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PREFACE '

This volume of Reports and Transactions contains a selection of reports completed
in recent years.

The investigations reported in TR G.28, TR G.32 and TR T.83 have been performed
under contract for the Netherlands Aircraft Development Board (NIV). Reports
TR W.7 and TR W.8 have been prepared for the Ministry of Defence (Air Force).
The permission for publication is herewith acknowledged.

Reports MP.216 and MP.222 contain the results of an investigation initiated and
sponsored by the Netherlands Department of Civil Aviation and carried out under
supervision of the Study Group on Airport Lighting.

In addition to the reports which are collected at more or less regular intervals in the
volumes of Reports and Transactions, numerous others are published on subjects
studied by the NLR.

A complete list of publications issued from 1921 through 1963 is available upon
request.

Amsterdam, November 1965

A. Y. Marx

(Director)
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M — moment about pomt F (see figure 1) u, — incomplete elliptic integral of the first
m — mass flow _ : kind
L Vy — velocity normal to Mach cone
n = 5 UIR2 X — axial coordinate
y — EXTXy
P — pressure _
g=3%p, U} — dynamic pressure B — = /M1
r — radius ‘ n — variation of ¢
R — ring-wing radius A — constant
R, — radius of intersecting circle of two — Mach angle -
, Mach cones I — Legendre’s integral of the third kind
Rg — radius of base contour p — density
S — surface of Mach cone @ — =rw;
sh — Jacobian elliptic function Ap — =Poutside — Pinside
U — axial velocity W — meridian angle
V — radial velocity
w — tangential velocity Indices
-U
u — =up+u; cos Y = ﬁl U1 0 applies to minimum drag case
R 1 applies to forward Mach cone .

v — =vy+0; COS | = ﬁ 2 applies to aft Mach cone

Uy i applies to minimum induced drag case

outside applies to outside surface or ring wing

e — Wohwisiny = ﬁ Ul inside applies to inside surface of ring wing

1 Introduction

One of the problems that has always been 'a challenge to the aerodynamicist is to find shapes that attain a low
drag under certain constraints. Especially if a configuration is considered that flies at supersonic speed this problem
becomes important. The reason is that in that case a form of drag occurs, which does not exist at subsonic speed.
This is the wave drag, generated in fact by the shockwaves, which are one of the more spectacular aspects of
supersonic flow. It will be evident that the search has been to find methods to reduce this drag.

Now, fortunately, the problem of finding shapes for minimum wave drag is not so complicated as, say, finding
shapes for minimum viscous drag. This explains why much work has been done on it, particularly as far as
axially symmetric bodies are concerned. In the latter case, mest of the solutions are obtained by using the concept
of a potential field as generated by a distribution of singularities along the axis of the body. The shape of this
body is usually found by solving an integral equation by purely analytical methods. (see for instance ref. 1).%)

However, such methods are only applicable to rather simple problems and give rise to great difficulties for
more complicated shapes. In order to escape these difficulties one would like to have a different approach to the
problem of finding shapes for minimum wave drag, giving rise to a formulation of the optimum conditions which
even in complicated cases lead to a simple calculation procedure for l'indlng the shape. Now this approach can
be found by considering the following arguments.

It is known that the flow field around. a given axially symmetric body with or without axis inclination can be
found by using linearized methods of characteristics (refs. 2 and 3). It is further known that the flow field can
be calculated if the velocities along two characteristics which intersect each other are given. Now the conditions
along the characteristic surface through the vertéx of the body are given by the fact that the incoming stream
is uniform. If it were possible to express the optimum conditions in terms of the perturbation velocities along a
characteristic surface intersecting the first one, it would be possible to construct the flow field inside these charac-
teristic surfaces, which in its turn determines the shape of the optimum body. The purpose of this report is to
show that this approach is indeed successful and to present some results found by this new method.

The optimum shape will be determined for a configuration that lies within two circular Mach conés. The straight
line joining the vertices is assumed to be parallel to the undisturbed stream. The base contour is a closed curve
that lies on the surface of the aft Mach cone. It is not assumed beforehand that the base area is flat, only its pro-
jection on a plane perpendicular to the direction of the undisturbed stream has a prescribed value A. Owing to
the presence of a body-wing system within the volume enclosed by the two Mach cones disturbance velocities
will be generated on the surface of the aft Mach cone. Applying the momentum theorem to the enclosed volume,
the lift L, the drag D and the moment .# can be expressed as mtegrals along the aft Mach cone. The problem
which .will now be investigated is to determine the conditions for mlnlmum drag when the lift and the base area

*) Needless to say that all these problems are solved by using the lincarized potential equation. This equation is also the base of the investi-
gations described in this report. . .



have prescribed values, This results in a number of requirements for the disturbance velocities on the aft Mach
cone.

When the drag is minimized the following conditions for the disturbance velocities have 1o be satisfied :

a) The mass of air flowing through the forward Mach cone must be equal to that flowing through the aft. Mach
cone.
b) A suitable combination of the equations of motion and the continuity equation.

The reason for the choice of the particular control volume bounded by two opposing Mach cones is, in fact,
that the last condition furnishes equations for the disturbance velocities and its derivatives along the Mach cone
only. This makes it possible to calculate the distribution of these velocities along the control surface explicitly.

The report includes two main sections.

Section 2 derives the expressions for the lift, the drag and the moment as found by applying the momentum
theorem and gives the equation for the mass flow together with the characteristic equations along the aft Mach
cone.

Section 3 consists of two parts. In the first the optimum conditions along the aft Mach cone are derived for
purely axially symmetric flow; thus the lift L equals zero, while the base area A has a prescribed value. In the
second part the case is considered when also the lift L has a prescribed value. In both cases the results are eluci-
dated by calculating an example.

2 Derivation of the expressions for the lift, the drag, the moment, the mass flow and of the characteristic equations

In this section the expressions for the drag, the lift and the moment are derived by using momentum theorems.
It is shown that these quantities can be written as integrals over functions of the disturbance velocities on the
aft Mach cone. A similar expression is derived for the base area by using the mass flow equation, while further-
more the so-called characteristic equations are established.

The coordinate system has been defined in figure 1. The cylindrical coordinates of a point P are: x, r and .

FORWARD
MACH CONE

AFT MACH CONE

Fig. 1. Definition of the coordinate system.

The velocities in a point P are:
a} the axial velocity U,
b) the radial velocity ¥,
“¢) the tangential velocity W,

The conditions in the undisturbed stream will be indicated by an index 1, those on the aft Mach cone by an
index 2.

Applying the momentum theorem to the air within the control volume, the following expressions are obtained
for the lift L, and the drag D:

L+ f p, cos pcosy dS + J p; cospcos iy dS = f P2 Vi, (W, sin § — ¥, cos y)dS . ‘ (1)
51 Sz .

52

D+p4 + f p, sin pdS — f p, sin udS = J

53 51 5

piVy, U, dS — f P2 VN2U2d5= - J P2 VN;(Uz_Ul)dS . (2)
Sz LP

The term p, - A represents the force due to a pressure p, on the base area, while D is the drag With_out base drag
and {riction drag. ‘
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Applying the moment of momentum theorem, the following expression for the moment .# =L-b is found:
Lb+ f (P2—p1){—r cos ¥ sin p-+x cos ¥ cos u)dS = J p;; Va,(Uar cos fr—Vyx cos i+ W, x sin y)dS  (3)
52

Here b.is the distance between F and the center of pressure (see figure 1). In the above formula the foliowing
symbois are used: '

P = pressure
p = density
§;. = surface of forward Mach cone
S, = sarface of aft Mach cone outside of base contour
* Va,. = velocity normal to surface of forward Mach cone (p051t1ve when directed 1nwards)
B
cos 4 = ands1nu-——~—,whlleﬁ =/ M-
- /B2 +l /ﬂz 1 ) '
Vv, =velocity normal to surface of aft Mach cone (posmve when directed outwards)
In addition, we have:
Vy,=U; sin p (4)
Vy,=U, sin u+V, cos p (5)
{ P1 oS jt cos dS = f P, cos p cos dS=0 " (6)
451 S2 .
S JOS et/ O (V) o (B0 - () o)
: 4 U, U, u/s
with: g=%p, U} (8)

U,-U,
Pa=p 1*M2w)
2= A

x=2BR.—pr {10}

Substitution of equations (4){10) included in equatlons {1), (2) and (3) and introduction of the dimensionless
quantities :

u = p? T (11)a
v, .
w;
_a 1
vep (e
yields, when higher-order terms are neglected:
for the lift:
| T | (- eosurwsin s (12
= U—1v) cos W+ w si ; .
p UL B /BEHT s,

for the drag:
D

. {
p UE ™ 252 /R 41 jsz {

(u—~v)> +w*}dS ; | (13)

for the distance b:
b-L

P VT =ﬂf—i—+_7 L_‘[ch{{uv—u) cos Y +w sin g} —r{2(u—v) cos Y +w siny}lds, (14).

where R, is the radius of the intersccting circle of the two Mach cones (see figure 1).
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Considering that dS =,/p%+ 1rdrdy, equations (12), (13) and (14) can be written as follows:

ﬁ=% J.JS {(u—u)cos¢+w sin '} rdrdy, : (15)‘
% = fL [2R{{u—v) cos Y+ w sin } —r{2(u—v) cos Y+ w sin Y} ] rdrdyr, (1)
or, when {15) is substituted in (17): .
b [f {2(u—v) cos y+w sin Y} ridrdy ‘
R y (18)

R, jf {(u—v) cos l,ll'+w sin i} rdrdlf/‘

As already mentioned in the introduction, the disturbance velocities must satisfy the following conditions:

(a} The mass flow through both Mach cones must be the same, i.c.

f91V~1d3=f P2 Vy,dS. (19)
51 52

After substitution of equations (4), (5) and (9) this can be simplified to:

Slﬁ:le =f.L {v—u)rdrdy . , _ (20)
5,85,

The expression ——= represents the difference between the projection of the Mach cone areas §, and S, on a

plane perpendicular to the x-axis, so that:

i—8§
S @1
where A is the projected base area.

The final equation for the base area can therefore be written as:

A= J‘Lz (o—u)rdrdy . | (22)

From the derivation of the expressions for L, D, .# and A it is evident that no explicit use has been made of the
property that the forward boundary of the control volume is a Mach cone. The sole condition used is that no
disturbance velocities are generated in front of this Mach cone. This means that the wing-body configuration
cannot extend ahead of this Mach cone. It is not necessary, on the other hand, for the wing and body noses to
lie on this forward Mach cone. .

However, from the derivation of the optimum velocity distribution along the aft Mach cone it will appear
that ar least one contour part of the configuration has 1o start on the forward Mach cone.

It will be seen from the derivation of equation (22) that the same equation is valid for configurations consisting
of a nose inlet on the forward Mach cone. In this more general case the quantity 4 is equal to the difference
between projected base area and projected inlet area. All the results derived in this report are applicable to this
more general case.

(b) The continuity equation and irrotationality condition:

The continuity equation is, in cylindrical coordinates:

opl) | alpU)  pv 1 3(pW) _ :
x Ta trtriTa =0 23)

After substituting equation (9) and again introducing the quantities (11) this can be written as:
ou Ov v Ow

hﬂé}*‘ﬁﬁ';‘?W:O (24)




- The conditions for irrotational flow are:

au &V cu dv
v ax ¢ ol (25)
orw  aU ﬁrw o '
W _T a"—w - 25
o ey T o oy . (25)e

The equations (24) and (25) will now be applied to the disturbance quantities on the surface of the aft Mach
cone. ' :
Differentiations along the aft Mach cone surface surface will be indicated by:

d d
i & and w
Then: " :
' d(rw) _o(rw) 1a(w)_ tou 1 a1 dlu—v)

dx« ox B or Boy By B dy

Therefore, equations {25)b and- (25)c lead to the following conditions for the velocities on the aft Mach cone:

|
|
|
du—v) _ _ 1drw) (26)

d{rw) _ _

1
dx B dy g dr

From equations {24) and (25}a we easily obtain:

du ou léau o dv

dx dx B or ox  ox
and

do_dv_ g
dr  ér ax’

Substitution of these two equations in (24) leads to:

+% =——. (27)

Equations (26) and (27) are the so-called characteristic equations, which have to be fulfilled along every forward-
directed Mach cone.

- The problem under con31derat10n is to minimize the expression for the drag (eq. 16} whilst keepmg the lift
(eq. 15) and the base area (eq. 22) at a prescribed value and, at the same time, fulfilling the characteristic equations
26) and (27 '

( A compar)lson of equations (15), (16), (22), (26) and (27) reveals that equations (15), (16), (22) and (26) are com-
pletely determined by the quantities (x—v) and w. The only relation between u and v is given by equation (27).”
It is possible, therefore, first to determine the optimum distribution of (x—v) and w on the surface S, from equa-
tions (15), (16), (22) and (26). Afterwards the quantities u and » can be determined from the known solutions for
(u—v) and w by means of equation (27). '

3 The optimom conditions along the aft Mach cone

3.1 The minimum drag for a given base area

When it is only specified that the drag should be at a minimum for a given projected base area A, equations
(16) (22), (26) and {27) have to be considered. Inspection of equations (16) and (22) reveals that this problem
is analogous to the wellknown problem of minimizing the induced drag of a plane wing for a given lift in incom-
pressible flow.

According to equatlon {22) a mean value for (v —u} is prescribed on the surface S,; whereas equation (16} shows
that the drag is given by a mean value of (v —u)® +w?.



Equations (32), (33) and (34) yield for the constant c,:

7

Considering only equations (16) and {22); therefore, it is evident that the optimum values for (u—v) and w are:

(u—v)op = o—bo=cC1 (constant) (28)
 Wap = Wo=0. ' (29)

The subscript 0 denotes the optimum distribution of the perturbation guantities for the minimum drag case.
As relations (28) and (29) also satisfy equation (26), they represent the correct solution of the problem.
Substitution of egs. {28) and (29) in eq. (15) shows that the first-order terms of the lift are zero in this case,
which could be expected a priori.
The constant ¢, can be determined by substituting equation (28) in equation (22). The result is:

.4
nR2

cy =

(30)

with R.=radius of the intersecting circle of the two Mach cones (see figure 1).

In accordance with the linearized approach the base dimensions have been neglected with respect to R, in
deriving equation (30).
Substitution of (28), (29) and (30) in (27} gives:

dUO Vo
Y _ o , 31
2 dr * r 0 (31)
Integration of (31) results in:
vo=cyrt (32)
Combining (28), (30) and (32) gives for u:
A
=c, r - . 33},
Ug=Cy'F chz ( )

The constant c, is determined by the requirement that equation {27) is also valid for the transition of the disturbed
flow along the aft Mach cone to the undisturbed flow at r=R,. '

On the forward Mach cone the flow is undisturbed and thus u=v=0.

From equation {27) it can be concluded therefore that on the aft Mach cone for r=R.:

H0+Uo=0. - (34)

|z

P |
= , (33)

Cy =

The expressions for 4 and v eon the aft Mach cone become:

“0%%5(%\/%‘ ) - G6)
- A R |
v0_2ﬁR3\ﬁ' (37)

The drag of an optimum configuration can be found by substitution of eq. (28), (29) and (30) in eq. (16).
The result is:

p, A

Ce—g = — s 38
p Ui~ 2mf?R? 9
Again the base dimensions have been neglected with respect to R,. The expression for R, is:
l
= 39
Ro=5 (39)

where I is the length of the straight line joining the two vertices F and G of the Mach cones (see figure 1).




Therefore:'
' D, 247
p U
or:
D, 447
i (o)

with g=dynamic pressure.
In the case of a circular base arca of diameter d the drag coefficient of the optimum shape becomes:

by d\? :

2o 1) | (1)
It should be stressed that in deriving expression {40) no assumptions have been made regarding the shape of the
configuration. The only requirement is that the shape gencrates disturbance velocities on the aft Mach cone
according to equations (36} and (37).

These disturbance velocities are axially symmetric with respect to the line FG (see figure 1).

.One possible solution for the optimum shape problem is therefore given by an axially symmetric shape.

However, in principle also less simple shapes are possible with the same minimum drag value.

When a pointed fuselage alone is considered it is most probable, however, that only an axially symmetric fuse-
lage can realize the disturbance velocity distribution given by equations (36) and (37).

In this case the results can be compared with those of Heaslett and Fuller in ref. 1. These authors have restricted
their analysis beforehand to axially symmetric fuselages. The drag given by equatlon (40) is exactly the same as
their result.

Instead of the fairly simple equations (36) and (37), however, they find-a more complicated expression containing
elliptic functions that cannot be reduced to the form of equations (36) and (37).

* A critical examination of the final results of ref. 1 reveals that the derivation of these results involves an error.
A-correct derivation based on the approach of ref. 1 is given in appendix B. The correct solution for the disturb-
ance velocities in the region between.the two Mach cones does contain elliptic functions; on the surface of the
aft Mach cone, however, these functions degenerate into the simple expressions (36) and (37) of this report.
_ From equations (36) and (37) it follows that for r= R, the disturbance velocities i, and v, are different from zero.
This means that the optimum configuration, when consisting only of a fuselage without nose inlet must have
_a blunt nose, as the nose shock strength becomes zero for a pointed fuselage in the linearized approach. This is
confirmed by the well-known characteristic of optimum body shapes (as, for instance, the von Karman ogive).
As already remarked, the optimum configuration does not necessarily consist of a fuselage only. -
An axially symmetric fuselage with a ring wing is also possible (see figure 2).

FUSELAGE

Fig. 2. General body-ring wing configuration.

The following remarks can be added:

a) The diameter and the length of the ring wing can be chosen arbitrarily. The combination must be such, how-
ever, that the ring wing lies within the two Mach cones.

b) The contour parts AL and ME of the fuselage and FGN of the ring wing are completely determmcd by the
known velocity distribution along characteristics AC and CE.

c) Of the four remaining contour parts, FHN, LK, KP and PM, two can be chosen arbitrarily; the others are
then determined by the velocity distribution along A€ and CE.




This means that for instance the ring-wing thickness distribution and the shape of the front part of the fuselage
can be chosen arbitrarily, whilst the drag will remain equal to the minimum value predicted by equation (40)

This freedom in the choice of parts of the contours is an essential consequence of the presence of a ring wing,
__When the ring-wing nose.F lies on-the-forward Mach cone it is. not even necessary. that the fuselage nose be
situated in point A4 (see figure 3). The shape A’ K, indicated by a dotted line, leads to the same minimum drag given
by equation (40). '

F S 0

H
\;FT MACH CONE Rc

FORwWARD
MACH CONE

K

FUSELAGE

Fig. 3. Body-ring wing.conﬁguration with wing leading edge on forward Mach cone.

On the other hand, it is not necessary for the ring-wing leading edge to lie on the front Mach cone AC nor is
it necessary for the ring-wing trailing edge to lie on the aft Mach cone. In that case, however, the fuselage nose
must lie in the vertex of the forward Mach cone. Of course, the shape of the two chosen contour parts influences
the pressure dlstrlbuuon and the shape of the other parts.

"An example of an optimum fuselage ring-wing combination is shown in figure 4a. The front part of the fuselage
has been chosen as that of a parabolic fuselage with a slenderness ratio of 9. The ring-wing thnckness is 2% and
the Mach number 2.5.

o8

|
Q Q4 [a2-1 12 1

e |

o 24 8B % a2

0a - ,\
5 2
Fig. 4a. Optimum fuselage-ring wing combination for M =2.5.

The contour and the pressure distribution have been determined by means of the linearized graphical charac-
teristics method of Erdmann and Oswatitsch (ref. 2).
The minimum drag according to equation (40) is, for this configuration, given by:

Do _ 00285 (42)

The drag coefficient for a parabolic fuselage of the same front shape and a base area of 18.4% of the frontal
area appears to be .520.

The possibility of this large decrease in drag is a direct consequence of the flow phenomena at supersonic
speeds.

In supersonic flow the pressure distribution around a fuselage is characterized by positive pressures on the
front part and negative pressures on most of the aft part of the fuselage. Owing to the existence of a ring wing
around a fusetage the pressures over the rear of the fuselage are increased (see figure 4c). The pressure distribution
resembles rather the type peculiar to subsonic flows in that the positive drag. of the front part is compensated
by a negatlve drag of the aft part; However the discontinuous behaviour of the pressure distribution is typical
of supersonic flows only.

Summarizing, it. may be stated that it is- always possible to design a fuselage ring-wing combination for which
the drag is equal to the very low value given by equation (40), whilst freedom exists in the choice of a large part
of the contour. From the pressure distributions of figure 4b and 4c it may further be concluded that, apart from
the leading edge region of the ring-wing inner contour, the only possible difficulty with respect to the boundary
layer flow is connected with the sharp pressure rise on the fuselage ; everywhere else the pressure gradient is always

" negative or zero.
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The small region w1th a positive pressure gradient on the ring-wing inner side can be removed by more selective
shaping of the ring-wing thickness distribution.

In the case of figure 4c the sudden increase in ¢, amounts to .15. It may be expected that this pressure rise can
be withstood by a turbulent boundary layer w1thout introducing separation.

A final remark should be made regarding the very small value of the drag coefficients derived from equauon
(40). This small value is a consequence of the optimization of the configuration; it means that the lowest-order
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Fig. 4b. Pressure distribution along the ring wing for the optimum fuselage-ring wing combination of fig. 4a.
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Fig. 4c. Pressure distribution on the fuselage contour of the optimum configuration of fig. 4a.

terms in the drag equation nearly cancel each other. For a reasonable estimate of the exact drag value, therefore,
it will be necessary to include higher-order terms in the drag equation. The result will probably be a higher drag
than predicted by equation (40); however, the reduction in drag will be appreciable anyway.

In addition, it can be remarked that the influence of the shape on the base drag has not been considered.

The approach used here for desgmng optlmum body- rmg wing combinations can be employed also in other
fields.. -
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One interesting application would be in the field of engine inlets at supersonic Mach numbers (see figure 5).

~ In designing these inlets it 15 often necessary to compromise between the requirements for optimum pressure
recovery and those for minimum nacelle drag, splllage drag, etc.

"When the engifie inlet i§ equipped with a ring wing, as shown in- ﬁgure 6, it is possible to design the inner
contours for maximum pressure recovery without having to compromise for nacelle drag, ctc. The resuitant

e
N

Fig. 5 Supersonic engine inlet configuration.

STREAMLINE

Fig. 6.--Supcrsonic engine inlet configuration with ring wing.

nacelle drag and spillage drag is minimized to the low figure given by eq. (40) by the introduction of the ring wing
and the indentation PE on the aft side of the engine cowling (see figure 6).

Here again, one is free to choose contour parts BK and FHD, whereas parts F GD KP and PE are prescribed
by the optimum velocity distribution along CE .

The quantity A of equation {40) is in this case:

A= basc_: area of engine nacelle minus cross-sectional area of undisturbed stream tube area ending at inlet lip B.

3.2 The minimum induced drag for a given lift for wing-body configurations with circular cross-sections

The determination of the optimum shape for minimum induced drag for a given lift will be restricted to shapes
with circular cross-sections.

In this case the dependence of the disturbance quantities ¥, v and w on the independent variables r and l,z'f can
be expressed as follows:

U=ug+u cosy (43)a
v=1uy+0; COS ¥ (43)b
w=w;siny. : (43)c

The lift vector is assumed to lie in the meridian plane ¢ =0 (see fig. 1). u,, u, Vo, v; and w; are-functions of r only.
Substitution of {43)a, b and ¢ in eq. {16) gives:

» _ o D, D
o U1 l;U ug— o) rdrdy + jjsz {(ui—v,-)z cos? i + w? smzl,(/} rdrdtjl] = —_—p;;}f + PN {44)

The cross products of the symmetric and asymmetric quantities cancel out after integration, as they contain
uneven powers of cos i and sin .
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The induced drag D, hecomes:

p1DU2 = f[ {u —u,))* cos? +w? sin t/f}rdrddf = Tl: {(u,-—v,-)2+w,-2}'rdr. (45)

’l"he points E and C are defined in figure 2.
Substitution of {43)a, b and ¢ in eq. (15) gives for the lift:

—L—2 = 1[]] {10 —v0) cOs Y +w, sin lf/}rdrdl,ll + ff {(u;—vi) cos* i +w; sinzz,b}rdrdtj/] ;
£1 Ul IB 82 : . ' 52

L n € '
or: =— | {y—v+w)rdr. 46
: p1Uf BJE( ) . ' 46)

Substitution of eq. (43)a, b and ¢ in eq. (22) leads to:

A= sz(‘uol—uo)rdr’dlp; ffsz(vi—ui)cos g[/rdrdl,’f:'sz(vo—-uo)rdrdt,b. @)

This equation does not result in a relation for the asymmetric flow quantities. Introducing eq. (43)a bandcin
(26) and {27) results in the following expressions for the asymmetric flow quantities:

on CE, 7 (48)

du; 1dvr)  w -
f&;’l‘;“y*—.— , on CE. (49)

The problem at hand, therefore, is to minimize the induced drag D, given by eq. (45), for a given value of the
lift L, according to eq. (46), while equations (48) and {49) have to be satisfied.
Here again it is sufficient first to consider equations (45), (46) and {48) in order to find the optimum distributions
for u;—v; and w; on §,.
Subsequently the optimum distribution of u; and v; can be deduced from this result with the help of eq. (49).
From equation (48) it can be scen that a function @ exists such that

@ =rw;, (50)
and

@, =t;~ ;.
Transformed into the variable ¢, the problem is therefore to minimize the induced drag given by (see eq. 45):

D, n [€/¢? '
PR L (?2« + qaf) rdr, (51)

the given lift following from (see eq. (46)):

L id C( Q@ )
ST L -+, rdr. (52)
Equation (48) is satisfied automatically by the introduction of @.
The problem can therefore be formulated as that of finding the optimum distribution of ¢ along the charac-
teristic line CE (see figure 2).
The following boundary conditions have to be fulﬁlled
a) The quantlty @ is equal to zero for r=R, as the tangential disturbance quantity w; is zero in the undisturbed
stream and is continuous in C (no transverse pressure discontinuitics are present in-the flow around axially
symmetric shapes).
b) In point D or, in general, in the mtersectmg point of the characteristic CE Wlth a vortex sheet emanating from
a trailing edge a discontinuity in ¢ is possible. The jump 4¢ in ¢ when crossing point D is related directly to
the total lift carried by the ring wing,
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If the ratio ring-wing lift/1otal Jift is put equal to g, it can be shown that [see appendix C):

af L .
Ap = ~ o —_
¢ .. R p UY’ _ (53)3
with . . AQD = Puuisidge ~— Pinside + ’ (53)b 7

and R=ring-wing radius.
It is shown in appendix A that the optimum distribution of ¢ has to satisfy the following equation along CD as
well as along DE:

1 0
Pt 29— 3 =0, (54)
with the boundary conditions: ‘
aj r=R, ¢ =0 (5
b) r=R @, = —2 'on both sides of the vortex sheets (55}b .
) r=Rg P, =—4 | (55)c
where 4 is a constant, as yet undetermined.
The general solution of equation (34) is: c
qo=c-_,-r+4r'f. (56)

The constants ¢, and ¢, on part CD of characteristic CE (see figure 2) can be determined avith the aid of boundary
conditions ($5)a and (55)b.
The resultant expression for ¢ becomes along CD: : T

l_gai | (57)a

p= _‘lr R 3
1+ (E)
and hence:
2
2
le=%="-j. *ﬁﬁﬁi, (57)1)
1 e
" (R)
- and .
R\ ;
1+ 7‘-) 1 :
U— U =@,= —-;{ : (57)c
F

ie. along CD the term {u;— v;+ w;) in eq. (46} is a constant.
The values for constants ¢, and ¢, i eq. (56) along DE can be determined in a similar way from boundary
conditions (55)b and (55)c. The resultant expression for ¢ is:

o=—Aar, (58)a
and hence: .
w22 _1, o (58)b
oo &
and: :
: w—v,=@,=—1. (58)c

In this region alsb u;— v;+w; is a constant; it is different, however, from the value along.CD owing to the discon-
tinuity in w; in point D, ' _
The constant 4 can be determined by substitution of (57)b and ¢ and (58)b and ¢ in equation {52):

L =[[® | [Re ~2Ardr xd [ —2R?

S Coardres SN e TR -

R ﬁLE L (R B LR
R R

The analysis is restricted to linearized flow, i.e. Rgy/R <€ 1.
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Thus, the expression can be simplified to:

L _ '_—ZTM“.RE
)
or.
B R\l L '
el () e

Substituting equations (57)a and (58)a in equations (53)a and b gives for the jump in ¢ across the ring-wing

vortex sheet:
R 2
(f) _ap L

—— =5+ AR=2IRy——7—5 ¢ = .

1+R‘2+ 1+ Ry? ”RP‘U‘
R ' R

Substitution of (59) in this expression yields for the lift parameter :

__ ring-wing lift

total lift L (60)a

Le. the total lift must be carried by the ring wing alone.

The net lift of the fuselage is zero in the optimum configuration.

Substitution of equations (57)b, (57)c, (58)b and (58)c in equation (17) gives for the distance b between the
center of pressure and the vertex of the forward Mach cone:

b : fJ { (u;~v)) cos?y +w; smzt,b} ridrdy
PR, R, fj {u—v ) cos? i+ w; smzw}rdrdw

[l
Jopoepe

Rc 2
R R -3 - (—r‘
j -—3Ar2dr+j A———r T rar
Rg R 1 + (_RSE
=2 s o =1.
R, j —erdr+J Ardr
J e kg (R
R
Therefore )
b=pR, =¥, (60)b

where ! is the distance between the vertices of the two Mach cones (sce fig. 1), i.e. the lift vector lies in the plane
of the intersecting circle of the two Mach cones.
u; and v; can be determlned with the aid of equation (49). Subsututzon of (57)b and (57)c in (49) leads, for region

L il ( ) ( )

St T + = =
dr " r r RN? 1 RN r R\?
B Be 1+ (B

=0. (61)
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The general solution for u; is:

=5
TV
and therefore with eq. (57) : o
2
4 ()
Cs
v;=— + 4 3 -
N

For the same reasons that led to equation (34) the boundary condition for ; and v; in point C is:
u,+v,=0 for r=R..

‘

The final expressions for u; and v, are therefore:

| R
e B
o (E)

1+ [

with 4 given by equation (59).
Substitution of (58)b and ¢ in (49) results in:

; 4 A
2—+—-=—-=-=0 on DE
dr ror r
The solution is: =L
solution is: U =Jr
- ——C_G
and; v \/r-f-/l.

- The constant ¢, is determined by the boundary condition that u; and v; are continuous in D (r=R).
Thus, combining eq. (64)a and (63)a for r=R gives:

o A _ \/E
JR . Ry} VR
1+ R
Substitution of (65) in (64)a and (64}b yields for DE:

R, 1
W TR
' R

=

and
— —'A' ‘RC 1 (Rcz
”"-_I_ITQT r  \R
R.

1

(62)a

(66)a

(66)b

Upon equation (59) being introduced into equatiqns‘(57)b, (63)a and b, (58)b and (66)a and b the results can

be summarized as follows:



Along CD Along DE
wa L B [ 5t [k
"7 2aRZ p UV 7 Y 2R} p UEN r _
or ' (67)a | or - ' (68)a
w_ B R w_ b R
n 2zVr n 2V r
BB |l ]
Y 2nRE p,Uj r r ' 2mR? p,U? r R
or {671b | or (68)b
4458 21518
no 22V r T \r, n o2V R
__ B L R\® _ B L R\ 2]
w= st - O] v s W) |
or . C{67)c | or {68)c
IR YN '
n“ﬂ{l_(T) s - AT
. L
W}thﬂm——m

The disturbance velocities given by equations {67)a—(68)c incl. can be obtained by an inclination i of the axis
of the ring wing or fuselage with respect to the undisturbed flow. The inclination i will be different for ring wing
and fuselage and in general i will be a function of the axial coordinate x. _

The required axis inclination i is dependent, of course, upon the chosen thickness distribution of ring wing and
fuselage. The result obtained can, therefore, be summarized as follows:

a) The zero-lift drag can be minimized by determining a suitable thickness distribution for the fuselage and ring
wing {see section 3.1},
b) For this optimum thickness distribution the optimum axis mchnatlon i can be determined from the results
derived in this section.
It is equally possible, however, to apply these results to another thickness distribution than the optimum one.

In that case the zero-lift drag will not be optimum but the induced drag will have the optimum value connected

with the disturbance velocities given by eq. (67)a—(68)c incl.

Just as is the case for uy and v, in the minimum drag configuration at zero lift, the dlsturbance velocities u,
and v; are different from zero in point C.

When the ring-wing leading edge lies on the forward Mach cone (as in figure 3) the axis inclination of the nose
station, necessary to generate these velocities in C, is different from zero but finite. However, in case these velocities
must be generated by a sharp fuselage nose, as for instance in the configuration of figure 2, an infinitely large value
of the local axis inclination is necessary. This is analogous to the blunt nose of fuselages for optimum zero-lift
drag (see section 3.1).

For the configuration shown in figure 2 the following qualitative remarks can be made:

(a) The axis inclinations of the ring wing and of fuselage parts AL and ME are completely determined by the
known velocity distributions along AC and CE. .

(b) Of the three contour parts LK, KP and PM of the fusclage, the inclination of only one can be chosen arbi-
trarily, with the restriction that the value for w; in point D is prescribed {see eq. (68)c). This means that fuselage
part LK must generate sufficient upwash or downwash in flow-field LKDHF in order that the total ring-wing
lift has the prescribed value.

The freedom in the choice of the axis inclinations is smaller than that in the choice of the thickness distribution,
due to the fact that in remark (a) the axis inclination is assumed to be the same for the outer and inner surfaces
of the ring wing, .

This restriction is not necessary for a ring wing with 2 blunt trailing edge, in which case, therefore, the freedom
in the choice of the axis inclinations is larger.
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For the optimum fusclage-ring-wing combination shown in figure 4a axis inclinations i that yield the velocity
distributions given by equations (67)a—{68)c have been determined by means of the graphical linearized charac-
teristics method of ref. 2 with the extensions of ref. 3.

- The results have been.plotted.in figure_7a; the corresponding lift loading is represented in figure 7b. The quan-
tity u/n on the inner side of the fuselage has been chosen to vary linearly with x.
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Fig. 7a. The axis inclinations for the optimum configuration of figure 4a,
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Fig. 7b. The lift distribution on ring wing and fuselage for the optimum_conﬁguratibn of figure 4a,

As the disturbance velocities along characteristic CE are proportional to the desired lift, the quantities u;/n,
vy/n, wi/n are used to calculate values for i/n rather than i.
The induced drag distribution is shown in figure 7c. Both lift and induced drag distributions are plotted dimen-

) L@
lr e and I _\n

gd  dx gd dx ’

respectively with I =fuselage length.
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Fig.7¢. The indueed drag distributton for the optimum configuration of figure da.

It may be remarked that the total lift of the fuselage is not zero as it should be according to equation (60)a.

The reason is that the linearized characteristics method which has been used for the determination of the axis
inclination is not accurate enough when flow around a fuselage is considered. '

A more detailed treatment of this problem is given in ref. 8. ‘

The induced drag is obtained by substitution of equations (57)b and ¢, (58)b and ¢, and (59) in eq. (51). The resuit
is:

) 4
R,
D, A | (? Re 2+ 2 (T)
—-'—2 = J 2rdr + ey PP
p Uy 28 Re R { (Rc) 2}

K’ R
z z ;—R*—R? + 53
P LV (&) }2 R*~RE + ‘ G
- 287 4 \p, UTR? R { (&)2}

. 1+ R

as Ry< R and Rg < R, this can be simplified to:

D, [ L \? R\? _
i - — * Tx 9
o= aGom) 1+ ()] (6)a
or:
R A
D _ 1/ LY ()
p Ul 4n \p, Uf R (69)b

It follows from (69)a and- b that for'a given value of R, the. induced drag.is at'a minimum when R=R,_ In this
case, however, the ring-wing length is zero and the lift is concentrated in an infinitely small region. The absolute
value of the local axis inclinations of the fuselage necessary to produce this result are infinitely large. In practice,
therefore, the solution is not valid for values of R too close to R,. From figure 8 it follows that the induced drag
does not increase too rapidly when R/R, is decreased from 1. It is noted that.the induced drag given by equation
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(69)b for R=R_ is exactly the same as that given in ref. 9 for the optimum wing system within a double Mach-
cone space. The important point to note is that, according to the results given here, such low induced-drag values

. can be realized without necessitating the use of very large wing surfaces (see figure 8).
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Fig. 8 The induced drag for the optimum configuration as a function of R/R, compared with the ring wing at constant angle of atlack and
. the diamond wing.
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Use has to be made, however, of the interference effects between fuselage and ring wing in order to realize
the optimum velocity distribution on the aft Mach cone.

The optimum value for the induced drag can be compared with that of a ring wing without fuselage at a constant
angle of attack and with a chord c=2§{R,—R) < 28R; ie. the maximum chord possible within the two Mach
cones. This has been computed by the graphlcal characteristics method of ref., 2.

UZR
In figure 8 the quantity /Jp -

W has been plotted against R/R, for both cases. It is evident that an ap-

- preciable reduction in induced drag is possible.

The induced-drag value for the diamond wing of maximum dimensions within the two Mach cones (span=2R,
and-length=28R) is indicated by the dashed horizontal line in figure 8.

The induced drag of the optimum ring-wing conﬁguratlon is smaller than that of the maximum- sized diamond
wing for values of R/R, greater than 68,

In the optimum configuration, however, the fuselage lift loadmg is partly positive, partly negative, whereas
the met lift of the fuselage is zero.(see figure 7b).

The realization of the above-mentioned favourable interference effect on the induced drag depends, therefore,
on the possibility for the fuselage boundary layer to withstand the associated pressure distributions.

4 Conclusions

It has been shown that the requirement for a configuration enclosed between two circular Mach cones with
a given base area to be optimum with respect to drag is that the disturbance velocities generated on the aft Mach

~ cone have to be axially symmetric. With body-ring-wing combinations the same minimum drag can be realized

as with the optimum axially symmetric fuselage alone, whilst a certain freedom exists in the choice of part of the

shape. Furthermore, a method has been presented to determine the optimum axis inclinations for a body-ring-wing -
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combination for minimum induced drag at a given lift. An expression has been given for this minimum induced
drag as a function of the ring-wing diameter and the length of the body. It is shown that through the optimum
choice of body axis and ring-wing axis inclinations an appreciable reduction over the induced drag of a ring wing
alone can be obtained. In the optimum configuration the net lift of the fuselage appears to be zero.
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APPENDIX A

Determination of thé equations for the optimum distribution of the potential ¢ on the aft Mach cone

According to equations (51) and (52) of section 3.2 the optir_ﬁun;x distribution of ¢ is a distribution that mininiizes

the expression;

"R, 2
P 2
=~ + @;rdr,
JRE {(r) (p ,[
R,
J {f + (p,} rdr.
Re (T

The boundary conditions are (sec section 3.2):
.fOI' F= Rc ) P =0 )

for a given value of:

whereas for r=R a discontinuity in ¢ exists with: :
aff L
AP = Pourside — Pinside = — 7R .Bl—Uti >

where a is a constant, as yet undetermined (see App. C).

(A1)

(a2)

(a3)

(A4)

In order to solve this variational problem a variation 5 of the functlon @ is considered. » also must satlsfy

eq. (A.3)

For optimum conditions to exist, it is known from variational theory that the followmg gquation must be

satisfied (see, for instance, ref. 7)

R, 2 . R.
F) J {((f—) + (pf}rdr‘+2ij (E+ (p,) rdr=0
Re ¥ e AT
where /A is a constant.

Therefore, for every small value of »:

o
e d"+ 2 onbrars | 19 1Ly o,
dr reldr o

Integration by parts of the first term gives:

R, R Re 2
j 2d(pdn d—_J d—rdn—2md¢ J 2y %Edr—j 2r9—¢ndr_

dr dr Ry dr Re gg drf

on
boundaries

The third term of equation (A.5) yields in the same way:

R . r, i R,
.[RE g—f~ rdr:J‘RE rdn=rﬂ/“LE ndr.

on

Substituting eq. {A.6) and (A.7) in {A.5): boundaries

R, d
-2 [ {r'qa,,n'-q:a, - 2} Hdr 4 (2,2#fr+2mr JB)/: 0.
J Rg r dr

on
boundaries

Equation {A.8) must be satisfied for every small value of n; the necessary conditions for this are:

. ) . 1
P(Prr’k(for—?:O or (Prr+;§0r“%=0!

and on those boundaries where ,3‘?50' (ie. r=Rg and r=R):

dep dg |
i+$ 0 or = 4

The boundary condition for r=R,, where n=0, is given by eq. (A.3).

(A5)

(A6)

(A7)

a8

(A.9)

(A.10)
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APPENDIX B

Comparison with the results of ref. 1 for the minimum zero lift drag of an-axially symmetric fuselage

. The source strength found in ref. 1 for pointed fuselages is in the notation of this report (see eq. (70)b of ref. 1):

or: B{x) = %(ﬁ) x(l-x),

BI (x) Uz (_};_E) I - 2x ,
B* \R x{l—x)
where the prime denotes differentiation with respect to x.
The disturbance velocity in axial direction is:

U_Ul _ _L J‘x_ﬂr I (EE)Z l—2x1 dxl
\/x1(1~x1) \/(x_xl)z_ﬂ?ﬂ ’

or: U 2n
_opr LU (ﬁ)z =J o lx d"t
Uy \Rg (x—x )2 —p*r?

r__ﬁ’ Xy clx1

Jo I-xy Sfix—x, P—pr*’

Q

with the substitution of y= x—x, and using eq. (B.1} this becomes:

2?“‘(&)2 }' I—x+y dy j X~y dy
Ry =y W Ry
In the region between the two Mach cones is:

x—fr>0 and x+prsli,

ot x> fr and [—x=2fr.

Hence: x>fr>—pfrz—(I—x
Therefore, the first integral of équation (B.4) can be written as:

* t—d :
S S . -
) J (a—t)(b—b)(t-—c) dt with a>b>c__,__d.

According to ref. 4 {eq. 256.13 and 33§.01) this s equal to:

a2 O e, ),
with: amx zzta—b)(c*d)z(zﬂf;x_—ﬁ_ﬂ
th S P PR Rl R

b=pr
2 _X=pr 2
c=—pr = k*,
d=—(l-x) @ = sin”' —~+—~——§a_ ))ia_g g
2 2

N P RN ey e

The second integral of equation (B.4) can be written as:

j:,/m(:—:;—)(r_:gj dt:(“—b)gﬁ % = (acx o) ~g[ug + {2 ~1itfy. a2, k)] -

(see ref. 4 eq. 256.14 and 338.01).

(B.1)

(82)

(B.3)
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Substitution of (B.5) and (B.6) in (B.4) yields:

R, \? x+ﬁ’r _x—fr :’ |
~2mu {25 = Sl
T (RE) \/(x+ﬁr) (1= x+ fr)- [ a? -K ¥
| [1 < p1) ( B -0 (1 = 3| (3. #14). (67)
or: (x+.8r S+ Br)(I=x+ pr) o a 2
—2nu (&) S S HI—2(x—f~[3’r)}K-i—dlﬁir'ﬂ<E , o k)] . (B.8)
' Re/  J(x+pr)(1—x+pr) _ S \2
On the aft Mach cone: x4+ fBr=[ or k=0.
Then: K -——;_—I

{3 nf2
and IT|=, «2, = lim
2 t~0Jo (l—a smWW

[ 8 wp haprn [1 on
e 1—a?sin?® 12 NV 28 27 V2pr 2

Substituting this in (B.8) yields: ‘
: R:\? 2 n I =
. -2nu(—c) == {-—I'-—+4ﬁr ———'-—]
or: Re/  J2pr! 2 28r 2
. . RE 2 1 Rc
u=- (ﬁ;) [1 ~3 7}, (B.9)
where {=2fR, has been substituted.

Equation (B.9) is exactly the same result as eq. (36).
The radial velocity V is determined by

4 (&)’eﬁ-v (&)2- _ L j o (xoxg)i=2x,)dx,
Ul \Rg ' Rg 2ar J, \/xl(f—x'l).\/(X—xl)z—ﬁzrz,

or:
R 2 ] x—fr _
‘B 2nre (-i) -_-j’ (x_xl l X4 dxl
E 0 (x—x,)?-pB*r?
x=pr dx
_j (X xl ! Tk
0 l—x1 (x—x,)?—B*r

With y=x—x, this equation becomes:
B 2nry (R“)z = fx} f=xty & Jx =y b
Re Y iR LT N o
J /l—x+y /y+ﬁr dy — pr l~x+y dy __J" [ x—y . [y+pr dy +
NVox—y Vy-pr pV x=y [y p5r ) Vi-x+yV y—§fr

+ﬂr[ flexty &y (B.10)
=Y Y -pr

The first integral of eq. (B.10) can be written as (see ref. 4 eq. 256.16 and 362.17):
dn?udu

(-)-dg L(T_—QW = |
= (b—c}b—d)g [ﬁ%l) {a2E+(k5~a2)K+(2a2-a4—k2)-n(g-, az,k)ﬂ- (B.11)
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The third integral is, according to tef. 4 (eq. 362.16):

“ o enudu

(a—b)(b—c)g ,L m =

= (a—b)(b—c)g [F(klz—_a_z) {aZE + (K2 =) K + (22 —a* — ) n(; aZ,_R)H . (B12)

Substitution of eq. (B.11) and (B.12) in (B.10}) leads to:

For x+ fr=1 this is equal to:

RA\? 2 J s .
B 2nrv (—E) = T 2ﬁrli — pri 2},

1
1

v=%(%>2‘/—ﬁ;—.r | B4

or:

Equation (B.14) is exactly equal to eq. (37).

APPENDIX C
Determination of the discontinuity in ¢ across the vortex sheet aft of a ring wing
To a first approximation, the lift of a ring wing with radius R can be written as (see ref. 2 eq. (35)):

;Jtlif7=z—§{ J w;dx — J uidx}. {C1)

outer inner
surface surface

Within the linearized approximation the intcgrals. in eq. (C.1) are equal to (see ref. 2):

fuidx = —ﬁ{R (Wi)lrailing edge — R(Wi)leading edge} =

== ﬁ{(plrailing edge (Rwi]leading edge} - - (CZ)
Substituting (C.2) in (C.1} we get:

L nR
m = _ﬁT {(oinside = Qoutside »
or:
-8 L
=R p U3 {C3)
with:
' AP =@ y5ae ~ Pinsiae - (C-4]

When the ring-wing trailing edge does not extend to the aft Mach cone equation (C.3) ts still valid, as the dis-
continuity in-¢ across the vortex sheet is constant (see refs. 3 and 5).
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than those based on the so-called linearized potential theory. Although a few other general schemes were known,
their application was prohibited, because of the large amount of time and money involved.

Especially in the field of the computation of supersonic flow regions the assistance furnished by electronic
computers is ore or less crucial to the solution of certain problems. In the following lines this statement will
be discussed in more detail.

As is known by now, for a reliable solution of the flow field around a certain configuration, the use of linearized
theory is not permissible in most cases. To remedy this situation use has to be made of the governing non-linear
differential equations. Fortunately an attractive numerical scheme can be developed for the computation of the
solution of these equations. This scheme is based on the concept of characteristic surfaces. These are in fact the
surfaces separating the region where a disturbance occurring in a certain point is experienced from the region
where it is not. At this moment the calculation schemes for the supersonic flow around two-dimensional and axially-
symmetric configurations have obtained a high degree of generality. The development of such schemes for three-
dimensional flow fields is still in its earliest phase, due to the enormous difficulties attached to it.

Since the differential-equations are non linear, the computation of the values in a certain point can be achieved
- only by an iterative procedure. This is why the use of electronic computers is necessary. Even then much skill
is required to make the numerical scheme and the programme in such a way that the computation time and thus
the costs are not unreal.

In order to use such schemes, we have to start from a set of initial data. From the general theory of hyperbolic
equations it is known that for given initial data along a surface, not coinciding with a characteristic surface, a
solution can- be constructed in the neighbourhood of this surface. This solution, however, cannot be extended
outside the volume enclosed by the characteristic surfaces through the boundary of the region for which the
initial data are given. A sketch of this situation is given in fig. 1. For practical cases the situation is totally different.

LIRE WHERE ON THE PART 3,
iNITIAL DATA ARE GIVEN

CHARACTERISTIC LINES
THROUGH THE ENDPOQINTS
OF THE PART §

Fig. 1. The largest region where a sotution exists.

There it will be required to calculate the flow field around a given configuration and for a given Mach number
of the undisturbed stream. Along the surface of the configuration the flow quantities are related to each other
because this surface is a stream surface. It can be shown then that the construction of the flow field with the method
of characteristics is possible only if the values of the flow quantities are known along a certain surface in this
flow field. This may be a characteristic surface as well. The determination of such a surface is in fact the key to
the solution of the whole problem. It is evident from fig. 2 that we shotld have such a situation if we knew the

SHOCK wWaAVE

M THE SO CALLED ,FIRST CHARACTERISTIC™
®

——

COHTOUR OF THE CONFIGURATION

SMALL REGION
OF KNOWN FLOW

Fig. 2. The initial data necessary for the computation of the flow field.

flow field around the small region near the nose of the configuration. Then it is possible to obtain the {low quan-
tities along a characteristic surface, which is necessary for the construction of the complete flow-ficld. As we
deal in the following only with cases for which the flow is axially or quasi-axially symmetric we will refer to this
surface as to the “first characteristic™. In the case of pointed bodies this means that the flow is conical in a small
region near the nose. It must be observed that this does not necessarily mean that the configuration itself has
to be axially-symmetric. & ' o

The study of the flow around cones has been very extensive, and in fact already in 1933 a solution, based on
non linear differential equations, wa$ obtained by Taylor and Maccoll (ref, 1). A table of computed results was
published in 1947 by Kopal and his staff (ref. 2). It is interesting to note that this table was computed with the



aid of ordinary desk computers. Further progress was made when Stone succeeded in solving the problem for
the flow around an inclined cone by using the technique of superimposing a small perturbation term on the purely
axially-symmetric flow (ref. 3). This solution was tabulated by Kopal as well (ref. 4).

~The question may be-raised-now, if-there is.any. need.to present here once more a rather thorough mvestlgatlon
of such flows. However, these conical solutions are so important, because of the fact that they furnish the initial
‘conditions necessary for the determination of the whole flow ficid. It will then be clear that for a reliable solmtion,
these initial data have to be known accurately. Moreover it will be necessary to have the ability to determine
these initial conditions for arbitrary values of semi-top angle, ratio of specific heats and the Mach number of
the undisturbed stream. Such a solution can be obtained in principle by interpolating in the tables of refs, 2 and 4.
Besides of causing a large amount of work, this solution will almost always be too inaccurate for the use it is
intended for.

It was therefore decided to develop a very universal programme for the calculation of the flow around cones
with and without inclination. This program gives all the information along the “first characteristic”.

Although a second order perturbation theory for cones at large angles of yaw has been developed, this case
will not be considered because of the fact that no method exists for the calculation of more general flow fields
using this second order theory.

The purpose of this report is to present the details of the above mentloned universal programme and the way
followed to formulate it.

Therefore, the first part of this report gives a review of the theoretical formulation of these prablems and dis-
cusses the requirements for the programme.

The programme itself and the numerical schemes on which it is built will be described afterwards. 1t has been
presented in this report in the form of an ALGOL programme, because this is an internationally accepted machine
language.

The original programme, however, was written in the code of the computer actually in use at the NLR, since
this works faster than ALGOL.

The main features of the programme are shown in a block diagram. An example is discussed to show the results
which can be obtained.

2 The formulation of the conical problems to be solved

In this section the differential equations and the boundary conditions that govern the flow around circular
cones will be reviewed both for the cases of zero and non-zero inclination. In this presentation, only those formulae
are given which pertain to the problem.

2.1 The case of zero inclination
In fig. 3 the coordinate systems for analysing this case are presented, namely the spherical system (R, 3} and
the system (x, r). The velocities in these systems are (i1, 7) and (u, v) respectively. The semi-top angie of the cone

Fig. 3. Coordinate systems and related velocities,

surface is given by 3,, while 3,, denotes the half angle of the shock-wave. M, is the Mach number of the undis-
turbed stream. .
The differential equations governing the problem are given by

dv  _  a*a+&cot §)

et -~ 1
as t i - 2Da
du

L p= 2.1)b
39 =0 (2.1}




where the local speed of sound @ is given by

_ 1 v y—=1 _, _
2 = (Mz + ~—2~) v - - @) (22)
and U, is the velocity of the undisturbed stream.

In most of the applications, use will be made of the velocity components u and » which are non-dimensiconal.

The following relations exist

i=U,{ ucosJ+vsind} (2.3)a
=U,{—usin $+v cos 3} . (2.3)b

The system of differential equations is then transformed into

du —a’y

d§ ~ (vcos 9—u sin 8 —d? 2 4a

dv du
where

1 y—1 y-1
z _ _r - 2 2
=Mz -*-ﬁ——2 3 (w+v). (2.3)

The boundary conditions pertain to the cone surface and the shock wave respectively. The condition for the cone
surface to be a stream. surface is given by

u=vcotd,. (2.6)
The conditions at the shockwave are given by
u—1l= —ptan 3, (2.7)a
2 1—M2sin?9 '
1= ® W 27)b
“ p+1 M2 ‘ 27

The equations {2.4)-(2.7) contain the complete description of the problem.

We will first discuss some of its features. As has been said in the introduction in most cases the Mach number

, the semi-top angle 9, and the value of y will be given. It is clear that the problem is, to solve the two non-

llnear differential equatlons (2.4) given the edge conditions (2.6) and (2.7}b, while the value of the shock angle 3,,
defined by eq. (2.7)a is still unknown. This can only be achieved by an iteration procedure One of the more
casy schemes is the following.

Choose a value for u at $=49,. From eq. (2.6) v can be calculated and hence it is possible to start the solution
" of the differential egs. (2.4)a and b. The solution procedure is continued until a value of § is reached which satisfies
eq. {2.7)a. From eq. (2.7)b there follows then the value of M,,. In general this will not be equal 1o the prescribed
value. Hence by choosing a slightly different value of 4 at 3=8,, an iteration with respect to M,, can be made,
until a certain required accuracy is obtained. Another probably more attractive scheme is to choose a value for $,,.
Then from eq. (2.7)b the value of # can be computed and from eq. (2.7)a the value of v. The solution can now be
started and continued until 3=9,, where in general eq. (2.6) will not be satisfied. In that case an iteration with
respect-to 3=3,, is performed until eq, {2.6) is satisfied.

Although there is in principle no difference between the two methods, the latter appears to be the better one.

When the value of the shock-wave angle is determined, it is possible to calculate the rise in entropy, accom-
panying the shockwave.

This can be expressed in terms of the ratio P of the stagnatxon pressures behind and before the shockwave,

(y+1)M2 sin?g,, oY o =4y D)
- [(w—l)M2 Sin? 9, + 2 1+ ?Tl (M sin®3,~1) (2.8)

Once the velocities 1 and v are known as a function of 8 it is possible to construct a first characteristic by using
the equation for the characteristic direction. For a positive slope the direction is given by
dr _u+po '
g dx  fu-v

(29




where

g = w4 v? 1
— 1] 2 '

‘Usually, as an initial condition, the coordinate x of a point at the cone surface will be given. In constructing a

characteristic a difficulty is encountered, which should be discussed here. In solving the differential equations
use will be made of a difference method based upon a certain stepwidth A9. At first sight, it may seem advanta-
geous to use a constant stepwidth, since a variety of numerical schemes has been developed for that particular
case. However, in that case the points lying on the first characteristic are distributed unequally as is shown in
fig. 4, especially for low Mach numbers and small values of the semi top-angle.

- — —— et - —

Fig. 4. Stepwidth AX on first characteristic for constant value of 49

Since this characteristic has to be used for the calculation of the flow-field such a distribution is not very ap-
propriate. It is desirable to have a distribution with a more or less constant stepwidth 4x. (Although a better
numerical accuracy is obtained with a constant stepwidth A3 for the same number of points). In that case the
stepwidth A9 cannot be held constant but has to vary from point to point. Therefore a numerical scheme has
to be used which permits the continuous change of the stepwidth 43. The actual choice made will be discussed
in the section devoted to the description of the programme. First we will proceed to the theoretical formulation
for the case of an inclined cone.

2.2 The case of non-zero inglination

The flow around a cone with a small angle of inclination ¢ can be determined by superimposing a perturbation
term on the axially-symmetric flow. Taking into account only terms linear in ¢ a scheme can be developed for the
determination of the first order perturbation velocities. Such a scheme has been given by Stone in ref. 3. For a
good understanding it is necessary to recall its main features, although for a more thorough presentation the
reader is referred to refs. 3 and 5, The problem is solved not for the actual flow field, but for a so-called transformed
field which is obtained by transforming the conditions on the actual boundaries to conditions along the surface
of cone and shock wave for the axially symmetric case. It is assumed that the total velocities in a spherical coor-
dinate system are given by

U =u+excosy (2.10)a
V = b+ey cos {2.10)b
W= gzsiny, (2.10¢

As is shown in ref, 3 the inclined shape of the shock wave again is a cone with an angle of inclination given by «e.
The coefficient o follows from the analysis, and is dependent on the quantity d. This quantity defines the pertur-
bation in the ratio of the stagnation pressures. If the total ratio is defined by P, then

dt cosw}. {2.11)

P1=P{l —&

Refore turning to the equations used in this report, we will first give the system of equations derived by Stone for
this case :

d%x dx
— i . = 2.12
492 + A a3 + Bx+Cd=0 (2.12)a
dx : . .
= y= 2126
13 0 (2.12)
. °d 5in? §

I+ A0




where _
cot $+A[(a+0 cot H{(y+ 1)A5+2}+ 6 cot 3]

1—cot? 3+ A[A(y~ l)ut(i+ b cot §) — & cot? §]

1+4ip J psin @
C = </ —Bp sin
G—DsinZsY ~ P o fWF‘

The quantity 2, the pressure p and the density p are given by

N
I

B

i

i _ 1 _ _ -
1= T p = yMi (aerci)m? L.p z.md P=(a2M§))1"V n.p.
From a numerical point of view the quantity C causes difficulties because the integrand is highly singular for
9=4Y, {since & tends to zero as —2i($—3,)) although C itself remains finite. This difficulty will be discussed and
solved in the following. presentation of the same formulae but now based on the cylindrical flow quantities given

by u”’, v, w’ and P". The total values are then given by

U, = u+teu” cosy {2.13)a
vy = v+er” cosiy (2.13)b
w, = ew'’ sin ¥ {2.13)c
P, = P+eP" cosy (2.13)d
The relations between thé_two systems have the following form
x =" cos 340" sin § (2.14)a
y = —u"sin 3+1v" cos 9 . . (2.14)b
z = w"‘ _ (214)0
. Pl!
d = _(?_1}? (2.14)d

v

The system now reduces to a set of two simultaneous first-order differential equations for «* and v".

d 1

dt-; + a?p cot Su" — pP vfv cos 3—u sin 3){(y— 1)(r cos ¥ —u sin 3)-
S ey 4 202 (07 cos $—u” sin 9)} + ydhe 0 @21i5a
du”  dv” ' '
= 4 =0 2.15)b

'cot 9 35 T 48 (2.15)
where . .
a’u 8 __psing ' 1
Y = J—0p si d p=
C=Gngywpsind | ¢ W —tpsmol e and = eos 9—u sin 9)°

By partial mtegratlon this highly smgular integral can be written in a rnuch easier form, as regards numerical
computation. .

. atu { a? | at . /(@®)~ Yy sin §—v cos 9} sin
== - — + & :
sin § ylucos$+vsin )y cos 9, /(al Y u, sin 9,,—v,cos 9,} sin 9,,

+ ¢\ /(@) Mu sin §~v cos 9} sin 9 } (2.16)a
where ‘

' s\/—°_—_‘_— 2 n
(e j USIN@-v 8@ a {1 (y Dpv (ucosrp+1smr,o)}d(p (2.16)b

_. S (@Y Dsin @ }’(H cOS ¢+ v sit oY sin ¢

As can be seen the value of C' for =3, is given by the first term of eq. (2 16)a, while the integral C” does not
give any difficulty for the numerical calculation. Due to the fact that the first derivate of C” becomes infinite at
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9=3,, a succesful integration of the differential equations (2.1 5)is possible only when a more thorough investiga-
tion is made of the solution in the region near to the body. This analysis has been given in appendix A.
The set of equatlons (2.15) can be solved now for a given set boundary conditions, given by

© T a*sin8cos 9 Y
W=+ ——— ('y 1)v+6 sin .9 cos 3 for .9=.9w 2.17)a
yly+1e? { ' &1
2P" .
b = —u" cot § + %EF for 8=3, | (2.17)b
while on the cone surface $=49, it can be prescribed that
2u -
rr_ gt t R — . A .
v'—u" tan 9, + o 0 (2.18)

5

It must be-observed that some of the equations contain the hitherto unknown constant P, Due to the linearity
of the equations it is quite obvious that the system can be solved easily by considering the quantities (u”/P")P
and (v"”/P")P. Then eqs. (2.17) are sufficient to start the solution, caiculating just as in the axially symmetric case,
from the shock wave surface towards the cone surface. The value of P and hence those of the quantities «'" and
v" themselves follow from eq. (2.18) once the solution has been continued until 3=3,.
The tangential perturbation velocity w” is given by
P

w' = —u"cot §—v" — 2P ' (2.19)

while the quantity a, representing the inclination of the shock wave follows from

a’P" cos 3 sin §

L for 8=3,. | | (2.20)

1t should be observed that -contrary 1o the definition used by Stone, the angle ¢ is considered as positive if the
axis is deflected downwards (fig. 5). -

Fig. 5. Pasition of cone swrface and shock wave for a positive angle of attack.

The formula given above for the flow around a cone with and without inclination contain the information
needed to construct the programme, at least in principle. This programme will be discussed in the following.

3 Discussion of the programme

This 'section consists of two parts, the first giving the general layout of the programme in connection with the
requirements to be met, while the second part gives more detailed information about the programme itself.

3.1 Preliminary considerations

In order to construct a programme, it is needed to, formulate what kind of input data will occur and what is
the best form in which the output data can be given. Furthermore some dctaﬂs which have not been considered
. in the foregoing analysis will have to be discussed.

As has been said in the introduction the purpose of the programme is to give a set of initial data for the con-
‘struction of the flow-field around an axially symmetric or quasi-axially symmetric configuration. Then nearly
always the Mach number M, the semi-top angle 9, of the nose and the ratio of specific heats y will be given.

These data, however, are not sufficient for-the construction of a characteristic; in addition the axial coordinate
of the point. at the cone surface through which the characteristic passes has to be glven Although 1t is possible
to construct a forward facing or a backward facmg characteristic, only the latter case is considered here. Moreover



we have to recall the fact that the computation includes an iteration with respect to the initially unknown quantity

3,,. being the semi-top angle of the shock surface. Therefore, it is necessary to provide two estimated values for

3, Starting with these values the iteration procedure, which includes the computation of the complete axiaily-

symmetric solution for each step, can be performed automatically. Obviously much work can be saved by using

a very close estimate. To facilitate this, dizgrams have been given in figures 6 and 7, prescribing the values of 3,
as a function of M, and 9, for two values of 7. In each case there is a lower hmit for 3, given by

1

8, =sin"!-—. B

; i G3.1)

Another point which has to be referred to with respect to the input data is the following. Not always one will

be interested in obtaining the flow field for an inclined cone.- Thus it is feasible to give as input data a code for
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Fig. 7. The shock wave angle 3, as a function of Mach number M and semi-top angle §, for y=4/3.

either “zero inclination™ or “non-zero inclination™. In the first case the programme will compute the axially-
symmetric flow and stop, while in the second case it will continue with the computation of the inclined field.
(As will be clear from the theoretical description, the latter field cannot be computed without a knowledge of the
axially-symmetric flow). Since, as has already been remarked a constant stepwidth A3 gives a better accuracy for
the same number of steps compared to a method where Ax along the first characteristic is approximately constant.
the programme is made such that by a suitable input code either the one or the other possibility is used. The
most common form for the output data will be a table giving the geometry of the characteristic constructed
and the velocity distribution along it. Thus for the axially-symmetric flow the table will consist of a set of columns
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giving the corresponding values of u, v, x and r. For the “non-zero inclination” case the set of values will be
u, v, 4", 0", w’, x and r. However, this is not the complete set of quantities which are needed, since, as follows
[from ref. 3, for the computation of the flow around an inclined body also the values of r(5v/§x), and r{dv/éx),
have to be known. These quantities are the defivatives with respect to x-of the-radial.axially-symmetric velocity v
along the constructed characteristic and along the set of characteristics intersecting this characteristic, respectively.
They are given by the following formula

r (ﬁ) = a*uv cos* Y {tan 9 — u+ﬂv} (32
x /g 7 —v :
AN s ' u—pfv ‘

r (EE)I = g’ cos*§ {tan 3+ ﬁu—l-v}' (32)b

In addition it seems advantageous to give a set of quantities characterizing the solution. For the axially-symmetric
case these are, the shock wave semi-top angle §,, the ratio of stagnation pressures P, the coefficient ¢, and the
Mach number M, both on the cone surface. The latter two are given by

= Ip2ypiv-Np__q .
2, .2 :
M, = d :;U for 3=38, (3.4)

For the inclined field this set will be completed by giving the values of the shock wave inclination factor ¢ and the
perturbation terms P” and ¢, where the latter quantity is defined by

Cp,=CptEC, COS Y . (3.5)

" 2 P uu' + oo
Cp, = {Cp + y_Mf} [? -y T:l - (3.6) -

This is as far as the input and output data are concerned.

The problem which comes next is, by which method the differential equations should be integrated, As has
been argumented in section 2.1 the methods available are dependent on the choice of the stepwidth. For the
computation of the flow-field an approximately constant stepwidth 4x would be desirable. This means that 43
is no longer constant and hence that any scheme for integrating differential equations using starting procedures
. is prohibitive. Then only those remain which are based on the method of Runge-Kutia, In the current programme
use has been made of the fourth order version of this method.

To obtain an approximately equal stepwidth Ax the following procedure has been followed. Through a point
at the shockwave a straight line has been drawn, tangent to the backward facing characteristic at this point. This
line has been intersected by a set of lines through the vertex of the cone, such that along it a number of points
is obtained with equal stepwidth 4x. In this way a distribution of stepwidth 43 is obtained which can be expressed
by the following formuld, where n is the total number of steps required to cover the region 9, — 9, atid k is the
index given to the kth step. ‘

The value of ¢;_is given by

n sin(8, —9,) sin{e—8,) sin{e—9,)

A9, = —tan™! - : _ _ . 37
* an kth — 1)sin® (8, — 35} ~n(2k — 1)sin(8,,~ 8 )sin(e — 3,)-cos{x—3,,) + n*sin* (2 — 9 (3.7

‘The angle « is given, accorglirig. to the above explanation by '
tano = T8 for 9-g . (3.8)

Although eq. (3.7) will not give an exactly equal stepwidth 4x along the characteristic, it may be expected that
this distribution leads to an acceptable order of constancy of this stepwidth. Another point to be discussed, in
connection with the computation procedure, is the lollowing. When calculating the inclined field, the application
of Runge-Kutta’s method requires the knowledge of the quantities u and v at the middle of the step. This necessi-
tates the computation of a double number of points for the axially-symmetric field. Since the knowledge of the
results at the middle of the step is not necessary for a set of.accurate values, these values do not occur in the output
data. They are used and handied in the programme in a rather elegant way, as will be explained later.

‘Last but not least something should be said about the required and obtained accuracy of the program. A
prescribed accuracy ¥ is given for the fulfillment of the boundary condition (2.6), while the integrations are per-
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formed following a procedure which has an error proportional to the fifth power of the stepwidth. The actual
accuracy can best be checked by performing a computation with half the step. The differences will give an ‘indi-
cation of the accuracy, and a quick determination can usuaily be made about the number of points required to
obtain a given accuracy.

The analysis of the programme itself, will be given in the next section, with the aid of the appendices, B and C
containing a flow diagram and the programme respectively.

3.2 Analysis of the programme
Before giving a description of the total programme the most important parts of it are described first, since
this will be .of great help in understandlng its layout

3.21 Description of the most important parts of the programme

The programme, roughly speaking, consists of a number of procedures, the performance of which is controlled
by so-called “labels”. The results are stored in “arrays”. In order to be able to make a certain’ choice, use is made
of “switches”. - *

-(a) Procedures:

— The procedure dudv(h, u, v) computes the derivatives of u and v at the angle h after eqs. (24)a and b. This
procedure is called in by the integration procedure. Note that the ALGOL notation for § is h. A full list of -
the correspondence betweer the various symbols is contained in the list of symbols.

— The procedure du? dv2 (h, u2, v2} calculates the derivatives of 4" and v at the angle k, after eqs. (2.15)aand b.
The quantities # and v necessary for this computation, are taken from the array H (see below). This procedure
also 1s called in by the integration procedure only.

— The procedure dfldf2(k, f,, f5) calculates the derivatives of fand fat the angle h, according to eqs. A{4)a and
A(4)c. This procedure is used only for the integration of the last step of the functions #” and ¢”. The same
remark pertains to the following procedure.

— The procedure dgldg2(h, g,, ;) calcudates the derivatives of y and 7 at the angle h, according to egs. A(4)b
and A(4)d.

- — The procedure integrate (dh, Y, h, u, v) integrates with stepwidth dh, the differential equatlons specified by the

procedure Y(dudv, du2 dv2, df1df2 or dgldg2). These are the equations (2.4)a and b, (2.15)a and b and A(4)
respectively. The integration is performed by applying the method of Runge-Kutta in its fourth order version.
This means that the procedure Y for the determination of the derivatives has to be catled in four times at -
one integration*step, although always with other parameters,

— The procedure integrate (dh. Y, h, u, v) integrates with stepwidth dh, the differential equations specified by the
procedure' Y (dudy or du2dv2). These are the equations (2.4)a and b or (2.15)a and b respectively. The inte-
gration is performed by applying the method of Runge-Kutta in its fourth order version. This means that the
procedure Y for the determination of the derivatives has to be called in four times at one integration step,
although always with other parameters.

— The procedure integral (dh, h, u,v) effects the computation of the expression C' as gwen by eq. (2.16)a. This
expression contains the integral C” (eq. {2.16)b) which has to be evaluated between 3,, and 3. The computation
is performed by using the trapezoidal rule. To this end the last obtained integral (C2) is kept in the store and
the following (C3) is added.

— Finally the procedure betas (u,v) calculates the quantity § (see eq. (2.9) for the given values of ¥ and v.

{b) Arrays:

~— The array result (0:n+ 1, 1:6} is the matrix in which the computed values of 3, u, v, "' P/P”, " P/P" and w" P/P"
are stored. Hence this matrix has six columns, while it has n+2 rows to store the appropriate quantities be-
longing to the coordinates 8,, 8, +dhy, 8, +dh,;+dh, ... 8, +dh +dh,+ ... +dh,=3, Thus the matrix has
one row more than is necessary for the storage of the coordinates. This has a special reason which will become
clear subsequently. In the case of zero inclination the u is stored in the second column and the v is stored in
the third column. {These quantities are also stored in the fourth and fifth column, but this is due to the peculiar
scheme used for the non-zero inclination case).
In the case of non-zero inclination not only the values of 1 and v have to be calculated at 3, +dh,, 3,.+dh, +
dh,, etc. but also at §,,+3dh,, 8,4 dh, +3dh,, etc. The storage of the values of # and v at the center of the step-
width is carried out by using a two-fold count, by which the results appear in the fourth and fifth column of
the array. This procedure will be presented in some more detail when descr1b1ng the programme itself,
When these results are known it is possible to calculate the values of u”, v and w” at the different coordinates.
They are stored in the fourth, fifth and sixth column, thus deleting the former information on the fourth and
fifth column which is no longer necessary.

— The array H is used in two different ways.
During the computation of the ax1al[y symmetric fi eld (u and v) the values of the estimates of the shockwave
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sermi-angle 9, are stored at H[0] and H[1] while the corresponding values of the quantity u—v cot §; are

stored at H[Z] and H[3]. These data are necessary for the interpolation of a new 8,.. During the calculation
—--of the-inclined . ﬁeld the array is used. together with the procedure du2dv2 Then it contams the values of u

8+ 1dh are stored tw1cc hence the array consists of 12 places).

The array c2[0:3] is used to store the values of the integral C” when calculating the last step with the functions

£f-9 and §.

{c) Switches: :

There are four switches: zero, first; switch and theta.

The switch “zero™ indicates either z=0 (zero is false) or z#0 (zero is true). The first case means that only the
axially-symmetric field is calculated while in the second case also the inclined field is calculated.

The switch “first” is in part independently used when iterating the value of 3,,, where it controls the interpolation
between two estimated values.

Furthermore it is used conditionally, since for z;&O it controls the value of ‘the quantity C at the cone surface
(at the surface C' must equal Z&ro).

The switch “switch” is conditional, that means that it is only used when z#0. It controls the calculation of
u and v at half the intesval,

The switch “theta” indicates either th=0 (theta is false) or th#0 (theta is true) In the first case the flow is
calculated with an approximately constant stepwidth Ax, while in the second case the stepwidth in 3 direction
is constant.

(d)} Labels:
The following labels have been used.

AA Start of the integration cycle for the zero inclination-velocity field.

BB Sublabel of AA, controls the integration cycle for the determination of the quantltles ¢ and v for x 0, hence
when aiso the values halfway of the interval dh are needed.

CC Computation of the initial values of u and v. '

DD Interpolation of a new value of 3, '

EE Start of the integration cycle for the determination of «”, ¢” and w” (inclined field).

FF Start of output.

GG Output of the data characterizing the solution.

HH Integration of the last step when determining «”, v and w".

(e) Special procedures
PUNLCR : punches new line, carriage return on the output tape.
FIXP (n,m,x) : punches the fixed point number x with n figures before and m figures after the point,
FLOP (n,m,x): punches the floating point number x with a mantisse of n figures and an exponent of m figures.
PUTEXT 1 (< text $): punches the text between the strings.
Since the material, which is necessary for the understanding of the programme has been covered NOW, WE €an
give a morc extensive analysis of the performance of the programme.

3.2.2 Description of the programme

This section is based on the flow diagram contained in appendix B-and the programme itsell contained in
appendix C.

The programme begins with reading the mput data: md, g, hs, hw, hwt, x, eps, n, z and th (se¢ list of symbols).

The switches: zero, first switch,and theta are set.

The programme starts the calculation by computing the initial values of u and v at the shock wave, They are
stored in the array result (0:n+1, 'l :6). After the calculation of some constants necessary for the computation
of the dh distribution, two counts i and j are set. The programme proceeds by computing the first step dh (label
AA). This quantity is halved if “zero=true” thus enabling the determination of u and v halfway of the interval.
Then one integration step is performed and this is repeated, in the manner to be described next until §=3,.

Assume that the (k— 1)th step has been performed. The situation will be then as described in the array results
for the two cases z=0 and z #0. ‘
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Note that the results for z#0 for the values of u and v halfway the interval (3, _,, 8, ,) are stored in the fourth
and fifth column on the row 3, ,. We will now consider the calculation of the next values for  and v in both
cases. At the end of the step (k— 1) in both cases the counts i and j are set equal to k. The programme now executes
one mtegranon step being dh for z=0 and dh/2 for z#0. The results are stored as follows: « in (i,2) and (}4)
and v in (1 3} and (j,5). The array results will now be as follows,

z=0 / z#£0
L Uit Ve i Uiy Vs Sy Uy Vo Uk-3 Ve-i
% U % U W Sy Uey Vs Uy Wy

" Hence for z=0, simply the following row is cal(:ulated while at the end of this step the counts i and j are both
increased with one unit to k+1. In the case z#0 the situation is a little more complicated. In the row k the results
u and v halfway of the interval (3;_ ., 9.} are stored. Note that the values U,_, and V,_, in the fourth and fifth
column of this row are deleted and replaced by U, _, and ¥;_,. After the calculation of the first half of the step,
the count j is increased one unit and the calculation of the second half of the step is performed. When the results
are stored after this step, the array takes the following shape

zs_n!:() -

S-1 U1 Wy Uy-3 Vi-g

% U -V Uiz Vi-3

Hence the f{irst three columns of the kth row are deleted and replaced while also the fourth and fifth column
‘of the row {k— 1) are used. The situation is now similar to that shown in the array result after the calculation
of the step (k— 1). Therefore the calculation can proceed in the same way from here on, when it is increased by
one unit and § is decreased by the same amount, thus setting them both equal to k4 L _

- If i=n+1 the programme tests the boundary condition. If it is not satisfied the whole program is repeated with
a new value of 3,(h,t). By usmg the first four places of the array H, an iteration procedure is performed until
finally the boundary condition is satisfied for a given accuracy eps. In that case the quantities P and ¢, are cal-
culated, while also the characteristic through the given pomt x is computed. In the case of zero mclmatxon the
quantitiecs M, &, y and n together with the appmprlate text is punched. The j count is set equal-to Zero and the
programme jumps to label FF.

In the case of non-zero inclination the inclined velocity field has to be computed now. First the initial values
of w'P/P",v" P/P" and w" P/P" are computed for 3=3,, and the value of the integrand of C" at the shock is de-
termined. The quantities u” P/P", v P/P" and w”P/P" are stored in the array result (O:n+1, 1 6} at the places
(0,4), (0,5) and (0,6} respectively.

The programme starts the integration cycle for u” and v”.at label EE. Al this label the j count is increased by
one unit and the necessary dh is computed by subtraction of results (j,0) and (j— 1, 0).

The integrals (C”) from 3, to §, —349 and from 3, to §,— 493 are stored in the array H just as the values of
u and » necessary for the execution of one integration step. This integration step is now performed and the
results are stored at (j,4), (j,5) and (j,6). The first two results replace the values for v and v halfway of the interval
considered. As long as j< n—1 the programme proceeds with the determination of the solution 4", " and w” by
repeating the same operation. If j=n, the programme jumps to label HH and performs the last integration step
by using the appropriate formula for determining £, f; ¢ and §. Finally the values of P” and Cp” are computed.
Then just as for z=0the quantities M, 95, y and #n are punched together with the necessary text and the program-
me jumps to label FE.

" The programme punches the values of u, v, x and r along the characteristic and if z#0 also the values of u”
", w", r (dv/dx), and r (dv/dx),. At last the characteristic quantltles 9, P, ¢, and M, are punched and if z#0 also
P”, ¢} and o

3.3 Some results ‘ '

In the tables 1.a and 1.b the results of routine computations with the programme has been given for z=0, i.e.
axially-symmetric flow for the cases th=0 (4x is constant) and th=1 (43 is constant) respectively. The results
in these tables appear in standard form, as they are produced by the computer facilities themselves.
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TABLE la Conical flow without inclipation, dx is constant TABLE 1b  Conical flow without inclinaiioq, dh is constant

Mo  hs g n - Mo ‘ha g n

15k 4 3490658 +1,405 420 +'6.15i} + 3490658 +1,405 420

u v x T u v x T
+. 85257060 +.31031027 + 02000000 + ,COT2THO +,85257060 +.31031027 + 02000000 + 0072790
+.855L3845 +,30254320 + 0204737k + 00766936 . +. 85425750 +,30576857 o 02026905 + 00750175
+.8580L702 +.2956697Th + 02095232 + 00805636 +.85568349 +,301357680 + 02055217 + .ooﬁzs}ao
+.860L44160 +.289515680 « 02143575 + .0n8shooh +.85751232 +,297060L06 + 02085047 + .OOTITULT
+.B6265664 +.28595176 + ,02192M6 + 00882372 +.85912753 +.29287473 + 02116522 + .00822657l
+. 86471901 +.27887859 + 02211775 + .00920525 +.860732hé +.28BTTE1 T + 02149783 + . coBaB9lo
+ BE665016 +.27421903 + 02291678 + 00950605 +. 06233045 +, 26476353 + 02184994 + 00876578
+.BEBUETUE +.26991166 + 02362159 + .ON9EEES +.86302U64 +.28082059 + 02222536 + 00905546
+_..8‘ro1észr +.26590686 + 02393255 +. .0103ATSH +.86551830 +.27695956 + 02562021 + .0D96T
+.87181557 +;36216h09 + 0265009 + 01072923 + B6TT1469 +. 27311094 + 02304290 + 00968141
+.8733%6840 + 25864973 « .02boThTO « 01111222 +. 86871723 +.26932538 + 02349424 + 01002091
+. 87485269 4, 25533559 + 02550691 « .01149T02 +. B7032950 +, 26557350 + 02397749 + 01038070
+.B762756h +,25219785 + 02608729 + 0118841k . +, 87195535 +.261 84576 » . 024L9650 + .010TEZ3
o BTTEL387 +.24021613 + 02659650 + 01277410 +.B7359898 +.25813223 + ,0250558) + .01117097
+. 87896317 4+, 24637267 + .0271552‘2- + 01266745 +.87526505 +.25442236 + 02566086 + .01160751;'
+.880230uk +,24365282 + 02172422 + .013064TT +, 87695883+, 25070475 + 02631823 + 01207683
L BEILTULY 424104260 + .02830L36 + 01346665 + 67868639 +.2U69667h + 0270359 + 01258367
o 8826751 +.23853038 + 02889656 + .013B73TH +.880L5486 +.24319395 + 02782405 + 01313408
+.B838UL35 +,23610560 + 02950183 + LOTH2B6T! +.882272680 +.239%6963 « 02069511 + 01373556
+.88498550 +.23575879 + 03012133 + 01470632 . +,88!;150"ro +. 23547370 + 02966535 + LO1L3IITTS
 +.BBFIOITT +.23148134 4 03075630 + 01513335 +.BB6101TT +.23148134 + 03075613 + 01513326
hw P ep Ms hv P - ep M=

+ 1572599 +.79813095 +.26604736 +2,9630267 4572599 +.79813005 +.266MTIT +2, 9630267
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The tables give the quantities , v, x and r along a characteristic through the point x =002, from the surface
to the shock wave. In the tables 2.a and 2.b the resulis for the same cases are given for z50. The top row has the
same designation as for z=0. The tables give the quantities: u, v, u”, v", w", r {dv/dx),, r (dv/dx),, x and r in that
order. The designations in the top and bottom row are given in the list of symbols.

Mo hs 8

* TABLE 2a Conical flow with inclination, dx is constant

n

155 4 3450658 +1,405 +20

u v
+.85257060 +,31031027 +
+.855438U5 . 30256320 +
+.8580b702 +,2956697h +

+, 36044160 +,28951580 +

+, 806265664 +,20395176 +
+, 06471901 +,27887860 +
+ 86665015 +,27421903 +
+.&58h67h6 +. 26991164 4
+.87018527 +,26590686 +
+,. 81181557 +,86216409 +
+. 87336849 «, 25864973 +
+. 87485269 +,25533559. +
+ BT627564 +, 25219785 +
+ OTTEN3BT +.24921613 +
+ BI896311 + BUESTRBT +
+,8802384L +, 24365283
+, 88147k +, 2404260
+,B8267514 +.23855038 »
+.885m55 +, 23610560 «+
+, 83498550 +,23375679
+.88610177 +.231U81 3 &

h P

-u2 v
, 99390846 =1,56927553 -
97262659 ~1, 51216304 —
95522686 =1, L65TTOUT -
LOhOkTB = b278698h —
9280578k ~1, 30666472 —
NTSTI56 -1, 57086555 ~
.90872218 -1,34950972 -
. 90128222 -1,35187254 -
8950757 =1, 31740065 —
. BB996554 —1, 30566668 <
L8058420 <1,29635782 ~
88362772 -1.28915361 —
. BRo2so9k -1.28391121' -
,Br866429 - 2805204 —~
LBT1BRIkD -, 27865559 -
BT -, 278h 325 —
7833791 1, 27972058 -
.B7965822 — 282481682 ~
88169310 =1, 286700T1 -
.8814145665 -1.29238335 —
(B8TTIT3 ~1.29955T4h ~

cp Ma

w2 " rdvdxb
JTTIS3UET = 12795191 5+0
.'81 234416 =, 11732045, 40
79373509 ~,10865619y+0
77024069 =, 101h5ﬁ7n+o
. TH62684k ~, 95307685 -1
.T2317605 ~, 9003824351
70132651 —, B54LIO6E o1
68084383 =, 81410084 ,-1
.66170301 -, 77822491 41
382645 —, THE10115,-1
62711759 =TI T12047 1
LB1107629 —, 69083157 1
.59%680590 —.66682100~1
58301629 ~,BU7B1 85 -
. 57002458 —, 62b45%16 41
55715688 -.@561725',-1
SSHEIBASS -, 5880909k 1
(53512689 - 571718781
.5246UBY5 —, 55636785 51
L51466100 =, 54192359,
,5051181h — 52028657 ~1
2 - ep2

rdavaxf
+.9841 2767 g1
+, 10080936 40
+,10329128,4+0
+. 10586206 g40
+,10852532,40
+.11128408,+0
+, 11014553 .0
ol 1'?1 121340
+, 12019066 540
+, 12338787540
+.126T1139,4+0
+.13016993+40
+. 1337733340
+.13753272040
+. 1146072440
+. 8557165 40
+‘. 1h988115a+0
+ . 15040958 540

+,15917632,40

+, 16420633440
+.16952TT25+0

+ 1572599 +.T9B13095 +.26694T5T +2,9630267 +1.L4T16230 - 1.25367132 » . 86uliok2

¥

*

&

Fe

+

+

+

02192016 &

x T

.00727940
00766938
.00805636
008440k
00882372

02000000 +
L020475Th o
.02095232 +
02143575 +
,02281775 + .0nG20525
.0N958605
00596665
01034754

02291678 +
.02342159
,02393255 +
02445009 + ,01072923
.024974T0 4+ 01111222
.-02550691 + J011kg702
.02608729 + ,0118841%
02656650 + 01227810
02715522 + .012667L5
L02TT2422 + ,0V3064TT
.026830u36 4+ 01346665
02889656 + .015875%
.02950185 + .n1k286T
L03012133 + 01470632

L03075630 + .01513535
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TABLE 2b Conical flow with inclination, dk is constant
Mo hs 3 n
150+ 390658 11,405 +20
u v w2 v . ow rdvixb ravaxf o r

+,85257060 +, 31031027 + 99351106 =1,56927458 ~ 77154095 ~, 12795191 o0 +, 0812767 5~1 + 02000000 + .COTETHG
+,85h237§o +,30576857 + 98145552 —1, 53535460 ~ ,B14B1965 ~.12162570,¥0 +.99766319g~1 + .02026905 + ,00TSC1T5
+,85588349 +, 30135760 + 96971607 —1,50387h00 ~ , 81008352 ~, 1157821040 +,10121121 g40 + 02055217 + ,00TT3320
+.85751232 +,29706k06 4+ , 95870864 —1 WTLB5527 — \TIB3TTI2 ~. 1102618040 +.10275693,40 + 02085047 + ,00TITHLT
+, 85912753 +,29287673 + , GBUGE81 -1, UkBI3350 ~ ,TE358621 ~, 10531094 440 +, 10841823 ,40 + 02116522 + 00822637
+. 86073048 4 28877617 + 93878318 1, L2356T61 - 16718308 -, 1005991840 +.\961 G557 g+0 + 02149783 + ,00B4BY
+, 86233045 + 28476353 + 92981557 =1,b0103568 — ,ThGBIIE -, 96178285,1 +,10811k147 040 + 02184994 4+ L0OBTESTS
+, 86302080 +.28080050 + 52148899 ~1, 38043057 — 73213123 -.920&5%3.,—1 +. 11018786 540 + .02272336 + 00905546
+,8655183%0 +,27693956 + 91379655 -1,36170422 - L114514008 -, BB100059,~1 +.112b3462,40 + 02262021 + 00936017
+, 67169 +. 2731098 + 90674029 -1, 3uh7T7gRk — 696070uL — B3N T18,1 ‘.nl.s&nas,*o + 02304290 + ,oggsem
«. B6871723 +,26932538 + , 90033219 -1.52963980 — ET50LN0 —, Bo8T4920 5~ «, 1175424550 + 02340424 4 .oiooeogx
+. 87032950 +,26557350 + .HB9L59559 -1,31626619 ~ 66011179 -.?753091»6,,—1 +,12046256,:0 + 02397749 + 01038070
+.87195555 +.26184576 + ,BO956725 1. 30875706 — 64231165 —. Th342996 =1 +.123675U6,30 + .02bLIES0 + 01076313
+.87350808 +,25813223 + ,6885300%6 —1.29511432 — 62466932 —, 71295888 11 +,12722966,+0 + 02505581 + 01117097
+,87526505 +.2544223%6 + .BB186ET5 —1.28747059 — 60719576 —.6B85T55Uh 1 +, 1311838740 + 02566086 + 01160754
+. 87695883 +,25070175 + 7937309 —1.28199022 - ,589883%1 -.65569152,=1 +,135612u6,.0 + 02631823 + 01207683
+.B78606%9 +. 24696674 + . BTTIH992 —1.27890781 — 57272716 ~.62864U65,~1 +,14061056,40 + 0270359 + 01258367
+. 08045006 +.24319305 + 8777852k —1.27855303 — 55570602 —. 6GEAGTST p1 +. 1463022340 + 02782405 + 01313408
+.882272680 +.239%963 + (87913532 ~1.28138914 ~ 53879181 — 5TTISMTT =1 +.15285281 540 + 02869511 + 01373556
+.8B4150T0 +. 23547370 + .88235981; ~1.28007h1k — 52194655 -, 552439005~1 +.1604BB37 540 + 02966535 + .01L3ITTS
4. BE610177 +,2316813% + 80797693 ~1.20956213 ~ 50511996 —. 52828657 p=1 +. 16952772440 + 03075613 » 01513326

+

hw P ep Ma P2 cp? ‘a
+ 4572599 +.7981005 + 26607 FT +2.9020267 +1.WHTVETSY ~ 1,253568218 « [ BBMI353

It should be noted that the data necessary for an operator to use the program are: M., 7, 3, 9. Pz, X, €PS,
n, z and th. With this set of quantities the results are completely determined.

4 Conclusions

This report contains a programme for the computation of the axially-symmetric flow, and for the perturbations
to be superimposed on this. field due to a smail angle of inclination.

For purposes of general usefulness the programme has been written in the international machine language
ALGOL and should be operative on all computers having an ALGOL compiler, except for minor changes to
be made due to the pecuharmes of the actual ALGOL compiler, The programme is contamed in appendix C of
the report.

It was decided to write this progrdmme in the present form because of its importance for delivering the initial
values along a characteristic for the calculation of the flow around a configuration having a nose shape which
may be considered as conical for some distance from the vertex.

The first part of the report gives a compilation of the governing equations, together with the formula for all
those quantities’ which seem of interest. . :

The second part is devoted almost entirely to a rather detailed description of the programme. First the require-
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ments which must be fulfilled by the programme are discussed, after which it is shown how all these requirements
are met in the actual programme. Although written with a view to the applications intended at the NLR, it is
constructed in such a way that it can be changed to meet special requirements without large alteranons of its
basic lay-out.

The necessary data which enable the operation of the programme are the Mach number of the undisturbed
stream M, the value y of the ratio of the specific heats, the semi-top-angle 3;, two estimates for the semi-shock
angle 9, and 8, the coordinate x through which the desired characteristic passes, the desired accuracy eps,
the number n of pomts along the characteristic, the quantity z, which by taking the values 0 and 1 determines
the calculation of the zero-inclination and non zero-inclination case respectively and the quantity th which governs -
the choice of a variable or constant stepwidth 43.

Four examples of results obtained with-the programme are given. All data necessary for proceeding with the
calculation of the velocity field around a conﬁguratton by the method of characteristics are supplied by these
results.

In conclusion the authors want to express the hope that their programme will be used as frequently as the now
famous tables of Kopal, which in a sense are superseded by this programme, for all those, who want a larger
accuracy than these.tables afford. :
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APPENDIX A

The integration of the Iast step

A thorough mvesllgatlon of the equanons (2. 15) reveals that they are not very well adapted to be solved by a

Runge-Kutta method in the surrounding of 8=9,. This because of the fact that the second derivatives of u” and
v’ behave as follows

ary I -
— 2 O ——
a5 (\/m) Al

Omitting the details of the analysis it is found that the following relations are valid

W =)+ -9g(9) A()a
v =78+ (/5509 | A@)b
C =p@)+/—5g(9) ' AQ)c
C'=C +/-5a®) | A(2)d

It should be observed that \/ —5x0(,/9—9,), while it is assumed that the other functions occurring are regular
in9-~9,
Using the equations (2.16) it.is readily found-that

I . o 2 —“I
Co:C§59,=j Jusing—uvcosg a {1 (y—Thuw

(u cos g+ sin (p)} dg A(3)a

9w /(@7 Dgin g 7(u cos ¢+ sin @)° sin @
a?-y { a s T :,
) ) 1) . 3
P sin § y(u cos 3+uvsin 9) + (3 /(@) sin 9 AG)b
aty . -
3 == w +C a7 gin § AG)C
BTy [v-cos $ /(@YD= Y sin 3, °] @) )

Substitution of the equations A(2) into the system of equations (2.15) and equating to zero the coefficient of
/ — 0 and the rest in each differential equation gives rise to the following system of equations

i

:j; + a’pcot §-f~ pPub{(y — 1)d(uf+ v + 2a* (F cos 9~fsin 9} +p PF =0 A(da

. .d (i +5 cot §
-ﬁ—g+3g{‘ a*(i+7 cot 9)
5 —a

i — —_5—7*}# ba’ p cot §-g+

+ P 0By — Dolug + vg) + 2a*(F cos §—g sin §)) + g T 0 A{4b

cot §-— f df =0 A@d)c
Ig |9
dg 34 (i+70 cot 3) dg
‘—Udg COtS'f'i{u ——ﬁz—&———}(g COtlg“"gJ'—UE =4 A(4}d

The next problem to be solved is the determination of the necessary boundary conditions. Due to the particular
nature of the problem these conditions are given by the equations themselves. A careful analysis of the equations
A(4)b and A(4)d gives as a result

q P"
= o e we e = 5
g 3: P for 9=9, A(S)a
g=—gcotd, for 9=, A(5)b

This means that the functions g and g can be solved in principle by starting at 9=3,. However, the necessary
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values of dg/d3 and dg/d9 cannot be obtained directly from the equations, since their coefficients become zero
for =9, This difficulty can be solved by differentiating the equations A(4)b and A{4}d and evaluating the result
at 3=3_. It is found then that ‘ ‘

Yo hg for 9=8, A(6)a
dg 3
% = g{m + Tl'o"cotz 93} for 32 SS ’ A(ﬁ)b

It will be discussed now in which way the above derived equations can be used to find the quantities u” and ¢”.
If it is assumed, that these qudntities are known up to a certain angle 9, the procedure is as follows.
Using the equations A{4)b and A{4)d together with A{5) and A(6) the functions g and § can be determined

" without difficulties by using a Runge-Kutta procedure from 9, unto 3,. With the aid of the equations A (2)a and

A{2)b and from the known values of u”, v ¢ and g at 9=43, the starting values for f and f are obtained. Then
using eqs. A{4)a and A{4)c the quantities f and f are determined for the interval 8,- 8, Finally the values for u”
and v in this interval are obtained by using the equations A(2)a and A(2)b.

In the program as given in this report only the last step has been treated in the manner described here.




__ Flow-diagram "
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APPENDIX B

|

read constants M
79 9. Sy X801
z, th and stepwidth
: :

switch is set yes,
first is set no,

zero is set no if
inclination is zero
else zero is set yes,
theta is set no if
Ax is constant else
theta is set yes.
i=0, =3,

Swz ~ Sw

o

calculale uand v for 3=38 —|

dh/2 = di

f?

[ compute dh ' 1

yes——{ zero )

. 1o

Y
compute u ahd v for (3+dh)
by the method of Runge Kutta
in subroutine dudv for the calculation
of (du/dd) and (dv/d3) and subroutine
integrate for the integration

no

¥E5 ——

————

switch
is set

no
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1<l h

} ‘é_—T
( i) switch is set yes -
yes [

no
|

compute 3, by equation
(2.6)

yes

compute p by (2.8)

5:10

yes
|

compute 1", v" and w”
for 3=3,, =0

6 -

compute by interpolation’
a new value for 9,,

. T '
[3—8] <« no yes—»—J ﬂ
. no
l .

first is set

compute dh/2, j+1-j, §,—9

3

compute Iniegral C” from 3,,
to $+dh/2 and C’
(subroutine integral)

j=n — no

yes
|

compute g and 7 for
: I=9,

T

compute g and g for
(9,—dh) by the method
of Runge Kutta
(subroutine dg,dg, for
the calculation of
dg/d3 and dg/d® and
subroutine integrate
for integration)

1

compute fand f for
9=9,—dk

I

compute f and f for
3, (subroutine df, df;)
and subroutine integrate

—

compute v, v, w” for 3=39,

1

compute P"/P

1

|

compute " and v" for (3+dh)

by the method of Runge-Kutta
(subroutine du2du2 for the
calculation of du”/d® and dv"/d9
and subroutine integrate for

the integration.)

— ¥

compute ¥’ by equation 2.19
3+dh—39
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prifit New Line Carriage
Return (NLCR) print
text “conical flow”

yes

no
|
print text print text
“without inclination”™ “with inclination”
T
theta — yes
4
no
print text print text
“dx is constant” “dh is constant”
= ~ —1

print NLCR, NLCR, NLCR

,1, N
print text M, hs, g, n ,
print NLCR, NLCR, M_, 3_,v, n
compute r=x tan 9, j=0

— .
print NLCR, NLCR
print text u, v

print text u2, v2, w2, rdvdxf
rdvdxb, x, r

ZeTo yes

no
4
print x,r 1
text :

r
Y .

print NLCR, NLCR
print « and v for (3,—j-dh)

yes print &, v, w", r(dr/dr), ridv/dx),
no
é -

] print x,r, j+1-j

compute next

xand rby +—no

eq. (2.9}

yes

|
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¢
print NLCR, NLCR,
print text hw, P,
Cp. M,

1'10 yes ——— 1 print text
Py, Cp.a
S——

- print NLCR, NLCR, |

I

8. P, Cp M,

urface

Zero yes ——— print-
: P, cp
no

|

AN




begin

real w0, g, ha, hw, %, du, dv, k, 1, &2, hwt, P, u, v, Ct, C2, m, &, ¢, %,Ch, g10,g20,212,522,4g},4g2,4f1, 42 £12,£22 025,
- p, g, r, C3, P2, beta,11,12,1%,14,k1,k2,k3,kl,h, dh,eps;

integer =n,J), i, z, th;

boolean zerco, switch, first, theta;

resl array H [0:11], <2[0:3];

procedure du dv (h, u, v); real h, u, v;
begin a2 := 1/{m0 X mo} + {g~1 X{1={u x u)={vxv})/2;
du = (—a2)xv/{( vx coa {(h}— ux sin (h)) A 2 — n2);
dy := (cos {h)/ sin (h)) x{ = du)
end;

procedure du? dv2 (h,u2,v2); real h,u2,v2;
begin  1i= 141 ;a2i=1/(moxm0) + (g—1 P(1—(H[4+1 DRl ] Je(REBaL (B4t ] ) } /25
s:= ain (h)jcimcos{h); timH[1+8]xo-H[i+b]xam:=1/{a2-txt);
du s H[ 1+8) xtxe( (g=1 Xt (H[4+1 [xu2+H[8+1 Jxv2 J+2xm2x {vaxc—udxs ) Jadxaxoxu2/s—-H{1 1}
dv:=du X(~c )/}

end;

procedure df1dr2{h,f1,f2); real h,fi1,12;
- Eegin 1imiag; &2:-1”31(»03&0)-&(3—1 P(r=Rib+1 paAl4-1 )R8 b B2 ) )/2;
’ si;msin(h); ci=cos(h); t:=H[B+1Ixe-H[b+1]Xa; mimt/{n2txt); : )
du i=df 1 rm—a2amxc /sxF1 st ] B+ 1 It (+ {g—1 et {H{ b3 a1 4H[ B4 Ixef2 )+ 2xa2x (taxe—T1xs ) )
—a2xn/sx (~02/ (@< (H[bed DreB[841 Ixs ) J+{c2[ 31 Jc2[0] aqrt (~txm2A(1/ (g1 ) x5} );
Av :=mdf2;= /axar1;
end;

procedure agldg2(h,gl,a2); real h,gl,g2;
begin  1i={s1; a2:=1]{moxam0 }+(g—1 (18 [7~1 A T~1 }-aE 1=t bl 11~1))/2;
s:=sin(h); ci=cos(h); t:=H[11-1IxcH[T-1]Xa; m:el/(a2-txt ); .
ri=H{7-1 ]xc+H[11-1 Ixs; 'a23:-1/(m0>c'n((_))+(g—‘l )'x(1-q->q--€t.xt)/7;
dui=dgl:= 1f i~ 1 then 0.1xg2 glse (I.5xgix({r-e2sx{r+txc/a)/(txt-als ) )-txaaamxc /axgt rmaxi] 1 1-1 Jtxtx({ g=1 Petx ([ 71 Ixgl
+HE V11 xgZ e 2xe2x [g2xc—gixs ) J+n D bxsqrt (824 (1/ (g1 ) )/a ) )/t; / (et s

dvi=dg2:m if i = 1 then 0.6xgl/{axa)c/sxdgl elge —dgixc/as} ,Sx(r-e%x(r*txc/as/(txt&s))x(g'l)(c/s+g2)/t
end; .

procedure i.ntesrﬂte {ah, ¥ ,b, u, v); real dn, h, u, ¥v; procedure Y;
begin Y(h, .u, v); kl:= dhxdu; 11:~ dhxdv; Y{{h+dh/2), (a+k1/2), (v+11/2)); k2:mdhxdu;
12:mdhxdv; Y({h+dh/2), {usk2/2), (v4+12/2}); K3:mdhxdu; 13:=dhxdv; Y{{h+dh}, (u+k3), {v+13));

kb rwdhduy 14 cmdhdvy kom (K12 2xk22 B¢k 3+kd }/6;  1am{1142¢12¢2%) 3414 ) /6
end;

procedure integral (dh, h, u, v); real dnh, h, u, v;
begin si=sin ih);c:-cos(h);ae:-1/(moxm0)+(g—l )x(1-uxu—vxv)/E;t:-Mswxc;m;ﬂ/(aa—txt);q:-uxcwxs; C2:=C24C3%4n/2;
1f J % n then begin C3:=+sqri(t )xa2/{pxgxaxsqrt ({824 (1/(g-1 ) ) )xs ) M(1—{g—1 e /8 )
rrmsqre{ (esh {1/ (g~ }))xtxs ); T
C2:=C24C3%dN/2; C1:=a2xm/ax(rxp-as/{pxq J+rx(c2)); end;
end; ;

procedure betas (u, 'v); resl u, v;
begin betai= sqri(T/((1/(mom0 J+ (a-1)/2 )/ (woasvnev (g1 )/2)-1 )

end;
=2

O XIANAddY -

X




m0:=rend; g;=read; ha:sread; hw:=read; hwt;=resd; x:=read; eps ;mread; ni=read; zimread; th:ieread; first:=false; switch:=irue; zeror=1(z=0);. thetm:=1(thw0};

begin reel u0, vO, dh, a, w02, v02, ¢p, cp2;
array result [0:(n+1},1:6];

CC:  "if Tirst then begin H[0):=H[1]; H[2]:=H[3]); hw:=hwt; end; _
s:=8in(hw); u0=result[0,2]:m1+2x{1/{m0Oxm0 )-axs)/{g+1}); vO:imresult[0,3]:=(1-u0)xcoa{hw}/s; resuit[0,1]:i=hv;
betas{ud, v0);u:=arctan{ (ud+petaxvD)/{betaxu0—+C)); cs=sin{a-hs); s:=sin{hnha); piunxaxe; q:=pxcos(e-hw);
prwpsin{e—hw); ri=(nxc); ri=exr; ti=sxs; i:=j:=l;

has dh:i=if thets then {(hs-tw)/n else(—arctan(p/(ix(i—j Pt—(2¢i—1xq+r}));  1f zero then dhimdh/2;

BB: integrate (dh, du dv,result [J-1,-1], result(J-1, 2], result [J-1, 3])iresult(l, 2]:=result(], 4]:=resulefs—1, 2]1+k;
resultli, 3}:mresult]), S):~result[J—1, 3]+1; result[1, 1]i=result[]-1, 1]+dh; Jimj+l;.
if zero then
- begin if awitch then
begin switch:=false; goto BB
end; '
end; .
if zero then J:=]=1; 1:=141; switch;=true; 1f i <n then goto AAj
8]1):=hw;H[ 3] ;=result {n, 2]-result [n, 3lxcos(resuit[n, 1[5/sin(result[n,. 1%
if sbs (H[3})}> eps then )
begin if first then goto DD; first:«true; goto CC;
oD: "hw:-(a[e]mi‘]x —H[olmbl)/(H[a]—HEM5:5oto ce;

- end;
azusin(hv); Pi=(({{&+! Paudmoxsxa }/((g-1 panOxmOxsxa+2} W (s/(&=1)) )/ {{1+(2xe/ (g+1 ) (mremoxaxs—1 YW (1/(e=1)));
crmcos(hw); afinl/(mOdm0 )+ (g~ Px{1={u0xu0 }~(vOxv0 ) }/2; cp2:=a2; :
if rero then ‘
T begin uwo2imresult [0, 4]i=(a2xaxe/{@x(g+1 Devoxvn ) I ( (g1 IevD+bxaxe J;02:=H[3):=0; H[T)imud; first:=true;
v02:imresult[0, 5]:=(-u02)xe/s+82/(gxv0);H{11]:=v0; pr=a2/(gxexaqrt((a24{1/{g~11)x(utxs-~txe B}l
3305 C3im0; integral{{resultll, 1l-result{0, 1))/, hw, w0, v0)mi=a2xexs/{gxvinvD); result[0,6) a2/ ({-gxv0}; C2:=0;
EE: Jr=J+1; HIOL:=H[3]; H{4):=H[T); R(B]:=H[11]); hut:=(result[j, 1l-result[j-1, t]1)/2;
integral (hwt, result[J—1, 1]+hwt, resuit{J, 4], result(), 51); H1):=t[2):mC1; HIS]:=H{6):wresult[). Li; ’
K{9):mt{10) ;wresult), 515 1f J=n then c2[2]:=c2[1]:uC2; integral(hwt, result[)—1, 1]+&dwt, result{), 2]. result{J, 3]);
H[3):=C1; H[T):=result[), 2T; 1:=(=T); H[11]:=result[), 3};
if J=n~1 then c2[3]:= 02;]
if J=n  then begin c2[0):= C2; goto HH end;
integrate (Shwt, du2 av2, resultlj-), 17, result[j—1, 4], result[j=1, 5]);

result[J, &]:mresult[j—1, 4]+k; result[j, S]:=result[]-1, S51+1; result{), 6]:=resuitfJ, h]X(—c)/s—resuit{J, 5)-C1 /(8 2m);

¥



FF:

goto EE;

Climep2/ (gxcos (hw )xsqrit{ep2d {1/ (g1 )} ixst ndhw % (u0xs i n{hw }~vOxcos (hw))) )+e2[0];
g0 = —amckxsqrt(azi(ll(sﬂ))/5)/{%&)' i
g20 im=giOXC /8] 1m.egrate(4mw dgldag?, result{n, 1] g10,820); g12:=g10+k; g22:= g20+1; !
L12:= result[n-1,4]-sqrt (-t Wixg12;
£22; mresult[n—1,5 [-sqrt (—t WM 3xg22;
i:m=1; integrate(2xhwt,df14r2, resultin=1,1],f12,122) .
result{n, 4] :=f12+k+sqrt (-t Wixg10;
result{n,5]:=f22+1+aqrt {—t ¥ xg20;
result[n,6]im—result(n,]xc/s—resilt[n, 5]+n2/{gxsx {H[TIxc+H[11 Ixs));
P2:=(2xresult[n,2])/{{resuit[n,b]xs/c—result(n, 5] Jcxc ); a:=axP2;
end; PUNICR; PUTEXT?{{Conical flow});
1f zero then PUTEXT1(4 with lwelination}) else
PUTEXT} (4 without inclinationd});
if theta then PUTEXT1({, dh is constant}) else
PUTEXTT {4, dx is conatand), PUNLCR; PUNICR; PUNLCR;
PUTEXT! ( Mo g

rd). PUNLCR; PUNICR; FIXP(),3.m0); FIXP(1,7,result[n, 11); FIXP(1.3,g); FIXP(2,0,n)jrmxsin(hs)fcos(he); J:=0;
mmmn,mn,mmmi# u ¥
if zero then mmrm( u? v2 w2 ravdxb ravaxi x r}) else
FUTENT (3 i)
PUNILCR; PUNLCR; FIXP(O,8,result{n~3, 2)}; FIXP{0,8 result{n-j, 3])%;
if zero then . .
begin FIXP(1,8,resuit[n—j, h]xpz), FIXP{1,8,result[n—j, 5]xP2}; FIXP(1,8,result{n-], 6IxP2); e:=sin(result[n-}, 11);
¢mcoa{resultin-}), 11); a2 -1/(mom)+(g-1 {1 =resuit{n-], bixresult[n—a 3-resuttin-3, 2)xresultin-), 21)/3;
twcxresult[n—3, 3]-sxresult{n-), 2]; betes(result[n-}), 2], result[n-j, 3]), i=(an/(ad-txt } xresult[n—], 3]xcxe;
FLOP(8,1, (sfc—(resuit{n~§, 2]+betaxresuitin-), 3])/{vetaxresult{n—], 2]—1‘esu1t[n—j 31) m);
FLUP(S i,(afce(result[n-3, 2]-betmaresuit(n-j, 3])/(vetaxresult{n-y, 2)+result[n-), 3})bm);
F’IXP(?,B,X); FIXP{1,8,r}; Ji=J+}; if 4 > n+1 then o GG; betes ({result[n-=j, 2]+rasult[n-j+1, 2])/2 (result[n—,j. 3l4result[n-j+1, 31)/2)%
ti=((result{n-j, 2l+reslt[n-j+1, 1)/2+bemxlreaultln-3, 3leresult{n-j+1, 5])/2)[(‘netax{reault[n—j, i
sresult[n=j+1, 2])/2-(result{n-J, 3l+result{n-j«1, 31}/2);
x.-{r-txx)/(aln(reault[n—.j, V]1}/cos(resultn-], 1])—1:), r: -stin(result[n-J, 11}/cos(resultn-J, 1]); goto FF;
a2:=1/(mOxm0 )+ (g=1 X(1-result[n, EME—q'csult[n 3142)/2; cp: -(a/( O5en0 ) 1% ( { {22xmoemd Wig/ (g~ ) ) P=1 };
PUNICR; PUNLCR; PUTEXTI (4 hw cp sfq?
Af zero then PUTEXT1(¢ P2
PUNICR; PUNLCR; FIXP{1,7,result[o, 11); nxp(o,s,p); nxp(o,e,cp); FIXP(1.7,sqrt{(result[n, 2lxresult[n, 2]+resultin, 3ixresult(n, 3j}/e2})};
if zero then
gdin FIXP(1,8,r2xP); FIx‘?(} 8, (cp+2/ (om0 ) IxP2 x (1—g X (result{n, 2] x result[n, 4] + result[n, 3] x result[n, 5]}/=a2))} ¥FIXP(1,8,8)
ena;
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Flight operational evaluation of approach and runway

lighting

J. B. de Boer
Summary: -

The effectiveness of .3 -systems for approach and runway
lighting — basically 2 existing centre line and crossbar systems
and a Netherlands proposal - has been judged on the
basis of data on the quality of the approach and landing ‘and
on the pilot's effort to carry them out. These data have been
recorded during flight tests executed by a group of 18 pilots
from’ different countries.

A specially designed screen has been mstalled behind the -

cockpit window to simulate visibility in marginal weather

“conditions,

An interpretation procedure has been developed by which
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1. lntroduction

During the last few years rcpresentatives of the Nether-

© jands have repeatedly made proposals for improving

eXisting visual aids at international conferences on standard-

ization of airport lighting. The purpose of this lighting '

is to- give the pilot the visual information which he
needs during the approach and landing manoeuvre in order
to perform a successful landing, even when weather
conditions, especially fog, deprive him of the natural
visual references. These proposals are based on several
considerations, founded primarily on extensive experience
and -critical study of the typical merits and imperfections
of standardized systems for approach and runway lighting.
Secondly, there -is the need, becoming more and more
economically pressing, for lowering the weather limits
imposed for safety reasons and hence for making the
regularity of scheduled airline operations less dependent
on weather conditions at destination. Lastly, the light
systerns must satisfy the demands posed by future aircraft
types, due to the increase in speed and decrease in
manoeuvrability during Janding.

In other countries, ¢.g. the USA, the UK and Australia,
visual aids for approach and landing are also a subject
of extensive study and research. All these studies are

by

and ir. T. van Oosterom

the mass of recorded data could be reduced to a numerical
form, suitable for statistical analysis. This analysis gives rise
to a preference of the Netherlands system over the 2 others
investigated with regard to directional information and height
guidance when passing the threshold. No preference was found
with respect to the approach height before the thresho!ld and
the, quality of the landing.

Pilots’ comments have also been caollected, but only geﬂeral .

conclusions could be drawn.on the basic principles of the
different configurations.

7- Results and their statistical analysis

© 7.1 Results
7.2 Quality of approach
7.3 Quality of landing
7.4 Heart-beat factor
7.5 Wind speed and direction

Verbal comments
9  Conclusions

9.1 Test procedure and interpretation of
results i ‘

9.2 Verbal comments

9.3 Flight operational conclusions of results

9.4 Future work
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Appendix 1, 1T and 111
characterized by. the point of view that the guidance
required during the approgch is available from standardized
patterns. The configuration of lights applied before the
threshold of ‘the runway according to these standards is
assumed to offer a suitable ‘solution to the problem
although the desire to land at still lower limits always
remains. The studies carried out in the USA and the UK,
for example, have therefore been concentrated on trying
to find the right configuration of lights in the landing
zone, ie. in the vicinity of the ideal aiming poifit for
touch-down. On the .other hand, the views:expressed by
Netherlands experts in international circles for a consider-
able time past, are based on the principle that the
approach and runway lighting configuration ought to
form an ‘integrated guidance system. This implies- that
considering the efficiency of a single part — e.g. the
lay-cut of the lights in the landing zone — isolated from
the system as a whole, can hardly lead to effectwe
improvement.

Until recently, these ideas have been put forward as
a result of theoretical studies and on the basis of experi-
ments performed with models. In order io be able to
support the Netherlands proposals with the convincing
power of practical experience, the Netherlands Depart-
ment of Civil Aviation set up a study group of experts
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interested in this problem 4). The task of the study group
was o conduct flight tests for the purpose of evaluating
the quality of a visual atd system conforming to the
Netherlands proposals in comparison with that of systems
hitherto accepted as international standards for this
'subject. To this end, the study group was allowed to carry
out a flight test programme and consequently to install
the necessary experimental equipment on Eelde Airport,
a modern airfield in the northern part of the Netherlands,
extremely well suited for this purpose because of its low
traffic density at night and its facilities as standard
alternate to Schiphol Airport (Amsterdarn).

The following pages contain a description of the test
procedure worked out by the study group and applied in
thiy investigation, followed by a survey and an analysis
of the results obtained.

2. Description of evaluated light configurations

With respect to approach lighting, the International Civil
Aviation Organization (ILCAQ) has restricted its recom-
mendations to the ‘centre line and crossbars’ pattern
showing, by means of rows of lights before the threshold
the extended runway centre line in combination with at
least one ‘crossbar’ perpendicular to this line. Two variants
of this system are considered acceptable: the system
favoured by the Airline Pilots’ Association (ALPA) and
the Calvert system. ' A

The chief characteristic of the ALPA system is that
one long crossbar is located 1000 feet before the thres-
hold, whereas the Calvert system has a number of long
crossbars at distances of 300 feet. The basic idea of the
Netherlands propbsal js to create an integration of non-
visual and visual aids and of guidance during the approach
as well as during the landing. To realize these principles
the Netherlands system, contrary to both configurations
mentioned above, has an additional double row of red
barreties before the threshold and a red T, interrupting
the centre line over the last 500 feet before the threshold.
The purpose of this proposal is to obtainn a better height
and roli guidance, particularly in the phase immediately
preceding the flare-out. In order to continue roll guidance
until touch-down and to ‘fill up the black hole’ in this
final stage of the landing manoeuvre, the double row
is extended between threshold and aiming point 5),

The flight tests were conducted to compare the light

%) The study group was composed of experts representing:

—- the Netherlands Department of Civil Aviation {RLD),

— the National Aeronautical and Astronautical Research
Institute (NLR),

— Schiphol Airport Authority,

— Eelde Airport Inc.,

— the Netherlands Illuminating Engineering Society (NSvV),

— the Laboratory of the Coastal Lighting Service,

— the National Aecromedical Centre,

— KLM-Royal Dutch Airlines and

—- the Lighting Laboratory of N.V. Philips’ Gloeilampen-
fabricken.

5) Further discussion of the motives which have led to the

various configurations is beyond the scope of the present

paper. More details of the principles of visual guidance

“during landing underlying the Netherlands proposal have

been put forward at various ICAQ and TATA meetings.

configuration according to the Netherlands proposal with
2 centre line and crossbar systems as standardized by
ICAQ. The Netherlands system has been completed by a
two-gauge longitudinal system in the deceleration zone,
the 2 other configurations by visual aids in the landing
and deceleration zone according to existing systems in the
UK and the USA. The 3 complete configurations have
been illustrated in fig. 1, from which the following details
¢an be seen: .

System A. This configuration contains the ALPA approach
system, consisting of barrettes of lights at distances
of 100 feet over a length of 3000 feet along the centre
line of the runway before the hard surface and of one
150 feet long crossbar of lights at a distance of 1000
feet before the green-marked runway threshold. This
approach system has been completed by a 60-feet narrow
gauge runway light pattern with lateral barrettes at
longitudinal distances of 200 feet over a length of 2400
feet.

System C. In this configuration the centre fine and cross-
bars system of FEelde Airport is incorporated, which
consists of the same centre line configuration as system
A with additional 150-feet long ¢rosshars every 500 feet 8).
The crossbar located at 1000 feet before the green-marked
runway threshold consists of red lights. The system has
been supplemented by runway lights in accordance with
a principle indicated by the Royal Aircraft Establishment
(UK): a 75-feet narrow gauge system with lateral barrettes
at longitudinal distances of 250 feet over a length of
2500 feet. The aiming point for touch-down (AP in fig. 1}
is indicated by large barrettes.

Systern B. This system differs from the preceding configur-
ation by an additional double row lateral barrettes
at intervals of 100 feet, beginning in red at 1000 feet
before the runway threshold and extending in white from
the threshold to the aiming point. A red T interrupts the
centre line over the last 500 feet before the runway
threshold. The threshold is emphasized by green longitud-
inal bars 250 feet in length. The runway lighting accord-
ing to the Netherlands proposal-differs from the previous
systems by a change-over from the white lateral bars to
white longitudinal bars beyond the aiming point.. These
longitudinal bars are placed in a 150-feet wide gauge
system, each bar being 250 feet long with gaps of 250 feet,
and in a 75-feet narrow gauge system of longitudinal
elements 50 feet in length with gaps of 200 feet. Moreover,
the aiming point is emphasized by lateral -bars between
the inner.and the outer gauges, resulting in a double
L-shaped pattern. ' .

1t should be mentioned that, as shown in fig, 1, the
Netherlands system installed at Eelde Airport had only
1 block 500 feet in length between the runway threshold
and the aiming point instead .of 2 blocks of 500 feet
each, as recommended for. normal circumstances. This

-single length of 500 feet was selected in the tests at Eelde

on account of the local site of the ILS reference point
and the desire to bring the ideal aiming point of the

8) In accordance with the approach light configurations on
civil aerodromes in the Netherlands, the crossbars are of.
equal length.




visual configuration as close as possible to the ILS
reference point.

Many of the lights required for the 3 configurations to

Fig. 2. One of the experimental lights (bottom) and one of
the runway_.light's (top) out of the permanent installation.

Fig. 3 Experimental lights mounted on timber boards.

be compared were already available at Eelde Airport in
the permanent light system installed there. Actually, this
contained all the lights needed for the approach configur-
ation of system C (see fig. 1). The necessary extension of
this system for the landing zone and the provisions for
switching to the other 2 configurations were obtained by
adding an experimental installation,

One of the lights used before the threshold or along
the outer edges of the runway is shown in fig. 2 in front
of one of the runway lights forming part of the permanent
installation. It consists of a very light wire frame in which
a prefocussed incandescent lamp with mirrored bulb is
suspended and to which a colour filter can be attached.
As a number of these lights had always to be combined
into a long or short crossbar (see fig. 1), the lights were
mounted on timber boards as illustrated in fig. 3. Immed-
iately prior to the tests, these boards could be placed
at points previously marked on or in front of the runway.
This ensured correct positioning and adjustment of the
light bars.

" The experimental lights for thé inner gauge of the
landing mat consisied of a thin transparemt plastic housing
containing. 2 miniature tubular line lamp in a small
reflector. A permanent magnet mounted in the base of
the light permitted it to be stuck to a.thin steel plate glued
on the runway surface. As the light distribution is fap
shaped in azimuth, its orientation in this direction is not
critical. This construction allowed the lights to be quickly
placed before and removed after the tests. The whole
assembly is of such light construction that no damage
could be done to the tyres of an aircraft running. across.

3. Procedure of evaluation fests

The principle of the procedure followed in the evaluation
tests is that the effectiveness of the guidance obtained
from a certain configuration of lights during the approach
and landing must for a given type of aircraft be apparent
from

1.. the quality of the approach,

2. the quality of the landing,

3. the pilot’s effort to carry out the approach and landing.

The effectiveness may, moreover, be illustrated by the
pilot’s judgement and understanding of "the guidance
obtained. )

The quality of the approach and landing as well
as the pilot’s effort and judgement will be greatly influ-
enced not only by the effectiveness of the guidance of a
certain configuration of lights but also by the prevailing
weather and by the initial flight condition of the aircraft.
Moreover, the performance of different pilots, even if
flying under exactly the same condition, will by no means
be the same. Fundamentally, the test procedure, therefore,
must he such that data, enabling the above mentioned
3 criteria to be assessed, are recorded in marginal weather
{real or simulated) with a number of pilots large encugh
to eliminate personal influence on the final results and
for different initial flight conditions.. A complete evalu-
ation should, moreover, be based on tests with different
types of aircraft. The present investigation, however, had
for practical reasons to be restricted to one aircraft {type
C-47). :




In experiments of this nature the influence of the
weather is perhaps the most troublesome ‘problem. Far
the purpose of the investigation these tests have.to be
performed under marginal and invariable visibility con-
ditions, which, however, occur but seldom. In view of the
continuity and the reliability of the tests, therefore, it is
of utmost importance to find a method of simulating
consistent marginal conditions. This simulation has been

-achieved by fitting, immediately behind the cockpit
window, a movable screen, especially designed for the

purpose of limiting the pilot’s visual field to obtain a -

constant visual range such as prevails in homogeneous
fog, independent of the longitudinal attitude and the
height of the aircraft. For this constant visual range the
rather low value of 1000 feet has been chosen in order
to emphasize possible differences in guidance character-
istics of the light patterns to be compared. A detailed
description of the movable screen and its control mechan-
ism has been given in chapter 4 together with some
illustrations indicating what part of the light configurations
is visible to the pilot underneath the lower edge of the
screen from different points on the flight path. In order
to simulate seeing conditions in fog as realistically as
possible, a reduced value of the luminous intensity of the
lights was chosen. Moreover, a neutral and a slightly
diffusing fiiter were placed before the pilot’s eyes. This
simulation of seeing conditions in fog requires a meteoro-
logical visibility during the test flights of at least 2 miles.

Details of this part of the fog-simulation have also been

given in chapter 4.

[n order to eliminate the influence of personal characier-
istics of the pilot as far as possible, the number ot
pilots involved in the tests must be such that the overall
result can be regarded as characteristic for a great many
pilots. The scatter of the results of a preliminary investi-
gation carried out with 5 pilots, indicated that at least
15 pilots should be included in investigations of this type,
if each pilot carries out one test flight on each light
pattern and from each initial position (see below), as was
planned for this investigation.

To ensure that the results would not be entirely depen-
dent upon the influence of the drill followed by a parti-
cular company, 18 pilots from 10 different companies,
organizations and government institutes (see Appendix )
participated in the tests. Sixteen of these pilots performed
a complete set of approaches according to the test flight
programme to be mentioned here below; 2 pilots could
not complete their tests because of weather conditions.

A compiete assessment of the influence of the initial
flight condition, when the pilot establishes visual contact,
on the quality of the approach and landing would
require a very extensive flight test programme in view
of the great number of variables involved (e.g. horizontal
and vertical deviation from the ideal flight path, angles of
pitch and bank, heading and speed). In order to restrict
the number of flights, 3 standardized initial positions
have been chosen:

a. the ideal position: on the ILS glide path and on the
runway centre line,

b. on the centre line and 2 dots ILS deflection above the
glide path (i.e. about 50 feet above the glide path at
the jocator where the glide path height is 200 feet)
and

c. on the glide path and | dot ILS deflection left of the

centre line (i.e. about 100 feet left of the glide path at
the locator).

These 3 positions were furthermore characterized by:

— a 10-degree flap setting, -

— an airspeed of 100 kis IAS,

— wings level,

— a power setting consistent with an approach on the
ILS glide path (initial positions @ and ¢) or with a
somewhat steeper trajectory corresponding to a 2-dots
ILS deflection above the glide path (initial position b),

— a heading equal to the runway heading corrected for
drift (initial positions a and &) with — in case of the
lateral displaced approaches (initial position ¢} — an
additional minor correction for a trajectory corres-
ponding to a 1-dot ILS deflection left of the centre
line. . .

It was decided to have each pilot carry out 1 approach
from each of the 3 initial positions on each of the 3 light
configurations. With the number of test flights per pilot
thus obtained, no appreciable familiarization with local
conditions could occur to cause the differences in the
systems under examination .to be largely levelled out.
As 16 pilots performed a complete set of approaches, the
total number of test flights amounted to 16 x 3 x 3=144.
Of course all these flights could not be made inh one
night. Tt was decided, therefore, to have each pilot do
9 flights per night. The actual order of flights has been
given in Appendix 11. The order of the light systerns and
the order of the fiights with a specific light system has
been chosen at random in view of unavoidable influences
such as fatigue, variations in direction and speed of the
‘wind etc. : :

On each test flight the safety pilot in the right hand
scat carried out the first stage of the approach. For this
purpose, this pilot had at his disposal all the available
visual guidgnce without any limitation in addition to the
information provided by the instruments. The aircraft was
thus brought through a right hand circuit at 1000 feet
to one of the 3 initial positions for the desired approach
flight at about 500 feet height. The test pilot took over as
soont as visual contact was established. Commands of
power settings could be given by the test pilot. The
landing lights were switched on by the safety pilot shortly
before touch-down. The safety pilot took over control
again as soon as the touch-down was definitely completed.

At the beginning of this chapter it has been mentioned
that the basic idea underlying the recordings carried out
during each approach and landing is that the effectiveness
of the guidance of a configuration of lights can be
examined from the quality of the approach and landing
and from the pilot's effort to carry them out.

It was considered feasible to obtain a fairly good
assessment of the gquality of an appreoach and landing
from data on:

— the actual flight path in horizontal and vertical pro-
jection until touch-down,

— the height at the moment of passing the runway
threshold,

— the distance between the threshold and the actual
touch-down point,

— the vertical deceleration of impact at touch-down.

The pilot’s effort was assessed from information on:
— the deflections of elevator, rudder and ailercns and
— the frequenicy of the pilot’s heart beat.

EY




The data required. for the assessment of approach and
landmg quality and of the pilot’s effort were obtained by
recording. the indications of the relevant aircraft instru-
ments and of special instruments instalied for this purpose
in the: aircraft ‘and ori the ground. The determination
of the flight- path of the approaches before passing
the runway threshold was based upon the deflections
from the ideal ILS flight-path. For this purpose the
outputs of the ILS glide- -path and localizer receivers were
recorded, this being a typical in-flight measurement. The
landing flight-path (beyond the threshold), on the other
band, was recorded by ground cameras. A detailed de-
scription of the tecordmg equipment with some samples
of recordings has been given in chapter 5.

The pilot’s judgement on-the guidance obtained from
a certain system was derived from the answers collected
by. systematically and carefully -questioning the pilot
shortly after the performance of each test flight. Details
on this mformanon are given in chapter 8.

4. Method of fog simulalit.m
4.1 Basic principles’

“The National Aeronautical and Astronautical Research
Institute (NLR) was requested to design and build a
_device, capable of simulating a constant visual range as
prevailing in- fog of homogeneous density, This visual
range should be kept constant irrespective of the longi-
tudinal attitude and the height of the aircraft during the
approach” and the Ianding manoeuvre. The desired simu-
lation -is obtained by limiting the pilot’s visual field by an
opaque movable screen attached to the cockpit window.
- As illustrated in fig. 4 the vpper limitation of the visual
sector is determined by the lower edge of the movable
screen and the lower limitation is defined by the shape
of the cockpit cut-off.-To avoid a reduction of the visual
' range with decreasing height, the screen. has to be raised
“slowly during the approach at a rate dependent on the
rate of descent of the aircraft. When the aircraft is flying
at high altitude, the cockpit window is completely masked
by the screen. When the aircraft has descended to the

MOVABLE SCREEN

PILOT'S
EYE

height where the distance from the ground — measured in
the direction of the cockpit cut-off — is equal to the visual
range to be simulated {the visual sector and segment thus
still being zero}, the driving gear of the screen is switched
on so that the bottom edge of the cockpit window begins
to clear. Provision to ensure that the visual range is not
affected by alterations in the longltudmal attitude of ‘the
aircraft is made by gyroscopic’ stabilisation, A constant
value of the visual range is obtained with the screen
moving according-to the principles just described, provided
that the pilot’s eyes have a fixed position relative to the
aircraft. This has been obtained by means of a head-
support firmly attached to the screen frame. The head-
support also carries a combination of filters which, to-
gether with a convenient setting of the luminous inteénsity
of the lights, simulates seeing conditions in fog.

Fig. 5 shows which part of the 3 light configurations

" is visible beneath the screen when the aircraft is at heights

of 160,.130, 100, and 70 feet respectively for a visual
range of 1000 feet. Fig. 6 gives an impression of what

is really seen by the test pilot of the configurations at

these heights.

4.2 Construction aﬁd operation of cockpit screen
The following' gives an explanation of the design prm-
ciples of the screen system. If (see fig. 4):

z denotes the constant visual .range to be
simulated, )

] the longitudinal attitude of the aircraft,

@ the sight angle, i.e. the inclination of the
upper limitation of the visual sector,

h the height of the pilot's eyes above the
ground,

W the rate of descent of the alrcraft

5 . the displacement of the movable screen

measured from the intersection of the screen
with a line through the pilot’s eye parallel’
to the longitudinal axis of the aircraft,

a the distance of the pilot’s eye to the screen
measured in the direction of the longitudinal
axis,

] the angle between the screen and the longi-
tudinal. axis, :

'////,/'///J./
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COCKPIT CUT-OFF = LOWER
LIMITATION OF VISUAL SECTOR

TS / ya
VISUAL SECTOR
VISUAL SEGMENT

.Fig. 4. Relation between screen position s, longitudinal attitude 48, height k and sight angle @ for a given visual range z.
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then it appears from fig. 4
s B a
sin(§+¢) sin [0 — (6 + ¢)]
_ sin (0 + @)
~ % Sin[a— (0 +¢)]

ot
¢y

As stated before, the device has 1o satisfy the basic
requirement;

= constant (4]

From (1) and (2} it follows that s must be controlled by
@ and % in order to obtain a constant visual range z. For
practical reasons not & but the rate of descent w is used
as the second controlling variable.

The relation between h and w is given by

t
=h,— [ wdt (3
[}

A device has been developed which performs the
integration according to (3) mechanically. A description
of this device — denoted by ‘height-control unit’ — is given
below.

The controlling variable § is obtained from a vertical
gyro.

VERTICAL GYRO

& é ;% IDENTICAL
/ D

The device developed to carry out.the screen control
according to the principles just mentioned is diagram-
matically illustrated in fig. 7. Its main part consists of the
elevator channel of a2 Bendix PB-10 autopilot, containing
the following basic elements, forming a servo system:

1.a vertical gyro measuring the longitudinal attitude §
by means of a rotating differential transformer A,
coupled to the lateral gimbal axis,

2. a rotating differential transformer B, giving an output

signal proportional to A,—h. The transformer is con-
trolled by the height-control unit mentioned above.
This device (see lower part of fig. 7) consists of a dec
constant speed motor, driving the differential frans-
former by means of a variable cone-cylinder trans-
mission. During the approach the gear ratio is manually
controlled by turning a transparent disc over an angle
equal to the deflection w of a quick-response rate-of-
descent indicator which is placed below the disc. The
remainder of this. apparatus is described below. The
signal obtained in this way from the differential trans-
former B and the signal f# from the differential trans-
former A determine the screen positions s in accordance
with equations (1) and (2).

3. a servo amplifier and a servo motor which drives the
screen. The rotating differential transformer C is
coupled to the axis of the servo motor.

SERVO AMPLIFIER  SERVO MB{TOR

= >

ELEVATOR
CHANNEL j IFFERENTIAL
OF AUTOPILOT - TRANSFORMERS
r ISJ | G
v U A B
L £ :
e, — P "FLEXBALL"
L \ SCREEN DRIVE
AN
\
AN
N
ADJUSTABLE -
STOPS AND SIGNAL
HEIGHT - SWITCHES

CONTROL UNIT | REVERSIBLE
D.C. CONSTANT
SPEED MOTOR

.

Fig. 7. Schematic diagram of screen control system.

The practical application of the screen control apparatus
requires the adjustment of an initial -screen position s, at
a given altitude h, and a given longitudinal attitude 8,;
the value of s, is determined by substitution of A, and
g, in equations (2) and (I).

FRICTION COUPLING

RATE-OF-DESCENT INDICATOR

The outputs of the 3 identical differential transformers
A, B and C, having .a commonh electrical supply, are
connected in series; the sense of the output of C is opposite
to that of A and B. The resultant voltage is fed to the
servo amplifier, driving the servo motor which comes to



Fig. 8. Screen driving
mechanism with instru-
ments for checking
proper functioning,

Goe

e Y

P L
- *
e
e

n

rest when the resultant input voltage of the amplifier
becomes zero.

A potentiometer G is used to adjust the input-to-output
ratio of this servo system. The potentiometer P controlling
the supply voltage of B provides adjustment for equal
output voltages of A and B per degree of rotation.

The servo motor is provided with an adjustable eccentric
disc driving a steel tape, which is coupled to a ‘flexball’
driving cable to the end of which the moving screen is

attached under spring load. The shape of the eccentric
disc is determined by the equation (1), i.e. the tape moves
over a distance s for an input angle 8 + ¢ according
to (1).

In the height-control unit a second transmission (with
constant gear ratio} incorporates a friction coupling,
enabling the differential transformer B to be at rest in
both its limit positions, defined by 2 adjustable stops,
without stopping the driving motor. Small in-flight correc-

Fig. 9. Manual operation
of heightcontrol unit
during test flights.




Table 1. General data of screen installation in C-47
aircraft -

Visual range = 1000 ft

9 =410°. o = 57°.
@ at 276 ft = 16.0°, < a- =15 inch.
IAS = 100 kts . 81 Screen movement
w =445 ft/min (2.3 m/sec) g initiated at 295 ft.
at zero wind, « Screen opens at 276 fi..

Slope of glide path = 2.5°,
0 =4 6.0°

@ =0.8°

Height of pilot’s eyes
above runway = 14 fi.

Nominal duration of
upward screen movement
34.3 sec.

Overall accuracy of g
better than + 0.25°,

Touch-down

tions of the screen position and, consequently, of the
actual visual range can be applied if this should deviate
from the prescribed nominal value due to a possible error
of the PB-10 vertical gyro or to other circumnsiances. This
is done by rotating the mounting plate carrying the stops
by means of a hand-operated gear (see fig. 7, below right).
The correction is checked by means of a graph of s vs 0
for the minimum sight angle ¢ when the differential
transformer B is turned to its stop for ‘screen upward’.
In this case according to (1) the position of the screen s
is only controlled by the longitudinal attitude @. The
check may thus be performed at any convenient altitude,
e.g. during the flight preceding the test approaches.

In order to move the screen downward to the initial

condition for a new approach, the motor driving the

differential transformer B is of the reversible type.

Fig. 8 shows the servo motor and eccentric-disc assembly
as well as the instrument panel for checking the proper
functioning of. the installation.”On the left side of this
panel is a precision inStrument indicating the longitudinal
attitude §, which is sensed by a Sperry A 12 vertical gyro.
A pendulum inclinometer, intended as a stand-by instru-
ment, is situated at the right side. At the centre of the

pane! a desynn indicator measuring the screen position

s is mounted. .

Fig. 9 shows the operator of the height-control umit -

turning the perspex disc on the rate-of-descent indicator,

To the right of this indicator the correction device for

smalil deviations from the nominal visual range can be

seen. The instrument panel in the background is provided

with:

— a-turn and bank indicator (left) to avoid untimely
corrective action of the operator when the aircraft
is turning,

— an altimeter (centre} uded to determine the moment

when the upward screen motion has to be started,
— 2 signal lights for the screen-position limits and
— a switch for moving the screen up- and downward. -

Before the flight tests the position error of the aircraft’s
static-pressure system in the approach configuration has
been measured. It appeared that with the aitimeter
adjusted to zero at the moment of touch-down, the
readings during the approach were in very good agreement
with the true height of the aircraft,

A sketch of the screen itself is given in fig. 10. The
screen is moved by 2 pivoting rods in such a way as to

obtain a displacement which is a combination of a
rotational: and a reciilinear motion, ensuring that the
plane through the pilot's eyes and the lower edge of the
screen is always perpendicular to the aircraft’s plane of
symmetry. The screen is made of a-light-weight and rigid
sandwich construction and is guided by ball bearings
moving in slits mounted on a flexible base plate, thus
ensuring a smooth motion even in case of slight distortion
of the base plate when secured to the cockpit-window
frame. Fig. 11 shows the screen device as installed in the
aircraft. -

For the installation in the C-47 aircraft some important
data are given in table 1.

4.3 Adjustment and calibration of screen mechanism
In-its criginal form the PB-10 servo motor is equipped
with an electrically’ operated coupling to the elevator
control system. This coupling can be activated in any
desired combination of longitudinal attitude, screen' pos-
ition and height, obeying the basic equations (1) and (2).
However, it is most practical to accomplish the coupling
during the pre-flight check (see below), so that during
ilight the screen position needs only to be checked by
means of the s vs §-graph as mentioned before.

For the adjustrnent and calibration of the installation
on the ground a board provided with a (§ + g)-scale is
mounted on the cockpit nose perpendicular to the longi-
tudinal axis of the aircraft; the intersection of this axis
with the board is the point for which § +¢ =0 (see
fig. 4). The scale on the board is observed from the test
pilor’s eye position. Increasing or decreasing the longi-
tudinal attitude of the aircraft (or only of the case
containing the PB-10"vertical gyro) by a known angle
should result in a variation of § + ¢ by the same angle.

The calibration board alse provides' the possibility of
accurate and efficient coupling of the eccentric-disc and
screen-drive assembly in the required position relative to
the servo motor on the groend. For this purpose the
screen, with the differential transformer B in its .limit
position for ‘screen upward’, is placed in 2 position so
that on the (8 + g)-scale of the board the sum of the
actual attitwde angle § and the minimum value of ¢
is read. Then the coupling is energized directly from the
aircraft battery in order to avoid inadvertent uncoupling.

The height-control unit is calibrated separately by
applying increasing static pressure to the rate-of-descent
indicator and altimeter, and determining the time to
‘descend’ from a known altitude with the disc manually
operated to follow the pointer of the rate-of-descent

indicator.

4.4 Filter assembly

As meuntioned before, seeing conditions in fog were
simulated in the first place by adjusting the luminous
intensity of the lights on the ground to a low value and,
moreover, by applying a' combination of filters, adapted
to this value, in the pilot’s head-support. The luminous
intensity of the lights was turned down to 50 cd, a value
at which no intolerable color distortion or non-uniformity
of luminous intensity " occurred. The combination of
filters, placed 4 inches in front of the pilot’s eyes in the
head-support, consisted of a clear neutral filter with a
transmission of 10 % and a- slightly diffusing sheet of
perspex with a transmission of 80%. The shape of the
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Fig. 10, Sketch of cockpit screen.

filter and the perspex sheet allowed the pilot an unob-
structed view of his flight instrument panel.

An impression of the diffusing properties of the perspex
sheet can be obtained from résulls of measurements
which have been carried out in an. arrangement shown
schematically in fig. 12. A light source L with a diameter
of 1 cm has been placed at a distance of 10 m from the
perspex sheet PS. From the point P at a distance of 0.5 m

1 AND 2 PIVOTS ON SCREEN

on the opposite side of PS, the bright spot visible through
PS is viewed through a microphotometer. Fig. 13 gives
the relative luminance of the bright spot as a function
of the radius r indicated in fig. 12. These measurements
have been done at.a distance of 0.5 m between the
photometer and PS as the diffusing perspex sheet was
placed originally on- the cockpit window, thus roughly at
a distance of 0.5 m from the pilot’s eyes. '

Fig. 11, Cockpit screen
installation.
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Fig. 12. Measuring
- arrangement for

determining diffusing
characteristics of perspex
sheet.
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In real homogeneous fog, lights at distances near to
the visual rapnge will be attenuated more than in the
simulating device just described. This can be seen from
fig. 14 giving the illumination on the pilot’s eyes from
a light source with a luminous intensity of 50 cd as a
function of the distance from the pilot to-this light source.
The curved line A shows the eye illumination when the
light source is seen through a homogeneous fog with a
meteorological visibility of 1000 feet, The straight lines
B and C apply to a clear atmosphere when the source is
seen directly (B) and through a filter with a transmission
of 8 % (C) (i.e. the transmission of the combination of
the peutral and the diffusing filter). The figure shows
that in the latter case the lights at a distance from the
pilot almost_equal to the visual range simulated by the
movable screen (1000 feet) are seen brighter than in real
homogeneous fog, while at short distance the lights are
seen more dimly. '

There is another reason why visibility conditions if
homogencous fog have not been simulated exactly by
the dévice described in this chapter. When the aircraft
banks, the plane through the pilot’s eyes and the lower
edge of the movable screen does not intersect the ground
plane along a line which is seen parallel to the horizon
by the pilot. Consequently, instead of a limitation of the
visual segment of the light pattern according to a line
perpendicular to the centre line, as would occur in homo-
geneous fog, the far limit of this visible segment is

RELATIVE LUMINANCE
OF BRIGHT SPOT

T
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Fig, 13. Results of diffusion measurements on perspex sheet.
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LIGHT SOURCE L

DIAMETER 1e¢m

determined by a tilted line, the amount of tilt depending
on the angle of bank of the aircraft. The number and the
pattern of lights visible to the pilot at each moment may,
therefore, differ slightly from what can be seen under
conditions of real homogeneous fog with the simulated
meteorological visibility. At a certain moment, e.g. the
extreme end of a long crosshar may become visible, the
remainder of it still being obscured, whereas in homo-
geneous fog all the lights of the crossbar enter the visual
field simultaneously. However, as the angle of bank was
always smali during the test flights, some influence ot
the movable screen, following the roll of the aireraft, in
favour of one of the light patterns is hardly imaginable.

As-the test flights have been carried out by night, the

E IN fm/ft?
} 10_2'—r = - 1
— —
1073
i
B
1074 \
¢ A
10—
LUMINOUS INTENSITY
LIGHT SOURCE . 50 cd
] .
109

10! 102

10—t IN ft
Fig. 14, lllumination E on the pilot’s eye in hemogeneous fog
with a meteorological visibility of 1000 feet {A), clear
atmosphere (B) and through neutral filter (C) as a function
of distance r between pilot's eye.and observed light source.




Fig. 15, Measuring equipment.

luminance of the movable screen and that of its immediate
surroundings in the cockpit, as well as that of the ground
outside as seen by the test pilot (through the filter combin-
ation with a transmission of 8 %) were so low, that the
lower edge of the movable screen could hardly be
discerned. This is an important circumstance, as the

TIME BASE

EVENT MARKER TOUCH-DOWN
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permanent presence of a line under a fixed angle to the
aircraft frame in the most important part of the pilot’s
visual field would provide him with some information on
the bank of the aircraft when compdring this line with
the horizon information ‘obtained from the crossbars in
the light pattern. :

Finally, the filter set before the pilot’s eyes does not
simulate exactly the luminance distribution in a field
consisting of a pattern of lights in fog. The immediate
surroundings of the lights obtain a certain luminance
depending on. the total luminous flux and on the beam
spread of the individual lights, The more lights a pattern
contains, the higher the average luminance of the fog
through which the lights are seen, and the shorter the
range at which lights of a certain luminous intensity are
revealed. The same is true for the average luminance of
the diffusing sheet of perspex before the pilot’s eyes.
However, in a homogeneous fog of the simulated density
the effect will be more pronounced. At first sight, there-
fore, it seems that the chosen simulation of fog favours
the system with the largest number of lights. If such an
effect should exist, however, it has nothing to do with
the comparison of light configurations. It would only
affect the optical design of the lights which must be
chosen such that the required visual range of the lights
is obtained in ‘the configuration considered, taking into
account the atmospheric absorption and the scattering of
the light corresponding to the simulated fog density.

As a whole, there is a good agreement between simul-
ated and real seeing conditions and this was confirmed.
by the test pilots and by many other pilots who have
inspected -this test installation. In their opinion it provides
a realistic simulation of what is generally observed in fog.

5. Measuring equipment

Measuring equipment has been installed in the C-47 test
aircraft for continuous recording of the quantities men-
tioned in chapter 3 necessary to assess the quality of the
approach and landing and the pilot’s effort. A multiple
trace recorder and a photographic observer have been
used for this purpose. A second automatic observer used

Fig. 16. Typical multiple

trace recording.
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Fig. 17. Typical picture of photographic observer (1. airspeed indicator, 2. altimeter, 3. artificial horizon (pitch and bank),

4. gyrosyn slave indicator {(magnetic heading), 7. top-axis accelerometer, 9. elevator deflection indicator, 10. rudder deflection
indicator, 11. aileron deflection indicator, 13. screen position indicator, 14. precision gyroscopic lengitudinal attitude indicator,
19. synchronizer {one rev. long poinier in 0.75 sec, closing contact in 12 o'clock position exactly), 20. split second watch (one
rev. every 6 sec) 21. light signals for ‘up’ and ‘down’ position of height-control unit, 22. event marker, 23. counter).

in preparative tests did not contain instruments of essential
importance for the underlying investigation. -In addition,
some instruments for checking the proper functioning of
the screen installation were installed.

The equipment is shown in.fig. 15. On top of thé
upper photographic observer, the heart-beat frequency
measuring equipment may be seen in front of a servo-
amplifier and supply box of the attitude indicator belong-
ing to a Sperry A 12 vertical gyro, the latter being mounted:
on the base plate in front of the trace recorder.

In the trace recorder (type Beaudouin A-1320) light
spots create traces on photographic paper ~ moving with
a speed of 0.22 inch/sec — by means of galvanometers
installed in the recorder. A typical recording is reproduced
in fig. 16, showing 2 types of traces. First, there are the
continuous traces produced by the galvanometers. The
deviation of these traces, measured against a constant
reference line at the bottom of the film, are proportional
to the current through the galvanometers. The" relation
between trace deviation and input signal must be deter-
mined by calibration. Secondly, marker traces are pro-
duced consisting of parallel straight lines off-set slightly by
an instantaneous ‘on-off signal. These traces, in fact,
only mark the exact moment at which an event takes
place. For instance, the time base is formed by a marker
trace connected to an electrical chronometer producing

an ‘on-off’ signal every second and omxttmg an ‘off’
signal every 10 seconds.

The photographic observer equipped with a modified
[6-mm cine camera running at a speed of 4 frames/sec,
was used to record indications of the instruments shown
in fig. 17 (numbers of instruments agree with those of
parameters, etc. mentioned below). - ’

On the airfield 2 Leica cameras were placed beside. the
runway and perpendicular to it for the purpose of record-
ing the landing flight-path.

The following parameters, events and signals were
recorded by the trace recorder (referred to below as
tr. rec.), the photographic observer (ph. obs) or the
ground cameras:

a. parameters describing general flight condition:

1. airspeed: indicator connected to the co-pilot's pitot-
static system (ph. obs.);

2. altitude: altimeter connected to the co-pi]ot’s static
system (ph. obs.);

3. longitudinal attitude (angle of pitch) and lateral inclin-
ation (angle of bank) (ph. obs.);

. magnetic heading (ph. obs.);

. parameters determining quality of approach and landing:

.ILS localizer deflection:
localizer indicator, giving sideways angular deviation
from the centre line (tr. rec.);

w o n

the input current of the-




Fig, 18. Typical recording of ground camera.

6. ILS glide path deflection: the input current of the glide
path indicator, giving vertical angular deviation from
the ILS glide path (tr. rec.);

7. top-axis acceleration (deceleration of impact at touch-
down) (ph. obs.);

8. actual ftight path from threshold until touch-down: the
recordings are made by the ground cameras with the
shutters continuously open during the landing. The
successive images of the aircraft’s anticollision light
(the timing of which is recorded as described in item
16) together with the images of fixed reference lights
on the ground and of a synchronization lamp behind
the cabin window make it possible to determine the
flight path in the landing region in correlation with
the test data recorded in the aircraft. A typical recording
of a ground camera is given in fig. 18;

c. parameters determining pilot’s effort:

9,10 and 11. elevator, rudder and aileron deflections
(ph. obs.);

12. heart-beat frequency: this signal is derived from a small
unit incorporating a miniature light bulb and a photo-
electric cell, which is clipped to the ear-lobe of the
test pilot. Blood pulses through the arteries vary the
amount of light received by the photo-electric celi.
Two types of traces are recorded. Both show deviat-
ions for each blood pulse, but in one of them the
height of the pulse is proportional to the blood pulse
frequency also (tr. rec.}7?);

d. parameters determining the visual range actually at-
tained:

13. position of cockpit screen (ph. obs.);

14. longitudinal attitude {precision measurement) (ph. oks)
(For the calculation of ‘the actual visual range the
truc height must also be known (see 2 and 8));

. event marks and other signals:

15. moment of ignition of the synchronization light behind
a cabin window. The recording is needed for establish-
ing the correlation between the flight path recordings
on the ground and the recordings of the airborne
equipment (tr. rec.);

7y For further details, see:

‘A transmission cardiotachometer for continuous measure-
ments on working persons’ by G. A. Harten and A. K.
Koroncai, Philips Technical Review 21, p. 304, 1959/60.

16. the rotations of the aircraft’s anti-collision light by
means of a photo resistor in the (perspex) navigation
dome (tr. rec.);

17. moment of touch-down. The event marker was con-
trolled manually (tr. rec.);’

18.ILS inner-marker beacon signals, facilitating the
identification of the recordings (tr. rec.);

19. correlation between the -recordings of photographic
observer and trace recorder: an instrument with 2
pointers rotating at a constant speed of 1.3 and 0.13
revolutions per sec respectively, is mounted in the
photographic observer. Each time the fast pointer
passes the zero mark of the dial a contact is closed
resulting in an ‘on’ signal of a marker trace in the
trace recotder;

20. time: ‘on-off’ signals every second (tr. rec.) and split
second watch (ph. obs.);

21.light signals, indicating ‘up’ and ‘down’ positions of
the screen (ph. obs.); )

22. event marker for the indication of other important
moments (ph. obs.);

23. counter number of every shot {(ph. obs.).

A normal tape recorder and a miniature .wire recorder
(as stand-by) were used to record all remarks made by
the test pilot or the test personnel during the test flights
in order to facilitate an explanation of irregularities in the
approaches and landings afterwards. Jt turned out, how-
ever, that there was no need for these recordings.

The stability of the ILS system was frequently checked

. by carrying out a perfect cross needle approach and

recording the actual flight path by means of a ground
tracKing cine-camera, the latter being synchronized with
the trace recorder in the aircraft.

Calibration of the ILS signals was achieved by determin-
ing the relation between the difference in depth of
modulation (DDM) of the ILS transmitters for various
deviations from the ILS glide path in azimuth and
elevation, followed by the calibration of the trace recorder
for various signals applied to the input of the ILS localizer
and glide path receivers. .

The actual visual range obtained during the flight tests
could be calculated from the recorded values of longi-
tudinal attitude # and height /2 by applying equations (1)
and (2) of chapter 4; the value.of & was taken from the



ground-camera pictures and, for larger aititudes, frem
_the altimeter- recordings. These calculations showed that
a deviation of = 100 feet from the nominal visual range
— which was 1000 feet for all tests — was generally not
exceeded, excépt during the final part of the flare-out.
This agrees with the overall accuracy of the sight angle
@ governed by the cockpit screen installation which, as
stated in table 1, was found to be better than =0.25°.

To ensure the deviations of the visual range to be
small also at very low heights just prior to touch-down,
a much higher accuracy of the sight angle and, conse-
quently, a better class of vertical gyro for the attitude
stabilization of the cockpit screen would be required.

Generally, the simulated visual range in the touch-down
region exceeded to some extent the nominal value due
to deceleration effects on the vertical gyro.

6. Interpretation of test data

From ihe recordings obtained with the equipment described
in the preceding chapter the following data have been
derived: :

a. on the guality of the approach:

— approach height (actual flight path projected on a
vertical. plane parallel to the runway centre line)
until threshold,’

— approach ground-track (actual flight path projected
on a horizontal plane) until threshold,

b. on the quality of the landing flight path and the touch-

‘down:
height (as a- function of distance) from threshold
until touch-down,
distance of touch-down point from runway threshold,
vertical deceleration of impact at touch-down,
the pilot’s effort:
contfrol movements,
pilot’s heart-beat frequency during approach and
landing.

The data on the actual flight path derived from the
recordings, if not. stated otherwise, are related to the
lowest point of the main undercarriage, projected to the
aircraft’'s plane of symmetry.

Some of the data on the quality of the landing and on
the pilot’s effort can be analysed and compared between
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light patterns in a rather simple way, Others, specially
those determining the flight path and the data on the
control movements, do not easily lend themselves to
direct comparison and to statistical analysis. In view of
this, a special evaluation procedure &) has been applied
in order to be ablé to. express the quality of the flight
path during approach and landing in one or two figures
of merit. )

The quality of the approaches and landings has been
expressed in marks based on the shape and the location
of the actual flight path. The marks varied linearly from
0 to 10 between unacceptable and ideal performance
respectively.

For the approach quality the actual flight path is
considered from a peint 3000 feet before the threshold,
when the pilot should establish visual contact, until the
threshold. The assessment of the quality of the approach
has been based on the ‘relative ease’ with which the pilot

 can bring the aircraft into an ‘entrance portal’ at the

runway threshold. This portal is of a rectangular shape
and has a height of 16 feet and a width of 30 feet (see
fig. 19 and 20). The centre of the portal is chosen ‘at
37 feet above the runway, equal to the average height
above the threshold of all flights made during the
preliminary investigation referred to in chapter 3. The
relative ease is in the first place determined by the
minimum size of a straight tapered channel by which
the actual flight path can be enclosed. The channels
corresponding’ to the -quality marks 1 to 10 have a
rectangular cross section with horizontal and vertical
sides. The linear dimensions of the entrance cross sections
of the channels are 3.6 times those of their exit sections
(located at the runway threshold), permitting a certain
channet to be defined completely by its exit section only.
Additionally, the axis of an approach channel should
run through the above mentioned entrance portal at the
threshold. Two marks for the quality of the approach
have been determined, one for approach height with the
aid of fig. 19 and one for approach ground-track with
the aid of fig. 20.

8) This procedure has been proposed by ir. F. E. Douwes
Dekker of the National Acronautical and Astronautical
Research Institute (NLR), Amsterdam.
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Fig. 19. Principle of assessment of approach height quality.
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Fig. 20. Principle of assessment of approach ground-track guality.

To obtain full marks (10) for approach height the
actual flight path slope should be constant, in other
words, the vertical dimensions of the enclosing channel
must be zero (see fig. 19). To obtain full marks (10) for
approach ground-track it must be possible for the actual
flight path to be enclosed by a channel with an initial
‘width of 11 feet tapering to 3 feet at the threshold (see
fig. 20). All approach channels with an exit height of
more than 27 feet or an exit width of more than 31 feet
are judged unacceptable, giving no marks (Q) for approach
height and approach ground-track respectively. It follows
from what has been stated before that no marks (0) are
given also in case the axis of an approach channel does
not intersect the entrance portal. It ought to be remembered
that the slope of the approach channel was not prescribed,
because the actual initial position, 3000 fect before the
runway threshold, could not be influenced by the test
pilot.

The process of judgment of the approach quality was
amended, in so far as ground-track is concerned, in case
the initial approach position of the aircraft was purposely
deviated sideways from the centre line by the safety pilot.
The tapering ratio of the channel was than doubled to
7.2, while its axis was curved gradually from the initial
direction on to the centre line at the threshold.

The quality of the landing flight path and the touch-
down has only been evaluated in height from the threshold
over a length of 2700 feet down the runway, when the
touch-down should have been completed, and in the
location of the touch-down point. Here also 2 quality
marks, one for height from threshold uniil touch-down
and the other for distance of touch-down from threshold,
have been determined. The quality mark for height from
threshold until touch-down is again considered to be
determined by the minimum size of a tapering channel
by which the actual flight path can be enclosed.
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SLOPE 25 4 FLIGHT PATH
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ENTRANCE 37ft S ]
PORTAL i 111t i — 1\:;:‘:_:1:;&__
traaad Crag 7T 7 T | T & .vr—,v—,v,. T .!r;r?r
QUALITY 014 8 ? 4 o
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FLIGHT PATH| _ 500 ft 4001
' 1000 ft 1500 ft '

Fig. 21. Principle of assessment of quality of Janding flight-path and touch-down.




- The shape and the dimensions of the channels are
chosen on the basis of the f{ollowing considerations
(see fig. 21). .

For a landing flight path and a touch:down judged
with the highest quality mark (10), the aircraft should
pass the threshold at some height within the entrance
portal and descend with a constant slope of 2.5° until
flare-out. Moreover, the landing should be continued
by following a flight path parallel to the one corresponding
to a height at threshold of 37 feet and a distance of
touch-down from threshold of 1000 feet, the flare-out
starting at a height of 11 feet and covering a distance
of 400 feet. This defines the channel of zero thickness
of fig. 21, to which the highest quality mark for height
from threshold until touch-down and for the touch-down
itself (10} is attached. To_ allow for passing the threshold
at an arbitrary height within the entrance portal, the
channels may be displaced 200 feet forward or backward
which also means that a touch-down qualified with mark
10 may occur at a distance between 800 and 1200 feet..

No marks (0) are given for height from threshold until
touch-down, when the touch-down takes place al a
distance of 1000 feet from the threshold after having
passed the threshold at a height of less than 1 foot. The
vertical distance between this height of 1 foot and the
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recordings of the control movements and of the pilot’s
heart-beat frequency, a .‘travel index’ and a ‘heart-beat
factor’ have been introduced respectively. For the travel

index a figure proportional to the total travel of elevator,

rudder and ailerons over a certain period has been
deduced from the recordings. This period was taken
from 5 seconds before until 10 seconds after. passing the
inner marker. The heart-beat factor is the ratio of the

' heart-beat frequency of the test pilot at touch-down and

height of the centre of the entrance portal (37 feet) is .

divided equally over the channels belonging to the marks
1 to 9. The vertical position of the upper and lower
boundaries of-the channels near the threshold is- symme-
trical with respect to the channel with mark IO.QThe
upper boundary of the channel with mark 1 is further
determined by the requirement that the point of touch-
down is not allowed to be more than 2700 feet beyond
the threshold. This means that the height above the
runway is considered unacceptable (quality mark 0) when
it surpasses a value varying from 89 fect at threshold
to zero at 2700 feet beyond threshold. The height of
89 feet corresponds with the point of intersection of the
upper boundary of the channel, carrying quality mark 1,
with the vertical line through the extreme left threshold
position, when the grid of fig. 21 is displaced 200 feet
in the landing direction.

‘The second quality mark (for the distance of touch-
down from the threshold) is read off from the scale along
the horizontal axis of fig, 21. It has already been stated
that full marks (10) are obtained when the touch-down
occurs between 800 and 1200 feet. The scale shows that,
when making allowance for passing the threshold at an
arbitrary height within™ the entrance.portal, no quality
mark (0) for touch-down distance is obtained when the
distance from the threshold is less than 300 or more than
2700 feet. '

Some  corrections had to be applied to the several

quality marks determined according to the .procedures
just described. The quality marks for approach height
and approach ground-track have been corrected for
deviations in actual runway visual range from the infended
1000 feet. One point was added to or subtracted from
both marks in a few cases, where this deviation was more
than 100 feet shorter or longer than the nominal one
respectively. The quality mark for touch-down was
corrected for rough landings by subiracting one point for
every 0.5 g vertical deceleration at the impact,

For the appraisal of the pilor’s effort based on the

that just prior to the approach, when the test pilot was
already in his cockpit seat but not yet flying the aircraft.

7. Result and their. statistical analysis ?)
7.1 Results

Appendix 111 contains a complete survey of the results,
obtained with the 16 pilots who carried out the whole

" test programme. These results contain the quality marks
for approach height, approach ground-track, height from '

threshold until .touch-down, touch-down and furthermore
the travel indices for the control movements as well as
the heart-beat factors. These marks, indices and factors
have been deduced from the recorded results as described
in the foregoing chapter. The appendix contains moreover
the heights above the threshold and data on the wind
speed and wind direction.
7.2 Quality of approach
7.2.1 Quality of approach height, travel index for elevator
and height of the aircrafi at the moment of crossing
the runway threshold
Table 2 shows the average of the quality marks of the
approach height and the average of the travel indices of
the elevator for each combination of initial position and
light system.

Table 2. Average of approach height quality marks and
of elevator travel indices

Initial position —— Ideal High Left Average
l‘;‘;";?“h E A 34 3.9 3.7 3.7
mﬁit g B 36 4.4 3.8 3.9
quarity & C 28 42 2.6 32
mark .

Elevator E A 188 19.6 18.0 18.8
travel 2 B 204 219 16.0 19.5
index ) 176 208 19.3

C 194

The standard deviation of the averages per system is
0.32 for the approach height quality mark and 1.04 for
the elevator travel index. This means that it can be
concluded with a confidence of 95 % that there is a
real difference in approach height between the systems
B and C.

Naturally, the scaling of the quality marks given in
chapier 6 may be criticized and therefore it may be

9 The statistical analysis has been carried out under the
supervision of Prof. jr. J. W. Sieben of the Technological
University, Delft. ‘




declared inadmissible to attach technical verdicts to the
differences between the averages mentioned above. How-
ever, if one is convinced that the {unknown) score which
ought to be used is a monotoneously increasing function
-of the score used here, the. conclusion stated in this
paragraph may still be reached by slightly different
reasoning, and these conclusions will then .depend to a
much lesser extent on the appraisal scale.

As already marked, 16 pilots each made 3 flights with
cach of the 3 systems. The sequence of the systems was
chosen at random. For each pilot the average quality
marks for approach height of the 3 systems can be ranked
according to magnitude with rank 1 for the system with
‘the lowest average, 3 for the system with the highest
average and 2 for the third system. If the average marks
for 2 systems are equal, each system is given the average
of the corresponding ranking numbers. The same can be
done for the elevator travel indices. In this way the
ranking numbers of table 3 will be obtained.

If there were no difference between the 3 systems, the
same total for each system would be expected at the
bottom of the table. If that is not the case, it may be
due to chance or to a real difference between the
.systems. The latter can only be decided upon when the

differences between the totals are large. A yardstick for

this is provided by the Friedman’s test for m rankings.
It can be concluded from this
confidence that on average system C gets a really lower
appraisal of approach height than systems A and B. The
data on elevator movement, however, do not show
significant differences between the light patterns.

Table 3. Ranking numbers of test flights according to
magnitude of approach height quality marks
and of elevator travel indices

with almost 97.5.%

Approach height Elevator

Pilot quality mark travel index

A B C A B C

1 3 1 2 1 2 3

2 21 2% 1 1 2 3

3 3 2 1 3 2 1

4 1 3 2 1 3 2

5 1. 3 2 3 2 1

-6 3 1 2 2 1 3

7 215 214 1 3 2 1

8 114 3 114 1 3 2

9 2 i 3 3 2 1

10 3 2 1 3 2 1

i1 1 3 2 2 3 1

12 2 3 1 3 2 I

13 i 2 1 1 3 2

14 212 24 1 2 1 3
15- 2 3 1 3 1% 12
16 2 3 1 1 214 2145

Total 35 37 23 33 34 29

Appraisal of the height of the aircraft at the moment
of passing the-threshold 19) is difficult because, as may

10) The heights above the runway threshold mentioned in
Appendix HI are related to the aircrafts anti-collision light.
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be seen from Appendix III, quite a lot of test data are -
lacking. However, from this appendix the average dif-
ference in height for the 3 systems for each pilot, shown
in table 4 can be derived.

Table 4. Average difference in height above threshold

Pilot  System B — System A System B — System C
1 —11.3 — 33
2 —19.5 —30.5
3 — 45 —25.7
4 —295 —15.0
5 —11.0 — 2.3
6 —13.0 —20.7
7 L 97 — 73
8 —13.0 + 10
9 +10.0 +15.0
10 — 3.0 —20.0
il — 2.7 —34.0
12 + 40 +22.0
i3 —.52 + 5.5
14 + 47 —10.7
15 —12.0 —10.0

16 — 97, —14.5

From these figures, with the aid of the ‘'Wilcoxon
symmetry test’ it can be concluded with 95 % to 97.5 %
confidence that the average height above the runway
threshold for the systems A and C is greater than for
system B. There is not much difference between A and C.

The average height above threshold with system C
(54 ft) proves with great confidence (more than 99 %)
to be really greater than with system B (44 ft), whilst
with system A this height (51 ft) is also really greater
than in the case of system B but now to a level of
confidence of 98 %. The test used here is commonly
referred to as ‘T-test’. Its use is in fact not entirely
justified for this kind of experimental data. It can be
argued, however, that this unjustified application of the
T-test results in a decrease of the level of confidence.
Therefore, the values of 99 % and 98 % can be considered
as conservative. The standard deviation of the height at
the individual flights with the systems A, B and Cis 17.3,
14.8 and 15.3 respectively. The dlfferences in this standard
deviation are of no importance.

From the date in this paragraph the following general
conclusions can be drawn:

The quality of the approach, as demonstrated in the
approach height is worse for light system C than for
A and B. With the light systems A and C the runway
threshold is generally crossed at a greater helght than
in the case of system B.

As will be indicated m paragraph 7.3,

this has no

The distance between this light and the lowest point of the
main undercarnage (being the reference pomt of the flight
path interpretation of chapter 6) is 14.feet in the approach
attitude. If the aircraft follows the ILS glide path exactly,
the height of the lowest point of the undercarriage at the
runway threshold is 30 feet. - ’



influence on the quality of the landing and moreover,
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the average height for B is roughly equai to the height '

_ of the ILS glide path at the threshold. .

- -

7.2.2 Quality of approach ground-track and of travel
indices for rudder and aileron

Table 5 shows the averages of all pilots with respect to

the approach ground-track quality marks and to the

rudder. and aileron travel indices for each combination

of system and initial position.

Table 5. Average of approach ground-track quality marks
and of rudder and aileron travel indices

Initial position — Ideal  High Left Average
Approach A 686 6.9 4.4 5.9
ground- £

track & B 78 8.2 5.4 7.2
quality 2.

mark ® Cc 712 7.3 5.0 6.5
Rudder E A 257 17.1 219 215
travel 2 B 178 13.7 20.4 17.3
index & C 184 162 212 18.6
Aileron E A 467 317 517 452
travel 3B 400 319 472 397
index o C 436 41.5 60.1 48.4

The standard deviations of the average per system are
0.21 for approach ground-track quality mark, 1.59 for
rudder travel index and 3.35 for aileron travel index.

From the average values in table 5 and from their
standard deviations it is evident that there is a difference
between the systems, and also between the initial positions,
in the average approach ground-track quality. With at
least 95 % confidence it can be established that the
differences between the 3 systems in average score are
significant, in the sense that B is better than C and C is
better than A. There are differences in control movements
too. However, the only significant difference in this
respect is that the rudder is used more with A than with B.
This difference is significant on the 90 %-confidence
level only.

Using the method of m rankings as in paragraph 7.2.1
the results of table 6 are obtained.

Two real differences are now found:

a. the quality of the approach ground-track for system

B is really better than for system A,

b. the travel index for rudder in system A may be regarded

as really higher than in system B.

The difference between B and C in quality of approach
ground-ttack and those in the aileron or in the rudder
travel index, other than between A and B, are not
significant.

The foregoing gives rise to the following conclusion:

With respect to Keeping the aircraft on the extended
centre line of the runway, system B is better than system
A and C: the adherence to the centre line with system
B is significantly better than in the case of system A
and this better result is achieved with less total move-
ment of the rudder.

Table 6. Ranking numbers of test flights according to
magnitude of approach ground-track quality
marks and rudder and aileron travel indices

Travel index of

Approach
ground-track

Pilot quality mark rudder aileron
A B C A B C A B C

1 2 2 2 3 1t 2 i 2 3
2 1 21» 25 3 1 2 2 1 3.
3 1 2B 2% 2 3 1 1 2 3
4 2 3 1 3 1l 2 1 3
5 1 3 2 1 3 2 1 2 3
6 1 2 3 1 2 3 2 1 3
7 1 3 2 i 2 1 1 3 2
8 2 3 1 1 3 2 2 3 1
9 1 23 3 2 01 3 02 1
10 123 1% 3 2 1 3 2 1
11 1 3 2 3 01 2 3 02 1
12 1 2 3 31 2 301 2
13 2 3 1 3 2 1 2 1 3
14 ith 3 a2 3 I 2 2 1 3
15 I 2¥% 2 3 2 1 31 2
16 2 3 1 2 1 3 1 2 3
Total 22 42%5 313 40 2812 27 32 27 37

7:3 Quality of landing

There is a considerable lack of data in the case of the
quality marks for the Janding, so that an exact statistical
treatment would be very laborious.

However, the method of m rankings, introduced in
paragraph 7.2, can be applied with the aid of the cases
in which a direct comparison of all 3 systems is possible.
This gives the results of table 7.

Table 7. Ranking numbers of quality marks for height
from threshold until touch-down and jor touch-
down

Quality mark for
height from

threshold until touch-down
Pilot touch-down
A B C A B C
1. 214 pa% 1 1 3 2
2 3 2 1 3 1 2
3 2 1 3 2 1 3
4 1 215 214 1 2 3
5 2 2 2 214 1 21s
6 3 1 2 3 1 2
T 1 3 2 3 1 2
8 114 112 3 1 2 3
9 3 |R %) 1v2 1 2 3
10 3 2 1 114 3 112
11 2 1 3 1 2 3
12 2 3 i 2 3 1
i3 1 3 2 3 2 1
14 1 3 2 2 1 3
15 2 1 3 3 1 2
16 1 3 2 2 3 1
Total 3l 33 32 32 29 35




From the totals in the bottom line of the table, which
differ very little, it is evident that from a point of view
of landing quality there is no real difference between
the 3 systems. Nor is there any real difference between
the systems with regard to the number of overshoots:
with system A there were 5, with system B 7 and with
system C 6 overshoots.

The conclusion must therefore be:

From the figures based on the data recorded between
the threshold and the touch-down point it cannot be
concluded with any certainty that there is a real dif-
ference between the 3 light systems as far as the
possibilities of executing a correct landing are con-
cerned. It should be kept in mind, however, that the
landings have been carried out with landing lights
switched on immediately after passing the threshold.
This conclusion, therefore, may not hold for -landings
made with the visual guidance of the different light
patterns oaly.

7.4 Heart-beat factor
In table 8 the average heart-beat factor is given for each
combination of initial position and light system.
Allowing for the fact that the standard deviation of the
average per system can be estimated as 0.018, it may
be stated from this table that: ‘
With system-C the heart-beat -factor is “higher on-the
average (95 % confidence} than in the case of system A.
The heart-beat factor for system B is also higher than
for system A {confidence lower than 95 %).

Table 8. Average heart-beat factor

Initial position —— Ideal High Left  Average
E A 1.36 1.33 1.35 1.35
32 B 139 140 139 139
& C 1.41 1.46 1.40 142

This result does not comply with the general tendency
of the conclusions stated in the foregoing paragraphs of
this chapter.

7.5 Wind speed and wind direction

The wind speed and wind direction are shown in Appen-
dix 111 for every flight. For none of the scores and data
analysed in the paragraphs 7.2 to 7.4 could a difference
between the resuits achieved with the 3 light patterns be
attributed to wvariations in wind speed and/or wind
direction.

8. Verbal comments

Immediately after completion of each approach and
landing, the test pilot was questioned by an engineering
test pilot of the MNational Aero- and Astronautical
Research Institute. The questions were roughly similar
for all concerned and were designed to encourage the
test pilots to comment frankly on the various aspects of

the light systems involved. Generally, pilots went into
great detail describing their respective experiences and
secemed to have firm opinions. Unfortunately, ail com-
ments were rather different and sometimes even contra-
dicting. F.g.: the intensity of the green threshold lights
was considered to be ‘poor’, ‘too bright’ or ‘satisfactory’

by different pilots; appreciation of the red T varied

between ‘very useful’, ‘useless’, ‘much too bright’ and
‘not noticed at all’, This may illustrate the doubtful value
of subjective appraisal based on verbal comments only.
It aiso proves the necessity of quantitative evaluation.
However, different opinions could in some cases be
related to the same basic judgement. In the following an
attempt has been made to give a survey of general
opinions.

Most pilots did rely on the intervention of the safety
pilot in case of emergency and would therefore refuse
to do the same tests without a safety pilot. The use of
landing lights from about 50 ft height until the touch-
down was completed, impeded a clear judgement of the
runway lighting. Many pilots focussed their attention on
the lighted texture and painted markings of the runway
instead of the runway lights, to perform flare-out and
touch-down.

With regard to system A there was a general complaint
of severe lack of height information in the manoeuvring
zone, until the 1000-ft crossbar. This crossbar, however,

.was appreciated as a clear indication of the 1000-ft

warning. The 60-ft gauge of the runway lights was
considered too narrow.

The isolated crossbars of system B supplied sufficient
initial information to start corrective action for alighment
or height. The area between the 1000-ft bar and the
threshold, however, seemed to be the main source of
information to complete the corrective action, especially
in case of a very late contact. The too wide gauge
(138 feet) of the double row of lights between the
threshold and the aiming point created a black gap with
respect to the bright pre-threshold area. Therefore, the
aiming point lighting was rather appreciated. The 150-ft
wide gauge runway lights were considered useless com-
pared with the 75-ft narrow gauge runway lights. Roll
guidance was considered unsatisfactory in' the landing
zone. '

The centre line with crossbars of system C was gene-
rally considered satisfactory, The 1000-ft warning in the
form of a red crossbar was found insufficient. The 230-ft
longitudinal spacing of the narrow gauge system was
considered too large; height information for flare-out and
touch-down became therefore unsatisfactory.

It may be concluded that system A was practically
unanimously rejected. A majority of the test pilots was
willing to accept system B, provided that specific, rather
controversial modifications were applied. These modifica-
tions seemed to have the common aim of creating a
compromise between the basic ideas underlying the
systems B and C, keeping the overall pattern simple
and having a clear configuration change at the threshold,
adequate [000-ft warning and aiming point lighting, and
adding centre line lights on the runway.

Generally, the fog simulating system was appreciated
as being basically sound, there being no errors introduced
by altitude or attitude variations. The system was also
considered a very useful training device.
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9. Conclusions

9.1 Test procedure and interpretation of resulis

The test procedure appiied in this investigation- is

characterized by

a. the use of airborne recording equipment for collecting
Quantitative data determining the quality of the actual
flight path- from the beginning of the final approach
until- touch-down as well as data on the pilot’s effort
(control movements, heart-beat frequency) to establish

~ approach and landing,

b. the application of a movable screen before the pilot’s
eves which, in combination with suitable filters and a
convenient adjustment of the luminous intensity of the
lights on the ground, simulates weather conditions in
homogeneous fog,

c¢. the elimination of the influence of personal character-
istics in the test results by means of a flight test
programme to be carried out by a minimum number
of test pilots and comprising a minimum of flying
hours. This programme was set up on a strict statistical
basis in order to obtain sufficient test data and to
avoid appreciable familiarization with the light con-
figurations and with local circumstances.

The data collected when applying the simulating device
mentioned under b) present a reliable basis of comparison
of the effectiveness of the guidance obtained from visual
aids during approach and landing.

The amount of data obtained in this procedure is so
large and is produced in such a form that a special
interpretation method had to be developed to reduce the
test results to a form suitable for statistical analysis. This
interpretation method yields consistent figures of merit
for the quality of the actual flight path and the touch-
down.

9.2 Verbal comments

The survey of the answers to a carefully selected set of
questions put to the "pilots in the present investigation
shows that such answers in themselves can not present
a reliable basis for comparison. of the quality of guidance
of different light patterns. Too much variance of sub-
jective impressions is brought forward in the answers.
An exception to this was the almost unanimously expressed
opinion that system A should be rejected.

Keeping in mind the restricted reliability of verbal
comments, a further conclusion might be that the majority
of pilots is willing to accept system B, if adequately
modified. The desired modifications point to a compromise
between the systems B and C, incorporating a con-
figuration change at the threshold, adequate 1000-feet-
warning, aiming point and centre line lighting on the
runway.

The movable screen and filter assembly was judged by
many pilots to give a realistic simulation of seeing con-
ditions in fog. This equipment was therefore considered
to be very useful for training purposes also.

9.3 Flight operational conclusions of results

The lowest quality marks for approach ground-track as
found for system A is most probably caused by insufficient
roll and alignment information. It is interesting to note
that more use of rudder has been made with this system,

which may indicate difficulties for the pilot with respect
to track-heading correlation.

The quality of the ground-track of the approaches
with system B (the Netherlands proposal) was better than
with system A and system C, which indicates better roll
guidance and orientation capabilities. This better result
has been achieved with less total movement of rudder
than in the case of system A.

It appears furthermore that the height over the thres-
hold with the systems A and C was above the ILS glide
path whereas with system B this height was very close
to the ILS glide path. These differences may have been
caused by a better height information from system B as
compared to that obtained from the systems A and C.

No significant differences in the qualitiecs of landing
between the different systems have been found. This is
probably due to the use of landing lights after crossing
the threshold, which enabled the pilots to pick up other
information (tyre marks, paintings, timber boards of the
experimental light installation, etc.) than from the landing
mat only. This extra information levelled out possible
differences in guidance from the light patterns compared.

9.4 Future work
In view of the last sentence of the foregoing paragraph
and the unsatisfactory height guidance provided by all
3 systems {see table 2) it is very desirable to have the
investigations continued, especially with the aim of study-
ing details of the light pattern on the first 2000 or 3000
feet of the runway as;
— the desirability of a configuration change at the
threshold,

— single or double gauge systems consistiig of lateral

or longitudinal barrettes or both,
— the addition of centre-line lights and
— the conspicuity of the light pattern at the ideal aiming

point.

Other subjects which demand investigation are:
— the weather limits for the application of visual

approach slope indicators and ’
— the possibilities of simpiification of light patterns in

general.
It would be of the greatesi importance 1o repeat a part
of the present investigations in aircraft of recent design.
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APPENDIX I

TEST PILOTS PARTICIPATING IN THE FLIGHT TEST

PROGRAMME
Name Qualification Main flying
and affiliation experience

P. Both Chief Pilot, Martin’s Air DC-3
Charter

R. W. Bray Sqn. Ldr., Blind landing  Varsity
Experimental Unit,
Royal Aircraft
Establishment

P. E. Bressey . Captain, IFALPA Viscount

M. L. H. Carter Captain, IFALPA Viscount .

C. D. Crogan Flt. 1t.; Blind landing Varsity
Experimental Unit,
Royal Aircraft

: Establishment

H. J. P. Dijkema Pilot, Dutch Pilots Convair
Association

J. H. Eilders Captain, Dutch Pilots DC-8
Assocjation

H. A. Hooper Captain, BEA Viscount

J. Koedam Captain, Dutch Pilots  DC-7
Association

H. R. Leutwiler Captain, Swissair DC-3°

S. E. C. Martynse Pilot, Dutch Pilots DC-6
Association

C. Mattern Captain, Dutch Pilots Electra
Association )

B. M. Orange Captain, Dutch Pilots Electra
Association

C. G. J. Reyers  Imspector, Neth. Dep. Beechcraft
Civ. Aviation

H. D. Savage Cdr., Ops. Specialist, Carrier-acft
FAA

L. W. F. Stark  FIt. it,, Blind Landing Varsity
Experimental Unit,
Royal Aircraft
Establishment

1. C. P. Stuy  Pilot, KLM Convair

R. Walker Dep. Chief Test Pilot, Friendship

Fokker

APPENDIX IT

FLIGHT TEST PROGRAMME
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C.C.L. Class, N 822

REPCRT NLR-MP. 222

Flight Operational Evaluation of Approach and Runway
Lighting (Second Test Series)

by

Ir. F. E. Douwes Dekker

Summary. The present report deals with the results of comparative
Right testing of 3 configurations for approach and runway lighting
under simulated conditions of 1000 ft slant visual range. As such,
this investigation is a continuation of earlier work of this kind.
The flight tests have been carried out at Kéln-Bonn International
Airport in December 1962 with a Lockheed Super-Constellation
aircraft. Theé 3 light configurations consisted essentially of:

—an existing layout at the above airport,

-the reference pattern, suggested during the 2nd meeting (1962) of

the ICAQ Visual Aids Panel,

—an installationsimilar to thatat New York Idlewild International

Airport,

The evaluation of the flight test results, based on analysis of
measured data obtained during 144 landings executed by 24 pilots,
shows the best overall landing performance for the second con-
figuration. The present results confirm the most important con-
clusions from the earlier experimental studies on those items which
were common to both investigations. Generally, pilots’ opinions
contributed effectively in reaching pertinent conclusions.

The investigation was sponsored by the Netherlands Depart-
ment of Civil Aviation and guided by a study group composed
of experts representing interested organizations in the Netherlands.
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1 Introduction

During the last few years' considerable effort has been
devoted in the Netherlands to the development of visual aids
for approach and landing. In particular, attention has been
focussed on the flight operational evaluation of existing and
proposed light patterns under conditions of reduced visi-
bility as prevailing in phase two operations?).

After initial flight tests in 1959 at Eelde Ajrport (Gronin-
gen, the Netherlands) a complete test programme was car-
ried out at the same airfield in 1960, A detailed account of the
latter test series has been published in a paper, entitled
*“Flight Operational Evaluation of Approach and Runway
Lighting” by J. B. de Boer and T. van Oosterom (“De Inge-
nieur”’, nrs. 49 and 51, 1961).

The present series of tests may therefore be regarded as
a natural sequel to previous investigations in this field and
to the recommendations for future work ensuing from them.
These new investigations were especially aimed at studying
details of light patterns from 1000 ft before until 3000 ft
beyond the threshold, using a much heavier aircraft, viz, a
Lockheed L-1049G Super-Constellation, made available by
KLM-Royal Dutch Airlines (see fig. 1)

Full-scale tests on runway, light patterns do not allow
much variation in pattern’ without serious financial and
practical consequences. The use of many experimental lights,
even of very light weight, on an active runway was con-
sidered unacceptable. Therefore, it was preferred to carry
out the test flights on a runway with existing flush type
narrow gauge and centre line lighting. Such a runway was
found at Kéln-Bonn International Airport and Kindly made
available by the authorities of this airport. The flight tests
were performed in December 1962 at this airpert, with the
experimental light patterns laid out on runway 32-right.

The test procedure followed in the *“Eelde trials™ has been
applied, except for certain details. As to the basic procedure,
reference may be made to the paper mentioned above;
alterations will be dealt with in this report.

Adaptation of the NLR fog simulator, described in the
above mentioned paper, to the Super-Constellation required
extensive redesign and allowed some mechanical improve-
ments towards full automatic operation, The basic principle
of operation (i.e. maintaining constant slant visual range
regardless of height and pitch attitude throughout approach
and landing), however, has not been changed. It may be
reminded that with this device the outside view for the safety
pilot in the right-hand seat remains unaffected.

The required absence of additional visible texture on the
ground necessitated the tests to be flown without daylight or
aircraft landing lights.

1) According to IATA-ICAQ terminology, a *“phase two opera-
tion” is characterized by 100 feet cloud base and } mile visibility.




Fig. 1. Test aircraft Lockheed L-1049 G, Super-Constellation,

2 Light configurations

The 3 light configurations illustrated 'in fig. 2 have been
evaluated. They have 2 basic components in common, viz.
a standard Calvert approach light pattern with 6 crossbars,
having 500 ft longitudinal spacing, and a 60-ft narrow gauge
of lateral arrays on the runway with 200 ft longitudinal
spacing, extending 4000 ft from the threshold along the
runway. All systems are equipped with a 200-ft wide green
threshold marking provided with a 60-ft central gap.

Configuration I, representing the standard pattern actually
laid out on runway 32-right of Kdln-Bonn Airport, had,
in addition to the basic system described above, a centre
line with 100 ft spacing, extending all along the runway,
as well as two 15-ft long wing-bars, 200 ft apart, at the 1LS
reference point located 1000 ft from the threshold.

Configuration 2 contained the so-called 1CAO reference
pattern, recommended by some members of the ICAO
Visual Aids Panel in its 2nd meeting (summer 1962) as a
standard reference in comparative trials and as such adopted
by a working group of this panel. This pattern is composed
of corfiguration 1 without the wing-bars and with the ad-
dition of a 120-ft wide red gauge between the 1000-ft cross-
bar and the threshold, a reinforced white centre line in the
same area (barreties of 5 lights instead of single lights) 2
green longitudinal barrettes with 150-ft gauge, connected
with the thresheld marking, and 2 T-shaped markers at the
ILS reference point. ‘

Configuration 3, representing essentially the originial in-
stallation at runway 04-right of New York ldlewild Airport,
consisted of the basic systern described above, completed
by the reinforced centre line as applied in configuration 2,
and a runway centre line commencing at 4000 ft from the
threshold.

All lights in addition to the permanent installation were
of the same construction as the experimental lights previously

b g i e e+ 4
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used during the “Eélde trials”. Change of light configuration
from one system to another could be accomplished in a few
minutes. The luminous intensity of various groups of light
sources could be adjusted independently, ensuring a correct
balance of éach complete configuration ).

3 Flight test procedure %)

A total of 24 subject pilots participated in the tests, each
one performing 2 landings on each of the 3 light configura-
tions, bringing the total number of test landings at 144.
Names and particulars of the subject pilots are listed in
table 1. Earlier experience indicated that a number of 24
subjects is large enough to prevent intolerable influence from
individual characteristics in the test results.

The whole test programme has been carried out during
8 test nights, designed A to H inclusive (sec table 4).
During each test night a flight programme was carried out,
consisting of 18 landing trials for 3 subject pilots, requiring
about 3 hours total block time. Each night, the first landing,
marked SP in table 4, was made by the safety pilot
without the fog simulator,

The landing sequence with regard to pilot and light pattern

%) The lighting installation and the relevant electrical equipment
was built and maintained under supervision of Mr. H. Aarts,
Philips® Lighting Laborarory.

Y Capt. F. J. Lodeizen, KLM Hfight instructor, acted as safety
pilot during all test flights. Flight engineering duties were perfor-
med by Mr. F. N, Beudeker or Mr. C. H. O. Meyer, both of
KLM. All other duties in the aircraft with regard to recording
equipment, fog simulator, pilots’ comments and general manage-
ment were attended to by staff of the NLR. All duties on the
ground with respect to photographic equipment, light instailation
and liaison were taken care of by staff of RLD, Philips, and K&in-
Bonn Airport.
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(see table 4) varied from night to night and was carefully
chosen in order to cancel out as much as possible the influence
of variations in wind speed, wind direction and turbulence,
occurring ‘during the individual test nights. In addition, this
choice should exclude the influence of fatigue as well as
the familiarization of the pilots with the light configurations.

Similar to the proceaure followed .in the previous test
series,- the visual range of the lights'as seen by the subject
pilot has been kept constant throughout the approach and
Ianding to 1000 ft slant visual range by means of a modified
version of .the NLR fog simulater. This simulator is only

applied to the visual field of the subject pilot, whereas the-

safety pilot has unrestricted view.

The safety pilot brought the aircraft in a stabilized position

on the ILS glide path at about 900 ft height in the following
configuration: 80% flaps, landing gear extended, 130 kis
IAS, 2400 RPM and about 28 inch MAP; the aircraft weight
was 100,000 lbs (nearly maximum landing weight). Then the
' subje_ct pilot took over control of the aircraft on instruments,
continued the approach and performed the landing, Wave-
off procedure, if necessary, was usuallyinitjated and always
performed by the safety pilot.

Immediately after nose-wheel touch-down, the safety pilot
proceeded with a rolling take-off and brought the aircrafi,
_ via a visual circuit, again on the initial position described
above. The 80%-flap setting remained unchanged during
approach and landing. The subject pilot knew in advance
which light configuration to expect.

The procedure outlined above differed from the one
-applied in the previous test series. It had been the intention
to have the subject: pilot take over control, as usual, only
when visual contact was established. He should have been
brought by the safety pilot in a specified off-centre position
at the middle marker. The initial deviation was either 100 ft
left of the centre line or 30 ft above the glide path but
unknown to the subject pilot. Therefore, zero reader and
ILS ‘cross pointer ought to be blanked-off, This procedure
was followed during the first 6 landings of the first test night.

It then became clear that, due to the high speed of the less
manoeuvrable aircraft used in these tests, the initial lateral
deviation necessitated unacceptable corrective manosuvres,
while the initial height deviation not being corrected, resulted
only in a greater air distance. Even reduction of the initial
deviations to about half their original values mentioned
aboye, proved that it was rather unrealistic to take over
control of this type of aircraft at this late stage of the ap-
proach, and"depriving the subject pilot of apparently vital
information contained in zero reader and ILS cross pointer
indications. 1t was therefore decided to adopt the modified
procedure described above, from the second test mght on-
wards. The initial position deviation just prior to establishing
contact,” when following this procedure, can be considered
to be of a random nature, still providing sufficient scatter

in the initial test conditions.

Power settings, demanded by the subject pilot, were
accomplished by the flight engineer. The subject pilot’s
altimeter was set at sea-level pressure (QNH). Due to a
threshold elevation of 300 ft, pitot-static position error and
instrument ‘error, touch-down usually took place at about
250 ft indicated altitude and at-normal touch-down speed
(100 kts).

Details on weather conditions are given in table 2,

4 Fog simulation

The NLR fog simulator has been adapted to the Super-
Constellation cockpit. The original device, as applied in the
C-47 aircraft (see paper mentioned in the introduction), has
been modified but basic operation remained the same. The

height control unit was removed and replaced by a Bendix

altitude sensor in the control loop; which resulted in auto- -
matic height control and a better performance in the case
of large variations in rate of descent. The pitch attitude
sensor of the elevator channel of the PB-10 autopilot, used
for servo-control of the screen, was replaced by a Sperry A-12
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Fig. 3. NLR fog
simulator.




Fig. 5. Screen drive.

Fig. 4. Control and
checking eqguipment of
fog simulator.

vertical gyro, which increased the total accuracy of the
system. In-flight adjustment of the screen position with
respect to.pitch attitude was accomplished by a Bendix
trim synchro in the same control loop.

The screen jtself, in front of the subject pilot, was moving
in a plane perpendicular to the aircraft’s longitudinal axis,
ensuring a linear relationship between servo motor- and
screen position and simplifying the screen drive ).

The total transmission of the filter assembly mounted in
the fixed head support ®) remained at 8% The visibility
below ceiling was always better than 5 miles during all test
landings. These conditions together with the adjustment of
the luminous intensity of all lights at approximately 50 cd
assured rather homogeneous visibility of the lights well above
threshold visibility without creating distraction by glare.

The aircraft’s landing lights have never been used. The
fog simulator as mounted in the test aircraft is illustrated
in figs. 3, 4 and 5.

The fog simulator was always adjusted for a slant visual
range of 1000 ft except. during the first 6 landings of test
night C, when the visval range was estimated to decrcase
gradually from 2500 ft to 1000 ft. During landing no. 17 of
this particular night, the fog simulator was switched on too

Jate, so that the visual range suddenly changed from 0 to

1000 ft at a Positiofl 1000 ft in front of the threshold. The
influence of these and othe. minor deviations mentioned in
table 4 — occurring in a small number of tests only -
on the total results proved to be negligible.

‘5) The modified fog simulater has been designed by Messrs. H. A,

Mensink and K. Wams of the NLR.

®) The head support was located 15 ft above and 43 ft in front
of the main wheels’ lowest point, measured along the aircraft’s
reference axes, The cockpit cut-off angle amounted to 15° with
respect to the aircraft’s longitudinal reference axis.




Fig. 6. Recording
equipment in the aircraft,

Fig. 7. Instrument panel of automatic
observer (1. split second watch,

2. elevator position indicator,

3. top-axis accelerometer, 4, event
marker, 5. pitch attitude indicator,
6. aileron position indicator, 7. angle
of roll indicator, 8. screen position
indicator, 9. rudder position
indicator, 10, synchronizer,

11. altimeter, 12. counter,

13. airspeed indicator, 14, watch)}.




5 Recording equipment

The basic idea underlying this comparative evaluation of
approach and runway light configurations is to exclude the
influence of subjective judgement by statistical analysis of
measured performance data. This requires the choice of
certain parameters obtained from recorded data which may
be considered to represent the quality of different aspects of
the whole approach and landing manceuvie and of the
pilot’s effort to carry it out. Th.lS choice will be dealt with
in detail in chapter 6.

"The recording equlpment in the aircraft and on the ground
did not differ essentially from what was used during the
“Eelde trials™; for details of this equipment reference may
be made to the paper mentioned in the introduction, It may
be reminded, however, that the following quantities were
recorded: '

indicated airspeed,

altitude,

pitch attitude,

angle of roll,

ILS localizer deflection,

ILS glide-path deflection,

vertical acceleration,

control surface deflections,

flight path from threshold until touch-down.

The airborne recording equipment is shown in figs, 6 and 7.

Calibration of the ILS signals was carried out by the local
authorities. This resulted in the following basic character-
istics:

Iocalizer transmitter, located 13,353 ft from threshold,

ILS refercnce point, located 960 ft from threshold,

localizer beam width 3.3° (no bends),

glide path slope 2.7° (no bends),

glide path beam width 1.1° (symmetrical beam type).

The ILS receiver antenna -was focated 13 ft above and
51 ft in fromt of the main wheels’ lowest point, measured
along the aircraft’s. axes.

Instead of the aircraft’s anti-collision light a constant-rate
flash light, mounted behind . the starboard most aft cabin
window, was used for flight path recording by means of
ground camera’s as appliedin the first test series. The ground
camera’s covered the flight path profile over a length of
2400 ft beyond the threshold.

This time no physmloglcal data (such as the heart-beat
fréquency) have been used in the evaluation procedure.

The opinion of the subject pilot himself might'add to a
better understanding of the quantitative conclusions. There-
fore, care has been taken to record pilots’ opinions during
the execution of the tests. A general survey of these comments
is given in capter 8.

6 Evaluation system

From the various recordings, graphs have been composed
of pitch attitude, angle of roll, aircraft height and lateral
deviation (ground track) as a function of distance from
threshold for all test landings as well as for. the landings
(marked SP in table 4) performed by the safety pilot.
Aircraft height was defined as the distance between the
lowest point of the main wheels and the average plane
through the first 3000 ft of the runway surface, having an
average slope of .57%. A typical graphisgiven in fig. 8. Values

for travel of elevator, rudder and aileron, according to the
definition given below, appear in the legend of this graph.
Quality marks have been assigned to various aspects of
the complete manceuvre with cssentially the same evaluation
procedure as the one applied to the “Eelde trials”. This
procedure has slightly been modified and adapted to the
present circumstances, the latter being different in type of
aircraft landing technique, approach speed etc. The various
aspects of the performance are:
approach height deviation, height (measured vertically) of a
conical channel as described below, enclosing the flight
path until threshold,
approach ground track, width (measured [aterally) of a
conical channel as described below, enclosing the flight
path until threshold,

threshold hejght,
threshold speed,

height deviation, height of a channel shaped as
described below, enclosing the flight path from
threshold until touch-down,

flare-out | ground track, width of a prismatic channel, enclos-

ing the flight path from threshold until touch-
down,

touch-down distance, distance from threshold until
touch-down,

rolf wave-length, average distance covered for’ one roll
oscillation,
roll amplitude, maximum change of angle of roll Tor one roll

-oscillation,
pitch wave-length, average distance covered for ome pitch

oscillation,
pitch amplitude, maximum change of pitch attitude for one

pitch oscillation, -
elevator, rudder and aileron travel, the average of all differen-
ces (absorute values) between successive control deflections,
measured at 1 sec interval over the period of 15 sec
preceding the crossing of the threshold.

Pitch- and roll characteristics have been considered near the
threshold only. :

Unlike the evaluation of the previous tests, the vertical
deceleration of impact at touch-down has not been used for
evaluation of the touch-down quality because heavy landings
were prevented by the safety pilot;

Some of the quantities mentioned above, have been
evaluated by means of a grid system as shown in fig. 9.

Four of these grids, each being related to a part of the
total flight path, represent channels of rectangular cross
section enclosing the flight path. The application of these
grids is as follows:
grid 1, approach height deviation,
grid 2, approach ground track,
grid 3, flare-out height deviation, touch-down distance (hori-

zontalscaleonly), threshold height (verticalscaleonlyj,
grid 4, flarc-out ground track.

The use of an “entrance portal”, as in the prevxous test
series, has been replaced by the more realistic requirement,
that the approach flight path should be directed towards an
“ideal” aiming point (see points A and B in fig. 9), around
which the refevant grids 1 and 2 may be pivoted in order to
find the smallest channel able to enclose the actual flight path,

Grid 3 has been fitted to the scales of threshold height and




o

touch-down distance by channels tapering towards point A
and graduelly merging into parailel channels with 17 slope.
The way in which grid 4 is applied, is clear from fig. 9.

Grid 5 js used to evaluate wave-length as well as amplitude
of roll and pitch oscillations. ‘

The numerical values of the quality marks for the various
performance aspects are defined in table 3. Generally,

higher marks represent better performances. It should be
kept in mind, that higher quality marks for control travel,
correspond to greater pilot’s effort in performing the landing
manoeuvre.

The results of the application of the evaluation procedure
described and defined above, have been collected in table 4.
A few mistakes made during the tests are noted in
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this table. In some cases,. marked “overshoot”, the landing .

had to be aborted due to unacceptable flight conditions near
the threshold. In other cases, marked “corrected”, the safety

pilot had to intervene during flare-out, in order to avoid:

damage to the undercarriage of the aircraft.

It may be noted from table 2 that some tailwind component
was gencrally experienced except during the test series F and
H, having an average headwind component of 8 and 3 kis
respectively. Therefore, all quality marks for threshold height,
threshold speed and touch-down distance for the test series
F and H have been reduced by 2 and 1 point respectively
in order to make these results comparable to other ones.

The large choice of aspects, representative for the quality
of the performance achieved by the pilot and for the pilot’s
cffort, together with the satisfactory spread in quality marks
as shown in table 4, are believed to offer the 'best
possible basis for statistical analysis of the recorded test data.

7 Results and their statistical analysis 7)

In table 5, for each light configuration, the total average
values - i.e. the values averaged over all test nights — of the
quality marks for the various aspects of the landing manoeu-
vre are given. In order to determine whether the difference
between 2 total average values for the same aspect should
be considered “significant”, a statistical analysis of the ex-
perimental results has been made.

Firstly, the standard deviation of the total average values
has been calculated. By statistical reasoning, it can be found
that the ratio of the difference between 2 total average values
and their standard deviation ought to be at least 2.56 in order
to reach a 909/ “confidence” that a real difference between
the light configurations does-exist. If the ratio exceeds 3.15,
the confidence level reaches 9527, It is customary to accept
this level as a sufficient proof of a real difference.

Secondly, to check the conclusions from the differences
in average values and their standard deviations, ranking

light configurations and the confidence levels of these
differences for the 5 aspects referred to above are shown
The meaning of the symbols is:

>> “greater than” with a confidence level of at least 95 Ys

> “greater than” with a confidence level of 90-95 %,
= the confidence level is smaller than 90%,.

Light configuration o1 2 3 1

" Quality mark for:

methods have been used. To this end, for each night and -

each performance aspect, a ranking number has been given
to each light configuration: 1 to the configuration with the
lowest average value, 3 to the configuration with the highest
and 2 to the configuration with the intermediate value. For
cach light configuration and each performance aspect the
sum of the eight ranking numbers has been calculated. From
statistical considerations it results that if this sum equals
21 or more, real quality differences exist between light
configurations for that performance aspect.

The statististical treatment of the quality marks described
above, tesulted in significant differences with respect to the
following aspects: approach height deviation, elevator travel,
pitch amplitude, flare-out ground track and threshold height.
For all other aspects, the natural scatter of the quality marks
was too great 'to draw definite conclusions.

In the tables 6 to 10 inclusive, the average values of quality
marks, the ranking numbers and their totals are given foreach
test night with respect to the 5 aspects referred to . above.
These tables also contain the standard deviation of the total
averages.

The results of the statistical analysis are summarized in
the following table. In this table the differences between the

7y The statistical analysis has been performed by Prof. ir. J. W.
Sicben of the Technological University, Delft.

approach height deviation 1€ 2> 3 =1
elevator travel *) 1= 2< 3>» 1
pitch amplitude 1> 2= 3 =1
flare-out ground track 1€ 2> 3 =1
threshold height 1 € 2> 3 > 1

*) High quality mark corresponds to low performance.

From this table the following conclusions, based on 9575 -

confidence, may be drawn:

a. configuration 2 gives better height guidance during ap-
proach, better tracking during flare-out and better thres-
hold height than configuration 1,

b. configuration 2 allows better tracking performance during
flare-out than configuration 3,

e, configuration 3 requires more elevator movement than
configuration 1.

In addition, the following tendencies seem to exist {con-

fidence level 90-955):

a. configuration 2 gives better height guidance during ap-
proach and better threshold height than configuration 3,

b. configuration 3 requires more elevator movement than
configuration 2,

¢. configuration 1 shows less prtch attitude variation than
configuration 2 or 3,

d. configuration 3 shows better threshold height than con-
figuration 1.

The ranking numbers give a satisfactory confirmation of the

above conclusions.

The total average threshold height for the light configu-
rations 1, 2 and 3 was found to be 73, 61 and 65 ft respect-
ively, while the ideal threshold height is 50 ft. This confirms
the relevant conclusions based on average quality marks and
also shows that the threshold height scale below 50 ft has
practically not been used. Pilots appear therefore to fly high
over the threshold, particularly with configuration 1, less
with configuration 3 and closest to the ideal height with
configuration 2.

The 24 subject pilots can be divided into 3 groups:

6 KLM captains, 12 KLM co-pilots, and a group consisting
of 2 captains of Air France, 2 captains of Deutsche Lufthansa
and 2 pilots of the Blind Landing Experimental Unit (U.K.).
It has been argued that this does not represent a random
distribution, resulting in certain influences (e.g. of training,
experience, age, etc.) on the test results, Therefore, table 11
has been composed to show the average values of quality
marks for these 3 groups separately. In this table, ranking
numbers have been assigned with respect to light configu-
rations for each aspect under consideration and for each
group of pilots, as well as for all pilots together.

It is shown that the results for the different groups of
pilots were consistent, except in the case of pitch amplitude,
which is in accordance with the fact that “significant”
differences appeared to be relatively poor in the foregoing
analysis for this performance aspect.



There have been 22 overshoots out of 144 tests. Besides,
the flare-out has béen corrected 12 times by the safety pilot
to avoid damage to the aircraft. No significant conclusions
could be reached in this connection with regard to the light
configuration used,

The reduction of the number of test results due to these
overshoots appears only in the flare-out performance data,
which may have contributed to the fact that no significant
differences have been found in this respect.

8 Pilots’ comments

Before entering into detail as regards the various comments
of the subject pilots, the following general remarks should
be made.

It has been observed that pilots’ comments went far less
into detail as compared to the previous “Eelde trials”. Pilots
were relatively more busy in controlling the. airciaft and
had less time to appreciate the individual features of the
visual aids. This was probably due to the much higher
ground speed during approach of about 130 kts with respect
to 95 kts during the previous tests. Furthermore, the much
higher aircraft weight allowed less manoeuvering in the
approach area.

The total time required to correct a lateral position
deviation amounted to about 15 sec, which corresponds to
about 3000 ft distance covered. This means. that in order
to reach an acceptable flight condition at the TLS reference
point ®), an immediate, well judged corrective action was
imperative as soon as visual contact was established. During
the tests, it became quite clear that carrying out such cor-
rective action, based on visual outside cues alone, was more
difficult than relying upon the information available from
the instrument panel and using the outside cues merely as
a confirmation of the latter. information, From the foregoing
it appears that the operational flight technique for low-
visibility landing affects the appreciation of visual aids. For
instance, the importance of a 1000-ft pre-threshold warning
bar depends on whether or not pilot’s action on power-
setting or configuration is related to it. It has been understood
that some pilots prefer to maintain strictly one flight con-
dition i.e. pitch, airspeed, power setting and configuration,
unti! a flare-out at the minimum acceptable height. In such
a case a stabilized instrument approach will guarantee a
safe height of about 125 ft when the 1000-ft bar is well visible
and no action will be required. The same applies to the
perception of the threshold. Both observations then merely
confirm the progress of the approach. Other pilots are used
to carry out a gradual change of configuration, power-set-
ting, airspeed and pitch during the last 3000 ft distance
before touch-down. Such flight technique definitely requires
distance-to-go information as well as some sort of height and
pitch guidance.

With respect to pilots’ comments, the 24 subject pilots
can be divided into 5 different groups:-

a. 2 Lufthansa captains,
5. 12 KLM co-pilots,

¢. 6 KLM captains,

d. 2 Air France captains,
e. 2 BLEU rescarch pilots.

8) ILS reference point, as described in JCAO Annex 10, Attach-
ment C, para. 2.4.
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Pilots’ opinions will bc related to these groups in the
text below.

It was rather surprising to note that the first 4 crossbars
of the Calvert approach light pattern were not much appre-
ciated. They were even considered confusing {group a) with
regard to finding the location and the direction of the centre
line. During this stage of the approach, the visual segment
is still so short that these lights can hardly supply useful
information, especially when some [ateral deviation or crab
angle prevails, It was suggested to delete these crossbars
(group a and d).

Those pilots, willing to rely completely on outside visual
cues (group b) found themselves often misled after their
first corrective action wpon initial visual contact, while those
continuing mainly on instruments until visual information
was considered to be complete (group ¢), generally reached
a better position near the threshold.' A perfect instrument
approach could be spoiled by trying to use relatively poor
outside information.

The 1000-ft bar was considered to be inconspicuous in
the configurations 1 and 3. In this respect the red wide gauge
lighting of configuration 2 was welcomed by all pilots. These
red lights were found to be very useful as a bracket or gate

by which the acceptability of the lateral position deviation
could well be judged (group e). A few pilots considered the
red double row to be confusing (group a, some of group h)
especially when a corrective manoeuvre was already initiated;
the direction of the centre line seemed to be lost in such
a case. - '

The end of the area with red lights of configuration 2
meant distinctly and obviously that the threshold was in
sight. This was the main reason for all pilots, except group
a and some of group b, to prefer. configuration 2 above 1
and 3. Those criticizing the red lights favoured a simple
light pattern but insisted upon a good threshold indigation
which they found insufficient in configurations 1 and 3;
it was generally not realized or too late, that the beginning
of the narrow gauge runway lighting was the beginning of
the runway as well.

The pilots of group b showed a tendency to swing between
the narrow gauge or to be attracted to either side. Some-
thought this oscillation to be caused by the existence, others
by the absence of a runway centre line. Generaily, however,
there was no doubt about the necessity of a runway centre
line, provided that these lights should not be brighter than
the narrow gauge lights.

No complaints or suggestions with regard to gauge width
or longitudinal spacing of the runway lights were expressed.

The length of the visual segiment was generally too small
to enable the pilots to perform a clear-cut flare-out. Many
pilots showed a tendency to misjudge the flare-out or to
feel their way down to a touch-down 3000 ft from the thres-
hold.

The ILS reference point wing-bars of configuration 1 were
hardly ever noticed. Pilots did not seem to appreciate any
indication of the ILS reference point because no decision
or action was related to it.

A total length of 4000 ft narrow gauge lighting was gene-
rally favoured.

A distance marker at about 2500 ft from the threshold
was thought to be useful as a warning when landing on a
runway of critical length.

The following conclusions based on the opinions of the
majority of subject pilots, may be derived:




a. the first 1500 ft approach lights were not considered of
much importance,
b. an unmistakable distance warning, located 1000 ft in front

of the threshold, was considered either useful or essential,

e. all pilots required a clear and very distinctive indication
of the threshold,

d. the red wide gauge pre-threshold lighting of configuration
2 was considered as to meet the desire mentioned in b
and the requirement stated in c,

e. no pilot insisted upon an indication of the ILS reference
point, although some would like a distance marker at
about 2500 ft from the threshold for a runway of crmcal
length,

f- all pilots, except a few in group &, required a centre line
throughout the complete light configuration,

£- all pilots seemed satisfied with the narrow gauge runway
lights, although many of them had difficulties in assessing

~ their flare-out.

9 Conclusions

9.1 General
When reviewing the results of the present investigation, it
should be kept in mind that this is a continuation of the
“Eelde trials™ executed in 1960. In order to emphasize the
value of the complete investigation, the conclusions resulting
from the present tests, therefore, should also be considered
as far as possible in relation to those of the previous trials.

Generally, it can be concluded that the application of a
large four-engine nosewheel aircraft of more modern design
to these tests does not affect the trend of the results obtained
from the “Eelde trials”, but rather strengthens the conglusions
and views based on these trials.

In the following conclusions the main iter:s of approach
and runway lighting are treated separately.

9.2 Approach lighting

With respect to the approach lighting the following conelu-
sions can be drawn:

a. from the statistical analysis of the present test data it
appears that the red wide gauge pre-threshold lighting of
configuration 2 is responsible for its better guidance in
height before and over the threshold. Threshold heights
closest to the ILS ghde path were also found for thesimilar
light configuration in the “Eelde triais”. The latter,
moreover, proved to offer better tracking qualities: before
crossing the threshold, which is confirmed in the present
tests by pilots’ judgement only but is not “significantly”
shown by the test results as such,

b, the reinforced pre-threshold centre line of configuration 3,
apparently, improves the height guidance in the pre-
threshold region as well. However, this improvement is
of less importance than the one obtained by the double
row of red lights in configuration 2,

¢, confignration 2 allows better tracking performance during
flare-out than configurations 1 and 3. In this respect, the
latter configurations do not show a “significant™ difference,
proving that the uninterrupted centre line of configuration
2 cannot be responsible for the better flare-out tracking
capability of this configuration. Therefore, it seems justi-
fied to state that the better flare-out tracking guidance as
proved by the test results must result from the red pre-
threshold lights, allowing better stabilization and judge-
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ment of lateral deviation as stated by some pilots. This
points to better tracking guidance before the threshold
which was proved by the “Eelde trials”.

9.3 Threshold identificarion

Apparently, pilots find in the red lights of configuration 2
an unmistakable distance warning of conspicuous repetitive
character, beginning at 1000 ft before the threshold, as well
as a distinctive threshold marking.

The main criticism on configurations 1 and 3 was directed
towards poor threshold lighting and insufficient pre-thres-
hold warning. In this respect the pre-threshold centre line
of configuration 1 was considered too weak.

9.4 Aiming point
The indication of the aiming point as applied in the runway
light patterns does not seem to improve flare-out.

A distance marking at 2500 ft from the threshold, however,

‘should according to pilots® comments, be considered as a

useful warning in case of a landing on a runway of critical
length.

9.5 Rumway centre line
Elevator movement has been apphed to a higher degree
with configuration 3 as compared with configuration 1 and
also (at a smaller confidence level) with configuration 2. This
may be attributed to the interruption of the centre line in
the first part of the runway of configuration 3, presenting
a less complete ground plane picture to the pilot.
According to pilots’ opinions an uninterrupted centre
ling lighting, preferably of slightly less intensity than the
narrow gauge runway lighting, is generally appreciated. The
test results, however, do not show the centre line to be of
help in reducing lateral deviations.

9.6 Additional conclusion
No significant differences in the light configurations could
be found with respect to approach ground track, threshold
speed, flare-out height deviation, touch-down distance, lateral
and directional control.

Remark:
1t should be realized that these conclusions are closely related
to the short visual range (1000 ft) applied in these trials.

10 Future work

From the tests executed so far, no guidelines can be derived
for obtaining the highest effectiveness of runway light pat-
terns. In the “Eelde trials” the application of landing lights
prevented any conclusion in this respect, while in the present
tests no comparison of systems could be made because only
one type of narrow gauge system with lateral elements could
be presented on the ranway.,

Moreover, the aiming point indication in the present trials
was not similar to that applied in the previous test series and
was less conspicuous in character.

It is considered necessary to investigate this item separately
by flight operational evaluation after a pre-selection of
patterns by simulated landing trials.
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Table 2. Average weather conditions.

Name Grade Affiliation  Flying howurs Age
total approx.
J. N. van der Ben Co-pilot KLM 3500 27
R. K. van der Bijl Co-pilet KLM' 4000 29
C. D. Crogan Flit. Lt. BLEU 3600 39
C. R. Dierdorp Captain KLM 12000 41
O. Ferwerda Co-pilot XLM - 4000 30
J. Forster Captain  Lufthansa 12000 41
R. Gaurand Captain  Air France 10000 42
R. Goedkdop Co-pilot KLM 4200 3
C. Groenendijk Co-pilot KLM 5000 33
D. C. Hovingh Co-pitot  KLM 4000 29
G. H. de Jong Captain  KLM 7500 33
B. G. Koning Captain = KLM 12000 41
K. de Lange Co-pilot KLM 4000 21
J. Londaits Captain  Air France 12000 40
B. Lyklema Co-pilot KLM 3600 27
A, Mulder Co-pilot KLM 4000 27
J. M. Nieuwenhuyse ~ Co-pilot KLM 3500 29
J. Ohm Captain  Lufthansa 10000 41
F.J. de Regt Co-pilot KLM 7000 Hn
J. J. M. van Rijn Co-pilot  KLM 3500 32
J. Sprong Captain KLM 12000 40
N. van der Stroom  Captain XLM 10000 39
E. C. Turner Fit. 1t. BLEU 2800 32
Y. H. Wiarda Captain KLM 14000 42

Dare Test Block- Average Gusts  Cloud
night time wind speed base
1962 . (hrs. components (kis) 1§13}
. min} head tail sthd port
20nov.t) A 334 2 6 slight 2500
4decy B 314 6 3 none  none
5 dec, C 242 4 2 none none
6 dec, D 2.24 7 2 none none
7 dec. E 3.14 6 1 none misty
10 dec. F 2.52 8 4 some 800
12 dec. G 2,40 6 0 0 slight 1200
13 dec. H 247 3 3 slight 1500

1) Unfavourable weather conditions (natural fog} prevented test
flying during the period between test nights A en B.

Table 3. Numerical values of quality marks for various performance aspects.

The figures in this table corresponding with
the quality marks 1-10, represent for:

- nality mark
approach height dev:atmn. half of channel height Quality

¢ 1 2 3 4 5 6 7 8 9 10

in ft measurcd 3000 ft in front of threshold
(fig. 10, grid 1),
approach ground tmck half of channel width in ft

Approach height

)

meg.s%ed 3000 ft in front of threshold (fig. 1 deviation s 5 50 45 40 35 30 25 20 15 10 5
erid 2),
threshold height, range in ft (fig. 10, grid 3), Approach gnd. track

threshold speed, kts
ground ;rack " half of channel width
in ft (fig. 10, erid 4),
touch-down dasmnce tange of distance
from threshold in 100 ft (fig. 10,
fare-out < grid 3
height deviation, not mentioned in
table, combination of scales for thres-
hold heixht and touch-down distance
{fig. 10, grid 3
roll- and pitch wave-leng.rh dlstance covered for
* one oscillation in 100 ft (Gz. 10, grid 5).
roll amph!udedn;ax:mum angle of roll in degrees
BI1
pitch amp;'uude‘ maximum change of pitch attitude
in'degrees {fig. 10, grid 5
elevator and rudder. average control
surface movement in degrees, according
to definition given in chapter 6,
aileron, average control wheel rotatwn
in degrees, according to definition given
in chapter 6.

Touch-down
distance

control
travel

travel
Aileron travel

Threshold height

Threshold speed
Flare-out ground track 50 45 40 35 30 25 20 15 10 § 0

Roll-and pitch
wave-length

Roll amplitude
Pitch amplitade
Elevator- and ruddec

100 9 9 8 80 75 7T0 65 60 55 50
10 14 18 22 26 30 34 38 42 46 50

137 135 133 131 129 127 125 123 121 119 117

4 5 6 7 8 9 10 11 12 13 14
45 42 39 36 33 30 27 24 21 18 15

0 3 6 9 12 15 18 21 24 27 30
21 19 17 15 13 1 9 17 5 3 1
84 76 68 60 52 44 36 28 20 12 04

0 024 048 0.72 096 120 1.44 1.68 1.92 216 240
0 26 52 7.8 104 13.0 156 182 20.8 234 260
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Table 4. Quantitative results of performance evaluation.
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Test night

Landing number
Pilot number
Light configuration

Headwind component (kts)

S.B. crosswind comp. (kts)

Approach height deviation

Approach ground track

Threshold height

Threshold speed
Flare-out height deviation
Flare-out ground track
Touch-down distance
Roll amplitude

Roil wave-length

Pitch amplitude

Pitch- wave-length
Elevator travel

Rudder travel

Aileron travel

True threshold height (ft)
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Table S, Totale average values of quality marks.

Light configurarion

1 2 3
Approach height deviation 4.7 6.8 5.7
Elevator travel 33 37 44
Pitch amplitude 6.0 . 545 . 5.6
Pitch period ~ 3.3 35 4.4
. Approach groundtrack 4.2 I 4.3
Flare-out " 59 6.9 5.8
Rudder travel . 2.8 2.2 31
Aileron travel 4.5 4.6 5.2
- Roll amplitude 5.2 5T 2
Roll period 6.3 6.3 6.6
Threshold height . 46 ' 6.8 5.8
Threshold speed 5.4 53 5.6
Flare-out height deviation 7.5 6.9 6.9
Touch-down distance 3.9 4.8 38

Table 6. Average quality marks and ranking numbers for “‘ap-
proach height deviation”.

Light Average marks Ranking numbers
configuration’ 1 2 3 i 2 3
Test night
A 4.3 5.6 24 2 3 1
B 35 3.3 4.0 1 3 2
C 3.7 7.2 5.7 1 3 2
D 4.2 8.7 8.5 1 3 2
E 5.0 7.0 6.0 1 3 2
F 8.4 7.8 6.7 3 2 1
- G 20 6.5 5.8 1 3 2
H 6.7 60 62 3 1 2
Total 4.7 6.8 3.7 13 21 14

Standard deviation of total average: 0.41.
90 %, significant difference on total average; 1.05.
959 significant difference on total average: 1.29,

Table 7. Average quality marks and ranking numbers for
“elevator travel™.

" Table 8. Average quality marks and ranking numbers for

“pitch amplitude”, .
Light Average marks Ranking numbers
configuration 1 2 3 1 2 ¥
' Test night .
A 6.2 6.0 6.0 3 14 13
B 6.0 5.0 5.7 3 1 2
C 6.5 5.4 6.2 3 1 2
D 5.7 6.7 57 14 3 1}
E 7.0 6.5 6.9 3 1 2
F 5.2 4.3 5.0 3 1 2
G 49 4.3 5.3 2 1 3
H 6.3 5.2 4.2 3 2 1
Total 6.0 5.45 5.6 21% 113 15

Standard deviation of total average: 0.23.
907 significant difference on tctal average: 0.59.
95% significant difference on total average: 0.73.

Table 9. Average quality marks and ranking numbers for “flare-
out ground track™.

Light Average marks Ranking numbers
configuration 1 2 3 - 1 2 3
Test night : '
A 5.3 7.0 53 1 3 2
B 70 1.7 i3 2 3 1
C 7.2 7.7 7.0 2 3 1
D 5.3 6.5 52 2 3 1
E 6.0 5.3 57 3 1 2
F 6.0 8.0 6.7 1 3 2
G 38 5.5 5.2 1 3 2
H 6.3 7.2 535 2 3 1
Total 59 6.9 58 14 22 12

Standard deviation of total average: 0.22,
9079, significant difference on total average: 0.56.
953% significant difference on fotal average: 0.69.

Table 10. Average quality marks and ranking numbers for
thresheld height”.

Light Average marks Ranking numbers
configuration 1 2 3 1 2 3
Test night
A 4.3 49 4.5 1 3 2
B 25 39 39 1 3 2
C 27 3.7 4.5 2 2 3
D . 40 32 4.2 2 1 3
E L5 32 4.2 1 2 3
F 55 4.6 5.2 3 1 2
G 2.7 3.0 5.9 1 2 3
H 3.3 300 33 3 1 2
Total 33 3.7 4.4 13 15 20

Standard deviation of total average: 0.28.
909 significant difference on total average: 0.72.
959, significant difference on total average: 0.88.

Light Average marks Ranking numbers
configuration I 2 3 i 2 3
Test night

A 4.5 6.0 32 2 3 1
B 335 6.8 4.3 1 3 2
C 4.2 7.0 6.0 1 3 2
D 5.2 83 2.0 1 2 3
E 49 15 7.0 1 3 2
F 5.9 6.2 53 2 3 1
G 1.3 59 5.3 1 3 2
H 73 6.7 6.1 3 2 1
Total 4.6 6.8 5.8 12 22 14

Standard deviation of total average: 0.41.
907, significant difference on total average: 1.05.
957 significant difference on total average: 1.29
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Table 11. Average quality marks and ranking n_ui'nbers for 3 groups of subject pilots.

Average quality marks and ramking nunibers Total
Aspect Light con- KLM captains KLM co-pilots Foreign captains average
Sfiguration ’
“Approach height deviation 1 54 @Y 4.1 4)] 48 (1) 47 m
6.5 (€)] 7.1 (3) 57 3) 6.8 3)
3 53 (1 6.0 (2} 4.9 2} 5.7 (2}
Elevator travel 1 4.0 {2) 27 ¢))] 3.5 (1) 3.3 1)
2 39 i 3.5 2) 7@ 3.5 (2)
3 47 3 42 52 44 3
Pitch amplitude 1 5.6 3) 6.3 3 5.8 @ 6.0 (3)
2 5.0 ) 59 1 59 3) 545 (1)
3 51 2) 6.1 (2) 55 m 5.6 (2}
Flare-out ground track 1 53 () 64 58 () 59 @
69 (D 68 (D 63 (3 6.9 3
3 57 () 58 (1) 60 () 58 (D) ‘
Threshold height 1 4.8 (1 45 (1 42 0] 4.6 m :
2 62 (3 74 Q) 60 (3) 68 (3 |
3 50 () 66 (B 56 (D) 5 . 0@

1) Figures in parentheses are ranking numbers.
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J — det. (u; ) € — ellipticity

M — Mach number g™ - Wynn’s transform def. (3.2.6)

p — static pressure £ — complex velocity ge™ "

4, Gmax — velocity magnitude; def. (C.2.7) o g — flow angle

R, — radius of nose curvature ‘ Ay ’

5 — velocity parameter, def. (A3) fin } —def 224)

s,n  — arc length dlong streamhne equi- potentla]- ¢,y — arc length along characteristics
*line SRR o pipe. — flow density ; stagnation value of =L

u; -— velocnty vector a — sonic value of s, def. (A3)

(4, v} — 2-dim. veldcity vector . — (/i a

X — position vector 1

X,y — 2 dim. position vector ’ o Ty —ytis(t)=se tlog E}

z X4y @, ¢ — (complex) potential function

% — acceleration angle (C.4.7d) .

B — Mach angle W — stream fgncuon _

7 ~ specific heat ratio Y. . — Chaplygin’s function

8;  — unit matrix . w — mass divergence

1" Introduction

This report is to be the first in a series on the general subject of the development of practical computational
methods for transonic flow fields. The motivation for this programme is not only in the more direct engineering
applications, but also in the fact that in many respects, the problems encountered in the transonic field are of a

“much more general aerodynamic interest.

More specifically, this report is concerned with the’ computation of transonic plane potential (shock free) flows.
This class of flow fields has been the subject of a long standing discussion as to its mathematical and physical
existence. As is well known, examples of transonic potential flows can be constructed by analytical hodograph
methods, as have been developed by Cherry (ref. 6}, Lighthill {ref. 13) and Bergman, cf. ref. 11. From the mathe-
matical point of view, these solutions have for a long time been suspected to be singular in some' sense. This
conJecture has been made precise by Morawetz (refs. 18, 19, 20), in a series of papers whlch have become a standard
reference in the field.

The possibility of a physical realization of these flows has ‘always been regarded to be rather questionable, in
view of the occurrence of viscous effects {boundary layer separation, shock phenomena). Thus, Morawetz’s results
are often interpreted to indicate that in the real flow a shock wave, terminating the supersonic region, must be
present. However, Pearcey (private communication), cf. ref. 23, has recently conclusively demonstrated that
transonic profile flows, exhibiting a to all practical standards shock free supersonic region, can experimentally
be realized. -

With these two fundamental results as reference points, a considerable part of this report is concerned with
malters pertaining to the mathematical and physical interpretation of the practical results obtained.

The actual solutions, which can be obtained by the methods of this report are intended as a basis for comparison
with approximate methods in the high subsonic and transonic field, and as a reference base for an experimental
programme on-the genesis of shock waves in transonic flows. ‘

In the first section, Lighthill's integral operator technique is used to construct a three-parameter family' of
“quasi-elliptical” aerofoils, representing subsonic and transonic profile flows. These are derived from the incom-
pressible doubly symmetrical flow around an ellipse. This represents analytically a straightforward generalization

" of the corresponding solution related to the incompressible flow around a circle, solved by Goldstein, Lighthill
and Craggs (ref. 9) and Cherry (ref. 6), and numerically worked out by Cherry (ref. 7). The analytical problem
has been previously solved by Levey (ref. 12) using Cherry’s theory, which report came to the author’s attention
when the work of this section was nearly completed. The analysis is, using Lighthill's theory, almost completely
. equivalent. (For a treatment of the subsonic problem on the basis of Bergman’s integral operator theory, see ref. 2.)

Five numerically worked out examples are presented, having one or two symmetry axes, depending on the
choice of parameters, and showing various interesting properties. The most important fact, however, is that aero-
foils can be exhibited within the family, having the geometric features and “peaky pressure distributions™ of the
sections shown by Pearcey (ref. 23) to be conducive to physically shock free flows. It is suggested that the method
presented here could be the basis for a theoretical design method for these sections, which as yet does not exist.

The second section of the report discusses the numerical analysis, which represents the crux of the-work.

Numerically, the goal of constructing thin shapes presented a problem of a magnitude completely unsur-
mountable at the time the analytical methods were developed, and which even now, using automatic computing
equipment and sophisticated numerical methods cannot be solved without restrictions on the combinations' of
parameters representing thickness and asymptotic Mach numbers. The numerical convergence problems have
been solved to an appreciable extent by formal application of Wynn’s g-algorithm.
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Appendix A contains, for convenient reference, a survey of the main analytical results of Lighthill's work, which
is extensively reported upon in the literature (refs. 13, 14, 17).

Appendix B presents a somewhat philosophic comnbutlon to the discussion in the much d]Sputed ‘transonic
controversy”. The physical interpretability-of-the results presented is discussed and some consequences of Mora-
wetz's theorems and Pearcey’s experimental results for the design problem in the transonic field are suggested,

Appendix C is-a study of some algebraic aspects of the theory of plane potential flows. The conditions, under
which the hodograph transformation is feasible, are analysed, exhibiting the significance of the metrical properties
and dimensionality of physical space. This leads to a number of invariant relations, which arebasic for the local
aspects of the theory of this report and are used in the analysis of the results. Many of the results presented are
implicit in Busemann’s original work on characteristics methods; the discussion has been partly inspired by
Birkhoff's study (ref. 14) of group properties in aerodynamics, in particular by his question as to the reason for
the linearity of the hodograph equation. Most of the algebraic relations and their physical interpretation have
also been given by Reyn (refs. 24, 25} from a slightly different point of view.

The collaboration of M. J. M. G. van Gennip, who has been in charge of the crucial numerical work (ref. 8)
for this report. is gratefully acknowledged.

We thank professor dr. E. van Spiegel for a discussion of the matenal of this report; and professor dr. ir. A. L.
van de Vooren for first drawing our attention to the g-algorithm, which eventually turned out to be the gonditio
sine qua non in the computationai work,

2 Computation of transonic pbtential flow around a family of quasi-elliptical aerofoils

2.1 Lighthill’s integral operator

In this section, a three parameter family of transonic potential flows around aerofoils will be constructed, using
Lighthill's integral operator technique.

This paragraph presents a discussion of Lighthill's operator in very general terms; for the analyhcal work
reference is made to the original paper {refs. 13, 14) and to the very clear introduction in von'Mises’ book (ref. 17),
where also the connection with Bergman’s methods is expounded. A compact survey of the main results of the
theory is given in Appendix A, where also the definition of the symbols used in this section can be found.

The hodograph equation is written in the form (cf. Appendix A}):

| - -y+1

2-y
T(I_T)li}u: + Twﬂﬂ_ - (1 er—*T)‘flr (211)
with t = (q/qmax} implying use of the isentropic gas law.

The problem is, then, to construct singularities in some solution space of this equatlon generating a hodograph
manifold of the type required for an aerofoil flow; this is essentially a topological problem. A considerable insight
into just these problems lies at the core of the classical theory of functions of a complex variable, and the basic
idea in all of the function theoretic methods mentioned is to derive the hodograph of the compressible flow from
the analytic function describing an incompressible hodograph of the type required, by a continuous transformation.

In Lighthill's method the basic property of linearity and rotational invariance of solutions of eq.(2.1.1) are
used to obtain Chaplygin's particular solutions of the first kind* by separation of variables:

Waithet "0 {2.12)
where ’

y,=t"Fla, b, n+1;1) for n#-2, -3,

This implies an essential restriction of the solution space of eq. {2.1. l) to functions analyuc on the hodograph
excepl for a finite number of isolated singularities.
" The fundamental fact in Lighthill's theory is that for subsonic 7, the set 'of s, for # generally complex, can be
- expressed in a series of the functions ¥, for m integral positive, cf. (A8), implying that the Chaplygin particular
solutions of positive integral index provide in. the subsonic case a base in the restricted space of rotauonally
invariant analytic solutions of eg. (2.1.1).
Now, when a reference speed g, is chosen (which will be taken equal to unity in this report), the parameter g,
(vide Appendix C.2) governs compressibility in the flow. [t is then possible to define a continuous limiting process

Em £ 1) ¥al7) = (@/a.)"

Fmax™ 0

* There is a Chaplygin function of the sec.ond kind, singular at the origin. cf. No[é, par. 2.5,
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_involving a suitable function J (n, 7,,), giving correspondence between the set (2.1.2} and the particular solutions
{"=¢"e™ ™" in incompressible flow. The decomposition (A8), and the relation {A3a):

lim & S==g/q,

dmax 0

suggest the feasibilit:y of choosing f(n, 1) = e "=
The simplest form of integral operator given by Lighthill, valid for circulation free flow fields and defined in
the subsonic part of the compressible hodograph reads:

’

.es—sw—lﬂ

= Hh{ifawmhk””“m (e | o (213)

Lo

where by definition Cy=1, €, =0. :
The formal properties of this operator are listed in Appendix A, but a rough indication of its meaning can be
given on the basis of the above discussion. The integral part of the operator takes suitable moments of the incom-
_pressible hodograph function ®({), involving the subsonic compressible velocity parameter ¢*"*=. These are
projected on to the (conjugate) base vectors i,,e'™?, this operation involving the weight functions C,e™x. The
parameter s, governs compressibility, and for s, — — oo the incompressible hodograph s recovered. The integrai
in'eq. (2.1. ?) depends in principle on the path chosen in the incompressible hodograph manifold, but. should be
single valued at least in the hodograph image of the external flow field of the transformed profite. Inspection of
the example given in the next section will clarify the way in which the topology of the hodograph manifold
depends on the conditions at infinity in physical space for a circulation free incompressible flow. In this case the
operator form (2.1.3). 1nvolvmg the particularly simple function f(r. 7,,) = ¢™"= to control the continuous trans-
formation, can be shown to be single valued. The significance of the operator will become more obvious in par. 2.2
where it will be developed in series form.
The case of circulatory flow, also given by Lighthill, is of course much more complicated.

2.2 Hodograph of r,hé‘symmetricdl, incompressible flow around an ellipse

The complex potential @({) associated with the incompressible circulation free flow around an ellipse of excen-
tricity ¢ is found from that for the circle by Zhukovskii’s transformation: ‘

.

. ’ 1 : '
- C Pz)=z, + o S (221a)
t

=z 4o : . (2.2.1b)
Elimi.nating Z between (2.2.1}' and the complex velocity o ' .

. qu . .
(4o _dodzy il = (222)
7 dz dzy dz z1—¢ : o .

1—& 1—g% :
MQ=(],) ( ) (2.2.3)
7 Z, ‘ ’
The pair (2.2.1), {2.2.3) defines the hodograph transformation, which is obviously conformal in the incompressible
case. The physical and hodograph manifokds aré sketched in fig. I, which may clarify the way in which the topology
of these manifolds is generated by the singularities of the analyuc functions describing the flows. One notes, that

circles around the origin in the z,-plane, including the boundary stredm]lne are mapped on double traverbed
circles i in the hodograph maml'old (2.2.2), the circle |z, | =¢ degcneratmg

the hodograph flow is obtained

' The mapping { — expresses the symmetry with réspect to the circle |z, =& between the physlca!

(1+¢ ) -1
plane” and the "generating flow” situated in the second . sheet of the Rlemdnn surface. Together the two sheets
" make up the complete “physical manifold™. :

Furthermore, fig. 1 indicates how curves of constam speed and flow angle {the analytic funcnon log {=log g+ 10)
are generated in the physical plane by the stagnation points and the singularities at the focal points of the ellipse.
The latter map on the infinite point of the hodograph.

| N
Now, writing down series expansions of (2.2.3) valid for |¢]< 1. 1 <|{|<- and |¢] > " respectively, one obtains:
; T . ' s & L. . o




for |{] <1

forl<[§[<—i

for |¢| > 1
¢

\—* e comst.
— '_._°=z|,,zt_ q = CONST.
! ———8-= consT.

2z, .

|
- G
42 N4

13
2

Fig. 1. Physical and hodograph manifold for incompressible symmetrical flow around an ellipse.
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() = Y ol
n=0" -
ey = 2 (14+8) Ay,
Co=2
{n—1)!

Ap = PN f(%, -n,3—n;¢)

{dpe{" e, L7
1]

8

D) =i

n

drr = 281""'H+1 _(l +B)ﬂn
€y = 2#,,—(] +8)ﬂn+1

(n—4)!

b= T Fihn+dn+1,5)

P = = 3 fr H
I = 25).,,,1*(1-6-8)»1,,
fo=~(1+g)

where F denotes the ordinary hypergeometric function (4, is a nth degree polynomial).

(2.2.4a)

(2.2.4b)

'

(2.24¢)
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| .
Both hypergeometric functions can be shown to be (1 —a)‘*{l +0 (~)} for |¢| £ 1 =48 by transformation to

Steiner’s form, the associated series having the requ1red asymptotic propertigs. This observation verifies the
regions of convergence as stated.

2.3 Construction of compressible solutions

Following Lighthill, series solutions of (2.1.1), representing the compressible hodograph flow, can now be
derived from (2.2.4), using the operator (2.1.3). These series immediately provide the analytic continuation of the
solution into the supersonic region || >e® *=

Referring to fig. 2a, in region I the series {2. 24a) can be inserted into the operator, and, performing the inte-
gration, one obtains:

1

=Im C em(s +if) (n+m)(s 5 —i6)
v Z mm ,,20 m+n

-
\
N

Fig. 2 ]n%c,x__ra[mn contours for g,

Using (A8), this can be written
=Y cph,(r)e ™=sin nd (2.3.1)

=L,.

To continue this solution into region I, an arbitrary ﬁxed parameter point {, is chosen in 11, subject to the.
condition |{; | < e *x, Writing symbolically

= Zdn'crl,

as a shorthand for the expression {2.2.4b), it follows:

o .Cl d.
‘d’ =lm Z memem(s,x.)+im|: Cmdé(C)‘#' Z ’:ji’;l' fn’ tmis—5. —ith C" +m):‘ (232}

Evaluatmg the integral along a path shown in ﬁg 2b circumventing the point { =1 with a circle of radius d, it
follows, using one partlal integration:

0 - L+ Ty
-+mj " 1dl —m fDC’""‘dC—m
0 Jo :

J1+éd

1C’"d¢=c""¢ o™ ldy | (2.3.3)

Now, for -0 the third term vanishes, and the fourth at the lower bound. Collecting terms in {; from (2.3.3),
these cancel those in the series in (2.3.2) as they should; and only the second term in (2.3.3) remains. This can be -
written, using (2.2.3) and the integral representation for the hypergeometric function {ref. 10, p. 196):

MF(—%,H,H+%;E).

B P )




Then. in 11
V= Z ]‘d,,f:":/f',,ﬂlr}e""””w +epth oy (1) P50 cos(n+ 10— ¥ g, C, 6™, (1) sin nd? {2.3.4)
n=10 - . n=0
=L2—Gz .

L, obviously represents the direct counterpart of the incompressible series {2.2.4b), the series G, is induced by
the operator to give analytic continuity of the compressible hodograph.
Similarly. in region 1I1. the point {, is chosen in this region, and the solution is written

Yr=1:1—G,4 (2.3.5)
The integration contours chosen as shown (fig. 2¢),'it follows immediately by symmetry:
I
Ly=~L
’ ' (2.3.6)
63 = 262 .

Continuing in the lower sheet of the hodograph manifold, the symmetrical solution is obtained.
Now considering convergence of these series, their d’'Alembert ratio #=lim |t,,+ l/t,,| can be estimated using

L e o}

the asymptotic expansions (A7a), (AS) and (A11). For L,: y=¢* = and for the two series constituting L,: p=
077 < ge” e and p=e T w < "7 % respectively. 1t follows that L, converges absolutely for (< 1< T, and

L, for 7 < <1, {where 1, is implicitly defined as {t: 5(t) = 5,, —Jog £}} when . < e = when this last in-

equality is reversed L, converges for t >1_, including the supersonic region. On the other hand for G, u< ¢f=~¢,
and thus G, converges on the whole hodograph disc 0< 1< 1. _
By linearity then, a multiple of the solution G may be added, thus obtaining a 3-parameter family of solutions

of {2.1.1}, with continuous parameters 1, = —— . ¢ and 4, reducing to the incompressible flow around an ellipse
max
fOr gy 0. )

Summarizing, one obtains

=
i

L, ~(i=1)G in 1
= L,—iG in I (23.7)
=—L ~(+1G in I '

L=} ¢ lt)e”™=sin nf
n=0

a

Ly= 2 {dat"peylr)e™ " Voo 1oy, (r)e" $50) cos(n+1)0
=0 .

G= 3 g,C,e"=y, (1) sin nd
n=0

_ \/E(n-!- !

= T Fl—3.nn+3;s)

Jdh

Cudyy €, given by (2.2.4)
C..s,  defined by (A7), (A3).

The family has in general a horizontal symmetry axis only, a doubly symretrical acrofoil is obtained by choosing
+=0.

24 Transformation into the physical p!am;

The transformation of {2.3.7) into the physical plane'is obtained from the definition of potential and stream-
function

. il .o
dz = i(dga + id;};).
q P
Differentiating and using Chaplygin's equation (A2a):
e

Zp = E (W’:ﬁ' Hubﬁ')



Now, when (2.3.7) is represented by
, | .
lfl‘—“';A"lﬁ”SlH 6194-# -2~) u=0.1

by integration it is found, using (Al):

' 3 2 i+ o+ug} oy ifii-me+udt /)
—xtip=d(f) F LA SLRVA) NSy L '
i Z(T) (1-1)—v—’1§A"[ ntl (wa" w") n—1 (2T¢"+d’")

dy,
dr

where

P, =
2.5 Note

1t is illustrative for the-technique of Lighthill's continuation process to consider what happens to the part
2} > 3 of the incompressible hodograph plane under the transformation. For the present work, this is only of

academic interest; however, as pointed out by Levey (ref. 12), when complex values for ¢ are taken to obtain the
circulation free flow around an ellipse with incidence, part of the external flow field mdy be described by this
continuation.

The incompressible series (2.2.4c) has negative mtegral exponents; in this case it is necessary to use a second
solution ¥,, involving logarlthmlc terms, defined for n an integer =2. This 1ndependent solution has been defined
by Lighthill to be:

¥ilr) = lim (.p, - ‘ffﬂ) (25.0)

y—+=n

For the formal details of Lighthill's technique in this case, reference is made to the original paper, the results
only being given below. A more immediate interpretation of the analytical situation is obtained by working out
the “Barnes contour integral representation” for the operator {2.1.3) corresponding to the series (2.2.4), cf. ref. 9.
This leads to the equivalent result in a somewhat different form. This technique will be amply demonstrated for
the circulatory flow case to be studied in a following report.

Using the present formalism, the analysis is similar to that in the foregoing cases, however, one has to consider

S 1 . .
a contribution of the lower bound at { = ~ of the integral corresponding to the fourth term in (2.3.3), when
&

integrating along the contour shown in fig. 2d. It follows:

i1V . = L+H-(A-1)G
- b2 Lefimly (2.5.2)
inV j= —L—H—(A+1) G
= —Im pr n—4 [‘lf'e"(s“’hm'*‘”c — Jl,(! "o +19nj|
n=9Q .

H=—1Im hCyhye®s'®
n=2

‘where

o n (n-!-')’s £

1)! I
o *Z + 2 e *fn(l-*-nlog ) yrlnt 1) F( é,n,rw%;—)
and by definition, '
Co=1 Yp=1
¢, =0 V”‘1=¥f’—t

. . . . . .. - 1 -
Again, using Lighthill's asymptotic estimate for y,, it follows that L, converges for >1,, when — < ¢" 7"
: B _

and the series H converges on the whole hodograph.

These series define implicitly the “internal generating singularities” as analytic continuations of the external
compressible flow ficld, for t=1 and t=1,,. The incompressible physical and hodograph manifolds can be closed
by addition of the points at infinity, this property is lost by the finite compressible hodograph obtained by the
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transformation: This fact gives the possibility of defining solutions representing profiles without fore and aft
symmetry, associated with a doubly symmetrical incompressible generating flow.

2.6 Discussion of results

261 The series (2.3.7), (2.4.1) have been evaluated for a number of combinations (., ¢, 4), to give closed profiles
with a neighbourhood of the field in the physical plane.

When transonic flows around thin shapes are aimed for, convergence of the series becomes very slow, especially
on the circle |c,| = 1 and in the high speed regions of the flow field. These difficulties have been partly overcome
through the use of a numerical scheme described in detail in section 3; one is left, however, with a rather severe
restriction on the possible combinations of 7, and ¢ for the flow fields that can be fully worked out.

This restriction depends on the number ol' significant figures available in the computation of the Chaplygin
functions ¥, and in the present case it turned out that profilesin the range up to t/c ~0.15-0.20 exhibiting a local
maximum speed of approximately t=0.18 (M ~ 1.1) could be computed.

* To prevent overcrowding this report by a deluge of tabulatory material, only tables for co-ordinates and velocity
distribution along the profiles, which have been interpolated from the results, are given'in table 1. All points

TABLE 1. NUMERICAL PROFILE DATA

TABLE 1A TABLE 1B
M, =0.673 T, =0.083 7,=009 M, =0704
=6 ~=0 . =06 ~=0
X oy M a x ¥ M ]
—1.562 0.021 0.319 0.744 ~1.578 0.006 0.225 0.724
—1.547 0.034 0.393 0.680 —1.567 0.016 0.319 ' 0.690
—1.527 0.049 0.456 0.623 —1.552 0.028 0.393 0.645
- 1.502 0.066 0.513 0.571 ~—1.533 0.041° 0.456 0.598
—1.474 0.083 0.565 0.521 : — k510 0.056 0.513 0.555
—1.437 0,103 0613 0.476 —1.483 0.072 0.565 0,512
—1.393 0.125 0.659 t0431 —~1.450 0.090 0.613 0.471
—1.381 0130 0.673 0418 —1.41] 0.109 0.659 0.432
—1.342 0.147 0.703 0.386 —1.31t 0151 0.745 0.354
—1.276 0174 0,745 0.333 - ' — 1253 0.169 0.786 0.321
—1.203 0.196 0.786 0,302 —1.175 0.195, 0826 . 0.278
—1.108 0.223 0826 0.260 — 1092 0.216 0.864 0.245
—-0.991 0.2514 0.864 0217 —-0.99] 0.239 0.902 0.210
—0.839 0.28] 0.902 0. —0.869 0.263 0.939 a7t
—-0.629 0312 0.939 0.120 —-0.720 0.286 0.976 0.133
-0.216 0.343 0.976 0038 - 0595 0.301 1.000 0.104
—0.514 0.308 1.012 0.088
—-0.338 0.321 1.030 0.055
—0.105 0.329 1.041 0.016
TABLE 1C
t,, =010 M, =0745
£=0.7. A=0
x ¥ M @

1690 L2015 G.319 G.241

—1.684 0.002 0.351 0.315

—1.675 0.006 0.393 0.362

—1.635 0.022 0.513 - . 0.390

—1.574 0.046 G.613 0.354

. —1.431 0.093 0.745 0.273

- 1.36t 0.113 0.786 .241

—-1.277 0.132 0.826 0.210

- 1.180 0150 - 0.864 0.186

. —0.888 0.195 0.939 0.121

—1{.658 0.218 0.976 : 0.082

—0.386 0235 1.000 0.044

-~ 0.099 0.243 [.012 0.011
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TABLE ID ' ' TABLE 1E
T,=009 M, =0704 7, =008 M,=0659
£=06 =1 . £=0.6 =2
¥ v M ' oo x ¥ M It
—1.587 D000 0.000 /2 —1.581 V000 0.000 72
—1.575 0.051 0.319 1.1402 —1.573 0.069 0.225 1.346
—1.360 0.077 0.456 0.957 : —1.565 0097 0,319 1.253
—1.541 0.100 0.563 0.814 ~ 1551 0.133 0.456 1.122
~1.516 0,123 0.659 0.676 —1.537 0.15% 0.565 1.023
—1.501 0.133 0.703 0.629 ~1.525 0.176 0.659 0.940
—1.463 0.160 0.7%6 0.532 —1514 0,190 0,745 0.868
~1439 0.173 0.826 0.484 —1.504 0.201 0826 . 0.804
~ 1411 D.187 0.864 0.436 — 1.499 0.206 0.564 0.773
—1.379 0.201 0.502 0.401 : —1.495 0.210 0.902 0,742
~1.340 0.217 0.939 0,346 —1.49} 0.214 0.939 0.713
—1.296 0.232 0976 0.303 1487 0.317 0976 0.684
—1.262 0.242 1.000 0.274 T 1483 0.220 1.012 0.655
~1.133 0.272 1.065 0.190 —~1.479 0.223 1.048 0.624
- 1.061 0.264 1.083 0.156 ~1.474 0.227 1.083 0.591
—0.768 0315 1.083 0.070 —1.468 0.231 1.118 0.552
~0.581 0.326 1.065 0.035 ~1.464 0.232 1.118 0.543
~ 0057 0.322 1.000 —0.049 1327 0.277 1.083 0.313
0.109 0.312 0.976 —0.074 — 1151 0.318 1.048 0.144
0.336 0.29] 0.939 —0.110 — 0,983 0.340 ©no12 0,083
0535 0.265 0,902 —0.144 —0.752 0.353 0.576 0.028
0.708 0.238 0.864 —0.176 —0.459 0352 0.939 —0.019
0.856 0.209 0.826 —-0.208 —0.136 0.338 0.902 0,067
0.983 0.180 0.786 0238 0.166 0.311 0.864 —0.112
1.261 . 0,102 0.6359 —0.323 0.427 0.276 0.826 —-0.152
1387 0.056 0.565 —0.366 0.839 0.197 0.745 —0.231
1474 0.022 0.456 —0.380 ) 1.193 . 0102 0.613 —0.304
1506 0.009 0.393 —0.349 1.287 0.070 0.563 ~0.333
1.524 0.004 0.358 —0.305 1.415 0.025 0.456 — 0,342
1.533 0.001 0.319 —0.206 1.500 0.000 0.319 0.000
1.540 - 0.000 0.276 —0.000

computed have been drawn in into the figures 3a through 3e, corresponding to the following combinations of
parameters '

fip. T £ ; M, Mo I] J:h_ tfe

3a 0.083 0.6 0 0.673 0.983 0.250 0.217
b 0.050 0.6 0 0.704 1.046 0.250 0.208
c 0.100 0.7 0 0.745 1.012 0.176 0.141
d 0.090 0.6 1 0.704 1.0%90 0.250 0212
¢ 0.080 0.6 2

0.659 1118 0.250 0.230

Hodographs of the boundary streamlines are given for the last three cases in fig. 4.

2.6.2 The most striking phenomenon exhibited by the examples computed is the considerable sharpening of the
profile ends by addition of series G and the corresponding blunting under substraction. This means, that when 4
is chiesen >0 and 1, sufficiently high, profiles are obtained having a rounded leading edge, and a cusped trailing .
edge. '
An analysis of this phenomenon provides an application of the relations obtained in Appendix C.
From C.4.6 and C4.7a it follows: ’
LI | .
TR 14 (1-M?cotgalg?

In hodograph plane variables one has

— 2y,

ga =
8 o ly=c

—-p3it 1

I I Ve T
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where, as in previous results, ¢, has been chosen equal to unity. At a front stagnation point the first of the series
(2.3.7) should be used for

=0, 6=2. ¥=0 anditfollows

1 ceye” Ba (A 1)gy CyeP 1
R, 4{(‘1(’_25"“ —((/'_~ l))zZCZezs‘n}l'\/T,) (26.1)
As c;=3(1—¢)%; c3=1{1+¢)(1 —¢)*, this reduces to the value
! [+¢
Ry~ (1=
In incompressible ﬂow. {At.a rear stagnation point, use 2" = —/ and the opposite sign).

Ro

c4 —

0.3 —

0z

I——-»—k
Aml -
+ 01
\ J* /j
2 /
0 vt

FRONT STAGNATION POINT

& [ 2 o3 04 a5 Qs oT
REAR STAGNATION POINT M

Fig. 5 ab. Radius of nose curvature r=1U06,

] =06 .
A graph of R as a function of M ,{=1,) is presented for [ ' in fig. 5.

l:i=0.1,2

Starting from the incompressible value, for 4 >0 RL increases to infinity corresponding to a zero in the deno-
]

minator in (2.6.1), for a certain value of M. From this point on, the stagnation point is “pushed” by the G-series

into the sheet of the physical manifold forming the dnd[ylic continuation of the interior of the body. leaving a

cusped profile. (cf. the hodographs fig: 4). This phenomenon is exhibited by all of the examples computed, detailed

Hlustrations of the cusps for two cases are given in figs. 7a, 7b.

A remark should be made on the {relative) unit of length the expression {2.6.1) refers to. The lengths of the major
and minor semi-axes of the incompressible ellipse are | +& and 1 —¢ respectively. The corresponding lengths in
the compressible physical plane are found as a result of the integration progcess. and no explicit expressions exist
for them. The examples computed show, that the profile chord does not differ much from the value 2{1 +¢), the
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discrepancies becoming larger when a cusp is-present at one or both profile ends. The reduction in the resuiting
profile thickness as compared with the value 2(1 — &) can become appreciable with increasing M

2:6.3 All of the examples computed are continuous solutions in the phys:ca] plane, i.e. no limit Imes occur in the
external flow field {cf. Appendix C 4.5).

For the cases presented in ﬁgs 3d. 3e. the graphs of the quantities g,, 0, and J versus arc length parameter along
the profile contour are given in figs. 6a. b. It should be remarked. that these curves have been obtained by num-
crically differentiating and smoothing interpolated data. and thus have not much more than qualitative sig-
nificance, '

For the profile fig. 3d. J does not show any tendency towards large values in the supersomc region ; however.
the behaviour of J for the more asymmetric profile fig. 3e suggests the presence of the cusp of a limit line in the
interior of the profile quite near the contour. The limit line, in Reyn's terminology {refl. 26), “generates™ the strong
expansion over the nose, the profile contour exhibiting very nearly a curvature discontinuity there. Further
Increasing 7 and/or 7, would lead 1o a point of infinite curvature on the profile, i.e. a discontinuous junction of
a blunt nose into a weakly curved profile. For still higher values of the parameters no physical profile would be
defined, as the limit line would pierce into the external flow field. {A brief discussion of the “limit lines™ is presented
in Appendix CS)..

By manipulating /, clearly a family of profiles exhibiting rapld expansions of varying strength over the nose
region followed by gradual recompression, may be generated; a point of fundamental interest in connection with
the design problem for profiles having a “peaky pressure distribution” (ref. 23, par. 7 ff; Appendix B 3, 4).
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Fig. 6a. Graph of J, 4, g.. ¥ and @, versus arc length s along body contour M, =0.704; z=0.6; 2=1.
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2.6.4 Tt is in particular this possibility of identifying profiles of the “peaky ‘pressure distribution™ type within the
family considered, that makes an extension.of the present procedure to more general classes of profiles, including
cases of practical significance, interesting.

A discussion of the physical interpretability of these solutions is presented in Appendix B. It is suggested there,
that in general, a transonic potential flow solution has no a priori bearing on physical reality at all. On the other
hand, practically shock free flows of the “peaky pressure distribution” type have experimentally been shown to
exist, and the present method might provide a basis for a systematic exploration of the physical limits of this
concept. This would necessitate 1the development of the present work to a practical design method, involving a
set of parameters giving profiles of the required physical characteristics, in a range that has to be defined by
experimental verification.

0.02

L3141

-001

-co2b

Fig. 7a. Detail of cusped profile nose of quasi-ellipse, Fig. 3c.

Y
0.04

400

-001

Fig. 7b. Detail of cusped trailing edge of quasi-ellipse, Fig. 3d.

[t would seem to be more profitable to explore the practical possibilitics of extending the present family by

adding further solutions i, cos nf), Y, sin nf to the hodograph solutions to give camber etc., than to try and find
the series representations for more general profiles in the incompressible physical plane, as these profiles are
strongly distorted anyway. The most urgent problems would then be the further extension of the numerical
scheme to make higher local Mach numbers and thinner profiles admissable, and an attack on the case involving
circulation. When these problems could be solved, it is probable that sufﬁc1ent parameters are ava1lable to make
the procedure of some practical interest.

-3 Some details of the numerical work*

3.1 Computation of ¥,; significance control

From the computational point of view, the series representation (2.3.7),(2.4.1) presents considerable difficulties:
in the high speed regions of the flow field, the series are to be evaluated for relatively high values of the argument t;

* Parts of this section have been written in collaboration with M. . M. G. van Gennip, who has been in charge of the actual numerical and
programming work, cf. ref. 8. ‘
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L . 1 ,
- for thin shapes (large values of ¢, the approach of the second branch point at { = — to that at { =1 makes itself
& .

felt in a very slow convergence of the series. This behaviour is serious in that in the series (2.3.7). {2.4.1) high
ordér i, are then required, which are”extremely difficult-to compute:
The qualitative behaviour of F ( )for increasing » can be seen from the asymptotic forms (Al 1}.and is rllus!rated

(in fig. 8. F,[7) is positive for 1 < —ﬁ (sonic value) and shows oscillatory behaviour for supersonic 7. the first
.
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Fig. 8. Graphs of hypergeometric function F {u, b, n+1: 1).
PRl

zero approaching the sonic value with increasing n. For positive large n, F,(t) shows a very steep gradient at 1=0;
for negative n around the sonic value.

These large gradients in the graph are reflected in a severe cancellation between terms in the series representation
{A6), and essentially the same difficulty occurs in some form or another in alternative ways of compuling i,
Significance control in the computation of i, is then thé critical problem in a computer using floating point

“arithmetic.

It will be clear, that this problem is quite different from the problems posed by any slow convergence of the
series for F, (1) for large n. Actually, the hypergeometric series converges in the range of 7 of interest to a practical
answer using a few times n, say 2n, terms, and should thus be considered as a fairly efficient means of generating
- The point is, that a rather exceptional accuracy in the numerical representation is required in order to handle
the wide range of values and steep gradients in the graphs. The asymptotic forms (A 11) for large n are, in fact,
of hittle use from the computational point of view, as n has to be very large before i, is represented by the main
term with any accuracy. Higher order terms are difficult to find in the supersonic case, but can be found easily
from {A 8) in the subsonic case and prove then also to converge very slowly. Cherry's methad (ref. 7} of applying
empirical corrections to the asymptotic main term is in the present case obviously unsuitable.
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As the convergence properties of the series {A 6) do not become in itsell prohibitive in the present case. the
series representation appears to be the most efficient methed of generating w,. Significance control in the compu-
tation of ¢, was done in the crude but effective way of a priori restriction of the range of pairs {z. n).

Setting as a goal g significant figures in the vth partial sum F}” of the hypergeometric series. and using p-figure
floating point arithmetic, the admissable range of t is restricted for given n by the inequaiity

+ "log /v (3.1.1)

where t(n. 7) 1s the largest individual term of the hypergeometric series. and the last term in the inequality is an
estimate for rounding error. In this estimate of cancellation effects. the index v is given by the bound for the
truncation error 1, JFUYin F,, as the hypergcometric series is ultimately dllcmdlmg (for v >n}. For FO the estimates
{A 9. A 11) can be used with advantage.

In the present computational work, 13 figure arithmetic was avanldble m the computer. and Lhoosmg ¢=06, onc
may choose

’J%W < 510"

Fo
n was chosen to be restricted by
n| < 503
By (3.1.1), F,(t) can then be computed to within the above accuracy for
T < ~0.13

for every n within this range. the restriction of course being given by the value # = —505.

In this way. a very severe restriction is obtained on combinations (t, . £) for which-explictt solutions can be
computed. In the first place. these combinations should be so that the maximum velocity in the external {low field
does not exceed 1=0.18{M =1.1). (see, however, a remark in par. 3.3). Secondly, for a given truncation error on
the series {2.3.7). {2.4.1), these series should sum within this bound for |r| < 50. Whether these criteria are met.
can unfortunately only be verified a posteriori. The maximum value of & that gives a full neighbourhood of a
profile in the physical plane with any accuracy by direct summation, is very roughly estimated 10 be in the order
of 0.3, giving a profile being very far from thin indeed. The range of admissable 's can. however, appreciably be
extended by formal application of Wynn's s-algorithm (ref. 29) to the available sequence of pdrtml sums {2.3.7).
"(2.4.1), as a procedure essentially ‘attacking the slow convergence of the hodograph series. In view of the interest
of this method, a somewhat discursive discussion may follow in the next paragraphs.

3.2 Shanks’ e -transforms, s-algorithm

3.2.1 Given a sequence of, say. partial sums

St oS {3.2.1)
a sequence to sequence transform is formally defined {Shanks: ref. 27}):
Smfk PR Sm
ASm—k Asm
AS,,,_-I ASm+k—]
e {S.) = {3.2.2)
] o1
AS, s AS,,
AS,_| ... ASpmin-1

where
ASM: Sm+ 1 _Sm

ex(S,,) appears as a weighted combination of §,,_,. .. .. S, with non-linear weights dependingen S, _,. 1. . . Sv e
and the sequence ¢,(S,,) is hoped 1o converge faster than §,, does, or even in some cases to sum diverging sequences
S

e
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In fact. when for m—k<r<m-+k §, can be written

S—akm+2a,m 1 (3.2.3)

application of (3.2.2) gives ¢,{S,) = ;. irrespective of convergence or divergence of the sequence S,,.
An important application is the case where {3.2.1) is the sequence of partial sums of the power series development
of an analytic function ~

oy

¢ = Z (‘fCi (324)
i=0-
m .
S, = Z ot
- i=0Q
fn this case (3.2.2) can be written:
":kSm—k e gosm
Cor—k 4 1 Cm+ 1
Crn O tm)
A
[ Sm) = ; = B (3.25)
Ek ) g() m
Cr—k+1 Comv 1
Cin e Ck

and #,(S,,) is the quotient of two polynomials of degree m and k respectively, which can be identifted to be the
rational fraction approximation to the function @ of order (k. m) having the property that the series obtained by
dividing out the fraction agrees with the secies devdopmcn( {3.2.4) up to the tecm MK

In this case. the theory of the ¢,(S,) transforms is equivalent to rational fraction approximalion. or continued
fraction expansion (ref. 27, 29).

The way in which the ¢,(S,,) operates is then clearly illustrated by one of the interesting examples given by
Shanks (ref. 27} if @ is an analytic function having p poles in a circle [{| = R, being otherwise regufar in this circle.
¢,{Sn} approximates ¢ uniformly in this region {with small circles around the poles cut out) for m— 0. This
means that the zero's of B in (3.2.5) are eventually situated in any neighbourhood of the poles of €. The conver-
gence or divergence of the sequences. .. .. S,.... are clearly irrelevant: the power series expansion around the
origin can be used in the whole circle {{! = R. and the transforms supply the analylic continuation automatically:
contrariwise, the transforms applied to a Laurent series expansion do not provide the rational fraction approxi-
mation. -

The situation is not so clear, however, for functions involving branch type singularities like (7 2.3}, Cutting the
hodograph planc between {=1. v one would by analogy and symmetry, be tempted to expect uniform conver-
gence of ¢,(S,) for n— 20 in a finite region of the hodograph plane excluding a rectangular strip around the cut,
le. the branch points to be approximated by sources lying eventually within this rectangle. This would. however,
be very difficult to prove, the non- formal aspects of the approximation techmque being as yet not very extensively
developed. ‘

When, as is the case in the present application. the ¢,- thHQfOI‘[TlQ are applied to the partfal sums of the series
{2.3.7), (24.1). representing the compressible hodograph solution. no such functional representation of the approxi-
mation exists even in the formal sense. The resulting process is a purely locai “filtering out of higher order compo-
nents” from the sequence (cf. (3.2.3)), in the sense of Shanks’ original intuitive motivation, with no more justifi-
cation than the plausibility of the answer obtained. The transforms have only been used on convergent sequences,
i.c. analytic continuation has been done by using Laurent series, in the expectation that application will at any
rate not worsen convergence.

3.2.2 Application of the e,-transforms in the form (3.2.2) is p'rohibitiveiy laborious. Thley have been rewritten,
however, in the form of a recursive algorithm by Wynn (ref. 29). His technique, the s-algorithm, is defined by:

. o ’ Jmy g Q. -
g™ =0 g =Sy

1

1

m=0,1,... (3.2.6)

L;:T fE(m#—ll +
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and Wynn proves
F[Z”I? = ek (Sm)

The algorithm has been used in the form {3.2.6) to sum the series (2.3.7) and (2.4.1).

3.3 Application to evaluation of series (2.3.7), (2.4.1)

The cencept of “convergence™ used in summing these series by formal use of the e-algorithm is of necessity
intrinsically numerical; that is depends essentially on a criterion involving a subjective degree of confidence in
the result ultimately chosen after inspection of the output of the process.

As a definition of “convergence™ of the e-algorithm, it was decided to test for two subsequent numbers in an
even numbered column of the g-array to agree within 4 rounded significant ﬁgures and to repeat this test in the
next even numbered column to glve the same result. This tast test was only sampled, however, in the most critical
parts of the field. :

The c-array was based on a sequence &i™ of at most 50 partial sums, as discussed in the preceding paragraph.
An example of the output of the process in the computation of the series (2.3.7 1) for 1=0.09; £=06; A=1 for
t=0.07, #=0.9 is given in table 2, where odd numbered columns have been deleted. Application of the ¢-algorithm

TABLE 2. EXAMPLE OF e-ALGORITHM
Series (2_3.7} [;6=06;7,=0099; =1, t=007; 0=09

moE=S, &Pz (S, @)=alS)  dUzels,)  d0selS) dsedSd dVseslS)  em=ed(s,)
0 +042321
1 +0.29472 - +0.73302 —0.001718
2 —0023675 —-0.18527 —0.14318 —0.18085
3 —0.063669 —~0.62880 —0.17170 —-0.016273 -0.013517
4 — 0062864 —0.63688 —0.015823 —0.021267 —0.013543 —0.013529
5 —0028245 --0,40258 —0.013953 —0.012410 -0,01351 — 0013577 ~0.013471
6 +0.0099013 +0.033370 —0.013115 —0.013106 —0.013462 —0.013348 —0.013468 —0.013468
17 +0.024431 +0.017196 —0.013106 —0.013429 —0.013429 —0.013426 —0.013468
3 +0.010021 +0,010021 +0.040241 —0.013338 —0.013640 —0.013429
g —0.017522 —0.079359 —0.013471 --0.013477 —0.013447
10_ —0.036578 —0.035857 —-0.013477 —0.013472
11 —0.035829 —0.036614 —0.013454
12 —0.019897 ~0.26397
13 —0.002852

proves to be almaost spectacularly successful. As discussed before, the reason for this success cannot really be
explained, apart from the somewhat lame observation that apparently, the oscillatory character of the sequence
of partial sums is well suited to application of the transformations (cf. 3.2.3).

The restriction of the basis of the dlgomhm to 50 partlal sums means that only combinations of (7, F) are
admissable, which provide “convergence” of the process in the above sense for the points of interest on the profile
and in the external flow field. When only part of this base is necessary to achieve convergence, it 1s possible to
extend the range of admissable values of t in the process slightly above the value given in par. 3.1, and thus the
flow field fig. 3e, exhibiting a maximum speed 7,,,,= 0.20 (M= 1.12) has been calculated. It will be clear, that
increasing ¢ has a strongly adverse effect on the rate of convergence of the series representation, and thus on the
performdnce of the process.

A very severe test of the process is taken on the circle of convergence t=1,,, where both series expanswns (2.37)
are conditionally, very slowly convergent, and should sum to give the same result. This computatiorn is necessary
to find the integration constant Ax in the series {2.4.1) to join the solutions from the two series represematlons
The process did not always converge on the line T=1_, in the external flow field, in these cases a point in the in-
terior has been computed to find Ax.

It will be clear, that the accuracy of the results obtained from the process cannot be guaranteed in any mathe-
matical sense. Nevertheless, it is believed that the results obtained as shown in fig. 3, are correct to within at least
3 sngmﬁcam figures.

The gain in performance of the process, that can be obtained by computing F,’s using multiple length arithmetic
in the computer will be a subject of further research. A second possibility of extending the range of admissable
Jocal maximum Mach numbers for thin profiles is the use of 2 model gas law, giving rise to particular solutions
having somewhat more convenient numerical properties. This also, if useful, will be investigated.
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4 Conclusions

1. A three parameter family of continuous transonic aerofoil flows is defined by means of Lighthill's integral

.—operator. The computation of thin aerofoils is shown to be possible under some restrictions using automatic.

computing equipment and numerical methods that recently have been developed. Profiles that exhibit some

of the characteristics of Pearcey’s “peaky pressure distribution profiles” can be identified within this family.
2. In Appendix B, a discussion is presented on the “transonic controversy”, in view of recent theoretical and ex-
perimental results. It is suggested, that while transonic potential flows cannot be said to “exist” in any physical

sense, a-practical method of calculating these flows might be a useful working tool in the experimental analysis

of the process of shock formation in transonic flows. In particular, the physical limits of the “peaky pressure
distribution™ concept might thus be explored on a systematic basis.

3. The fact, that approximate methods cannot be expected to predict these flows with sufficient accuracy, justifies
a renewed interest in the classical function theoretic hodograph methods, and an attempt at future development
of finite difference methods for these flows. In particular, a further development of the present method would
appear to be worthwhile, which would involve:

a} extension of the numerical procedure to permit the computation of flows involving higher local Mach
numbers over thinner profiles;
b} application to circulatory flows and .
c) exploration of the possibility to extend the method to other flows of practical interest by adding further
particular solutions in the hodograph plane. _

4. In Appendix C, the feasibility of the hodograph transformation is discussed in terms of elementary algebraic
considerations. This leads, in particular, to an insight into the significance of the dimensionality and metrical
properties of physwal space. A physical interpretation of the principal invariants of the rate of strain tensor
in plane flow is given in this connection.
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APPENDIX A
A summary of some of Lighthill’s resulfs(rcf -13)

In this appendlx a number of results as obtained by Lighthill will be assembled for convenient reference.
The isentropic gas law

e

Introducing potential and streamfunction by the definitions

D= U -

2 ..
W= — {i.j=1. 2)
Po .

. . . 1 . . .
where n;; is the isotropic tensor ( | 0). the hodograph equations in Chaplygin's form are immediately obtained

by inversion of the forms (C.4.5}

q
Py —; l!]q .
(A 2a)
1-M? -
(Pq = '1[/0 .
pq
Eliminating ¢ it follows
Py + (1=M Wy = —g(1 + M)y, " {A2b)
or, introducing the relations (A 1) '
7+1
(1=, + ;w = - (1 +2_H" r)a,b (A 2¢)
ka4 41_ G }l+1 T
The subsonic normal form of (A 2) is found, writing
dS ‘ Y . 29 T
= =M
P Ji=-M
where the integration constant ¢ can be fixed by the condition
2s B
lim— =1, (A %)
=0 T R
giving _ '
Yot o= T, ' (A 3)
with

/~»+1

s=0 + 8
—1

f:‘_ artgh / + 1 log{2y-2)

g - —" JI-MA_ 41 MY
TG \/1_'M2d.s( P ) (1M
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There is a similar supersonic normal form

'ﬁ:;—lﬂoo:SlP: . (A 4)

with .

dr 1

— = J/M*-1

dg q‘/
which, however, will not be used explicitly.

Chaplygin's particular solutions are
Yaltet m°

with
Yo=1"F (ap by n+1:7)

' 1 v+ 1 13Vt
=tln - — + —
G ZE' - {—1" +(~,~I)IJ

and F, satisfies the hypergeometric differential equation _
t(1=1)F" + [(1+1) < {u,+bo+ )] F' ~a,b,F =0 . - (A 5)

Of the two independent solutions of {A 5) only the one denoted by F,(ay, by, n+1; 7), regular at the origin, will
be used in the main body of the report (for the Chaplygin function of the second kind, mentioned in Note, par, 2.5,
refer to the original paper): :

n! & (a,,+k—}}!(b,,+k—-1)! * '
Flt) = ————+—— —. Ab
Sl ey T S PIAY K (A6)
From the series expansnon it is seen that i, as a function of the complex variable n, has poles atn = —2, —3, —4,.
with residues ‘
|lir11 (n+mhp(t)= —mCpibn(t) m=2,3,... (A7)
where ‘
' c - ({@m— 1)1 (m=b} 1
" {ag—m=1)1{=b,) (m))?"
For large m one has
N R ' '1) o
_ am 1 — . . 7
Cn 2m e +0(m, ! (A 7a)

N . . y—1 L
Now the fundamental fact in Lighthill’s method is, that for r < ’—+T a development of e~ " ,(t) can be given in

terms of the residues (Mittag-Leffler’s theorem):

e ()= Ln 5 CoYal) g

me2 MR

_ 4 result expressing i, for arbitrary complex n{# —1, —2, ...} in s for positive jntegral m.
An asymptotic form for subsonic t for large n can be found from (A 4):

i) = Vi o) (A9)

where

2V
—=T.
|4

Comparing (A 8) and (A 9) it follows
Velt Y Cotrme™. - (A 10)
m=2

The corresponding usymptotic form for supersonic 1 is given as
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elllmn| . .
Yalt) =2Ve™ {sin_(nt-k;};n) +0 { ol ” (A1)

+ et |- jarg n|En-4

uniformty for

n
i

4
f

ot ||
() =Ve" [Sin(m+in) — cotg nrm cos(nt+4m)+ 0 L L -Iz';lcolg nn})ﬂ

uniformly for
y—1

v+ 1

+ e tE l—s larg(—alE 0o

Lighthill's integral operator in its simplest form (for circulation free ﬁow) defined in the subsonic region |{| <
e""*= i3 given by

= lm[i C it} 0 o gmd@(g)J ' (A12)

Co=1
C|=G.

The properties of the operator can be seen from the results mentioned in this Appendix. to be:

a) (A 12) is regular in the subsonic part of the compressible hodograph plane, excluding the point s=s,,. §=0.
This can be shown by majotization using the asymptotic estimates for C,., and the fact that the integral
in (A 12) is regular in the part of the incompressible hodograph plane corfresponding to the exterior of a body.

b) (A 12} satisfies (A 3), which follows immediately noting that

.“s-_\',ﬁ — il
lm e—m[’.‘:"s,uli{l) ‘ t:mdq)
Jlu

) ) ) , 2V
is a harmonic function of s, &; {A 8), and the relation T = o
¢) for guay-+ 7. ¥ —1m @ as all terms except m=0 reduce to zero and ¢ *» — 4
q.,.

d) By using a series expansion for ¢({) as (A 13), and the asymptotic properties of 1, (A 9). it follows that the
expansion of ¥ for r—t_, is asymptotically similar to that of Im @ for g—y¢.,.
The development (A 14) shows that f{n. 7,.) = ¢™"+ in this case.
The result can be given in series form. permitting extension to supersonic values of * when a series development
of @({) is available. which is written symbolicalty

o=Yc.q e ™ (A 13)
implying the various analytic continuations.

Indeed, let {; be a point arbitrarily located in the subsonic region and an expansion of the form (A 13) given.
Then,

" . .s—st—it? '
% i (
y=Im ¥ Cm[/;,,,e'"”w“‘”[ mde + ‘ C’"Zn’c,,g"""‘dc:} ‘
R4

m=0 s
Working out the second integral, assembling terms in {,, in

- vmd(b Z v;: +m

n+m

m =

J Lo

it follows

_lmliz qu !,b ()m(sn*-tﬁ\_i_z( !/ln n'(s,n+iﬂl:| lA 14)

g,, obviously does not depend on {; as neither the second series nor ¥ does. Using the asymptotic estimates, it
can be shown that (A 14)converges in the whole supersonic region and in- part of the adjacent subsonic region.
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APPENDIX B

Mathematical model and experiment: the “transonic controversy”

B 1 introduction -

This Appendix presents a discussion on the mathematical and physical interpretation of the results of this
report, in view of the current “transonic controversy”; cf. Bers' book (ref. 3) for a recent survey. 2) is an attempt’
at clarification of terminology and reviews the mathematical position; 3} refers to the experimental state of the
art. In 4) some consequences for !he design problem in the transonic field, in particular for “peaky pressure
distribution™ sections, are discussed.

B 2" The transonic potential flow model
Theoretical aerodynamics is concerned with the conception and analysis of mathematical models for flow

phenomena. The aim is to study the interrelation between particular aspects of physical flows, which have been
isolated in an aerodynamic theory, in a mathematically consistent system. The present discussion is concerned

~ with the aerodynamic problems of flows arcund bodies at large Reynolds numbers, and the mathematical models

can be thought as represented by, say, systems of partial differential equations with boundary or initial value
conditions.

A useful model should meet conditions of mathematical consistency, and.be, in some sense, physically adequate.

The classical conditions of mathematical consistency have been formulated by Hadamard: a solution to the
mathematically “well posed™ problem shouid exist, be unique and be stable against small perturbations of bound-
ary or initial values.

The physical adequacy of the model is more difficult to define precisely : roughly, it is an assessment how well
the model predicts the results of a particular set of experiments. This assessment often leads to an interpretation.
of the model in terms of a more general aerodynamic theory.

The main problem in the conception of models for the aerodynamlc theories under dlscussmn is to represem
the effects of viscosity, These effects are only indirectly represented in linearized potential flow theories, for which
the mathematical problems are in general well understood. Comparison with experiment shows these linearized
models to be grossly inadequate however, necessitating the use of a more detailed, oftén non-linear, physical
theory. The usual procedure is then to postulate the existence of a system of shock waves and vortex sheets as
singular surfaces, carrying compatibility conditions, in the solution, and use the equations of inviscid compressible
flow theory. In principle, again, the intrinsic mathematical consistency of the model should be analysed (which
is unfortunately usnally mathematically unfeasible), but this does of course still not verify the physical validity
of the type of flow postulated. Moreover, as will be discussed in the next paragraph, in transonic flows experimental
situations exist which do not seem to be analysable in terms of a stable mathematical mode! of this type. This is
an essential difficulty in the conception of a consistent transonic theory, but not an exclusive feature of transonic
flows only.

The physical basis of the above procedure is, that for large Reynolds number viscosity effects often take the form

of boundary layer phenomena, and the resulting shock waves and vortex sheets can mathematically be shown
to represent asymptotic solutions of the Navier-Stokes equations (ref. 15). It has been suggested by von Mises
(vef. 17, V, 24, 6) that ideally, the physical validity of these models should be demonstrated by asymptotic analysis
for Re — oo of solutions of the full Navier-Stokes equations. This programme would undoubtedly ‘remove any
logical inconsistencies from the theory, but would seem to be somewhat beyond the present mathematical possi-
bilities. This means, however, for the time being, that the physical validity of any mathematical model can only
be established by a posteriori experimental verification,
. The mathematical consistency problems have been rigorously analysed: for physically the simplest model of
compressible flow theory: the usual, Neumann-type external boundary value problem for the equations for plane:
potential flow. The existence of a solution under uniformly subsonic conditions has been proved by Bers (ref. 3.
Thus, the mathematical model has been demonstrated to be stable in this case. The physical adequacy of this
model, however, depends on boundary layer separation effects for which at the moment, no satisfactory theory
exists.

In the transonic case (M , < 1), classes of potential flows can be defined by the methods discussed in this report.
Morawetz {refs. 19, 20, 21) has proved that these do not possess neighbouring solutions when the boundary is
perturbed in the supersonic region. This means that these solutions cannot be definéd by boundary value problems:
this mathematical model is unstable in Hadamard’s sense. These results, which were preceded by mathematically
somewhat less satisfactory discussions of related problems by Busemann and Guderley, (cf. ref. 3}, have given rise
to conilicting opinions on the so called “transonic controversy”. It would appear, that most of the paradoxes
advanced in this discussion vanish, when the modest status of mathematical theory as a model of physical reality
is realised ; somehow, experimenters have remained quite unruffled by the dispute.
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Morawetz’s results suggest immediately a host of interesting and extremely difficult mathematical questions
as 1o the characterization of the class of profile contours that do admit transonic potential flow solutions: their
analyticity properties, topological category. etc: However, again the physical relevance of this class of solutions
is a quite different probtem. which cannot be answered on the basis of potential theory. From the physical point
of view, it would seem to be extrentely doubtlul whether these profiles, as a class, have any particular significance
in one way or the other: the existence of a potential flow solution around a given contour does in no way indicate
the possibility of shock free realization in a viscous flow; alternatively. it appears that a contour for which non-
existence of a potential solution could be proved. would not necessarily generate a pronounced shock wave.

The mathematical position, then, would seem to be that the mathematical instability of this particular flow model
has been proved: leaving, however, the decision on the physical relevance of any partlcular potential flow solution
o experimental observation.

3 Experiments in transonic profile flow

A description of shock and shock-boundary layer interaction phenomena in transonic profile flows has been
given by Pearcey {ref. 24). These phenomend usually accompany super-critical conditions; however, as discussed .
by Pearcey (ref. 23} by careful design it is often possnble to reduce the shock strength appreciably, thereby allevi-
aling the separation problems to a large extent. This i1s done by generating a carefully tailored expansion at the
profile nose. which is reflected against the sonic line to give a gradual recompression in the supersonic region,
In some cases {Pearcey. private communication) it is ¢ven possible to remove any stationary shock wave from the
flow field in this way, resulting in a shock free supersonic recompression from a rather high local maximum Mach
number on the profile contour. It is suggested by Pearcey. that this condition of “peaky pressure distribution”™
should be designed for. and these sections be used in the design of subsonic and supersonic swept wings. As trans-
onic windtunnel conditions are generally far from perfect, the experimental evidence makes it probable that the
stability of flow fields of this type is sufficiently uneritical for this concept to be a useful basis for engineering
applications. However, a rational design method for these sections is as yet not available.

As suggested before these experimental results are, though perhaps somewhat unexpected, not at variance with
Morawetz's results, Obviously. the explanation of the physical stability of the flow with respect to the oceurrence
of shock waves would require a much deeper penetration mto the properties of viscous flows than at present
would seem to be posstble. A further. detailed study of growth properties of instationary upstrcam travelling
disturbances, building up to very weak instationary shock waves {refs. 22, 28} would be of interest, in particular
for globally shock free flows. Apparently. for-these flows the balunce between the growthsof the strength and
speed of propagation of these disturbances is such as to prevent coalescence into a stationary shock wave. A theo-
retical solution to the physical stability problem as to the appearance or not of shock waves would require a
mathematical analysis of this physical situation,

B 4 The design problem

The experimental results discussed clearly show the essential difficulty for a general theory for transonic flow
around a given contour: the physical type of the flow is a priori unknown. In principle, it is possible to assume
the existence of a shock wave and try to find an equilibrium position by iteration. This would present extremely
difficult stability problems in the numerical analysts and will in many cases not necc,smrlly represent the phymdl]y \
correct model.

The principal advantage of hodograph methods, as compared with the direct methods, is the possibility of a
priori specification of the flow pattern, by virtue of the linearity of the hodograph equations, When the aim 1s
to design flows of a prescribed physical type, the inverse nature of these methods presents no serious resmc-
tions.

However, for a profile flow involving a local supersonic region closed by a shock wave, it is eustly shown by
gualitatively formulating the problem in the hodograph, that a doubly covered hodograph exists in the subsonic
reexpansion region immediately behind the shock wave. From the considerations in Appendix C, this follows to
be incompatible with the assumption of potential flow. Thus, the problem in the large cannot be formulated without
taking vorticity effects into account. This again introduces a non-linearity in the description ef such flows, which
still awaits analysis.

At present perhaps the more impoftant practical problem is, whether a rational design methed can be found
for shock free transonic flow fields of the type suggested by Pearcey. on the basis of potential theory, if at ail.
Such a design method would require a practical numerical method to construct continuous transonic selutions
of the required type, permitting a systematic variation of the geometric parameters, and a criterion to designate
the range of parameters teading to solutions having the required physical characteristics. As suggested in 2.6.4,
such a design method could be developed on the basis of the methods used in this report. The physlcal criteria
should be derived from a systematic experimental programime.

The alternative would be the development of methods allowing a direct definition of the “peaky prcssurn
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distribution” type of sections in the hodograph. This would require formulation of a correctly posed (Frankl-type)
boundary value problem in the hodograph plane, combined with a singularity represeming the far field conditions
in the physical plane. The problem then, as the defining boundary cannot be closed, is to guarantee closure of
the profile. If this problem ¢ould Be solved, this method, using finite-difference techniques.in the numerical inte-
gration, would be the most flexible with respect to the boundary conditions that can be prescrlbed Also, it would
perhaps provide a basis for an extension to flow fields involving shock waves.

It will be clear from the foregoing discussion, that these theoretical solutions do not “exist™ in any physical
sense, or “explain” the possibility of a physically continuous flow. However, the possibility of characterising the
“peaky pressure distribution™ flow fields in this way, might make these solutions a useful tool in the further experi-
mental analysis of this interesting physical situation.

7 APPENDIX C
Some elementary algebraic propérties in the local theory of plane potential flows

C 1 Introduction

In this appendix, some of the algebraic properties for two dimensional flows are surveyed, of which some are
basic for the whole theory, and others are used in the analysis of the practical results in the report. In 2) a some-
what leisurely review of the usual assumptions in the theory of compressible potential flow is presented. 3) gives
a study of the general feasibility of the hodograph transformation, in which the lincarity of the plane hodograph
equations is clarified. 4) is a study of the algebraic invariants of the hodograph transformation, here represented
by the rate of strain tensor, which are given a physical interpretation. 5) presents a brief discussion of the singu-
larities of the hodograph transformation, in particular limit lines.

C 2 Potential flow of a compressible medium

A flow field is a continuous structure having interrelated kinematical, dynamical and !hermodynamlcal aspecls.

The flows to be considered will be stationary, and can then conveniently be described in Cartesian tensor
notation, sufficient differentiability properties being assumed throughout.

The kinematical structure of the flow field is locally described by the rate of strain tensor:

du;=u; ;0x; (C.2.1)
-J J .

associating a velocity difference vector du; to a displacement vector dx; in physical space.
For fluids without internal friction the dynamics of the flow field follow from the distributions of the flow density
vector and momentum tensor:

hy=pu;
ILj=pd;;+ puu;
the divergence oﬁeration on which measures the mass divergence and the external force field:
hi=w . {C22)
L=F, O c2))

Thirdly, the compressible flow field represents a thermodynamical process, relating locally the quantities p and p
to the speed of propagation of small disturbances

1 ' :

.= (9&’_) : (C24)

dp
The simplest possible structure of compressible fluid flow is considered, in which local thermodynamlcal variables

p. p, ¢ are functions of the velocity magnitude only.
This condition requires the absence of any spatially distributed dynamical influence; i.c. the case in which

F.=
=Y (C.25)
w=0
and a uniform relation ‘ ) :
‘ p=plp) {C.2.5a)

exists. Assum'mg uniform conditions asymptotically in the far field, this leads kinematically to symmetry of the
rate of strain tensor

M{,}: i {Czb)
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and the integrability of (C.2.3) to a uniform constant

d
. Tfl + f‘ulul ZQmux’ - . (C27)
where the reference condition in the integral is taken at zero pressure.
When (C.2.5a) is of the form

p=kp'+C
(cf. rel. 4 for the necessity of this condition), the Mach mimber

. Il
2 Hit
M® = 2

> (C2.8)

expresses locally velocity similarity under changes of scale in physical space and of values of ¢,,,,.

The physical properties of the fluid can then locally entirely be described by the continuity condition (C.2.2),
which under the conditions (C.2.5} can be written: .

(5ij - ;liuiuJ u; ;=0 (C.2.9)

Together with' the symmetry condition {C.2.6), this gives the usual equations for compressible potential flow.

C 3 The hodograph transformation

In this paragraph, the feasibility of the hodograph transformation for the equation {C.2.9) will be discussed.
in which the role of the metrical properties and the dimensionality of the euclidean spaces considered will become
apparent. These properties are of some basic interest, but seldom seem to have been made explicit; Birkhofl’s
discussion (ref. 4) of the group properties of the hodograph transformation would seem to be somewhat beside
the real point.

In the previous paragraph, the flow field has been thought to be given as a vector distribution in physical
space. However, 1t is also possible to define the flow field as a one to one mapping between physical space and a
“velocity space” or hodograph, spanned by the physical components of the velocity vectors. One notes, that this
point of view is only possible in euclidean space, as the aggregate of vectors defined on a general manifold do not
form a vector space. Velocity space will be considered as an independent manifold, and the conditions, under which
flow properties can invariantly be described by tensor (i.c. locally linear) operations defined on the hodograph
manifold, are investigated. Under these conditions, the physical and hodograph manifold could be termed to be
locally metrically equivalent.

Locally, the flow field defines a linear transformation

it = ASX {cay

 between displacerments vectors 8% in physical space and displacement vectors 8 in velocity space: This.affine

transformation is given as a matrix 4 defined in a focal cartesian vector base {spanned in a tangent space to the

physical manifold), which is simultaneously a local base on the hodograph manifold. Now, from the affine point -

of view, these manifolds are seen to be equivalent by virtue of the group property of the matrices considered: an
inverse to the matrix A is immediately given and (C.3.1) can be written equivalently:

Sx=A""16u. {C32)

However, the description of the flow propemes by the divergence operation (C.2.2}, (C.2.3) involves the metrical,
properties of space. In our-case these have been impiicitly used in the definition of the generalized divergence
operation in (C.2.9), which is invariant with respect to the euclidean metric.
The use of the tensor notation
Su;=u,; Ox

L]

(C33)

j
for (C.3.1) expresses the metrical equivalence of the set of linear transformations
' S, AS3 (C.34)

where S, are the 3 dim. orthonormal transformations, each one associated with a particular local reference frame.
In algebraic terminology, the cartesian 2nd order tensors are thus obtained as equivalence classes in the 3-dim.
real linear group by conjugatlon with the orthonormal sub-group. However, the equivalence relation (C.3.4) does
not define sub-groups in the linear group: the inverse of a 2nd order tensor is in general not defined.

This means that in the three dimensional (and axi-symmetric) case, the hodograph manifoid is not metrically
equivalent, {C.2.9) is not invertible as a tensor expression, leading to a’strongly non-linear {noi quasi-linear)
hodograph equation. ) : - 18
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In two dimensions, the situation is different. The plane rotation group is commutative, giving a symmetry in
the metrical conditions, which provides the possibility of the inversion operation.
Algebraically, this means that an automorphism of the plane orthonormal group

p ' (10)+, ('01)
=0 S1n
2= 0 ““10

$2(p) = $:{e) = 5 (@ + g)

by which with every element from the set of 2 x 2 tensors an inverse can be invariantly associated:

is available, given by the translation

S A SIS ASTY = (8,457 (8,47 57 ) =1,

where J =det 4, and the prime denotes transposition.
Succinctly, this expression embodics the group theoretical interpretation of the hodograph [ransformaﬂons
Explicitly, this construction associates with every (2x2) tensor

il

HX yu })[’

- for J=det(u; ;) # 0. :

The hodograph transformation, expressing the metrical equivalence between the physical and ve]ocuy space,
is thus seen to be possible by virtue of the linearity of matrix inversion in the 2 x 2 case and the commutativity
of the plane rotation group.

Two types of flow in physical space meet the condition gwmg a 2x2 rate of strain tensor: plane flows and
conical flows (where in the latter case the tensor is defined in a tangefit plane to a sphere r=const.), and from
the local point of view they have completely analogous properties: locally, for these flows physical properties
can be expressed in terms of invariants of the hodograph mapping.

From the global point of view, however, the difference is that the generalized divergence operator in (C.2.9) is
non-linear in velocity space for counical flow, leading to a quasi-linear formal partial differential operator. For
plane flow fields, however, this operator is linear in velocity space, giving the lmear differential operator (in a
notation which-will be clear):

.

1
(aaﬂ — E; uauﬂ) xaﬂg”—_o

| (C3.5)
xa'ﬂi Xﬂ’a N

the advantages of which in defining explicit solutions has of course been the motivation for the use of the hodo—
graph transformation from Chaplygin (ref. 5) onwards.

It is immediately clear, that velocity space does not have all the invariance properties that physical space has:
“the description of the physical properties of the flow field by {C.2.9) is invariant under translations, rotations and
scale transformations, while velocity space is obviously centred, and not invariant under scale transformations.
The use of cartesian tensor notation in the hodoegraph space, while convenient in the present discussion, is thus
perhaps open to some objection, which is removed in the formula C4.5.

Finally, one might remark that the continuity condition can be transformed locally independent of the assump-
tion of symmetry; the irrotationality condition does not involve the metrical properties of space.

C 4 The principal invariants of the hodograph transformation

In this paragraph, the algebraic invariants of the hodograph mapping are given a physical interpretation, which
will prove useful in analysing the results, par. 2.6. The hodograph mapping will be taken to be represented by the
rate of strain tensor (C.2.1), it will be clear that all representations are equivalent, and in fact in section 2 par. 6.2
these results are used expressed in hodograph plane variables. Reyn (ref. 25) has, for the analogous case of conical
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flow and later {ref. 26) for plane flow, interpretcd some of these relations as curvature invariants in his analysis of
the differential geometry of the Legendre potential surface in velocity space: the present interpretation is. perhaps,
both more elementary and more direct.

The resulis obtained centre around the mﬂueme of compressibility on the acceleration vector which is not
surprising in view of the expression:

A= Ul ;

Comparison with (C.2.1) shows the fundamental property of the hodograph transformation: in the hodograph,
the tangent to the image of the streamline is in the direction of the acceleration vector in physical space.

Under the assumption of symmetry. the mapping properties (C.2.1) are equivalent to those of the quadratic
form:

XX~ 1 {i.j=1.2) (C4.1)

the image of a vector dx; as transformed by u; ; is normal to the conjugated vector of dx; with respect to (C4.1).
The eigenvalue problcm for u; ; {which phymaﬂy corresponds to the search for directions in which the fluid
element is deformed without qhear} leads to the characteristic equation

—HitJ=0 - ' (C.42)
with the principal invariants ‘
He=tr(u, ) =u,;
J=detu (i.j=1,2)
and the relations for the eigenvalues:
. H | —— .
e =5+ BWH 4] (C4.3)
iy =J
by iy = H
Ay = /H 1)

the dlscrlmmant 15 immediately seen to be non-negutive by the symmetry condition, guammeemg real 2s.
From {C.29} follows for the divergence expreqsmn

r ,
. H= = RTET ‘ (C4.4)

being — x the scalar product of velocity and acceleration vector, and reducing to zero in incompressible flow.
c

At this point it is convenient (o leave tensor notation and consider the particufar local reference frame chosen
along and normal to the local velocity vector: compact and physicaily perspicuous results arc then obtained
because in this case the Mach number is exhibited explicitly.

Eq. (C.2.9) reduces to '

(1- M?)g, + g0, =0 (C4.5)

de o\ [ 4 40,
U ; = ’
! 7_> ( gil, ‘!Un) (q()‘S —{! ——-Mz]qs)
using (C.4.5) and the symmetry condition. {gy4,. g% 6,} are the components of the acceleration vector «; in the re-

sulting orthogonal curvilinear co-ordinates, formed by 5Ire‘1mlmes and equipotential lines,
~ Then

and

J=iyiy =~ (1= Mgt —g2 0!

o {C.4.6)
H=ki +2,=My,
and
ha=iMig /“ — iM% —q_fﬁz_f_)f
Using these values one obtains for the directions of the eigenvectors the condition
cotg 2y = (1 —IMYcotga. _ ‘ (C47)

where
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% = arc tg a0, ' ' o (C4Ta)
4 o ‘
is the angle enclosed between acceleration vector and velocity vector, and the two roots of (C.4.7) give two per-
pendicular principal directions, in terms of the angles y, , with respect to the direction of the velocity vector.
One notes that in incompressible flow the eigenvectors bisect the angle between velocity and acceleration vectors,
and that for A= /2 the eigenvectors have the characteristic directions, independent of the acceleration.
By the eigenvalue analysis, the quadratic form (C.4.1) has now been brought into standard form

i, xi=1 (Ca.1a)

and can be classified as to type. For subsonic flow, by (C.4.6), J< 0, so thal 4.z, always have opposite sign.
(C.4.1) representing a system of conjugate hyperboles, orthogonal for M =0. For supersonic flow, however, J may
go through zero and become positive, and the representation of the quadratic form goes through the degenerdte
case into an eHipse,

A direct physical interpretation of these delS is obtained by considering the structure of wave propagatlon in.
the flow. Introducing characteristic directions, which in this context are given by the displacement vectors mapping
" independent of the direction of the acceleration vector, one obtains

g’ =

e (C438)

where fi is the Mach angle. The pairwise orthogonality of these directions with their lmages mn the hodogmph
plane, leading to the pair of linear ‘ordinary differential equations

gdf
— =+ f
& g )

¥

for the fixed characteristics in the hodograph plane, is immediate.
Now, choosmg in the physical plane positive directions for the arc length on the two characteristic curves g

and g for |8 < 5, the projections of the vector (4, ¢fl;) on the two characteristic directions can be identified with
the intrinsic derivatives g, and g, respectively. One obtains the decomposition
q¢+q,,=2 cas fig,

_ {C.4.9)
g:—d,=2 sin figt;

and the expression
J=Mq.q, {C.4.10)

(C.4.9) expresses for locally supersonic flow the components of the acceleration vector in terms of the quantities
e 4y the “strength™ associated with the # and {-characteristic respectively, at the point in the physical plane
considered. According to the sign of the associated strength, a characteristic may be termed expansive (+).or

compressive (— } Also, {C.4.9} shows the reflection phenomena against the sonic line for § =

lu\‘.:l

Clearly, in a supersonic flow J < 0 means that characteristics of both types are present, J > 0 indicates that bo{h
are of the same type.
These results can be conveniently summarized in vector notation:

J =M (g, Bia, {CAY
where g, is the vector (g, gf),) and & and » are unit vectors in the characteristic directions. This shows sign J to

Fl - - - . JT
indicate, whether the angle between acceleration vector and velocity vector be smaller or larger than 5~ f or,

in the hodograph planc, whether the tangent vector to the image of the streamline includes a smaller or larger

than characteristic angle with the velocity vector. Also, of course, J measures the area ratio of elementary surface

clements under the hodograph mapping, and sign J indicates the orientation of the mapping (circulation index).
Finally, one notes that the quantitics qx 4, arc a measure for the curvature of the &, i characteristic.
Explicitly, one has for say, a é-characteristic:

R (U+ﬁ} (C4.12)

H

%%+3W4)

- q. [(Mz—l)i(gz—? Mz—zﬂ
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the last expressxon valid for the polytropic gas law. It is seen that a characteristic has an inflexion point on curves
where J =0 (which are easily seen to be characteristic) and on the isobar for which

. ‘4 P
. . M= (3—_;) (=158 for '}?=14),
a result first noted by Christianovitch (1941). :
C SASinguiarities of the hodograph tran&formation

In the previous paragraph, the local physmal and geometrical meaning of sign J has been discussed. Obviously,
its main significance is as a local index for the topological properties of solutions in the large: in general, a change
of sign in the functional determinant indicates the occurrence of a fold in either the physical or hodograph mani-
fold.

The resulting singularities of the hodograph transformation for plane flows have been exhaustively investigated
by Geiringer (in ref. 17) and their properties will here only be touched upon.

For a potential flow, J < 0 in a subsonic region {C.4.6); thus a change in the sign of J can occur only in a super—
sonic region. However, a continuous transonic profile flow is by definition of the same type as a subsonic one,
i.e. derivable from a continuous transformation, and this means J <0 in the external flow field. This is a basic
inequality for these flows; the local physical consequences in the supersonic region have been discussed in C 4.
{It may be remarked, that the definition J=det{u; ;) is used consistently in this discussion rather than its inverse,
which would be perhaps the more natural when discussing properties in the physical plane of a solution defined
in the hodograph]

A change of sign in J through a curve on which J =0 {branch line) indicates a fold in the hodograph maniflold.
It can immediately be read off from the formulae presented in par. C.4, that this curve in the (regular) physical
plane is a characteristic, on which -the other family of characteristics changes type {compressive « expansive).
This type of hodograph plane singularity is physically realised in Laval nozzle flows. In the theory of this report,
this type of singularity has been excluded by the fundamental postulate of regularity of the solution in the hodo-
graph of the external flow, excepting the singularities representing conditions at infinity in physical space. How-
ever, for a regular solution defined in.the hodograph plane, J can very well change sign through infinity on a
curve in the supersonic region. This gives a fold in the physical manifold, the edges of which are the much discussed
limit lines, forming a locus of cusps for characteristics of one family and for streamlines, When part of the boundary
streamline =0 is located on this fold, no regular profile is defined in the physical space, indicating the end to
the usefulness of the theory.

It is known (ref. 21) that for a proﬁle defined in the hodograph plane, when J < 0 on the i image of the boundary
streamline, J < 0 and regular in the entire image of the external flow ficld, ie. the mapping in the physical plane
is regular when the image of the boundary streamline is regular.

Apparently, “limit lines” have a long life in the “explanation” of shock phenomena. However potential flow
solutions, whether containing limit lines or not, are symmetric with respect to reversal of flow direction, while
shock waves as viscous phenomena induce physically essentially asymmetrical effects. The physical justification
of any attempt to characterise the genesis of shock waves in 'the flow around a given contour in terms of the
singularities induced by a limit line, would seem to be extremely slight. In fact, as suggested before, limit lines

-appear in physical space as a conseguence of the fundamental postulate of continuity of the solutlon i velocity
space, and thus essentially result from the artifice of the hodograph transformation.

All the same, it would be interesting to know explicitly how limit lines are generated in an analytic hodograph
under Lighthill’s transformation (2.1.3), in order to study the connection with the “generating singularities” of
the physical flow, and thus to visualise the complete compressible counterparts of the incompressible manifolds
discussed in 2.2. Unfortunately, the series representations of solutions y are to awkward to elucidate these ques-
tions.
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Tunnel wall corrections for a wing-flap system between
two parallel walls.

by

E. M. de Jager and A. I. van de Vooren

Summary

A method is presented for the calculation of the corrections due to the tunnel walls, to be applied to the measured lift and moment of a
two-dimeinisional wing-flap model between two parallel walls.

The theory developed here is non-linearized since the angle of flap deflection may be large. Calculations have been performed for three
values of the ratio of wing to flap chord, for three values of the ratic of wing chord to tunnelheight and for angles of flap deflection up to 75°

- 2 General survey of the investigation.
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¥'(x) vorticity distribution of wing-flap system in
free flight _
4dy{x)  the difference y"(x) — y(x)
d angle of flap deflection.
2
3 cos§ = — é:a 0<3<n
¥ cosS'=M 0<% <n
. _ bcosd _
& integration variables; ¢ corresponds with
x-direction and # with y-direction
P density




ratio of flap to total wing-chord ¢ velocity potential
r vortex strength 1 stream function

I

1 Introduction.

- The experimental investigation of high-lift devices in a wind tunnel fequires the knowledge of tunnel wall
corrections for such configurations; in order to reduce the results to free flow conditions.

At the National Aeronautical and Astronautical Research Institute an experimental program has been performed
during which pressure distribution, lifi-moment and drag have been measured for a two-dimensional wing-flap
system at large angles of flap deflection. In order to retain smooth flow, air is blown along the upper side of the flap.

Tunnel wall corrections for this conﬁguration in comparison with those for a usual model, show the following
complications: .

() due to the large flap deflection it is not a pnorl certain, that lmeanzatlon of the equatzons governing the flow
is admissible;

(ii) even if the wing is placed in the middle of the tunnel, the pomts near the trailing edge are not and this leads to
a more comphcated reflection pattern of vortices;

(iti) the blown air can be schematized by a jet, which will mﬂuence the flow around the model, but this influence
itself is also affected by tunnel wall corrections; -

(iv) due to the larger lift an unfavorable pressure gradient will develop at the part of the lower wall, which is ahead
of the model and which may induce boundary fayer separation.

In the present report points (i () and (ii) are investigated. As long as the momentum of the jet is not too large,
point (iii}) will not be too important. It will form the subject of a further theoretical investigation. If boundary
layer separation at the wall occurs, more or less important modifications of the tunnel wall corrections due to
points (i) through (ili) can be expected. This, however, is probably more suited for experimental investigation.
In any case it should be tried to prevent boundary layer separation at the wall.

The physical problem to be treated in this report has been schematized to a two-dimensional problem and
therefore the influence of the sidewalls of the tunnel have not been taken into account.

2 General 'survey of the invéstigation.

The aerofoil is considered sufficiently thin to warrant its replacement by a single vortex sheet, coinciding with
its mean camber line. As thé aerofoil is symmetrical, this mean camber line consists of two straight line segments,
the angle between them being equal to the flap deflection.

The local strength of the vortex sheet is determined by the condltlon of tangential flow at the aerofoil. This
condition leads to an integral equation for the vortex distribution, containing the angle of flap deflection as a
parameter, and which will be solved approximately.

Using the assumptions mentioned above, exact solutions for the case of a free aerofoil have been given by
Keune {ref. 1). These exact solutions are used in the present investigation to check the approximate theory for
the free aerofoﬂ Agreement turns out to be very satisfactory and therefore the approximate theory may be apphed
also for the aerofoil between tunnel walls, where no.exact solution is available for an aerofoil with flap. It may be
added that for a plain aerofoil between tunnel walls,an exact solution has been given by Tomotika (refs. 2, 3),
but it did not seem feasible to extend this solution to an aerofoil with flap.

The approximation method itself consists in assuming for the vortex distribution a sum of six terms, each of
them being the product of an unknown coefficient and a known function of the chordwise coordinate. Two of
these functions contain a singularity, namely the square root singularity at the leading edge and the singularity
corresponding to the flow at the angle between the two line segments. The four other functions are regular func-
tions. -

- The six unknown coefficients are determined by a collocatlon method, which is well- known in lifting surface
theory as the method of the pivotal points (see e.g. Multhopp, ref. 4).

In this way the vortex distribution for the free aerofoil and for the aerofoil between the walls can be determined,
and the pressure distribution can be calculated by aid of formulae containing non-linear terms. After subtraction
of the results for the-cases without and with tunnel walls, the tunnel wall corrections couid be obtained, unless so
many digits disappear, that the corrections are of the same order of magnitude as the error kintroduced by the
approximation method for solving the integral equation. Thercfore it has been considered preferable to apply.
the approximation method to the determination of the difference between the vorticity distribution of the aerofoil -

_ infree flow and in the tunnel, instead of to the vorticity distribution itself. After this difference in vortex distribution
‘'has been determined, the corresponding difference in pressure distribution, i.e. the correction in the pressure distri-
bution due to the tunnel walls, is obtained. Corrections for lift and moment are presented.



3 Analytical description of the method.

3.1 The ueloc:ty f‘ eld of a vortex placed asymmemcaffy between the tunnel walls

Due to the large flap deflection the vortices at the flap may no longer be assumed to have the1r posmon at the
middle of the tunnel. We therefore shall investigate at first the flow field of a vortex which is placed at a distance
1 below the horizontal plane of symmetry of the tunnel. Let the tunnelheight be 2h. The schete of successive re-
flections of the vortex by the walls is shown in sketch a. If the original vortex at # has a positive strength I {clock-
wise rotation), it is seen that the complete pattern consists of vortices of strength +I" at 7+ 4nh and vortices of
strength — I at 2h—#+ 4nh, where n assumes all positive and negative integer values including 0.
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Sketch a: Reflection of vortices by tunnel walls.

The complex potential at a point z=x+iy(y-axis taken downward), due to a single vortex at the point z, is
equal to

-ir
F=—_—In{z—
_ 5 niz—z,)
| The complex velocity due to this vortex is ,
| | CdF ir
- = y—iv

dz T 2nfz—zy)

where u and v are the veiocuy components in x-, and y-directions. Hence the complex veloc1ty due to the complete
vortex pattern is

ir 2 1 A i
S 2,2 z—¢—i(p+dnh)  z—¢—i(2h—n+4nh)}

ai ‘ AR
z—f—in=—l:—c and z—¢—if2h—y) -—-4—]:‘:£

r o 1 1y
8h,,=2m ( —nn C'—-mr)

According to the theorem of Mittag-Leffler (ref. 5), one has

cotg{-—%.z +Zm{ 1 +_1_}

Putting

this becomes

et =0 nm
nEQ
. , B - 1 ’ 1 ]
Hence cotg {~cotg{'= ) il — and thus
ri  a(z—¢—in) n{z—g—i(zh—n)}jl
= — — - cot
v=-% [""t 4k co dih

Using the formula
' sin 24 —1i sinh 2B

cot (A + IB) = cosh2B—cos 24




the result for 4 and v becomes

u=__£<' sin (J;;'I) | . .Sinn(};:l_,?) - | 1
T o T .
nlx— é) | alv—t) o (3.1)
S ('it;) - A=) o (SI—Z) |
\cosh 5 — ¢os o Acosh 7 +COST‘

3. 2 The integral equation for the vortex distribution.

For Slmp]lClty we shall assume that the wing is at zerd incidence and at the middle of the tunnel. The chord
of the wing (without flap} is a and the flap chord is b. The origin of coordinates is taken at the common point of
wing and flap. The angle of flap deflection is 8. The complete scheme is shown in sketch b. The ¢ase that the wing
angle of incidence is different {from zero leads to more complicated formulae since then the wing vortices are
not at the middle of the tunnel. However, there are no new fundamental dlfﬁcultles and this case will be left
out of dis¢ussion here. -

|
=
] 1 i

:

]

¥

Sketch b: The position of the madel in the tunnel.

The integral equatmn for the vortex distribution follows from the condition of vanishing normal velocity. This
means
i}y at the wing v=0

(i) attheflap —(U+u)sin 5+v cos 6=0. ) (3.2)

Uis the speed of the undisturbed flow, while u and v denote the velocity components due to the vortex distri-
bution. The vortex distribution will be denoted by y(é) which for the flap denotes the vorticity in that point of
the flap which has £ as its x-coordinate.

Consider first the normal velocity v, at the wing due to the wing vortices. Then y=n=0and the normal velocity

~ becomes by aid of eq. {3.1)

o . 'sinh E_—(J;,h_ g sinh (;h N
vi(x0) = S—hJ 7(¢) n{x~¢& B m(x—¢&) de
_ -f cosh—zr —1 coshT +1
or ' _ |
i o . L
vl(x,O) = EEJ. ‘—“—?;('(él—é dé . (3.3)

sinh

2h

The normal velocity v, at the wing due to the flap vortices folloWs by taking y=0 and 5=¢ tan §. Hence

_ o sinh n{x~ &) sinh n{x—£) A
vz(x, = 8h50 y(¢) coch n(x—~§) o né tan & cosh n(x-—{) + cos nf tan & cos‘tﬁ
T T T RG” 2 )

or

. ' | " bcoss sinh n();; ) cos me ;z;n d N )

(x,0) = ——— d 4

v2(0) 4k’ cos 5J 14 n2 n(x—¢ cos? né tan & ¢ (34)
' 2h 2h
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The normat velocity at the flap due to the wing vortices is obtained by taking y=xtan é and =0

{—uy(x,) sin 8+, (x,y) €08 8},= rions =

{ 0 7 s,_m nxzt:né Wii(_i:l:smh—(ﬁ!—ﬁé)éds J sin_&zt—rl—ésné _sinh ———*/ ( 0 coscS
8h j_a ?(é] <h w(x '—i) s X AN 0 * - cosh n(x—¢&) 4 cos™ tan § dé
081 T 2k 2h - 2
or o
{ —u, (x,y)sin 5+, (x,y)cos 5}_,,:;,3,,&.—: _
{ o sin = ;n 0 sin & cosh R(z; J + cos %—5 0s 6 sinh ———* (l )
4h .[ _J(‘f)  cosh? n(x—¢) cog? X A1 o (33)
2h 2

Fina]ly, the normal velocity at the flap due to the flap vortices is obtained by taking yr=x tan é and n=¢£ tan §

{_—u_,_(x, y) sin 8+v,(x, y) €08 6}, yians =

| fbeoss sin FB;%)IM—H& sind + sinh-E% cosd  sin f_(j‘_"‘zi’)ltjﬂ‘_a sin 4 — sinh n_(:;_;i) cos d de
S—hJo ' ( 5) n{x—¢)tan d n(x—¢&) n(x+¢&) tan & cos &
cosh ——= cos——T cosh ———=—= T + cos——zh———
{3.6)
The integral equations for the vorticity distribution can then be written as
0 bcosd
| r@xn goe+ [ OKIw gaz=0  —asxso0
—a ’ 0 -
0 beosd
J y(E) K x, £)d¢ +I YEKH(x, E)dE=Usind 0=x=<bcosd (3.7)
—a 0
where
KO 8) = ————
' 4h sinh 7 |
 nh {n(x—é]}cos {né tan & }
1 2h 2h
K®(x,¢§) =
’ 4h cos 5 osh? a(x—§) o2 fTE1and
2h : 2h .
sin {m» fan 6} sin & cosh { rlx= é)} + cos %'__r__nx an 6} cos ¢ sinh {n(x—é)}
K®(x,&) = L 2h 2h b 2h 7 TR
’ 4h cosh? n(x—§)| _ cog?) X tan 51
. 2k 2h
_ sin {M’)I—ta—né} sin 8-+ sinh { } cos 0
’ 8h cos & n(x—¢&) n(x— é tané
: cosh BETEE G

sin {n(x t é) tan 5} sin 6— sinh {—(izhjg}cos o

n{x—&) r{x+¢) tané}
cosh {T + COS§ {—Zh——

+ (3.8)

Iritroducing asterisks to denote free flight conditions, one obtains for k—oo the integral equations for the

¢



vorticity distribution for the wing in free flight, viz.:

0 beosd
[ roxrmeaes [ @k cge-0  -asxs0
-a - 4]
[} . beosd
j Y (&) KO (x,E)dé + [ YK (x,8)dé=Usind 0<x=Zhcosd (3.9) .
—a Jd0
where :
i 1
ar -
K0 = 2ee=)
1 x—¢ .
(2“ = v
K00 = 5rcos s P+ & tan?s
1  cost 5 (3.10)
- _ x—¢& cos
K®{x.2) 2m cos & (x—€)* +x* tan? &
1
@y -
K®(%.8). 2n(x—¢&)
Subtracting corresponding equations of (3.7} and (3.9) and introducing the quantities
‘ A?(é) = ?-(é) - ?(6) and - (311)

AK®(x, ) = KY(x, &) — K¥(x, &)
one obtains for the corrections Ay{£) the integral equations

bgosd ' )

0 ' *bcosé
| moxoEgar [ FOKOEAE-| T FRAKD (&

—asx=0

A}:(ﬁ)K”"(x fdt= — j

0 . (hcosd ‘ 4] bcos 3

J Ay(é)K‘s)(x,é)d§+J o AY(OKW(x,8)dé= — J y-(c)AK(S)(x,ﬁ)dﬁ—Jo v {E) AR (x, E)dé
0 Jo—a

N ‘ 0<x<bcosd (3.12).

After solution of the integral equations (3.9} for y"(¢) and substituting the result into the right-hand sides of equa-
tions (3.12},one obtains a set of integral equations for the corrections Ay(£), which has the same kernels as the
system (3.7).

For the solution of the integral equations a numerical method has been used which is described in Scc. 4.

3.3 The pressure distribution at the aerofoil.
The pressure in an arbitrary point of the field can be calculated from Bernouilli’s equation

p+32{(U+u)? +v?} = constant in the whole field.

Hence, at the aerofoil -

PH(x) + oo (x) = p(x) + bpval (%)

where the superscript + denotes the lower side of the aerofoﬂ (y=07) and the superscript — denotes the upper
side (y 07). The tangential velocity along the acrofoil is denoted by Utang: Takmg the pressute difference 4p(x)
positive in upward direction, one obtains

Ap{x) = p* {x) — p™ {x) = $o7{x) {Dnelx) + viang ()} (3.13)
where P{X) = Va0 (X) — tihne(x). In linearized theory the sum of the two tangential velocities may be replaced by
207, but this is not allowed here.

We must now calculate the tangential velocities due to the vortex distribution,and we shall do this by a similar

splitting-up as was introduced when calculating the normal velocities.
The tangential velocity at the wing due to the wing vortices is given by

iy (x,07)= —4y(x) and u,(x,07)=13y(x) (3.14)

This simple result is due to the fact that the tangential velocities of the reflected vortices at 2nh cancel out
for cach pair of positive and negative n. This result holds only if the wing is at the middle of the tunnel.
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The tangential velocity at the wing due to. the flap vortices is obtamed from eq. (3.1) by substltutmg y=0,
n=_¢ tan 4. This velocity is equal for y=0" and y=0"

- . .. n:mf tand sin-m: tan &
1 b cos & - 2}'1 . - - : h . dé
ta(x,0)= ~ 8h ], 7d) h r(x—&} o né tan & + osh n(x—¢&) N né tan 6 cosd
cosh —.— cOs ——— ¢ 7 c08 —
or
. ® tan
1 bcosd s1n h ]
uy(x,0) = ———J (&) — dé (3.15)
4hcosd ) g cosh 7(x—¢&) ~ cos & t:n 8

The tangential velocity at the flap due to the wing vortices follows from (3.1) by taking y=x tan & and n=0.
This part of the tangential velocity is equal at upper and lower side of the flap:

{uy(x,y) cos d+vy(x,) in 8}, — rtans =

—sin mx tan o cos &+sinh n(x—¢) sind  —sin tan 2 cos 6 —sinh __n(x—é) sin &
8h J ! cosh M — COSs M V h AT ( —é) cos mx tan o
h - cosh —— o
or |
{uy(x,y) cos 5+ v (x,y) sin 8}, 1a0s =
0 —sin xn tan & cos o cosh n(x—8) + cos = tan ¢ sin & sinh m(x—£)
1 2h 2h 2h h
) JE - e~ d¢ (3.16)
a8 amxtand
2h 2h

Finally, the tangential velocity at the flap due to the Bap vortices must be considered. This tangential velocity
however is discontinuous over the flap. Hence, this velocity must be calculated from eqs. (3.1) by substituting
y=xtan d+¢, n=¢ tan & and then, after having integrated over the whole flap, taking the limit e—0. Thus

{uz(x,_y) cos 0+ v,(x,y) sin 5}y=xtanaia =

beoss ——sinn{(xrn_é) tan d+¢} cos d +sinh rx=¢) sin &
lim L 1 J cos £ 2h 2h
=0 8h 4 cosh =4 n(x—¢) n{(x—¢) tan S+¢} -
7 oh )
. w{{x+<) tan dte} C L or(x=¢&)
sin TR cos &+ sinh h sin § d
n(x—~¢) n{(x+¢)tand+e}  [cosd
cosh 5+ cos T

For the second term of the integrand, the limit transition can be performed without difficulty. In the first term,
however, taking e=0 under the integral sign would lead to an integrand of which both the numerator and the de-
nominator vanish for £ =x. Therefore, the transition is not allowed in the first term.

The interval of integration of the first integral will be divided as

x—A4 x+4 beosd
N I
0 x—d4 x+4
In the first and the last of these three integrals ¢ can be taken equal to zero, but the second integral needs a

more carefu] treatment. Since 4 will be assumed small, one may replace y(£) by y(x). It can be shown that this
approximation produces no error in the final result. As, moreover, both x—¢ and ¢ are small in this integral, we

may write
n(x—¢&) .

- tan 6+ M=) in s
lim?(x) s 2h {(x—¢&) tan 5+e} cos & + s snd g, _
coo SH |4 o (x—&F  m*{(x—¢&)tan S+e}? cos &

‘ ghE T 8h?
+4
+
= Yz(;) lm;j =* . s dE= Fiv(x)

x—a(x—EP(1+tan? 8) +2(x~ &) tan S +¢
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Thé first and the last of the three integrals may be written together in the form

1 J»bm,, | —sin &%tﬂ cos 3 +sinh n(—";h:@ sin & ae
ol B9 . i
8y <h n(x—,",’) — cos n(x—£) tan ‘cos S

2h

where the integral has to be conceived in the sense of Cauchy.
Therefore, the final expression for the tangential velocity at the flap due to the flap vortices is

{u2{x,y) cos & +v2(x,5) sin )= xuanss. =

b coss sin M cos 8 —sinh M sin §
T -) 1 j @ 2h 2h
z Bh cos o Y sh n{x—¢§) — o n(x—¢) tan 8
- ~ o T 2n
sin EM cos d+sinh ELx—_Q sin &
+ 2k ‘ 2 & (317)
coch n(x—¢§) n(x+¢&) tan

2h €08

At the lower side of the aerofoil {y=0"), the fangential velocity should vanish near the angle between wing
“and flap if the flap is deflected downward (& >0). Hence

nf tan &
1 beosd 11 h
li -1 N =0 i .
x_l.T+ Blx) + 4h cos 5,[-0 7) n(x—¢) né tan § de o +U=0 il 5>0 (-13)
+ cosh == = cos T
t . —
. o —sinwcosécoshM+cosMsné sinh ———* (l 3
lim { —4(x) +Lj’ 2(E) 2h 2h 2h _ 2h el
10" 4n ), osh? n(z;!— & ot ™ ;z;;n 3

nf tan & .
. 1 boosd (é) né tan6 snTcos 6—smhﬁsm5
4hcosd Jq

s py: Osz“ftané dé+Ucos =0 if §>0

CoSM™ oh ~ 2k

All separate terms containing x become infinitely large for x—~0, but their sum remains fmite. In the last term
of the last’ equation, containing an integration over the flap vortices, the limit x—0 could be performed, since

only the reﬂectlons of these vortices by the tunnel walls contribute to the tangential veloclty at the flap, once the
local velocity —4y(x) has been taken into account.

Finally, we give the formula for the pressure difference, see eq. (3.13)

‘ 7 né tan &
) ' 1 bcosd ' h . .
= v U i d - : 0
p(x) = py(x) + h coséL 7(8) Ty Ztan s ¢ a<x<
: - cosh — €OS —————
h h
| fo Zsin 2 fan & cos J cosh ﬁ();_ d + cos i ztan d sin & sinh 7:();; J
plx}=py(x}| Ucosd + Ej_n?(é)- — P “axtnd dé +
cos 3 — cos 73
| b cosd sin ‘-k_i—tﬂ cos 6 —sinh 1:(.;; d sind  sin ’I(Lz%h—a—n—é -cos 8 +sinh H(Z; 9 sin &
__ . _ d 3.19
8h cos 0 j 0 v cosh nlx—-§) cos a{x—¢) tan &, cosh nf{x—2) + cos nfx+¢&) tan & ¢ ( )
2h . 2h . 2h 2h

O<x<bcosd




The formulae for the pressure difference in absence of the tunnel walls (h->oo) are

; N . 1 bcos 3 ftané
B P{x)=pr'(x) {U mj "(¢) =&+ tan? s

. 5[0 . '
P(x)=;? (){Ucosé—%I;—J_av (é)(x—zf)2+€x2 tanzédé} O0<x<bcosd

df} —a<x<0 (3.20)

Subtracting equations (3.19) from (3.20) yields the tunnel wall correction for the pressure distribution over the
wing surface. In order to prevent unwanted inaccuracies, arising from this subtraction, it is better to express
these corrections by formulae contalmng Ay{£), which can be calculated by aid of the formulae (3.12) with sufficient
accuracy. _ _

For convenience the equations (3.19) and (3.20) are written as: ‘

p(x) = pUr{x) + py(x) fm’“v(c)ﬂl(x,é)dé —agxg0 \

p(x)=pU cos § y(x) + P?(x)jo

beosd . .
?(i)Hz(X-é)déwv(X)L HEHsx,¢)dE - 0<x<hcosd

p(x)=pUy"(x) + py"(x) J t;my‘ (&) H(%,8)d¢ —a<x<0

1}
p'{x) = pU cos 8 y"(x) +pv"(x) j Y& H(x,£)dE 0<x<bcosé (321)
| where the functions H w Hy, Hy, H, and H;, can easily be obtained from the equations (3.19) and (3.20).
| Introducing again Ap(x} = p’(x) — p(x) and AH(x,¢) = H}(x,&) — H,{x,¢)(i=1, 2) one gets after subtraction of
correspondmg formulae, the following expressions for the tunnel wall corrections Ap(x): ‘

beosd

Ap(x) = pU Ay(x) + py’(x )szsaw (&) AH  (x,8)dE + py’(x )KCPSJAV(E)HI(x,é]dé+pdy(xJL Y& H (x,€)dE

I : o —asx=%0
. ‘

Ap(x) = pU cos 3 4y(x) + ﬂw'(x)J v'(é)dh'z-(x,ﬁ)dé+1r>v'(x)j0 “Ay(€)Ha (x,8)dE+

Y b cos &

V(O H(x,8)dE— py(x )j (C)Hg(x,é)dé. 0<xshcosd (322)

0

+pAylx)
3.4 The singularity in the ﬂow at the angle between wing and flap. :

In order to investigate this singularity we consider the flow alorg two straight half-lines makmg an angle §
with each other (sketch c). We perform a conformal transformation from the physical z-plane to the {-plane,
where the two half-lines have been transformed into one single infinitely long straight line (ref. 6).

1-PLANE

P
G -PLANE

Sketch ¢ Conformal mapping of z-plane to {-plane.

The transformation which maps the part of the z-plane above the two half-lines into the upper half Lf—plane ‘is
[ gint 8
Putting z=re'® one obtains {=r¥"*9 M8 Hence the line #=0 in the z-plane becomes the line =0 in
the (-plane, while the line 6=n+4§ in the z-plane becomes the line #=x in the {-plane. The flow in the {-plane
is trivial, its complex potential being given by
' F=Al

_In the z-plane N
F=@+ilﬂ=AZ"'“u+6)
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.~ which means that the ve1001ty potential along the wall becomes ¢= + Ar"**? where the + sign corresponds
with #=0 and the — sign with §=n+34.
The tangential velocity along the wall is

TL‘ -
| vtang( ) ate Ar~ s
It is seen that if § is positive (convex side of a corner) the velocity becomes infinitely large, while it vanishes
for negative & {concave side of the corner). )
Considering now the flow at both sides of the half-lings, the boundary can be replaced by a vortex distribution
of strength ) '

= —djlin+d) &/{m —-3)
" Air ! +A2r

where A, and A, are still unknown constants and r denotes the distance toward the cornes.

If we now consider the wing-flap system, where the wing and the flap aré line segments of finite length, the flow
at an infinitely small distance from the corner will be identical to that at a finite distance from the corner in the
case of infinite half-lines. Hence, the singularity in the vortex distribution at the corner of the wing-flap system
is of the type -

p(F) = Ay HErD 5>0 : (3.23)

The other terms in the vortex distribution all vanish for r=0.

4 The solution of the integral equation for the vortex distribution.

4.1° The numerical method.

The vortex distribution for the wing in free fhght is determined by the set of integral equations (3.9) and for
the wing between two parallel walls by the set (3.7), while the correction Ay(x} of the vortex distribution y ( )
due to the presence of the walls is determined by the integral equations (3. 12).

These integral equations can be solved by a numerical method. The following exposition of this numerical
method is confined to the case of the integral equations for the wing-flap system in free flight, but the method
can also be applied to the equations for the wing-flap system between two parallel walls, and to the equations
for the corrections of the vorticity distribution, after on the right-hand sides of the latter, the results of the vorticity-
distribution in free flight have been substituted (see egs. (3.12)). The basis of the method consists in assuming -
- the following series expansion for the vortex distribution (6 >0) *

at the wing: —a<é<0, 0<%<nm
.9 © . _6 =djin+4d) é
(&) =cp cot 3 2 3 ¢, sin nd+c; (T) (1 + E) C(41)
n=1 .

at the flap: 0<¢<bcosd, O<F<n

) y‘(é):l i C: sin HS'-!—C:.(—'é—(S)_,a"(”*'” <1 _ 4 . ) ) (42) .

ne1 a cos b cos &

The relation between &, 3 and & is
at the wing: ¢&=—3a(l+cosd) O<I<n

. . 43
attheflap: ¢£= %b cos {1 —cos ¥) O<¥<n “3)
Hence 9=0 denotes the leading edge of the wing, == or §'=0 the common point of wing and flap, while § =
denotes the traﬁlng edge.

The first term of the right-hand side of (4.1) gives the we]l—known leading edge singularity, while the last term
agrees with the formula (3.23) except for an additional factor 1 +(¢/a), which has been added to ensure that this
term gives no contribution at the leading edge. Of course it does not change the character of the singularity.
The remaining vortex distribution which vanishes both for =0 and 9== has been expanded in a Fourier series.

At the flap the factor 1— (&/b cos 8} in the last term ensures that the singularity at the corner does not disturb
the Kutta-condition at the trailing edge.

The approx1mat1on which now will be introduced, is that all terms ¢, and ¢, for which n exceeds 2, will be ne-
glected. We use a six-term approximation for the vortex distribution containing the unknown coefficients Cg» €1,

5, €1, €3 and c;. Analogously six-term approximations can be used for y(x) and Ay(x)."

" With this approximation it is no longer possible to satisfy the integral equation (3.7) for any point x. It will
be satisfied only in the so-called pivotal peints. The most favourable positions of these points have been determined
from arguments similar to those used by Multhopp in his lifting surface theory (ref. 4).
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In the example of fig. 1 the wing is m the direction of the undisturbed flow while the angle of deflection is 60°,
The ratio of flap to total wing-chord is bf(a+b)=3.

. \i T%
N /i

3 EEZEN |
1 -

e KEUN E
x NUMERICAL '
© APPROXIMATION
+ LINEARIZED .
APPROXIMATION
0 o

-0.8 -0.6 -04 -a.2 [} +04
% —— ) ——— —:-

Fig. [. Comparison between approximate and exact values of the vorticity on the wing in free ﬂ]ghi Angle of flap- deﬂecuon 60%, ratio of flap
to total wing chord 25%,

5 Calculation of the acrodynamic coefficients. ' ' N

Once the coefficients ¢; and dc, have been determined, the coefficients ¢; of the vortex distribution of the wing-
flap system between two parallel walls can be obtained by de;=c;—c; and hence the series expansions of y"(x),
7(x) and Ay{x) are known.

Substitution: of these expansions into the equations (3.20) and (3.22) vields the pressure distribution at the
. wing-flap systern in free flight and its correction due to the presence of the walls.

The integrals occurring on the right-hand sides of (3.20) and (3.22) are again numerically calculated after ana-
lytical isolation of the singularities.

The pressure distribution and its correction have been calculated for 9 equidistant points at the wing and 9
equidistant points at the flap. The aerodynamic coefficients for the wing in free flight are defined as:.

(1] beosd
[ p {x)dx+ { P (x}dx
e Jo
1pUa+b)

c -

and
bcosd

4] 1 J‘ e !
. ,[_,, x)dx + cos?d xp () 3a—b

_ 1 ‘5.1
Cu U (a+b)? tEL 3
where the moment has been taken about the quarter-chord point of the total wing.
For the tunnel wall corrections one obtains analogously :
~{ bcosd
J Ap(x )dA+J Ap(x)dx
AC,=C;—C, = 0 '
. Ci=Ci=Ce ToU*{a+b) -
and
0 1 b cos ¢
S x Ap{x)dx + 25 [ xAp(x)dx la—b .
ACy=Cy—Cy = =72 1 5.2
Cr=Cpy—Cxy %pUz(a-i-b) T3 a+h AC, . ( )

Having obtained values of the pressure distribution in a sufficiently large number of points at the wing and
the flap, the coefficients C;, Cj, and their corrections can be calculated by numerical evaluation of the integrals
occurring on the right-hand sides of equations (5.1) and {5.2). '

For the numerical evaluation of the tunnel wall corrections it is necessary to isolate the singularities of dp{x).
From the equations (3.22) it is tlear, that the smgularlly of Ap(x) at the leading edge of the wing,ie. at x=—a,
is of the same type as the singularity of Ay(x} in that point. This is, however, not the case for the smgularlty at
the hinge point of the flap. Taking the limit for x— +0,it appears after some derivation that Ap{x) has two singu-
larities of the type | x|~ 3" +# and |x|~%4%+9 at he hinge point, whereas the vorticity distribution has only one
singularity of the type |x| =%+,
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For the sake of interest the behaviour of p'(x) in the qeighboﬁrhood of the hinge point of the flap has been
determined in the appendix. The singularities of 4p(x) can be obtained in the same way. After isolation of the

__singularities in the integrands of equation (5.2), AC, and AC,, can be calculated numerically.

The coefficients C} and™Cyy for-the free-flight-case can.be.determined much easier by using the well-known

momentum balance with respect to a closed contour around the aerofoil. The aerodynaiic codffiGients can'be = - - -

written as (compare ref. §, chapter II}

[T, L
J J

. 2 U X+ cosd ), U *
and
0 . beosd o
J rix )d)» ! }’ xy (l)dx
=2 v cos & U 4 ,3a—b c (53)
M=o (a+b)? ' ‘avh ¢t ‘

Substituting the expansions (4.1) and (4.2} for y*{x} into (5.3),one obtains after performing the integrations to x:

~arn {cp | < (n+8)? o bn (¢} (nr 8 [b\ oD &
ATO &, U1 )4 4, ATY (T s
Co= a+b{U ot 2:':2(2n+é)U T n*2n+8)\a U
and

. a V¥ fic0 , ;61 .6 | (m+8)? <
CM_-(—b) ”{“ P G Ut

+b ‘U U

2 o p ' 2 —&/(m+3) * —
n (ab ) ﬂ{icl 12 2__&_4‘3)___(9) Ei} cos_é-&-%ig——é C. (54)

U n{(2n+6)(3n+28) \a a+b

Inserting in these equations the calculated values of ¢, the aerodynamic coefficients are obtained easily for the
wing-flap system in free flight. The method of the momentum balance cannot be applied for the determination of
lift and moment of the wing-flap system between the two parallel walls, since the contour enclosing the aerofoil
but not the tunnel walis, does not contain in its interior all the vortices present in the field; the reflections of the
vortex sheet representing the-aerofoil are lying outside this contour.

6 Discussion of the numerical results.

The values of C; and Cj, for the wing in free flight have been calculated by aid of the formulae (5.4) for different
values of the flap angle 5 rangmg from 0 to 60 degrees, while the ratio z=>b/{a+b) of flap chord to total wmg
chord has been taken as 3, 4 and .

The results are plotted as functions of the angle of deflection & in ﬁgs Zand 3 The results of linearized theory
are indicated by a dotted straight line which is the tangent at the origin to the curve corresponding to the results
of non-linearized theory. It appears that the values of the acrodynamic coefficients C} arid Cj; are somewhat
overestimated by linearized theory. The derivative (BCMlaé)é -p has a maximum for some value of T in the neigh-
bourhood of 1=4. This agrees with the linearized theory of Glauert (ref. 9). .

The tunnel wall corrections AC, /C; and AC/C, have been calculated in the way described in the previous
chapter. The ratio (a+ b)/2h of total wing-chord and tunnelheight has been chosen as 0.2, 0.3 and. 0.4,and the same
values as in the free flight case have been taken for the ratio t of flap chord to total wing chord and for the angle
of deflection 4. The results are plotted in figs. 4 through 9 as functions of the flap-angle §, while the parameter 7 is
kept constant in each figure. The same results are given in figs. 10 through 15, where now, however, the parameter
(a+b)/2h is kept constant in each figure, For small values of the angle 5, the corrections completely agree with the
values found by linear theory (comparte ref. 10); the results of the latter are again indicated by a dotted straight
horizontal line tangential to the curve for the vajues of non-linearized theory.

It appears that the tunnel wall corrections are overestimated by linearized theory, which is of no value for large
angles of flap deflection. Their absolute values become larger when the height of the tunnel becomes smaller.

It is interesting to note, that the tunnel wall corrections become zero for some value of the angle of flap deflection,

which is the same for all values of the ratio {a+b)/2}, but which decreases, when the flap chord increases.

The general conclusion can be made that the tunnel wall corrections for large angles of flap deflection are rather
small. They amount at most to 5% for (a-+b)/2h=04; this maximum is attained for small values of the angle
of flap deflection & and they will be much smaller in the range of large values of .
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Appendix : The pressuré distribution in the neighbourhood of the intersection of wing and flap,

‘ The pressure distribution on the wing and the ﬂap for the free fhght case is given by the formulae (3. 20) of the

e e
text vIZ.! ] Tmm— e — - e

v . ] bcosd . é tan 6 N ’ . B ’
4p°(x)= py (x){U + WL ¥ (&) o 6d§} a<x<0 (A.l)
and : .
. . é dé.
4p'(x) = py (x){U cos b — S;; J ) (é)()b 77 if tan‘é} D<x<bcosé (A.2)

Substitution of the formulae (4. 2) and (4.1} into the integrals occurring in (A.1) and (A.2) yields

b cosd breosd tcosd
. Etan d L s ¢ tan 8 " ] , Etan
Jo v (&) ¢ dé=2c, JO sin 3 ‘————an—zg,df“i' 262J’0 sin 28 dé+

)+ an’ s (x—&F+& 1 (=& +¢% tan? 6
b —3f{n+8) rbcosd 5 —3/(n+8) étané ’ ,<b)—6,'(n+6) bcnsé( ‘: )u(wa)
+cs(5) ~ Jo— (b cos 5) (x—&F+&2 tanzédﬁfcs a L b cos §
£tan &
(x~ &P+ &% 1an26 (a3)
and .
gdt L rdg e Fdt
j ] ey “"LC"th(x—é)uxl tan®5 | 2C‘J_qsms(x—§)2+x2 tan?3 *
- . 0 - fdf ‘ . 0 » é:)—a,'(m»a) ﬁd{ . 0 ( r:' + mpr+ 3
+ 2C2f-,,8m23 (x—&*+x* tan? § + C‘J‘-a (_ a - (&P +x%tan? s ‘c’jgﬂ T a
Sdd (A4)

(x— §)2 +x% tan? 5

Putting = — xt, one obtains after some calculations the following asymptotic approxlmauons for x-» —0 for the
integrals occurring on the right-hand side of eq. {A.3)

bcosd
A &tan & . N
L sin 8 G & wnts dffn sin 8 cos & +0{(—x)t}
phcosd )
. , £ tan § . \
1, sin 29 B édﬁ—:'z sin 8.cos & +0{(—x}*}

rhcos & —dj(m+5) Sir+8) N~ dfen+a) . .
¢ . &tan § b X a+s
s oS & ) dé= - - = -7 —
Jo (b cos 5) (x— &P +& tan? 5 ¢=mcosd (a) | ( a) 5 sin d cos 6.+ 0{(—x}}

~brosd =iz +5) E
& € tan ¢ _n4d f(n+ &)
1 (b cos'é) T el d = —— sin d cos §+0{(~x) }

In the same way the integrals occurring on thc right-hand su:!e of egs. (A. 4] can be approx1mated for x—++0; one
gets after some derivations

| :“”gi B s~ O

J o g = oo

J N2 R i& i = Trr0(Y)

o — 8 +5) e o

[ s =)
|

Q {: wf{n+ ) édf TC’-‘I-(S
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Substituting all these results into the equations (A.3) resp. (A.4) the result is:

:rms '(f) £tan & d&=2n sin & cos 8¢’ + 27 sin J cos 3¢+
Jo Y (x--f)z-f-fz tanZo > 1 _ 2
‘ , st N —dlntH
M :;) sin & cos 6(5) ci+7 cos 3¢, (‘“ z‘) - O} (AS)

0 2 & (1!‘+'t’) . —;5[(1! +d)
1 Ed¢ B . . . (m+8P L {cos ) N A
j—a}: (&) o tants —mcy—2me + 2ney + e el + 0(x%) (A.6)

‘ Inserting finally {A.5) and (A.6) into {A.1) resp. {A.2) and replacing the vortex distributions y'{x) by their series
(

expansions {4.1) and (4.2),the pressure distribution in the neighbourhood of the point x=0 turns out to be

) N\ —26/n+3) . . ) ¥ [h —5/im+5) N —dHm+d)
dp (x)=4p(c})? (— i) +pc; {U+c1 sin d+¢; sind—¢ (Rtg sin 5(5) } (— i) o+

f 2m a

' x\{r— 00 2+ d) .
+0 {(—- E) , } for x—»—0 (A7)
X

_ N —28/(n+8) ) '
Ap'(x) = $p{c})* {cos 8)23=+ & (E) + pc{cos 5y 2w [U +1an & {%c{, +¢ -yt

2 N —EH{ntd)
3 (n+9) c}}] (ﬁ) n 0{(): (x—8)) 2(z+¢5)} for x—+0. (AS8)

2n%8 a

a

and

Hence it appears that the pressure distribution has two singularities at the point x=0; one of the type | x|~ 2#=+%

and the other of the type |x| #=*?, The vorticity distribution however has only one singularity at the point
x=0 viz. of the type (x)~*"**. This difference in behaviour of vorticity- and pressure distribution is a typical
feature of non-linearized theory. The pressure distribution in the neighbourhood of the intersection of wing and
fap for the wing between the two parallel walls exhibits of course the same types of singularities as the wing in
free flight. : ‘ ‘
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Two-dimensional tunnel wall corrections for a wing
with a blown flap between two parallel walls

by

E. M. de Jager

Summary

A linearized, two-dimensional theory has been developed for the determination of the pressure distribution on a wing with a jet-augmented

flap between two parallel walls, The pressure distribution is expressed by means of integrals containing the given normal velocity at the wing
and the vorticity distribution in the wake. This vorticity distribution is determined by an integral equation, which must be solved numerically.

Graphs presented show the tunnel walil corrections of the acrodynamic derivatives for a flat wing with a flap as functions of the jet momentum

cocfficient for three values of the ratio of wing chord to tunnetheight and for three values of the ratio of flap to wing chord.

Contents
Page
List of symbols. 1
1 Introduction. 2
2 Representation of the jet by a vortex sheet. 2
3 The boundary value problem for the pertur-
bation velocity potential. 4
4 The determination of the perturbation veloci-
ty potential, 6
4.1 The determination of the potential ¢, (x, ¥}
due to the normal velocity at the wing. 6
4.2 The determination of the potential ¢,{x,y)
due to the vortices in the wake. 9
4.3 The determination of the velocity poten-
tial ¢3(x,y) due to the circulation. 10
5 The pressure distribution on the aerofoil 10
6 The integral equation for the vorticity distri-
bution in the wake. I1
7 The limiting case of walls. at infinite distance. 11
- 8 The tunnel wall corrections for lift and moment, 12
9 Application of the theory to a flat wing with
jet-augmented flap. 13
10 Numerical results. 15
11 Réferences. 16
. Appendices.
A Derivation of Green’s function. 17
B Determination of the velocity component u,
on the wing and the velocity component v, in
the wake. 18
B.1 The velocity component u, on the wing. 18
B.2 The velocity component v, in the wake. 19
C Determination of the potential due to the two
double-periodic fields of vortices. i9
D Determination of the velocity component u2
on the wing and the velocity component v, m
the wake. 20
D.1 The velocity component u, on the wing- 20
D.2 The velocity component v, in the wake.

21

t

E The behaviour of the vorticity at infinity. 21

12 figures
1 table

List of symbols

g(x)

e A

N
o

&y
LI

Ty La
X OF
=

<3

4Cy

Gx, 3 Xp ¥)
J

K(o, 1}

P

M

jet momentum coefficient

distance of the jet from center-line of
the tunnel

semi-height of the tunnel

modufus of effiptic functions
semi-chord of the wing

direction of the outward normal
pressure

velocity component in x-direction
velocity component in y~direction
downwash at the wing

rectangular co-ordinates

x+iy

lift coefficient for wing between the
walls

lift coefficient for wing in free flight
tunnel wall correction, 4C; = C;—C,,
moment coefficient for wing between
the walls ’
moment coeflicient for wing in free
flight

tunne] wall correctlon ACy =
Cu—

function of Green

momentum flux in the jet .

kernel function

lift-of the wing

moment of the wing; about guarter-
chord peint and positive when tail-
heavy




- R radius of curvature of the jet En transformed co-ordinates
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7(x) vorticity distribution in the wake o (x, y) velocity potential
d thickness of the jet M n; & » 1) complex velocity potential

‘1 Introduction

By blowing a thin jet of high velocity at the trailing edge of a wing into the outer flow, one obtains both a
propulsive thrust and an additional lift force induced by the jet momentum flux at the exit of the jet.

This high lift device has been the object of many theoretical and experimental investigations during the Iast
ten years, particularly in England and France, and to a lesser extent in the US.A. (see refs. 1, 2, 3, and 4).

At the National Aero- and Astronautical Research Institute, an experimental program has been performed
during which lift and moment measurements have been made for a two-dimensional wing-flap system with a jet
of small thickness being ejected over the trailing edge flap (flap-blowing).

The purpose of this theoretical investigation is to provide tunnel wall corrections in order to reduce the measured
values of the acrodynamic coefficients to free flight conditions.

On developing the theory we have to make some restrictive assumptions, which we shall summarize here shortly.
The problem will be treated as if it were a two-dimensional system and therefore the influence of the side walls
of the tunnel will not be taken into account. The upper and lower walls of the tunnel are assumed to be parallel.

The thickness of the jet is assumed to be very small and therefore the theory is confined to the case of jets with
vamshing thickness, but with finite (non-zero) momentum flux.

Spence (see ref. 5) has pointed out that in this case it is allowed to replace the jet by a single vortex sheet,
extending downward to infinity.

We suppose further that the velocity of the outer ﬂow is so small that the fluid may be considered incompressible.
Since the theory of a two-dimensional wing with a jet in free flight already leads to an integral equation which is
rather difficult to solve (see ref. 6), it is sensible to linearize- the equations, as the problem discussed in this report
is much more complicated than that of.a wing in free flight. Hence we must assume that the wing also is very
thin and that the angle of attack and the angle of flap deflection are small. The wing is placed in the middle of
the tunnel and the linegarized boundary conditions at the wing and in the wake will be prescribed along the centre
line of the tunnel.

This report is in some respects an extension of ref. 13 by the author. In the last mentioned report the angle of
flap may be large and the theory developed there is non-linearized, while a jet is absent.

2 Representation of the jet by a vortex sheet

The determination of the tunnel wall corrections for a wing with a jet-augmented flap is very much complicated
~ by the presence of the jet in the wake of the wing. Therefore we shall first turn our attention to the physical
mechanism of the jet and to its mathematical representanon We shall give here in short the analysis of Preston
and Spence frefs. 7 and 5).
A jet of high velocity air is created at some internal point A of the wing and is ducted in such a way as to flow
tangentially over the flap of the wing (see sketch a).

Sketch a

The jet which is not supposed to mix with the outer flow, is represented by two vortex sheets along its boundaries,
the strength of each vortex sheet being equal to the difference of ‘the velocities at both sides of the boundary.
To investigate more precisely the influence of the jet on the outer flow, we consider an element of the jet, which
is approximated by taking the jet boundaries of the element parallel and its radii of curvature equal to R+43,
where R is the radius of curvature of the centre line and & the local thickness of the jet (see sketch b) The element
subtends an angle de¢ at the centre of curvature of the jet.

The application of the Bernouilli-theorem outside and inside the jet yields:

Pi+4pott =y +3pou] S C8Y)
pi+3pvt =py+3pv3 (2.2)
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where p, and ?2 denote {he_pressures at the boundaries of that jet, u, and u, the corresponding velocities in the
main stream and v, and v, those in thejet; po and p are the densities in the main stream and the jet respectively.

R-Y28

Uy R+V20
Skeich b
Subtraction of (2.1) and (2.2) gives:
U -ul = ﬂ(u%—v%)
Po

Due to the irrotationality of the flow inside the jet we can write:
01 {R—10) = v, (R+39)
On introducing the mean velocities

_ Uyt u,

we can deduce from (2.4
and hence, from (2.3), (2.5) and (2.6),

From (2.2), (2.6) and (2.7) we derive the relation:
pV2é

R

Pa—pPy =

which expresses that the pressure jump across the jet acts as a centripetal force on the jet.

The momentum flux in the jet is defined by

J=pVia
and hence
_J
Pr—Py = R
On introducing the momentum coefficient
.= J
i Po UZI

where I is some characteristic length, relation (2.11) becomnes:

Pz‘;P1‘= C-’l-
pOUl JR

(23)

(27)
(2.8)

(29)

(2.10)

(2.11)
(2.12)

(2.13)




The jet is represented by two vortex Iayers the strengths of the vortices, measured positively in clockwise
direction, are given by

y1dsy = + (4, —v, {R—$5)do | (2 14)
ppds; = — (uzt— v,{R+4d)de : (2.15) -
where ds, and ds, are line elements along the upper resp. lower side of the jet.

When § is small we may replace the two vortices with strengths y, ds, and y,ds, by a single vortex of strength

yRAp=yds=y,ds; +y,ds; (2-16)
located along the centre line of the jet, and a doublet of strength
. de(p==%5(}’2dS2—'}'1 dsl) (2.17)

with the axis along the centre line.”
Substitution of {2.14) and (2.15) into (2.16) and (2.17) yields for the strength per unit length of the vortex sheet
along the centre line of the jet:

pVi3 U J 5}
= —_ — = _— e .I
poUR R pocU*R R (2.18)
and for the strength per unit length of the doublet
5 J 5)2 }
= _ 1-_° 4z
m—é{(V U)+:;RPOUR Z(R‘ vV {2.19)

Hence, on the assumption that the thickness of the jet is very small,‘whﬂe the momentum flux is non-zero finite,
we may disregard the sheet of the doublets and the jet may be replaced by a single vortex sheet of strength:

0 J °
poUR™

Y= (2.20)
When the velocity in the jet is very large in comparison with the velocity in the outer flow, it is allowed to take
the momentum flux J constant along the whole jet, and therefore the jet momentum coefficient defined by (2.12)
may be taken also as a constant, viz.:

J

= — 221
€j pDUzl ( ] )

thre the velocity U is replaced by the unperturbed velocity U, of the main stream,
- For a detailed analysis the reader is referred to ref. 5.

3 The boundary value problem for the perturbation velocity potential

The wing is placed in the middle of the tunnel. Since we linearize the flow equations, we can prescribe the bound-
ary conditions at the wing and at the jet as follows: the former at a segment along the centre line of the tunnei
and the latter at the semi-infinite part of the centre line stretching downward {rom the trailing edge of the wing
to mﬁmty
. The wing-tunnel configuration is indicated in sketch c; ! is the semi-chord of the wing and h the semi-height

of the tunnel. The point C denotes the hinge axis of the wing flap. Cartesian co-ordinates (x, y) are used and they
are defined as indicated in sketch ¢. Next we introduce a perturbation velocity potential ¢(x, y), such that the
perturbation velocity components u(x, y) and v{x, y) are defined by

O ' " do
=79 =7 31
== and v 3 (3.1
In the regmn between the tunnel walls ¢(x, y) satisfies the equation of continuity, which for the case of incompressi-
.ble flow, reduces to the equation of Laplace, viz.:

& &

S5

dx dy
The boundary conditions at the wing and along the tunnel walls are determined by the COI’ld]thl’l of tangential
flow and hence:

-0 62

%j? = —wlx) for ~I£x +; y= 0 (33)
and
op

— = for y=th (34)



where w(x) denotes the normal velocity at the wing, taken positively in the downward direction ; w{x} is a known
function and is determined by the given mean camber line, the angle of attack and the angle of flap deflection of
the wing.

We-shall-first- draw-our attention.to_the. boundary condition prescribed along the wake of the wing, ie. for
+ISx<w,y=0.In chapter 2 we have shown that thin jets of highy velocity may be represented bya single-vortex:
sheet, inducing a pressure jump across the sheet. This pressure jump acts as a centrlpetal force and hence it is
related to the curvature of the sheet by

J

R

where Ap is positive in the upward direction and R is positive when the sheet is concave.
Describing the jet streamline by the equation

y=gl) (39)

and usmg the definition (2.21), the pressure jump across the vortex sheet becomes in linearized approxnmatlon

4p=p,Ujc; lg"(X) (3.6)
Since y=g(x} is a streamline, we can write:

d dg 1 dux,0)
" - 2 N S ;
g"(x) AU, ox for Ifx< ° (3.7
and hence: " :
dv(x, 0
Ap=paU,c;l gx ) (3.8)
By aid of Kutta’s condition:
Ap=po U. o”}’(x)
we obtain for the strength of the vortex sheet replacing the jet:
_ ‘ 0 ,
?(x)=cjl% for I€x< o (3.9)
which is essentially the same formula as (2.20).
Using the definition: .
‘ p(x) = ulx, +0)~ ufx, ~0)=2ufx, +0) - (3.10)
formula (3.9) can also be written as ' :
, +0
u(x, +0)=14c,! Gyl +0) (3.11)

Ox
The problem of the determination of the velocity field around a profile with a jet between two parallel walls,
is now reduced to the derivation of the solution of the boundary value problem for the perturbation velocity
potential which, within the region between the tunnel walls, has to satisfy the Laplace equation {3.2), the boundary
conditions along the walls, the. acrofoil and the wake being given respectively by (3.4), (3.3) and (3.11).
The solution of this boundary value problem is performed in three steps. We decompose the disturbance velocity
potential @(x, y} into three parts, viz.:

@(%, y) = @1(x, y) + @2x, ) + @3 (x, y) (3.12)

where @, ¢, and ¢, are defined as follows: : .
(i) @, (x, y)is the velocity potential accounting for the given normal velocity w(x) at the wing and the zero normal
velocity along the walls, or expressed mathematically : :

2 2,0
¢y 6‘#’1:0

_ ox? * ay?

with boundary conditions:
dpy e v ] _ ‘ 113
By -wlx) for —IZxZ +) p=320 (3.13)

and :
99,
b6 SN = 14
5 =0 for y=zh , e

(ii) - @2 (x, ¥) is the velocity potential due to the vortex sheet replacing the jet; ¢, (x, y) satisfies the Laplace-equation
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and in order not to disturb the downwash conditions along the aerofoil and the tunnel walls, ¢,(x, ) is
subjected to the conditions:

8 .
(;#;z 0 for —~I<x£+} y=40 andfor y=+h \ {3.15)
(i) @5(x, y) is the velocity potential due to the circulation around the aerofoil; ¢;(x, y) satisfies the Laplace
equation and introduces only a jump in the potential across the aerofoil and the wake.
@5 (x, y) has to satisfy the homogeneous conditions:

6;;3 =0 for —I<x<+L y=10 andfor. y=+h. (3.16)
This complete boundary value problem is similar to the problem of a harmonically oscillating aerofoil between
two parallel walls, which has been solved amongst others by Timman (ref 8).

The only difference between the two problems consists in the fact, that in the case of the oscillating aerofoil the
vorticity distribution in the wake is a known function of x {apart from a multiplicative constant), whereas in the
case of an aerofoil with a jet, the vorticity distribution is an unknown function of x. '

The derivation of formulae for the potentials @, (x, y) and ¢, (x, y) runs along the same lines as in the mentioned
paper by Timman, but @,(x, y) will now contain the unknown vorticity distribution y(x) in the wake. However,
by aid of the boundary condition {3.9) along the wake we can derive an integral equation for y(x), which can be
solved numerically.

4 The determination of the perturbation velocity potential
4.1 The determination of the potential ¢,(x, y) due to the normal velocity at the wing

The potential ¢ 1 (x, y) satisfies the Laplace-equatlon in the region D between the two parallel walls FG and HI
(see sketch c) and-is submitted to the boundary COIldlthI‘lS

a

—(—;—’:i = —w(x) for —I<x< 4+l y=410 (3.13)
and

99, . ’ :

Ey_ =0 fOl'. y= ih (314)

where w(x) is a given function of x.

G I A F
l|h -i-— 2
—_ A e QB - -—
I ol
h
I
| & "

' Sketch ¢

This boundary value problem is a Neumann problem and is solved by means of Green’s function. Because of
the cmnplexity of the boundaries we shall use a conformal mapping which maps almost all points of the interior
of the region D between the tunnel walls into the interior of 2 rectangle. The transformation formula has been
derwed in ref. 8 and is deﬁned by

“dz 2hk

- = - — : 4.1
A (1)
where z=Xx-+1y and { = ¢ +in; sn{{, k) is a Jacobian elliptic function with.modulus k, determined by the relation:
' ol
k = tanh 5 , 42)

The conformal mapping is illustrated in sketch d, where corresponding points are denoted by the same capitals.




i
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h ¢ )
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1E Al ) o AE
| Tk "'l“'““—a‘x__ '
z=x+iy plang Sketch d o {={+in plane

The dimensions of the rectangle are 4K and K, K and K’ being the complete elliptic integrals of the first kind with
modulus k resp. k' = /1 —-k*.
Since the Jacobian elliptic function sn({, k) has a real period 4K the mapping function { ={(z) is a multi-valued

‘function ; the rectangles with corners at the points { = + K mod (4K} and { = + 2K +iK' mod (4K) are the images

of corresponding Riemann-sheets in the physical plane which intersect along the semi-infinite line AL

It may be remarked that not all points, lying between the tunnel walls and not on the wing surface, are mapped
into the interior of the rectangle; namelfy the points on the intersection A'T are mapped on the vertical boundaries
of the rectangle.-
- Therefore it is necessary to apply the method of the function of Green in a somewhat modified way, as will
appear in the deduction which follows.

As is well known the potential @, (x, y) can be expressed by:

' o9 CG(x, ;s xp
P1xp ¥y = —§{ﬁ{ G(X, ¥ Xp, ¥p) = —(‘WLP_)} (4.3)

where G(x, y; x,, v,) denotes the function of Green; the path of integration is a single closed contour taken
along the tunnel walls and the wing, namely the polygon FGAOBO A'TH ; n 1s the direction of the outward normal
along this contour,

The function G(x, y; x,, y,}is a solution of the equation of Laplace, regular in the area bounded by the polygon
except at the point x=x, y=y, where it has a logarithmic singularity. Moreover the function Glx, y; x, ¥,)
will satisly some homogeneous boundary conditions which will be specified later on.

After transformation to the {-plane we obtain for the velocity potential

dgy 0Gr($, o My
91 (% 75) = _§{; H(& 5 Ep ) — 01 —‘ig-vi"—’} (44)

- where the path of integration is now taken along the sides of the reotangle and v is the direction of the outward

normal; Gr(&, #; £, 1,) is again Green’s function and has in corresponding points the same value as the function
Gs 1 Xp 1) . _— . . -
Hence Gr(& n; &1 ) is a function which also satisfies the equation of Laplace and has a logarithmic singularity

for {=¢,, =1,
The boundary cond1t10ns for Gy(&, n; ¢, 1) are now specified as follows

oGy

a_\' (f, ", fp: ﬂp) =0 (4'5)

along the line segments AA’ and GI and the values of G;(£, n; &, #,) along the line segments AG and Al are
the same for points with the same 5 co-ordinate; hence

Gr{—2K,0; Ep )~ Gr(+2K, 13 Eptiy) (46)

. These boundary conditions yleld for the functlon G(x, y; x, yp) the conditions 9G/dy=0 a]ong the wing and

along the tunnel walls, and G is continuous across the intersection A'L

Since @, (x, y) is antisymmetrical with respect to the x-axis and ¢ (x, y} is continnous across the semi-infinite
line-segment AG (see sketch d), @, {x, 0) wili be zero for —ov<x< —1.

Hence equation (4.4) can be written as

a .
xp’ yp § qjl GT 5; 1, {p’ f[p) (47)
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Using along the horizontal boundaries of thé rectangle the relation:

p.(En) _ Spifx,») |8n] _ dpalxy) |dz (49)
av On dv cn d )
and substituting the boundary conditions (3.13) and (3.14) and the transformation formula (4.1) we obtain
i‘ﬂia(f’—”) = - Zniksn(g-, Kw{x) for —2K<é< 42K, n=0 (4.9)
and _
ai“a(fil =0 for —2K < C<‘+2K, n=1K’ (4.10)

Since d¢,/@y is continuous across the semi-infinite line-segment AG, do,/dn along AG will differ from 8@1/6n
along A'I only in sign, as n is the direction of the outward normal. Since sn(i_,’ k) has a period of 4K, it is clear
that

oo, (—2K, n) _ d,(+2K, n)
T (1)
Substituting {4.9), (4.10) and {4.11) into (4.7) and using the condition {4.6) we obtain finally for the velocity poteﬁtial
@1(x, y,) the form:

.. 2hk +2K -
oin ) =+ 2 [ @16 ) sl R (12

where wr(£) is defined by 7

- wel(&) = wix) {4.13)
for corresponding points.
' To obtain the function of Green G (¢, #; & qp),'wc have to place a source at the point {={, and this source
is reflected against the lines #=0'and # =K', because the contours of wing and tunnel walls are streamlines. The
field of sources is repeated consecutively with period 4K in the é-direction in order to satisfy the relation (4.6).
Hence we have obtained two double-periodic fields of sources, namely at the points {={,+4mK +i2nK’ and

={,+4mK +1i2nK', where m and n are integers and [, is the complex conjugate of {,.
The function GT(é, n; &, n,) has been determined in appendix A; it turns out that

GT(C’ ", ép& np) = o
1 ¢ ¢ €-gpn2 - 4n2 2_p2 22
= Z—Re[ { ( 3 £, )sn( 5 ",k)}+2jo Z(t)dt+2j0 Z(t)dt}-f— —é——’zﬁé—"ﬁ (4.14)

where Z(t) is the Z-function of Jacobi, defined by:

Z(t) =J; dn?(¢, k)dr —t %((% ' | (4.15)

dn(t, k) being a Jacobian elliptic function and E(k) the complete elliptic integral of the second kind, both with
modulus k. _

The modulus of the elliptic functions to be used in the further development of the theory will mostly be k and
therefore we shall omit henceforth the symbol k; when the modulus is not k, it will be indicated explicitly. Sub-
stitution of formula (4.14) into (4.12) yields for the velocity potential ¢, : :

(PI (xps yp) = .
ke (2K 2 S 4 (&= a)/2 €-TpNz 42l
= G -m,
= Fjﬁz;‘(lrvr(i)l}{e{ln(sn 5 Psn_zl +2 . Z{1)dr+2 . - Z{nde ; + SRR sn Edé
Since sn £ and Z(t) are odd functions and wr(&) is an even function we can write:
£, ¢4 .
Wk (© | syt @+ 5p2 €+
@1(xp ¥} = 5 [ wr(l}Reqln ——— o — j Z(t)de—2 Z{t)dr psnEdé (4.16)
w ) -ax it Sl Jemn @~ ton2

2 2
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Differentiation of this expression to x, and taking the limit y,= +0 with —!< x,< +Fyields the following formula
for the velocity component u, on the wing -

- T oo | T ul(xp»'*'(..))i_f__jo _‘f’I(é)Pl(‘:p’ f)dﬁ o (417)

Y 4 : ST e e e
with —I<x,< 4] and correspondingly —2K < £, <0, while

1 (- enédné4ené dn &
sn§ {Sné cnzi—cnlgp ’

P& ¢) =

- z(a:)}sng ' (a.18)

The term u (xl,, +0) is necessary for the determination of the pressure on the wing. From equation (3.9) it is
apparent, that in order to determine the vorticity in the wake we also need an expression for the velocity compo-

‘nent v in the wake.

- Therefore we shall also give here a formula for the velocity component p,, which can be obtained after differ-

~ entiating (4.16) to y,, and taking subsequently the limit for y,=0 with +I< x,< + 0. The result is:

o ‘ ‘
(50 = | w01, 93 @19)
. -2
with +{< x,< + o and correspondingly 0= 5, < K', while
i cn & dn ¢ +cen iy, dn iy,
0l &)=~ 5 573 |16 T 12— Z(@) (420)

The reductions for obtaining the formulae (4.17) through {4.20) have been perfermed in appendix B.
4.2 The determination of the potential ®;(x, y) due fo the vortices in the wake

Next we shall consider the velocity potential ¢, (x, y) due to the vortex sheet representing the jet.

@,{x, y) satisfies the equation of Laplace and in order not to disturb the downwash conditions along the aerofoil
and the tunnel walls, which have already been satisfied by the velocity potential ¢, (x, ¥). ¢,(x, ) must be sub-
mitted to the homogeneous conditions (3.15):

d9,
By

The velocity potential at the point (x,, y,) due to a unit vortex at the point {x, 0) with x >1 in the presence of the
wing and the tunnel walls, is obtained in the same way as the function of Green, determined in appendix A. This
potential is also obtained by successive reflections of the vortex against the lines-y=0 and #=K" and by periodic
repetitions with period 4K in the ¢-direction. In this case, however, the sign of the vortex is reversed at each
reflection in order to satisfy the conditions (3.15); the scheme of the vortex and its reflections is repeated in the
E-direction with period 4K in order to make ®,(x, y) and its derivatives continuous across the semi-infinite line
segment A'l (see sketch d).

The total potential of these two double-periodic fields of vortices is determmed n append;x C and the result
reads: Ty . : i

2=0 jor —J<x<+l y=40 andfor y=1h

(-1 .
1 sn pz Gptinf2 -
— ——Im{lnp ———~ -2 Z{rjdt : {4.21)
2n {,+i ;
sn ,,2 f (Gp—imf2 -

where , is the'image of the point of observation (x,, ¥,) and in that of the point (x, 0) of the wake.
_ Hence the velocity potential @,(x, y) due to the vortices with the still unknown strength v(xjdx is given by the
expresswn

Lp—in
(i )= — F (9 1mdn 3 jﬂ»ﬂwz
C@aX, yl=~— | yix}Im<ln——— — 2 Z{tydt pdx =
e T 2n f; © sn {ptin Jgp—imiz ¢
2

} {p—in
k(¥ sn ) (p+imy2 :

+ —2ij y¢(n) Im In— — ZJ Z(t)dt rsn indy {4.22)
K , o Lot Gp—im2 _

2

with y7(#) = y(x) for corresponding values of x and #.
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Differentiation of (4.22) with respect to x, and taking y,= +0 with —I£ x,< +1 yields the following formula
for the velocity component u, at the wing surface

K’ .
uy(x,, +0) = ‘(0 yr(n) P2 (& nidy 4.23)

with ~1< x,£ +1 and correspondingly —2K = ,< 0, while
1 1 snin cn in dn21q+cr12§p dné,
" 2z sn ép entig—cn*g,

Differentiating ¢,(x,, ¥,) to y, and taking y,=0 with +1{ g x,< oo we obtain the downwash in the wake due to
the potential @,, viz.:

Py(&p, n)= - Z(iq]} sn in (4.24)

o
vy{x,, 0) = L () Q21 Mdy : (4.25)

with /< x, < co and correspondingly 0= 5, < K', while

0ol ) = {sni cn i dnin+cn i, dn in,
2\t ps

. — Zfi i 4.2
cn’in—cn?in, ("7)} t.;mn 4.26)

211 s in,,

The reductions for obtaining the formulae (4.23) through (4.26) have been performed in appendix D.
4.3 The determination of the velocity potential (93(x; v) due to the circulation

A suitable potential satisfying zero condirions along the tunnel walls and the aerofoil, and yielding a jump equal
to —4aK across the wake is simply given by:

_ ®3(x,, y,) = —a(2K+¢&,) for —2K< ¢, <0 iec. the upper side of the aerofoil
and '
Pa(x,, vp) = +a(2K—¢£)) for 0<{,<2K ie. the lower side of the aerofoil {4.27)

where ¢ is a constant to be determined by aid of the Kutta-condition.
Dilferentiation with respect to x, yields for the velocity component u, at the upper surface of the wing:
p P f:] Y p 3 pPp

1

0= 428
with —I<x,s +1and correspandmgly —-2Kg¢,=
Differentiation with respect to y, yields for the downwash v in the wake:
7 i
M= g 4,2
US(‘XP’ 0) +a 2hk sn “1p ( 9)

with +1{ g %, < oo and correspondingly 0<n,< K.
‘We determine now the constant a by substituting the expressions (4.19), (4.25) and (4.29) for the vertical velocity
components v into the Kutta-condition, which expresses that
lim (v, +v,+v,) is finite .
. a0
One obtains quite easily the result:

—2hk ;
a = ﬂih J: (f) {M + Z({)} sn Edé— @jo ?T[’?) {M Z(iq)}sn‘ in dy (4.30)

n ¢ sn in

5 The pressure distribution on the aerofoil

The pressure distribution Ap ‘on the aerofoil can be obtained from-the velocity compbnent u(x,, +0) along the
aerofoil. In linearized approximation the pressure distribution can be written as:

o~o .
~or by aid of the equations (4.19), (423) and (4.28)
Ap(x) 4 ([0 x o 1 .

2p0Uj L) -2k 0
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~ After substituting the expression (4.30) for the constant a and the formulae {4.18) and (4.24) for p,(£,, &) resp..
pa (&, 1) we obtain: -

R D)y 4H° ——-=WT(§)K(6‘,-,f)df+‘1§-.[::’?T(’7)K(€pg inl.dﬂ}--= e 152)

3o Ud nly |} -2k
for —I% x,< +1/ and correspondingly — 2K < ¢,< 0, while the kernelfunction K is given by:
1 jensdno+centdnt l4centdnr

K(a, 1) = —H{ 5 5 - . }sh?r (5.3)

cn“g-—-cn‘t l—cnt

The first integral on the right-hand side of eq. (5.2) can always be calculated, either exactly or numerically, for
any given normal velocity distribution on the wing surface.

. .However, the second integral on the nght-hand side of eq. (5.2) still contains the unknown vorticity distribution

yr{n) of the vortex sheet.

This vorticity distribution is related to the downwash int the wake by the jet condition (3.9); since the downwash
can be expressed by aid of the formulae {4.19), (4.25} and (4.29), it can be written as the sum of some integrals,
tontaining either the given downwash at the wing or the vorticity distribution in the wake. Hence the jet condition
(3.9) can be recast in an integral equation for the unknown vorticity distribution. .

After the numerical solution of the integral equation and the substitution of the values of y;() into the second
term of equation (5.2),we obtain finally the pressure distribution on the wing surface. s

6 The integral equation for the vorticity distribution in the wake

The jet condition, valid in the wake, reads according to (3.9)

dvix, 0
Px)=¢;! —U—S;J for ISx<o
Integrating with respect to x from infinity to a point (x,, 0) in the wake, one obtains the relation:
1

v{xp, 0} =0, (x,, 0) + v3(x, 0) + v3(x,, 0) = — o Lﬂ y{x)dx (6.1)

Substitution of the expressions for v,(x,, 0) yields the following integral equation for the vorticity in the wake:

K c;l
j ?T( }sn in dn = 2hk{

e

"0

wr{&) K (in,, é)déhr)’r(ﬂff(wp ’?)d’?} (62

with 0 5, < K', while the kernel function X is defined by the formula (5.3}.
* The first term on the right-hand side of eq. {6.2) can again be calculated either exactly or numerically for any
given normal velocity distribution on the aerofoil

It has to be remarked that the kernel function K(in,, in) has a smgularlty l'or 1=n, of the type 1/(n—n,), and
the second integral on the right-hand side of (6.2) must be conceived in the sense of Cauchy. _

The integral equation (6.2) can be solved numerically; after substitution of the values of y;{x) into (5.2) we obtain
numerical values for the pressure distribution and after substitution into the jet condition (6.1),we find the siope
of the jet sireamiine.

7 The Iimiting case of walls at infinite distance

In the limiting case of walls at infinite distance, viz. ki— 0, the theory reduces to the theory of the wing with
jet in Iree flight,

For h—o the elliptic functlons pass into ordinary trigonometric functions,

The conformal transformation (4.1) becomes

dz

CTC = —] sm(,’
or (7.1)
‘ z=1]cos({

The infinite unbounded reglon around the wing is mapped into the semi- mﬁmte strip —~w < E< +, n >0 of
the complex {-plane.
The wing contour has its image along the real axis of the {-plane; the upper s1de is mapped on the line segment
—n<£<0and the lower side on the line segment 0< & < = (see sketch e). °
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Taking the limit h—o or k—0 (compare {4.2)) and denoting corresponding quantities in free flight by an
asterisk, we obtain for the pressure distribution the expression:

e T et gacs j:y;(n)r(é,» njan| (12)

1’P0U2 —x

with ~I<x,< +land x,=lcos {, —n<{,<0.
The 1ntegra] equation for the vortlclty distribution in the wake reduces to:

L?’}(”I) sinh ndny = %{r wrl&) K (i1, )d§+7[ vr(n) K (in,, i dq} (2.3)

-n

with 0< #p,< o0 and x,=[ cosh 1,

The kernelfunction K *(, 7) occurring in (7.2) and (7.3) becomes now

K'(o,1) = — { L ! _}anzr (74)

sino {coso—cost  1—coszt

Puiting Z = (1 +cos {)/2 it can be easily shown that the equations (7.2) and (7.3) are identical to those derived by
Spence inref. 5. : :

8 The tunnel wall corrections for lift and moment

When numerical values have been obtained for the pressure distribution on the ‘wing by aid of the formulae
{5.2) and (7.2) for the cases of tunnel walls and free flight respectively, lift and moment can easily be calculated
by numerical integration.

Assummg that the jet at-the exit makes an angle § with the direction of the main stream at infinity, the lift of
the wing is given by:

+1 - ’
L= j Ap(x)dx+J-8 (8.1)
_! .
and the lift coefficient C;=L/p, UZ! by
) +1 AP(X) .
= . 8.2
€ J—zﬂloUgldx-‘-cJ g ( )

The moment about the quarter chord point (taken positively in clockwise direction} is defined by

- J:!(x+=}l)zfp(x)dx—— {xp+30)J B ’ (8.3)

where x; denotes the x-coordinate of the jet exit on the wing; the moment coefficient C,, = M/2p, U is given by:

HxHhap(x) . (xpd)
= | B g VT2 8.4
Cu J., TR I TR (84)

Lift and moment coefficients C; and Cj, for the wing in free flight are defined in the same way and the tunnel wall
corrections become thus: ‘ :

AC,=C.—C, (8.5)
and : .
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9 Application of the theory to a flat wing with jet-augmented flap
. The theory, developed in the precedmg chapter; has been applied to the flat wing with a jet-augmented flap,

" The angle of attack &of the wingis taken-zero; while-the- angle of flap_deflection is §.
The jet-exit is taken at the hinge point of the flap and the jet is blown tangentially over the flap (fap- blowmg)

The wing chord is taken again 2! and the hinge point of the flap has x-coordinate x=xg. The conﬁguration is
~ indicated in sketch f. The normal velocity w(x) at the wing is given by
w(x)=0 for —lsxx xF- )
w(x)=UyB for xp<xg +! (9.1)
Substitution of this downwash-function into the integral-equation for the vorticity in the wake yields:

K

K’ ]
[ }’T(ﬂ) snindy = th {U B J . K(inp’ ‘S)d§+'12 J T ('7)

e

K(in indn} 02

whcre {=—{p,is the image in the {-plane of the hmge-pomt z=xg+1.0. The first term on the rlght-hand side
can be calculated.
Inserting equation {5.3), it can be written as:

0 0 . .
_ \ _ UsB cnig, dnin,+enfdnf I+cengdnd
Flong) = UoﬁjngK(l??p, §de = sn inpj { en’in, —cn?é I —cn?¢

}an EdE {9.3)

According to formula (4.1) the relation between the x-coordinate of points at the aerofoil and the é-coordinate of
their images in the {-plane is given by:

dx 2hk

Friiniat
or after integration: .
2h . {dn g) '
== —= 9.4
‘ X - cosh ( % { )
Hence the relation between &g and x; is:
’—‘If = %?cosh" (d‘;,i") with 0<&p<2K (9.5)

ép can be solved numencally for any glven xg/l by an iteration process. The integral (9.3) can be reduced to the
following form:

g, difry K) ~er(n, k), snlpk) s fsnfer
Fin = s fyenen 1| eI S, - Bl {1 e, 10 +

dnfr, k) o —en(1p, k) "
- mn(@p, Snz(n k') s k):l (9'6)‘

P

where IT is the incomplete elliptic integral of the third kind, defined by

Nk du

k=) ——— 9.7
(p. o, k) jo iy e (07)

with sin @ =sn u,.
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The function F{n,) can be evaluated by ﬁsing the well-known Fourier expansions for the elliptic functions of
Jacobi and a series expansion to the modulus for the elliptic integral IT. The mtegral equation for the vorticity
distribution is solved subsequently in a numerical way. This mtegral equatlon is satisfied in N-points n, , with
O<npa<K.n=1,2,. . N.

Since the pressure at the wing is influenced more strongly by the vortices in the neighbourhood of the trailing
edge than by those further away downstream in the wake, it is recommendable to satisfy the integral equation
for the vorticity distribution as good as possible in the neighbourhood of the tralhng edge. Therefore we introduce
the 51mple transformat;on

.
n=1 M= . (9.8)

and hence t and ¢, are lying in the interval (0, K'/{1+K’ ))

Putting for ¢, , N equidistant points, we obtain an n,,, distribution whlch is more dense in the nelghbourhood
of the trailing edge than further away downstream in the wake.

" The integrals containing y,{n) = v, (t/{1 —1)} are now evaluated by means of the trapezoidal rule for which

-the points, dividing the integration interval, are the same as the points tyw n=1,...N.

For ,=0(or t,=0), according to (3.9) the integral equation reduces simply to:

jmy(x)(ix=cleoﬁ ‘

b

or

»
Lh@mmm=ﬁ2M6%ﬁ (9.9)

Hence by satisfying this formula and the integral equatioh for the vorticity distribution in N points ¢, , and by
approximating the integrals containing y7(r) by the trapezoidal rule, we obtain a System of {N + 1} lincar algebraic
equations for the (N +1) unknown values of yr{t, /1 -1, n=1,2,... N and p;(0)

yr{K’) does not oceur as an unknown value, since we know beforehand that yr{K’) equals zero, because y{x)—0
for x— 0.

In appendix E it is shown that y(x} = 0{1/x%) for x> o0 and therefore y(x) is replaced by (1/x2) 5(x) or 3r{n} by

7? § dnfyg, kK)+ k)2
e {IHW} Feln)

where the factor of §,(n) has been found by integration of the transformation formula (4.1).
Solution of the sct of (N + 1) linear algebraic equations yields (N + 1) numerical values for y,(1) = yr{t/(1—t)}.
In the reduction of the integral equation to a set of (N + 1) linear algebraic equations the complication of the
kerne! K (i, in) having a Cauchy-singularity at =y, atises. This singuldrity is isolated by writing

K

) =350 Kt 1) 0n 700 | i i =

K'i{1+ K" t I ) . tp ) ¢ dt I K’ . . -
= { 1
L {“’T(l ) "‘"(1 r)}"(‘l—r I—f)u )2“”“(1 :)J Kiinp, i) (9-10)

The second integral on the right-hand side of (9.10) can be reduced to a formula being composed of elliptic
functions and the first one is numerically approximated by the trapezoidal rule.
For t=t,=t,, the integrand is approximated by

tpn+1 tpn—'i‘ )
LAY thnit ECE Ve tpn-1/ . fot, Lt \ '
2 & im {(t~t, ) K[ ——, i— (9.11)

Tpnt1—lpn—1 t~+tp.n

in which the limit can be calculated easily,
The occurring elliptic functions are evaluated by aid of Fourier-expressions.
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Having obtained in this way numerical values for y,(n,) = 77 {itp/(l —1,)} the pressure distribution at the aerofoil
is determined by substituting these values into equation (5.2), which for the case considered here, reduces to:

- *ff’(x)iﬁ%; ]’ ke, c)‘&s@%ﬁfaw(n)x(ap,in)aﬁ*}' Sy

2P0 Uo —¢F

Both integrals are evaluated numerically for several equidistant points at the wing surface. As to the first integral
- one has to distinguish the cases where ¢, lies inside and where it lies outside the integration interval; when ¢,
lies inside this interval, the integrand has a Cauchy-singularity and the numerlcal 1ntegratlon is performed after
isolating this singularity.
When we have determined in this way the pressure at the aerofoil in several equidistant points, we approxunate .
the pressure distribution finally by the formula:

¢ sin 9+9
Ap 8 2 * Ap(l) . . . . '
= ggcotg - + a, log| ————— | + — =5 + a; sin J+a, sin 23+ a, sin 3§ 4 a, sin 43 {9.13
SooUsp” TR T OB 95, | T e UGp T ’ ¢ > sin 48 O3
2

where x/[=—cos 9 with 0< < and xz/I= —cos 3.

The coefficients aq, . . . a5 are determined by aid of the values of the known pressure distribution at the wing.

We can now easily determine the aerodynamic coefficients C, and C,, by substituting (9.13) into the formulae
{8.2) and (8.4) and performing the integrations.

The calculations have been performed by aid of the electronic computer ZEBR A of the mathematical depart-
ment of the National Aero- and Astronautical Research Institue.

The aerodynamic coefficients C; and C,, for the free flight case are calculated in the same way by taking h
very large, i.e. k is very small.
| We have not used the formulae {7.2) and (7.3) since the calculations for small values of k can be performed by
means of the same program as for the case of tunnel walls.

| 10 Numerical results

Tunnel wall corrections for the aerodynamic derivatives 6CL/6B and 8C,,/0p have been calculated in the
| way cutlined in the preceding chapter. _
| * The ratio. I/h of wing chord to tunnelheight has been chosen as 2/21, 4/21 and 6/21 and the ratio t of flap to
wing chord as 15%, 259% and 100%, The jet-momentum coefficient ranges from 0-5.

The integral equation for the vorticity distribution has been satisfied in 15 points in the wake and hence N is
. taken equal to 15. The pressure distribution at the wing is calculated in the points x/I= ~0.8(0.2) + 0.8.
"~ The values of the aerodynamic derivatives for the case of free flight have been calculated from the formulae,
valid for the wing between tunnel walls by taking {/2==0.025.

The values of the lift derivative for the wing in free flight (i/h =0.025) have been compared with those of Spence
(ref. 9} for several values of the jet-momentum coefficient and the agreement appears to be satisfactory.

The aerodynamic derivatives #C,/@ff and 6C,,/0f have been plotted for fixed 7 as functions of that jet- momentum
coefficient ¢, for I/h=0, 2/21, 4/21 and 6/21 in figs. 1, 3, 5, 7, 9 and 11,

The correspondmg tunnel wall corrections

4C, éc;,  ac,
o @8 of

o e
ap Op
(G 3C 3y
W ' |
= 10.2
I T, B
a8 F

have been plotted as functions of ¢; in the figs. 2, 4, 6, 8, 10 and 12.
As 1o the case of =1, i.e. the case that the jet is blown over a wing with angle of attack £, we have to remark
that the moment point is the quarter chord point of the wing and not the point {—31, 0).
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“A survey of the values of the tunnel wall corréctions for some values of ¢;, I/h and 7 is given in the next table.

T 0.15 025 1
AE& ABC_M AE(E’_- A__BCM_ A?Ei‘ BCM
c 28 B ap &p 38 45 1
11 aC, ac, ac,, aC, ac, ac, h
af ap of B - of o
0 ~0.002 +0.0004 —0.002 +0.0004 — 0,003 +0.0004
16 —0.003 +0.0009 —0.003 +0.0009 —0005 +0.0009 #
43 —0.005 +0.0015 —~0.005 +0.0014 —0006 400014
0 —0009° 400017 —0.010 +0.0018 —0.014 +0.0018
L6 ~0:013 +0.0034 —0.015 +0.0037 —0.018 +0.0037 &
48 -0.022 +0.0053 ~0023 +0.0054 0,027 +0.0055
0 ~0.019 +0.0039 —0021 . +0.0040 —0.031 +00039
16 -0.029 +0.0072 ~0.031 +0.0077 —0.041 +0.0078 &
48 —0.045 +00105 —0.047 +0.0U1 —0.055 +0.0112

As to the case of Ith = 2/21 the tunnel wall corrections are very small and the results are not quite reliable due to
the fact, that figures cancel out by the subtraction of the results for free flight and tunnel walls.

However, the corrections for {/h=4/21 and I/h=6/21 are certainly sufﬁmemly reliable in order to use them for
obtammg aerodynamic derivatives in free flight from the measurements in the tunnel.
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APPENDIX A

e Derivation of Green's function

Green’s function Gr(, n; £, 4,) is the potentlal at the pomt (é, 1) ' due to two double-periodic fields of unit
sources located at the points: { ={, +4mK +12nK’ and {={,+4mK +i2nK', where m and n are integers.

M
0§P+i‘2K ? OEP-MKHQK'
| f
343 | 'K‘ oCp+4K ‘
_______ -

P P e

.gp_iz}(' .§R+4K-12K'

Sketch g: double-periodic fields of sources.

The potentials of these ficlds are not uniquely determined when they are not submitted to some boundary
conditions (see ref, 10, page 291). These conditions are for the case considered here: :

(i) %% =0 for #=0and n=K’ ' (A1)

this means that the lines =0 and =K’ are streamlines.
(i) Gr(—=2K, n; &p 1)) = Gr(+2K, 15 &5 1) (A2)

This condition cosresponds with that of equation (4.6) of the text and is explained there.

We introduce the complex potentials [[1, (¢, n1; &, 11,) and [12(Z, #; &, 1,) due to the field of unit sources at
the points {={,+4mK +1i2nK’ resp. {= {,+4mK +12nK".

Analogously to the theory of ref. 10 we obtain for the potetmal [, the expression

M= —1 9, { (ng,c), q} —5-n%, {”(gf’;,c) 2—;(15} (A3)

where 3, is the first théta-function of Jacobi and g=¢~™*£%7; we have used here the notation of Whlttaker-
Watson [ht 11). By aid of Landen’s transformation:: :

0}2r)
9,(25{2) = 5t s 81 Gl el (a4
"and Jacobi’s imaginary transformation:
(-1 9,(z]1) = —1 exp(ir'z*/n) 9, (27| ¥') (A5)
(—itfd,(zlrj=  expliv'z?/n) 8,(zv’|7) '

with ©'=—1/7. :
f1,(¢& n; €, 1,) reduces to:
= ,l_ ?T(CHCP)
[D1 = 3 [ln {91 (__41?__

K\ o (mlE=g) KL | m(— C)z]

—i)- A6

K ’) % ( >f T TRKK (A6)
where we have omitted an irrelevant constant. ‘

The complex potential [{], is obtained from (A.6} after replacing {, by ,. Hence the total potential ¢ of the
two double-periodic fields becomes:

o o=l (S50 (850 0 550, (58]

: 1
‘ . T : . R - .
the modulus (K'/K}i has been omitted for brevity. *eRE [ —0 6 ] (A7)
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This potential has to satisfy the condition do/dn=0 for 7=0 and n=K’; this can easily be shown by proving
that the harmonic conjugate of ¢ is constant for #=0 and n=K".

The first term of {A.7) is periodic in { with period 4K, but the second term is not and @(-2K.1; &, ) #
e(+2K,n; én’ )

The condition (A 1) is however not vielated when we add to the potential ¢ the potential of a uniform parallel
flow, viz. {,¢/AKK’. Having done this we finally obtain the function of Green:

s )= el o, (550 . (G 0, (5520 o, (G AY] » imriptor

- {A8)
Using the well-known relations: .
_ 33 '91(295 %)
snfz, k) = 9,97) {A9)
where 9;=9,(0) and 9,=9,(0) and
In %, =In0(z)=1n 6(0) + | Z()dr . (A.10)
2K 0
where 6(z) denotes the 8-function and Z(t) the Z-function of Jacobi we can write at last:
1 t—¢ - (L~ o2 (5 - L2
G, n; Emp) = 5—Re [ln {sn (———") k sn (—J) , k} + Z{S Z(r)de + g : Z(t]dt}] +
2n 2 2 0 © : ]
Eon?+&—nt
, : + SRR (A11)

which is the same as equation (4.14).

APPENDIX B
Determination of the velocity component 1, on the wing and the velocity component v, in the wake
B.1 The velocity component u, on the wing

According to equation (4.16) the potential at a point {x,, y,) can be written as:

i_Cp é_zp
: nk [° S AT &+ Lp)i2 &+ 2
@1(%p ¥p) = =% [ wr{¢) Re {ln = —2j Z(L)dt—2j Z{r)de psn Ed¢ (B.)
o o (f +51§ Sn(f*'f;) Q- ooz @502
: 2 2

Hence
- . E—¢
' , hk 0 sn == &+ EpH2 '
@, (x, +0)= j wr(£)<ln - Zj Z(t)de psn EdE (B.2)
~2K oottt ¢t
n__—_
' 2
with —I< x,< +1 and correspondingly —2K< {,<0.
Differentiation to x,, yields:
. il
' hk e, (°. 8 2 (é+é) (é—é)
,+0)=2—-"F |- — 1 - Z Fl- 2z Ele-sn éd B.3
uilom +0)=225 30 j_zx“’*‘({) % N, 2 3 e (8:3)
7 :
with :
' dé,  —m I

t_‘l?p:ﬁsnép




19

Performing the differentiation to £,,the factor of wT(é) in the integrand becomes:

Ik T Sl TR §+€pdn§+€p

—_ AL pe——

i b 2 2 L2 $—=¢, $+¢,
—sn¢ 7*“—.—‘*—+%—_——‘_“+ ( )+Z( ) T
sn _C*C,, o] ¢+é : 2 : )

2 S5

By aid of the addition formulae for the Jacobian elliptic functions (see ref. 11 or 12) this form becomes after some
derivations

enédné+cené,dn{, '
-~ VA B.4
sn¢ {sn ¢ g, —on’C + Z(2) (B4)
Inserting (B.4) into (B.3) we finally obtain:
RN { mzdn§+cn¢dn§ '
0 L~ d B.5
(x + ) ?'L' g0 épJ—ZKWT(g) Sﬂ 2':' anép (é) Sné 5 ( )
with —~!<x,< +!and correspondingly —2K < ¢,<0.
This is the same expression as given by eqn. (4.17).
B.2 The velocity component v, in the wake
Y 6(p1(x,,, Vo) - ‘ n i
We obtain lim ———=-Z=% by applying the operator — — to the nght-hand side of equation (B.1)

ypmto OV, : 2hk snin, in, 6§p

xp >l
and passmg subsequently to the limit ¢,= —0.
Performing this operation and using again the addition formulae of the Jacobian elliptic functions we get in
quite analogous way as in appendix B.1, the result-of egs. (4.19) and (4.20), viz.: .

iy O)= — £ rKwT(e:){s'nf°“5d““°“i'."’d“i"?’—Z(é)}snédé ()

T sn i, cn&—cn’in,

with x, > +1{ and correspondingly 0 < n,<K".

APPENDIX C
Determination of the potential due to the two double-periodic fields of vortices
‘A vortex located in the wake has its image at the point (in,, 0) of the {-plane. This vortex is reflected against

the lines # =0 and n=1K' and this proces is repeated again for the reflections themselves reversing at each reﬂecnon
the sign of the vortex,

il
R 4/,-1(11,,,“'1 B4 4K~ (M),~2K")
|

F— . :
N | /%\""lp . j‘ ‘@1 4K+iMp

. ‘ Mp 8, 4K-iT
s %T_ Caar-tlip
|

‘o /i“!+im,,-2K") (N AK4i(M-2K")

Sketch h: double-periodic fields of vortices.

The vortex row is repeated consecutively with period 4K in the {-direction. We obtain in this way two double-

.-periodic. fields of. vortices, viz.: vortices of strength +1 in the points {= +4mK. +r(ryp+2nK ) and vortices of

strength — 1'in the points { = +4mK —i{n,+ 2nK’} with m and n as integers. A vortex strength is defined posmvely
when the rotation of the vortex is-in the clockwise sense. =
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The complex potential of a unit-vortex equals the complex potential of a unit-source multiplied by 1.
. Hence the complex potential ({1, of the vortices located at the points { = +4mK +i{n,+ 2nK’) follows immedia-
tely from the expression (A.6) for the complex potential of a double-periedic ﬁeld of sources by replacing in {A.6)

{, by iy, and multiplying the formula with 1.
The result is:
_ n(;—iny) K') ((c in,) | K )} n(irrp—f:)j ‘
m3“55[1“{91( T AT R T 7T {c)

The complex potential (1], due to the vortices at the points = +4mK —i(,+2nK’) is obtained from (C.1) by
replacing #, by —#, and multiplying with — 1.
The sum of [{1, and [{], yields the complex potential of a unit vortex at the point {0, in,) in the presence of -

wing and tunnel walls. Thus
| n({—in,) n({—in,) '
. 8, -94
i 4K 4K . mi,C .

qo(x, y)=RC i; In p ( ({:erp) 9 {ﬂ(c+‘}7p)) - 2KK’
’ 1

4K “\ 4K
or
g (529
1 h 4K *\ 4K ¢
ol y) = - 5-Im lnS (““’7")}9 (n(C+in;)) + IkE (C2)
P\ 4K U 4K _

The function ¢ must have a periodicity 4K and therefore we add the potential of a uniform parallel flow with
velocity —#,/4KK'; this flow does not violate the condition that the lines #=0 and #=1K’' have to be streamlines
for the velocity field. The potential at the point {x,, y,) due to a unit-vortex at the point (0, 1) in the presence

of wing and tunnel wails becomes finally:
”(ip—i")) il —1n)
% ( T AT

1
X, = — —Imqln - . C3
¢ o) 2 9 n(Cﬂ-my 9 7(L,+in)\- ( )
_ . Y\ 4K /TP 4K
By aid of (A.9) and (A.10) this expression may be reduced to
' {,—in
1 sn 5 , r,fumz ) : 4
X, = - —Imi{ln —— - Zide :
(P( fi yp) 2?13 s Cp+lrl (Cp—iﬂ)ﬂ (
2
which is the same as formula (4.21).
APPENDIX D
Determination of the velocity component u, on the wing and the velocity component v, in the wake
D The velocity component u, on the wing
The potcntlal due to the vortices in the wake has been given by formula {4.22)°
o bemin )
hk . (X T2 (@ . :
Pa{Xp ¥} =+ 51 j yr{n) Im ln —_— ——'25 Z(1)dt psnindn ‘ (D.1)
e Jo Cptin (Cp—iny2
. sn 22—~
L 2
Hence fp—iﬂ N
ne (% S Qetimiz |
Pa(x, +0)=+ =i j yr(n) Im <In ——- — ZJ Z(r)dt psnindn - (D2)
2 Jo | g Sot (& imy2 :
' L 2 J

with —l< Xp< + ! and correspondingly —2K < {, < 0.
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Since
9 (§p+ir1)
Ep+in)/2 2 .
Lo (Ep—in)f2 0 p 1Y
it is clear, that 2
$p—in
sn = (Gp+imf2
In Tin 2 Z(t)ds
4 (Bp—im)/2
sn 5
is purely imaginary.
Thus
—if
" hk $n pz . Cptinfd T
@y{x, +0) = yT(q) In—/——~ -2 Z{t)dt psn indn D3y .
A €p+1n & ~in)f2 .
sn 22—
2
. ' 1
The differentiation to x, can now easily be performed; applying the operator — 2hk T é to the nght hand
14 P

side of (D.S) and using the addition formulae for the Jacobian elliptic functions, the result turns out to be:

11 (¥ . cnipdnin+ené,dné,
s (%p +‘0)_' " 2msn éij ?T(n){sn " en’in—cn?¢,

with —I< x,< +1 and correspondingly —2K < {,<0.

— Z(in)} sn indy (D.4)

0

D.2 The velocity component v, in the wake

o Balx, v, . . i 2
We obtain ,,,,lln:o T by applying again the operator — ﬁkﬁ — i z, to the right-hand side of equa-
Xp >l ’
tion (D.1) and passing subsequently to the limit £,= 0.
Performing this operation and using again the addmon formulae for the Jacobian elliptic functions we get in

a quite analogous way as in the previous appendices B.1, B.2 and D.1 the following expression for v,(x,. +0).

-i 1 (¥ . cn i dn in+cn b, dn s, ) .
—- D3
v, (x, +0} = 5 5 o L yr(n) {sn in enTin — enTi; Z(ln)‘ sn in dy (D.5)

with x, > +l'and correspondingly O<n, < K'.

APPENDIX E g

The behaviour of the vorticity distribution at infinity

Assume that y(x)=0(x"%) for x— +c (E.1)
From the jet-condition '
dv(x, 0}
y(x)=¢;l Eoa x>+l (3.11)
it follows immediately that
) p(x)=0{x'"% for x—co {E.2)

Since v(x) becomes zero for x going to infinity, we may conclude that « > 1.
The downwash in the wake can be expressed on the other hand by the formula

o) = 5 j i_g(__%dg (E3)

where the integral has been taken from the leading edge of the wing _tp.inﬁnity.
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From the assumption (E.1) it follows, that there exist constants A and N such that we may write in approxn-

mation :
&a
f E-x €+ j €~xdé

and hence

By aid of the formula:

1 1 1 1 1 1Ez2
FE— W{c_ﬁ (Tx ‘)} “x L, ve (E3)

where [o] is the smallest whole number larger than or equal to o, it is clear that

DN AL o1 {1 T |
U(X)COO()‘{-ZTCJC[OEJJ W(m—z)df (E6)

~1 i -a ° la]—z(__l,,_}_) .
v(x)oo0(x"") + an xt ey dt | (E.7)

N/

Introducing ¢=xt

The second term of (E.7) tends asymptotically to zero in a similar way as (x~° In x) when a is an integer, and as
(x"*), when a is not an integer. Since « > 1, it follows from (E.7) that v(x) o0 O(x ') and using (E.2) we find that «=2.
Hence the vorticity distribution behaves at infinity as 0(x~2). ' '
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