  

Total 22 4 2 M  31% 4.0 28% 27% 32 2 1  37 

7 ~ 3  Quality of  landing 
There is a considerable lack of data in the case of the 
quality marks for the landing, so that an exact statistical 
treatment would he very laborious. 

However, the method of m rankings, introduced in 
paragraph 7.2, can be applied with the aid of the cases 
in which a direct comparison of all 3 systems is possible. 
This gives the results of table 7. 

Table 7. Ranking numbers of quality marks for height 
from threshold until touch-down and for touch- 
down 

Quality mark for 
height from 

Pilot touch-down 
threshold until touch-down 

A B C  A B C  

1 2% 2% 1 1 3 2 
2 3 2 1 3 1 2 
3 2 1 3 2 1 3 
4 1 2% 2% 1 2 3 
5 2 2 2 2% I 2% 
6 3 1 2 3 1 2 
7 1 3 2 3 1 2 
8 11% 11% 3 1 2 3 
9 3 I'Y2 IYZ 1 2 3 

10 3 2 1 1% 3 1 % 
11 2 1 3 .' 1 2 3 
12 2 3 1 2 3 1 
13 1 3 2 3 2 1 
14 1 3 2 2 1 3 
15 2 1 3 3 1 2 
16 1 3 2 2 3 1 

~~ 

Total 31 33 32 32 29 35 
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From the totals in the bottom line of the table, which 
differ very little, it is evident that from a point of view 
o f  landing quality there is no real difference between 
the 3 systems. Nor is there any real difference between 
the systems with regard to the number of overshoots: 
with system A there were 5,  with system B 7 and with 
system C 6 overshoots. 

The conclusion must therefore be: 

From the figures based on the data recorded between 
the threshold and’the touch-down point i t  cannot be 
concluded with any certainty that there is a real dif- 
ference between the 3 light systems as far as the 
possibilities of executing a correct landing are con- 
cerned. It should he kept in mind, however, that the 
landings have been carried out with landing lights 
switched on immediately after passing the threshold. 
This conclusion, therefore, may not hold for .landings 
made with the visual guidance of the different light 
patterns only. 

7.4 Heart-bear factor 
In table 8 the average heart-beat factor is given for each 
combination of initial position and light system. 

Allowing for the fact that the standard deviation of the 
average per system can he estimated as 0.018, it may 
he stated from this table that: 

With system -C the heart-heat .factor is .higher on the 
avcrage (95 % confidence) than in the case of system A. 
The heart-beat factor for system B is also higher than 
for system A (confidence lower than 95 %). 

Table 8. Average, heart-heat factor 

Initial position --f Ideal High Left Average 

A 1.36 1.33 1.35 1.35 
1.39 1.40 1.39 1.39 

6 - c  1.41 1.46 1.40 1.42 

E, 
Z B  

This result does nM comply with the general tendency 
of the conclusions stated in the foregoing paragraphs of 
this chapter. 

7.5 Wind speed and wind directiun 
The wind speed and wind direction are shown in Appen- 
dix 111 for every flight. For none of the scores and data 
analysed in the paragraphs 7.2 to 7.4 could a difference 
between the results achieved with the 3 light patterns be 
attributed to variations in wind speed andlor wind 
direction. 

8. Verbal comments 

Immediately after completion of each approach and 
landing, the test pilot was questioned by an engineering 
test pilot of the National Aero- and Astronautical 
Research Institute. The questions were roughly similar 
for all concerned and were designed to encourage the 
test pilots to comment frankly on the various aspects of 

the light systems involved. Generally, pilots went into 
great detail describing their respective experiences and 
seemed to have firm opinions. Unfortunately, all com- 
ments were rather different and sometimes even contra- 
dicting. E.&: the intensity of the green threshold lights 
was considered to be ‘poor’, ‘too bright’ or ‘satisfactory’ 
by different pilots; appreciation of the red T varied 
between ‘very useful‘, ‘useless’, ‘much too bright’ and 
‘not noticed at all‘. This may illustrate the doubtful value 
of subjective appraisal based on verbal comments only. 
It also proves the necessity of quantitative evaluation. 
However, different opinions could in some cases be 
related to the same basic judgement. In the following an 
attempt has been made to give a survey of general 
opinions. 

Most pilots did rely on the intervention of the safety 
pilot io case of emergency and would therefore refuse 
to do the same tests without a safety pilot. The use of 
landing lights from about 50 f t  height until the touch- 
down was completed, impeded a clear judgement of the 
runway lighting. Many pilots focussed their attention on 
the lighted texture and painted markings of the runway 
instcad of the runway lights, to perform flare-out and 
touch-down. 

With regard to system A there was a general complaint 
of severe lack of height information in the manoeuvring 
zone, until the 1000-ft crossbar. This crossbar, however, 
was appreciated as a clear indication of the 1000-ft 
warning. The 60-ft gauge of the runway lights was 
considered too narrow. 

The isolated crossbars of system B supplied sufficient 
initial information to start corrective action for alignment 
or height. The area between the 1000-ft bar and the 
threshold, however, seemed to be the main source of 
information to complete the corrective action, especially 
in case ,of a very late contact. The too wide gauge 
(138 feet) of the double row of lights between the 
threshold and the aiming point created a black gap with 
respect to the bright pre-threshold area. Therefore, the 
aiming point lighting was rather appreciated. The 150-ft 
wide gauge runway lights were considered useless com- 
pared with the 75-ft narrow gauge runway lights. Roll 
guidance was considered unsatisfactory in the landing 
zone. 

The centre line with crossbars of system C was gene- 
rally considered satisfactory. The 1000-ft warning in the 
form of a red crossbar was found insufficient. The 250-ft 
longitudinal spacing of the narrow gauge system was 
considered too large; height information for flare-out and 
to;i;h-down became therefore unsatisfactory. 

It may he concluded that system A was practically 
unanimously rejected. A majority of the test pilots was 
willing to accept system B, provided that specific, rather 
controversial modifications were applied. These modifica- 
tions seemed to have the common aim of creating a 
compromise between the basic ideas underlying the 
systems B and C, keeping the overall pattern simple 
and having a clear configuration change at the threshold, 
adequate 1000-ft warning and aiming point lighting, and 
adding centre line lights on the runway. 

Generally, the fog simulating system was appreciated 
as being basically sound, there being no errors introduced 
by altitude or attitude variations. The system was also 
considered a very useful training device. 
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9. Conclusions 

9.1 Test procedure and inrerpretafion of resulrs 
The test procedure applied in this investigation is 
characterized by 
a. the use of airborne recording equipment for collecting 

quantitative data determining the quality of the, actual 
flight path-from the beginning of the final approach 
until.touch-down as well as data on the pilot's effort 
(control movements, heart-beat frequency) to establish 
approach and landing, 

b. the application of a movable screen before the pilot's 
eyes which, in combination with suitable filters and a 
convenient adjustment of the luminous intensity of the 
lights on the' ground, simulates weather conditions in 
homogeneous fog, 

c. the elimination of the influence of personal character- 
istics in the test results by means of a flight test 
programme to be carried out by a minimum number 
of test pilots and comprising a minimum of flying 
hours. This programme .was set up on a strict statistical 
basis in order to .obtain sufficient test data and to 
avoid appreciable familiarization with the light con- 
figurations and with local circumstances. 
The data collected when applying the simulating device 

mentioned under b) present a reliable basis of comparison 
of the effectiveness of the guidance obtained from visual 
aids during approach and landing. 

The amount of data obtained in this procedure is so 
large and is produced in such a form that a special 
interpretation method had to he developed to reduce the 
test results to a form suitable for statistical analysis. This 
interpretation method yields consistent figures of merit 
for the quality of the actual flight path and the touch- 
down. 

9.2 Verbal commenrs 
The survey of the answers to a carefully selected set of 
questions put to the pilots in the present investigation 
shows that such answers in themselves can not present 
a reliable basis for comparison of the quality of guidance 
of different light patterns. Too much variance of suh- 
jective impressions is brought forward in the answers. 
An exception to this was the almost unanimously expressed 
opinion that system A should be rejected. 

Keeping in mind the restricted reliability of verbal 
comments, a further conclusion might he that the majority 
of pilots is willing to accept system B, if adequately 
modified. The desired modifications point to a compromise 
between the systems B and C, incorporating a con- 
figuration change at the threshold, adequate 1000-feet- 
warning, aiming point and centre line lighting on the 
runway. 

The movable screen and filter assembly was judged by 
many pilots to give a realistic simulation of seeing con- 
ditions in fog. This equipment was therefore considered 
to he very useful for training purposes also. 

9.3 Flight operational conclusions of resulrs 
The lowest quality marks for approach ground-track as 
found for system A is most probably caused by insufficient 
roll and alignment information. It is interesting to note 
that more use of rudder has been made with this system, 

which may indicate difficulties for the pilot with respect 
to track-heading correlation. 

The quality of the ground-track of the approaches 
with system B (the Netherlands proposal) was better than 
with system A and system C,  which indicates better roll 
guidance and orientation capabilities. This better result 
has heen achieved with less total movement of rudder 
than in the case of system A. 

It appears furthermore that the height over the thres- 
hold with the systems A and C was above,the ILS glide 
path whereas with system B this height was very close 
to the ILS glide path. These differences.may have been 
caused by a better height information from system B as 
compared to that obtained from the systems A and C. 

No significant differences in the qualities of landing 
between the different systems have been found. This is 
probably due to the use of landing lights after crossing 
the threshold, which enabled the pilots to pick up other 
information (tyre marks, paintings, timber hoards of the 
experimental light installation, etc.) than from the landing 
mat only. This extra information levelled out possible 
differences in guidance from the light patterns compared. 

9.4 Future work 
In view of the last sentence of the foregoing paragraph 
and the unsatisfactory height guidance provided, by all 
3 systems (see table 2)  it is very desirable to have the 
investigations continued, especially with the aim of study- 
ing details of the light pattern on the first 2000 or 3000 
feet of the runway as: 
- the desirability of a configuration change at the 

threshold, 
- single or double gauge systems consisting of lateral 

or longitudinal barrettes or both, 
- the addition of centre-line lights and 
- the conspicuity of the light pattern at the ideel aiming 

point. 
Other subjects which demand investigation are: 
- the weather limits for the application of visual 

- the possibilities of simplification of light patterns in 

It would he of the greatest importance to repeat a part 
of the present investigations in aircraft of recent design. 
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APPENDIX I 
TEST PILOTS PABnClPATTNG IN THE FLIGHT TEST 
PROGRAMME 

Name Qualification Main flying 
and affiliation exDerience 

P. Both 

R. W. Bray 

Chief Pilot, Martin's Air 
Charter 
Sqn. Ldr., Blind landing 
Experimental Unit, 
Royal Aircraft 
Establishment 

P. E. Bressey Captain, IFALPA 
M. L. H. Carter Captain, IFALPA 
C. D. Crogan Flt. It.; Blind landing 

Experimental Unit, 
Royal Aircraft 
Establishment 

H. J. P. Dijkema Pilot, Dutch Pilots 
Association 

J. H. Eilders Captain, Dutch Pilots 
Assoc;lation 

H. A. Hooper Captain, BEA 
J. Koedam Captain, Dutch Pilots 

H. R. Leutwiler Captain, Swissair 
S. E. C. Martynse Pilot, Dutch Pilots 

Association 
C. Mattern Captain, Dutch Pilots 

Association 
B. M. Orange Captain, Dutch Pilots 

Association 
C. G .  J. Reyers Inspector, Neth. Dep. 

Civ. Aviation 
H. D. Savage Cdr., Ops. Specialist, 

FAA 
L. W. F. Stark Flt. It., Blind Landing 

Experimental Unit, 
Royal Aircraft 
Establishment 

Dep. Chief Test Pilot, 
Fokker 

Association 

J. C. P. Stuy 
R. Walker 

' Pilot, KLM 

DC-3 

varsity 

Viscount 
Viscount 
Varsity 

Con v a i r 

DC-8 

Viscount 
DC-7 

DC-3 
DC-6 

Electra 

Electra 

Beechcraft 

Camer-acft 

Varsity 

Con v a i r 
Friendship 
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REPORT NLR-MP. 222 
C.C.L. Class. N 822 

Flight Operational Evaluation of Approach and Runway 
Lighting-(Second Test Series) 

by 

Ir. F. E. Douwer Dekker 

Summary. The $resent report deals with the results of comparative 
Eght testing of 3 configurations for approach and runway lighting 
under simdated conditions of 1000 ft  slant visual range. As such, 
this investigation is a continuation of earlier work of this kind. 
The flight tests have been carried out at Kiiln-Honn International 
Airport in December 1962 with a Lockheed Super-Comtellatian 
aircraft. The 3 light configurations consisted essentially of: 

-an existing layout at the above airport, 
-the reference pattern. suggestedduringthe2ndmeeting(l962) of 

-an installationsimilar to that a t  New Yorkldlewild International 

The evaluation of the Right test results, based on analysis of 
measured data obtained during 144 landings executed by 24 pilots, 
shows the best overall landing performance for the second con- 
figuration. The present results confirm the mort important con- 
clusions from the earlier experimental studies on those itemswhich 
were common to both investigations. Generally, pilots’ opinions 
contributed effectively i n  reaching pertinent conclusions. 

The investigation was sponsored by the Netherlands Depart- 
ment of Civil Aviation and guided by a study group composed 
of experts representinginterested organizations in theNetherlands. 

the ICAO Visual Aids Panel, 

Airport. 
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1 Introduction 

During the last few years’ considerable effort has been 
devoted in the Netherlands to the development of visual aids 
for approach and landing. In particular, attention has been 
focussed on the flight operational evaluation of existing and 
proposed light patterns under conditions of reduced visi- 
bility as prevailing in phase two operations1). 

After initial flight tests in 1959 at Eelde Airport (Gronin- 
gen, the Netherlands) a complete test programme was car- 
rjed out at the same airfield in 1960. A detailed account of the 
latter test series has been published in a paper, entitled 
“Flight Operational Evaluation of Approach and Runway 
Lighting” by 3. B. de Boer and T. van Oosterom (“De Inge- 
nieur”, nrs. 49 and 51, 1961). 

The present series of tests may therefore he regarded as 
a natural sequel to previous investigations in this field and 
to the recommendations for future work ensuing from them. 
These new investigations were especially aimed at studying 
details of light patterns from IO00 ft before until 3oM) ft 
beyond the threshold, using a much heavier aircraft, viz. a 
Lockheed L-1049G Super-Constellation, made available by 
KLM-Royal Dutch Airlines (see fig. I). 

Full-scale tests on runway, light patterns do not allow 
much variation in pattern without serious financial and 
practical consequences. The use of many experimental lights, 
even of very light weight, on an active runway was con- 
sidered unacceptable. Therefore, it  was preferred to ca.ny 
out the test flights on a runway with existing flush type 
narrow gauge and centre line lighting. Such a runway was 
found at Koln-Bonn International Airport and kindly made 
available by the authorities of this airport. The flight tests 
were performed in December’l962 at this airpcit, with the 
experimental light patterns laid out on runway 32-right. 

The test procedure followed in the “Eelde trials” has been 
applied, except for certain details. As to the hasic procedure, 
reference may he made to the paper mentioned above; 
alterations will be dealt with in this report. 

Adaptation of the NLR fog simulator, described in the 
above mentioned paper, to the Super-Constellation required 
extensive redesign and allowed some mechanical improve- 
ments towards full automatic operation. The basic principle 
of operation (i.e. maintaining constant slant visual range 
regardless of height and pitch attitude throughout approach 
and landing), however, has not been changed. It may be 
reminded that with this device the outside view for the safety 
pilot in the right-hand seat remains unaffected. 

The required absence of additional visible texture on the 
ground necessitated the tests to he flown without daylight or 
aircraft landing lights. 

I) According to IATA-ICAO terminology, a “phase two opera- 
tion” is Characterized by 100 feet cloud base and & mile visibility. 
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2 Light configurations 

The 3 light configurations illustrated'in fig. 2 have been 
evaluated. They have 2 basic components in common, viz. 
a standard Calvert approach light pattern with 6 crossbars, 
having 500 ft longitudinal spacing, and a 6 0 4  narrow gauge 
of lateral arrays on the runway with 200 ft longitudinal 
spacing, extending 4000 ft from the threshold along the 
runway. All systems are equipped with a 200-ft wide green 
threshold marking provided with a m-ft central gap. 

Configuration I, representing the standard pattern actually 
laid out on runway 32-right of Koln-Bonn Airport, had, 
in addition to the basic system described above, a centre 
line with 100 ft  spacing, extending all along the runway, 
as well as two 15-ft long wing-bars, 200 ft apart, at the ILS 
reference point located 1000 ft from the threshold. 

Configuration 2 contained the so-called ICAO reference 
pattern, recommended by some members of the ICAO 
Visual Aids Panel in its 2nd meeting (summer 1962) as a 
standard reference in comparative trials and as such adopted 
by a working group of this panel. This pattern is composed 
of configuration I without the wing-bars and with the ad- 
dition of a 1 2 0 3  wide red gauge between the 1000-ft cross- 
bar and the threshold, a reinforced'white centre line in the 
same area (barrettes of 5 lights instead of single lights) 2 
green longitudinal barrettes with 150-ft gauge, connected 
with the threshold marking, and 2 T-shaped markers at the 
ILS reference point. 

Co,ifigura$on 3, representing essentially the originial in- 
stallation at runway Wright  of New York ldlewild Airport, 
consisted of the basic system described above, completed 
by the reinforced centre line as applied in configuration 2, 
and a runway centre line commencing at 4000 ft from the 
threshold. 

All lights in addition to the permanent installation were 
of the same construction as the experimental lights previously 

used during the "Eelde trials". Change of light configuration 
from one system to another could be accomplished in a few 
minutes. The luminous intensity of various groups of light 
sources could be adjusted independently, ensuring a correct 
balance of each complete configuration 9. 

3 Flight test procedure 3 

A total of 24 subject pilots participated in the tests, each 
one performing 2 landings on each of the 3 light configura- 
tions, bringing the total number of test landings at 144. 
Names and particulars of the subject pilots are listed in 
table 1. Earlier experience indicated that a number of 24 
subjects is large enough to prevent ir.tolerable influence from 
individual characteristics in the test results. 

The whole test programme has been carried out during 
8 test nights, designed A to H inclusive (see table 4). 
During each test night a flight programme was carried out, 
consisting of 18 landing trials for 3 subject pilots, requiring 
about 3 hours total block time. Each night, the first landing, 
marked SP in table 4, was made by the safety pilot 
without the fog simulator. 

The landing sequence with regard to pilot and light pattern 

The lighting installation and the relevant electrical equipment 
was built and maintained under supervision of Mr. H. Aarts, 
Philips' Lighting Laboratory. 
'1 Capt. F. I. Lodeiren, KLM flight instructor, acted as safety 
pilot during all test flights. Flight engineering duties were perfor- 
med by Mr. F. N. Beudekeer or MI. C. fl.  0. Meyer, both of 
KLM. All other duties in the aircraft with regard to recording 
equipment, fog simulator, pilots' comments and general manage- 
ment were attended to by staff of the NLR. All duties on the 
ground with respect to photographic equipment, light installation 
and liaison were taken care of by staff of RLD, Philip, and Koln- 
BOM Airport. 
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(see table 4) varied from night to night and was carefully 
chosen in order to cancel out as much as possible the influence 
of variations in wind speed, wind direction and turbulence, 
occurringduring the individual test nights. In addition, this 
choice should.exclude the influence of fatigue as well as 
the familiarization of the pilots with the light configurations. 

Similar to the proceoure followed .in the previous test 
series,. the visual range of the lights'as seen by the subject 
pilot has been kept constant, throughout the approach and 
landing to loo0 ft slant visual range by means of a modified 
version o f ,  the NLR fog simulator. This simulator is only 
applied to the visual field of the subject pilot, whereas the 
safety pilot has unrestricted view. 

The safety pilot brought the aircraft in a stabilized position 
on the ILS glide path at ahout 900 ft height in the following 
configuration: SO% flaps, landing gear extended, 130 kts 
IAS, 2400 RPM and ahout 28 inch MAP; the aircraft weight 
was 100,ooO Ihs (nearly maximum landing weight). Then the 
subject pilot took over control of the aircraft on instruments, 
continued the approach and performed the landing. Wave- 
off procedure, if necessary, was usually initiated and always 
performed by the safety pilot. 

Immediately aftw nose-wheel touch-down, the safety pilot 
proceeded with a rolling take-off and brought the aircraft, 
via a visual circuit, again on the initial position described 
above. The SOx-flap setting remained unchanged during 
approach and landing. The subject pilot knew in advance 
which light configuration to expect. 

The procedure outlined above differed from the one 
applied in the previous test series. I t  had been the intention 
to have the subject.pilot take over control, as usual, only 
when visual contact was established. He should have been 
brought by the safety pilot in a specified offsentre position 
at the middle marker. The initial deviation was either IM) ft 
left of the centre line or 30 ft above the glide path hut 
unknown to the subject pilot. Therefore, zero reader and 
ILs'cross pointer ought to he blanked-off. This procedure 
was followed during the first 6 landings of the first test night. 

It then became clear that, due to the high speed of the less 
manoeuvrable aircraft used in these tests, the initial lateral 
deviation necessitated unacceptable corrective manoeuvres, 
while the initial height deviation not being corrected, resulted 
only in a greater air 'distance. Even reduction of the initial 
deviations to ahout half their original values mentioned 
aboye, proved that it was rather unrealistic to take over 
control of this type of aircraft at this late stage of the ap- 
proach, and depriving the subject pilot of apparently vital 
information contained in zero reader and ILS cross pointer 
indications, .It was therefore decided to adopt the modified 
procedure described above, from the second test night on- 
wards. The initial position deviation just prior to establishing 
contact, when following this procedure, can he considered 
to he of a random nature, still providing sufficient scatter 
in the initial test conditions. 

Power settings, demanded by the subject pilct, were 
accomplished by the flight engineer. The subject pilot's 
altimeter was set at sea-level pressure (QNH). Due to a 
threshold elevation of 300 ft, Pitot-static position error and 
instrument 'error, touch-down usually took place at about 
250 ft indicated altitude and at -normal touch-down speed 
( I00  kts). 

Details on weather conditions are given in table 2. 

4 Fog simulation 

The NLR fog simulator has been adapted to the Super- 
Constellation cockpit. The original device, as applied in the 
C-47 aircraft (see paper mentioned in the introduction), has 
been modified hut basic operation remained the same. The 
height control unit was removed and replaced by a Bendix 
altitude sensor in the control loop, which resulted in auto- 
matic height control and a better performance in the case 
of large variations in rate of descent. The pitch attitude 
sensor of the elevator channel of the PB-10 autopilot, used 
for servo-control of the screen, was replaced by a Sperry A-12 

Fig. 3. NLR fog 
simulator. 



Fig. 5. Screen drive. 

Fig. 4. Control and 
checking equipment of 
fog simulator. 

vertical gyro, which increased the total accuracy of the 
system. In-flight adjustment of the screen position with 
respect to pitch attitude was accomplished by a Bendix 
trim synchro in the same control loop. 

The screen itself, in front of the subject pilot, was moving 
in a plane perpendicular to the aircraft’s longitudinal axis, 
ensuring a linear relationship between servo motor- and 
screen position and simplifying the .screen drive ’). 

The total transmission of the filter assembly mounted in 
the fixed head support remained at 8%. .The visibility 
below ceiling was always better than 5 miles during all test 
landings. These conditions together with the adjustment of 
the luminous intensity of all lights at approximately 50 cd 
assured rather homogeneous visibility of the lights well above 
threshold visibility without creating distraction hy glare. 

The aircraft’s landing lights have never been used. The 
fog simulator as mounted in the test aircraft is illustrated 
in figs. 3, 4 and 5. 

The fog simulator was always adjusted for a slant visual 
range of loo0 ft except. during the first 6 landings of test 
night C,. when the visual range was estimated to decrease 
gradually from 2500 f t  to IO00 ft. During landing no. 17 of 
this particular night, the fog simulator was switched on too 
late, so that the visual range suddenly changed from 0 to 
IO00 ft at a position IO00 ft in front of the threshold. The 
influence of these and othe, .minor deviations mentioned in 
table 4 - occurring in a small number of tests only - 
on the total results proved tn be negligible. 

4 The modified fog simulator has been designed by Messrs. H. A. 
Mensink and K. Wams of the NLR. 
6) The head support was located I 5  ft aboveand 43 ft in front 
of the main wheels’ lowest paint, measured along the aircraft’s 
reference axes. The cmkpit cut-off angle amounted to 15‘ with 
respect to the aircraft’s longitudinal reference axis. 
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Fig. 6. Recording 
equipment in the aircraft. 

Fig. 7. Instrument panel of automatic 
observer (1. split second watch, 
2. elevator position indicator, 
3. top-axis accelerometer, 4. event 
marker, 5. pitch attitude indicator, 
6. aileron position indicator, I .  angle 
of roll indicator, 8. screen position 
indicator, 9. rudder position 
indicator, 10. synchronizer, 
11. altimeter, 12. counter, 
13. airspeed indicator, 14. watch). 



5 Recording epoipment 

The basic idea underlying this comparative evaluation of 
approach and runway light confi&rations is to exclude the 
inlluence of subjective judgement hy statistical analysis of 
measured performance data. This requires the choice of 
certain parameters obtained from recorded data which may 
be considered to represent the quality of different aspects of 
the whole approach and landing manaeuvre and of the 
pilot’s effort to carry it out. This choice will be dealt with 
in detail in chapter 6. 

The recording equipment in the aircraft and on the ground 
did not differ essentially from what was used during the 
“ h l d e  trials”;’for details of this equipment reference may 
be made to the paper mentioned in the introduction. It may 
be reminded, however, that the following quantities were 
recorded: 

indicated airspeed, 
altitude, 
pitch attitude, 
angle.of roll, 
ICs localizer deflection, 
ILS glide-paih deflection, 
vertical acceleration, 
control surface deflections, 
flight path from threshold until touch-down. 
The airbome recording eqnipmentis shown in figs. 6 and 7. 
Calibration of the ILS signals was carried out by the local 

authorities. This resulted in the following basic character- 
istics: 

localizer transmitter, located 13,353 ft from threshold, 
ILS reference point, located 960 ft from threshold. 
localizer beam width 3.3” (no bends), 
glide path slope 2.7” (no bends), 
glide path beam width 1.1“ (symmetrical beam type). 
The ILS receiver antenna w ’ l o c a t e d  13 ft above and 

51 f t  in front of the main wheels’ lowest point, measured 
along the aircraft’s,axes. 

Instead of the aircraft’s anticollision light a constant-rate 
flash light, mounted behind the starboard most aft cabin 
window, was used for flight path recording by means of 
ground camera’s as appliedin %e first test series. The ground 
camera’s covered the Right path profile over a length of 
24Ol ft beyond the threshold. 

This time no physiological data (such as the heart-beat 
frequency) have teen used in the evaluation procedure. 

The opinion of the subject pilot himself might’add to a 
better understanding of the quantitative conclusions. There- 
fore, care has been taken to record pilots’ opinions during 
the execution of the tests. A general survey of these comments 
is given in capter 8. 

6 Evaluation system 

From the various recordings, graphs ,have been composed 
of pitch attitude, angle of roll, aircraft height and lateral 
deviation (ground track) as a function of distance from 
threshold for all test landings as well as for the landings 
(marked SP in table 4) performed by the safety pilot. 
Aircraft height was defined as the distance between the 
lowest point of the main wheels and the average plane 
through the first 3000 ft of the runway surface, having an 
average slope of .5 %. A typical graphisgiven in fig. 8. Values 

for travel of elevator, rudder and aileron, according to the 
definition given below, appear in the legend of this graph. 

Quality marks have teen assigned to various aspects of 
the complete manoeuvre with essentiaIly the same evaluation 
orocedure as the one aunlied to the “Eelde trials”. This 
brocedure has slightly dekn modified and adapted to the 
present circumstances, the latter being.diEerent in type of 
aircraft landing technique, approach speed etc. The various 
aspects of the performance are: 
approach height deviulion, height (measured vertically) of a 

conical channel as described below, enclosing the flight 
path until threshold, 

approuch ground truck, width (measured laterally) of a 
conical channel as described below, enclosing the flight 
path until threshold, 

threshold height, 
threshold .speed, 

height deviation, height of a .channel shaped as 
described below, enclosing the fight path from 
threshold until touch-down, 

ground track, width of a prismatic channel, enclos- 
ing the flight path from threshold until touch- 
down, 

touch-down distance, distance from threshold until 
touch-down, 

roll wave-length, average distance covered for’ one roll 
oscillation, 

roll umplitude, maximum change of angle of roll for one roll 
.oscillation, 

pitch wave-length, average distance covered for one pitch 
oscillation, 

pitch amplitude, maximum change of pitch attitude for one 
pitch oscillation, 

elevator, ruder and uileron travel, the average of all differen- 
ces (absolute values) between successive control deflections, 

measured at  1 sec interval over the period of 15 sec 
preceding the crossing of the threshold. 
Pitch- and roll characteristics have beenconsidered near the 

threshold only. 
Unlike the evaluation of the previous tests, the vertical 

deceleration of impact at touch-down has not been used for 
evaluation of the touch-down quality because heavy landings 
were prevented by the safety pilot  

Some of the quantities mentioned above, have been 
evaluated by means of a grid system as shown in fig. 9. 

Four of these grids, each being related to a part of the 
total flight path, represent channels of rectangular cross 
section enclosing the flight path. The application of these 
grids is as follows: 
grid 1, approach height deviation, 
grid 2, approach ground track, 
grid 3, flare-out height deviation, touch-down distance (hori- 

wntalscaleonly);thsholdheight (verticalscaleonly), 
grid 4, flawout ground track. 

The use of an “entrance portal”, as in the previous test 
series, has been replaced by the more realistic requirement, 
that the approach flight path should be directed towards an 
“ideal” aiming point (see points A and B in fig. 9), around 
which the relevant grids 1 and 2 may be pivoted in order to 
iind the smallest channel able to enclose the actual Right path. 

Grid 3 has been fitted to the scales of threshold height and 
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touch-down distance by channels tapering towards point A 
and gradudly merging into parallel chaMels with 1 % slope. 

The way in which g i d  4 is applied, is clear from fig. 9. 
Grid 5 is used to evaluate wave-length as well as amplitude 

of roll and pitch oscillations. 
The numerical values of the quality marks for the various 

performance aspects are defined in table 3. Generally, 

higher marks represent better performances. It should be 
kept in mind, that higher quality marks for control travel, 
correspond to greater pilot's effort in performing the landing 
manoeuvre. 

The results of the application of the evaluation procedure 
described and defined above, have been collected in table4 
A few mistakes made during the tests are noted in 





I O  

this table. In some cases, marked. “overshoot”, the landing 
had to be aborted due to unacceptable flight conditions near 
the threshold. In other cases, marked “corrected”, the safety 
pilot had to intervene during flare-out, in order to. avoid. 
damage to the undercarriage of the aircraft. 

I t  may be noted from table 2 that some tailwindcomponent 
was generally experienced except during the test series F and 
H, having an average headwind component of 8 and 3 kts 
respectively. Therefore, all quality marks for threshold height, 
threshold speed and touch-down distance for the test series 
F and H have been reduced by 2 and 1 point respectively 
in order to make these results comparable to other ones. 

The large choice of aspects, representative for the quality 
of the performance achieved by the pilot and for the pilot’s 
effort, together with the satisfactory spread in quality marks 
as shown in table 4, are believed to offer the best 
possible basis for statistical analysis of the recorded test data. 

7 Results and their statistical analysis ’) 

Io table 5, for each light configuration, the total average 
values - i:e. the values averaged over all test nights - of-the 
quality marks for the various aspects of the landing manoeu- 
vre are given. In order to determine whether the difference 
between 2 total average values for the same aspect should 
be considered “significant“, a statistical analysis of the ex- 
perimental results has been made. 

Firstly, the standard deviation of the total average values 
has been calculated. By statistical reasoning, it can he found 
that the ratio of the difference between 2 total average values 
and their standard deviation ought to be at least 2.56 in order 
to reach a 90% “confidence’.’ that a real difference between 
the light configurations does exist. If the ratio exceeds 3.15, 
the confidence level reaches 95%. It  is customary to accept 
this level as a sufficient proof of a real difference. 

Secondly, to check the conclusions from the differences 
in average values and their standard deviations, ranking 
methods have been used. To this end, for each night and 
each performance aspect, a ranking number has been given 
to each light configuration: 1 to the configuration with the 
lowest average value, 3 to the configuration with the highest 
and 2 to the configuration with the intermediate value. For 
each light configuration and each performance aspect the 
sum of the eight ranking numbers has been calculated. From 
statistical considerations it results that if this sum equals 
21 ‘ o r  more, real quality differences exist between light 
configurations for that performance aspect. 

The statististical treatment of the quality marks described 
above, resulted in significant differences with respect to the 
following aspects: approach height deviation, elevator travel, 
pitch amplitude, flareout ground track and threshold height. 
For all other aspects, the natural scatter of the quality marks 
was too great ‘to draw definite conclusions. 

In the tables 6 to 10 inclusive, the averagevalues of quality 
marks, the ranking numbers and their totals are given for each 
test night with respect to the 5 aspects referred to above. 
These tables also contain the standard deviation of the total 
averages. 

The results of the statistical analysis are s u m m b d  in 
the following table. In this table the differences between the 

3 The statistical analysis has been performed by Prof. ir. 1. W. 
Sieben of the Technological University, Delft. 

light configurations and the confidence levels of these 
differences for the 5 aspects referred to above are shown. 
The meaning of the symbols is: > “greater than” with a confidence level of at least 95% 
> “greater than” w t h  a confidence level of 90-95 %, 
= the confidence level is smaller than 90 %. 

Lkht conjgurution , I  2 3 1 

approach height deviation 1 < 2 > 3 = 1  
elevator travel *) 1 = 2 <  3 >  1 
pitch amplitude I >  2 =  3 =  1 
flare-out ground track 1 < 2 > 3 = 1  
threshold height 1 < 2 >  3 >  1 

Quality mark for: 

*) High quality mark corresponds to low performance. 

From this table the following conclusions, based on 95% 
confidence, may be drawn: 
u. configuration 2 gives better height guidance during ap- 

proach, better tracking during flare-out and better thres- 
hold height than configuration 1, 

b. configuration 2 allows better tracking performance during 
flare-out than configuration 3, 

c. configuration 3 requires more elevator movement than 
configuration 1. 
In addition, the following tendencies seem to exist (con- 
fidence level 90-95 %) : 

a. configuration 2 gives better height guidance during ap- 
proach and better threshold height than configuration 3, 

b. configuration 3 requires more elevator movement than 
configuration 2, 

c. configuration 1 shows less pitch attitude variation than 
configuration 2 or 3, 

d. configuration 3 shows better threshold height than con- 
figuration 1. 

The ranking numbers give a satisfactory confirmation of the 
above conclusions. 

The total average threshold height for the light configu- 
rations 1,2 and 3 was found to be 73, 61 and 65 ft respect- 
ively, while the ideal threshold height is 50 ft..This confirms 
the relevant conclusions based on average quality marks and 
also shows that the threshold height scale below 50 ft has 
practically not been used. Pilots appear therefore to fly high 
over the threshold, particularly with configuration 1, less 
with configuration 3 and closest to the ideal height with 
configuration 2. 

6 KLM captains, 12 KLM co-pilots, and a group consisting 
of 2 captains of Air France, 2 captains of Deutsche Lufthansa 
and 2 pilots of the Blind Landing Experimental Unit (U.K.). 
I t  has been argued that this does not represent a random 
distribution, resulting in certain influences (e& of training, 
experience, age, etc.) on the test results. Therefore, table 11 
has been composed to show the average values of quality 
marks for these 3 groups separately. In this table, ranking 
numbers have been assigned with respect to light configu- 
rations for each aspect under consideration and for each 
group of pilots, as well as for all pilots together. 

I t  is shown that the results for the different groups of 
pilots were consistent, except in the case of pitch amplitude, 
which is in accordance with the fact that ”significant” 
differences appeared to be relatively poor in the foregoing 
analysis for this performance aspect. 

The 24 subject pilots can be divided into 3 groups: 



There have been 22 overshoots out of 144 tests. Besides, 
the flare-out has been corrected 12 times by the safety pilot 
to avoid damage to the aircraft. No significant conclusions 
could be reached in this connection with regard to the light 
configuration used. 

The reduction of the number of test results due to these 
overshoots appears only in the flare-out performance data, 
which may have contributed to the fact that no significant 
differences have been found in this respect. 

8 pilots’ comments 

Before entering into detail as regards the various comments 
of the subject pilots, the following general remarks should 
be made. 

It has been observed that pilots’ comments went far less 
into detail as compared to the previous “Eelde trials”. Pilots 
were relatively more busy, in controlling the a i r c d t  and 
had less time to appreciate the individual features of the 
visual aids. This was probably due to the much higher 
ground speed during approach of about 130 kts with respect 
to 95 kts during the previous tests. Furthermore, the much 
higher aircraft weight allowed less manoeuvering in the 
approach ‘area. 

The total time required to correct a lateral position 
deviation amounted to about 15 sec, which corresponds to 
about 3000 ft distance covered. This means-that in order 
to reach an acceptable flight condition at the ILS reference 
point an immediate, well judged corrective action was 
imperative as soon as visual contact was established. During 
the tests, it became quite clear that canying out such cor- 
rective action, based on visual outside cues alone, was more 
difficult than relying upon the information available from 
the instrument panel and using the outside cues merely as 
a confirmation of the latter. information. From the foregoing 
it appears that the operational flight technique for low- 
visibility landing affects the appreciation of visual aids. For 
instance, the importance of a IoOO-ft pre-threshold warning 
bar depends on whether or not pilot’s action on power- 
setting or configuration is related to it. It has been understood 
that some pilots prefer to maintain strictly one flight wn- 
dition i.e. pitch, airspeed, power setting and configuration, 
until a flare-out at the minimum acceptable height. In such 
a case a stabilized instrument approach will guarantee a 
safe height of about 125 ft when the 1000-ft bar is well visible 
and no action will he required. The same applies to the 
perception of the threshold. Both observations then merely 
confirm the progress of the approach. Other pilots are used 
to cany out a gradual change of configuration, power-set- 
ting, airspeed and pitch during the last 3000 ft distance 
before touch-down. Such flight technique definitely requires 
distance-to-go information as well as some sort of height and 
pitch guidance. 

With respect to pilots’ comments, the 24 subject pilots 
can be divided into 5 different groups: 
(1. 2 Lufthansa captains, 
b. 12 KLM co-pilots, 
c. 6 KLM captains, 
d. 2 Air France captains, 
e. 2 BLEU research pilots. 

6) ILS reEerence point. as described in ICAO Annex IO, Attach- 
ment C. para. 2.4. 

Pilots’ opinions will be related to these groups in the 
text below. 

It was rather surprising to note that the first 4 crossbars 
of the Calvert approach light pattern were not much appre- 
ciated. They were even considered confusing (group a) with 
regard to finding the location and the direction of the centre 
line. During this stage of the approach, the visual segment 
is still so short that these lights can hardly supply useful 
information, especially when some lateral deviation or crab 
angle prevails. It was suggested to delete these crossbars 
(group a and d) .  

Those pi1ots;willing to rely completely on outside visual 
cues (group b) found themselves often misled after their 
first corrective action upon initial visual contact, while those 
continuing mainly on instruments until visual information 
was considered to be complete (group c), generally reached 
a better position near the threshold.’ A perfect instrument 
approach could be spoiled by trying to use relatively poor 
outside information. 

The 1000-ft bar, was considered to be inconspicuous in 
the configurations I and 3. In this respect the red wide gauge 
lighting of configuration 2 was welcomed by all pilots. These 
red lights were found to be very useful as a bracket or gate 
by which the acceptability of the lateral position deviation 
could well be judged (group e). A few pilots considered the 
red double row to be confusing (group a, some of group b) 
especially when a corrective manoeuvre was already initiated; 
the direction of the centre line seemed to be lost in such 
a case. 

The end of the area with red lights of configuration 2 
meant distinctly and obviously that the threshold was in 
sight. This was the main reason for all pilots, except group 
a and some of group b, to prefer. configuration 2 above 1 
and 3. Those criticizing the red lights favoured a simple 
light pattern but insisted upon a good threshold indiption 
which they found insufficient in  configurations 1 and 3; 
it was generally not realized or too late, that the beginning 
of the narrow gauge runway lighting was the beginning of 
the runway as well. 

The pilots of group b showed a tendency to swing between 
the narrow gauge or to be attracted to either side. Some 
thought this oscillation to be caused by the existence, others 
by the absence of a runway centre line. Generally, however, 
there was no doubt about the necessity of a runway centre 
line, provided that these lights should not be brighter than 
the narrow gauge lights. 

No complaints or suggestions with regard to gauge width 
or longitudinal spacing of the runway lights were expressed. 

The length of the visual segment was generally too small 
to enable the pilots to perform a clear-cutflare-out. Many 
pilots showed a tendency to misjudge the flare-out or to 
feel their way down to a touch-down 3000 ft from the thres- 
hold. 

The ILS reference point wing-bars of configuration 1 were 
hardly ever noticed. Pilots did not seem to appreciate any 
indication of the ILS reference point because no decision 
or action was related to it. 

A total length of 4003 ft narrow gauge lighting was gene- 
rally favoured. 

A distance marker at about 2500 ft from the threshold 
was thoueht to be useful as a wamine when landing on a 

I 

runway 2 critical length. 

majority of subject pilots, may be derived: 

- 

The following conclusions based on the opinions of the 
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a. the first 1500 f t  approach lights were not considered of 
much importance, 

b. an unmistakable distance warning, located loo0 ft in front 
of the threshold, was considered either useful or essential, 

c. all pilots required a clear and very distinctive indication 
of the threshold, 

d. the red wide gauge pre-threshold lighting of configuration 
2 was considered as to meet the desire mentioned in b 
and the requirement stated in c,  

e.  no pilot insisted upon an indication of the ILS reference 
point, although some would like a distance marker at 
about 2500 f t  from the threshold for a runway of critical 
length, 

f: all pilots, except a few in group b, required a centre line 
throughout the complete light configuration, 

g. all pilots seemed satisfied with the narrow gauge runway 
lights, although many of them had difficulties in assessing 
their flare-out. 

9 Conclusions 

9.1 General 
When reviewing the results of the present investigation, it 
should be kept in mind that this is a continuation of the 
“Eelde trials” executed in 1960. In order to emphasize the 
value of the complete investigation, the conclusions resulting 
from the present tests, therefore, should also be considered 
as far as possible in relation to~those of the previous trials. 

Generally, it  can be concluded that the application of a 
large four-engine nosewheel aircraft of more modern design 
to these tests does not affect the trend of the results obtained 
from the “Eelde trials”, but rather strengthens the conclusions 
and views based on these trials. 

In the following conclusions the main items of approach 
and runway lighting are treated separately. 

9.2 Approach lighiing 
With respect to the approach lighting the following conclu- 
sions can be drawn: 
a. from the statistical analysis of the present test data it 

appears that the red wide gauge pre-threshold lighting of 
configuration 2 is responsible for its better guidance in 
height before and over the threshold. Threshold heights 
closest to the ILS glide path were also found forthesimilar 
light configuration in the “Eelde trials”. The latter, 
moreover, proved to offer better tracking qualities.hefore 
crossing the threshold, which is confirmed in the present 
tests by pilots’ judgement only but is not “significantly” 
shown by the test results as such, 

b. the reinforced pre-threshold centre line of configuration 3, 
apparently, improves the height guidance in the pre- 
threshold region as well. However, this improvement is 
of less importance than the one obtained by the double 
row of red lights in configuration 2, 

E .  configuration 2 allows better tracking performance during 
Rare-out than configurations 1 and 3. In this respect, the 
latter configurations do not show a “significant” difference, 
proving that the uninterrupted centre line of configuration 
2 cannot be responsible for the better flare-out tracking 
capability of this configuration. Therefore, it seem justi- 
fied to state that the better flare-out tracking guidance as 
proved hy the test results must result from the red pre- 
threshold lights, allowing better stabilization and judge- 

ment of lateral deviation as stated by some pilots. This 
points to better tracking guidance before the threshold 
which was proved by the “Eelde trials”. 

9.3 Threshold identification 
Apparently, pilots find in the red lights of configuration 2 
an unmistakable distance waming of conspicuous repetitive 
character, beginning at loo0 ft before the threshold, as well 
as a distinctive threshold marking. 

The main criticism on configurations 1 and 3 was directed 
towards poor threshold lighting and insufficient pre-thres- 
hold warning. In this respect the pre-threshold centre line 
of configuration 1 was considered too weak. 

9.4 Aiming point 
The indication of the aiming point as applied in the runway 
light pattems does not seem to improve flare-out. 

A distance marking at 2500 ft from the threshold, however, 
should according to pilots’ comments, be considered as a 
useful waming in case of a landing on a runway of critical 
length. 

9.5 Runway centre line 
Elevator movement has been applied to a higher degree 
with configuration 3 as compared with configuration 1 and 
also (at a smaller confidence level) with configuration 2. This 
may be attributed to the interruption of the centre line in 
the first part of the runway of configuration 3, presenting 
a less complete ground plane picture to the pilot. 

According to pilots’ opinions an uninterrupted centre 
line lighting, preferably of slightly less intensity than the 
narrow gauge runway lighting, is generally appreciated. The 
test results, however, do not show the centre line to be of 
help in reducing lateral deviations. 

9.6 Additions/ conclusion 
No significant differences in the light configurations could 
be found with respect to approach ground track, threshold 
speed, flare-out height deviation, touch-down distance, lateral 
and directional control. 

Remark: 
It should be realized that these conclusions are closely related 
to the short visual range (loo0 ft) applied in these trials. 

10 Future work 

From the tests executed so far, no guidelines can be derived 
for obtaining the highest effectiveness of runway light pat- 
terns. In the “Eelde trials” the application of landing lights 
prevented any conclusion in this respect, while in the present 
tests no comparison of systems could be made because only 
one type of narrow gauge system with lateral elements could 
be presented on the runway. 

Moreover, the aiming point indication in the present trials 
was not similar to that applied in the previous test series and 
was less conspicuous in character. 

I t  is considered necessary to investigate this item separately 
by flight operational evaluation after a pre-selection of 
patterns by simulated landing trials. 
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and runway lighting problems. Next to financial support, 
such a mission requires just as well enthusiasm and per- 
severance of the men on the spot. In this respect, the 

Table 1. List of subiect DilOtS 

I. N. van der Ben 
R. K. van der Bijl 
C. D. Crogan 
C. R. Dierdorp 
0. Fenverda 
I. Forster 
R. Gaurand 
R. Goedkaop 
C. Groenendijk 
D. C. Hovingh 
G. H. de Jong 
B. G. Koning 
K. de Lange 
J. Londaits 
E. Lyklema 
A. Mnlder 
J. M. Nieuwenhuyse 
J. Ohm 
E J. de Regt 
J. I. M. van Run 
J. Sprong 
N. van der Stroom 
E. C. Tumer 
Y. H. Wiarda 

Co-pilot KLM 3500 
Co-pilot KLM 4000 
Flt. Lt. , BLEU 3600 
Captain KLM 12000 
Co-pilot KLM 4ooo 
Captain Lufthansa 12000 
Captain AirFrance IOOM) 
Co-pilot KLM 4200 
Co-pilot KLM 5000 
Co-pilot ,KLM 4ooo 
Captain KLM 7500 
Captain KLM 12000 
Co-pilot KLM 4ooo 

Co-pilot KLM 3600 
Co-pilot KLM 4wo 
Co-pilot KLM 3500 

Co-pilot KLM 7wo 
Co-pilot KLM 3500 
Captain KLM . 12000 
Captain KLM lwoo 
Flt. Lt. BLEU 2800 
CaDtain KLM 14ooo 

Captain Air France 12000 

Captain Lufthansa I W  

27 
29 
39 
41 
30 
41 
42 
31 
33 
29 
33 
41 
27 
40 
27 
27 
29 
41 
31 
32 
40 
39 
32 
42 

The figures in this table corresuonding with 
the Quality marks 1-10 remesent far: 
approach height deviation. half of channel height 

I! ft. measured 3wO ft tn front of threshold 
(ti& 10 grid I)  

op,nrooch k n d  t&k. half of channel width in ft. 
me?s!fed 3wO ft m front of threshold (fig. 10. 
glia 11. 

threshold height range in ft (fig. 10. grid 3). 
threshold speed'kts I A S  

#mind rrork 'half of channel width 
in f t  (fig. IO 'grid 4). 
touch-down distance, range of distance 
from threshold in 100 ft (fig. IO, 
(height deviation. not mentioned in 
table combination of scales for thres- 
hold 'height and :ouch-down distance 
@E: 10. mid 3)). . 

roll- and oiteh wove-length distance covered for 
roll omDli:udc maximum angle of ioll m degrees 
Ditch amolitude miximum change O f  Ditch attitude 

elevator and rudder. avera~e control 
surface movement in deerees. according 
to definition given io chavter 6. 
aileron. average cpntrol why1,rotalion 
In degrees. according to dehnltion E L V ~ ~  
in chavter 6. 

one oscillation in 100 ft'(fig. IO grid 5) .  

(fig. 10 m;d 5) 
in,degrees C&. 10. mid 5). 

Working Group has expressed. its high appreciation of 
the work done by the safety pilot, who accomplished a 
most difficult task, the air- and ground crews, the subject 
pilots, and the local authorities, managers and technical 
employees of Koln-Bonn Airport and the KLM field office. 

The complete absence of accidents or incidents may prove 
the high standard of safety with which the operation has 
been carried out. 

The author is greatly indebted to MI. J. E. de Boer and 
Prof. ir. T. van Oosterom for their most valuable assistance 
in preparing this report. 

Table 2. Average weather conditions. 

Date Tesf Block- Average Gusts Cloud 
night rime windspeed box 

m i 4  head tail stbd DOH 
1962 (hrs. components (kts) (/I) 

20nov.l) A 3.34 2 6 slight 2500 
4dec.I) B 3.14 6 3  none none 
5dec. C 2.42 4 2  none none 
6dec. D 2.24 7 2  none none 
7 dec. E 3.14 6 1  none misty 

10dec. F 2.52 8 4 some 8W 
12dec. G 2.40 6 0 0 slight 1200 
13 dec. H 2.47 3 3 slight 1500 " 

') Unfavourable weather conditions (natural fog) prevented test 
flying during the period between test nights A en B. 

Table.3. Numerical values of quality marks for various performance aspects. 

Quality mark 0 1 2  3 4 5 6 7 8 9 10 

Approach height ) 
50 45 40 35 30 25 20 15 10 5 

Approach gnd. track 
Threshold height 100 95 90 85 80 75 70 65 M) 55 50 

10 14 18 22 26 30 34 38 42 46 50 

Threshold speed 137 135 133 131 129 127 125 123 121 119 117 
Flare-outgroundtrack 50 45 40 35 30 25 20 I5 10 5 0 
Touch-down 4 5 6 7 8 9 10 11 12 13 14 

15 

I deviation 

distance 1 45 42 39 36 33 30 27 24 21 18 
Roll-and pitch 

wave-length 0 3 6 9 12 15 18 21 24 27 30 
Roll amplitude 21 19 17 15 13 11 9 7 5 3 1 
Pitch amplitude 8.4 7.6 6.8 6.0 5.2 4.4 3.6 2.8 2.0 1.2 0.4 
Elevator- and rudder 

travel 0 0.24 0.48 0.72 0.96 1.20 1.44 1.68 1.92 2.16 2.40 
Aileron travel 0 2.6 5.2 7.8 10.4 13.0 15.6 18.2 20.8 23.4 26.0 
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Table 4. Quantitative results of oerformance evduat~on. 

0 1 2 3 4 5 6 7 8 9 10 I 1  12 13 I4  I5 16 17 18 19 20 21 

4 1  
5 1  
6 3  
7 2  

9 1  
10 3 
I 1  2 

14 I 
15 2 
16 3 
17 2 

n 3  

:: 4 

i n  I 

D 0 SP 
1 2  
2 1  
3 3  
4 1  
5 3  
6 2  
7 1  

9 2  
10 3 
1 1  3 
12 I 
I3 2 
14 3 
I5 I 
16 2 
17 1 
I8  3 

n 2  

- 
2 
10 
10 
4 
2 
2 
3 
0 

10 
0 
0 
7 
4 
3 
0 
6 
4 
0 
n 

corrected 

corrected 

'1 

2 4 0 2 5 2  

6 3 1 2 6 7  
3 3 1 3 5 3  
3 3 6 4 6 6  
3 3 4 3 5 0  

.<&$ 3 2' 1 3 56 
2 2 :  7 4 51 

i& 
.'b.'. 

6 i.-z 3 51 
2 4 4 3 4 7  . .. 
2 5 0 4 7 1  ~1 

'i 6 1 3 5 7  ? 4 6- 2 29 
4 5 0 3 5 3  
2 5 2 4 5 5  
3 5 0 3 5 8  
2 4 4 4 64 corrected') 

10 0 0 2 152 corrected 
3 5 I 2 8 2  

,:; 
2 3 49 EOrreC10d~J 

.. 

'1 Unreliab1,e: 'LSVR about 2500 ft, decreasing to I000 ft: ,j Landed 
by safety mlot. to be cansrdered as overshoot: ') Sudden change of 
SVR from 0 to 1004 ft at 1000 ft before threshold: Pilot emected 

COnfiguratiOn 3: Pilot exwcted confisuration 2,: 7 )  R. H. red bar- 
rette nearest to threshold unservrceable: 7 Port aiming Domt lighting 
unserviceable. 
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Table 5. Totale average values of quality marks. 
Lkht conigurotion - 

Approach height deviation 4.7 6.8 5.7 

Pitch period 3.3 3.5 4.4' 

Appraach groundtrack 4.2 ' 4.5 4.3 

Elevator travel 3.3 3.7 4.4 
Pitch amplitude 6.0 . 5.45 . 5.6 

~~ 

Flare-out ,, 5.9 6.9 5.8 
Rudder travel 2.8 2.2 3.1 
Aileron travel 4.5 4.6 5.2 
Roll amplitude 5.2 5.1 5.2 
Roll period 6.3 6.3 6.6 

Threshold height 4.6 ' 6.8 5.8 
Threshold speed 5.4 5.3 5.6 
Flare-out height deviation 7.5 6.9 6.9 
Touch-down distance 3.9 4.8 3.8 

Table 6. Average quality marks and ranking numbers for "ap- 

Light Averaxe marks Rankii,p nurnbers 
proach height deviation". 

con$~ltrl?tio~~ 1 2 3 1 2 3 
Test night 

A 4.3 5.6 2.4 2 3 1 
B 3.5 5.5 4.0 1 3 2 

D 4.2 8.1 8.5 1 3 2 
C 3.1 1.2 5.1 1 3 2 

E 5.0 7.0 6.0 1 3 2 
F 8.4 1.8 6.1 3 2 I 
G 2.0 6.5 5.8 1 3 2 
n 6.1 6.0 6.2 3 1 2 

Total 4.7 6.8 5.1 13 21 14 

Standard deviation of total average: 0.41 
90% significant difference on total average: 1.05. 
95% sirnificant difference on total averaEe: 1.29. 

Table 1. Average quality marks and ranking numbers for 
"elevator travel". 

Lkht A w q e  marks Rankin8 numbers 
confixuration 1 2 3 1 2 3  

Test nieht 
I 

A 4.3 4.9 4.5 1 3 2 
B 2.5 3.9 3.7 1 3 2 
C 2.1 -3.7 4.5 2 2 3 
D 4.0 3.2 4.2 2 1 3 
E 1.5 3.2 4.2 I 2 3 
F 5.5 4.6 5.2 3 1 2 
G 2.1 3.0 5.9 I 2 3 
H 3.5 3.0 ~ 3.3 3 1 2 

Total 3.3 3.1 4.4 13 15 20 

Standard deviation of total average: 0.28. 
90% significant difference on total average: 0.12. 
95% significant difference on total average: 0.88. 

Table 8. Average quality marks and ranking numbers for 
"pitch amplitude". 

~~ 

Light A~eroge marks Rankin8 numbers 
eonfi~li,lltion 1 2 3 1 2 3' 

Test night 
A 6.2 6.0 6.0 3 IS I* 
B 6.0 5.0 5.7 3 1 2 
C 6.5 5.4 6.2 3 1 2 
D 5.1 6.1 5.1 IS 3 1: 
E 7.0 6.5 6.9 3 1 2 
F 5.2 4.3 5.0 3 I 2 
G 4.9 4.3 5.3 2 1 3 
H 6.3 5.2 4.2 3 2 I 

Total 6.0 5.45 5.6 219 I l t  15 

Standard deviation of total average: 0.23. 
90% significant difference on tctal average: 0.59. 
95% significant difference on total average: 0.73. 

Table 9. Average quality marks and ;anking numbers for "flare- 
out eround track". 

~~ 

Lkht Averope marks Rankinx numbers 
confipurotion 1 2 3 1 2 3 

Test night 
A 5.3 7.0 5.5 1 3 2 
B 7.0 1.7 5.5 2 3 I 
C 1.2 7.1 7.0 2 3 1 
D 5.3 6.5 5.2 2 3 1 
E 6.0 5.3 5.1 3 1 2 
F 6.0 8.0 6.1 1 3 2 
G 3.8 5.5 5.2 1 3 2 
H 6.3 1.2 5.5 2 3 1 ~ 

Total 5.9 6.9 5.8 14 22 12 

Standard deviation of total average: 0.22. 
90% significant difference on total average: 0.56. 
95% significant difference on total average: 0.69. 

Table IO. Average quality marks and ranking numbers for 
"threshold height". 

Light Average marks Rankiqp numbers 
confirpuretion 1 2 3 1 2 3 
Test night 

A -  4.5 6.0 3.2 2 3  I 
B 3.5 6.8 4.3 I 3 2 
C 4.2 7.0 6.0 1 3 2 
D 5.2 8.3 9.0 1 2 3 
E 4.9 1.5 7.0 1 3 2 
F 5.9 6.2 5.3 2 3 1 
G 1.3 5.9 5.3 1 3 2 
H 1.3 6.1 6.1 3 2 1 

Total 4.6 6.8 5.8 12 22 14 

Standard de\,iation of total average: 0.41. 
90% significant difference on total average: 1.05. 
95% sienificant difference on total averaee: 1.29 



17 

Table 11. Average quality marks and ranking ",&bets for 3 groups of subject pilots. 

Awrqp quality mrkr  and rankiq numbers 
Aspect Light eon- KLM captoins KLM co-pilors Foreign captains average 

Total 

jgim ion 

Approach height deviation 1 
2 
3 

Elevator travel I 
2 
3 

Pitch amplitude 1 
2 
3 

Flare-out ground track 1 
2 
3 

Threshold height I 
2 
3 

5.4 
6.5 
5.3 

4.0 
3.9 
4.7 

5.6 
5.0 
5.1 

5.3 
6.9 
5.7 

4.8 
6.2 
5.0 

(I) 4.8 

i 3 j  6.8 
(2) 5.8 

(1) 4.5 
(3) 7.4 
(2) 6.6 

(1) 4.2 
(3) 6.0 
(2) 5.6 

(1) 4.6 
(3) 6.8 

l) Figures in parentheses are ranking numbers. 
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J - det. (qj) 
M -Mach number 
P - static pressure 
q, qmax -velocity magnitude; def. (C.2.7) 
R ,  -radius of nose curvature 
S 

s, n 
line 

Mi -velocity vector 
(u, u )  
si .-position vector 
s, y 
z - x + i y  
a - acceleration angle (C.4.7d) 
/l -Mach angle 
Y -specific heat ratio 
Sii -unit matrix 

- v.elocity parameter, def. (A3) 
-arc length along streamline, equi-potential- 

: I ,  . ,  , 

. .  - 2-dim. velocity vector 

- 2 dim. position vector 

c -ellipticity 
EL$ Wynn's transform def. (3.2.6) 
[ -complex velocity qe-" 
0 -flow angle 
. >  

'." 1 - def. (2.2.4) 
P" 
5 ,  q 
p ;  p, .  -'fldw density; stagnation value of 2 

-arc length along characteristics 

- sonic value of s, def. (A3) 

' 

. ,  
U 

T - ( q / q " d  

@, q~ -(complex) potential. function 

$I -stream function 
$I. , - Chaplygin's function 
w - mass divergence 

1' Introduction 

This report is to be the first in a series on the general subject of the development of practical computational 
methods for transonic flow fields. Tlie motivation for this programme is not only in the more direct engineering 
applications, but also in the fact that in many respects, the problems encountered in the transonic field are of a 
much more general aerodynamic interest. 

More specifically, this report is concerned with the'computation of transonic plane potential (shock free) flows. 
This class of flow fields has been the subject of a long standing discussion as to its mathematical and physical 
existence. As is well known, examples of transonic potential flows can be constructed by analytical hodograph 
methods, as have been developed by Cherry (ref. 6), Lighthill (ref. 13) and Bergman, cf. ref. 11. From the mathe- 
matical point of view, these solutions have for a long time been suspected to he singular in some' sense. This 
conjecture has been made precise by Morawetz (refs. IS, 19,20), in a series of papers which have become a standard 
reference in the field. 

The possibility of a physical realization of these flows has'always been regarded to he rather questionable, in 
view of the occurrence of viscous effects (boundary layer separation, shock phenomena). Thus, Morawetz's results 
are often interpreted to indicate that in the real flow a shock wave, terminating the supersonic region, must he 
present. However, Pearcey (private communication), cf. ref. 23, has recently conclusively demonstrated that 
transonic profile flows, exhibiting a to all practical standards shock free supersonic region, can experimentally 
be realized. 

With these two fundamental results as reference points, a considerable part of this rcport is concerned with 
matters pertaining to the mathematical and physical interpretation of the practical results obtained. 

The actual solutions, which can he obtained by the methods of this report are intended as a basis for comparison 
with.approximate methods in the high subsonic and transonic field, and as a reference base for an experimental 
programme on. the genesis of shock waves in transonic flows. 

In the first section, Lighthill's integral operator technique is used to construct a three-parameter family, of 
"quasi-elliptical" aerofoils, representing subsonic and transonic profile flows. These are derived from the incom- 
pressible doubly symmetrical flow around an ellipse. This represents analytically a straightforward generalization 
of the corresponding solution related to the incompressible flow around a circle, solved by Goldstein, Lighthill 
and Craggs (ref. 9) and Cherry (ref. 6), and numerically worked out by Cherry (ref. 7). The analytical problem 
has been previously solved by Levey (ref. 12) using Cherry's theory, which report came to the author's attention 
when the work of this section was nearly completed. The analysis is, using Lighthill's theory, almost completely 
equivalent. (For a treatment of the subsonic problem on the basis of Bergman's integral operator theory, see ref. 2.) 

Five numerically worked out examples are presented, having one or two symmetry axes, depending on the 
choice of parameters, and showing various interesting properties. The most important fact, however, is that aero- 
foils can be exhibited within the family, having the geometric features and "peaky pressure distributions" of the 
sections shown by Pearcey (ref. 23) to he conducive to physically shock free flows. I t  is suggested that the method 
presented here could be the basis for a theoretical design method for these sections, which as yet does not exist. 

The second section of the report discusses the numerical analysis, which represents the crux of the.work. 
Numerically, the goal of constructing thin shapes presented a problem of a magnitude completely unsur- 

mountable at the time the analytical methods were developed, and which even now, using a.utomatic computing 
equipment and sophisticated numerical methods cannot be solved without restrictions on the combinationsol 
parameters representing thickness and asymptotic Mach numbers. The numerical convergence problems have 
been solved to an appreciable extent by formal application of Wynn's &-algorithm. 
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Appendix A contains, for convenient reference, a survey of the main analytical results of Lighthill’s work, which 
‘is extensively reported upon in the literature (refs. 13, 14, 17). 

Appendix B presents a somewhat philosophic contribution to the discussion in the much disputed “transonic 
controversy”. The physical interpretability.of=the results presented is discussed and some consequences of Mora- 
wetz’s theorems and Pearcey’s experimental results for the design problem in the transonic field are suggested. 

Appendix C is a study of some algebraic aspects of the theory of plane potential flows. The conditions, under 
which the hodograph transformation is Feasible, are analysed, exhibiting the.significance of the metrical properties 
and dimensionality of physical space. This leads to a number of invariant relations, which are’basic for the local 
aspects of the theory of this report and are used in the analysis of the results. Many of the results presented are 
implicit in Busemann’s original work on characteristics methods; the discussion has been partly inspired by 
Birkhoffs study (ref. 14) of group properties in aerodynamics, in particular by his question as to the reason for 
the linearity of the hodograph equation. Most of the algebraic relations and their physical interpretation have 
also been given by Reyn (refs. 24, 25)  from a slightly different point of view. 

The collaboration of M. J. M. G. van Gennip,,who has been in charge of the crucial numerical work (ref. 8) 
for this report. is gratefully acknowledged. 

We thank professor dr. E. van Spiegel for a discussion of the material of this report; and professor dr. ir. A. I. 
van de Vooren for first drawing our attention to the &-algorithm, which eventually turned out to he the conditio 
sine qua non in the computational work. 

2 Computation of transonic potential flow around a family of quasi-elliptieal’aerofoils 

2.1 Lighthill‘s integral operator 

In this section, a three parameter family of transonic potential flows around aerofoils will be constructed, using 
Lighthill’s integral operator technique. 

This paragraph presents ’a discussion of Lighthill’s operator in very general terms; for the analytical work 
reference is made to the original paper (refs. 13, 14) and to the very clear introduction in von’Mises’ book (reL 17), 
where also the connection with Bergman’s methods is expounded. A compact survey of the main results of the 
theory is given in Appendix A, where also the definition of the symbols used in this section can be found. 

The hodograph equation is written in the form (cf Appendix A): 

(2. I .  I )  

with r = (q/qmar)*. implying use of the isentropic gas law. 
The problem is, then, to construct singula5ities in some solution space of this equation, generating a hodograph 

manifold of the type required for an aerofoil flow; this is essentially a topological problem. A considerable insight 
into just these problems lies at the core of the classical theory of functions of a complex variable, and the basic 
idea in all of the function theoretic methods mentioned is to derive the hodograph of the compressible Cow from 
the analytic function describing an incompressible hodograph of the type required, by a continuous transformation. 

In Lighthill’s method the hasic property of linearity and rotational invariance of solutions of eq.(2.1.1) are 
used to obtain Chaplygin’s particular solutions of the first kind* by separation of variables: 

$“(T) e* in @ (2.1.2) 
where I 

$ ,=r f”F(a , , h , , n+ l ; r )  for n#-2,  -3, 

This implies an essential restriction of the solution space of eq. (2.l.l] to functions analytic on the hodograph 
except for a finite number of isolated singularities. 

The fundamental fact in Lighthill’s theory is that for subsonic T, the set‘of $;s, for n generally complex, can be 
expressed in a series of the functions $m, for 171 integral positive, cf. (A8), implying that the Chaplygin particular 
solutions of positive integral index provide in the subsonic case a,base in ,the restricted space of rotationally 
invariant analytic solutions of ey. (2.1.1). 

Now, when a reference speed qu is chosen (which will he taken equal to unity in this report), the parameter qmax 
(vide Appendix C.2) governs compressibility in the flow. It is then possible to define a continuous limiting process 

. ,  lim f(i r-1 $“i7) = (q/qoo)n’. . .  
’Im..-“ 

* There is a Chaplygin function of the second kind. singular at lhc origin. cf. Note. par. 2.5. 
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involving a suitable funcAon f (n ,  T ~ ) ,  giving correspondence between the set (2.1.2) and the particular solutions 
y,='qlle- inn 1.n . incompressible flow. The decomposition (AS), and the, relation (A3a): 

lim Cs- =q/q ,  
'Im..-" 

suggest the feasibility of choosingf(n, rm)  

the subsonic part of the compressible hodoghph reads: 

e-"'.. . 
The simplest form of integral operator given by Lighthill, valid for circulation free now fields and d e  ined in 

(2.1.3) 

where by definition C , =  I ,  C ,  = O .  
The formal properties of this operator are listed in Appendix A, but a rough indication of its meaning can be 

given on the basis of the above discussion. The integral part of the operator takes suitable moments of the incom- 
pressible hodograph function @(iJ, involving the subsonic compressible velocity parameter e"'-'-. These are 
projected on to the (conjugate) base vectors $,eim', this operation involving the weight functions C,e"'m. The 
parameter s, governs compressibility, and for ,s,,,- - MJ the incompressible hodograph is recovered. The integral 
in,eq. (2.1.3) depends in.principle on the path chosen in the incompressible hodograph manifold, but. should be 
single valued at least in the hodograph, image of the external flow field of the transformed profile. Inspection of 
the example given in the next section will clarify the way in which the topology of the hodograph manifold 
depends on the conditions at infinity in physical space for a circulation free incompressible flow. In this c s e  the 
operator form (2.1.3). involving. the particularly simple function.f(n: r.,,) f E - " ' -  to control the continuous, trans- 
formation, can be shown to be single valued. The significance of the operator will become more obvious,in par. 2.2.. 
where it  will be developed in series form. 

The case of circulatory flow, also given by Lighthill, is of course much more complicated. 

2.2 Hodograph ofthe symmetrical, incompressible Jluw uround a n  ellipse 

The complex potential a(() associated with the incompressible circulation free flow around an ellipse of excen- 
tricity E is found from that for the circle by Zhukovskii's transformation: 

I 
@(z)=z l  + - (2.2.121) 

Z I  ~ 

E 
i = z l  + -  (2.2. I b) 

. ,  
21 

Eliminating zI between (2.2.1)'and the complex velocity 

d@ d@ dz, . z:-I 
dz dz, dz Z : - E  

[ = - = - - = -  

the hodograph flow is obtained 

(2.2.2) 
, .  

(2.2.3) 

The pair (2.2.1), (2.2.3) defines the hodograph transformation, which is obviously conformal in the incompressible 
case. The physical and hodograph manifolds are sketched in fig. I, which may clarify the way in which the topology 
of these manifolds is generated by the singularities of the analytic functions describing the flows. One notes. that 
circles around the origin in the 2,-plane, including the boundary streamline, are mapped on double traversed 
circles in the hodograph manifold (2.2.2), the circle IzI I = c degenerating. 

expresses the symmetry with respect to the circle IzI I.= 8:: between . .  the "physical 

pk+ne" and the :'generating flow".situated in, the second sheet of the Riemann surface. Together. the two sheets 

.Furthermore, fig. 1 indicates how curves ofconstant speed and flow angle (the analytic function log [=log y +  iU) 
are generated in the physical plane by the stagnation points and the'singularities at the focal points of the ellipse. 
The latter map on the infinite point of the hodograph. 

Now, writing down series expansions of (2.2.3) valid for lil< I ,  I < l[ l<  - and I [ /  > - respectively. one obtains: 

The mapping [ -+ ,i 
( I + E ) [ & l  

make up the complete "physical manifold. , , . . . . . ,  

I ,I 
I :  . .  , ,  I;  



Fig. I .  Physical and hodograph manifold for incompressihlc symmetrical flow around an ellipse. 

for Ill < 1 
m 

I @(O = c c,i" (2.2.4a) 
" = O  

c. = 2A"-(1+&)1"-1 

co= 2 

A . = a F ( k - n , $ - n ; ~ )  (n-$)! 

1 
for I i (51 < - 

E 
n 

( n - t ) !  
= ~!JH F(t, n + t ,  n+ 1, c) 

I 
for 151 > - 

E 
.m 

@(() = - f "& - " -+ [ - "  

f. = 2 & i - l - ( l + & ) i "  

fo  = - ( l + c )  

" = O  

where F denotes the ordinary hypergeometric function (in is a nth degree polynomial). 

(2.2.4b) 

(2.2.44 
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! (1 --E) 5 1-6 by trans srmation to 
, , ,  

Steiner's form, the associated series having the required asymptotic properties. This observation verifies the 
-regions of convergence as stated. 

2.3 Construction of compressible solutions 

Following Lighthill, series solutions of (2.1.l), representing the compressible hodograph flow, can now be 
derived from (2.2.4), using the operator (2.1.3):These series immediately provide the analytic continuation of the 
solution into the supersonic region Ill >e"-'-. 

Referring to fig. 2a, in region I the series (2.2.4a) can he inserted into the operator, and, performing the inte- 
gration, one obtains: 

t-" c 

Using (AS), this can be written 
m 

J, = E ~ , $ , ( r ) e ~ " ~ " s i n  no 
" = O  

= L , .  

(2.3.1 ) 

To continue' this solution into region 11, an arbitrary fixed parameter point 
condition 

is chosen in '11, subject to  the 
I < ec-sm. Writing symbolically 

@(i) = Cd..r"' 
as a shorthand for the expression (2.2.4b). it follows: 

Evaluating the,integral along a path shown in fig. 2b, circumventing the point [= 1 with a circle of radius 6. it 
follows, using one partial integration: 

(2.3.3) 

Now, for 6-0 t i e  third term vanishes, and the fourth at the lower bound. Collectmg terms in from (23.3). 
these cancel those in the series in (2.3.2) as they should; and only the second term in (2.3.3) remains. This can be 
written, using (2.2.3) and the integral representation for the hypergeometric function (ref. IO, p. 196): 
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Now, when (2.3.7) is represented by 

by integration it is found, using (AI): 

where 

2.5 Note 

It is illustrative for the.technique of Lighthill's continuation process to consider what happens to the part 

KI > - of the incompressible hodograph plane under the transformation. For the present work, this is only of 

academic interest; however, as pointed out by Levey (ref. 12), when complex values for E are taken to obtain the 
circulation free flow around an ellipse with incidence, part of the external flow field may he described by this 
continuation. 

The incompressible series (2.2.44 has negative integral exponents; in this case it  is necessary to use a second 
solution $I", involving logarithmic terms, defined for n an integer 2 2 .  This independent solution has been defined 
by Lighthill to he: 

1 
& 

(2.5.1) 

For the formal details of Lighthill's technique in this case, reference is made to the original paper, the results 
only being given below. A more immediate interpretation of the analytical situation is obtained by working out 
the "Barnes contour integral repiesentation" for the operator (2.1.3) corresponding to the series (2:2.4), cf. ref. 9. 
This leads to the equivalent result in a somewhat different form. This technique will he amply demonstrated for 
the circulatory flow case to be studied in a following report. 

Using the present formalism, the analysis is similar to that in the foregoing cases, however, one has to consider 

a contribution of the lower hound at [ = - of the integral corresponding to the fourth term in (2.3.3);when 
I 
s. 

integrating along the contour shown in fig. 2d. It follows: 

in IV $ =  L,+H-(&I) G 
in V $ = - L 4 - H - ( d + l ) G  

(2.5.2) 

and by definition, 
C0=l  $'0=1 

c,=o 
1 

Again, using Lighthill's asymptotic estimate for 

and the series H converges on the whole hodograph. 
These series define implicitly the "internal generating singularities" as analytic continuations of the external 

compressible flow field, for r=  1 and T = T ] / ~ .  The incompressible physical and hodograph manifolds can he closed 
by addition of the points at infinity, this property is lost by the finite compressible hodograph obtained by the 

it follows that L4 converges for r > T ~ ~ ~  when ~ i e n - ' . ~ ~  
c 
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transformation: This fact gives the possibility of defining solutions representing profiles without fore and aft 
symmetry, associated with a doubly symmetrical incompressible generating flow. 

2.6 Discussiun of results 

2.6.1 The series (2.3.7), (2.4.1) have been evaluated for a number of combinations ( T ~ ,  E, i), to give closed profiles 
with a neighbourhood of the field in the physical plane. 

When transonic flows around thin shapes are aimed for. convergence of the series becomes very slow, especially 
on the circle I l l ' =  1 and in the high speed regions of the flow field. These difficulties have been partly overcome 
through the use of a numerical scheme described in detail in section 3 ;  one is left, however, with a rather severe 
restriction on the possible combinations of T- and E for the flow fields that can be fully worked out. 

This restriction depends on the number of significant figures available in the computation of the Chaplygin 
functions $", and in the present case it turned out that profilesin the range up to r/c -0.154.20exhibiting a local 
maximum speed of approximately r=0.18 ( M -  1.1) could be computed. 

To prevent overcrowding this report by a deluge of tabulatory material, only tables for co-ordinates and velocity 
distribution along the profiles, which have been interpolated from the results, are given'in table 1. All points 

TABLE I. NUMERICAL PROFILE DATA 

TABLE IA TABLE 1B 

\ I ,  =0.673 T,, =0.083 T . ~  =0.09 M,=0.704 
1:=0.6 i = o  c=0.6 i = 0  

. .  v M 0 

- 1.562 
-1.547 
- 1.527 
- 1.502 
- 1.474 
- 1.437 
- 1.3Y3 
-1.381 
- 1.342 
- 1.276 
- 1.203 
-1.108 
-0.991 
-0.839 
-0.624 
-0.216 

0.02 I 
0.034 
0.049 
0.066 
0.083 
0.103 
0.125 
0.130 
0.147 
0.174 
0,196 
0.223 
0.251 
0.281 
0.3 I2  
0.343 

0.319 
0.393 
0.456 
0.513 
0.565 
0.613 
0.659 
0.673 
0.703 
0.745 
0.786 
0.826 
0.864 
0.902 
0.939 
0.976 

~ 

0.744 

0.623 
0.571 
0.521 
0.476 

' 0.431 
0.418 
0.386 
0.343 
0.302 
0.260 
0.217 
0.171 
0.I20 
0.038 

0.680 
- 1.578 
- 1.567 
- 1.552 
- 1.533 
-1,.510 
- 1.483 
- 1.450 
-1.411 
-1.311 
- 1.253 
-1.175 
- 1.092 
-0.991 

-0.720 

-0.514 
-0.335 
-0.105 

-0.869 

-0.595 

?' 

0.006 
0.01 6 
0.028 
0,041 
0.056 
0.072 
0.090 
0.109 
0.151 
0.169 
0.195. 
0.216 
0.239 
0.263 
0.286 
0.301 
0.308 
0.321 
0.329 

M 

0.225 
0.319 
0.393 
0.456 
0.513 
0.565 
0.613 
0.659 
0.745 
0.786 

0.864 
0.902 
0.939 
0.976 
I .m 
1.012 
1.030 
1.041 

0.826 

U 

0.724 
0.690 
0.645 
0.598 
0.555 
0.512 
0.471 
0.432 
0.354 
0.321 
0.278 
0.245 
0.210 
0.171 
0.133 
0.104 
0.088 
0.055 
0.016 

TABLE I C  

rT, =0.10 M,=0.745 
r = 0 . 7 . ,  i = o  

x Y M B 

2 1.690 
- 1.684 
- 1.675 
- 1.635 
- 1.574 
- 1.431 
- 1.361 
- 1.277 
- 1.180 
-0.888 

-0.386 
- 0.049 

-0.658 

0.001 
0.002 
0.006 
0.022 
0,046 
0.093 
0.113 
0.132 
0.150 
0.195 
0.218 
0.235 
0.243 

0.319 0.241 
0.351 0.315 
0.393 0.362 
0.513 ' .  0.390 
0.613 0.354 
0.745 0.273 
0.786 0.241 
0.826 0.210 
0.864 0.186 

0.976 0.082 
1 .m 0.044 
l .Ol2 0.01 I 

0.939 0.121 
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TABLE I D  TABLE IE  

7, =0.09 M ,  =0.704 7 ,  =0.0X M, =0.659 
E = 0.6 i= l  >: = 0.6 i=? 

.__ 
I M IJ Y ,M 0 

- 1.587 
- 1.575 
-1.560 
- 1.541 
-1.516 

- 1.463 
- 1.439 
- 1.41 I 
- 1.379 
- 1.340 
- 1.296 
- 1.262 
-1.133 
- 1.061 

- i.501 

-0.768 
,-0.581 
- 0 . w  

0.109 
0.336 
0.535 
0.708 

o m  
0.856 

1.261 
1.387 
1.474 
1.506 
l.52l 
1.533 
1.540 

0.m 
0.051 
0.077 
0.100 
0.123 
0.135 
0.160 
0.173 
0.187 

0.217 
0.232 
0.242 

0.284 
0.315 

0.322 
0.312 
0.291 
0.265 
0.238 
0.209 

0.102 

0.201 

0.272 

0.326 

0. I 80 

0.056 
0.022 
0.009 
0.004 
0.001 
0 . m  

0 . m  
0.319 
0.456 

0.703 

0x64 
n.9oz 
0.939 

I ,065 

1.065 

0.976 

0.902 

0.X26 
0.786 

0.456 

0.319 

0.56i 
0.659 

0.786 
0.826 

0.976 
I .ooo 
1.083 
1.083 

I .m 

0.939 

0.864 

0.659 
0.565 

0.393 
0.3% 

0.276 

n!? 
i.1402 

- 1.581 
- 1.573 

0.957 - 1.565 

0.676 - 1.537 
0.629 - 1.525 
0.532 -1.514 
0.484 -1.504 
0.436 - 1.499 
0.401 - 1.495 
0.346 -1.491 
0.303 - 1.487 

0. I90 - 1.479 
0. I 56 - 1.474 
0.070 - 1.468 
0.035 - 1.464 

-0.049 - 1.327 
-0.074 -1.151 
-0.110 - 0.983 
-0.144 -0.752 

-0.208 -0.136 
-0.238 0.166 

0.814 -1 .551  

0.274 - 1.483 

-0.176 -0.459 

-0.323 
-0.366 

0.427 
0.839 

- 0 . 3 ~ 0  1.193 
-0.349 1.287 
-0.305 1.415 
-0.206 1.500 
-0,OOO 

0.ooo 
0.069 
0.097 

0.158 

0.190 

0.206 
0.210 
0.214 

0.220 
0.223 
0.227 

0.232 
0.277 
0.318 
0.340 
0.353 
0.352 
0.338 

0.133 

0.176 

0.201 

0.217 

0.231 

0.31 I 
0.276 

0.102 
0.197 

0.070 
0.025 
0.ooO 

0 . m  
0.225 

0.456 

0.745 

0.319 

0.565 
0.659 

0.826 
0.864 
0.902 
0.939 
0.976 
I ,012 
1.048 
1.083 
l . l l 8  
1.1 18 
1.083 
1.048 
1.012 
0.976 
0.939 
0.902 

0.745 

0.864 
0.826 

0.613 
0.565 
0.456 
0.319 

n i?  
1.346 
1.253 
1.122 
1.023 
0.940 
0.368 
0.804 
0.773 

0.7 I 3 

0.655 
0.624 
0.591 
0.552 
0.543 
0.313 
0.144 

0.742 

0 . 6 ~ 4  

0.083 
0.028 

-0.019 
-0.067 
-0.112 
-0.152 
-0.231 

-0.333 
-0.342 

-0.304 

0.000 

computed have been drawn in into the figures 3a through 3e, corresponding to the following combinations of 
parameters 

I --L  

I +,: - t i c  fig. 7 ,  i M ,  M,. 

3a 0.083 0.6 0 11.673 0.983 0.250 0.217 
b o.mn 0.6 n 0.704 1.046 0.250 0.208 

e o.mn 0.6 2 0.659 1.1 i n  0.250 0.230 

c 0.100 0.7 0 0.745 1.012 0.176 0.141 
d 0.090 0.6 I 0.704 1.090 0.250 0.212 

Hodographs of the boundary streamlines are given for the last three cases in fig. 4. 

2.6.2 The most striking phenomenon exhibited by the examples computed is the considerable sharpening of the 
profile ends by addition of series G and the corresponding blunting under substraction. This means, that when i. 
is chosen > O  and 7, sufficiently high, profiles are obtained having a rounded leading edge, and a cusped trailing 
edge. 

An analysis of this phenomenon provides an application of the relations obtained in Appendix C. 
From C.4.6 and C.4.7a it follows: 

In hodograph plane variables one has 
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Fig. i h .  Transonic p o l c n l d  flow around quasi-ellipse M I  =0.7W: i:=O.h; i = O .  
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where, as in previous results,.q, has been chosen equal to unity. A t  a front stagnation point the first of the series 
(2.3.7) should he used for 

n 
2 

r=O, 0 = -, $ = O  .and it follows 

c,e-'Sr, - ( i -  I)q,C,r'". - I 
4(c2e-2s" - (i-  l ) g 2 C 2 ~ 2 s ~ ~ ~ ~ z  'JT,: 

- 
I 

R ,  
_ -  - 

As c2=$( l  - E ) ~ ;  c,=$(l +c) ( l  -c)' .  this reduces to the value 

I I + c  

R,  ( I - X ) ~  
_ = - _ _  

in incompressible flow. (At a rear stagnation point, use j.' = - i  and the opposite sign). 

(2.6.1) 

11:=0.6 

I i = O ,  I ,  2 
A graph of R ,  as a function of M,,,(=r -) is presented'for 

Starting from the incompressible value, for,;. > O  I increases to infinity corresponding to a zero in the deno- 

minator in (2.6.l), for a certain value of M,.  From this point on. the stagnation point is "pushed" by the G-series 
into the sheet of the physical manifold forming the analytic continuation of the interior of the body. leaving a 
cusped profile. (cf. the hodographs fig; 4). This phenomenon is exhibited by all of the examples computed. detailed 
illustrations of the cusps for two cases are given in figs.' 7a. 7b. 

A remark should be made on the (relative) unit of length the expression (2.6.1) refers to. The lengths of the major 
and minor semi-axes of the incompressible ellipse are 1 +.E and 1-1: respectively. The corresponding lengths in 
the compressible physical plane are found as a result of the integration process. and no explicit expressions exist 
for them. The examples computed show, that the profile chord does not differ much from the value 2(1 +c). thc 

in fig. 5 

I .  
RO 
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discrepancies becoming larger when a cusp is present at one or both profile ends. The reduction in the resulting 
profile thickness as compared with the value 2(1 - 8 )  can become appreciable with increasing MgJ. 

2.6.3 All of the examples-computed are continuous solutions in the physical plane, i.e. no limit lines oci-ur in the 
external flow, field (cf. Appendix C 4.5). 

For the cases presented in figs. 3d. 3e. the graphs of the quantities 4.. 0, and J versus arc length parameter along 
the profile contour are gken in figs. 6a. b. I t  should be remarked. that these curves have been obtained by num- 
erically differentiating and smoothing intcrpolated data. and thus have not much more than qualitative sig- 
nificance. 

For the profile fig. 3d. J does not show any tendency towards large values in the supersonic region: however, 
the behaviour of J for the more asymmetric profile fig. 3e suggests the presence of the cusp of a limit line in the 
interior of the profile quite near the contour. The limit line, in Reyn's terminology (ref. 26). "generates" the strong 
expansion over the nose. the profile contour exhibiting very nearly a curvature discontinuity there. Further 
increasing i and/or 77 would lead to a point of infinite curvature on the profile, i.e. a discontinuous junction of 
a blunt nose into a weakly curved profile. For still higher values of the parameters no physical profile would be 
defined. as the limit line would pierce into the external flow field. (A brief discussion of the "limit lines" is presented 
in Appendix CS). 

By manipulating i ,  clearly a family of profiles exhibiting rapid expansions of varying strength over the nose 
region followed by gradual recompression, may be generated; a point of fundamental interest in connection with 
the design problem for profiles having a "peaky pressure distribution" (ref. 23, par. 7 8; Appendix B 3,4). 

*2 

- 2  

-4 

-6 

z r  
B O B  3 3  

4 0 4  2 2  

.02 1 1  ., 

0 0  0 0  

-02 -, -1 

-04 -2 -2 

-OB -3 -3 
0' 04 08 12 16 . 2 0  2 4  2 8  3.2' 36 

S 
Fig. ha. Graph oi J .  <, 4,. 0 and 0, versus arc length .\ along body contour ,M .=0.7W; ?:=0.6; ;.= I .  

IO 

-10 

-20 

m 
3006 3 3 

x ) O 4  2 2  

.a2 *, 1, 

0 0  0 0  

0 2  ., - 1  

-04 -2 -2 

-3046 -3 -3 
6 04 08 1.2 I 6  2 0  2 4  2.8 3.2 3 6  

S 
Fig. hb. Graph or J .  <. s. 11 and 0,. Y C ~ U I  arc length 5 along body conlour . i f ,  =fl.hSY; i:=O.h: ,.=2. 
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2.6.4 It is in particular this possibility of identifying profiles of the “peaky .pressure distribution” type within the 
family considered, that makes an extension.of the present procedure to more general classes of profiles, including 
cases of practical significance. interesting. 

A discussion of the physical interpretability of these solutions is presented in Appendix 8. It is suggested there, 
that in general, a transonic potential flow solution has no a priori bearing on physical reality at ail. On the other 
hand, practically shock free flows of the “peaky pressure distribution’’ type have experimentally been shown to 
exist, and the present method might provide a basis for a systematic exploration of the physical limits of this 
concept. This would necessitate the development of the present. work to  a practical design method, involving a 
set of parameters giving profiles of the required physicdl characteristics, in a range that has to be defined by 
experimental verification 

It would 

Fig. 7a. Demil or cusped profile nose of quasi-ellipsc. Fig. 3c. 

I I 

Fig. 7b. Detail of cusped trailing edge of quasi-ellipse. Fig. 3d. 

em to he more profitable to explore the practical possibilities of extendir present family by 
adding further solutions $in cos no, $in sin nO to the hodograph solutions to give camber etc., in to try and find 
the series representations for more general profiles in the incompressible physical plane, as these profiles are 
strongly distorted anyway. The most urgent problems would then he the further extension of the numerical 
scheme to make higher local Mach numbers and thinner profiles admissable, and an attack on the case involving 
circulation. When these problems could be solved, it is probable that sufficient parameters are available to make 
the procedure of some practical interest. 

3 Some details of the numerical work* 

3.1 Computation of $,: signijicance control 

From the computationai point of view, the series representation (2.3.7), (2.4.1) presents considerable difliculties: 
in the high speed regions of the flow field, the series are to be evaluated for relatively high values ofthe argument r ;  

* Parts of this section haYe been written in collaboration with M. I. M. G. van Gennip. who has been in charge of the actual numerical and 
programming work. cf. ref. 8. 
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for thin shapes (large values 0f.c). the approach of the second branch point at i = - to that at [= I makes itself 

felt in a very slow convergence of the series. This'behaviour is serious in that in the series (2.3.7). (2.4.1) high 
oraer I/JT are then required. which~~are-extremely difficult to compute. 

The qualitative behaviour of f J r )  for increasing 11 can be seen from the asymptotic forms (A1 I ) .  and is illustrated 

in fig. 8. F,(r) is positive for 7 < - (sonic value) and shows oscillatory behaviour for supcrsonic 7. the first 

1 
E 

7 -  I, 
; ' + I  

Fig. 8. Graphs of hypcrgcometric hunction $-Juv, h,. n+ I : T). 
> 

zero approaching the sonic value with increasing n. For positive large n, F.(T) shows a very steep gradient at 7=O: 
for negative n around the sonic value. 

These large gradients in the graph are reflected in a severe cancellation between terms in the series representation 
(A6), and essentially the same difficulty occurs in some form or another in alternative ways of computing $In. 
Significance control in the computation of I). is then the critical problem in a computer using floating point 
arithmetic. 

I t  will be clear, that this problem is,quite different from the problems posed by any slow convergence of the 
series for Fn(r) for large n. Actually, the hypergeometric series converges in the range of T of interest to a practical 
answer using a few times n,  say 2n, terms, and should thus be considered as a fairly efficient means of generating 
$Iw The point is. that a rather exceptional accuracy in the numerical representation is required in order to handle 
the wide range of values and steep gradients in the graphs. The asymptotic forms (A 11) for large n are, in fact. 
of little use from the computational point of view, as n has to be very large before $I, is represented by the main 
term with any accuracy. Higher order terms are difficult to find in the supersonic case, 'but can be found easily 
from ( A  8) in the subsonic case and prove then also to converge very slowly. Cherry's method (ref. 7) of applying 
empirical corrections to the asymptotic main term is in the present case obviously unsuitable. 
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As the convergencc properties of the serics (A  6 )  d o  not become in itself prohihitive in the present cax. thc 
series representation appears to he the most elfcient method of generating (I,- Significance control in the compu- 
tation of ~n was donc in the crude hut efTective way of a priori restriction of the range of pairs ( r .  11). 

Setting as a goal q significant figures in the t,th partial sum FP' of the hypergeometric series. and using p-figure 
floating point arithmetic. the admissable range of T is restricted Tor given n by the inequality 

where ( ( 1 1 .  r )  is the largest individual term of the hypergeometric scries. and the last term in the inequality is ;in 

estimate for rounding error. In this estimate of cancellation effects. the index v is given by the hound for the 
truncation error (JFY' in F.. a s  the hypergcometric series is ultimately alternating (for I' > 11). For.Ft '  the estimates 
( A  9. A 1 1 )  can he used with advantage. 

In the present computational work. I 3  figure arithmetic was available in the computer. and choosing q = 6 .  onc 
may choose 

9 

n was chosen to he restricted by 

In1 < 5% 

By (3.1.1). F,(T)  can then he computed to within the above accuracy for 

r < - 0.IX 

for every II  within this range. the restriction of course being given by the ~ a l u e  11 = ~ 5@. 
In this way. a very severe restriction is obtained on combinations ( r , .  I : )  for which-explicit solutions can he 

computed. In the first place. these combinations should he so that the maximum velocity in the external flow field 
does not exceed ~ = 0 . 1 8 ( M =  1 . 1 ) .  (see, however, a remark in par. 3.3). Secondly. for a given truncation error on 
the series (2.3.7). (2.4.1), these series should sum within this bound for / i t \  < 50. Whether these criteria are met. 
can unfortunately only be verified a posteriori. The maximum value of I :  that gives a full neighhourhood of a 
profile in the physical plane with any accuracy by direct summation. is very roughly estimated to be in the order 
of 0.3. giving a profile being very Far from thin indeed. The range of admissable 1:'s can. however. appreciably he 
extended by formal application qf Wynn's c-algorithm (ref, 29) to the available sequence of partial sums (2.3.7). 
(2.4.1). as a procedure essentially attacking the slow convergence of the hodograph series. I n  view of the interest 
of this method, a somewhat discursive discussion may follow in the next paragraphs. 

3.2 Shrinks' e,-fr(im\iwm.s: i:-d:/i~rirItn~ 

- 

3.2.1 Given a sequence of. say partial sums 

s,. . . .. S",. . . . 

a sequence to sequence transform is formally defined (Shanks: ref. 27):  

1 s,-, . . .  s, I 

(3.1. I )  

(3.2.2) 

A S , , - ,  A S ,  

A S , _ ,  . . .  A S , + , - ,  

wherc 
A S , = S , +  I -S, 

ek(S,)  appears as a weighted combination of.",-,. . . ., S ,  with non-linear weights depending on Sn,-,+ ,. . . .. S,, ,. 
and the sequence e,(S,) is hoped to converge faster than S, does. or even in some cases to sum diverging sequences 
5,. 
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In fact. when for m - k s r s m t k  S, can be written 
h 

s, = U h  + 1 q,,;.:,", . (3.2.3) 
i =  I 

application of (3.2.2) gives r , ( S , )  = irrespective of convergence or divergence of the sequence S,. 
An important application is the case where (3.2.1) is the sequence of partial sums of the power series development . .  

of an analytic function 

In  this case (3.2.2) can be written: 

and ek(S,) is the quotient of two polynomials of degree 111 and k respectively. which can he identified to he the 
rational fraction approximation to the function @ of order (k .  in) having the property that the series obtained by 
dir,iding out the fraction agrees with thc series devclopment (3.2.4) up to the term im'k.  

In this case. the theory of the e k ( S m )  transforms is equivalent to rational fraction approximation. or continued 
fraction expansion (ref. 27. 29). 

The way in which thc e,(S,) operates is then clearly illustrated by one of the interesting examples given by 
Shanks (ref. 27): if @ is an analytic function having p poles in a circle = R. being otherwise regular in this circle. 
e,(S,) approximates @ uniformly in this region (with small circles around the poles cut out) for 1 1 1 -  ,m. This 
means that the zero's of Sf,"' in  ( 3 . 2 . 5 )  are eventually situated in any neighhourhood of the poles of @. The conver- 
gence or divergence of the sequences. S,. . . . are clearly irrelevant: the power series expansion around the 
origin can be used in the whole circle / < I  = R. and the transforms supply the analytic continuation automatically: 
contrariwise. the trmsforms applied to a Laurent series expansion do not provide the rational fraction approxi- 
mation. 

The situation is not so clear. however. for functions involving branch type singularities like (2.2.3). Cutting the 
hodograph planc between ; = I .  2 one would by analogy and symmetry, be tempted to expect uniform conver- 
gence of un(Sm) for n - n in a finite region of the hodograph plane excluding a rectangular strip around the cut. 
i.e. thc branch points to be approximated by sources lying eventually within this rectangle. This would. however. 
be very difficult to prove. thc non-formal aspects of the approximation technique.being a s  yet not very extensively 
developed. 

When, as is the case in the present application. the u,-transforms are applied to the partial sums of the series 
(2.3.7), (2.4.1). representing the compressible hodogtaph solution. no such functional representation of the approxi- 
mation exists even in the formal sense. The resulting process,is a purely local "filtering out of higher order compo- 
nents" from the sequence (cf, (3.2.3)), in the sense of Shanks' original intuitive motivation. with no more justifi- 
cation than the plausibility of the answer obtained. The transforms have only been used on convergent sequences. 
i.e. analytic continuation has been done by using Laurent series. in the expectation that application will at any 
rate not worsen convergence. 

3.2.2 Application of the e,-transforms in the form (3.2.2) is prohibitively laborious. They have been rewritten, 
however, in the form of a recursive algorithm by Wynn (ref. 29). His technique, the ?:-algorithm, is defined by: 

(3.2.6) 

(3.2.4) 

(3.2.5) 
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and Wynn proves 

The algorithm has been used in the form (3.2.6) to sum the series (2.3.7) and (2.4.1). 

- 
2 k  - .k&) 

I 

3.3 Applicafion fo  ecaluarion aj’s~ries  (2.3.7), (2.4.1) 

The concept of “convergence” used in summing these series by formal use of the E-algorithm is of necessity 
intrinsically numerical; that is depends essentially on a criterion involving a subjective degree of confidence in 
the result ultimately chosen after inspection of the output of the process. 

As a definition of “convergence” of the ealgorithm, it was decided to test for two subsequent numbers in an 
even numbered column of the earray to @ree within 4 rounded significant figures, and to repeat this test in the 
next even numbered column to give the same result. This last test was only sampled, however, in the most critical 
parts of the field. 

The earray was based on a sequence EL” of at most 50 partial sums, as discussed in the preceding paragraph. 
An example of the output of the process in the computation of the series (2.3.7 I) for T=O.OY: ~ = 0 . 6 ;  E.=l for 
r=0.07, H=O.Y is given in table 2, where odd numbered columns have been deleted. Application of the E-algorithm 

$ 1  

TABLE 2. EXAMPLE OF E-ALGORITHM 
Series(2.3.7) I :  ~ ~ 0 . 6 ;  rz,=n.099: ;.=I; r=0.07: n=o.s 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

t 0.29472 

-0.063669 
- 0.062864 

+0.0099013 

-0.017522 

-0.023675 

-0,028245 

+ 0.02443 I 
+0.010021 

-0.036578 
-0.035829 
-0,019897 
-0.032852’ 

+0.42321 
+n.73302 

-0.62880 

- 0.4025~ 
+0.033370 

-0.18527 

-0.63688 

+0.017196 
+ 0.01002 I 
-0,079359 
-0,035857 
-0,036614 
-0.26397 

F y ) = P 1 ( S n )  

- n.001718 
-0.14318 

- n . o s m  
-0.013963 
-0.0131 I 5 
- 0.01 3106 
+0.040241 
- 0.01 347 I 
-0.013477 

-0.17170 

-0.013454 

e;“ = c, (S,) 

-0.18085 
-0.016273 

-0.012410 
- 0.02 1267 

-0.oi3106 
-0.01 3429 
-0.013338 
-0.013477 
-n.o13472 

Zk” %e e, IS,) 

-0.013517 
- 0.013543 
-0.01351 
-0.01 3462 

-0.01 3646 
- 0.013447 

-0.013429 

proves to be almost spectacularly successful. As discussed before, the reason for this success cannot really be 
explained, apart from the somewhat lame observation that apparently. the oscillatory character of the sequence 
of partial sums is well suited to application of the transformations (cf. 3.2.3). 

The restriction of the basis of the algorithm to 50 partial sums means that only combinations of (r-, E )  are 
admissable, which provide “convergence” of the process in the above sense for the points of interest on the profile 
and in the external flow field. When only part of this base is necessary to achieve convergence, it is possible to 
extend the range of admissable values of T in the process slightly above the value given in par. 3.1, and thus the 
flow field fig. 3e, exhibiting a maximum speed 7,,,=0.20 (M,,,= 1.12) has been calcukdted. It will be clear, that 
increasing c has a strongly adverse effect on the rate of convergence of the series representation, and thus on the 
performance of the process. 

A very severe test of the process is taken on the circle of convergence r=ru ,  where both series expansions (2.3.7) 
are conditionally, very slowly convergent, and should sum to give the same result. This computation is necessary 
to find the integration constant Ax in the series (2.4.1) to join the solutions from the two series representations. 
The process did not always converge on the line r = r m  in the external flow field, in these cases a point in the in- 
terior has been computed to find Ax. 

It will be clear, that the accuracy of the results obtained from the process cannot he guaranteed in any mathe- 
matical sense. Nevertheless,.it is believed that the results obtained as shown in fig. 3, are correct to within at least 
3 significant figures. 

The gain in performance of the process, that can be obtained by computing F,’s using multiple length arithmetic 
in the computer will be a subject of further research. A second possibility of extending the range of admissable 
-local maximum Mach numbers for thin profiles is the use of a model gas law, giving rise to particular solutions 
having somewhat more convenient numerical properties. This also, if useful, will be investigated. 
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4 Conclusions 

1. A three parameter family of continuous transonic aerofoil flows is defined by means of Lighthill’s integral 
 operator. The computation of thin aerofoils.is,shown to be possible under some, restrictions using automatic 

computing equipment and numerical methods that recently have been developed. Piofiles that exhibit some 
of the characteristics of Pearcey’s “peaky pressure distribution profiles” can be identified within this family. 

2. In Appendix 6, a discussion is presented on the “transonic controversy”, in view of recent theoretical and ex- 
perimental results. It is suggested, that while transonic potential flows cannot he said to “exist” in any physical 
sense, a.practica1 method of calculating these flows might be a useful working tool in the experimental analysis 
of the process of shock formation in transonic flows. In particular, the physical limits of the “peaky pressure 
distribu,tion” concept might thus be explored on a systematic basis. 

3. The fact, that approximate methods cannot be expected to predict these flows with sulficient accuracy, justifies 
a renewed interest in the classical function theoretic hodograph methods, and an attempt a t  future development 
of finite difference methods for these flows. In particular, a further development of the present method would 
appear to be worthwhile, which would involve: 
a) extension of the numerical procedure to permit the computation of flows involving higher local Mach 

b) application to circulatory flows and 
c) exploration of the possibility to extend the method to other flows of practical interest by adding further 

4. In Appendix C, the feasibility of the hodograph transformation is discussed in terms of elementary algebraic 
considerations. This leads, in particular, to an insight into the significance of the dimensionality and metrical 
properties of physical space. A physical interpretation of the principal invariants of the rate of strain tensor 
in plane flow is given in this connection. 

numbers over thinner profiles; 

particular solutions in the hodograph plane. 
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APPENDIX A 

A summary of some of Lighthill’s results(ref: 13) 

In this appendix a number of results as obtained by Lighthill will be assembled for convenient reference 
The isentropic gas law’ 

P - = c  
P’ 

is used. leading to the relations (cf. C 2.7): 

Introducing potential and streamfunction by the definitions 

‘p,, = u,  

v 
*,j = - q . . u -  

I JO 
(i, j =  I ,  2) 1, J 

where qE, is the isotropic tensor cy $. the hodoyraph equations in Chaplygin’s form are immediately obtained 

by inversion of the forms (C.4.5) 

1-M2 
‘p = - -  ** 

P4 - 

Eliminating ‘p it  follows 

q 2 * s q  +( l -M2)$e!= -q ( l+M2)$q  

or. introducing the relations (A 1) 

The subsonic normal form of (A 2) is found, writing 

ds  I ~ 

- ,/1-M2 d q - 4  
where the integration constant u can he fixed by the condition 

giving 

with 

ez= 
lim - = I , 
1-u 7 

+ *oo = T*s 

artgh -artgh 
1 - 7  

o =  - - artgh 

(A 2b) 

(A 3a) 

(A 3) 
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There is a similar supersoriic riorniul / i v m  

which. however. will not he used explicitly 
Chuplygin's purriculur sulirrions are 

with 

and F ,  satisfies the hypergeometric diNerential equation 

T( I -r)F" + [ (n+ I )  - (u,+ b,+ l ) r ]  F' -a.b,F = O  . ( A  5 )  
Of the two independent solutions of (A 5) only the one denoted by F,(u., b,, n+ 1 ; I ) ,  regular at the origin, will 
be used in the main body of the report [for the Chaplygin function of the second kind, mentioned in Note, par. 2.5. 
refer to the original paper): 

(u.+k-l)!(b.fk-I)! - rk 
n! 1 ( n + k ) !  k !  (un-  I ) !  (bn- I ) !  k=, ,  

F ( 7 )  = 

From the series expansion it is seen that $" as a function of the complex variable n, has poles at n = - 2, - 3, - 4,. . . 
with residues 

where 

For large ni one has 

,lim (n+m)$, (r )= -mC,$,(r) m = 2 , 3  . . . .  (A 7) 
n - - m  

(u,- I ) !  (m-b,)! 1 
( u m - m - l ) ! ( - b m ) !  (m!)' 

c, = 

- , - I  
Now the fundamental Pact in Lighthill's method is, that for r c 

terms of the residues (Mittag-Lefler's theorem): 

a development of e - " ' $ " ( ~ )  can he given in 
y +  I 

a result expressing $m for arbitrary complex n ( #  - 1.  -2 , .  . .) in $m's for positive integral m. 
An aspmproricfurmfor subsonic T for large n can be found from (A 4): 

where 

- T  
2 v  

V 
_ -  

Comparing ( A  8) and (A 9) it follows 

The corresponding u.s!;mptoric / h i  / b r  supersonic T is given as 
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uniformly for 

$ " ( I ) =  Ve"" sin(nr+$n)-cotgnn cos(nr+$n)+O' 

y -  1 
y t  1 

+ 1:s T S  I - I :  ; l:trg(-n)lS T-A - 

[ 
uniformly for 

Liyhthill's inregrul operurnr in its simplest form (for circulation free flow) defined in the subsonic region < 
e"-'- is given by 

C,=@ 

The properties of the operator can be seen from the results mentioned in this Appendix. to be; 
a) (A 12) is regular in the subsonic part of the compressible hodograph plane, excluding the point s=.s,,.O=O. 

This can be shown by mdjoriration using the asymptotic estimates for C,. $m and the Fact that the integral 
in (A 12) is regular in the part of the incompressible hodograph plane corresponding to the exterihr of a body. 

b) (A 12) satisfies (A 3). which follows immediately noting that 

2 v  
V 

is a harmonic function of s, 1 ) ;  (A S), and the relation T = - . 

4 c) for qmax+ ,T. I/,-.lm 0 as all terms except m=O reduce to zero and pI-' ,7 +- 
(I .I 

d)  By using a series expansion for a([) as (A 13), and the asymptotic properties of $-. (A 9). it follows that the 
expansion of $ for T ~ T . , ~  is asymptotically similar to that of Im @ for 4-q,,. 
The development (A 14) shows thatf(n. T.,) =e-"",.  in this case. 
The result can be given in srr iesf imt permitting extension to supersonic values of T when a series development 

or O ( i )  is available, which is written symbolically 

@ = l c n , y n ' e - i " ' @  (A 13) 
"' 

implying the various analytic continuations. I 

Indeed, let i, be a point arbitrarily located in the subsonic region and an expansion of the form (A 13) given. 
Then. 

Working out the second integral. assembling terms in i,. in 

it  follows 

g m  obviously does not depend on as neither the second series nor j, does. Using the asymptotic estimates. it 
can be shown that (A 14)converges in the whole supersonic region and in.part of the adjacent subsonic region. 
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APPENDIX B 

Mathematical model and experiment: the “transonic controversy” 
~ 

B I Introduction 

This Appendix presents a discussion on the mathematical and physical interpretation of the results of this 
report. in view of the current “transonic controversy”; cf. Bers’ hook (ref. 3)  for a recent survey. 2) is an attempt’ 
at clarification of terminology.and reviews the mathematical position; 3) refers to the experimental state of the 
art. In 4) some consequences for the design problem in the transonic field, in particular for “peaky pressure 
distribution” sections. are discussed. 

B 2’ The rrunsonir potentiul flow model 

Theoretical aerodynamics is concerned with the conception and analysis of mathematical models for flow 
phenomena. The aim is to study the interrelation between particular aspects of physical flows. which have been 
isolated in an aerodynamic theory, in a mathematically consistent system. The present discussion is concerned 
with the aerodynamic problems of flows around bodies at large Reynolds numbers, and the mathematical models 
can he thought as represented by, say, systems of partial differential equations with boundary or initial value 
conditions. 

A useful model should meet conditions of mathematical consistency, and he, in some sense, physically adequate. 
The classical conditions of mathematical consistency have been formulated by Hadamard: a solution to the 

mathematically “well posed  problem should exist, he unique and he stable against small perturbations of bound- 
ary or initial values. 

The physical adequacy of the model is more difficult to define precisely: roughly, it is an assessment how well 
the model predicts the results of a particular set of experiments. This assessment often leads to an interpretation. 
of the model in terms of a more general aerodynamic theory. 

The main problem in the conception of models for the aerodynamic’ theories under discussion is to represent 
the effects of viscosity. These effects are only indirectly represented in linearized potential flow theories, for which 
the mathematical problems are in general well understood. Comparison with experiment shows these linearized 
models to be grossly inadequate however, necessitating the use of a more detailed, often non-linear, physical 
theory. The usual procedure is then to postulate the existence of a system of shock waves and vortex sheets as 
singular surfaces, carrying compatibility conditions, in the solution, and use the equations of inviscid compressible 
flow theory. In principle, again, the intrinsic mathematical consistency of the model should be analysed (which 
is unfortunately usually mathematically unfeasible), hut this does of course still not verify the physical validity 
of the type of flow postulated. Moreover, as will he discussed in the next paragraph, in transonic flows experimental 
situations exist which do  not seem to he analysable in terms of a stable mathematical model of this type. This is 
an essential dificulty in the conception of a consistent transonic theory, hut not an exclusive feature of transonic 
flows only. 

The physical basis of the above procedure is_ that for large Reynolds number viscosity effects often take the form 
of boundary layer phenomena, and the resulting shock waves and vortex sheets can mathematically he shown 
to represent asymptotic solutions of the Navier-Stokes equations (ref. 15). It has been suggested by von Mises 
(ref. 17, V, 24, 6) that ideally, the physical validity of these models should he demonstrated by asymptotic analysis 
for Re+ m of solutions of the full Navier-Stokes equations. This programme would undoubtedly’remove any 
logical inconsistencies from the theory, hut would seem to be somewhat beyond the present mathematical possi- 
bilities. This means, however, for the time being, that the physical validity of any mathematical model can only 
be established by a posteriori experimental verification. 

The mathematical consistency problems have been rigorously analysed- for physically the simplest model of 
compressible flow theory : the usual, Neumann-type external boundary value problem for the equations for plane. 
potential flow. The existence of a solution under uniformly subsonic conditions has been proved by Bers (ref. 3). 
Thus, the mathematical model has been demonstrated to he Stable in this case. The physical adequacy of this 
model, however, depends on boundary layer separation effects, for which at the moment, no satisfactory theory 
exists. 

In the transonic case ( M I  < I), classes of potential flows can he defined by the methods discussed in this report. 
Morawetz (refs. 19, 20, 21) has proved that these do not possess neighbouring solutions when the boundary is 
perturbed in the supersonic region. This means that these solutions cannot he defined by boundary value problems: 
this mathematical model is unstable in Hadamards sense. These results, which were preceded by mathematically 
somewhat less satisfactory discussions of related problems by Busemann and Guderley, (cf. ref. 31, have given rise 
to conflicting opinions on the so called “transonic controversy”. It would appear, that most of the paradoxes 
advanced in this discussion vanish, when the modest status of mathematical theory as a model of physical reality 
is realised; somehow, experimenters have remained quite unruffled by the dispute. 
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Morawetz’s results suggest immediately a host of interesting and extremely difficult mathematical questions 
as to the characterization of the class of profile contours that do  admit transonic potential flow solutions: their 
analyticity properties. topological category. etc: However, again the physical relevance of this class of solutions 
is a quite different problem. which cannot be answered on the basis of potential’theory. From the physical point 
of view. it would seem to be extremely doubtful whether these profiles, as a class. have any particular significance 
in one way or the other: the existence of a potential flow solution around a given contour does in no way indicate 
the possibility of shock free realization in a viscous,flow : alternatively. it appears that a contour, for which non- 
existence of a potential solution could be proved, would not necessarily generate a pronounced shock wave. 

The mathematical position. then, would seem to be that the mathematical instability of this particular flow model 
has been proved; leaving. however. the decision on the physical relevance of any particular potential flow solution 
lo experimental observation. 

B 3 E.qwrirnenrs i t i  rrunsonir pro@ / k i w  

A description of shock and shock-boundary layer interaction phenomena in transonic profile flows has been 
given by Pearcey (ref. 24). These phenomena usually accompany super-critical conditions; however, as discussed 
by Pearcey (ref. 23). by careful design it is often possible to reduce the shock strength appreciably, thereby allevi- 
ating the separation problems to a large extent: This is done by generating a carefully tailored expansion at the 
profile nose. which is reflected against the sonic line to give a gradual recompression in the supersonic region. 
In  some cases (Pearcey. private communication) it is even possible to remove any stationary shock. wave from the 
flow field in this way. resulting in a shock free supersonic recompression from a rather high local maximum Mach 
number on the profile contour. I t  is suggested by Pearcey. that this condition of “peaky pressure distribution” 
should he designed for. and these sections he used in the design of subsonic and supersonic swept wings. As trans- 
onic windtunnel conditions are generally far from perfect, the experimental evidence makes it probable that the 
stability of flow fields of this type is sufiiciently uncritical for this concept to be a useful hasis for engineering 
applications. However, a rational design method for these sections is as yet not .available. 

As suggested before these experimental results are, though perhaps somewhat unexpected, not at variance with 
Morawew’s results. Obviously. the explanation of the physical stability of the flow with respect to the occurrence 
of shock waves would require a much deeper penetration into the properties of viscous flows than at present 
would seem to he possible. A further, detailed study of growth properties of instationary upstream travelling 
disturbances. huilding up to very weak instationary shock waves (refs. 22, 28) would be of interest, in particular 
for globally shock free flows. Apparently. for.these f low the halarice between the growthzol the strength and 
speed of propagation of these disturbances is such as to prevent coalescence into a stationary shock wave. A theo- 
retical solution to the physical stability problem as to the appearance or not of shock waves would require a 
mathematical analysis of this physical situation. 

B 4 The d a i p  problem 

The experimental results discussed clearly show the essential difficulty for a general theory for transonic flow 
around a given contour: the physical type of the flow is a priori unknown. In principle. it is possible to assume 
the existence of a shock wave and try to find an equilibrium position by iteration. This would present extremely 
difficult stability problems in the numerical analysis and will in many cases not necessarily represent the physically 
correct model. 

The principal advantage of hodograph methods, as compared with the direct methods, is the possibility of a 
priori specification of the flow pattern. by virtue of the linearity of the hodograph equations. When the aim is 
to design flows of a prescribed physical type, the inverse nature of these methods presents no serious restrjc- 
lions. 

However, for a profile flow involving a local supersonic region closed by a shock wave. it keasily shown by 
qualitatively formulating the problem in the hodograph. that a doubly covered hodograph exists in the subsonic 
reexpansion region immediately behind the shock wave. From the considerations in Appendix C ,  this follows to 
be incompatible with the assumption of potential flow. Thus, the problem in the large carlnot be formulated without 
taking vorticity effects into account. This again introduces a nou-linearity in the description of such flows. which 
still awaits analysis. 

At prescnt perhaps the more important practical problem is, whether a rational design method can be found 
for shock free transonic flow fields of the type suggested by Pearcey. on the basis of potential theory. if  at all. 
Such a design method would require a practical numerical method to construct continuous triinsonic solutions 
of the required type, permitting a systematic variation of the geometric parameters, and a criterion to designate 
the range of parameters leading lo solutions having the required physical characteristics. As suggested in 2.6.4. 
such a design method could be developed on the basis of the methods used in this report. The physical criteria 
should be derived from a systematic experimental programme. 

The alternative would be the development of methods allowing a airect definition of the “peaky pressure 
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distribution” type of sections in the hodograph. This would require formulation of a correctly posed (Frankl-type) 
boundary value problem in the hodograph plane, combined with a singularity representing the far field conditions 
& the physical plane. The problem then, as the defining boundary cannot be closed, is to guarantee closure of 
the-profile. lf.this problem could 5e solved, this method, using finite~diflerence techniques~in-the numerical inte- 
gration, would he the most flexible with respect to the boundary conditions that can be prescribed. Also, it would 
perhaps provide a basis for an extension to flow fields involving shock waves. 

It will be clear from the foregoing discussion, that these theoretical solutions do  not “exist” in any physical 
sense, or “explain” the possibility of a physically continuous flow. However, the possibility of characterising the 
“peaky pressure distribution” flow fields in this way, might make these solutions a useful tool in the further experi- 
mental analysis of this interesting physical situation. 

APPENDIX C 

Some’elementary algebraic properties in the local theory nf plane potential flows 

C 1 Introduction 

In this appendix, some of the algebraic properties for two dimensional flows are surveyed, of which some are 
basic for the whole theory, and others are used in the analysis of the practical results in the report. In 2)  a some- 
what leis,urely review of the usual assumptions in the theory of compressible potential flow is presented. 3) gives 
a study of the general feasibility of the hodograph transformation, in which the linearity of the plane hodograph 
equations is clarified. 4) is a study of the algebraic invariants of the hodogrdph transformation, here represented 
by the rate of strain tensor, which are given a physical interpretation. 5 )  presents a brief discussion of the singu- 
larities of the hodograph transformation, in particular limit lines. 

C 2 Putentialj low of a compressible medium 

A flow field is a continuous structure having interrelated kinematical, dynamical and thermodynamical aspects. 
The flows to be considered will be stationary, and can then conveniently be described in Cartesian tensor 

The’kinematical structure of the flow field is locally described by the rate of strain tensor: 
notation. sufficient differentiability properties being assumed throughout. 

associating a velocity difference vector 6uj  to a displacement vector 6sj  in physical space. 

vector and momentum tensor: 
For fluids without internal friction the dynamics of the flow field follow from the distributions of the flow density 

h , = o u j  
Ijj=pd,,+ pu,u j  

the divergence operation on which measures the mass divergence and the external force field: 

h .  1.1 .=a (C.2.2) 
I . . .=F ‘i.1 , (C.2.3) 

Thirdly, the compressible flow field represents a thermodynamical process, relating locally the quantities p and p 
to the speed of propagation of small disturbances 

(C.2.4) 

The simplest possible structure of compressible fluid flow is considered, in which local thermodynamical variables 
p. p ,  c are functions of the velocity magnitude ,only. 

This condition requires the absence of any spatially distributed dynamical influence; i.e. the case in which 

Fj=O 
W E 0  

(C.2.5) 

and a uniform relation 

exists. Assuming uniform conditions asymptotically in the far field, this leads kinematically to symmetry of the 
rate of strain tensor 

u.-:= u . (C.2.6) 

P = P ( ! 4  ( ~ 2 . 5 ~ )  

IF, J.’  



~ 

and the integrability of (C.2.3) to a uniform constant 

(C.2.7) 

where the reference condition in the integral IS tdken~ at zero pressure. 
When (C.2.5a) is of the form 

p = k p ’ + C  

(cf ref 4 for the necessity of this condition). the Mach number 
M’ = 2 u,u 

Cl 
(C.2.8) 

expresses locally velocity similarity under changes of scale in physical space and of values of q,,,. 

which under the conditions (C.2.5) can be written: 
The physical properties of the fluid can then locally entirely be described by the continuity conditlon (C.2.2). 

Together with’the symmetry condition (C.2.6), this gives the usual equations for compressible potential flow. 

C 3 The hudo~~r~iplr  lrurisJurm[rlion 

In this paragraph, the feasibility of the hodograph transformation for the equation (C.2.9) will he discussed. 
in which the role of the metrical properties and the dimensionality of the euclidean spaces considered will become 
apparent. These pro’perties are of some basic interest. hut seldom seem to have been made explicit; Birkhoff’s 
discussion (ref. 4) of the group properties of-the hodograph transformation would seem to he somewhat beside 
the real point. 

In the previous paragraph, the flow field has been thought to he given as a vector distribution in physical 
space. However, it is also possible to define the flow field as a one to one mapping between physical space and a 
“velocity space” or hodograph, spanned by the physical components of the velocity vectors. One notes, that this 
point of view is only possible in euclidean space. as the aggregate of vectors defined on a general manifold do not 
form a vector space. Velocity space will be considered as an independent manifold, and the conditions, under which 
flow properties can invariantly he described by tensor (i.e. locally linear) operations defined on the hodograph 
manifold, are investigated. Under these conditions, the physical and hodograph manifold could be termed to be 
locally metrically equivalent. 

Locally, the flow field defines a linear transformation 

6 i i = A 6 i  (C.3.1) 

between displacements vectors 6.7 in physical space and displacement vectors Sii in velocity space. This.a%ne 
transformation is given as a matrix A defined in a local Cartesian vector base (spanned in a tangent space to the 
physical manifold), which.is simultaneously a local base on the hodograph manifold. Now, from the afine point 
of view, these manifolds are seen to be equivalent by virtue of the group property of the matrices considered: an 
inverse to the matrix A is immediately given and (C.3.1) can he written equivalently: 

SZ=A- ’d l i .  (‘2.3.2) 

However, the description of the flow properties by the divergence operation (C.2.2), (C.2.3) involves the metricaL 
properties of space. In  owcase  these have been implicitly used in the definition of the generalized divergence 
operation in (C.2.9), which is invariant with respect to the euclidean metric. 

I 

The use of the tensor notation 
61i,=ui,j6xj (C.3.3) 

S , A S ; ’  (C.3.4) 
for (C.3.1) expresses the metrical equivalence of the set of linear transformations 

where S3 are the 3 dim. orthonormal transformations, each one associated with a particular local reference frame. 
In algebraic terminology,. the Cartesian 2nd order tensors are thus obtained as equivalence classes in the 3-dim. 
real linear group by conjugation with the orthonormal sub-group. However, the equivalence relation (C.3.4) does 
not define sub-groups in the linear group: the inverse of a 2nd order tensor is in general not defined. 

This means that in the three dimensional (and axi-symmetric) case, the hodograph manifold is not metrically 
equivalent, (C.2.9) is not invertible as a tensor expression, leading to a strongly non-linear (not quasi-linear) 
hodograph equation. ij; 
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In two dimensions, the situation is different. The plane rotation group is commutative, giving a symmetry in 

Algebraically, this means that an automorphism of the plane orthonormal group 
the metrical conditions, which provides the possibility of the inversion operation. 

~~ 

IS available, given by the translation 

by which with every element from the set of 2 x 2 tensors an inverse can be invariantly associated: 

I i(S2A s; ' ) ( & A  Si1) = ( & A  S; ' ) (SzA-  IS-' 2 ) = I ,  ' 

where J =det A. and the prime denotes transposition. 
Succinctly, this expression enihodics the group theoretical interpretation of the hodograph tran,sforniations. 
Explicitly, this construction associates with every (2 x 2) tensor 

an inverse tensor, which can be identified as a tensor on the hodograph manifold: 

. for J=det(u,,j)#O. 
The hodograph transformation, expressing the metrical equivalence between the physical and velocity space, 

is thus seen to be possible by virtue of the linearity of matrix inversion in the 2 x 2  case and the commutativity 
of the plane rotation group. 

Two types of flow in physical space. meet the condition giving a 2,x 2 rate of strain tensor: plane flows and 
conical flows (where in the latter case the tensor is defined in a tangent plane to a sphere r=const.), and from ' 

the local point of ,view they have completely analogous properties: locally, for these flows physical properties 
can be expressed in terms .of invariants of the hodograph mapping. 

From the global point of view, however, the diNerence is that the generalized divergence operator in (C.2.9) is 
non-linear in velocity space for conical flow, leading to a quasi-linear formal partial differential operator. For 
plane flow fields, however, this operator is linear in velocity space, giving the linear diflerential operator (in a 
notation which.will he clear): 

pap - GU,UO %p=O 

(C.3.5) 
y = x  0.8 0.z 2 

I 1 -  
the advantages of which in defining explicit solutions has of course been the motivation for the use of the hodo- 
graph transformation from Chaplygin (ref. 5) onwards. 

It is immediately clear, that velocity space does not have all the invariance properties that physical space has: 
the description of the physical properties of the flow field by (C.2.9) is invariant under translations, rotations and 
scale transformations, while velocity space is obviously centred, and not invariant under scale transformations. 
The use of Cartesian tensor notation in the hodograph space, while convenient in the present discussion, is thus 
perhaps open to some objection, which is removed in the formula C.4.5. 

,Finally, one might remark that the continuity condition can be transformed locally independent of the assump- 
tion of symmetry; the irrotationality condition does not involve the metrical properties of space. 

C 4 The principal inoariants of the hodograph transfurmatioil 

In this paragraph, the algebraic invariants of the hodograph mapping are given a physical interpretation, which 
will prove useful in analysing the results, par. 2.6. The hodograph mapping will be taken to he represented by the 
rate of strain tensor (C.2.1), it will be .clear that all'representations are equivalent, and in fact in section 2 par. 6.2 
these results are used expressed in hodograph plane variables. Reyn (ref. 25) has, for the analogous case of conical 
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flow and later (ref. 26),ior plane flow, interpreted some of these relations as curvature invariants in his inalysis of ' 

the diverential geometry of the Legendre potential surface in  velocity space: the present interpretation is, perhaps. 
both more elementary and more direct. 

The results obtained centre around the influence of compressibility on the acceleration vector. which is not 
surprising in view of the expression: 

ui= l l , l f ; , j  

Comparison with (C.2.1) shows the fundamental property of the hodograph transformation: in the hodograph. 
the tangent to the image of the streamline is in the direction of the acceleration vector in physical space. 

Under the assumption of symmetry. the mapping propifities (C.2.1) are equivalent to those of the quadratic 
form : 

L I . . Y . Y . = I  E.,' I '  , ( i . j = l . ? )  (C.4. I ] 

the image of a vector h, as transformcd by u;,,~ is normal to the conjugated vector of 0s; with respect to (C.4.l). 
The eigenvalue problem for I I , , ~  (which physically corresponds to  the search for directions in which the fluid 

element is deformed without shear) leads to the characteristic equation 

(C.4.2) ; ? ~ N j .  + J = 0 

with the principal invariants 
H = t r ( ~ ; , ~ )  = ui.; 
J=det  I I ; , ~  ( i .  j =  I .  2 )  

and the relations for the eigenvalues: 

H 
2 -  

__ 
= - + f,/H2-4J (C.4.3) 

. .  
/ . , L ~  = J 

;.2+;.2 = H 

i ,  -;.> = JH2-4J  
. _ _  

. .  
the discriminant is immediately seen to be non-negative by the symmetry condition. guaranteeing real i ' s .  

From (C.2.9) follows for the divergence expression: 

1 
being -i x the scalar product of velocity and acceleration vector, and reducing to zero in incompressible flow. 

At this point it is convenient to leave tensor notation and consider the particular local reference frame chosen 
along and normal to the local velocity vector: compact and physically perspicuous results arc then obtained 
because in this case the Mach number is exhibited explicitly. 

c i 

Eq. (C.2.9) reduces io  

(I-M2))y,+y(J,=0 (C.4.5) 

and 
. .  

i'o, ) 
I!, [ I "  ' I \  

" " ' - ( q ( J ,  yV,)=(qO, - ( I - M * ) C ~ ~  

using (C.4.5) and the symmetry condition. (yq,, qZOr)  are the componenis of thc accelFra!ion vector [I; in the re- 
sulting orthogonal curvilineir co-ordinates. formed by streamlines and equipotential lines. 

. .  
T h m  

and 

;.t.z=f!v2 qh ,/(I -fM2))" L/f + L J z  0; . 

Using these values one obtains for the directions of the eigenvectors the condition 

cotg 2 x  = ( I  -fM2) cotg z . , 

where 
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x A arc tg 2 (C.4.74 
Y. 

is the angle enclosed between acceleration vector and velocity vector. and the two roots of (6.4.7) give two per- 
pendicular principal directions, in terms of the angles x , , ~  with respect to the direction of the velocity vector. 
One notes that in incompressible flow the eigenvectors bisect the angle between velocity and acceleration vectors, 
and that for M = J 2  the eigenvectors have the characteristic directions, independent of the acceleration. 

By the eigenvalue analysis. the quadratic form (C.4.1) has now been brought into standard form 

i., 1: + j . 2 . x :  = 1 (C.4.la) 

and can be classified BS to type. For subsonic flow. by (C.4.6). J i  0. so that i , .  i, always have opposite sign. 
(C.4.1) representing a system of conjugate hyperboles. orthogonal for M=O. For supersonic flow, however. J may 
go through zero and become positive, and the representation of the quadratic form goes through the degenerate 
case into an ellipse, 

A direct physical interpretation of these facts is obtained by considering the 'Structure of wave propagation in 
the flow. Introducing characteristic directions. which in this context are given by the displacement Yectors mapping 
independent of the direction of the acceleration vector, one obtains 

where f l  is the Mach angle. The pairwise orthogonality of these directions with their images in the hodograph 
plane. leading to the pair of linear 'ordinary differential equations 

for the fixed characteristics in the hodograph plane. is immediate. 

and for' 

the intrinsic derivatives qE and q, respectively. One obtains the decomposition 

Now, choosing in the physical plane positive directions for the arc length on the two characteristic curves < 
< -, the projections of the vector (qs, 40,) on the two characteristic directions can he identified with 7l 

2 

(C.4.9) 

J = M z  4:4, (C.4.10) 

Y<+4,=2 cos / I %  
q:-q,=2 sin py0, 

arid the expression 

('24.9) expresses for locally supersonic flow the components of the acceleration vector in terms of the quantities 
qc. q,, the "strength" associated with the q and t-characteristic respectively, at  the point in the physical plane 
considered. According to the sign of the associated strength. a characteristic may he termed expansive (+ )  or 

compressive (-1,  Also, (C.4.9) shows the reflection phenomena against the sonic line for /I = 

are of the same type. 

77 

- 
Clearly, in a supersonic flow J i 0 means that characteristics of both types are present, J > O  indicates that both 

These results can he conveniently summarized in vector notation: 
. .  

(C.4.11) 1 -  - -  - 
J = M-(q; t)(%.d 

where y, is the vector (4s, qUs) and s a n d  are unit vectors in the characteristic directions. This shows sign J to 

indicate, whether the mgle between acceleration vector and velocity vector he smaller or larger than - - /1 or, 

in the hodograph plane, whether the tangent vector to the image of the streamline includes a smaller or larger 
than characteristic angle with the velocity vector. Also, of course, J measures the area ratio ofelementary surface 
elements under the hodograph mapping, and sign J indicates the orientation of the mapping (circulation index). 

n 
2 

Finally, one notes that the quantities q:, y,, are a measure for the curvature of the <, q characteristic. 
Explicitly, one has for. say. a <-characteristic: 

(C.4.12) 
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the last expression valid for the polytropic gas law. It is seen that a characteristic has an inflexion point on curves 
where J=O (which are easily seen to he characteristic) and on the isobar for which 

t 
(=1.58 for y=1.4), 

a~result first noted by Christianovitch (1941). 

C S~Singulurities of the, hodcgraph rrunsformation 

In the previous paragraph, the local physical and geometrical meaning of sign J has been discussed. Obviously, 
its’ main significance is as a local index for the topological properties of solutions in the large: in general, a change 
of sign in the functional determinant indicates the occurrence of a fold in either the physical or hodograph mani- 
fold. 

The resulting singularities of the hodograph transformation for plane flows have been exhaustively investigated 
by Geiringer (in ref. 17) and their properties will here only he touched upon. 

For a potential flow, J <  0 in a subsonic region (C.4.6); thus a change in the sign of J can occur only in a super- 
sonic region. However, a continuous transonic profile flow is by defiliition of the same type as a subsonic one, 
Le. derivable from a continuous transformation, and this means J < 0 in the external flow ,field. This is a basic 
inequality for these flows; the local physical consequences in the supersonic region have been discussed in C 4. 
(It may he remarked, that the definition J = d e t ( t ~ ~ , ~ )  is used consistently in this discussion rather than its inverse, 
which would he perhaps the more natural when discussing properties in the physical plane of a solution defined 
in the hodograph). 

A change of sign in J through a curve on which J = O  (branch line) indicates a fold in the hodograph manifold. 
It can immediately he read off from the formulae presented in par. C.4, that this curve in the (regular) physical 
plane is a characteristic, on which -the other family of characteristics changes type (compressive ++ expansive). 
This type,of hodograph plane singularity is physically realised in Lava1 nozzle flows. In the theory of this report, 
this type of singularity has been excluded by the fundamental postulate of regularity of the solution in the hodo- 
graph of the external flow, excepting the singularities representing conditions at infinity in physical space. How- 
ever, for a regular solution defined in.the hodograph plane, J can very well change sign through infinity on a 
curve in the supersonic region. This gives a fold in the physical manifold, the edges of which are the much discussed 
limit lines, forming a locus of cusps for characteristics of one family and for streamlines. When part of the boundary 
streamline $ = O  is located on this fold, no regular profile is defined in the physical space, indicating the end to 
the usefulness of the theory. 

It is known (ref. 21) that for a profile defined in the hodograph plane, when J < 0 on the image of the boundary 
streamline, J <  0 and regular in the entire image of the external flow field, i.e. the mapping in the physical plane 
is regular when the image of the boundary streamline is regular. 

Apparently, “limit lines” have a long life in the “explanation” of shock phenomena. However, potential flow 
solutions, whether containing limit lines or not, are symmetric with respect to reversal of flow direction, while 
shock waves as viscous phenomena induce physically essentially asymmetrical effects. The physical justification 
of any attempt to characterise the genesis of shock waves in’the flow around a given contour in terms of the 
singularities induced by a limit’line, would seem to be extremely slight. In fact, as suggested before, limit lines 
appear in physical space as a consequence of the fundamental postulate of continuity of the solution in velocity 
space, and thus essentially result from the artifice of the hodograph transformation. 
’ 

All the same, it would be interesting to know explicitly how limit lines are generated in an analytic hodograph 
under Lighthill’s transformation (2.1,3), in order to study the connection with the “generating singularities” of 
the physical flow, and thus to visualise the complete compressible counterparts of the incompressible manifolds 
discussed in 2.2. Unfortunately, the series representations of solutions $ are to awkward to elucidate these ques- 
tions. 



Tunnel wall corrections for a wing-flap system between 
two parallel walls. 

by 

E. M. de Jager and A. 1. van de Vooren I 
Summary I 

I A method is presented for the calculation of the corrections due to the tunnel walls, to be applied to the measured lift and moment of a 
two-dimensional wing-flap model between two parallel walls. 

The theory developed here is "on-linearized since the angle of flap deflection may be large. Calculations have been perlormed for three 
values of the ratio of wing to flap chord.for three values of the ratio of wing chord Lo tunnelheight and far angles of flap deflection up tb 75'. 
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7 ratio of flap to total wing-chord @ velocity potential 
r vortex strength $ stream function 

1 Introduction. 

The experimental investigation of high-lift devices in a wind tunnel requires the knowledge of tunnel wall 
corrections for such configurations; in order to reduce the results to free flow conditions. 

At the National Aeronautical and Astronautical Research Institute an experimental program has been performed 
during which pressure distribution, lift-moment and drag have been measured for a two-dimensional wing-flap 
system at large angles of flap deflection. In order to retain smooth flow, air is blown along the upper side of the flap. 

Tunnel wall corrections for this configuration,-in comparison with those for a usual model, show the following 
complications : 
(i) due to the large flap.deflection it is not a priori certain, that linearization of the equations governing the flow 

is admissible; 
(ii) even if the wing is placed in the middle of the tunnel, the points'near the trailing edge are not and this leads to 

a more complicated reflection pattem of vortices; 
(iii) the blown air can be schematized by a jet, which will influence the flow around the model, hut this influence 

itself is also affected by tunnel wall corrections; 
(iv) due to the larger lift an unfavorable pressure gradient will develop at the part of the lower wall, which is ahead 

of the model and which may induce boundary layer separation. 
In the present report points (i) and (ii) are investigated. As long as the momentum of the jet is not too large, 

point (iii) will not be too important. It will form the subject of a further theoretical investigation. If boundary 
layer separation at the wall occurs, more or less important modifications of the tunnel wall corrections due to 
points (i) through (iii) 'can be expected. This, however, is probably more suited for experimental investigation. 
In any case it should he tried to prevent boundary layer separation at the wall. 

The physical problem to be treated in this report has been schematized to a two-dimensional problem and 
therefore the influence of the sidewalls of the tunnel have not been taken into account. 

2 General survey of the investigation. 

The' aerofoil is considered sufficiently thin' to warrant its replacement by a single vortex sheet,coinciding with 
its mean camber line. As the aerofoil is symmetrical, this mean camber line consists of two straight. line segments, 
the angle between them being equal to the flap deflection. 

The local strength of the vortex sheet is determined by the condition of tangential flow at the aerofoil. This 
condition leads to an integral equation for the vortex distribution, containing the angle of flap deflection as a 
parameter, and which will he solved approximately. 

Using the assumptions mentioned above, exact solutions for the case of a free aerofoil have been given by 
Keune (ref. 1). These exact solutions are used in the present investigation to check the approximate theory for 
the free aerofoil. Agreement turns out to he very satisfactory and therefore the approximate theory may he applied 
also for the aerofoil between tunnel walls, where no exact solution is available for an aerofoil with flap. It may he 
added that for a plain aerofoil between' tunnel walls,an exact solution has been given by Tomotika (refs. 2,3), 
but it did not seem feasible to extend this solution to an aerofoil with flap. 

The approximation method itself consists in assuming for the vortex distribution a sum of six terms, each of 
them being the product of an unknown coefficient and a known function of the chordwise coordinate. Two of 
these functions contain a singularity, namely the square root singularity at the leading edge and the singularity 
corresponding to  the flow at the angle between the two line segments. The four other functions are regular func- 
tions. 

The six unknown coefficients are determined by a collocation method, which is well-known in lifting surface 
theory as the method of the pivotal points (see e.g. Multhopp, ref. 4). 

In this way the vortex distribution for the free aerofoil and for the aerofoil between the walls can be determined, 
and the pressure distribution can be calculated by aid of formulae containing non'linear terms. After subtraction 
of the results for the.cases without and with tunnel walls, the tunnel wall corrections could be obtained, unless so 
many digits disappear, that the corrections are of the same order of magnitude as the error 'introduced by the 
approximation method for solving the integral equation. Therefore it has been considered preferable to apply. 
the approximation method to the determination of the difference between the vorticity distribution of the aerofoil 
in free flow and in the tunnel, instead of to the vorticity distribution itself. After this difference in vortex distribution 
has been determined, the corresponding difference in pressure distribution, i.e. the correction in the pressure distri- 
bution due to  the tunnel walls, is obtained. Corrections for lift and moment are presented. 
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3 Analytical description of the method. 

3.1 The uelocity field of a uortex placed asymmetrically between the tunnel walls. 
= ~~ ~ 

~ ~ ~ 
~ ~ = . __~. ~~ 

~ 

~~ ~~ 

~ 

Due to the large flap deflection the vortices at the flap may no longer he assumed to have their position at the 
middle of the tunnel. We therefore shall investigate at first the flow field of a vortex which is placed at a distance 
v below the horizontal plane of symmetry of the tunnel. Let the tunnelheight be 2h. The scheme of successive re- 
flections of the vortex by the walls is shown in sketch a. If the original vortex at v has a positive strength r (clock- 
wise rotation), it is seen that the complete pattern consists of vortices of strength +r at q+4nh,and vortices of 
strength -r at 2h-q+4nh, where n assumes all positive and negative integer values including 0. 

The complex potential at a point z=x+iy(y-axis taken downward), due to a single vortex at the point z1 is 
equal to  

iT 
p.  = - -In(z-z,) 2n 

The complex velocity due to this vortex is 

iT 
u--lu= - 

d F  
dz 242-  2,) 
- =  

where u and u are the velocity components in x-, and y-directions. Hence I 
vortex pattern is 

complex ve 

Putting 

1 - 1 
z-[-i(q+4nh) z-(-i(2h-q+4nh) 

z - 5 - i ~  = - 4ih5 and z-{-i(Zh-q) = 4ihc - 
II x 

this .becomes 

According to the theorem of Mittag-Lemer (ref. 5), one has 

co tg i  - - = 

"tO 

1 {' - - } and thus 
+ m  

Hence cotg [ - cotg = 
n = - m  i-nx c -nx  

1 n(z  - - iq) - cot n{z-t-i(2h-q)} 
8h r 4ih 4ih ! 

u-10=-- cot 

Using the formula 

:ity 2 to ; complete 

sin 2A- i sinh 2B 
cosh 2B-cos 2A 

cot ( A  + iB) = 
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the result for u and u becomes 

3.2 The integral equation .for the uortex distribution. 
For simplicity we shall assume that the wing is at zer6 incidence and at the middle of the tunnel. The chord 

of the wing (without flap) is u and the flap chord is b. The origin of coordinates is taken at the common point of 
wing and flap. The angle of flap deflection is 6. The complete scheme is shown in sketch b. The case that the wing 
angle of incidence is different from zero leads to more complicated formulae since then the wing vortices are 
not at the middle of the tunnel. However, there are no new fundamental dificulties and this case will be left 
out of discussion here. 

I 

I 

I 

Sketch b: The position o l  the model in the tunnel. 

The integral equation for the vortex distribution follows from the condition of vanishing normal velocity. This 
means 

(i) at the wing u = O  

(ii) at theflap - (U+u)s in6+ucosS=O.  (3.2) 

U is the speed of the undisturbed flow, while u and u denote the velocity components due to the vortex distri- 
bution. The vortex distribution will be denoted by y(t), which for the flap denotes the vorticity in that point of ’ 
the flap which has 5 as its x-coordinate. 

Consider first the norma1,velocity u, at the wing due to the wing vortices. Then y=q=O and the normal velocity 
becomes by aid of eq. (3.1) 

The normal velocity u2 at the wing due to the flap vortices follows by taking j > = O  and q = <  tan 6 Hence 

or 
n ( x - 0  nt tan 6 

sinh __ cos ___ 
2h 2h  

4 x 4  nt tan 6 d t  

2h 
cosh‘ __ - 4h cos6 

2h 

(3.3) ’ 

(3.4) 
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The normal velocity at the flap due to the wing vortices is obtained by taking y = x  tan 6 and q = O  

{ -u,(x,y) sin 6+u,(x,y) cos 6}y=x,and = 

01 

{-u,(x,y)sin 6+u,(x,yjcos6},=,,,.~= 

nx tan 6 . 4 - 0  + cos nx tan 6 4.4) cos 6 sinh __ 
d t  (3.5) 

2h 2h 
sin 6 cosh __ sin ~ 

2h 

2h 

2h 
n ( x - 5 )  cosz nx tan 6 

2h 
cosh' __ - 

Finally, the normal velocity at  the flap due to the flap vortices is obtained by taking y = x  tan 6 and q = t  tan 6 

{-uz(x,y)sin6+~,(x,y)cos6},=,, . , ,= 
(' - tan n ( x + t )  t an6  sin . 6 - sinh - 4 - 8  cos 6 *(x-') cos 6 sin sin sin 6 + sinh ~ 

2h 2h 2h 2h + 
2h 2h 

n ( x + t )  tan 6 
2h 

n ( x - 5 )  tan 6 4 - 5 )  + cos cosh __ 8h 

(3.6) 

The integral equations for the vorticity distribution can then be written as 

io y(S)K'' '(x,5)dt+J y( t )K'"(x,  t )d5=0 -aSxSO 
bcosd 

- 0  0 

bcord lo - 0  y(C)K"'(x,<)dS+j 0 ~ ( 5 ) K ' ~ ) ( x , 5 ) d 5 = U s i n 6  O s x s b  cos6 (3.7) 

where 

K'"(x,t) = 
', 1 

+-t) 4h sinh __ 
2h 

s i n h { W } c o s j T }  n( tan 6 

nt tan 6 c 0 s h z { 7 }  { 2h ) 
1 

K'"(x,t)  = ~ 

4h cos 6 4-4 - cosz __ 

sin {F} sin 6 cosh {q} + cos {F} cos 6 sinh {T} 4 x - t )  
1 

4h c o s h ' { q }  - nx tan 6 ) K ' 3 ' ( X , S )  = - 

Introducing asterisks to denote free flight conditions, one obtains for h+co the integral equations for the 
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vorticity distribution for the wing in free flight, viz.: 

1 x-5 
2n cos 6 (x-t)2+t2 tan2 6 

1 x-5 cos* d 
~ n c o s 6  (x- t )Z+x2tan26 

K"'(x,C) = ___ 

K""(x, t) = ___ 

Subtracting corresponding equations of (3.7) and (3.9) and introducing the quantities 

4(t) = ~*(t) -r(t) and 
~ l K ' ~ ' ( x , t )  = K'" ( ~ , 5 )  -K"'(x, t)  

one obtains for the corrections dy(5) the integral equations 

(3.10) 

(3.11) 

After solution of the integral equations (3.9) for y ' ( t )  and substituting the result into the right-hand sides of equa- 
tions (3.12),one obtains a set of integral equations for the corrections dy(t), which has the same kernels as the 
system (3.7). 

For the solution of the integral equations a numerical method has been used which is described in Sec. 4. 

3.3 The pressure distribution at the aerofoil. 
' . The pressure in an arbitrary point of the field can he calculated from Bernouilli's equation 

p + ~ p { ( U + ~ ) ~ + u ~ $ = c o n s t a n t  in the whole field. 

Hence, at the aerofoil 

P+(X) + +P-p.:.;&) = p - ( x )  + +P.i.'(.) 

where the superscript + denotes the lower side ofthe aerofoil ( y = O c )  and the superscript - denotes the upper 
side (y=O-). The tangential velocity along the aerofoil is denoted by utang. Taking the pressure diKerence dp(x) 
positive in upward direction, one obtains 

dP(X) = P+ (4 - P -  (4 = M x )  bJ:"&) + G&)I (3.13) 

where y ( x )  =-ti;&) - u&(x). In linearized theory the sum of the two tangential velocities may he replaced by 
ZU, hut this is not allowed here. 

We must now calculate the tangential velocities due to the vortex distrihution,and we shall do this by a similar 
splitting-up as was introduced when calculating the normal velocities. 

The tangential velocity at the wing due to the wing vortices is given by 

Ul(x,O+)= -&(x) and ul(x,O-)=&(x) (3.14) 

This simple result is due to the fact that the tangential velocities of the reflected vortices a t  2nh cancel out 
for each pair of positive and negative n. This result holds only if the wing is at the middle of the tunnel. 
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The tangential velocity at the wing due to the flap vortices is obtained from eq. (3.1) by substituting y=O, 
q=[ tan 6. This velocity is equal for y=O' and y=O- 

(3.i5) 

The tangential velocity at the flap due to the wing vortices follows from (3.1) by taking y = x  tan 6 and q=O. 
This part of the tangential velocity is equal at upper and lower side of the flap: 
{ul(x,y)cos6+ul(x,y)s in6},~, , , ,~= 

nx tan 6 .(.-e) . AX tan 6 n ( x - 5 )  '1 d{ 
sin 6 -sin- cos 6 + sinh ~ -sin- cos 6 - sinh ~ 

2h 2h 
nx tan 6 + cos- 

2h 
cosh ~ 

2h 2h + 
n(x  tan 6) .(.-<) 

2h 2h 
or 
{ul(x,y) cos 6+ul(x,y) sin 6)y=x,and= 

nx tan 6 . . (X-0  sin 6 sinh ~ 

n ( r - 4  + cos __ XR tan 6 
-sin ~ 

2h 2h d( (3.16) 
2h 

2h 

COS 6 cash ~ 

2h 
4 - 4  coszp nx tan 6 

cosh2 - - 
2h 

Finally, the tangential velocity at the flap due to the.flap vortices must be considered. This tangential velocity 
however is discontinuous over the flap. Hence, this velocity must be calculated from eqs. (3.1) by substituting 
y = x  tan 6*e, q=t tan 6 and then, after having integrated over the whole flap, taking the limit 6-0. Thus 

{uZ(x-,y) cos 6 + u 2 ( x , y )  sin 6},=,,,,,*, = 

n((x-5)  t a n b f e )  cos 6 + sinh - 4. - 4 sin 6 

+ 2h 2h 
.(X-S) n{(x-5) tan 6k&} 

2h 2h 
cash ~ - COS 

c - o  8h 

K { ( x + < )  tan & * E }  

d t  
cos6+sinh- 

2h 2h 
sin 

- 
n b - 4  + cos n{ (x+r)  tanSkE} 

2h 
cosh ~ 

2h 
For the second term of the integrand, the limit transition can be performed without difliculty. In the first term. 

however, taking E = O  under the integral sign would lead to an integrand of which both the numerator and the de- 
nominator vanish for <=x. Therefore, the transition is not allowed in the first term. 

The interval of integration of the first.integral will be divided as 

+ j;;; + 1;;; 
In the first and the last of.these three integrals E can be taken equal to zero, but the second integral needs a 

more careful treatment. SinceA will be assumed small, one may replace y ( c )  by y(x). It can be shown that this 
approximation produces no error in the final result. As, moreover, both x-5 and E are small in this integral, we 
may write 

n 4 x - 5 )  sin 6 
d t  

- - { ( x - t ) t a n 6 k ~ ) c o s b  +- 
_- 2h lim - 

n2(x -9 '  z2((x-c) tan6+&}2 cos 6 - 
8h2 + 8h2 
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The first and the last of the three integrals may be written together in the form 

where the integral has to he conceived in the sense of Cauchy. 
Therefore, the final expression for the tangential velocity at the flap due to the flap vortices is 

- { u ~ ( x , Y )  cos ~ + D Z ( X , Y )  sin 6)y=xtand+8 - 

d t  (3.17) i x(x+ [) tan 6 n(x  - 4 sin 6 cos 6 + sinh __ 

n(x+  t) tan 6 
2h 

2h 2h Sill 

+ 4 - 9  + cos cosh __ 
2h 

At the lower side of the aerofoil (y=O+), the tangential velocity should vanish near the angle between wing 
and flap if the flap is deflected downward (6 20).  Hence 

d t  +U=O if 6 2 0  (3.18) i nt tan 6 sin __ 
h 

X-0 '  

lim 
X - r O +  

nx tan 6 .(x-t) nxtan6 . n(x-T) sin 6 sinh ~ + cos- 
2h COS 6 cash - 

x x t a n 6  
cos2 ~ 

2h 
cosh2 - - 

2h d<]+ 2h 
-sin- 

2h 
E ( . - < )  

2h 

nt tan 6 n5 . sin __ cos 6-sinh - sin 6 

4hcos6 xt nt tan 6 cash' - - COS' - 
2h d t + U c o s 6 = 0  if 6 z O  n< tan 6 2h 

2h 2h 

All separate terms containing x become infinitely large for x-+O, but their sum remains finite. In the last term 
of the last equation, containing an integration over the flap vortices, the limit x+O could be performed, since 
only the reflections of these vortices by the tunnel walls contribute to the tangentlal velocity at the flap, once the 
local velocity - b ( x )  has been taken into account. 
-Finally, we give the formula for the pressure difference, see eq. (3.13) 
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The formulae for the pressure difference in absence of the tunnel walls ( L o o )  are 

Subtracting equations (3.19) from (3.20),yields the tunnel wall correction for the pressure distribution over the 
wing surface. In order to prevent unwanted inaccuracies, arising from this subtraction, it is better to express 
these corrections by formulae containing dy(S), which can be calculated by aid of the formulae (3.12) with sufficient 
accuracy. 

For convenience the equations (3.19) and (3.20) are written as: 
bcosd 

~ ( x )  = p U y ( x ) +  py(x)[ y(S)H,(x3t)d5 - a < x 6 0  
. o  

- a s x s O  

0 5  x 5  b cos 6 (3.21) 

where the functions HI ,  H , ,  H3, H ;  and gz can easily be obtained from the equations (3.19) and (3.20). 

corresponding formulae, the following expressions for the tunnel wall corrections dp(x): 
Introducing again dp(x) = p'(x) - p ( x )  and AH&,{) = Hi(x,r) - H,(x,<)(i= 1, 2) one gets after subtraction of 

3.4 The singularity in thefiow at the angle between wing andflap. 
In order to investigate this singularity we consider the flow along two straight half-lines making an angle 6 

with each other (sketch c). We perform a conformal transformation from the physical z-plane to the [-plane, 
where the two half-lines have been transformed into one single infinitely long straight line (ref. 6). 

< - s r r * s  

Sketch c :  Coniormal mapping ofr-plane to [-plane. 

The'transformation which maps the part of the z-plane above the two half-lines into the upper half (-plane'is 
(,z~m+a! 

Putting z=re iu  one obtains (=r"""+d'e'"""+6"u'. Hence the line 8=0 in the z-plane becomes the line 8=0 in 
the (-plane, while the line O = n + 6  in the z-plane becomes the line 8=n in the [-plane. The flow in the [-plane 
is trivial, its complex potential being given by 

F = A (  

... .In the z-plane 
F = @ + i$ = Az"""fd) 
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which means that the velocity potential along the wall becomes @= kAr"/("+*),  where the + sign corresponds 
with 8=0 and the - sign with O=n+6. 

The tangential velocity along the wall is 

It is seen that if 6 is positive (convex side of a corner) the velocity becomes infinitely large, while it vanishes 

Considering now the flow at both sides of the half-lines,the boundary can be replaced by a vbrtex distribution 
for negative 6 (concave side of the comer). 

of strength 
?(')= Alr -d / '"+a'+A ra/(n-al  

2 

where A ,  and Az are still unknown constants and r denotes the distance toward the corner. 
If we now consider the wing-flap system, where the wing and the flap are line segments of finite length, the flow 

at an infinitely small distance from the corner will be identical to that at a finite distance from the comer in the 
case of infinite half-lines. Hence, the singularity in the vortex distribution at the corner of the wing-flap system 
i s  of the type 

?(r)  = A,r-'/("+*) 6 > O  (3.23) 

The other terms in the vortex distribution all vanish for r=O. 

4 The solution of the integral equation for the vortex distribution. 

4:l' The numerical method. 
The vortex distribution for the wing in free flight is determined by the set of integral equations (3.9) and for 

the .wing between two parallel walls by the set (3.7), while the correction dy(x) of the vortex distribution y'(x) 
due to the presence of the walls is determined by the integralequations (3.12). 

These integral equations can be solved by a numerical method. The following exposition of this numerical 
method is confine(l to the case of the integral equations for the wing-flap system in free flight, but the method 
can also be applied to the equations for the wing-flap system between two parallel walls, and to the equations 
for the corrections of the,vorticity distribution, after on the right-hand sides of the latter, the results of the vorticity- 
distribution in free flight have been substituted (see eqs. (3.12)). The basis of the method consists in assuming 
the following series expansion for the vortex distribution (6 >O) 

atthewing: . - a< t<O,  O t 9 < n  
m 9 

2 n=, 
ye ( ( )  = cb cot - <+ 2 

at theflap: O < E < b c o s 6 ,  O i 9 ' < x  

The relation between (, 9 and 9' is 

at thewing: c=-:a(l+cos9) 0 < 9 < n  

attheflap: (= $bcos6(1-cos9') 0<9'<n 

(4.1) 

(4.3) 

Hence 9=0 denotes the leading edge of the wing, 9 = x  or 9'=0 the common point of wing and flap, while 9'=x- 
denotes the trailing edge. 

The first term of the right-hand side of (4.1) gives the well-known leading edge singularity, while the last t e e  
agrees with the formula (3.23) except for an additional factor 1 +(e/a), which has been added to  ensure that this 
term gives no contribution at the leading edge. Of course it does not change the character of the singularity. 
The remaining vortex distribution which vanishes both for 9=0 and 9 = n  has been expanded in a Fourier series. 

At the flap the factor 1- (c /b cos 6) in the last term ensures that the singularity at the corner does not disturb 
the Kutta-condition at the trailing edge. 

The approximation which now will be introduced, is that all terms c'. and cz for which n exceeds 2, will be ne- 
glected. We use a six-term approximation for the vortex distribution containing the unknown coefficients c i ,  c; ,  
c i ,  c;, c; and c:. Analogously six-term approximations can be used for y ( x )  and dy(X). 

With this approximation it is no longer possible to satisfy the integral equation (3:7) for any point x. It will 
be satisfied only in the so-called pivotal points. The most favourable positions of these points have been determined 
from arguments similar to those used by Multhopp in his lifting surface theory (ref. 4). 
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*PPROXIMAT,ON \\ 0 K E V N E  
I NUMERtCAL 

+ LINEARIZED 
APPROXIMAITION 

'5.1) 

where the moment has been taken ahout the quarter-chord point of the total wing 
For the tunnel wall corrections one obtains analogously: 

bcord 

f a A p ( x ) d x + j  0 dp(x)dx 
ACL=CL-CL = 

i p U 2 ( a + b )  - 
and 

Having obtained values of the pressure distribution in a suficiently large number of points at the wing and 
the flap, the coefficients Cl, C, and their corrections can be calculated by numerical evaluation of the integrals 
occurring on the right-hand sides of equations (5.1) and (5.2). 

For the numerical evaluation of the tunnel wall corrections it is necessary to isolate the singularities of A&). 
From the equations (3.22) it is clear, that the singularity of A p ( x )  at the leading edge of the wing,i.e. at x=  -a, 
is of the same type as the singularity of A y ( x )  in that point. This is, however, not the case for the singularity at 
the hinge point of the flap. Taking the limit for x" f0,it appears after some derivation that A&) has two singu- 
larities of the type (x(-*6/("+6' and at the hinge point, whereas the vorticity distribution has only one 
singularity of the type 
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For the sake of interest the behaviour of p. (x)  in the neighhourhood of the hinge point of the flap has been 
determined in the appendix. The singularities of dp(x) can be obtained in the same way. After isolation of the 
skgularities in the integrands of equation (S.2),dCL and dC, can be calculated numerically. 

T G  CoelliciEttS-CL and*dk~ for~the free~flight-case c a n . ~ h e ~ d e t e r m i n e d ~ _ m ~ ~ = ~ a ~ e r  by-using the well-known 
momentum balance with respect to a closed contour around the aerofoil. The aerodynamlc coefiEient5can'be ~ 

written as (compare ref. 8, chapter 11) 

. 
~ ~~ E 

and 

Substituting the expansions (4.1) and (4.2) for ~ ' ( x )  into (5.3),one obtains after performing the integrations to x: 

and 

Inserting in these equations the calculated values of cl, the aerodynamic coefficients are obtained easily for the 
wing-flap system in free flight. The method of the momentum balance cannot he applied for the determination of 
lift and moment of the wing-flap system between the two parallel walls,since the contour enclosing the aerofoil 
but not the tunnel walls, does not contain in its interior all the vortices present in the field; the reflections of the 
vortex sheet representing the aerofoil are lying outside this contour. 

6 Discussion of the numerical results. 

The values of CL and C?, for the wing in free flight have been calculated by aid of the formulae (5.4) for different 
values of the flap angle 6, ranging from 0 to 60 degrees, while the ratio r=b/(n+b) of flap chord to total wing 
chord has been taken as $, 

The results are plotted as functions of the angle of deflection 6 in figs. 2 and 3. The results of linearized theory 
are indicated by a dotted straight line which is the tangent at the origin to the curve corresponding to the results 
of non-linearized theory. It appears that the values of the aerodynamic coeficients CL and d, are somewhat 
overestimated by linearized theory. The derivative (aCM/a6),,, has a maximum for some value of 7 in the neigh- 
bourhood of 7=& This agrees with the linearized theory of Glauert (ref. 9). , 

The tunnel wall corrections ACL/C, and AC,/C, have been calculated in the way described in the previous 
chapter. The ratio (a+ b)/2h of total wing-chord and tunnelheight has been chosen as 0.2,0.3 and.0.4,and the same 
values as in the free flight case have been taken for the ratio 7 of flap chord to total wing chord and for the angle 
of deflection 6. The results are plotted in figs. 4 through 9 as functions of the flap-angle 6, while the parameter 7 is 
kept constant in each figure. The same results are given in figs. 10 through 15, where now, however, the parameter 
(a+b)/2h is kept constant in each figure. For small values of the angle 6, the corrections completely agree with the 
values found by linear theory (compare ref. 10); the results of the latter are again indicated by a dotted straight 
horizontal line tangential to the curve for the values of non-linearized theory. 

It appears that the tunnel wall corrections are overestimated by linearized theory, which is of no value for large 
angles of flap deflection. Their absolute values become larger when the height of the tunnel becomes smaller. 

It is interesting to note, that the tunnel wall corrections become zero for some value of the angle of flap deflection, 
which is the same for all values of the ratio (a+b)/2h, but which decreases, when the flap chord increases. 

The general conclusion can he made that the tunnel wall corrections for large angles of flap deflection are rather 
small, They amount at most to 5 "/, for (a+ b)/2h = 0.4; this maximum is' attained for small values of the angle 
of flap deflection 6 and they will be much smallerin the range of large values of 6. 

and 4. 
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Appendix: The pressure distribution in the neighbonrhood of the interseetion of wing and flap. 

The pressure distribution on the wing and the flap for the free flight case is given by the formulae (3.20) of the 
G v i E l :  

. ~~ 
~= 

~ 
~ ~ ~ 

~~ 

_ _ E ~  ~ -~ __ ~~ _c_ ~~ 

~~ 
~~ 

5 tan 6 
d t ]  - a < x i O  ('4.1) 

and 

O < x < b . c o s 6  ('4.2) 

Substitution of the formulae (4.2) and (4.1) into the integrals occurring in (A.1) and (A.2) yields 

d t+  
5 tan 6 bc'oad 

d{+ 2c;j sin 29' (x-t)2+52 tan26 0 (x- i )Z+t2 t a d 6  
5 tan 6 bcosd t tan 6 bcosd 

sin 9' 

nKn+dI 

d t  = 2c7 

d t  (A.3) 
i; tan 6 

(x-t)Z+<' tanz)& 
and 

+ 
+ n/il+di 

t d b  0 
+ 2c;j sin 9 

_s (x-t)3+x2 tanZ 6 

t d t  

t d t  

(x-@+xZ tan2 6 

(A.4) 
t d t  

(x-t)Z+x* tan2 6 

Putting t =  -xt,one obtains after some calculations the following asymptotic approximations for x--t -0 for the 
integrals occurring on the right-hand side of eq. (A.3) 

bcosd 

d t = x  sin 6 cos s+o{(-~)*}  (x-t)'+t2 tanz 6 
lo sin 3 

1,  sin^ t tan 6 bcoad 

d t = n  sinG,cos6+0{(-x)*} 
(x - t)' + tan2 6 

-a/(. + 8) . . t tan6 dKn + dl -d/(n+d) n+$ , 

d t = n  cos 6 (t] , (- - - sin 6 cos 6 + 0{( - x)} ' 6  
' n + 6  . 

d5 = - sin 6 cos 6+0{(-~)"'("+~1} n 

In the same way the integrals occurring on the right-hand side of eqs. (A.4) can be approximated for x-r + O ;  one 
gets after some derivations : 



SI itituting all these results to 
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; equations (A.3) resp. (A.4) the result is: 

5 tan 6 bcosd 
d<=2n sin 6 cos Sc; +2n sin 6 cos 6cf + 

- d/(n +d! 

_ _ _  (n+6'sin6cos6 c:+n COS SC: (- :) +O{(-x)*] (A.5) 
n6 

and 

Inserting finally (AS) and (A.6) into (A.1) resp. (A.2) and replacing the vortex distributions y'(x) by their series 
expansions (4.1) and (4.2),the pressure distribution in the neighbourhood of the point x=O turns out to be 

and 

Hence it appears that the press,ure distribution has two singularities at the point x=O; one of the type 1 ~ 1 - * * ' ( ~ + ~ )  
and the other of the type ]xl-di'ncd). The vorticity distribution however has only one singularity at  the point 
x=O viz. of the type (x)- ' / (~+~).  This diNerence in behaviour of vorticity- and pressure distribution is a typical 
feature of non-linearized theory. The pressure distribution in the neighbourhood of the intersection of wing and 
flap for the wing between the two parallel walls exhibits of course the same types of singularities as the wing in 
free flight. 
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Fig. 2. Lift-coeficient of the wing in free night as function of the 
angle of nap denection for some values of the ratio t of nap-to total 

wing-chord. 

- 6  . ,  

Fig. 3. Moment-coeficient of the wing in free night as function af 
the angle of nap, denection for some values of the.ratio T or nap- 
to total wing-chard. The moment is taken ahour the quarter-chord 

point. 

- 6  

Fig. 4. Tunnel wall corrections far the lift coefficient as function of 
the angle of flap deflection for three values of (otb)/Zh; r=;. 

Fig. 5 .  Tunnel wall corrections for the lift coemcient as function of 
the angle of nap denec lm for three values of (a+b) /Z;  r = k  
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Fip. 14. Tunnel wall corrections far the moment coelficient as func- 
tion of the angle of flap deflection for three values of 7 ;  

(o+b)/2h=0.3.  The moment is taken about the quarter-chord point. 

20 



C.C.L. Class. D 304: D 301 

Two-dimensional tunnel wall corrections for a wing 
with a blown flap between two parallel walls 

bY 

E. M. de Jager 

Summary 
A linearized, two-dimensional theory has been developed for the determination of the pressure distribution on a wing with a jet-augmented 

flap between two parallel walls. The pressure distribution is expressed by means of integrals containing the given normal velocity at the wing 
and the vorticity distribution in the wake. This vorticity distribution is determined by an integral equation, which must be solved numerically. 

Graphs presented show the tunnel wall corrections oithe aerodynamic derivatives lor a flat wing with a flap as iunctions ofthe jet momentum 
coeilicient for three values of the ratio of nUng chord to tunnelheight and lor three values of the ratio of flap to wing chord. 
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List of symbols 

jet momentum coefficient 
distance of the jet from center-line of 
the tunnel 

h semi-height of the tunnel 
k moduIus of elliptic functions 
I semi-chord of the wing 
n 
P pressure 
U velocity component in x-direction 
u velocity component in ydirection 
W downwash at the wing 
x, Y rectangular co-ordinates 
2 x + i y  
CL lift coefficient for wing between the 

walls 
c: lift coeficient for wing in free flight 
A CL tunnel wall correction, ACL = 6,- C, 
CM moment coefficient for wing between 

the walls 
G4 moment coefficient for wing in free 

flight 
ACM tunnel wall correction, dCM= 

G-5, 
C(x, y ;  xp, y,) functlon of Green 
J momentum flux in the jet ,. 
K ( c ,  T) kernel function 
L lift of the wing 
M 

2 X )  

direction of the outward normal 

moment of the wing; ahout quarter- 
chord point and positive when tail- 
heavy 
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R radius of curvature of the jet 5, r l  transformed co-ordinates 

UO unperturbed velocity at infinity P density inside the jet 
V mean velocity inside the jet Po density outside the jet 
B .  angle of flap deflection T ratio of Rap to wing chord 
Y (4 vorticity distribution in the wake V(X> Y) velocity potential 
b thickness of the jet @(t, q ;  t,, q,) complex velocity potential 

,1 Introduction 

U mean velocity outside the jet i S + i v  

By blowing a thin jet of high velocity at the trailing edge of a wing into the outer flow, one obtains both a 
propulsive thrust and an additional lift force induced by the jet momentum flux at the exit of the jet, 

This high lift device has been the object of many theoretical and experimental investigations during the last 
ten years, particularly in England and France, and to a lesser extent in the U.S.A. (see refs. 1, 2, 3, and 4). 

At the National Aero- and Astronautical Research Institute, an experimental program has heen performed 
during which lift and moment measurements have been made for a two-dimensional wing-flap system with a jet 
of small thickness being ejected over the trailing edge flap (flap-blowing). 

The purpose of this theoretical investigation is to provide tunnel wall corrections in order to reduce the measured 
values of the aerodynamic coefftcients to free flight conditions. 

On developing the theory we have to make some restrictive assumptions, which we shall summarize here shortly. 
The problem will be treated as if it were a two-dimensional system and therefore the influence of the side walls 
of the tunnel will not be taken into account. The upper and lower walls of the tunnel are assumed to he parallel. 

The thickness of the jet is assumed to be very small and therefore the theory is confined to the case of jets with 
vanishing thickness, but with finite (non-zero) momentum flux. 

Spence (see ref. 5) has pointed out that in this case it is allowed to replace the jet by a single vortex sheet, 
extending downward to infinity. 
We suppose further that the velocity of the outer flow is so small that the fluid may be considered incompressible. 
Since the theory of a two-dimensional wing with a jet in free flight already leads to an integral equation which is 
rather difficult to solve (see ref. 6), it is sensible to linearizethe equations, as the problem discussed in,this report 
is much more complicated than that 0f.a wing in free flight. Hence we must assume that the wing ako is very 
thin and that the angle of attack and the angle of flap deflection are small. The w$g is placed in the middle of 
the tunnel and the linearized boundary conditions at the wing and in the wake will be prescribed along the centre 
line of the tunnel. 

This report is in some respects an extension of ref. 13 by the author. In the last mentioned report the angle of 
flap may be large and the theory developed there is non-linearized, while a jet is absent. 

2 Representation of the jet by a vortex sheet 

. .  

The determination of the tunnel wall corrections for a wing with a jet-augmented flap is very much complicated 
by the presence of the jet in the wake of the wing. Therefore we shall first turn our attention to the physical 
mechanism of the jet and to its mathematical representation. We shall give here in short the analysis of Preston 
and Spence (refs. 7 and 5). 

A jet of high velocity air is created at some internal point A of the wing and is ducted in such a way as to flow 
tangentially over the flap of the wing (see sketch a). 

A 
I 

The jet which is not supposed to mix with the outer flow, is represented by two vortex sheets along its boundaries, 
the strength of each vortex sheet being equal to the difference of 'the velocities at both sides of the boundary. 
To investigate more precisely the influence of the jet on the outer flow, we consider an element of the jet, which 
is approximated by taking the jet boundaries of the element parallel and its radii of curvature equal to R+& 
whek R is the radius of curvature of the centre line and S the local thickness of the jet (see sketch b). The element 
subtends an  angle d q  at the centre of curvature of the jet. 

The application of the Bernouilli-theorem outside and inside the jet yields: 
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where p l  and p2 denote the pressures at the boundaries of that jet, u1 and u2 the corresponding velocities the 
main stream and v 1  and u2 those in thejet; pa and p are the densities in the main stream and the jet respectively. 

~ 

~~~~~~ ~- ~ ~- ~= ~ ~ 

~~ 
~. ~~ 

Sketch b 

Subtraction of (2.1) and (2.2) gives: 

u:-u: = " ( u : - u : )  
Po 

Due to the irrotationality of the now inside the jet we can write: 

(R-@) = U,(R +@) 
On introducing the mean velocities 

L 

we can deduce from (2.4) 

6.V 
v , - v *  = - R '  

and hence, from (2.3), (2.5) and (2.6), 

From (2.2), (2.6) and (2.7) we derive the relation: 

pV26 
P l - P I  = 7 

which expresses that the pressure jump across the jet acts as a centripetal force on the jet. 
The momentum flux in the jet is defined by 

J = p V 2 6  
and hence 

J 
P2-PI = 

On introducing the momentum coeffjcient 

J 
c, = __ 

where I is some characteristic length, relation (2.11) becomes: 

P0U2I 

(2.7) 

(2.10) 

(2.11) 

' . (2.12) 

(2.13) 
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The jet is represented by two vortex layers; the strengths of the vortices, measured positively in clockwise 

y,ds, = + ( ~ , - ~ I ) ( R - i 6 ) d p  (2.14) 
Yzds, = - (~*-uJ(R+@)dq (2.15) 

When 6 is small we may replace the two vortices with strengths ylds, and y2ds, by a single vortex of strength 

(2.16) 

direction, are given by 

where ds, and ds, are line elements along the upper resp. lower side of the jet. 

yRdq= yds= yI ds, +y2ds2 

located along the centre line of the jet, and a doublet of strength 

with the axis along the centre line. 

along the centre line of the jet: 

mRdq=i6(y2ds,-y, ds,) (2.17) 

Substitution of (2.14) and (2.15) into (2.16) and (2.17) yields for the strength per unit length of the vortex sheet 

and for the strength per unit length of the doublet 

(2.18) 

(2.19) 

Hence,on the assumption that the thickness of the jet is very small,,while the momentum flux is non-zero finite, 
we may disregard the sheet of the doublets and the jet may be replaced by a single vortex sheet of strength: 

(2.20) 

When the velocity in the jet is very large in comparison with the velocity in the outer flow, it is allowed to take 
the momentum flux J constant along the whole jet, and therefore the jet momentum coefficient defined by (2.12) 
mav he taken also as a constant. viz.: 

(2.21) 

where the velocity U is replaced by the unperturbed velocity U,, of the main stream. 
For a detailed analysis the reader is referred to  ref. 5. 

3 The boundary value problem for the perturbation velocity potential 

The wing is placed in the middle of the tunnel. Since we linearize the flow equatioqwe can prescribe the bound- 
ary conditions at the wing and at the jet as follows: the former at a segment along the centre line of the tunnel 
and the latter at the semi-infinite part of the centre line stretching downward from the trailing edge of the wing 
to infinity. 

The wing-tunnel configuration is indicated in sketch c ;  1 is the semi-chord of the wing and.h the semi-height 
of the tunnel. The point C denotes the hinge axis of the wing flap. Cartesian co-ordinates (x, y) are used and they 
are defined as indicated in sketch c. Next we introduce a perturbation velocity potential. q(x ,  y), such that the 
perturbation velocity components u(x,  y) and u(x, y) are defined by 

In the region between the tunnel walls q ( x ,  y)  satisfies the equation ofcontinuity, which forthe case of incompressi- 
ble flow, reduces to the equation of Laplace, vk. : 

The boundary conditions at the wing and along the tunnel walls are determined by the condition of tangential 
flow and hence : 

- w ( x )  for -IS& + I ;  y = f O  (3.3) 
a'p 

aY 
- =  . 
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where ~ ( x )  denotes the normal velocity at the wing, taken positively in the downward direction; w(x) is a known 
function and is determined by the given mean camber line, the angle ofattack and the angle of flap deflection of 
tbe wing. 

pWe-shall-first~ draw our attention-to-the.boundanAo&d~on ~ ~ - T  ~ prescribed c_~~_ along the wake of the wing, i.e. for 
+IS  x < m, y=O. In chapter 2 we have shown that thin jets of high velocity=m~-lier~esented=by.asingle vortex 

sheet, inducing a pressure jump across the sheet. .This pressure jump acts as a centripetal force and hence it is 
related to the curvature of the sheet by 

J 
A p  = - R 

where A p  is positive in the upward direction and R is positive when the sheet is concave. 
Describing the jet streamline by the equation. 

J'=S(X) (3.5) 

(3.6) 

and using the definition (2.21), the pressure jump across the vortex sheet becomes in linearized approximation: 

d p = p ,  u;cjrg"(x) 
li 

Since y=g(x )  is a streamline, we can write:. 

and hence: 

By aid of Kutta's condition: 

I 
AP=PO uoY(x) 

we obtain for the strength of the vortex sheet replacing the jet: 

I 

l which is essentially the same formula as (2.20) 
Using the definition: 

I 

y(x) = u(x, +O) - u(x, -0) = 2u(x, +O) ' (3.10) 

a+, +o) 
ax 

formula (3.9) can also be written as 
u(x ,  +O)=kjl (3.11) 

The problem of the determination of the velocity field around a profile with a jet between two parallel walls 
js now reduced to the derivation of the solution of the boundary value problem for the perturbation velocity 
potential which, within the region between the tunnel walls, has to satisfy the Laplace equation (3.2) the boundary 
conditions along the walls, the.aerofoi1 and the wake being given respectively by (3.4), (3.3) and (3.11). 

The solution of this boundary value problem is performed in three steps. We decompose the disturbance velocity 
potential q(x ,  y )  into three parts, viz.: 

'p(x.y)='pp,(x,y)+'p2(x,y)+'pp,(x-,y) (3.12) 

'p, (x, y )  is the velocity potential accounting for the given normal velocity ~ ( x )  at the wing and the zero normal 
velocity along the walls, or expressed mathematically: 

where 'pl, 'p2 and 'p3 are defined as follows: 
(i) 

with boundary conditions : 

-= a'p 1 -IV(X) for -lS.xS + I ,  y =  +O (3.13) 
ay 

and 

(3.14) 

(ii) . 'p2(x, y) is the velocity potential due to the vortex sheet replacing the jet; 'p2(x, y) satisfies the Laplace-equation 



6 

and in order not to disturb the downwash conditions along the aerofoil and the tunnel walls, 'p2(x, y) is 
subjected to the conditions: 

-= a'pz 0 for - l S x S + l ,  y = _ + 0  andfor  y = & h  (3.15) 

(iii) (p3(x, y) is the velocity potential due to the circulation around the aerofoil; 'p3(x, y) satisfies the Laplace 

a Y  

equation and introduces only a jump in the potential across the aerofoil and the wake. 
'p3(x, y) has to satisfy the homogeneous conditions: 

- =  0 for -Isx<+l, y = f O  andfor. y F f h .  .(3.16) 

This complete boundary value problem is similar to the problem of a harmonically oscillating aerofoil between 
two parallel walls, which bas been solved amongst others by Timman (ref. 8). 

The only difference between the two problems consists in the fact, that in the case of the oscillating aerofoil the 
vorticity distribution in the wake is a known function of x (apart from a multiplicative constant), whereas in the 
case of an aerofoil with a jet, the vorticity distribution is an unknown function of x. 

The derivation of formulae for the potentials 'pl(x, y) and 'p2(x, y) runs along the same lines as in the mentioned 
paper by Timman, but 'pz(x, y) will now contain the unknown vorticity distribution y(x) in the wake. However, 
by aid of the boundary condition (3.9) along the wake we can derive an integral equation for y(x ) ,  which can be 
solved numerically. 

4 The determination of the perturbation velocity potential 

4.1 The determination ofthe potential 'pl(x, y) due to the normal velocity at the wing 

aY 

The potential 'p, (x, y) satisfies the Laplace-equation in the region D between the two parallel walls FG and HI 
(see sketch c) and~is submitted to the boundary conditions 

- w ( x )  for - l C x S  +I, y = i 0  J'p I 

aY 
- =  

and 

for y =  + h  - = o  J'p t 

aY 
where w ( x )  is a given function of x. 

(3.13) 

(3.14) 

\E 
I 
I 

Sketch c 

This boundary value problem IS a Neumann problem and is solved by means of Green's function. Because of 
the complexity of the boundaries we shall use a conformal mapping which maps almost all points of the interior 
of the region D between the tunnel walls into the interior of a rectangle. The transformation formula has been 
derived in ref. 8 and is defined by : 

dz 2hk 
- = - -sn([, k)  
d i  x 

where z= x + iy and i = 5 +iq ; sn(5, k)  is a Jacobian elliptic function with .modulus k, determined by the relation : 

X I  k=tanh-  
2h (4.2) 

The conformal mapping is illustrated in sketch d, where corresponding points are denoted by the same capitals. 
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I 1, I I 
H -- L-L&--LJ 0 B 0' " ' 5  A 

ZK 2K 
iE 
I 

I 

Sketch d i = S + , q  plane z = x t i y  plane 

The dimensions of the rectangle are 4K and K', K and K' being the complete elliptic integrals of the first kind with 
modulus k resp. k' = ,/1 -k2  . 

Since'the Jacobian elliptic function sn((, k)  has a real period 4K the mapping function [ =[(z) is a multi-valued 
function; the rectangles with corners at the points [ = + K  mod (4K) and [ = +2K+iK' mod (4K) are the images 
of corresponding Riemann-sheets in the physical plane which intersect along the semi-infinite line A I. 

It may be remarked that not all points, lying between the tunnel walls and not on the wing surface, are mapped 
into the interior of the rectangle; namely the points on the intersection A I  are mapped on the vertical boundaries 
of tlie rectangle. 

Therefore it is necessary to apply the method of the function of Green in a somewhat modified way, as will 
appear in the deduction which follows. 

As is well known the potential ' p l ( x .  y) can be expressed by: 

where C ( x ,  y;'x,, pp) denotes the function of Green; the path of integration is a single closed contour taken 
along the tunnel walls and the wing, namely the polygon F G A O B O A I H ;  n is the direction of the outward normal 
along this contour. 

The function G(x, y ;  xp, yp) is a solution of the equation of Laplace, regular in the area bounded by the polygon 
except at the point x=xp y=yp where it has a logarithmic singularity. Moreover the function G(x, y ;  xP y,) 
will satisfy some homogeneous boundary. conditions which will be specified later on. 

After transformation to the (-plane we obtain for the velocity potential 

where the path of integration is now taken along the sides of the rectangle and v is the direction of the outward 
normal; G,(c,  q ;  5 ,  qp) is again Green's function and has in corresponding points the same value as the function 
G(x, Y ;  xp, yP). 

Hence CT(& q ;  tpqp) is a function which also satisfies the equation of Laplace and has a logarithmic singularity 
for T=t, v=rlp. 

The boundary conditions for C,(% q ;  5 ,  qp) are now specified as follows: 

along the line segments AA' and GI and the values of GT(<,  q ;  tP,.qp) along the line segments AG and A 1  are 
the same for points with the same q co-ordinate; hence 

GT(-% q ;  Cp qP) GT( + 2K, v ; 5 ,  qp)  (4.6) 

These boundary conditions yield for the function C ( x ,  y ;  xp, y,) the conditions JG/ay=O along the wing and 
along the tunnel walls, and G is continuous across the intersection A I .  

Since q l ( x ,  y )  is antisymmetrical with respect to the x-axis and q , ( x ,  y )  is continuous across the semi-infinite 
line-segment AG (see sketch d), q,  (x, 0) will be zero for - 00 < x 5 - 1. 

Hence equation (4.4) can be written as 
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Using along the horizontal boundaries of the rectangle the relation: 

and substituting the boundary conditions (3.13) and (3.14) and the transformation formula (4.1) we obtain 

2hk 
(4.9) = - - s n ( t , k ) w ( x )  for - 2 K < t c  +2K, o=O av R 

and 

for - 2 K < t <  +2K, q = i K  (4.10) 

Since aql/ay is continuous across the semi-infinite line-segment AG, aql/an along AG will differ from aql/an 
along A'I only in sign, as n is the direction of the outward normal. Since sn(i, k)  has a period of 4K, it is clear 
that 

a v 1 ( - 2 K 3 t l )  - _ -  & 9 1 ( + 2 K ~ )  

'avl(t> 7) = 
av 

(4.11) 

Substituting (4.9), (4.10) and (4.11) into (4.7) and using the condition (4.6) we obtain finally for the velocity potential 
cpl (x,, y,) the form: 

av av 

(4.12) 

where wT([) is defined by 

w&) = w ( x )  (4.13) 

for corresponding points. 
To obtain the function of Green G T ( [ ,  q ;  lp, qp);we have to place a source at the point [=i, and this source 

ffi reflected against the lines q = O.and q = K', because the contours of wing and tunnel walls are streamlines. The 
field of sources is repeated consecutively with period 4K in the &direction in order to satisfy the relation (4.6). 
Hence we have obtained two double-periodic fields of sources, namely at the points [=[,+4mK+i2nK and 
i = [,+4mK + i2nK', where m and n are integers and [, is the complex conjugate of [r 

The function GT(& 7; t,, q,) has been determined in appendix A ;  i t  turns out that 

G T ( ~ ,  tl; 5, v,) = 

where Z ( t )  is the Z-function of Jambi, defined by: 

dn*(t', k)dt'-t- E (4 
K ( k )  

(4.15) 

dn(t', k) being a Jacobian elliptic function and E(k)  the complete elliptic integral of the second kind, both with 
modulus k. 

The modulus of the elliptic functions to be used in the further development of the theory will mostly be k and 
therefore we shall omit henceforth the symbol k ;  when the modulus is not k, it will he indicated explicitly. Suh- 
stitution of formula (4.14) into (4.12) yields for the velocity potential 'pl: 

Since sn 4 and Z ( t )  are odd functions and w T ( 4  is an even function we can write: 
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Differentiation of this expression to x p  and taking the limit y,= + O  with - I <  xp<  i lyields  the following formula 
for the velocity component u1 on the wing 

(4.17) 
~ 

- u i ( x p ~ + - O ) L ~ -  I" -21 ~ - Wr(<Pl(<p,$)d5 ~ ~~ ~ ~~ 

_ _ ~ c ~ ~ ~ . ~  ~~~~ --~-= ~~ = 

with -I<x,< + I  and correspondingly -2K<t,<0, while 

(4.18) 

The term ul(xp. +0) is necessary for the determination of the pressure on the wing. From equation (3.9) it is 
apparent, that in order to determine the vorticity in the wake we also need an expression for the velocity compo- 
nent u in the wake. 

Therefore we shall also give here a formula for the velocity component u I ,  which can be obtained after differ- 
entiating (4.16) to y,, and taking subsequently the limit for y,=O with + I <  x p <  +m. The result is: 

with + I $  x P <  + m and correspondingly 0s q,< K',  while 

(4.20) 

The reductions for obtaining the formulae (4.17) through (4.20) have been performed in appendix B. 

4.2 The determination ofthe potential cp2(x, y) due to the vortices in the wake 

Next we shall consider the velocity potential 'p2(r, y) due to the vortex sheet representing the jet. 
q 2 ( x ,  y) satisfies the equation of Laplace and in order not to disturb the downwash conditions along the aerofoil 

and the tunnel walls, which have already been satisfied by the velocity potential 'pl (x, y).  'p2(x, y) must be sub- 
mitted to the homogeneous conditions (3.15): 

0 for -I_iss + I ,  y = _ + 0 .  and for y = k h  aV2 
aY 
-= 

The velocity potential at the point ( x ,  y,) due to a unit vortex at the point (x, 0) with x > 1 in the presence of the 
wing and the tunnel walls, is obtained in the same way as the function of Green, determined in appendix A. This 
potential is also obtained by successive reflections of the vortex against the lines.q=O and q = K '  and by periodic 
repetitions with period 4K in the 5-direction. In this case, however, the sign of the vortex is reversed at each 
reflection in order to satisfy the conditions (3.15); the scheme of the vortex and its reflections is repeated in the 
(-direction with period 4K in order to make cp2(x, y )  and its derivatives continuous across the semi-infinite line 
segment A I  (see sketch d). 

The total potential of these two double-periodic fields of vortices is determined in appendix C and the result 
reads: 

(4.21) 

where i, is the image of the point of observation (x,, y,) and iq that of the point (x, 0) of the wake. 

expression : 
Hence the velocity potential 'p2(x, y) due to the vortices with the still unknown strength y(x)dx is given hy the 

with y T ( q )  = y(x) for corresponding values of x and q. 
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Differentiation of (4.22) with respect to x, and taking y,  = +O with -1s x p s  + I  yields the following formula 
for the velocity component ut at the wing surface: 

u2(xp. +O) ,=  1; YT(dP2(<p  T)dT (4.23). 

with -1s x,,S + 1  and correspondingly - 2 K s  0, while 

- Z(iq) sn iq I cn iq dn iq+cn <, dn < 
cn2iq-cn2<, PZ(<, 7) = - - - sn iq 2n sn <, (4.24) 

Differentiating ' p 2 ( x p  y,) to y, and takmg y,= 0 with + I $  x p <  m we obtain the downwash in the wake due to 
the potential (p2, viz. : 

b ( X , o )  = jr YT(~)Q~(? ,~  q)dq (4.25) 

with ls xp< co and correspondingly 0 5  q,< K', while 

-i 1 cn iq dn iq+cn iqp dn iq 
Q2(qp. cn2iq-cn2iqp 2n sn iq, = - 7 iv (4.26) 

The reductions for obtaining the formulae (4.23) through (4.26) have been performed in appendix D. 

4.3 The determination of the uelocity potential 'p3(x. y )  due to the circulation 

A suitable potential satisfying zero conditions along the tunnel walls and the aerofoil, and yielding a jump equal 

to -4aK across the wake is simply given by: 

and 
'p3(xp, y,)= -a(2K+4,) for -2K< (,<O i.e. the upper side of the aerofoil 

'p3(xp, y,) = +a(2K-4,) for 0 <  <,< 2K Le. the lower side of the aerofoil (4.27) 

where a is a constant to be determined by aid of the Kutta-condition. 
Differentiation with respect to x, yields for the velocity component tij  at the upper surface of the wing: 

n 1  
u3(x,, +0)= fa - -  2hk sn <, 

with - 1 5 x p s  + I  and correspondingly - 2 K s  <,5 0. 
Differentiation with respect to y ,  yields for the downwash u3 in the wake: 

n i  
u 3 ( x p , 0 ) =  +a-- 2hk sn iq, 

(4.29) 

with + I5 x,< a and correspondingly 05 q,< K'. 

components u into the ,Kutta-condition, which expresses that 
We determine now the constant a by substituting the expressions (4.19), (4.25) and (4.29) for the vertical velocity 

lim ( u l  + u2 + u3)  is finite . 
n.-0 

One obtains quite easily the result: 

5 The pressure distribution on the aerofoil 

The pressure distribution Ap'on the aerofoil can be obtained from the velocity component u(xp, +0) along the 
aerofoil. In linearized approximation the pressure distribution can be written as:  

.'or by aid of the equations (4.19), (4.23),and (4.28) 
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After substituting the expression (4.30) for the constant a and the formulae (4.18) and (4.24) for p,(cp,  t) resp. 
p2(tDr q )  we obtain: 

for -Is xpS + I  and correspondingly - 2 K s  cpsO, while the kernelfunction K is given by: 

(5.3) 1 c n a d n a + c n r d n . r  l + c n r d n r  i cn2 u -cnz 7 1-cn2r sn a 
- K(a, T) = - 

The first integral on the right-hand side of eq. (5.2) can always be calculated, either exactly or numerically, for 
any given, normal velocity distribution' on the <wing surface. 

.However, the second integral on the right-hand side of eq. (5.2) still contains the unknown vorticity distribution 
yT(q) of the vortex sheet. 

This vorticity distribution is related to the downwash in the wake by the jet condition (3.9); since the.downwash 
can be expressed by aid of the formulae (4.19) (4.25) and (4.29) it can be written as the sum of some integrals, 
containing either the given downwash at the wing or the vorticity distribution in the wake. Hence the jet condition 
(3.9) can be recast in an integral equation for the unknown vorticity distribution. 

After the numerical solution of the integral equation and the'suhstitution of the values of yT(q) into the second 
term of equation (5.2),we obtain finally the pressure distribution on the wing surface. 

6 The integral equation for the vorticity distribution in the wake 

The jet condition, valid in the Wake, reads according to (3.9) 

Integrating with respect to x from infinity to a point (x, 0) in the waks one obtains the relation: 

Substitution of the expressions for u,(x,, 0) yields the following integral equation for the vorticity in the wake: 

with 0 5  qD< K', while the kemel function K is defined by the formula (5.3). 
The first term on the right-hand side of eq. (6.2) &n again be calculated either exactly or numerically for any 

given normal velocity distribution on the aerofoil 
It has to be remarked that the.kernel function K(iqp iq) bas a singularity for.q= q p  of the type l/(q-qp), and 

the second integral on the right-hand side of (6.2) must be conceived in the sense of Cauchy. 
The integral equation (6.2) can be solved numerically; after substitution of the values of yT(q)  into (5.2) we obtain 

numerical values for the pressure distribution and after substitution into the jet condition (6.l),we find the slope 
of the jet streamline. 

7 The limiting case of walls at infinite distance 

In the limiting case of walls at infinite distance, viz. k + a ,  the theory reduces to the theory of the wing with 

For k-m the elliptic functions pass into ordinary trigonometric functions. 
The conformal transformation (4.1) becomes 

jet in free flight. 

or 
2 '= I cos ( 

The infinite unbounded region around the wing is mapped into the semi-infinite strip - n < t <  +n, 7 2 0  of 
the complex (-plane. . ' 

The wing contour has its image along the real axis of the [-plane; the upper side is mapped on the line segment 
-z< 5 < 0 and.the lower side on the line segment O <  e <  n (see sketch e). ' 

, 
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Takin 
asterisk 

-E +TI --- 

Sketch e (=[+it, plane 
I 

z=x+iy plane 

the limit h+oo or k-0 (compare (4.2)) and denoting corresponding quantities in tree flight by Ln 
ie obtain for the pressure distribution the expression: 

with - I ~ x &  + l a n d x , = l c o s ~ , ,  - n c < , < O .  
The integral equation for the vorticity distribution in the wake reduces to:  

withO<q,<m and x,=Icoshqp 
The kernelfunction K*(u, T) occurring in (7.2) and (7.3) becomes now 

- sinZr 
1 

coso-COST lTcosT 

(7.3) 

(7.4) 

Putting 5 = (1 +cos 0 2  it can be easily shown that the equations (7.2) and (7.3) are identical to those derived by 
Spence in ref. 5. 

8 The tunnel wall corrections for lift and mment 

When numerical values have been obtained for the pressure distribution on the wing by aid of the formulae 
(5.2) and (7.2) for the cases of tunnel walls and free flight respectively, lift and moment can easily be calculated 
by numerical integration. 

Assuming that the jet at the exit makes an angle fl with the direction of the main stream at infinity, the lift of 
the wing is given by: 

+ I  

L =  1 Ap(x)dx+J.p, 
- I  

and the lift coefficient CL=4poUi I  by 

The moment about the quarter chord point (taken positively in clockwise direction) is defined by 

M =  -iI:(x+:l)dp(T)dX-(x~+MJ.P (8.3) 

where x F  denotes the x-coordinate of the jet exit on the wing; the moment coefficient C,= M / 2 p n  Ugl* is given by: 

Lift and moment coefficients 6, and CM for the wing in free flight are defined in the same way and the tunnel wall 
corrections become thus: 

AC, = Ct - C, 

AC, = C, - C, 

(8.5) 

(8.6) 
and 
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9 Application of the theory to a flat wing with jet-augmented ffap 

__c_ The @ory,developed in the preceding chapter; has been applied to the flat wing with a jet-augmented flap. 
The angle of attack 5f the wing-is~taken~zero; while~the.angle,of.flap_deflectjocisAS_B,~ 
The jet-exit is taken at the hinge point of the nap and the jet is blown tangentially over the flap (flCFbc-blowing).- ~~ ~ ~~ 

I' 

I 
I 
I '  

Sketch f 

The wing chord is taken again 21 and the hinge point of the flap has x-coordinate x = x P  The configuration is 
indicated in sketch f. The normal velocity w(x) at the wing is given by 

w ( x ) = O  for - I ~ x ~ x ,  

w(x)= rr,B for X , S X l  + I  (9.1) 
Substitution of this downwash-function into the integral-equation for the vorticity in the wake yields: 

where c=-5,,is the image in the [-plane of the hinge-point z=x,+i.o. The first term on the right-hand side 
can be calculated. 

Inserting equation (5.3), it can be wrjtten as: 

According to formula (4.1) the relation between the x-coordinate of points at the aerofoil and the 5-coordinate of 
their images in the [-plane IS given by: 

or after integration : 
2h dn 5 x = - cosh ' (7) 
II 

Hence the relation between tP and x F  is: 
(9.4) 

5 ,  can be solved numerically for any given x,/l by an iteration process. The integral (9.3) can be reduced to the 
following form: 

where Il is the incomplete elliptic integral of the third kind, defined by 

with sin rp = sn u, 

(9.7) 
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The function F ( q p )  can be evaluated by using the well-known Fourier expansions for the elliptic functions of 
Jacobi and a series expansion to the modul&for 'the elliptic integral Ii'. The integral equation for the vorticity 
distribution is solved subsequently in a numerical way. This integral equation is satisfied in N-points q,,. with 

Since the pressure at the wing is influenced more strongly by the vortices in the neighbourhood of the trailing 
edge than by those further away downstream in the wake, it is recommendable to satisfy the integral equation 
for the vorticity distribution as good as possible in the neighhourhood of the trailing edge. Therefore we introduce 
the simple transformation 

0<VP,"< K ,  n = l , 2 , .  . . N .  

and hence t and t ,  are lying in the interval (0, K'/(l + K ' ) ) .  

of the trailing edge than further away downstream in the wake. 

the points, dividing the integration interval, are the same as the points t,,,, n= 1, , . . N .  

Putting for tD," N equidistant points, we obtain an qp," distribution which is more dense in the neighbourhood 

The integrals containing y&) = yr{t/(l - t )}  are now evaluated by means of the trapezoidal rule for which 

For qp=O(or tp=O),  according to (3.9) the integral equation reduces simply to: 

j;y(x)dx=cjlll,/9 

nr -. 

X I  

2 hk yr (q )  sn iqdq = - i  - - c j U o p  

Hence by satisfying this formula and the integral equation for the vorticity distribution in N points t,." and by 
approximating the integrals containing yr (q )  by the trapezoi'dal rule,we obtain a System of ( N +  1) linear algebraic 
equations for the (N + I) unknown values of yr{t,,J(l -t,,.)},n= 1;2, . . . N and ~~(0). 

y r ( K ' )  does not occur as an unknown value, since we know beforehand that y T ( K ' )  equals zero, because y(x)+O 
for x-00. 

In appendix E it is shown that y(x) = O(,l/x') for x-00 and therefore y(x) is replaced by (l/x*) y(x) or yr(q)  by 

where the factor of vr(q)  has been found by integration of the transformation formula (4.1). 

kernel K(iqp, iq) having a Cauchy-singularity at q=?lp arises. This singularity is isolated by writing 

Solution of the set of ( N + l )  linear algebraic equations yields ( N +  1) numerical values for y r ( 7 7 )  = y,{t/(l-t)}. 
In the reduction of the integral equation to a set of ( N +  1) linear algebraic equations the complication of the 

The second integral on the right-hand side of (9.10) can he reduced to a formula being composed of elliptic 

For t=t,=t,,, the integrand is approximated by: 
functions and the first one is numerically approximated by the trapezoldal rule. 

in which the limit can he calculated easily, 
The occurring elliptic functions are evaluated by aid of Fourier-expressions. 
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Having obtained in this way numerical values for ~ ~ ( 7 , )  = y r  {t,/(l - t J }  the pressure distribution at the aerofoil 
is determined by substituting these values into equation (5.2), which for the case considered here, reduces to: 

(9.12) 

Both integrals are evaluated numerically for several equidistant points at the wing surface. As to the first integral 
one has to distinguish the cases where r p  lies inside and where it lies outside the integration interval; when 5, 
lies inside this interval, the integrand has a Cauchy-singularity and the numerical integration is performed after 
isolating this singularity. 

When we have determined in this way the pressure at the aerofoil in several equidistant points, we approximate 
the pressure distribution finally by the formula: 

where x / l =  -cos 9 with O C  9 < R and x,/l= -cos Qp 
The coefficients a,, . . . a5 are determined by aid of the values of the known pressure distribution at  the wing 
We can now easily determine the aerodynamic coefficients C ,  and C ,  by substituting (9.13) into the formulae 

The calculations have been.performed by aid of the electronic computer ZEBRA of the mathematical depart- 

The aerodynamic coefficients Ct and C; for the free flight case are calculated in the same way by taking h 

We have not used the formulae (7.2) and (7.3) since the calculations for small values of k can be performed by 

(8.2) and (8.4) and performing the integrations. 

ment of the National Aero- and Astronautical Research Institue. 

very large, i.e. k is very small. 

means of the same program as for the case of tunnel walls. 

IO Numerical results 

Tunnel wall corrections for the aerodynamic derivatives aC,/ap and aC,/dp have been calculated in the 

The ratio I/h of wing chord to tunnelheight has been chosen as 2/21,4/21 and 6/21 and the ratio T of flap to 

The integral equation for the vorticity distribution has been satisfied in 15 points in the wake and hence N is 

The values of the aerodynamic derivatives for the case of free flight have been calculated from the formulae, 

The values of the lift derivative for the wing in free flight (l/h =0.025) have been compared with those of Spence 

The aerodynamic derivatives aCJag and aC,/ap have been plotted for fixed 7 as functions of that jet-momentum 

The corresponding tunnel wall corrections 

way outlined in the preceding chapter. 

wing chord as 15%, 25% and 100%. The jet-momentum coefficient ranges from 0-5. 

taken equal to 15. The pressure distribution at the wing is calculated in the points x / l =  -0.8(0.2) + 0.8. 
valid for the wing between tunnel walls by taking l/h=0.025. 

(ref. 9) for several values of the jet-momentum coefficient and the agreement appears to be satisfactory. 

coefljcient c j  for I/h=O, 2/21, 4/21 and 6/21 in figs. 1, 3, 5, 7, 9 and 11. 

(10.1) 

(10.2) 

have been plotted as functions of c, in the figs. 2, 4, 6, 8, 10 and 12. 

that the moment point is the quarter chord point of the wing and not the point (-il, 0). 
As to the case of T =  1 ,  i.e. the case that the jet is blown over a wing with angle of attack p, we have to remark 
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A survey of the values of the tunnel wall corrections for some values of c,, I/k and z is given in the next table. 

0.15 0.25 

0 
I .6 
4.8 

0 
1.6 
4.8 

0 
1.6 
4.8 

-0.002 +O.o004 
-0.003 t0 .C" 
-0.005 tO.0015 

-0.009 +0.0017 
-0.013 +0.0034 
-0,022 +0.0053 

-0.019 +0.0039 
-0.029 +0.0072 
-0.045 +0.0105 

-0.002 +O.o004 
-0.003 +0.OM)9 
-0.005 + 0 0 1 4  

-0.010 f0.0018 
-0.015 +0.0037 
-0.023 +0.0054 

-0.021 , +O.o040 
-0.031 +0.0077 
-0.047 +0.0111 

1 - 
JCM 

Ada I - __ - acL h - ac, 
J f l  ag - 

-0.003 +O.o004 
-0.005 +0.0009 & 
-0.006 +0.0014 

-0.014 +O.W18 
-0.018 +0.0037 
-0.027 +O.W55 

-0.031 +0.0039 
-0:WI +0.0078 ' &  
-0.055 +0.0112 

As to the case of l/h = 2/21 the tunnel wall corrections are very small and the results are not quite reliable due to 

However, the corrections for I/k=4/21 and l/h=6/21 are certainly sufficiently reliable in order to use them for 
the fact, that figures cancel out by the subtraction of the results for free flight and tunnel walls. 

obtaining aerodynamic derivatives in free flight from the measurements in the tunnel. 
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APPENDIX A I 
I 
I 

Derivation of Green's function I 

~ .~ ~ 

~. . _ c . c ~ ~ ~ ~  ~~~ . ~ ~ ~. 
c ~ c  

Green's function G T ( t ,  q ;  5, qp) is the potential at the'point ( r ,  q) due to two doub1e;periodic fields~of unit ~ ~~ ~= 

sources located at the points: i= iP+4mK+i2nK and <=rp+4mK+i2nK, where m and n are integers. 

I 
1 
I 

.gp-i2K' .5,+4K-i2K' 

Sketch g: double-periodic fields of S O U ~ C C S .  

The potentials of these fields are not uniquely determined when they are not submitted to some boundary 
conditions (see ref. 10, page 291). These conditions are for the case considered here: 

aGT 
0 for q=O and q = K  ( A 4  (4 

(ii) Gi-(-2K,q; t p , q p ) = G ~ ( + 2 K , q ;  tp,qp) ( A 4  

-=  
aq 

this means that the lines q=O and q = K  are streamlines. 

This condition corresponds with that of equation (4.6) of the text and is explained there. 
We introduce the complex potentials @,(t, q ;  tp, q,) and D2(C, q ;  Cp, q,) due to the field of unit sources at 

Analogously to the theory of ref. 10 we obtain for the potential m, the expression 
the points [= ip + 4mK + i2nK resp. [ = (, + 4mK+ 12nK'. 

where 9, is the first theta-function of Jacobi and q=e-"'2K'K''; we have used here the notation of Whittaker- 
Watson (lit. 11). By aid of Landen's transformation: 

and Jacobi's imaginary transformation: 

(-i.)*Sl(z\r) = -i ex p(ifz2/n) ' SI ( zr' I r') 
(-ir)*82(zIr) = exp(ir'z2/lr) g4(z7'1~') 

where we have omitted an irrelevant constant. 

two double-periodic fields becomes: 
The complex potential I$* is obtained from (A.6) after replacing (dby 5,. Hence the total potential 'p of the 

the modulus (K'/K)i has been omitted for brevity. 
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This potential has to satisfy the condition d'p/aq=O for q=0 and q = K ' ;  this can easily be shown by proving 

The first term of (A.7) is periodic in with period 4K, but the second term is not, and 'p( - 2 K ,  7; t,, qp) # 

The condition ( A I )  is however not violated when we add to the potential 'p the potential of a uniform parallel 

that the harmonic conjugate of rp is constant for q=O and v = K .  

'pP(+2K, q :  E ,  vp): 

.. . 

flow, viz. t.t/4KK'. Having done this we finally obtain the function of Green: 

( A 4  
Using the well-known relations: 

where S3=g3(0) and $2=82(O)  and 

where e(z) denotes the &function and Z ( t )  the Z-function of Jacobi we can write at last: 

which is the same as equation (4.14). 

APPENDIX B 

Determination of the velocity component u ,  on the wing and the velocity component u1 in the wake 

B.1 The velocity component u,  on the wing 

According to equation (4.16) the potential at a point (xp, y,) can be written as: 

Hence 

with - I < x p  .; + I  and correspondingly - 2K < 5, < 0. 
Differentiation to x, yields: 

with 
-z 1 '  d 5 P  - _ _  - _  

dx, 2hk sn 5, 
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Performing the differentiation to [,,the factor of wT([) in the integrand becomes: 

By aid of the addition formulae for the Jacobian elliptic functions (see ref. 11 or 12) this form becomes after some 
derivations 

Inserting (B.4) into (B.3) we finally obtain: 

with - l < x p <  + I  and correspondingly -2K< i;,<:O, 
This is the same expression as given by eqn. (4.17). 

B.2 The velocity component v1 in the wake 

r i a  
y o - + 0  aYg 2hk sn iq, at, We obtain lim dqp,(xp ") by applying the operator - - __ - to the right-hand side of equation (B.1) 

I D > [  

and passing subsequently to ttie limit <,= -0. 

quite analogous way as in appendix B.l ,  the result of eqs. (4.19) and (4.20), viz.: I 
Performing this operation and using again .the addition formulae of the Jacobian elliptic functions we get in 

with xp > + 1  and correspondingly O <  qD<K 

APPENDIX C 

Determination of the potential due to the two double-periodic fields of vortices 

.A vortex located in the wake has its image at the point (iqp 0) of the [-plane. This vortex is reflected against 
the lines q = O  and q = i K  and this p r o m  is repeated again for the reflections themselves reversing at each reflection 
the sign of the vortex. 

ei $:,Tp-2K*l * 4 K - i  ( l lp-2K')  

fa - 4 K + i q p '  

&iTP @34K-iTp 

---- _ _ _  -_ _______ 
4 
l 

0 /h+i(llp-2K,1 @4K+i(?lp-2K'l 

Sketch h :  double-veriodic si lds 01 vortices 

The vortex row is repeated consecutively with, period 4K in the [-direction. We obtain in this way two double- 
... . periodic fields of.vortic$, viz.:.vortices of strength + 1  in the points.(= +4mK+i(qP+2nK') and vortioes of 

strength - l 'in the points (= +4mK-i(qP+2nK') with m and n as integers. A vortex strength is defined positively 
when the rotation of the vortex is in the clockwise sense. . . ~  
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The complex potential of a unit-vortex equals the complex potential of a unit-source multiplied by i. 
Hence the complex potential I$3 of the vortices located at the points i= +4mK+i(qp+ 2nK') follows immedia- 

, tely from the expression (A.6) for the complex potential of a double-periodic field of sources by replacing in (A.6) 
i, by iqp and multiplying the formula with i. 

The result is: 

The complex potential I$, due to the vortices at the points ('= +4mK-i(qp+2nK') is obtained from (C.1) by 
replacing q p  by - q p  and multiplying with - 1. 

The sum of @, and I$4 yields the complex potential of a unit vortex at the point (0, iqp) in the presence of 
wing and tunnel walls. Thus 

The function v must have a periodicity 4K and therefore we add the potential of a uniform parallel flow with 
velocity -7d4KK';'this flow does not violate the condition that the, lines q = O  and q=iK' have to be streamlines 
for the velocity field. The potential at the point ( x ,  y,)'due to a, unit-vortex at the point (0, iq) in the presence 
of wing and tunnel walls becomes finally: 

By aid of (A.9) and (A.lO) this expression may be reduced to 

which is the same as formula (4.21). 

APPENDIX D 

Determination of the velocity component u2 on the wing and the velocity component u2 in the wake 

D.1 The velocity component u2 on thewing 

The potential due to the vortices in the wake has been given by formula (4.22) ' 

(D.1) 
(b  + ilii2 

(b- Wl2 

with - I < :  x p <  + 1 and correspondingly - 2K < tP< 0, 
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Since 

is purely imaginary. i Thus 

n i a  
The differentiation to x p  can now easily be performed; applying the operator - - - - to the right-hand 

side of (D.3) and using the addition formulae for the Jacobian elliptic functions, the result turns out to be: 
2hk sn 5, atp 

- Z(iq)]sn iqdq (D.4) 
cn iq dn iq-tcn 5 ,  dn 5, 

cnZiq-cn2{, 
1 1  

u,(x, +O) = - - - 
27l sn 5 ,  0 

with - l < x , <  + I  and correspondingly - 2 K < t p < 0  

D.2 The velocity component uz in the wake 

x i 8  
2hk sn iqp at, to the right-hand side of equa- We obtain lim a(p2(xp' y p  hy applying again the operator - - ~ - ) 

y n - + o  ayp 
1" 51 

tion (D.l) and passing subsequently to the limit <,= -0. . 
Performing this operation and using again the addition formulae for the Jacobian elliptic functions we get in 

a quite analogous way as in the previous appendices B.l, B.2 and D.l the following expression for u2(xp,  +0) 

with x p  > +/'and correspondingly O i q p <  K' 

APPENDlX E 

The behaviour of the vorticity distribution at infinity 

Assume that y ( x )  = O ( x - " )  for x+ + m 
From the jet-condition 

it follows immediately that 

u(x )=  o(x'-") for x+m 

Since v ( x )  becomes zero for x going to infinity, we may conclude that a z 1. 
The downwash in the wake can be expressed on the other hand by the formula 

where the integral has been taken from the leading edge of the wing to infinity. 
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From the assumption (E.l) it follows, that there exist constants A and N such that we may write in approxi- 
mation : 

and hence 

By aid of the formula: 

1 1 

where [a] is the smallest whole number larger than or equal to a, it is clear that 

Introducing { = x t  

The second term of (E.7) tends asymptotically to zero in a similar way as (x-" In x) when a ~ i s  an integer, and as 
(x-"), when a is not an integer. Since a > 1, it follows from (E.7) that u(x) mO(x-')and using (E.2) we f i d  that a = 2. 
Hence the vorticity distribution behaves at infi i ty as O(x-'). 

c. 
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Fig. I .  Lift'derivative as function of jet-momentum coelficient: 
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Fig. 2. Tunnel wall corrections for the lift derivative as function of 
net-momentum coefficient. 
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Fig. I .  Moment derivative as function of jet-momentum coellicient 

0010 

Fig. 8. Tunnel wall correctiom for the moment derivative as func- 
tion of jet-momentum coellicient. 
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Fig. IO.  Tunnel wall corrections for the lift derivative as function 
of jct-momentum coefficient. 
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- c j  

Fig. 11. Moment derivative as function ofjet-momentum coeficient. Fig. 12. Tunnel wall corrections for the jet-momentum coeficient. 




