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Defiitions 

L 

instationary hinge moment 
derivative 
static pressure 
amplitude of instationary pressure 
disturbance 
stagnation pressure 
dynamic pressure 
instationary normal force on con- 
trol surface 
static normal force on control 
surface 
instationary control surface force 
derivative 
time 
flow velocity 
co-ordinate in streamwise direc- 
tion 
air density 
frequency of oscillation (cis) 

local value 
value in undisturbed flow 
upper-surface of the model 
lower surface of the model 

R. i i  

A 

\ 

static and mean quantities: 
I 

R = C,-q2l 

M = Cgq(21)' I R = cRq2f 

x = Cnq(21)2 

I 
C,= - (C,+-C,-)dx C,- = io 
C;,= - (C,+ -C,.)(x-0.25)dx .il 

2 

instationary quantities: 
K=2nqlk,ei"' R =2nqlr, e'"'' 

M =2nqfZm,e'"' N =2nqI2n,ei"' I 
1 

k ,  = 1: AC,dx I r,  = AC,dx 
0.75 ?[ 

Introduction 

For the flutter analysis of modern airplanes the 
insnflicient knowledge about the instationary aero- 
dynamic forces in the transonic speed regime forms a 
real problem. Up to now reliable theoretical results 
are absen? and also experimental material is scarce, 
especially for wings with control surfaces. Concerning 
the latter subject the attention has been restricted 
mainly to the control surface buzz phenomenon. In 
relation hereto two ways of approach can be distin- 
guished, uiz. flow investigations by means of optical 
observations, and measurements of the instationary 
aerodynamic forces acting on the wing and the oscillat- 
ing control surface. 

Flow studies by optical methods of the behaviour 
of shock waves, boundary layer and the free motion 
ofthe control surface during buzz, have been performed 
e.g. by Lambourne (refs. 1, 2 and 3), Nakamura and 
Tanabe (ref. 4), and Loiseau (refs. 5 and 6). Especially 
Lambourne has revealed many essential details about 
the influences of fundamental parameters and the 
flow conditions around an aerofoil with oscillating 
control surface. His experiments, however, were limited 
to stationary buzz conditions, which means that only 
the limit cycle oscillations of the strongly non-linear 
buzz phenomenon were investigated. In an attempt to 
study also the transient phase, Nakamura and Tanabe 
took high speed schlieren pictures of the onset of 
control surface oscillations and the flow around it, 
covering in this way its growth from small amplitudes 
up to the limit cycle. An essential restriction imposed 
by the use of a free oscillating control surface, as was 
the case in the afore mentioned experiments, is that 
observations can be made only if buzz occurs, and that 
little or no control of the flap motion exists. 

The other way of approach, namely the acquirement 
of information on the instationary aerodynamic forces 
acting on a wing with oscillating control surface, has 
been concentrated mainly on the determination of the 
instationary binge moment by means of a free oscilla- 
tion technique. For a wing-control surface system in 
twodimensional transonic flow, results are also given 



by Nakamura and Tanabe (ref. 4) and by Loiseau 
(refs. 5 and 6). 

More thorough information about the unsteady 
aerodynamic forces can be obtained by measuring the 
detailed pressure distribution on a model in forced 
sinusoidal motion. Apart from the possibility to obtain 
various aerodynamic derivatives by integrating the 
pressure distribution, this technique offers a means to 
measure the upper and lower surface separately, as 
could be desirable in case of nou-symmetric flow 
conditions. 

A first attempt to determine local instationary 
pressures on an oscillating control surface in transonic 
flow has been made by Erickson and Robinson (ref. 7). 
Their method, using electrical pressure cells flush with 
the aerofoil surface, has been applied successfully by 
Wyss and Sorenson (ref. X), who measured the control 
surface derivatives of a NACA 65,-213 aerofoil with 
a 25 percent control surface. Although they actually 
measured the pressure distribution over the control 
surface, only hinge moment derivatives were presented, 
except for some typical oscillograph records of the 
pressure fluctuations. 

From the beginning of the NLR programme on 
instationary aerodynamics for transonic flow, the aim 
has been to measure detailed pressure distributions 
and to try to make additional flow observations 
(ref. 9). As a first attempt, instationary pressure distri- 
butions have been determined on a wing with har- 
monically oscillating control surface in two-dimen- 
sional subsonic and low transonic flows (refs. l0,ll). 
However, the results of these tests, carried out on an 
8 percent thick double circular arc profile with a 25 
percent control surface, were strongly aflected by 
severe flow separation already occurring at relatively 
low Mach numbers, and caused by the convex cur- 
vature on the control surface. For this reason, these 
experiments are considered to he more valuable be- 
cause of the experience gained, especially with the 
rather unusual pressure measuring technique, than 
for the direct results. 

In the present investigation, being an extension of 
the former work, a similar model was used with a 
NACA 65A006 profile which has better aerodynamic 
properties. Both the mean and the oscillatory pressure 
distributions over the wing and the control surface 
have been determined. 

The control surface was forced to perform harmonic 
motions with frequencies equal to 30, 60, 90, 120 or 
150 cis at Mach numbers from 0.5 to 1.02, with small 
steps in the transonic region. 

The detailed results of the pressure measurements 
have been presented without discussion in ref. 12. The 
present report, emphasizing the analysis and dis- 
cussion, contains only a part of these results to illustrate 
the special features. encountered. For some cases the 
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measured pressure distributions have been compared 
with corresponding theoretical results. 

In addition to the pressure distributions, the corre- 
sponding periodical motion of the shock waves, 
derived from schlieren and shadow Observations, has 
been presented for a limited number of tests. 

2 Apparatus and experimental methods 

2.1 Wind runnel 
The tests have been performed in the Pilot tunnel of 

the NLR, being a closed circuit wind tunnel for Mach 
numbers up to about 1.0. Upper and lowerside of the 
test section (height 0.55 m, width 0.42 m) are fitted 
with longitudinal slotted walls. The open area ratio 
of these walls is 0.1. Further information about the 
Pilot tunnel can he found in ref. 13. 

2.2 Model and excitatiun mechunism 
The two-dimensional model, having a NACA 

65A006 profile, has a chord length of l X  cm and is 
fitted with a control surface of 25 percent of the chord. 
The maximum thickness, 6 percent, is situated at 42 
percent of the chord. The gap between the nose circle 
of the control surface and the wing is kept as small as 
possible and amounts to about 0.1 mm. Both upper 
and lower surface are provided with 19 pressure holes. 
A cross section of the wing with the location of these 
holes is given in fig. 1. At a distance of 6 percent of 
the chord from the leading edge both upper and lower 
surface are provided with a 10 mm wide transition 
strip of carborundum grains, to obtain a turbulent 

PROFILE N A C I I  6 5  * m e  

Fig. 1. Chardwise location ai pressure holes on both upper- and 
lowerside. 

PI1ESI"RE ,"d 
Fig. 2 Test sct up in the wind tunnel. 
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boundary layer. The transition of the boundary layer 
has been checked by acenaphtene tests. 

The model, that spans the test section horizontally, 
is clamped at both sides in perspex windows in the 
tunnel side walls. At each side of the model the control 
surface is extended through the perspex windows by 
means of a bar. The end of the bar is connected to an 
electrodynamic exciter by a lever (fig. 2). The exciters 
force the control surface into harmonic oscillations of 
the desired frequency and amplitude. The control 
surface motion is measured with displacement pick- 
ups connected to the bar just outside the wind tunnel. 

Fig. 3a Model with connected scanningvalve. 

Fig. 3b Model mounted in wind tunnel. 

Fig. 3 gives photographs of the model with connected 
scanning valve, and of the model mounted in the wind 
tunnel. 

2.3 Pressure measuring technique 
The instationary pressure distributions have been 

obtained by aid of the method described in ref. 14. Its 
special feature is that pressure tubes are used to connect 
the pressure holes at the model surface to a scanning 
valve with one transducer, outside the wind tunnel. 

The main problem in performing instationary 

measurements in this way is to reduce the pressures 
recorded by the transducer to the actual pressures on 
the model surface with the help of the transfer func- 
tions of the tube-transducer system. 

The transfer of oscillatory pressures through thin 
tubes depends a.0. on the mean pressure inside the 
tubes and as in transonic flow rather large differences 
in static pressure on the aerofoil occur, the oscillatory 
pressure perturbations have to he measured simul- 
taneously with their corresponding mean pressure to 
determine the correct conditions for the reduction 
procedure. In behalf of this reduction procedure the 
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Fig. 4 Dynamic response characteristics of the pressure tubes. 

transfer functions of the tubes have been determined 
experimentally as a function of the static pressure 
down to 0.35 ata. 

Special attention has been paid to the choice of the 
pressure tube-transducer system, With the calculation 
method of ref. 15, tube dimensions are estimated such 
that for the frequencies to be measured a suitable 
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re! cteristic is obtained. The criterion 
applied is that at the test frequencies the corrections 
with respect to static pressure are small and that these 
frequencies do not coincide with the resonance 
frequencies of the tube-transducer system to suppress 
possible non-linearities in the oscillatory pressure 
transfer. 

For the present investigation it was suitable to use 
two lengths oftubes; the shorter tubes for the measure- 
ments at  30 and 60 cis and the longer ones for the 
measurements at higher frequencies (see fig. 4). In the 
latter case all tubes have been elongated simultaneously 
by placing one additional tube between the scanning 
valve and the pressure transducer. To distinguishnon- 
symmetrical flow patterns, the pressures on the upper 
and lower surface of the model have been measured 
separately, not their differences. 

Finally it must, be noted here that the equipment 
used measured only pressure perturbations having the 
same frequency as the control surface oscillation. 

2.4 Schlieren and shadow yruph obseruutions 
Parallel to the pressure measuremeutssome schlieren 

and shadow graph pictures were taken using a stro- 
boscopic light source, triggered by an electrical signal 
of one of the displacement pick-ups. By means of an 
adjustable phase shift in the circuit between displace- 
ment pick-up and light source, the picture of the 
oscillating model with its shock pattern could be 
fixed artificially in each desired position. 

Due to the excitation mechanism only a part of the 
model could be observed, thus detailed shock motions 
on the control surface (M>0.94) and boundary layer 
phenomena could not he studied. 

3 Test programme 

All pressure measurements have been performed 
with the model kept at zero incidence and the control 
surface oscillating about its midposition as good as 
possible. During the tests, frequencies of 30,60,90, 120 
and 150 c/s were used at Mach numbers equal to 
0.5(0.1)0.8 ;0.825(0.025)0.90 and 0.92(0.02)1.02. The 
maximum values of the reduced frequency varied from 
k=0.478atM=0.510 k=0.187atM=1.02. 

For the major part of the tests the amplitude of 
oscillation was about 1.5 degrees. To study the in- 
fluence of amplitude some additional measurements 
have been made>for control surface amplitudes ofabout 
0.8, 2.4 and 3 degrees. 

The pressure distributions for the limiting case of 
zero frequency have been obtained from a series of 
static measurements. As in the instationary tests, these 
measurements have been restricted to zero angle of 
attack of the main surface. 

To have some indication for the occurrence of wind 

tl el resonance, (se ;ection 6 )  six additic al pres- 
sures have been measured along the side wall of the 
test section in the neighbourhood of the slotted walls. 
The location of the additional pressure holes is given 
in fig. 5. 

U I 
ADOITIONIIL PI1ISIYI1E WLES 

IN TYE Ila W*L”.Z.I, 

Fig. 5 Transonic test section of the Pilotunnel 

A complete survey of the pressure measurements is 
given in table 1. 

For a limited number of tests the periodical motion 
of the shock waves has been studied by means of 
schlieren and shadow graph methods. The programme 
of these experiments is given in table 2. 

4 Results 

4.1 Accuracy 
It is very difficult to estimate the errors in the final 

results, due to the complexity of the measuring 
equipment and the procedure used. 

The pressures determined by the transducer in the 
scanning valve at  the end of the tubes are estimated to 
have an error of about 2 percent for the average 
pressures and 2 degrees in phase angle. The same 
accuracy is supposed to exist for the transfer functions 
of the tubes used in the correction procedure. As in 
both cases the errors have a random character, the 
errors in the calculated magnitudes and phase angles 
of the pressures at the model surface are assumed to be 
well within 4 percent respectively 4 degrees. 

Other inaccuracies may be introduced by an in- 
correct model motion. For the frequencies applied, 
the fixed wind part was sufficiently rigid to prevent 
any deformation. The control surface itself could 
deform elastically in torsion under the combined 
action of inertia and aerodynamic forces. This de- 
formation leading to a small additional rotation of the 
measuring section with respect to the rotation meas- 
ured just outside the test section, is taken into account 
by means ofan iteration procedure, using themeasured 
aerodynamic loads and the known elastic and inertia 
properties of the model, The maximum correction 
applied amounted to 5 percent in amplitude and 1 
degree in phase angle. This correction is considered to 
be calculated with sufficient accuracy to have a ne- 
gligible influence on the final error. 

. . .  
:I 
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Based on the foregoing considerations, the final 
results are supposed to have errors in magnitude and 
phase angle well within 5 percent and 5 degrees 
respectively. However, it may not be excluded com- 
pletely that one or more systematic errors have been 
overlooked, especially because the present investiga- 
tion is one of the first applications of the NLR tech- 
nique in transonic flow and no other experimental 
material for direct comparison is available. On the 
other hand should such errors still he present, they can 
be expected to affect only the quantitative level of the 
pressure coefficients and not the trend of the results 
with the various parameters, of which the Mach 
number is considered to be the most important. 

Another question is how far results, obtained in a 
wind tunnel, have been influenced by interference of 
the tunnel walls. However, as no reliable method 
exists a t  this moment to calculate these interference 
effects for a slotted-wall test section, it is not possible 
to assess the error involved. The results have been 
presented without tunnel wall correction (see also 
section 6). 

4.2 Static and mean aerodynamic properties 
The distribution of local Mach number over the 

profile with undeflected control surface for several 
values of the free stream Mach numbers, is given in 
fig. 6. The distributions show that the critical Mach 
number is ahout 0.85. At M=0.875 the shock waves 
cause locally a considerable variation in local Mach 
number and at  M=0.94 the shock waves stand near 
the hinge axis. 

The variation with Mach number of the static 
aerodynamic coeflicients for normal force, moment 
about the one quarter-chord axis, normal force on 
control surface, and hinge moment are shown in 
fig. 7 for control surface deflections of 1.4 and 2.75 
degrees respectively. At Mach numbers above 0.875 
the effectiveness of the control surface strongly de- 
creases because on the wing part ahead of the shock 
waves, the change in pressure induced by the control 
surface deflection is diminished. Above M=0.92 the 
hinge moment also decreases rapidly and even becomes 
negative a t  M-0.98 for a~deflection of 1.4 degrees. As 
this does not occur for a deflection of 2.75 degrees, it 
can be concluded that for this Mach number the control 
surface tends to take an equilibrium position either 
between +1.4 and +2.75 or between -1.4 and 
-2.75 degrees. 

An interesting point forms the variation of the trail- 
ing edge pressure coeflicient with Mach number, 
shown in fig. 8 ;  it has heen observed (refs. I ,  2, 16) that 
a sudden change of this pressure coincides with the 
onset of severe shock induced separation, a pheno- 
menon which can he correlated with the critical Mach 
number for buffeting and buzz. The upper part of 

fig. 8 gives this pressure coefficient for the static tests 
with control surface deflections of 0, 1.4 and 2.75 
degrees. Starting at  M=0.5 the pressure increases in 
close agreement with the Prandtl-Glauert rule up to 
M-0.92. In case of the undeflected control-surface a 
sudden change in pressure occurs at M=0.92. At this 
Mach number the (stationary) shock waves stand near 
the hinge line. For a deflection of 1.4 and 2.75 degrees 
a similar behaviour is observed with somewhat lower 
values for the critical Mach number at which severe 
separation starts. 

In the lower part of fig. 8 the trailing edge pressure 
coefficient, obtained from the static tests with un- 
deflected control, is compared with the mean value of 
this coeficient in case of oscillating control. As is 
shown, the differences between both cases are very 
small. From the hehaviour of the trailing edge pres- 
sures of the present wing it can be concluded that the 
instationary pressure measurements with a control 
surface amplitude of about 1.5 degrees have not been 
influenced by severe separation effects for Mach 
numbers up to 0.90. 

It is interesting to know how the mean pressure 
distributions over the aerofoil with oscillating control 
deviate from the static pressure distributions, as this 
indicates to how far the unsteady problem can be 
considered as a small oscillatory perturbation super- 
imposed on a stationary part. Therefore a comparison 
between the two pressure distributions is given in fig. 9 
for some Mach numbers. From this figure it can be 
seen that differences occur only in cases where shock 
waves are present and that they are related directly to 
the trajectory of the shock motion (see also section 4.4). 
The discrepancies are largest in the low transonic 
speed range with relatively large shock displacements. 
At M =0.94, where the shocks hardly move, the control 
surface oscillation again has a negligible influence on 
the static pressure distribution. 

4.3 Instationary pressure distributions 
The detailed results of the instationary pressure 

measurements have heen collected in ref. 12. In the 
present report only a part of the measured pressure 
distributions will he given. 

In the treatment of the results two flow regions will 
he distinguished, namely : 

region I : subsonic flow over the control surface. 
This region extends up to M=0.94 and 
shock waves, if present, remain ahead of 
the hinge axis. 

region 11: mixed subsonic and supersonic, or fully 
supersonic flow over the control surface. 
In this region, corresponding to M >0.93, 
the shock waves are behind the hinge 
axis. 

In the following the results for the two flow regimes 



will be given and some peculiarities will be elucidated. 
A more thorough discussion of the measured in- 
stationary pressures, emphasizing the influence of 
Mach number, and a comparison with theory is given 
in section 5. 

4.3.1 Results for region I 
The results of the pressure measurements for fre- 

quencies of 30,90 and 150 cjs are presented in the figs. 
10, 1 1  and 12. As the distributions for upper and lower 
side agree well, only the instationary pressure jump 
across the chord A C ,  is given, represented by its real 
part dCb and its imaginary part A C ; :  the real part 
being in phase with the motion of the control surface 
and the imaginary part being in quadrature with it. In 
the figures also some theoretical distributions, cal- 
culated with the method of ref. 17, are given. In general 
the agreement between theoretical and measured 
distributions is reasonable at the lower Mach numbers. 
In section 5 this comparison will be discussed in more 
detail. 

Considering the development of the measured 
pressure distributions with Mach number, the attention 
is drawn to the occurrence of a bubble near the place 
of maximum wing thickness, beginning already at 
M=0.80. This bubble grows larger at increasing 
Mach numbers and from the corresponding distribu- 
tions of mean local Mach number i t  can be seen that 
its location coincides with the region in which the 
shock waves move. Above M=0.875 the instationary 
pressures in front of the shock waves start to decrease 
strongly and at M=0.94 and higher, no pressure 
disturbances are measured ahead of the hinge line. 

The results for 30 cjs, given in fig. 10, show an un- 
expected, sharp peak at the hinge line in the imaginary 
part of the pressure distribution. This peak, leading to 
a negative value of the damping derivative, becomes 
less pronounced in the tests at higher frequencies. The 
test data and data reduction procedures have been 
carefullychecked on this point, but nosystematicerrors 
or other errors, that might be responsible for this 
hehaviour, could be detected. In connection with this 
it may be remarked that the same phenomenon has 
been experienced in the tests of ref. 10, where the same 
type of irregularity occurred in the measurements at 
30 cjs, that disappeared for higher frequencies. At this 
moment no reasonable explanation of this phenome- 
non can be given. 

4.3.2 Results for region I1 
The results of the pressure measurements for fre- 

quencies of 30, 90 and 120 c/s in flow regime I1 are 
given in the figs. 13, 14 and 15. Because the measured 
instationary pressure distributions on upper and lower 
surface of the model were found to be not symmetrical, 
especially at M = 0.96 and 0.98, the results for both sides 
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have been given separately. To  facilitate the com- 
parison between upper and lower side pressures, the 
pressure coefficients Cpc for the lower surface have 
been plotted with a minus sign. The differences between 
both sides are probably due to the'fact that the control 
surface did not oscillate correctly about its mid- 
position. 

The pressure distributions for flow region I1 show 
that the pressure perturbations generated by the con- 
trol surface oscillation are only felt on the control 
surface itself. For the various frequencies the pressure 
distributions qualitatively have the same shape and 
show the same development with Mach number. The 
main difference between the results for w =  30 cjs and 
those at the higher frequencies is that the sign of the 
imaginary part for 0=30 c/s is negative, leading to a 
negative damping, while the tests at the other fre- 
quencies show a positive value. 

At M=0.98 the real parts Cpc of the pressures, being 
the pressures at the moment of maximum control 
surface deflection, do not go to zero at the trailing edge 
any longer. 

At M=1.00 and 1.02 this is also the case for the 
imaginary parts. 

4.4 Periodical shock motions 
At about M=0.85 shock waves start to appear at 

the model surface, but only during a part of the period 
of oscillation, and alternately at the upper and lower 
surface of the aerofoil. At somewhat higher Mach 
numbers, dependent on the amplitude of oscillation, 
the shock waves exist during the entire oscillation 
period and show a periodical motion over the profile; 
the upper and lower side shock wave being in counter 
phase. 

An example of the periodical shock motion is given 
in the schlieren photographs in fig. 16, giving the time 
history of the shock wave displacement during one 
oscillation period at M=0.90 and u=30 cjs. Un- 
fortunately, due to the excitation mechanism, only a 
part of the model can he observed. 

The influence of amplitude on the periodical motion 
of the shock waves is demonstrated in figs. 17 and 18. 
The figures present the instantaneous position of the 
shock at the upper surface, together with the corre- 
sponding motion of the control surface for M=0.875 
and 0.90 and frequencies of 30 and 90 cjs. These 
figures show that at M=0.875 the shock wave at each 
side disappears during a part of the cycle if the ampli- 
tude of the control surface deflection is raised from 
1.5 to 3 degrees. Though the motion of the shock wave 
is periodical, i t  appears to be not sinusoidal. For the 
frequencies considered (30 and 90 cis) only small time 
shifts occur between shock motion and control 
surface oscillation. 

The influence of Mach number on the behaviour of 
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the shock waves is illustrated in fig. 19. It can he ob- 
served that an increase in Mach number leads to a 
rearward displacement of the region in which the 
shocks move, while simultaneously the extent of this 
region is shrinking. At M=0.94 the shocks reach the 
hinge line and their periodical displacements become 
very small. This effect has also been mentioned by 
Lambourne (ref. I),  who suggests that, due to the small 
movement of the shocks in this case, a strong perio- 
dical variation in the severity of separation on the 
control surface is prohibited, which might well account 
for the absence ofbuzz in his tests under this condition. 
AS mentioned before, the variation of trailing edge 
pressure with Mach number (fig. 8) leads to the con- 
clusion that for the present investigation in flow region 
I no severe separation effects are present. 

Another observation is (see fig. 16) that the back- 
ward and forward motion of the shocks is coupled 
with a cyclic change in strength. The more forward the 
shock is situated the weaker it is, just as in case of 
quasi-steady now. Besides this quasi-steady effect, 
Lamhourne (ref. I )  drew attention to the fact that in a 
uniform stream an upstream moving shock becomes 
stronger than a downstream moving one and he has 
shown experimentally that a shock moving forwards 
over an aerofoil is stronger than a similar situated 
shock moving rearwards. In the photographs pre- 
sented in fig. 16, dealing with relatively low frequencies, 
this dynamic effect hardly can be observed, but it may 
be expected to play a more important role in case of 
higher shock velocities, i t .  at higher frequencies or 
larger amplitudes. 

In contrast with the present results, Lambourne 
found that in hisexperiments the shock position varied 
approximately sinusoidally (see fig. 22 of ref. 1) and 
that the control surface did not oscillate about its 
midposition. One must he aware however that his 
tests were principally different from the present ones, 
because he investigated the free oscillations of a con- 
trol surface during buzz, while in the present experi- 
ments the control surface was forced into harmonic 
oscillation about its midposition. 

4.5 Aerodynamic deritiatives 
The aerodynamic derivatives, obtained by integrat- 

ing the measured instationary pressure distributions, 
are presented in the tables 3-8. To show thedependence 
on Mach number, the derivatives have been plotted as 
a function of this parameter in the figs. 2&25. The 
theoretical curves, drawn also in these figures, have 
been obtained from the tables of ref. 18. As could he 
expected, the derivatives vary strongly with Mach 
number above the critical Mach number. The sharp 
decrease of the normal force derivative k ,  and the 
moment derivative m, above M=0.9 can be related to 
the drop in magnitude of the pressure disturbances in 

front of the shock waves, as can he seen from the 
pressure distributions of figs. 10, 11 and 12. The 
derivatives for the control surface (rc and nJ start to 
fall off at M=0.94, being the Mach number at which 
the shock waves reach the hinge line. It must be noted 
here that above M=0.94 the pressure perturbations 
only act on the control surface itself, implying that the 
derivatives k ,  and r, are identical and that between mc 
and n, only the momentum points differ. 

At M =  1.0, the fact that the pressure difference does 
not go to zero any longer at the trailing edge (see figs. 
13, 14, 15) causes the increase of the derivatives, 
especially of the hinge moment derivative n,, at this 
Mach number. 

The results of the repeated tests (fig. 22) show that a 
good repeatability of the test results has been obtained. 

The theoretical curves in figs. 2&25, obtained from 
ref. 18, that gives two-dimensional derivatives up to 
M=0.8, are hasedon linearized potential theory anddo 
not include thickness and viscosity effects. Compared 
with experiment in general the trend with Mach num- 
ber is predicted accurately. The quantitative agreement 
becomes better as the frequency increases; the best 
agreement is obtained at the frequency of 150 c/s 
(fig. 25). 

The influence of the amplitude of oscillation on the 
control surface derivatives is shown in figs. 26 and 27 
for some values of the Mach number. Both figures 
indicate a tendency of decreasing values of the deri- 
vatives with increasing amplitude, except for M =0.96. 
In the latter case a stronger non-linear hehaviour 
occurs, that must be attributed probably to the large 
periodical motion of the shock waves on the control 
surface itself. From the results it can be concluded 
that, in case the shocks move ahead of the hinge 
line, the dependence on amplitude of the derivatives 
in the present tests is hardly influenced by the Mach 
number. This conclusion, however, is only valid in the 
range of the rather small amplitudes applied. Accord- 
ing to ref. 19, dealing with measurements on a series of 
wing half models with oscillating control surface (a.0. 
NACA 65A006 profile), it has been experienced that 
at amplitudes larger than 3 or 4 degrees, the derivative 
n:’ shows a strong non-linear variation with amplitude, 
particularly at Mach numbers above M-0.90. 

5 Further discussion of the instationary pressure dis- 
tributions and comparison with theory 

In analyzing the results for the instationary pressure 
distributions, the emphasis will be laid on the develop- 
ment with Mach number ofthe distributions, obtained 
for various frequencies. 

As already mentioned in section 4.3, two flow con- 
ditions, related to the situation with undeflected con- 
trol surface, will be distinguished. 



region I : subsonic flow over the control surface. 
In this region, extending to M=0.94, the 
shock waves remain ahead of the hinge 
line and the pressure perturbations, gener- 
ated by the oscillating control surface, 
are felt on both wing and control. 

region 11: Mixed subsonic and supersonic or fully 
supersonic flow over the control surface 

In this region the shock waves are behind 
the hinge axis and the pressure perturba- 
tions from the control surface act only 
on the control surface itself. 

(M z 0.94). 

5.1 Region I 
The influence of Mach number on the instationary 

pressure distributions can be illustrated best by taking 
fig. 28, that gives the distributions for both w=O and 
o = 150 c/s as a function of Mach number. The pressure 
coefficients for w=150 c/s have been plotted as 
magnitude IAC,I and phase angle 6, being the phase 
shift between the pressure difference A C ,  and the 
motion of the control surface. In this figure also the 
theoretically predicted pressure distributions accord- 
ing to ref. 17 have been given. 

Fig. 28 clearly shows that the measured distribution 
of the pressure magnitudes at  w=0 and at w =  150 c/s 
develop qualitatively equally with Mach number. At 
M=0.80, when near to the point of maximum thick- 
ness the local airspeed on the model surface approaches 
the speed of sound, a huhhle arises in the amplitude 
distribution. At M=0.85, when during part of the 
oscillation period a shock wave occurs alternatively 
at model upper and lower surface, this huhble becomes 
more pronounced, due to the travelling shock wave. At 
still higher Mach numbers the pressure perturbations, 
evoked by the‘ control surface, are increasingly ham- 
pered by the enlarged size of the supersonic region and 
the strengthened shock wave to reach the part of the 
wing ahead of the shock. 

Regarding the development with Mach number of 
the measured phase curves, it can he seen that the part 
of the phase curves behind the hinge line hardly 
changes, but that the slope of the curve in front of the 
hinge axis increases with increased Mach number. 
Especially above M=0.85 a rather sharp increase in 
slope of the phase curve can be observed at  the end of 
the supersonic region over the wing, becoming steeper 
with increasing Mach number. 

Essential for the hehaviour of the measured curves is 
the fact that in the stationary flow field around the 
aerofoil, velocity gradients both parallel and normal 
to the direction ofthe undisturbed flow exist, caused by 
the thickness distribution of the model. This will be 
elucidated qualitatively by considering in detail the 
pressure propagation in the flow field. For the sake of 

simplicity the oscillating control surface will be 
regarded as a unique source, located at the hinge axis. 
Then in a similar way as given by Spee (ref. 20), who 
studied the propagation of acoustic waves past two- 
dimensional, quasi-elliptical aerofoils, the time history 
of the forward travelling wave front can beconstructed 
rather easily, because the local propagation velocity of 
the wave front is equal to the vector sum of the local 
speed of sound, taken normal to the wave front and the 
flow velocity in the point c0nsidered.A~ for the present 
model only the velocity distribution at the model 
surface is known, an estimate has been made for the 
outer field. For simplicity, the reflected wave from the 
tunnelwallsalso has been left out ofconsideration. 

In case ofan entirely subsonic flow, corresponding to 
a freeLstream Mach number of about 0.8, the position 
of an acoustic wave after equal time intervals d t  is 
indicated in fig. 29a. The solid lines at the upper surface 
show the behaviour of the wave in a flow field with 
velocity gradients parallel and normal to the undis- 
turbed flow. For comparison, the dotted lines at the 
lower surface’give the time history of such a wave in a 
uniform flow of M=0.8. The corresponding time lags, 
with respect to the time of departure from the source, 
are given in fig. 29b. In case ofharmonically oscillating 
pressure disturbances, this time lag is a direct measure 
for the phase shift. 

It can he concluded that for the non-uniform 
subsonic flow field the upstream propagation speed 
of the disturbance waves is mainly determined by the 
difference between the local speed of sound and the 
local flow velocity at the model surface. The velocity 
gradients normal to the chord cause a somewhat 
faster upstream travelling of the disturbances at some 
distance from the aerofoil, resulting in a forward 
inclination of the wave front. In other words, the for- 
ward travelling disturbances encounter more “head- 
wind” in the vicinity of the aerofoil than further away. 

At Mach numbers, at which a local supersonic region 
over the aerofoil is present, the inclination of the wave 
front is essential to make it possible for the wave to 
penetrate the supersonic region. This is demonstrated 
in fig. 30a, giving the time history of a disturbance 
wave at M =0.875 for the estimated flow field. Now the 
lower part of the upstream moving wave merges with 
the relatively small shock wave, that terminates the 
supersonic region. The upper part of the wave front 
turns around the top of the finite shock wave and than 
moves into the supersonic region. As can be seen from 

figs. 30a and 30b, a rather long travel time is needed 
in the vicinity of the shock wave, giving rise to a local 
steepening of the curve for the time lag. This is in 
qualitative agreement with the measured phase curve 
at this free stream Mach number, shown in fig. 28. 

At increased Mach numbers both strength and 
length of the shock wave are increased and this is 
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considered to be the main reason for the observed 
decrease in amplitude of the pressure disturbances 
measured in front of the shock. Therefore it may be 
expected in free flight also, that the pressure disturban- 
ces in front of the shock wave rapidly decrease with 
increased Mach number. In the wind tunnel this may 
be more pronounced, because the inclined waves have 
to pass between the top of the shock wave and the 
tunnel wall. With increasing Mach number this 
passage becomes smaller and at M=0.92 it apparently 
becomes impossible for the disturbances to reach the 
part of the wing ahead of the shock wave. 

Comparing the experimental pressure distributions 
with the theoretical results, it must be kept in mind that 
the theoretical predictions are based on a numerical 
solution of the linearized potential equation for a 
uniform main flow and thus do not include the effects 
of thickness, shock waves and viscosity, except for the 
Kutta-condition. 

So, a reasonable agreement between theory and 
experiment may be expected only at relatively low 
free stream Mach numbers, where the assumption of 
uniform basic flow is approximately valid and no shock 
waves are present. 

For M = O S  this is certainly true and then theory and 
experiment (see fig. 28) are in good agreement, except 
for the more observed discrepancies, such as slightly 
smaller magnitudes and an increasing phase lead to- 
wards the trailing edge of the measured pressures. 
Both effects may be attributed mainly to viscosity. 

Fig. 28 also shows that the influence of the non- 
uniform flow field in the experimental case starts to 
manifest itself already at  M =0.80 by a slight bubble in 
the amplitude distribution of the pressures near the 
maximum profile thickness and by an increased phase 
lag towards the leading edge.At higher Mach numbers 
these effects become more pronounced, resulting in 
increased differences between the theoretical and 
measured results. Yet, up to the critical Mach number 
(M-0.85) the agreement appears to be not too 
bad. 

At supercritical Mach numbers the additional effect 
of shock waves with their periodic backward and 
forward motion increases the mentioned bubbles in 
the measured pressure amplitude distribution. Also 
this effect can not be described by the theory ap- 
plied. 

The qualitative agreement between the travel time 
of a wave, propagated by a single source in a non- 
uniform flow and the measured phase curves at corre- 
sponding Mach numbers (compare figs. 29b and 30b 
with fig. 28) suggests a simple modification of the 
theoretical phase curves in front of the hinge axis. 
This modification consists of increasing the theoretical 
time lag with the difference in travel time in non- 

uniform and in uniform flow of a wave, generated by a 
source at the hinge axis. This means the differences 
hetween the drawn and dotted curve of fig. 29b, 
respectively fig. 30b, expressed as phase angle, to be 
added to the corresponding theoretical phase curves. 
The results, presented in fig. 31, show the striking 
improvement obtained by this modification, especially 
for the supercritical Mach number. 

5.2 Region I1 
In this flow regime flow separation plays an im- 

portant role at the Mach numbers, whereby the shocks 
are moving on the control surface itself ( M  =0.96 and 
0.98). However, since no optical observations could be 
performed in this region, it is difficult to give a thorough 
explanation of the instationary pressures at this 
moment. The instationary pressure distributions for 
w=O and w =  120 c/s have been plotted oersus Mach 
number in fig. 32. The results are given again as mag- 
nitude and phase angle. 

As already mentioned in section 4.3, rather large 
differences between the pressures on the upper- and 
lower surface of the model have been measured, 
especially at  M=0.96 and M=0.98. Probably the 
differences are due to the fact that the control surface 
did not oscillate correctly about its midposition, in 
spite of the precautions taken. The non-symmetrical 
distribution of the mean local Mach number on both 
modelsides also indicatesin thisdirection. It is thought 
that in this speed range the negative value of the mean 
binge moment (fig. 7) is mainly responsible for this 
behaviour. 

Comparing the amplitude distributions for o=O 
and for w=120 cis it appears that qualitatively they 
have the same shape and show the same development 
with Mach number. Between M=0.94 and M=1.00 
the phase curves behave rather irregularly; at M =  1.00 
and M =  1.02 the measured phase angles being rather 
small. 

From the discussion in section 5.1, it is clear that the 
theory, used in refs. 17 and 18, is not adequate to 
describe the pressure distribution for region 11 in a 
reasonable way. On the other hand the piston theory 
is known to work only satisfactorily at rather high 
supersonic speeds. To gain experience on this point 
the experimental pressure distributions at M =  1.0 
have been compared with the results of piston theory, 
using the average Mach number over the chord. 
Furthermore the finite thickness of the control 
surface has been taken into account. The results given 
in fig. 33, show the rather good prediction of the in- 
stationary pressures obtained, especially for the am- 
plitude distribution. The hinge moment derivative, 
predicted by piston theory, agrees reasonably with 
experiment. Especially above k=0.15, this agreement 
is considerably better than the theoretical values, taken 
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from ref. 18. even if in the latter case the average Mach 
number over the control surface is used. However, the 
material is too incidental to draw general conclusions 
at this moment. 

6 Wind tunnelwall-interference 

One of the problems encountered in unsteady wind 
tunnel tests may be the influence of the tunnelwalls 
on the results, especially for high subsonic and 
transonic flow. In this speed range the phenomenon of 
wind tunnel resonance may be encountered. This 
occurs if the disturbances from the model require an 
odd integer number of oscillation periods to travel 
from the model to the wall and back. 

As shown by Runyan, Woolston and Rainey (ref. 21), 
the lowest resonance frequency for a uniform flow in a 
closed wall wind tunnel can be calculated from the 
formula 

where H is the height of the test section. 
Thus re&mance happens for certain combinations 

of frequency, tunnel height and Mach number. 
The possibility of resonance in a wind tunnel with 

slotted walls has been studied theoretically by Acum 
(ref. 22). It appears that resonance is anticipated at a 
frequency that depends also on the open area ratio of 
the slotted walls. 

In applying Acum's results to the NLR Pilottunnel, 
having an open area ratio of0.1, the lowest resonance 
frequency is estimated to be: 

5.3a 
2nH 

w, = Am CIS 

Fig. 34 gives the predicted values of the resonance 
frequency as a function of Ma'ch number. The figure 
shows that resonance is only to be expected in the 
measurements near M=I.O. It must be kept in mind, 
however, that the theoretical prediction assumes a 
constant subsonic Mach number across the test section 
and does not account for the influence of the plenum 
chamber, that also may be important. 

To have some indication for the occurrence of 
resonance in the present tests six additional pressures 
have been measured along the sidewall of the test 
section in the neighbourhood of the slotted walls. The 
location of the additional holes is given in fig. 5. 

As an example, the instationary pressure perturba- 
tions measured near the floor ofthe test section, during 
the tests at o = 120 c/s, are given in fig. 35. The pressures 
have been related to the average of the instationary 
pressure on the lower side of the control surface. In 
the figure also the phase lag 4 has been given, cal- 
culated from the formula 

derived by considering the travel time necessary for 
the disturbances, generated in a uniform flow by a 
source at the hinge axis, to reach the tunnel wall. Up 
to M=0.875 the ratio of the pressures remains nearly 
constant and the phase angle increases gradually, in 
the same way as the theoretical curve. At higher Mach 
numbers the magnitude of the pressure perturbations 
and the phase angle become smaller with increasing 
Mach number. Probably this is caused by the oc- 
currence of the shock waves. The pressure measured 
below the slots (n = 1) behaves qualitatively in the same 
way as the pressures just above the slots (n=2, 3). At 
M-0.98 the wall pressures become negligible because 
then the pressure holes come in front of the shock 
waves. 

As it can be expected that at resonance conditions 
the fundamental of the measured signal will show a 
local peak in amplitude and a phase shift of 90 degrees 
with the pressure disturbances at the control surface, 
the variation of the measured wall pressures with 
Mach number gives no indication for the occurrence 
of resonance. Furthermore the comparison of the un- 
steady pressure distributions o n  the oscillating control 
surface with those for k = O ,  obtained from static 
measurements, also does not show pronounced irre- 
gularities that can be attributed to tunnel resonance, 
so it is concluded that resonance did not occur during 
the present investigation. 

Recently it has been reported by Wight (ref. 23) that 
especially slotted wall test sections seem to induce large 
interference effects. This evidence is based on a com- 
parison ofaerodynamic derivatives (k  50.05), obtained 
from measurements under different wall conditions in 
various wind tunnels. Unfortunately the interference 
observed in these wind tunnels did not affect the results 
in the same way. Wight concludes, however, that the 
interference effects can not be attributed to tunnel 
resonance and that further experimental investigations 
are needed. 

In an attempt to explain the abovementioned 
interference effects, Garner and Moore (ref. 24) present 
an approximate method for the treatment of the 
problem for slotted walls. Their method is based on 
some interpolation between theoretical solutions for 
the limiting cases of closed and open roof and floor of a 
rectangular test section. It is shown that for the damp- 
ing in pitch of some three-dimensional models, the 
right order of magnitude of the wall influence is 
predicted. A severe limitation is that the method is 
restricted to very low reduced frequencies. 

Until now, however, a general and reliable method to 
reduce wind tunnel results for slotted and porous walls 
to free flight conditions is still lacking, as has been 
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concludcd also by Acum in his recent review (ref. 25) 
and therefore the results of the present report have been 
given without any correction for tunnel wall inter- 
ference. 

7 Comparison with other test resuh 

As no other results for measured instationary 
pressure distributions are available, the comparison 
has to be restricted to the hinge moment derivative. 
Also in that case, the comparison is hampered by the 
fact that either the relative control surface chords or 
the maximum profile thicknesses differ. 

The tests described by'Loiseau (refs. 5 and 6) also 
deal with a 6 percent aerofoil, but the relative control 
surface chord is somewhat larger than for the present 
model, being 30 instead of 25 percent. The instationary 
hinge moment has been measured with the free 
oscillation technique and no results are given in the 
range 0.85M< 1.0. However, in the ranges of Mach 
number overlapping the present tests, qualitatively the 
same variation of the hinge moment derivative with 
Mach number can he observed (see fig. 36). The 
differences with the corresponding theoretical deri- 
vatives are in both cases of the same order of magni- 
tude. 

In fig. 37 a comparison is made with the results of 
Nakamura and Tanabe (ref. 4). The wing-control 
surface combination considered has the same chord 
ratio as the NLR model, hut the maximum thickness is 
10 percent. Their results have been obtained by means 
of free oscillation tests with a small model (chord 8 cm). 
The initial amplitude of 10 degrees, that has been 
applied, is thought to he somewhat large, especially 
because the tests of ref. I9 have indicated that, at 
amplitudes larger than about 3 degrees, the derivative 
ny shows a rather strong non-linear variation with 
amplitude above M -0.9. Notwithstanding the differ- 
ent relative thicknesses and the different test con- 
ditions, the agreement between both test results is 
rather good. 

A comparison with the results of Wyss and Sorenson 
(ref. 8), who determined the hinge moments by means 
of instationary pressure measurements on a 13 percent 
thick NACA 65,-213 aerofoil with a flap of25 percent, 
is given in fig. 38. The comparison has been restricted 
to M ~ 0 . 7 ,  though ref. 8 gives results up to M =OX. 
However, at the latter Mach, number the wing of ref. 8 
is still supercritical, while the present wing is not. The 
values of n: show a reasonable agreement with the 
present results, but the imaginary parts $differ widely. 
Probably this discrepancy must be attributed mainly 
to the large difference in profile thickness and camber. 
The values of n:' of the present investigation appear 
to fit the theoretically predicted curve somewhat 
better. 

In fig. 38 also, some values have been plotted of 
ref. 4, that agree rather well with the results of the 
present tests. Furthermore a comparison is made with 
the results of former NLR tests (ref. 1 I), obtained from 
instationary pressure measurements 011 a 8 percent 
thick symmetrical circular arc profile. At the rear part 
of this aerofoil severe flow separation has been ob- 
served and probably this separation is responsible for 
the rather small values of n:. being considerably 
smaller than the values of refs. 4 and 8, and the present 
tests. Yet, the values of n; of ref. 11 appear to agree 
reasonably well with those of the present investigation 
and the corresponding theoretical prediction. 

8 Concluding remarks 

The results of a number of instationary pressure 
measurements and of some schlieren and shadow 
graph observations, both obtained for a two-dimen- 
sional wing with oscillating control surface in high 
subsouicandtransonicflow(upto M =  1.02),havebeen 
presented and analysed. 

The instationary pressure distributions are shown 
to depend strongly on Mach number, especially iflocal 
supersonic regions are present (M>0.85). It appears 
that for Mach numbers higher than 0.94 the control 
surface oscillation is unable to generate pressure 
fluctuations at the aerofoil ahead of the hinge axis. The 
distribution of the amplitudes of the instationary 
pressures develops with Mach number qualitatively 
in the same way as the pressure distribution for the 
limiting case of zero frequency, obtained from static 
tests. 

In case of supersonic regions located entirely in 
front of the hinge axis, the non-uniform basic flow 
around the aerofoil plays an essential role in the up- 
stream propagation of the pressure disturbances 
evoked by the oscillating control surface. This can he 
elucidated by considering the propagation of the waves 
generated by an acoustic source at the hinge axis. 

Up to the critical Mach number (M -0.85) the agree- 
ment between the measured instationary pressure 
distributions and results obtained from a linearized 
theory for subsonic, potential flow appears to he not 
too had. The discrepancies between the theoretical and 
measured phase curves in front of the hinge axis are 
reduced considerably by taking into account, in a very 
approximate way, the extra time lag caused by the 
non-uniform flow field. 

The oscillatory motion of the shock waves, that 
could be studied only up to M=0.94, appears to be 
periodic but not sinusoidal. For the frequencies 
considered, the time lag with respect to the control 
surface motion is very small. 

Finally it has been concluded from the behaviour 
of the additional pressures, measured near the roof 
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and floor of the test section, that tunnel resonance djd 
not. occur in the present investigation. 
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TABLE 1 
Summary of executed pressure measurements 

-2.0 ,096 1.46- .I91 1.91" . 2 ~ 7  1.500 ,382 1.64' ,478 1.71' 

- - ~ - - - - .I59 1.48 - 

,341 1.67 ,068 1.45 ,137 0.85 ,205 1.78 ,273 1.60 
068 1.46 .137 1.91 

,137 2.34 
.I37 3.14 

060 .1.59 .I19 1.79 ,179 1.72 ,239 1.57 ,299 1.77 
,119 1.77 

,058 1.58 .I16 1.73 .I74 1.67 ,232 1.72 .290 1.82 
,116 1.93 

,056 1.53 ,112 1.80 .I69 1.71 ,225 0.97 ,282 1.63 
,112 1.86 ,225 1.73 

.225 2.57 

,055 1.47 ,109 1.47 .164 1.75 ,218 1.72 ,273 1.69 
,109 1.90 

,053 1.40 ,106 1.83 .I59 1.75 ,212 1.72 .26h 1.11 

,052 1.47 .io4 0.84 ,156 1.76 ,208 0.84 ,260 1.76 
,104 1.80 ,208 1.70 
,104 2.44 208 2.39 
.I04 3.18 

.om 1.52 ,101 1.43 ,153 1.55 ,204 1.61 ,254 1.72 
,051 1.54 ,102 1.74 ,152 1.59 ,203 1.68 
,051 1.77 ,102 1.74 
.os1 1.57 

,050 1.76" ,100 0 . w  .I49 1.71' . 2 w  0.881 - 
,099 1.65 .I99 1.54 
,100 1.82 ,199 2.41 
,1011 2.37 

0.98 

I .M) 

C=amplitude ofcontrol surface deflection 
k=reduced frequency 

,049 1.73 097 I .60 ,147 1.73 .I95 1.77 
.098 1.79 ,194 0.95 

047 1.53 ,096 0.80 ,144 1.60 ,191 1.57 - 
,047 1.69 .095 1.51 ,191 2.46 

,096 1.69 
,096 2.96 



TABLE 2 
Executed test programme for shadow and schlieren observations. 

Mach shadow graph schlieren 

w=30c/r  m=90 c/s w=30 cis 

c k e k c k 

number 

0.85 1.5;3' ,056 1.5:3' ,169 1.5' ,056 
0.875 1.5:3" ,055 1 . 5 ; 3 O  .I64 1.5' ,055 

0.92 1.5: 3" ,052 1.5; 3' . I 56  1.5' ,052 
0.94 1.5;3' ,051 1.5;3' ,153 1.5" ,051 

0.90 1.5; 3' ,053 1.5; 3 O  ,159 1.5' ,053 

TABLE 3 

Aerodynamic derivatives m = O  CIS 

M k C k, m, 7' 0, 

re im re im re im re im 

.SO 0 2" + 1.036 0 +.455 0 +.2335 0 +.0315 0 

.70 0 2 +1.126 0 +.SO2 0 +.2456 0 +.0335 0 

.80 0 2 i 1.218 0 +.583 0 +.2836 0 + ,0361 0 

.825 0 2 +1.250 0 i . 6 1 1  0 +.2907 0 +.0369 0 

.85 0 2 + 1.302 0 +.654 0 +.2896 0 f.0362 0 
,875 0 2 + 1.394 0 +.787 0 f.2623 0 +.0331 0 
.90 0 2 + 1.253 0 +.940 0 +.2908 0 +.0364 0 
.92 0 2 + ,768 n +.715 0 +.3581 0 + ,0493 0 
.94 0 2 + .386 0 + ,402 0 + ,3099 0 + .0474 0 
.96 0 2 - 0 0 - 0 - 0 
.98 0 2 i .200 0 + . 2 w  0 +.I680 0 + . w 4  0 

I 1 .00 0 2 + ,370 0 +.462 0 f.3700 0 +.0925 0 
0 

I 

~ 

I .02 n 2 + ,362 0 +.456 0 +.3620 0 + ,0940 

TABLE 4 

Aerodynamic derivatives w=30 c/s 

M k C k, m, re n, 

im re re im re im im re 

.50 ,096 I .4h0 

.70 .068 1.45 

.70 ,068 1.46 

.80 ,060 1.59 
,825 ,058 1.58 
.85 ,056 1.53 
2 7 5  ,055 I .47 
.90 ,053 1.40 
9 2  ,052 1.47 

.94 ,050 1.52 

.94 ,051 1.54 

.94 ,051 1.77 

.94 ,051 1.57 

+.933 
+A91 
f .936 
+.893 
+ .89 I 
+.869 
+.715 
+ ,609 
+ ,443 

+.291 
+.288 
+.276 
+.266 

- .356 
- .474 
-SO3 
-.618 
-541  
- ,696 
- ,672 
-.709 
-.418 

+ ,448 
+.462 
i . 4 9 1  
+.521 
+ .544 
+ ,575 
+ ,556 
+.588 
+.47l 

- ,065 
- . I 1 5  
-.I32 
- . I 8 1  
-.I89 
- ,220 
-.269 

-.367 
- ,470 

+.2072 
+.2034 
+.2175 
+.2161 
t.2193 
+ ,2236 
+.I998 
+.2180 
+ ,2640 

-.I70 
-.I67 
-.I61 
-.I63 

+.328 
+.328 
f.312 
+.305 

-.I68 
-.I62 
- . I 5 5  
-.I58 

+.2601 
+.2630 
+.2482 
+.2473 

- ,0452 
-.0698 
-.0787 
-.0936 
-.0915 
- ,0929 
- ,0607 
-.Oh48 
-.I615 

-.I316 
-.I266 
-.I199 
-.I237 

+.0287 - . 0 0 5 5  
+ ,0269 - ,0074 

f.0300 -.0110 
+.0301 - . W 9  
+.0311 -.a102 
+.0268 -.0057 

+ ,0401 -.0190 

+ ,0301 -.on95 

+.a297 - . o m  

+.0425 -.0172 
+.0438 -.0169 
+.0421 -.0163 
+.MI3 -.0164 

.96 ,050 1.76 +.I59 -.032 +.178 -.020 +.I477 -.0124 +.0261 +.GO27 

.98 .049 1.73 +.OX6 -.041 + ,083 -.a28 +.0790 -.0289 -.W25 +.W78 
,997 ,047 1.53 i . 134  -.Oh5 +.I33 -.OS2 +.I171 -.OS03 +.OX2 +.0017 

1 .OO .047 1.69 +.264 -.I09 i . 3 3 3  -.I36 +.2640 -.I090 c.0686 -.0273 
1.01 ,047 1.70 + ,244 -.I12 +.310 -.I40 +.2440 -.I120 +.0659 -.0280 
1.02 .046 1.49 1.248 -.a91 +.315 -.I14 +.2480 -.0910 i . 0 6 7 0  -.a228 
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TABLE 5 
Aerodynamic derivatives 

w = m  cis 

.so ,191 1.91' +.586 -.263 +.339 -.010 +.I374 -.0032 +.0193 +.0020 

.60 ,159 1.48 +.538 -.339 +.345 -.OS0 +.I405 -.0187 f.0196 +.0000 

.70 ,137 0.85 +.SI0 -384 f.373 -.Oh4 +.ISSO -.0213 +.0210 -.0008 

.70 .I37 1.91 + ,465 -.365 + ,323 -054 +.I246 -a163 10178 +NW2 

.70 ,137 2.34 +.448 -360 +.)I2 -.Oh2 f.1189 -.0182 +.0171 -.0001 

.70 ,137 3.14 +.421 -.357 +.293 -.a65 +.I091 . -0189 +.0162 -.0003 

.so .119 1.79 + ,394 -.411 f.336 -.ax I f.1259 -.0179 +.0178 f.0003 

.80 ,119 1.77 +.394 - ,420 1.337 -.091 +.I262 -.0215 ' t.0180 -.Owl 

,825 .I 16 1.73 f .365 -.430 f.341 -.099 +.I241 -.0197 +.0172 f.0002 
,825 ,116 1.93 +.357 -.435 t.344 -.098 +.I254 -.0192 +.0179 +.0002 

.85 .I 12 1.80 +.325 -.430 +.353 -.I15 f.1257 -.0158 t.0177 + . W 9  

.85 .I12 1.86 i ,323 -AS1 i.361 -.I18 +.l288. -0161 +.a183 ~r.0007 

.875 ,109 1.47 + ,299 -.466 +.391 -.I84 +.I440 i .0019 +.0196 t .0038 
,875 ,109 1.90 +.224 -.457 f.345 -.I92 +.I337 -.0061 +.0191 f.0027 

.90 .I06 1.83 +.I30 -.390 +.250 -.276 +.I413 -.0170 +.0213 f.0026 

.92 ,104 0.84 +.230 - ,247 +.304 -.231 +.2018 -.I082 +.0319 -.0108 

.92 . I 0 4  1.80 +.I68 - ,229 f.235 -.I96 i.1416 -.0674 +.0242 -.0054 

.92 ,104 2.44 +.I43 - ,208 + .202 -.I85 +.I244 -.0664 +.0212 -.006i 

.92 . I 0 4  3.18 +.I27 -.I96 +.I83 -.I70 +.I121 -.OS64 +.0197 -.0057 

.94 ,101 1.43 +.I51 -.078 +.I98 -.071 +.I584 -.OS47 f.0275 -.0063 

.94 .I02 1.74 +.I48 - ,060 +.187 -.046 +.I522 -.0344 +.0210 -.0028 

.94 ,102 1.74 1.136 - ,070 +.I76 -.OS7 +.I427 -.0427 f.0253 -.0042 

.96 ,100 0.85' +.I15 -.os2 +.I47 -.043 +.I261 -.0391 f.0254 -.0040 

.96 ,099 1.65 +.OY5 - .007 +.I21 + . O i l  +.I015 f.0102 +.0182 +.0059 

.96 ,100 1.82 f.080 + .wo t.092 +.020 +.0769 1.0170 t.0139 +.MI91 

.96 ,100 2.37 +.OS9 -.018 + . I 1 1  -.001 +.0933 1.0004 +.0174 +.0045 

.96 ,100 3.01 f.086 -037 +.ion -.oz +.ox94 -0223 +016x - m i s  

.98 ,097 I .a + 042 - w 4  + 040 +.oin +.a384 t.0040 -0039 t.00~7 

.98 ,098 1.79 t.053 - ,004 +.OS7 +.OE +.os20 +.0095 +.mi6 +.oil2 

1 .00 .n96 0.80 +.IS9 - ,056 +.201 -.070 +.I590 -.OS60 +.0413 -.0139 
1.00 ,095 1.51 +.I47 - ,044 +.I85 -.OS5 +.I470 1.0440 t.0382 -.a109 
1.00 ,096 1.69 +.I39 - ,046 +.I75 -.OS7 +.I390 -.0460 +.0359 -.0114 
1 .w ,096 2.96 +.I23 - ,040 +.I55 -.OS0 +.I230 -.0400 f.0325 -.OlW 

1.02 ,093 1.41 +.I39 - ,048 1.176 -.OS9 1.1390 -.0480 f.0375 -.0119 
1.02 ,094 1.59 t.137 - ,040 +.173 -.os0 +.im -0400 +.ox6 - . o m  
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TABLE 6 
Aerodynamic derivatives 

w=9oc/s 

M k C k, m. 7. n, 

re im 1e im re im re im 

0.50 
0.70 
0.80 
0.825 
0.850 
0.875 
0.90 
0.92 

.287 
,205 
,179 
,174 
. I69 
,164 
. I59 
,156 

1.50' 
1.78 
1.72 
1.67 
1.71 
1.75 
1.75 
1.76 

+.763 + ,022 

+.503 - .098 
+ ,487 -.I20 
+.439 -.I38 
+.349 -.I56 
+.264. -.084 
+ ,269 - .034 

+.563 -040 
+.411 
+.352 
+.372 
+.395 
+.418 
+.437 
+ ,354 
+.347 

+.I75 
+.I38 
+.135 
+.I34 
+.I22 
+ ,043 
- ,020 
- ,004 

+.I775 
+.I458 
+.I423 
+.I461 
+.I450 
+.I576 
+.I768 
+.2148 

+.0995 
+ .0790 
+.OX23 
f.0857 

+.I026 
+ ,0866 
+ .0266 

+.0917 

+.0254 
+.0218 
+ .0207 
+.0212 
+ .a209 
C.0233 
+.0269 
+.0353 

+.0171 
+.0137 
+.OM 
+.n149 
+.0161 
+.0188 
+.0184 
+ ,0092 

0.94 ,153 1.55 t.214 + ,032 + 268 +.a61 +.2162 +.OS10 +.0386 +.0110 
0.94 . I52 1.59 t.195 +.032 +.245 f.061 +.I983 +.0465 f.0357 +.0099 

0.96 :I49 1.71 +.I06 + .072 +.I28 +.I12 +.I039 +.0976 +.0174 +.0216 
0.98 ,147 1.73 +.057 + ,049 +.os0 +.OXO +.0481 f.0649 -.0070 +.0192 
1 .oo ,144 1.60 + ,207 + ,056 +.261 +.070 +.2070 1.0560 +.0537 +.0139 
1.02 .I40 1.61 +.I91 + ,048 + ,244 i.060 t.1910 t.0480 +.OS26 t.0120 

TABLE 7 
Aerodynamic derivatives 

w=12oc/s 

C k, rc n, 

im re im M k re im re im re 

0.50 ,382 164" + ,648 -.028 +.36l +.174 +.is04 +.ow +.0205 +.OISX 
0.70 .273 1.60 +.552 - .OK0 +.373 +.156 1.1490 i . 0 9 2 2  1.0206 1.0154 
0.80 ,239 1.57 + ,480 -.I16 +.413 +.I58 +.I504 +.I028 i.0204 +.a170 
0.825 .232 1.72 + .449 -.I36 + .442 +.I55 +.I525 +.I105 +.0209 +.0185 

0.85 ,225 0.97 +.485 -.I78 +.576 1.130 + . l Y Y X  +.I370 +.0265 +.a228 
0.85 ,225 1.73 f.397 -.I48 t.487 +.I24 +.I594 +.I212 +.0220 +.0206 
0.85 ,225 2.57 +.349 -.075 +.413 +.I63 +.I245 +.I285 +.0177 +.0215 

0.875 .218 1.72 t.279 -.I10 t.438 -.010 +.I827 +.I225 f.0261 +.021K 
0.90 ,212 1.72 +.243 -.066 +.337 -.os3 +.mo +.ox37 + . o m  +.0182 

0.92 ,208 0.84 +.336 -.OS9 +.430 -.om f.2633 +.om +.woo +.w8 
0.92 ,208 1.70 +.251 - ,043 f.330 -.047 +.2077 +.0052 f.0336 C.0065 
0.92 ,208 2.39 +.226 -.nix +.304 -.022 +.I863 +.0230 +.0309 i .0086 

0.94 ,204 1.61 +.I97 + 029 + ,255 +.040 +.2069 +.033l 1.0364 +.0085 
0.94 ,203 1.68 +.I97 +.034 +259 +.049 f .2115 +.MI0 +.0374 +.MI98 

0.96 .2w 0.88 1.180 + ,044 + ,215 +.064 +.I936 +.0515 +.0399 +.0129 
0.96 . ,199 1.54 . + . I 4 4  t.071 +.181 +.I04 +.I486 +.OX93 +.0274 +.0229 
0.96 ,199 2.41 1.126 + ,064 +.I57 f.094 +.I280 +.0797 +.0231 +.0197 

0.982 .I95 1.77 + ,079 +.037 + ,079 +.OS4 +.0731 +.0436 -.W31 +.0129 
0.986 .I94 0.95 i ,228 +.031 + ,290 +.043 +.2280 +.0347 C.0615 +.0080 

1 .oo ,191 1.57 + ,229 + ,044 f.289 +.044 +.2290 +.OM0 +.OS95 f.0109 
I .oo ,191 2.46 + ,203 + .040 + ,256 +.os0 +.2030 +.o400 t.0527 +.oioo 

1.02 ,187 1.49 f.215 +.032 f.273 +.MO +.2150 +.0320 +.os80 f.0060 
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TABLE 8 
Aerodynamic derivatives 

m=lSOc/s 

M 1. C k, me r6 n, 

re im re im re im re im 

0.50 
0.70 
0.80 
0.825 
0.85 
0.875 
0.90 
0.92 
0.94 

.478 
,341 
,299 
,290 
.282 
,273 
,266 
,260 
.254 

1.71' +.699 
1.67 + ,674 
1.77 +.466 
1.82 +.410 
I .63 + ,265 
1.69 +.I94 
1.71 +.223 
1.76 +.274 
1.72 +.214 

- ,096 
-.317 
-.411 
- ,429 
4 7 0  
- ,210 
-.I63 
-.I25 
+ ,048 

+.439 
+.SI9 
+.544 
1.578 
+.540 
+ ,327 
t.262 
+ ,300 
t.261 

+ ,200 
t.097 
- .022 
- ,074 
-.I91 
- ,205 
-.I45 
-.I28 
f.060 

+.I705 
+.I926 
t.1959 
+.2078 
f.2206 
+ ,2304 

+.2010 
+.2088 

+.a254 

+.1160 
t.0887 
f.0720 
+.0739 
+.a689 
+.OS52 
+.0350 
- ,0281 
+.0506 

+.a216 
+.a256 
+.0268 
+ ,0290 
+.0310 
+ ,0336 
1.0350 
f.0351 
1.0374 

+ ,0229 
t.0190 
+.0165 
+.0171 
f.0169 
+.0l54 
+.0120 
+.0034 
+.0135 

'I,/ 0.50 . 
0.4 

O 1 /  
0 1  

075 - X / ~ e  
Fig. 6 Chordwise distribution of lacal Mach number for the wing 

with undeflected control surface. Fig. 7 Static aerodynamic coefficients versus Mach number. 
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Fig. 9 Comparison between the chordwise distributions of the static 
pressure for the undeflecied conlrol and the mean pressure in case 

of oscillating control. 
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Fig. 13 Chardwisc distributions of mean local Mach number and instationary pressures far w= 30 cis 
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Fig. 15 Chordwise dislributions of mean local Mach number and instationary pressures foro,= 120 c/s 

2 1  
c i c g  cos W t  

Fig. 17 Influence o i  control surface amplitude on the periodical 
motion of the shock wave for w=30 cis. 

Fig. 18 Influence of control surface amplitude on lhe periodical 
motion ofthe shock wave for 0=90 CIS .  
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Fig. 19 Shock wave motion on the upper surface at various Mach 
numbers. 
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Fig. 20 Aerodynamic derivatives C I P ~ S U Z  Mach number for w =O cis. 
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Fig. 21 Aerodynamic derivatives m m s  Mach number ioro=30 CIS. 

EXPERIMEN 

-0.5 J -005 I 
Fig. 22 Aerodynamic derivatives O ~ W S  Mach numberforw=fQ cis. 
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Fig. 23 Aerodynamic derivatives C ~ ~ S U S  Mach number for (0 =90 cis. 
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Fig.25 Aerodynamicderiva[ivesi;ersusMachnumbcrforw= ISOc/s 

101 0101 

Fig. 24 AerodynamicderiL.atives ~;ersusMach numbcrforw= 12Oc/s 
Fig. 26 influence of control surface amplilude on the aerodynamic 

derivatives for 0=60 CIS. 
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Fig. 31 Improvement in phase lag, ahead of the hinge axis, obtained 
by correcting the theoretical results hor the additional time losses in 

“on-uniform flow. 

0 k = 0 . 1 4  ( W = 6 0 c p s )  

0 k.O.19 ( W : 1 2 O c p s )  

PISTON THEORY ( M z l . 2 5 ) - . -  
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Fig. 33a Instationary pressure distributions at sonic speed and com- 
parison with piston theory. 
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M : 1.25 _ _ _ _ _  
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I 
Fig. 33b Hinge moment derivative at sonic speed and comparison 

with theory. 
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Fig. 34 Predicted tunnel resonance frequencies. using ref. 22. 
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Fig. 35 Instationary pressures near the floor of the test section com- 
pared with the average of the instationary pressure on the lower side 

or the control surraace. 
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Fig. 36 Comparison with the measured hinge moment derivatives 
of refs. 5 and 6. 
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Fig. 38 Comparison with the measured hinge moment derivatives 
al  refs. 4, 8 and 11 
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C Extensional rigidity of face layer, = U ,  v, 
Et U 

l L " 2 '  V 
D s  Bending rigidity of sandwich plate, = a 

__ 

E Young's modulus of face layer mate- 
rial. Y x 9  Y y  

Gm G ,  Transverse shear moduli of core layer j,, 7, 
material. 

1, Surface integrals defined in appendix 
C. 

Deformation amplitudes (see eq. (10)). 
Strain energy functional. 
Potential functional for applied loads. 
Parameter involvingplate aspect ratio, 
=n2u2/b1 
Normalized buckling load coefiicients, 

Core shear angles. 
Average shear angles, 

ax = P J P p , ,  my = PylPy .  

C C 

c t t  c + t  r, = - Y x ,  iy = - y  

L* Matrix of linear operators. 4 Kronecker symbol. 
L, Ll, L,, Linear operators. E Load configuration parameter, 
M. Matrices ofboundarycondition coeffi- =PJPr 

cients, i =  1 : symmetric buckling mo- 
des, i=  2 :  antisymmetric buckling mo- 
des. 

Mi,  MY Real and imaginary parts, respectively, 
of M,. 

MI ,  IMI'I Determinant values of Mj and MY. 
lMl(")I, I MY(')l Quasi-determinant values defined in 

appendix B. 
N X >  Ny Edge loads per unit width of sand- 

wich plate. 
Rs Core shear stiffness parameter, 

E , ~ ,  cyj, yryi 

ll Core orthotropy parameter, 

Plane-strain components of a face 
layer. 

=m 
Pt Wavelength parameter. 
rl, 111' 
V 

P 

Realand imaginaryparts ofp, respect- 
ively. 
Poisson's ratio for face layer material. 
Square of plate aspect ratio u/b. 

a a a 2  

ax' ay' a X 2  ' ... 
- - _  ,*> ,p .XXI , . . 

v2, v4, .. , Laplace operator applied once, twice, 
... 

(c  + t)' =my. 
I s, s* Stiffness parameters, 

I 1 lntroduction 

The analysis presented in this report was initiated by the late Dr. Plantema. During the preparation of his well- 
known hook on sandwich construction (ref. l), he noticed the lack of reliable information on the elastic buckling 
behaviour of biaxially compressed rectangular sandwich plates, especially for boundary conditions other than those 
of simple support. In particular, the most advanced results for plates with two or all four edges clamped, as reported 
by Guest and Solvey (ref. 2) gave rise to serious doubts. As a result an investigation treating the same problem was 
initiated by De Jonge and Plantema, using a different approach. The inadequacies of reference 2 were brought to 
the attention of its authors which led to a reconsideration of the problem by Green and Solvey. The results of these 
two independent investigations are reported in references 3 and 4. 

In the analysis ofreference 3 Bylaards method ofsplit rigidities is employed in conjunction with an energy approach 
to obtain an approximate solution to the buckling problem of a biaxially compressed rectangular sandwich plate 
with two edges clamped and two edges simply supported or with all four edges clamped. The facings are treated as 
isotropic membranes, the core is considered to he isotropic in transverse shear propertie8. 

In references 2 and 4 an approximate solution is effected by means of the minimum total potential principle. 
Although the material of both face and core layers is initially treated as an orthotropic medium, results are given for 
isotropic facings and core only. The effect of finite face bending stiffness is indicated. The principal results of references 
3 and 4 are the combinations of dimensionless load parameters p x  and py, characterising the biaxial loading condi- 
tion for which buckling occurs. In both publications it is proposed to construct interaction curves using the critical 
load parameter combinations of the approximate analysis by multiplying them by the ratio of exact and approxi- 
mate valuesfor the cases of uniaxial compression in either of the two coordinate directions. These values are available 
from existing literature. Interaction curves constructed in this manner then intersect the co-ordinate axes in the cor- 
rect points; only the shape is not exact. Although it is plausible to use these "curves" of polygonal shape for design 
purposes they nevertheless represent the results of a somewhat crude analysis. For example, the true shape of such 
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curves for other than simply supported plates should consist of smooth line segments. 
However, an exact solution to the buckling problem of a biaxially compressed rectangular plate of sandwich 

construction, with two edges clamped~andtwo ~~ edges ~~ simply .~~ . ~ supported is readily available. The present report gives 
the results of such a solution for two types of clamped conndary conditions. 

The facelayers are treated as isotropic membranes. This procedure has not only been shown to he fully acceptable 
in an analysis of classical longwave instability of sandwich plates of practical dimensions but is in fact mandatory 
if the transverse compressibility of the core is neglected. Inclusion of the face bending stiffness only will lead to 
slightly unconservative results in many cases. The core is considered to be an orthotropic layer with respect to trans- 
verse shear as is appropriate for honeycomb type core materials. The solution for an isotropic core is obtained as a 
special case. 

The careful programming of present solutions for automatic numerical computation by Mr. G .  Doekes of the 
Applied Mathematics and Data Processing Department is gratefully acknowledged. 

2 Analysis 

2.1 Governing equations and boundary conditions 

fig. 1)  is governed by the sixth-order partial differential equation (A5) 
As shown in appendix A the linear buckling problem of a flat sandwich plate under biaxial inplane loading (see 

where 11 is a deformation vector with components ti (- - __ ut iuj , u - ( =- V I  iu') and w (see fig. 1). The parameters 

D,, R, and q are defined as 

E t ( c +  t)' =- c ( c + t ) 2  (bending stiffness of sandwich plate with membrane facings) 
2 

D, = 
2(1-v') 

(c  + t)' 
R,= m--- (core shear stiffness parameter) 

C 

v =m (core orthotropy parameter) 

The components of 17 are further related by the two auxiliary conditions 

and 

Three sets of boundary conditions, each prescribing either an edge load or the corresponding edge displacement, are 
also listed in appendix A (eq. (A4)). 

The present analysis will be restricted to a rectangular sandwich plate. The edges parallel to the X-axis are simply 
supported and the edges parallel to the Y-axis are clamped. Simple support is defined here as the condition of vanish- 
ing lateral edge displacement and edge bending moment similar to the case of a homogeneous plate. Then, for 
y =  k b / 2  

and 
w = o  (4) 

C(c+t)(fi,y+v17,x)=o. (5) 
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The third boundary condition for the plate with finite shear stiffness can be prescribed as either 

Of 

0 
21i 

c + t  
-=  

1 - v  
2 

c - (c+c)(6,x+li,y) = 0. 

The last condition (6b) indicates a vanishing edge twisting moment while condition (6a) reflects the prevention 
of the corresponding edge rotation. 

A "clamped boundary will be defined here as the condition of non-vanishing edge bending moment. Then, 
according to equation (A4), for x = !C ai2 

C = O .  (7) 

w = o .  (8) 

Of the remaining possible conditions the realistic situation of vanishing lateral edge displacement is chosen, that is 

Both the case of a vanishing edge rotation and of a vanishing edge twisting moment are considered, corresponding 

0 ( 9 4  

(9b) 

to the conditions 26 
- =  
c +  t 

and 
1 - v  

2 
c -(c+t)(ii,+ii.x)=O. 

The edge situation, corresponding to equation (7), (8) and (sa) will be termed "completely clamped" and obviously 
is the more realistic case. The case of relaxed clamping, implied by equation (9b) is included only for comparison 
with previous results (refs. 3 and 4). 

2.2 Solutionfor one type of simple support along two edges 

and ( 5 )  is 
A solution, satisfying the governing equations ( I ) ,  (2) and (3) as well as the essential simple support conditions (4) 

where n is an integer. The boundary condition (6a) is implied by this solution and, in view of the neglect of face 
bending stiffness, the problem under consideration may be assumed to correspond to the structural end fixtures 
sketched in figure 2. 

The part of the solution, depending on x only, consists of 6 linearly independent functions, each satisfying equations 
(I), (2) and (3). A characteristic equation for pi is obtained from equation (1) as 

k ,  p? + k , p f +  k3p? + k ,  = 0 (11) 

while the substitution of(l0) into the auxiliary relations (2) and (3) yields 
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k6 = 71 [(S - S*)q"a- (1 + Sqcc)] 
k, =SS* 
k, = -[S*q+SV1+2aSS*] 
k, = S*q-'a+ Srp+SS*a2 + 1 
k , ,  = nn[Sq-' - ( S -  S*)q] 
k,,= -nn[l+S*q-'a] and 

The dimensionless parameters appearing in these expressions are defined as 

(load parameters) 'N,b* 
e x = "  PY = .o, 

n 2 D ,  2S* 
R , a 2 -  1-v 

s=--- (stiffness parameters) 

a' a P =g=t;i (aspect ratio parameters) 

The characteristic equation (11) in general yields three nonzero "roots" p: (except when k4=O) resulting in three 
pairs of roots pi of opposite sign. As all coeflicients k are real valued the square of at least one pair of roots is real 
and the corresponding roots are either real or imaginary. The other two pairs can be complex. Hence the following 
classes of solutions must be considered. 

Class PI(= - 1 2 )  p3(=  -p4) pS(= - p 6 )  

1 r; ij,d+ ir; p; - i& 
2 0; r; r; 
3 r; Pi ip;' 
4 P; ip;' ip;' 
5 ipy ip;' ip ; 
6 ip ; /I; + ip;' p; - ip'; 

Next, it is evident from equations (12) and (13) that Ai occurs in pairs of opposite sign and Bi in pairs of equal sign. 
Having established the general solution (10) together with the auxiliary relations (12) and (13) the only admissible 

solution, satisfying the homogeneous boundary conditions (7), (8) and (sa) or (9b), is determined by the condition 
that the determinant value of the matrix of coeflicients of the related homogeneous equations vanishes. For the case 
of the completely clamped edge these equations are 

1 

1 

1 

1 
I 

In case of a vanishing edge twisting moment at the clamped edge the homogeneous boundary conditions lead to  

where Bf =piBi+nA,. Clearly B:, similar to A i  and p, occurs in pairs of opposite sign. 

be written 
As demonstrated in appendix B the buckling conditions deriving from the boundary conditions (15a) or (15b) can 
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{ I K I  -IW(,')l} {IM;I -IW2(")l} - {lM;'l- IWL(,)l} ~ IWI -IW(,)l} 
- i [ { l ~ ~ l - l ~ ~ ~ ) l } { l M ~ l  -IM;(")I}+ {lM;l-lMi(")l}{IWl -lM;(')I}]=O (16) 

In this expression lM;l, IMJ, IMJ and IA4;I are the determinant values of the real and imaginary parts, respectively, 
of the two matrices MI and M2 into which the matrix of coefiicients of equations (15a) and (1%) can he partitioned 
after some elementary row and column operations. The quantity IM'(")I is a quasi-determinant defined as the sum of 
products of elements of M ;  and the corresponding cofactors of M ; .  

2.3 Buckling conditions for complete clamping of two edges 
The matrices M ,  and M2 deriving from equation (I5a) are 

Ai sh npJ2 

MI = Bi ch npJ2 (i= 1,3,5) 
and [ c h n p J j  

shnpJ2 l  

Ai ch npJ2 
M2 = Bi sh npJ2 (i= 1 ,3 ,5 ) .  

The third row of both matrices stems from the boundary condition regardin the lateral deflection w. Clearly MI 
corresponds to a deflection pattern that is symmetric with respect to the line x = 0, passing through the center of the 
plate. M2 represents antisymmetric patterns. Evaluation of the buckling condition (16) for the different classes of 
solutions (see page 5) shows that in each case the left hand side of buckling condition reduces to the product of 
one symmetric and one antisymmetric determinant value only, leading to the appropriate result that the buckling 
pattern is either purely symmetric or purely antisymmetric (see (88)). 

The buckling conditions for the case of completely clamped edges are listed in table 1. 

2.4 Buckling conditions for relaxed clamping of two edges 
For this case the matrices MI and M, are 

Ai sh npJ2 
M ,  = Bf sh npJ2 (i= 1, 3,s )  

and , '  [ c h n O J j  

Ai ch npJ2 1 shnpJZl  
M2 = Bf ch npJ2 (i= 1 ,3 ,5 ) .  

The corresponding buckling conditions for symmetric and antisymmetric buckling modes are listed in table 2. 

2.5 Buckling of sandwich plates with isotropic cores 
As indicated in appendix A the governing equations (l), (2)  and (3) of the buckling problem simplify considerably 

if the core is isotropic in shear properties (?=my= 1). Substitution of q=  1 into these equations results in the 
governing equations 

and the auxiliary relations 

and 

In general again a solution for ii, consisting of six linearly independent functions will he obtained, each of which 
satisfies the equations (21), (22) and (23). 
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For a tentative solution as given by equation (IO)  a characteristic equation is now obtained as 

[pz- ( a  + 

where k ;  = 1 - p,pS 

and 
k2 = p,p(l +Sa)  +p,Sa- 2a 
k 3  = -pya( 1 +Sa)  +az.  

For q = 1  the relations (12)  and (13) reduce to 

and 

provided that S*(P; - a)-  1 # O .  However, ifq = 1 two oftheroots piare obtained from thecondition S*(pf - a)-  1 =O. 
In this case limit values are obtained from the expression for the ortbotropic plate (eqs. (12)  and (13)), using I‘Hospitals 
rule, as 

and 
nn S*(p&+ 1 -2a(S-S*)-2S/S* 

I lim B, = __ ,J-, s-S” 
S*l”:-@)- 1 (P?),?J+ 2a + 

From the characteristic equation for the orthotropic case (eq. (11)) the limit value of (p:),, results as 

Obviously, A, and Bi tend to infinity as q and S*(p;-a) approach unity. As all deformations are bounded these 
results imply that w. tends to zero in this case. Using these previous results the ratio A,& is determined as: 

In case of clamped edges, allowing edge parallel shear the ratio A@:, associated with the root pi=Jar+lls*, 
reaches a limit value 

For the sake ofsimplicity the parameter S and S*, both depending on the core shear stiffness moduli G ,  and G, have 
been considered to be constant in the limiting process. This implies that only the ratio GJC, changes, the product 
G,G, is constant. If either G ,  or G, is kept constant during the limiting process then , ..\ 

G, = constant 
and 

1im ( j ~ : ) , ,  = -2a  
n- I 

(33) S.l”i-.)-l 

G, = constant 
respectively. The limit values of A,, B ,  and AJB, are, of course, independent of the way in which the isotropic 
state is approached. The simplifications in the buckling conditions due to isotropy are indicated in tables 1 and 2. 
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3 Discussion of results 

3.1 Comparison of previous and present results for isotropic plates 
As was pointed out earlier a comparison of approximate and exact results for isotropic sandwich panels was the 

initial aim of the current investigation. For a typical sandwich panel the interaction diagram in terms of the dimeu- 
sionless load parameters p ,  and py is shown in figure 3. In this case not only the solution of reference 4, based on a 
stationary total potential approach, but also the split rigidity treatment of reference 3 yields an upper bound solu- 
tion in the domain of p ,  and p y  values considered. In both of these approximate solutions the assumed deflected 
shape implies a vanishing edge shear parallel to the clamped edges but also a vanishing of the twisting moment. The 
overconstrained nature of deformation pattern used in reference 4 is even more pronounced as in addition to the 
lateral displacement also the transverse shear force vanishes at the clamped edges. To evaluate the effect of a vanish- 
ing twisting moment an exact solution corresponding to classical clamped edge conditions but allowing edge parallel 
shear is indicated in figure 3 by a dashed line. In the present example the nonclassical boundary conditions relative 
to the edge twisting moment appear to have little effect with regard to buckling behaviour. 

The significance of the two approximate solutions of reference 3 and 4 for practical applications as proposed in 
both publications can be checked in figure 4 for the example discussed here. The results of exact and approximate 
solutions have been presented in a normalized form. Apparently, for the present case the energy method yields an 
interaction diagram that shows very good agreement with the exact interaction curve. The method of split rigidities 
tends to overestimate the buckling loads in a wide range. Especially for a, values in the order of unity (a case of 
practical interest) the allowable ay values preserving panel stability are severely overestimated. 

A similar comparison of normalized interaction curves for a wide range of panel configurations confirms these 
initial conclusions. Some of these results are shown in figures 5 through 8. Again, the results for clamping allowing 
edge parallel shear (relaxed clamping) are indicated. by a dashed line. As anticipated the reduction of buckling load 
values for p ,  and pv  due to this relaxation are insignificant for relatively stiff panels (see figures 5 and 7) and for 
rectangular panels in which the clamped edges are separated by a greater length (figure 8). In some instances both solu- 
tions corresponding to complete and relaxed clamping are represented by a single curve in the normalized interac- 
tion diagrams. 

In all of these examples the energy method yields a better approximation to the true interaction curve than the 
method of split rigidities. Although both methods might be accepted for preliminary design purposes only the method 
based on the stationary character of the total potential yields results that are of sufficient accuracy to serve all engin- 
eering design purposes. 

3.2 Resultsfor orthotropic plates 
So far the comparison between approximate and exact results has been confined to isotropic sandwich panels, the 

only class treated in the analyses of references 3 and 4. However, most sandwich panels of actual construction utilize 
a core layer with orthotropic shear properties. The practice of replacing a set of different shear moduli G ,  and G ,  
by their geometric mean ,/m to obtain buckling loads from analysis based on core isotropy in general does not 
lead to useful results. This conclusion is evident from figure 9. The exact results for two values of the core orthotropy 

n2 D,c 
./‘FEa’(c + t)’ parameter q = but the same value of the stiffness parameter S = are compared with a 

~. . 

result obtained from an isotropic panel analysis (q= 1) using the geometric mean value of the core shear moduli, 
that is, for the same value of S.  The values for q2 of 2 and 2-’ are typical for honeycomb core material oriented 
with the ribbon direction normal or parallel to the clamped edges, respectively. Clearly, the curves for the actual 
orthotropic panels deviate considerably from the result for the isotropic dummy. Very importantly, the ratio of pJ& 
is drastically changed. For the same reason the exact normalized interaction curves for orthotropic panels are 
poorly represented by the result obtained for the so called representative isotropic panel model, as is evidenced 
in figures 10 and 11. 

However, a better approximation should result from an approximate analysis taking account of core orthotropy. 
Although the initial considerations of reference 4 include orthotropic core shear properties the actual analysis 
is confined to isotropic core shear behaviour. For the class of sandwich’panels treated here (orthotropic core layer, 
identical isotropic facings) an approximate solution to the buckling problem for biaxial loading, based on the prin- 
ciple of stationary total potential, is formulated in Appendix C. Results according to  this method, using the same one 
term approximation to the buckled shape- as suggested in reference 4, are also shown in figure 9. The interaction 
diagram shows a pattern similar to that of the exact curves. The upper bound characteristics are apparent and are 
more pronounced in the region of combined tensile and compressive loading (a,a,c 0). The normalized shapes of 
these approximate interaction curves are introduced in figures 10 and 11 and also, for a panel with a relatively stiffer 
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core, in figures 12 and 13. Especially for panels with a relatively stiffcore the energy method accounting for core ortho- 
tropy is certainly preferable to the original method restricted to core isotropy. This result has been evidenced very 
strongly for a wide~iange of parameter configurations analysed and,in~fact, the poorest improvement met is shown 
in figure 10. It is noted that exact solutions for panels with relaxed clamping~a&-n<t considered~to be of practical 
interest. Thus, all of the exact results apply to the case of complete clamping along two panel edges. 

- =~ 1 

3.3 ESficiency of approximate and exact methods 
The obvious advantage relative to accuracy of exact solutions as compared to approximate results, even for a 

mathematical model that only approximately represents a structural problem, is in general only obtained at the cost 
of greater analytical complexity and inherent computational efforts. Especially in the present case considerable 
difficulties were encountered during the computation of exact results. An ALGOL procedure was developed to 
generate interaction curvesautomatically in themanner indicated in Appendix D.Although the problem in Jact only 
consists of finding the zero's of presumably smooth continuous functions (see tables I and 11) the essential difficulty 
stems from the occurrence ofmany sign changes in a very small domain, all corresponding to different buckling modes. 
This effect is encountered especially in case of relatively weak core configurati0ns.A similar effect is noted in reference 
5. It indicates that the panel is susceptible to the classical phenomenon of shear failure accompanied by typically 
short wavelength buckle patterns. Routinely used iteration procedures (method of bisection, regula falsi) all proved 
iusatisfactory due to the rapidly changing gradients. For the same reason methods employing the first derivative 
are not considered as in the present problem no closed formexpression can be obtained for this derived function. 
Instead, a direct trial and error method was used and considerable attention was paid to the interpretation of the 
results. In  the procedure used step sizes in the search process are a rather direct measure of the computational times 
involved and are chosen to produce reliable results within an acceptable time. If final results, labelled according to 
the symmetric or antisymmetric character of the buckling mode, still revealed unreliable interaction curves the step 
size in the automatic process was reduced for the particular configuration under consideration. In case of an ill- 
behaved exact solution a valuable check of the reliability is readily available in the form of an approximate solution 
according to appendix C. 

On the other hand, for a one term energy type solution interaction curves are obtained in a very fast straightforward 
manner. Also, only two points are needed for each straight line segment of the approximate interaction diagram 

(with floating point unit) solutions according to exact and approximate methods respectively for one set of parameter 
values required 240 seconds and 24 seconds. Considerable improvement in accuracy must be expected if more terms 
are included in an energy method while the time required for automatic computation will still be a fraction of the 
time necessary to generate an exact interaction curve. It must further be noted that exact closed form solutions can 
only be obtainedforalimited class of problems with simple boundary conditions. Iffor example transverse compressi- 
bility of the core layer together with face bending stiffness are introduced in a treatment of e.g. edge zone problems 
for sandwich shells the analytical complexity will in general exclude an exact solution. 

In view of the accuracy achieved by the approximate solution to the interaction problem under consideration, in 
many instances within the presently required tolerances, and on the basis of considerations mentioned earlier it is 
doubtful, for many practical cases, whether the exact solution warrants the efforts involved. 

3.4 Applicability of present results 
For the design of biaxially loaded sandwich panels with orthotropic cores but identical isotropic facings, having 

two completely clamped edges and two simply supported edges, a method similar to the one proposed in references 2 
and 4 can be used with confidence. The approximate shape of the interaction diagram can be obtained using the 
total potential energy principle. For the present problem the expressions presented in appendix C can be utilized. 
For relatively stiffcore panels a one term solution provides results ofsuffcient accuracy; for panels with core layers 
that are relatively weak in shear more terms should be included. 

The approximate result of an upper bond character can be either normalized in the manner shown in figures 4 
through 8 or reduced in size to intersect the co-ordinate axes at the correct points, using the values of 0% and & 
that can be readily extracted from the present exact solution. Thus to obtain useful data for design purposes from the 
approximate results the exact values of px and pY must be available for a practical range of parameter values relative 
to panel stiffness properties, core orthotropy and panel aspect ratio (S, 7 and p ,  respectively). Results for the case of 
panels loaded along the twoclamped edges by= 0) are shown in figures 15 through 18 and tables 3 through 6. Similar 
results for the same panel configurations but loaded uniaxially along two simply supported edges (p,=O) are given 
in figures 19 through 22 and in tables 7 through 10. 

As mentioned earlier, in some instances the approximate shape of the interaction curve tends to overestimate the 

' I  
I 

'. .I 

'I 

. .. 
while many separate points are needed for a satisfactory definition of the exact curve. On a CDC-3300 computer 
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load carrying capacity in case ofcomhined tensile and compressive loading, that is a#,< 0 (see fisure 12). However, 
in these regions of the a,--a, plane the validity of the present linearly elastic solution to the buckling problem may 
also he affected by plasticity. If for example the Tresca yield criterion is assumed to he applicable a simple hexagonal 
domain is defined in the p.-p, plane, within wich the elastic solution remains valid. For typical values of 5 x 
for the ratio of uniaxial yield stress to Young’s modulus and of 40 for the width to thickness ratio of a square panel 
the yield values of p ,  and pv  are obtained as 

For a square orthotropic panel the interaction curve together with the hexagonal intersection ofTresca’s yieldsurface 
and the p ,  - p v  plane are shown in figure 14. Ifa value of 25 is assumed for the ratio ofcore to face thickness then the 
chosen value of .4 for thestiffnessparameter S implies that arelatively weakcoresandwich panelisconsidered, namely 

For panels with a relatively stiffer core the increased buckling loads may he limited by plasticity effects to an even 
larger extend. 

4 Conclndmg remarks 

This report presents an exact solution to the elastic buckling problem of a biaxially loaded sandwich plate with 
two clamped and to simply supported edges. The two identical membrane face layers are isotropic hut for the core 
layer shear orthotropy is assumed. Two types of edge clamping are considered. 

For the special case ofcore isotropy the approximate solution ofreference 4 based on the minimum total potential 
principle shows good agreement with the present exact solution. An approximate solution, presented in reference 3, 
utilizing the method of split rigidities tends to he unconservative in certain cases. 

An approximate energy solution is presented for plates with orthotropic cores. Again very good agreement is 
evidenced for plates of practical construction. Only for very weak core sandwiches the simple one term energy solu- 
tion is of insuflicient accuracy. 

In view of the much larger computational efforts required to obtain an exact interaction curve and on the basis of 
the accuracy achieved by the approximate method a combination ofexact results, for uniaxial compression in direc- 
tions parallel and normal to the clamped edges and ofthe approximate shape ofthe interaction curve provided by the 
energy solution appears to he a promising proposition for many engineering design applicatihns. Load configura- 
tions for which this method may prove to he unconservative (combined tensile and compressive loading) are indicated 
but, also, plasticity effects may render the elastic solution invalid in these cases. 

An outline is given of an automatic computational procedure for the generation of exact interaction curves in a 
chosen domain of parameter values. 
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APPENDE A 

~~~~~~ 

Buckling equations for a biaxially loaded sandwich plate 

Plates with orthotropic cores 
Equations for the bending and buckling of sandwich plates having isotropic face layers and an orthotropic core 

can be derived from the basic equilibrium equations for sandwich plates given in reference 1. The theory presented 
in this standard reference uses as deformation parameters the lateral deflection wand two average shear angles 7, 
and 9,. Equilibrium equations and boundary conditions for a number of typical edge situations are listed. 

Reference 5 presents a sandwich shell theory of somewhat more generality than included in the case considered 
here. It reduces to the present case if radii of curvature and the core extensional stiffness in normal direction are set 
equal to infinity and the face bending stiffness is neglected. The deformation parameters employed in this theory in 
reduced form are the lateral deflection w, the actual core shear angles y, and yy and two relative in plane face displace- 
ments ti=(u, -u2)/2 and i r= (u ,  -u2)/2 where u, ,  u , ,  u2 and u2 are the displacement components in X and Y direc- 
tion of the two face layers, respectively. In the classical treatment of sandwich plates these parameters are related 
by the two simple continuity conditions: 

and 

(A.1) 
- u, -u2 cyy c + t  

2 2 
u = - = - - -  2 W.Y 

2ii 26 
C + t  C + t  

The quantities - and -are recognized as the rotations of a plate normal section. In the variationally derived 

equations of reference 5 the relevant boundary conditions are also expressed in terms of these quantities. 
The governing equations and boundary conditions used in this analysis are obtained directly from reference 5. 

Where applicable, the similarity of the present notation and that of reference 1 can be demonstrated by use of the 

and 

The equations of moment equilibrium about the X and Y directions and of lateral equilibrium o fa  plate element are, 
in terms of buckling deformations ii, 6 and w :  

l + v -  c + t  
2 C 

II + c - Gxw,,= 0 - - 

1 - v -  -2G,_ c+r  
u - - c,w,y= 0 

2 L 2 u,..] __ C C 
c - u , , t c  5,?? + - 

where C is the plate extensional stiffness ( = I-v" Et and G, and Cy are the core shear moduli for the XZ and Y Z  
plane respectively. 

Appropriate boundary conditions are (for x =constant) 

ti = O  or C(c t t ) [ i i , ,+v i r , , ]=O 

1 - v  
2 

ir = O  or c - ( ~ + t ) [ C , ~ + f i , J = O  

23 G(c+t)' 
w = O  or N,w,,+(c+t)G,y, = - 0 .  

C 

Similar conditionsfor an edge y=constant are obtained by interchange of u and u and ofx and y .  
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The set of governing linear partial differential equations (A.3) can be written 

L"ii=O (-4.5) 
where ii is a deformation vector with components 6, i, and w and L* is a symmetric matrix of linear operators. By 
means of a well known linear operation (A.5) can he transformed into 

Lii=O ('4.6) 
where Lis the linear operator corresponding to the determinant of E. Each of the components of ii satisfies (A.6) 
while 6, i, and w are further related by 

and 

In the present notation the linear operators L, L,, L,, and L,,, are 

(A.7) 

where D, = __ C(c+t)2 is the bending stiffness of the sandwich plate and R, = a __ (C+t)Z is a core shear stiffness 

parameter. 7 = -# 1 reflects core orthotropy. 

Plates with an isotropic core. 

equal to unity. Then the operators of the govering equations rewrite: 

2 

- 
The equation for the case of core shear isotropy are obtained from the general orthotropic theory by setting 7 

This apparently simpler set ofequations also gives rise to some singularities in the general solution that are discussed 
in the section "Analysis" of this report. 

APPENDIX B 

Buckling conditions for two types of edge clamping 

General considerations 

edge at x= ?ai2 is, for a biaxially compressed plate, (see eqs. (15)). 
The general form of the matrix of coeflicients, taken from the homogeneous boundary conditions for a clamped 
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AieU”I2 
Aie-*Uz/2 
Bi en*iiz 

e*P.i2 

e-n!4/2 

Bi e - V d 2  

- 

Class 

1 
2 
3 
4 
5 
6 

( i =  1,2, .._, 6) 

All coeficients k in this equation are real valued functions ofthe geometrical, material and load parameters pertaining 
to the problem. As only even powers ofp, appear the roots occur in pairs ofequal modulus but opposite sign. Further, 
the square of at least one pair of roots (pl, p2= -p l )  is real, the squares ofthe other two pairs can be complex. On 
the basis of these observations the possible solutions are classified in the following manner. 

The case ofcompletely clamped e ,es (vanishing e - 2  rotations and terr lisplacement) 

The quantities Ai and B, of (B.l) are given for this case by (see eqs. (12) and (13)) 

and 

where again all coeficients k are real valued functions. Clearly Ai occurs in pairs of opposite sign and in a form 
identical to that of the corresponding root pi (see (B.3) ) .  Ei occurs in pairs of equal sign. Moreover Ei is real valued 

By the nature of the solution to the present problem, reflected in the special form of the roots (see (B.3)) and 
in all cases except 1 and 6: then B,  and B ,  are conjugate complex. .j 

of the quantities Ai and Bi the matrix of coeficients (B.l) can be shown to be equivalent to 

0 [: M2 
where the submatrix 

and 
Ai ch npJ2 

M2 = Bi sh np’J2 [ sh n i d j  
(i= 1, 3, 5 )  

( i= 1, 3, 5 ) .  

The last row of both MI and M, stems from the boundary condition for the lateral displacement w and reflects 
the form of the displacement pattern. ClearlyM, corresponds to a wave form that is symmetric with respect to the 
line x =0, passing through the center of the plate. MI represents buckling modes that are antisymmetric with respect 
to the Y-axis. 
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Then, the buckling condition (the condition that the determinant value of the equivalent matrix (B.5) vanishes) is 

IMII ' lM21 = 0 .  (B.6) 
All entries ofboth M ,  and M, can be complex, that is, the submatrices can be written Mj=MI + iMy. Then, the buck- 
ling condition in final form reads : 

W;I - 1M;r)l) {IWI - lM;(")l) - {IMJ - lW(,)Il { I K I  - lM;Ol} 
- i [ { lK l  - lM'X)l} { IK I  - lMX')l} + {IW - lW(")l} {IWI - IMK')l}] = 0. (B.7) 

In this equation lM:l and /My(  are the determinant values of the real and imaginary parts of a submatrix Mi while 
IMI(")/ is a quasi-determinant formed by summing all the products ofentries ofMI and the corresponding cofactors 
of M y  (each product having a + sign if the sum of row number and column number of the entry involved is even 
and a - sign otherwise). IM"(')I is similarly defined. 

For the six classes ofsolutions indicated by (B.3) the buckling condition reduces to the following simple conditions : 

Case Buckling condition 

The expanded forms of these conditions are presented in table 1. As the buckling condition requires the vanishing 
of either a "symmetric" (subscript 1) or an "antisymmetric" (subscript 2) determinant, the buckling conditions are 
presented in two columns labelled "symmetric modes" and "antisymmetric modes". Only a numerical evaluation 
can indicate which condition governs the buckling problem under consideration, 

The clamped edge allowing edge parallel shear 

difference is that Bi is replaced by 
For this case similar considerations hold as discussed in connection with the completely clamped edge. The only 

B t = p i B i + n A i =  B t ' + i B t " .  03.9) 
Clearly B: occurs in pairs of opposite sign and in a form equivalent to that of pi as given in (B.3). The effect of the 
substitution indicated in (B.9) is implemented by interchanging the second rows of Mi and Mz, that is 

and 

A i  sh npcJ2 
M I  = E t  sh nbJ2 ( i =  1,3 ,5)  

chnpcJ2 1 
shnpJ2 1 Ai ch nbJ2 

M2 = B t  ch npJ2 ( i=  1 ,3 ,5 )  

(B.lO) 

Expanded forms of the buckling conditions for symmetric or antisymmetric patterns are given in table 2 

Isotropic core sandwich plates 

dependent of the loadparameters p ,  and p y  (see eq. (24)). In addition W, = W2 = O  and 
In case of an isotropic core material (q'= GJGy= 1) the squares of the roots p1 and 11, = - p 1  are positive and in- 

w I 

a 
B ,  = - A , = B ,  

in case of a completely clamped edge while 
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ifedge parallel shear is allowed at a clamped edge. These simplifications are implemented by omitting the underlined 
terms in the buckling conditions shown in tables 1 and 2. Also, A; can arbitrarily be set equal to unity. (As p: > O  
the cases 5 and 6 are-irElevant~to~the isotropic case). ~~ 

APPENDIX C 

Approximate solution for the buckling problem of a biaxiallv loaded orthotropic sandwich plate 

Total potential functional 
For the problem under consideration an upper bound solution for the buckling loads is obtained by use of the 

direct variational method commonly referred to as the minimum total potential principle. For an analysis of the 
equilibrium system of internal stresses associated with the buckling deformations and the external buckling loads 
the variation due to panel flexure and shear, of the strain energy functional [i, assuming linearly elastic material 
behavionr, is appropriately defined as 

Et 
where the index i takes the values 1 and 2 for upper and lower face layers respectively. In th&expression C = __ 1 - 2  
is the extensional stiffness of either of two similar face layers and G, and G, are the transverse shear moduli for 
the orthotropic core; y, and yy are the corresponding actual shear angles generated during buckling. Face bending 
stiffness and transverse core compressibility are neglected. The plain strain components of the face layers are defined : 

For the panel with similar face layers considered here the buckling displacements of the faces and the core shear 
angles are related by continuity conditions: 

C t 
u2 = - - 2 (Y ,  - w,*) + 2 w,z 

Obviously, a neutral surface with respect to buckling displacements u and u is, for the compound panel with similar 
facings, taken halfway between the face layers. 

In reference 4 also dealing with a panel with identical facings, the distances of neutral surfaces for displacement 
components u and u to one of the faces are introduced as separate variables apart from the core shear angles y, 
and yy. In the variational process utilized in this reference these additional unknowns can only be solved in a very late 
stage ofthe analysis after y, and yy have been determined. A direct variation with respect to these variables immediate- 
ly yields the trivial value of one half of the core depth for both and considerably simplifies the subsequent analytical 
steps. From (C.3) the buckling strains of the face layers result as 

C C + t  
&,I = 5 Y x , x  - 2 w,xx = - cx2 
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U A solution satisfying at least the geometric boundary conditions c i =  a =  0 (at x = -, see appendix A) is defined by 2 

and (C.5) - c + t  
yy = B - 

C 
Then the face strains are simply 

C + t  - 
%I =-(A-l)w,,= 2 -zs2 

and the strain energy variation 6U can be written as 

B’w;] d x d y  . (C.7) 
cG, (c+t)’ -2 cG, (c+t)’ 

A w , ~  + - __ + T T  2 cz 

The variation of the potential functional V for the applied buckling loads N, and N ,  is defined as 

Finally the variation of the total potential functional which is required to vanish is determined by the sum 

1 - v  - 6(U+ V )  = k- 1)’1, +(B- l)’12+2(A- 1)(B- I),, + - (A+B-2)’Iq 
4 2 

c c - i  2- 7 2 
+ 7 [q R z ,  + 2 8 2 1 ,  - - z, - 2 Z6 = 0 

(c + t)2 
.. (C.9) 

, , where I ,  through Z6 are the surface integrals of w:=*, w:).~, W ~ ~ ~ W ~ ~ ~ .  w:”, w: and w:,, respectively, evaluated over 
the domain occupied by the plate. 

Deflection pattern 

some of the natural boundary conditions) can he taken as 
As suggested in reference 4 a simple one-parameter solution satisfying the geometric boundary conditions (and 

a 

Then the surface integrals appearing in the total potential expression (C.9) are: 

7t4 ab 
a 16 

n4 ab 

Zl = 7 - ’ 2(m4+ 6nz2+ l ) P  

I * =  b - -n4(2+a, , )e*  16 

n4 
4 - azb2 16 

n2 ab 
a 16 

2 ab 

ab 2n2(1 +mz)ez  1 - 1  3 - 

z, = 7 - ’ 2(1 +m2)C2 

Is= b --.n2(2+6,,)C’ 16 

where SI, is the Kronecker symbol. 

(C.10) 

(C.11) 
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Introducing dimensionless parameters as used in the exact solution, namely 

n 2 ~  n2 Cc 
aZR,  -h2 . 2 a  

s =~2 - -. ~~ 

v=m 
and 

a2 p = -  
/ b2 

together with a load configuration parameter 

P, Nxb2 
P~ N,a2 

c = - = -  

expression (C.9) can be written after multiplication by a common factor 

m4+6m2+ I + (B- I )  2 -(2+hln,)+(L-1)(B- pn4 1)2vn2(l+m2) 
P 2 

32 ab 
n4 C(c+ t)' 
-___ 

13 1 - v  Kq B2n2 
2 SP 2sv 

+(K+17-2)~-n~(1+m~) + - ( l + m 2 )  + -(2+6,,)-p, + &(l+m*) o (c.12) 

For nonvanishing buckle amplitude this identity defines the buckling load configurations as a function of A 
and B. Variation with respect to the free parameters K, B results in two equations from which Aand fi can be solved, 
thus defining the critical load configurations: 

c3 i- 2c, 2c2+2c4+2c, ] [;I= [2e;+c3+4e4] [ 2c, +2c4+2c, c3 + 2c4 2c, +c,+4c4 
(C.13) 

Then the final expression for the determination of buckling loads results as: 

cap,= (c, +c,+c,)A+(C3+2C,)AB+(c2+c4+C6)B~-(2cl + c 3 + 4 C 4 ) K - ( 2 C 2 + C 3 + 4 C 4 ) i 7 + C l  +c2+c, +4c4 
' (C.14) 

where 
co = n2(2+S,,)+2~(I + m 2 )  

c I  = 2(m4+6m2+l)/p 

c3 = 4vn2(1 +m2) 
c2 = n4p(2+61m) 

c4 = ( I -v )nZ( l+m2)  

2v 
PS 

n2 
and c6 = -(2+6,,). 

vs 

c5 = -((l+m2) 

APPENDIX D 

Program for automatic computation of interaction curves 

AUXILIARY PROCEDURES 

values. The principal blocks of the program are the following procedures: 

PROCEDURE FIXCOEF 

independent of px and py. 

An ALGOL program is available for automatic computation of interaction curves for any given set of parameter- 

Computes the coeficients k ,  through k ,  , of equation (14) for given values of y, S, p ,  Y and n. These coeficients are 
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PROCEE 'RE SC VE 
Solves, for given p x  and p v  values, the characteristic equation ( I  1) by Cardanus' method. The ratios A and B (see 

equations (12) and (13)) are computed using the results of FIXCOEF and the class ofsolution is identified according 
to the classification used in this report. Values and sign of the associated conditions for symmetric and antisym- 
metric buckling modes are determined. The procedure takes account of simplifications due to isotropy. 

PROCEDURE RANGE 

the manner indicated in the diagram. 
Determines the maximum value of the wave number n to be considered in a chosen domain of the p-pv plane in 

PY 

0 

EXACT POINT OF INTERACTION CURVE SEGMENT 

ESTIMATED INTERSECTION OF SEGMENTS 

P Y -  

For each segment of the interaction curve two exact points are determined in the number order indicated. For 
the determination of each point only one of the parameters, p ,  or pv, is increased stepwise until a sign change of 
either of the two buckling conditions is found. In the example shown the segment corresponding to the wave number 
4 can be ignored. 

Next, the estimated points of intersection are determined for successive segments, each considered to be a straight 
line. Further the p x  and pv values to be used for normalization of the exact interaction curve (point numbers 2 and 6, 
respectively, in the example) are saved. Both FlXCOEF and SOLVE are frequently called during the execution of 
RANGE. 

PROCEDURE INTERACTION 

mated points of intersection. (PXB, PYB) and (PXE, PYE) 

( P X B ,  P X E ,  PYB,  P Y E )  
Provides preliminary information for the determination of an exact interaction curve segment between two esti- 

w > a - 

I 
STEEP SEGMENT 

FLATSEGMENT 
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For asteepsegmenc((PYE-PYB1 ~ ( P ~ ~ - P X B l ) p o i n t s w i l l  bedeterminedforfixedp,valuesinthesearchinter- 
val.by stepwise varying px. For a flat segment ([PYE-PYB[ <[PXE-PXB[) a similar procedure is followed in 
which px-and p; are interchanged. I t~ is  noted~that the formal parameters~of this procedure may be only estimates of 
exact curve coordinates. For the final determination of segments the procedure dURVE iscallCd. 

PROCEDURE CURVE (X, Y, YB, YE, start) 

C~F ~ 

This procedure determines exact points of interaction curve segments in the manner shown in the diagram. 
Using a chosen START-value the formal variable Xis stepped for a fixed value of Y = Y E  until a zero crossing is 

found. Next, a second point is determined at a slightly higher Y value; Xis  increased through a chosen safety margin 
starting at  a value determined by the slope of the estimated segment. Then, Y is increased again and the starting value 
of X is determined by the direction defined by the first two exact points again observing a safety margin. For each 
point the character of the critical buckling mode (symmetric or antisymmetric) is identified. 

Y 

Y B  

MARGIN 

START X 

It is recognized that in general the convex side of the curve is turned away from the origin. This fact is used to 
limit the search range of X in order to allow a reduction of the step size without undue sacrifice relative to machine 
time: for each step SOLVE must be executed. If, however, too narrow a safety margin is selected the procedure may 
loose track of the curve in case of strong curvature. The phenomenon is reported by means of an error message. 

AUTOMATIC DETERMINATION O F  INTERACTION CURVES 

program is available upon request. 
An outline of the programmed instructions is shown in the block diagram below. A complete text of the ALGOL 
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Class of solution 
(see page IO) 

1 

2 

Buckling conditions (see equation (1%)) 

Symmetric modes Antisymmetric modes 

I X ; B : ' - n ; B : )  ch 'i;(ehirrr;-cosirrr;)+(A;B: - Ais:') sh - v', $10 ,T&+ (A;B:-X,B:) sh ?Il;(chnp;+cornp;)+(X,B:'- A;B:] ch s s i n n p ; +  
2 2 2 2 

W; + ( A ; B V - A ; B Y )  sh * sh np; = 0 - + ( a ; B Y - X ; B T )  ch - s h n p ; = O  
2 2 

np; nr; ns; v; w; w ;  (# ,E; ' -  R;B: ' )  ch - sh - ch - + (XIS:' - X3B:l ch - ch - sh - nu; v; *pi (ZsB?' -XIBY) sh - ch - sh - + (+,E:' - A,B:) sh % sh * ch ?& 
2 2 2  2 2 2  2 2 2  2 2 2  

+ (A,B: - X,B:) sh 5 ch % ch 2"i = 0 "B; + (a ;BY - A,Bf') ch - sh ?& jh ?!! = 0 
2 2 2  2 2 2  



TABLE 3 
Values of 6, for orlholropic plate in uniaxial compression 

(q  = 1.5, p , = 0 )  

S=.l  .2 .3 ’ .4 .6 1.- 
o= 

.5 14.069 

.6 10.261 8.360 

.7 7.991 6.475 

.8 6.543 5.264 

.9 5.571 4.442 
1.- 4.895 3.856 
1.1 4.407 3.419 
1.2 4.042 3.076 
1.3 3.756 2.790 
1.4 3.518 2.541 
1.5 3.308 2.303 
1.6 3.047 2.096 
1.7 2.822 1.920 
1.8 2.630 1.769 
1.9 2.466 1.636 
2.- 2.321 1.521 
2.1 2.191 1.412 
2.2 2.073 1.314 
2.3 1.963 1.226 
2.4 1.854 1.147 
2.5 1.755 1.074 
2.6 1.665 1.008 
2.7 1.582 ,948 
2.8 1.504 ,892 
2.9 1.432 .841 
3.- 1.364 ,193 

5.449 
4.406 
3.692 
3.174 
2.779 
2.461 
2.194 
1.966 
1.765 
1.596 
1.451 
1.327 
1.215 
1.120 
1.032 
.956 
,886 
3 2 4  
,768 
,718 
,679 
,662 
,605 
,570 

4.704 
3.787 2.949 
3.153 2.429 
2.688 2.043 
2.329 1.744 
2.038 1.506 
1.798 1.314 
1.597 1.157 
1.428 1.028 
1.284 ,920 
1.162 ,826 
1.055 ,746 
,963 ,680 
,883 ,619 
,811 ,575 
,747 ,522 
,690 ,479 
,545 ,441 
,615 ,406 
363 .377 
,543 ,354 
,484 ,331 
,453 ,300 
,423 ,282 

1.644 
1.362 
1.147 
,981 
,850 
,744 
,656 
3 3 3  
,525 
,470 
,422 
,379 
,349 
.317 
,291 
.265 
,250 
,223 
,214 
.I99 
,179 
,176 

TABLE 4 
Values of @= lor orthotropic plate in uniaxial compression. 

(q=1:3, p , = 0 )  
~~~~ 

S=. l  2 .3 .4 .6 1.- 
o =  
.5 13.670 
.6 9.985 7.995 

.8 6.394 5.066 

.9 5.439 4.289 
1.- 4.808 3.734 
1.1 4.339 3.315 
1.2 3.987 2.978 
1.3 3.707 2.691 
1.4 3.466 2.421 
1.5 3.221 2.197 
1.6 2.966 2.001 
1.7 2.152 1.832 

1.9 2.410 1.552 
2.- 2.268 1.436 
2.1 2.137. 1.329 
2.2 2.014 1.233 
2.3 1.897 1.146 
2.4 1.791 1.068 
2.5 1.693 ,997 
2.6 1.603 ,937 
2.7 1.518 ,876 
2.8 1.439 ,818 
2.9 1.366 .788 
3.- 1.297 ,735 

.7 7.792 6.210 

1.x 2.570 I 6x4 

5.167 4.422 
4.193 3.572 
3.523 2.979 
3.033 2.537 
2.651 3.190 
2.338 1.908 
2.075 1.677 
1.851 1.485 
1.661 1.325 
1.499 1.189 
1.359 1.070 
1.237 9h9 
1.129 .879 
1.034 ,806 
,950 ,742 
.880 ,683 
,808 ,623 
,759 ,573 
.699 ,528 
,648 ,483 
,604 ,455 
,564 ,419 
,521 ,395 
,489 ,368 

2.740 
2.254 
1.889 
1.606 
1.384 
1.205 
1.060 
,937 
,832 
.756 
,682 
,610 
,554 
,499 
,456 
,414 
,388 
,355 
,330 
.300 
,288 
.261 
,252 

1.842 
1.490 
1.232 
1.037 
,886 
,766 
,670 
,588 
.515 
,457 

,367 
.328 
,298 
.274 
,251 
.230 
,215 
.197 
,181 
,168 
,157 
,147 

..40x 

TABLE 5 
Values offis far orthotropic plate in uniaxial compression 

(l)=.75, p,=0) 

TABLE 6 
Values ofFx lor orthotropic plate in uniaxial compression. 

(q=.65, p,=0) 

S = . l  .2 .3 .4 .6 1.- 
0 =  

.4 17.612 

.5 11.793 

.6 8.665 

.7 6.81 I 

.8 5.635 

.9 4.852 
1.- 4.305 
1.1 3.900 
1.2 3.572 
1.3 3.275 
1.4 2.979 
1.5 2.735 
1.6 2.524 
1.7 2.334 
1.8 2.159 
1.9 1.996 
2.- 1.845 
2.1 1.710 
2.2 1.552 
2.3 1.428 
2.4 1.312 
2.5 1.211 
2.6 1.126 
2.7 1.039 
2.8 .975 
2.9 ,893 
3.- ,836 

8.758 
6.439 5.132 4.264 
5.059 4.022 3.323 
4.173 3.288 2.683 
3.557 2.754 2.215 
3.091 2.341 1.855 
2.710 2.009 1.563 
2.389 1.742 1.306 
2.114 1.481 1.116 
1.881 1.279 .965 

1.467 .981 ,736 
1.302 ,882 ,655 
1.167 ,785 3 8 6  
1.040 ,698 ,528 
,941 .630 ,473 
3 5 7  ,571 ,440 
,784 ,525 ,394 
.725 ,478 ,363 
,656 .441 ,328 
,605 ,403 ,305 
,559 ,375 ,288 
,518 ,352 ,271 
.483 ,335 ,244 
,453 ,301 ,231 
,423 ,283 ,214 

1.671 i . i i 9  ,845 

3.168 
2.430 
1.927 
1.547 
1.254 
1.037 
,813 
.746 
,639 
,564 
,498 
,445 
,390 
,353 
,324 
.284 
,266 
,250 
,220 
-206 
,191 
,185 
,167 
,154 
,147 

1.534 
1.180 
,933 
.759 
,624 
,522 
,456 
,390 
,337 
,266 
.240 
,211 
,190 
,174 
,158 
,148 
,133 
,126 
,114 
.I13 
,098 
,092 
- 
- 

S=. l  .2 .3 .4 .6 
‘I = 

.4 16.748 

.5 11.229 8.161 

.6 8.263 6.017 

.7 6.507 4.741 

.8 5.395 3.916 

.9 4.654 3.334 
1.- 4.132 2.883 
1.1 3.737 2.513 
1.2 3.407 2.200 
1.3 3.089 1.927 
1.4 2.813 1.670 
1.5 2.578 1.450 
1.6 2.372 1.278 
1.7 2.178 1.138 
1.8 1.996 1.011 
1.9 1.813 903 
2.- 1.630 ,814 
2.1 1.478 .741 
2.2 1.360 ,677 
2.3 1.234 ,620 
2.4 1.130 ,570 
2.5 1.050 ,531 
2.6 .971 ,484 
2.1 ,895 ,451 
2.8 ,835 ,420 
2.9 ,780 ,392 
3.- ,728 ,368 

6.426 
4.740 
3.722 
3.037 
2.532 
2.139 
1.800 
1.509 
1.290 
1.112 
,968 
,853 
,753 
,674 
,504 
,545 
,494 
,456 
,415 
,382 
.351 
,330 
,300 
,294 
,261 
.246 

3.907 2.863 
3.042 2.191 
2.447 1.705 
2.022 1.345 
1.635 1.088 
1.353 ,901 
1.131 ,766 
,970 ,644 
,836 ,557 
,724 ,485 
.638 ,432 
,568 ,378 
,505 ,342 
,459 .310 
,422 ,288 
,371 .255 
.353 ,227 
,324 ,214 
,291 ,192 
,264 .I78 
.244 ,170 
,225 .I54 
,213 - 
,199 - 
,186 - 

I .- 
~ 

1.811 
1.334 
1.021 
.a11 
,658 
,540 
,456 
,341 
,295 
,256 
,229 
.206 
,184 
,167 
,151 
. I 40  
,132 

~ 

- 
- 
- 
- 
- 
- 
~ 
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TABLE 7 
Values o f &  for orthotropic panel in uniaxial compression. 

~~ (q=1.5,px=0) 

)L-2 S=.l 

.3 4.317 3.014 

.4 4.333 3.012 

.5 4.333 3.013 

.6 4.316 3.012 

.7 4.361 3.028 

.8 4.383 3.012 

.9 4.316 3.023 
1.- 4.333 3.045 
1.1 4.399 3.018 
1.2 4.492 3.012 
1.3 4.600 3.017 
1.4 4.594 3.029 
1.5 4.465 3.045 
1.6 4.383 3.062 
1.7 4.336 3.079 
1.8 4.316 3.096 
1.9 4.317 3.070 
2.- 4.333 3.045 
2.1 4,361 3.028 
2.2 4.399 3.018 
2.3 4.443 3.013 
2.4 4.492 3.012 
2.5 4.545 3.013 
2.6 4.600 3.017 
2.7 4.657 3.023 
2.8 4.714 3.029 
2.9 4.772 3.037 
3.- 4.829 3.045 

2.2 I4 

2.214 
2.21s 
2.215 
2.214 
2.214 
2.215 
2.215 
2.216 
2.216 
2.214 

I 
2.214 
2.215 

2.216 
2.216 
2.217 
2.218 

2 . k  

.3 .4 .6 I .- 

1.668 1.113 ,670 

1.668 1.113 ,670 

TABLE 9 
Values of& for orthotropic panel in uniaxial compression. 

(q=.75, &=o) 

S=. l  .2 .3 .4 .6 1.- 
n= 

.3 4.270 3.224 

.4 4.277 3.229 

.5 4.256 3.211 

.6 4.414 3.320 

.7 4.276 3.220 

.8 4.277 3.229 

.9 4.414 3.320 
1.- 4.636 3.457 
1.1 4.751 3.522 
1.2 4.502 3.360 
1.3 4.353 3.265 
1.4 4.276 3.220 
1.5 4.256 3.211 
1.6 4.277 3.229 
1.7 4.332 3.267 
1.8 4.414 3.320 
1.9 4.517 3.385 
2.- 4.636 3.457 
2.1 4.768 3.535 
2.2 4.911 3.617 
2.3 5.062 3.702 
2.4 5.220 3.788 
2.5 5.382 3.874 
2.6 5.547 3.960 
2.7 . 5,714 4.046 
2.8 5.883 4.129 
2.9 6.051 4.212 
3.- 6.220 4.292 

2.629 
2.632 
2.620 
2.694 
2.627 
2.632 
2.694 
2.783 
2.847 
2.728 
2.659 
2.627 
2.620 
2.632 
2.658 
2.694 
2.736 
2.783 
2.833 
2.885 
2.938 
2.990 
3.042 
3.w4 
3.144 
3.193 
3.240 
3.285 

2.234 1.730 1 
2.236 1.731 
2.229 1.731 
2.277 1.749 
2.335 1.740 
2.236 1.731 
2.277 1.749 
2.338 1.778 
2.406 1.811 
2.317 1.802 
2.262 1.761 
2.235 1.740 
2.229 1.731 
2.236 1.731 
2.253 1.738 
2.177 1.749 
2306 1.762 
2.338 1.778 
2.371 1.794 
2.406 1.811 
2.441 1.828 
2.475 1.844 
2.509 1.861 , 
2.542 1.876 
2.574 1.892 
2.605 1.906 
2.635 1.920 
2.664 1.934 I .  

TABLE 8 
Values of& for orthotropic panel in uniaxial compression 

(q=1.3,pX=O) 

,=1 
P 

.3 4.390 

.4 4.394 

.5 4.427 

.6 4.369 

.7 4.476 

.8 4.394 

.9 4.369 
I.- 4.427 
1.1 4.534 
1.2 4.669 
1.3 4.728 
1.4 4.561 
1.5 4.455 
1.6 4.394 
1.7 4.368 
1.8 4.369 
1.9 4.390 
2.- 4.427 
2.1 4.476 
2.2 4.534 
2.3 4.599 
2.4 4.669 
2.5 4.743 
2.6 4.818 
2.7 4.895 
2.8 4.972 
2.9 5.050 
3.- 5.127 

3.147 2.401 
3.139 2.402 
3,139 2.401 
3.164 2.402 
3.140 2.405 
3.170 2.402 
3.164 2.402 
3.139 2.412 
3.146 2.411 
3.170 2.402 
3.230 2.401 
3.241 2.405 
3.279 2.412 
3.245 2.420 
3.196 2.428 
3.164 2.437 
3.147 2.445 
3.139 2.436 
3.140 2.421 
3.146 2411 
3.156 2.405 
3.170 2.402 
3.186 2.401 
3.203 2.401 
3.222 2.402 
3.241 2.405 
3.260 2.408 
3.279 2.412 

1.904 1.283 ,770 

.2 .3 .4 .6 I .- 

1.904 1.283 ,770 

TABLE 10 
Values of& for orthotropic panel in uniaxial compression. 

(q=.65, p,=O) 

S=. l  .2 .3 .4 .6 1 .- 
P =  

.3 4.202 

.4 4.213 

.5 4.170 

.6 4.346 

.7 4.170 
.E 4.213 
.9 4.390 

1.- 4.653 
1.1 4.565 
1.2 4.346 
1.3 4.223 
1.4 4.170 
1.5 4.170 
1.6 4.213 
1.7 4.288 
1.8 4.390 
1.9 4.513 
2.- 4.653 
2.1 4.807 
2.2 4.972 
2.3 5.145 
2.4 5.326 
2.5 5.512 
2.6 5.701 
2.7 5.894 
2.8 6.088 
2.9 6.283 
3.- 6.478 

3.188 
3.208 
3.167 
3.236 
3.152 
3.208 
3.345 
3.526 
3.366 
3.236 
3.171 
3.152 
3.167 
3.208 
3.269 
3.345 
3.431 
3.526 
3.626 
3.730 
3.837 
3.945 
4.053 
4.160 
4.267 
4.372 
4.473 
4.515 

2.608 
2.639 
2.608 
2.639 
2.591 
2.642 
2.746 
2.876 
2.727 
2.639 

2.591 

2.642 
2.690 
2.746 
2.809 
2.876 
2.945 
3.016 
3.087 
3.158 
3.227 
3.296 
3.362 
3.427 
3.490 
3.550 

2.598 

2.608 

2.232 
2.254 
2.237 
2.254 
2.222 
2.265 
2.344 
2.438 
2.320 
2.254 
2.225 
2.222 
2.237 
2.265 
2.301 
2.344 
2.391 
2.440 
2.490 
2.540 
2.590 
2.640 
2.688 
2.734 
2.779 
2.823 
2.864 
2.904 

1.758 1.257 
1.773 1.258 
1.761 1.258 
1.773, 1.253 
1.752 1.251 
1.778 1.258 
1.826 1.276 
1.881 1.298 
1.817 1.299 
1.773 1.270 
1.754 1.251 
1.752 1.251 
1.761 1.253 
1.778 1.258 
1.800 1.266 
1.826 1.276 
1.853 1.287 
1.881 1.298 
1.910 1.309 
1.938 1.320 
1.966 1.331 
1.993 1.341 
2.019 1.351 
2.043 1.360 
2.067 1.369 
2.090 1.377 
2.111 1.385 
2.131 1.392 
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Fig. 1. Biaxially compressed sandwich plate. Notations Fig. 2. Structural end fixtures represented by present solution. 

e"*$ 

Fig. 3. lnteraction curve (p*-&). Comparison of present results and 
those of two approximate analyses (refs. 3 and 4) for square isotropic 

panel with relatively weak core ( p = q =  1, S=.4). 

Fig. 4. Normalized interaction curves (z,-aJ. Comparison of pre- 
sent results and those of two approrimate analyses (reSs. 3 and 4) 
for square isotropic panel with relatively weak core (p=q= 1, S =  .4). 

Fig. 5. Normalized inferaction curve for square isotropic panel with 
relatively stiff core(p=q=l, S=.2). 

Fig. 6. Normalized interaction curve for rectangular isotropic panel 
withrelativelyweakcore(p=.2S,q=I,S=.4). 
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with relatively stifTcore (p=.ZS, q - I ,  s=.z). i 
I 

. . .  
and relatively weak core (p=4,  q = l ,  S=. l ) .  

4" 

Fig. 9. Interaction c u r ~ e s  for square panel with relatively weak core 
( p =  1, S=.4). Erect of core arthotropy parameter q. 

Fig. 10. Normalized interaction curve for square orthotropic panel 
with relatively weak con (p= 1, q =  J2, S=.4). 
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Fig. 17. Values of buckling load parameter for orthotropic plate 
in uniaxial compression (see table 5 :  q=.75, E = O ) .  
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A survey of symmetrical transonic potential flows around 
quasi-elliptical aerofoil sections 

by 

J W. BOERSTOEL 

Summary 

The hodograph method and its application as described in reference I allow the con~truction of steady transonic potential nows around 
aerofoil sections. This report gives results of the application ofthis method as far as non-lifting symmetrical sections are concerned. The results 
show that with a restricted use of the possibilities afthe method an already remarkable variety of practically interesting sections and correspond- 
ing pressure distributions can be obtained. The sections can be computed with a prenkion sufficient to meet accuracy requirements of model 
manufacturing. 
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List of symbols 

chord length 
Mach number 
free stream Mach number 
maximum Mach number on aerofoil section 
rate of change of Mach number along aerofoil 
section surface 
radius of curvature 
R at stagnation point 
maximum thickness of aerofoil section 
co-ordinate (see remark at the end of page 2) 
chordwise position of suction peak 

This investigation has been performed under contract with the 
Netherlands Aircraft Development Board (NIV). 

x. 
xc 
y 
E thickness parameter.(cf. sec. 2.1) 
0 flow angle 
R parameter (cf. section 2.1) 
1, 
lRo=o minimum allowable value of 1 to obtain blunt 

z 

'T, 

1 Introduction 

chordwise position of leading edge 
chordwise position ofmaximum thickness point 
co-ordinate (see remark at the end of page 5) 

maximum allowable value of A (cf. sec. 2.2.3) 

leading edge (cf. sec. 2.2.2) 
velocity parameter (cf. sec. 2.1) 
free stream value of 'T 

This report gives the results of the computation of 
a number of non-lifting quasi-elliptical aerofoil ,set- 

tions in steady transonic potential flows. 
The computations are based on the hodograph 

method of ref. I. This method transforms the hodo- 
graph of the incompressible flow around a known 
contour into the hodograph of the compressible flow 
around an aerofoil section. As neither the shape of 
the section, nor its pressure distribution can be 
specified in advance, but depend. upon .parameters 
(the number of parameters can be mad; arbitrarily 
large), the sections and their flow fields can be deter- 
mined only by explicit computation for specified values 
of the parameters. 

The sections published in this report are constructed 
by transforming the hodograph of the symmetrical 
incompressible 'flow around a non-lifting elliptical 
cylinder (ref. 1, sec. 4.2). Three parameters wereselected 
to be varied. The combinations of parameter values 
are chosen such as to obtain a survey of the possibilities 
most.interesting from a practicdpoint of.view. Flows 
in the transoniciegion are emphasized. 

' 

; 
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TABLE 1 

Main aerofoil charactenstics 

distribution 

O.l(M.675-1.5 0.74536 1.294 0,1625 3.1841 0.3162 0.0497 . 16.1112 -1.68755 B1 8.1 
0.1CUJ.675-1.6 0.74536 . 1.474 0.1632 3.1694 0.3051 0.0306 15.0026 -1.68755 BI-BZ 8.2 

0.10254.675-1.3 0.75567 1.226 0.1572 3.2031 0.3355 0.0827 21.6856 - 1.69058 B1-C 8.3 
0.102W.675-1.4 0.75567 1.298 0.1580 3.1878 0.3196 0.0588 18.2715 - 1.69058 BI-C 8.4 
0.105(M.675-1.25 0.76589 1.294 0.1528 3.2009 0.3384 0,0649 23.3954 - 1.69379 C 8.5 
0.101540.675-l.05 0.77604 1.257 0.1467 3.2249, 0.3639 0,0846 37.470 - 1.69118 C 8.6 

0.124.74.0 0.82572 1.123 0.1076 3.3807 0.5000 0.3487 m - 1.6904 8.7 

0.114.7W.O 
O.ll4.754.9 
0.1 14.75-1.25 
0.1 14.75-1.35 
0.1 14.75-1.375 
0314.75-1.4 

0.11254.75-1.325 
0.1125-0.75-1.35 
0.11254.75-1.395 
0. I 1 5 ~ . 7 5 - 1 . 2 0  

0.124.754.0 

0.106.775-1.3 
0.114.775-0.0 
0.114.775-0.9 
0.1 14.775-1.3 

0.78612 
0.78612 
0.78612 
0.78612 
0.18612 
0.78612 
0.79612 
0.79612 
0.79612 
0.80605 
0.82572 

0.74536 
0.78612 
0.78612 
0.78612 

1.030 
1.364 
1.136 
1.222 
1.306 
1.364l 
1.286 
1.331 
1.535 
1.259 
1.083 

1.013 
1.003 
1.023 
1.183 

__ 

O.llO8 
0.1138 
0.1163 
0.1 170 
0.1172 
0.1174 
0.1138 
0.1 140 
0.1144 
0.1092 
0.0953 

O.il58 
0.1018 
0.1038 
0,1065 

___ 

3.4700 
3.3771 
3.3053 
3.2838 
3.2783 
3.2728 
3.2712 
3.2657 
3.2551 
3.2851 
3.4596 

3.3900 
3.5117 
3.4203 
3.3337 

__ 

0.5000 
0.3810 
0.3419 
0.3280 
0.3245 
0.3209 
0.3201 
0.3199 
0.3152 
0.3322 
0.5000 

0.3938 
0.5000 
0.3912 
0.3357 

0.5000 
0.2016 
0.0826 
0.0214 
0.0182 
0.0196 
0.0395 
0.0313 
0.0188 
0.0527 
0.5oM) 

0,0132 
0.5000 
0.2342 
0.0151 

m -1.7350 
165.819 -1.7950 
30.7975 - 1.7950 

24,1684 -1.7950 
22.902 - 1.79504 
21.7537 -1.7950 
24.9380 -1.7993 
23.5666 - 1.7793 
21.4137 -1.7993 
34.00 - 1.80375 

m -1.7298 

32.7854 -1.8107 
m - 1.7559 

263.688 - 1.8265 
32.2409 - 1.8265 

8.8 
A 8.9 
A 8.10 
B1 8.11 
BI 8.12 
BZ-BI 8.13 
B1 8.14 
BZ-BI 8.15 
B2 8.16 
C 8.17 

8.18 

B2 8.19 
8.20 

A 8.21 
BZ 8.22 

0.11754.8-1.15 
0.1 1754.8-1.26 

0.124.8-1.15 
0.124.8-1.19 
0.124.&1.25 

0,1225-0.8-1.15 

0.12506.875-1.10 

0.81592 1.086 0.0888 3.3510 0.3418 0.1098 50.027 -1.8725 A 
0.81592 1.299 0.0897 3.3164 0.3269 0.0106 33.237 -1.8725 B2 
0.82572 1.149 0.0859 3.3405 0.3455 0.0751 49.04 -1.87769 A 
0.82572 1.168 0.0857 3.3285 0.3388 0.0611 . 41.553 -1.8777 A-B3 
0.82572 1.326 0.0864 3.3022 03298 0,0108 33.514 -1.8777 8 3  
0.83547 1.223 0.0827 3.3185 0.3406 0.0483 47.952 -1.88312 C 

0.84515 1.182 0.0552 3.4128 0.3969 0.0038 88.740 -1.9868 8 3  

The merits of the aerofoil sections from a physical 
point of view (especially the stability of the transonic 
flow with respect to shock phenomena) will not be 
discussed here (cf. ref. 1, app. B). A report about the 
numerical work carried out for the computation of 
the sections is to be published (ref. 2) .  Non-symmetrical 
and lifting aerofoil sections are not included in this 
report; results for these will be published later. 

The results are discussed in section 2. Section 3 
gives information about the accuracy attainable. 

2 Discussion of the aerofoil sections and the correspond- 
ing pressure distributions 

2.1 Main results 
As already has been remarked, the aerofoil sections 

of this report and the transonic flows around these 
sections are completely determined by three para- 
meters. In the notation of ref. 1 (secs. 4.2, 6.2) these 
parameters are T ~ ,  E and 1. 

8.23 
8.24 
8.25 
8.26 
8.21 
8.28 

8.29 
__ 

__ 

T, determines the free stream Mach number M : 

y=ratio of specific heats. E is a thickness parameter. 

It determines the thickness ratio - of the elliptical 

cylinder in the incompressible flow. The thickness 
ratio ofthe sections depends upon all three parameters, 
but mainly upon E*. The main effect of 1 is to control 
the leading edge curvature and the rate of expansion 
on the front part of the section. 

Values of T, ,  E and A are used to identify the sections. 
For example, section 0.11-0.75-0.9 has T~ =0.11, 
~ ~ 0 . 7 5  and E.=0.9. 

Table 1 lists all sections computed, together with 

1 - E  

l + E  

* In tables and figures the aerofoil section data have been given 
in the reference system of the elliptical cylinder in the incompressible 
flaw. The length of the elliptical cylinder is 2(1+6), the thickness 
2 ( 1 - 4  
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some main characteristics and an index for the figures. 
In the figure& the pressure coeflicient C,, the section 

An investigation of the ranges of values of tl, E and 
,4 which were of practical interest, revealed the follow- 
ing main results. E can be used to fix approximately 
the thickness ratio. Having chosen E .  the values of r l  
and d are restricted to certain regions (cf. fig. 1). The 
restrictions are imposed by the interpretability of the 
results: when either T ~ ,  or A, or both are chosen too 
large, limit lines destroy the regularity of the section 
and of the potential flow around the section; on the 
other hand, if A is too small, the leading edge is cusped, 
which will be in most cases less interesting from a 
practical point of view. These points will be returned 
to in section 2.2. 

The shape of the pressure distribution curves can 
be roughly classified as follows (cf. fig. 2). The pressure 
distribution curve of type A is smooth. The largest 
values of the acceleration occur at the very front part 
of the section. Type B pressure distribution curves 
have a peaked shape and are characterized by a rapid 
expansion along the section surface from the leading 
edge up to the suction peak.According to what happens 
at the downstream side of the suction peak a further 
subdivision is possible. B1 has a gradual compression 
from the suction peak downstream, B2 a rapid com- 
pression just behind the suction peak, and B3 a rapid 
compression followed by a smooth local expansion. 
Type C pressure distribution curves show the phenom- 
enon of a secondary expansion just before the suction 
peak. 

The type of the pressure distribution curve depends 
upon all three parameters together. This dependence 
is the subject of the sections 2.2.3 and 2.2.5. 

2.2 Aerofoil sections with a blunt leading edge 

2.2.1 General 
The investigation has been carried out systematically 

for three values of E :  0.675, 0.75 and 0.8. These values 
correspond to thickness ratios of approximately la%, 
11:% and 89A respectively. 

At fixed E ,  there is an important connection between 
the expansion phenomena on the front part of the 
section, the leading edge curvature, the effects of a 
limit line, and the values of T, and 1. This will be 
explained in the next two sections. 

2.2.2 The leading edge radius 
The leading edge radius, R,,, is a simple function of 

the parameters (ref. 1, sec. 6.2) and can be computed 
quickly. It is one of the' few aerofoil characteristics 
that can be specified in advance by choosing T ~ ,  E, A 
suitably. The results of a computation of R, at E = 0.675, 
0.75 and 0.8 are plotted in the figures 3.1, 3.2 and 3.3. 

_ c  contow~and the sonic-line~tire~plotted. ~ ~~ 

, 

Parts of the curves are not physically significant : these 
are indicated by broken lines. In this case the aerofoil 
sections awcusped at the leading edge. 

As a consequence, a plot of R, versus A at fixed r l  
and E shows, that the aerofoil section is cusped at the 
leading edge at values of A below a limiting value, 
ARo=o. Cf. fig. 4 for an example. The lines ,IRozO as a 
function of T~ (or MI) are plotted in fig. 1 for ~ = 0 . 6 7 5 ,  
0.75 and 0.8. At values of ( T ~ ,  2.) below these lines the 
sections are cusped at the leading edge; at higher 
values they are blunt. 

At fixed (rl, E)'  the leading edge radius depends 
strongly upon 1. Cf. figure 4. 

2.2.3 Limit lines 
The aerofoil contour' can be considered as the 

streamline dividing the flow outside the section and the 
analytic continuation of the flow inside the section. 
The inner flow usually contains limit lines. Some 
important practical phenomena can be interpreted in 
terms of the proximity of the limit line to the section 
contour. These are discussed now. 

Limit lines are a phenomenon associated with the 
use of the hodograph method. They are cusped curves 
which bound folds of the physical plane. &ally the 
limit lines are situated in the inner flow, but sometimes 
they partially lie in the outer flow. On the limit lines 
the curvature of streamlines and the acceleration are 
infinite. An excellent discussion of the limit line and 
its properties can be found in ref. 3. 

The figures 5.1 and 5.2 show examples of limit lines. 
In these cases they are partially situated in the outer 
flow. 

When the limit line is in the inner flow, and either 
r , (M, ) ,  or A, or both are increased at fixed E, thecusp 
of the limit line approaches the section contour from 
the inside. As it is not possible to give physical meaning 
to outer flows containing limit lines, limiting values 
of (T,, A) are attained if the cusp of the limit line is on 
the contour. These limiting values, A, at given z1 and E ,  

have to be estimated by detailed computations of flow 
fields in the neighbourhood of the cusps. The values 
of A, for &=0.675, 0.75 and 0.8 are given by the upper 
curves of fig. 1. Thus, at values of (r l ,A)  above and at 
the right-hand side of these curves, no aerofoil sections 
with physical meaning can be computed because of 
the appearance of limit lines in the outer flow. 

From the fact that the acceleration is infinite on the 
limit line it will be clear, that locally large acceleratiohs 
along the section surface may be expected if the cusp 
of the limit line is just below the surface (the point 
(rl,A) is then just below the upper curves of fig. 1). 
Several pressure distributions show this effect. These 
are of type B1, 82, 8 3  or C .  The figures 6.1 and 6.2 
have been prepared to illustrate how the limit line, 
approaching the section contour at x = - 1.85 approx- 
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TABLE 2 

Data of aerofail section 0.11000.75W1.3750, 

O.Wo0 
0 . 0 1 ~  
0.0200 
0.0300 
0.04w 
0.0500 
0.0600 
0 . 0 7 6  

0.0900 
O.lo00 
0.1100 
0.1200 
0.1300 
0.1400 
0.1500 
0.1600 
0.1667 
0. I700 
0.1800 
0.1900 
0 . 2 m  
0.2100 
0.2200 
0.2300 
0.2400 
0.2500 
0.2500 
0.2400 
0.2300 
0 . 2 m  
0.2100 
0.2000 
0.1900 
0.1800 
0.1700 
0.1667 
0 . 1 m  
0.1500 
0.1400 
0.1300 
0.1200 
0.1100 
O.lo00 
0.09oO 
0.0800 
0.0700 
0.0600 
0,0595 

0.0800 

__ 

- 1.79504 
- 1.79177 
-1.78858 
- 1.78550 
- 1.78252 
- 1.77965 
- 1.77689 
- 1.77427 
- 1.77177 
-1.76941 
- 1.76720 
-1.76513 
- 1.76322 
-1.76146 
- 1.75986 
- 1.75840 
- 1.75709 
- 1.75629 
- 1.75590 
- 1.75485 
- 1.75388 

' - 1.75297 
-1,75207 
- 1.75106 
- 1.74978 
-1,74770 
- 1.74220 
- 1.72838 
- 1.69977 
- 1.64099 
- 1.55732 
- 1.44789 
-1,30165 
-1.11730 
-0,89108 
-0.60460 
-0.49538 
-0.26667 

0.06814 
0.36217 
0.60800 
0.81oM) 
0.97800 
1.1174 
1.23303 
1.33002 
1.41145 
1.47992 
1.4833 

0.WwO 
0.03039 
0.04240 
0.05121 
0.05829 
0.06421 
0.06926 
0.07364 
0.07745 
0.08078 
0.08370 
0.08625 
0.08847 

0.09208 
0.09352 
0.09476 
0.09549 
0.09582 
0.09674 
0.09753 
0.09824 
0.09892 

0.10051 
0.10181 
0.10492 
0.11148 
0.12175 
0.13628 
0.15027 
0.16338 
0.17562 
0.18541 
0.19120 
0.19099 
0.18904 
0.18204 
0.16461 
0.14225 
0.11805 
0.09425 
0.07166 
0.0511 
0.03318 
0.01811 
0.00661 
0.oonO8 
0.00000 

0.09041 

0.09964 

1.1642 
1.0440 
0.9269 
0.8127 
0.7014 
0.5930 
0.4874 
0.3845 
0.2844 
0.1870 

0.0000 
-0,0896 
-0.1768 
-0.2614 
-0.3437 
-0.4235 
-0.4754 

I. -0.5010 
.. -0.5762 

-0.7199 
-0.7885 
-0.8549 
-0.9192 
-0.9815 
-1.0418 
-1.0418 
-0.9815 
-0.9192 
-0.8549 
-0.7885 
-0.7199 
- 0.6492 
-0.5762 
-0.5010 
-0.4754 
-0.4235 
-0.3437 
-0.2614 
-0.1768 
-0.0896 

0 . m  
0.0922 
0.1870 , 

0.2844 
0.3845 
0.4874 
0.4924 

0.0922 

-0.6492 

0.oOoD 
0.2247 
0.3194 
0.3932 
0.4564 
0.5130 
0.5649 
0.6135 . 
0.6594 
0.7032 
0.7454 
0.7861 
0.8257 
0.8644 
0.9022 
0.9393 
0.9759 
1.0MM 
1.0120 
1.0476 
1.0830 
1.1180 
1.1529 
1,1875 
1.2221 
1.2566 
1.2910 
1.2910 
1.2566 
1.2221 
1.1875 
1.1529 
1.1180 
1.0830 
1.0476 
1.0120 
1.0000' 
0.9759 
0.9393 
0.9022 
0.8644 
0.8257 
0.7861 
0.7454 
0.7032 
0.6594 
0.6135 
0.5649 
0.5625 

O.Wo0 
7.50 
7.76 
8.06 
8.41 
8.80 
9.26 
9.79 

10.40 
11.11 
11.95 
12.94 
14.11 
15.51 
17.17 
19.2 
21.5 
23.2 
24.1 
26.9 
29.5 
31.0 
30.0 
25.8 
18.6 
10.39 
2.34 

- 1.076 
-0.8980 
-0.4414 
-0.3645 
- 0.27249 
- 0.210443 
- 0.172948 
-0?140222 
- 0.11 236 
-0.107358 
-0.1052 
- 0.1 1582 
- 0.13856 
-0.171 
-0.211 
-0.261 
-0.3233 ' 

-0.400895 
-0.49922 
-0.62687 

. -0.798' 

1.57080 
1.356 
1.268 
1.2002 
1.1437 
1.0943 
1.0499 
1.0095 
0.9723 
0.9376 
0.9052 
0.8748 
0.8460 
0.8187 
0.7927 
0.7678 
0.7439 
0.7284 
0.7208 
0.6983 
0.6761 
0.6540 
0.6314 
0.6074 

.0.5807 
0.5476 
0.489 
0.4017 
0.2987 
0.1996 
0.14053 
0.10097 

6.9863 
7.07 
7.17 
7.29 
7.43 
7.60 
7.80 
8.04 
8.33 
8.66 
9.06 
9.54 

10.11 
10.81 
11.64 
12.7 
13.9 
14.8 
15.3 
16.9 
18.5 
19.8 
20.0 
18.6 
15.6 
11.8 
7.49 
4.5697 
2.5125 
1.044 
0.478 
0.2779 

0.068200 0.18393 
0.039374 0.134456 
0.012888 0.102660 

-0.013193 0.08238 
-0.021972 0.078596 
- 0 . 0 3 9 ~ 7  0.07491 
-0.064604 0.07613 
-0.087696 0.08106 
-0.1084 0.0864 
-0.1263 0.0885 
-0.141 0.0832 
- 0.15130 0.0601 
-0.155512 0.001624 
-0.14998 -0.13936 

'-0.12601 -0,52725 
-0,0343 -4.712 

0.0000(1 



imately for A increasing, has effect upon the whole flow 
field, and changes the type of the pressure distribution 
curvdrom A through intermediate shapes to B3. 

2.2.4 The curvature of the sections 
As the curvature of the streamlines is infinite on the 

limit line, the section will have locally large values of 
the curvature if the cusp of the limit line is just below 
the section surface. It has been explained in section 
2.2.2, that the leading edge curvature then will be 
relatively small, because A is large. The largest values 
of the curvature, occurring at the leading edge for low 
values of A > I .Ro=O,  transfer to the region of the cusp, 
if A is increased to values just below A,. 

2.2.5 Thechoiceoftheparametersandthediferent types 

The question arises how the pressure distributions 
of the different types are related to the choice of the 
parameters. The collection of aerofoil sections is large 
enough to give a guide to the answer. 

In figure 7 one of the graphs of fig. 1 has been re- 
produced. In this figure regions have been roughly 
indicated corresponding to the different types of pres- 
sure distributions. 

At other values of& than 0.75 the qualitative relation 
between the parameter choices and the types of pres- 
sure distribution is similar. Type E3 replaces type B1 
distributions if the aerofoil is thin, i.e. if E is large. 

of pressure distribution 

2.3 Aerofoil sections with a cusped leading edge 
Four aerofoil sections are cusped at both the leading 

edge and the trailing edge. The double symmetry of 
these sections comes from the choice A=O. Sections 
with single symmetry having both ends cusped are 
obtained for O <  ;L<ARo=o 

The sharp bends of the pressure distribution curve 
of section 0.12-0.7-0.0 (fig. 8.7) indicate that the cusps 
of two limit lines are situated in the vicinity of the sec- 
tion contour. Similar elfects, to a smaller extent, are 
visible in the graph of section 0.124.754.0 (fig. 8.18). 

5 

3 On the accuracy of the results 

Acritical point for the practical value of the results 
of this reportis~heprecision~ which can be obtained in 
computing the aerofoil sections. If model manufac- 
turing is taken as a standard for judging the quality of 
section data, the accuracy requirements to be satisfied 
in making sections is a suitable reference. For aero- 
dynamic testing of models with about 200 mm chord 
length, at present one aimes at  a precision of 0.01 mm 
(5 x lo-’ x chord length) of the ordinates and of 
0.001 radian ef the slopes at the NLR. 

It is possible to meet these requirements. With the 
numerical equipment now available a precision of the 
order of lo-’ x chord length for the ordinates and of 
the order of in general for the slopes can be 
attained. As an example the data of section 0.1 14.75- 
1.375 are given in table 2. ?, C, and M are exactly 
rounded to the last decimal place specified. x, y ,  M,, 8 
and 1/R are correct within some units of the last place. 
All aerofoil sections can be computed to a similar 
precision. However, for the purpose of this report 
- being a survey of the properties of the family of 
quasi-elliptical sections considered here - the data 
were usually computed to a somewhat lower standard 
of precision. Further details about the accuracy can 
be found in ref. 2. 
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Fig. 4 Variation of R, with ,I at fixed r , ,  E. 
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Fig. 5.1 Example of a limit line, Fig. 5.2 Example of a limit line. 
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Fig. 6.1 The variation of the now in the expansion region with i at 
fixed T ~ ,  E .  
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Fig. 6.2 The variation of the flow in the expansion region wilh i at 
fixed r , ,  1. 
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Fig. 7 Thc relation between the parameter choices and the different 
types of pressure distributions. 

Fig. 8.1 Aeroioil Section 0.10-0.675-1.5. Fig. 8.2 Aerofoil section 0.10-0.675-1.6. 





Fig. 8.11 Acrofoil section 0.1 I-U.75-1.35. 
eo 

Fig. 8.1 2 Aerofoil Section 0.1 14.75-1.375 
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14 

Fig. 8.19 Aerafoil section O.l(M.775-1.3 
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Fig. 8.20 Aerofoil section 0.11-0.775-0.0 
*-  

Fig. 8.21 Aerofoil section 0.114.775-0.9 

eo 

Fig. 8.22 Aerofoil section 0.114.775-1.3. 

Fig. 8.23 Aerofoil section 0.1175-O.X- ILli. 
a. 

Fig. 8.24 Aerofoil section 0.117M.8-1.26. 
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Fig. 8.25 Aerofoil Section 0.124.8-1.15. 
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Fig. 8.26 Aerofoil Section 0.124.8-1.19 
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Fig. 8.27 Aerofoil section 0.124.8-1.25. Fig. 8.28 Aeroioil section 0.1225-0.8-1.15 

Fig. 8.29 Aerofoil section 0.125W.875-1.10 
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A digital computer programme for predicting pressure 
distributions on swept wings in subsonic flow 

according to a semi-empirical method 

W. Loeve and A. L. Bleekrode 

Summary 

A computer programme is presented for the application of a semi-empirical method, based on work from the Royal AircraR EstablishmenL 

A comparison of calculated results with results of experiments is made with the purpose to determine some of the boundaries of the region 

From the results presented, conclusions are drawn about the possibilities to increase the region of applicability of the method 

far calculation of the pressure distribution on wings in subsonic attached now. 

of applicability of the method. 

The investigation has been performed under contract with the Ministly of Defense of the Netherlands. 
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bi coefficients in the polynomial si 
represen tation 

coefficients in the representation 

s l  spanwise distance of point of 
intersection of projected leading 
and trailing edges of the wing 
from the root. 
wing area 
maximum section thickness 
maximum section thickness at 
wing root 
maximum section thickness at 
wing tip 
coeflicients in the representation 

S . "  
Bw semi-empirical compressibility 

CY local chord 
Ccl,Cc2 

factor 

chord at position of thickness 
crank 
section chord when the section 
contour is extrapolated to zero 
trailing edge thickness 
local drag coefficient 
local lift coefficient 
local moment coefficient with 

S, 

t R  

t T  

4 

t 
K PI 

Se 
t 
tR 

tT 

Cn 
press[i,a] 
CP [a1 

respect to quarter chord point 
local normal force coefficient 
pressure coeficient 
pressure coefficient in incom- 
pressible flow 
locia1 tangential force coefficient 
chord at wing root 
chord at wing tip 
weight factor 
function which represents con- 
tour of section 
parameter defined by eq. (19) 
integrals defined by respectively 
eq. (43), eq. (44) and eq. (45) 
spanwise interpolation factors 
to allow for variation of root and 
tip effects on velocities due to 
thickness 
spanwise interpolation factor to 
allow for effects of finite aspect 
ratio and taper on the velocity 
at the maximum thickness posi- 
tion due to thickness 
degree of polynomial which re- 
presents section contour 
L+1 is number of points in 
which f ( x )  is given 
M t l  is number of points u in 

local velocity 
velocity in undisturbed flow 
local perturbation velocity in 
chordwise direction 
nose shape parameter 

w=%+ I 

non-dimensional chordwise co- 
ordinate measured from the lead- 
ing edge in terms of the local 
chord c 
defined in table 2 (dimensional) 
co-ordinate defined by eq. (34) 
position of maximum section 
thickness in terms of the local 
chord c 
spanwise co-ordinate measured 
from the wing root (dimensional 
quantity) 
vertical co-ordinate in terms of 
local chord c 
spanwise location of surface 
cranks 1 and 2 
defined in table 2 (dimensional) 
effective angle of attack (degrees) 
change of spanwise slope ofwing 
surface at crank 1,2 
spanwise slope of wing surface 
defined by 

CR 
CT 
F 

X 

H 

*I.XO - 
X XZW 

XSt 

K3 K3 
Y 

z 
I 

L 

M 

I 

a1 
del I, 
del 2 
del R 

i d f .  . which - IS given 
d u  

MO 

n 

nO 

A 

Mach number of undisturbed 
flow 
chordwise loading parameter for 
finite wing 
chordwise loading parameter for 
infinite wing 
number of points x in which C ,  
is calculated 
factor in modified Riegels factor 

semi-span 
eq. (59) 

d 
tans, = - (cz,,,) 

dY 
at the wing root 
spanwise slope of wing surface 
defined by 

del T 

-d 
tans, = - (czmax) 

dv 
at the wing tip S 
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dO 

d l  

d3 

d4 

d5 

angle between thexoaxisand the 
section chord (deg.) 
additional velocity at the maxi- 
mum thickness position caused 
by sweep, thickness taper, plan- 
form taper and aspect ratio of 
the wing 
spanwise interpolation factor to 
allow for the reduction of the 
velocities due to thickness at the 
maximum thickness position 
near the tip of a semi-infinite 
unswept wing 
spanwise interpolation factor to 
allow for the effects of sweep on 
the reduction of the velocities 
due to thickness at the maximum 
thickness position near the tip 
of a semi-infinite sheared wing 
spanwise interpolation factor to 
allow for the effects of a surface 
crank on the velocities at the 
maximum thickness position 
spanwise interpolation factor to 
allow for the effects of planform 
taper on the two-dimensional 
velocities due to thickness at the 
maximum thickness position 
spanwise interpolation factor to 
allow for the effects of a plan- 
taper crank on the velocities 
due to thickness at the maximum 
thickness position 
discrepancy between the exact 

tha 

la 

Lm 
Lax [a] 

Last 

LO 
L1 

aerofoil contour and the con- 
tour according to the algebraic 
representation. (dimensional) 
exponent in the expression for 
the velocity due to camber, eq. 
(13) 
spanwise interpolation factor to 
allow for variation in shape of 
chordwise loading across the 
span, eq. (16) 
angle of sweep 
sweep of the mid-chord line 
thickness sweep tan A ,  = 
tanA,-x(tanA,- tanA J 
sweep of the maximum thickness 
line 
sweep of the leading edge 
sweep of the trailing edge 
interpolation of sweep at the 
centre and sweep at the tip of the 
wing, eq. (20) 
Lagrapgian multipliers 
Cartesian co-ordinate system, 5 
axis in the direction of the un- 
disturbed flow 
leading edge radius in parts of c 
function defined by eq. (14) 
flow potential 

analogous wing 
lower surface 
upper surface 
thickness 
camber 

I 

I 

. 

.. 

For flight at high-suhson'ic speeds special attention must be paid to the avoidance of large drag which can occur 
as a result of pressure losses due to viscous effects and shocks. These may lead to unacceptable low aerodynamic 
efficiency and unsteady effects in cruising condition. Wing-body combinations which generate flow patterns with 
no shocks on the surface and with separation due to viscosity confined to the wing trailing edges, belong to the 
class of optimal shapes with respect to aerodynamic efficiency and safety. This type of flow pattern can be realized 
by means of swept wings when the angle of sweep is correctly related to Mach-number, wing thickness and lift- 
coefficient. 

The geometry which generates the desired flow pattern and fulfils the requirements which makes the aeroplane 
suitable for a particular task, mostly is obtained by means of an iteration process in which use is made of both 
measurements in windtunnels and aerodynamic calculations. In this process structural aspects play an important 
role. In general the number of configurations which must he measured, greatly depends on the accuracy by which 
the calculation method predicts details of flow phenomena. In this context the agreement of calculations with 
experimental results can be considered more important than the elegance or rigour of the calculation method. 
However, for practical applications it is a conditio sine qua non that it is known for what class of configurations 
this agreement exists. 

Up to now potential theory forms the basis of all practical calculation methods which are applicable to wing-body 
combinations. It has appeared that this theory in many cases can be used as well to design, as to analyse flow patterns 
which belong to the class mentioned above, even when the potential equation is linearized for practical reasons. 
Linearization of the boundary condition leads to the relatively simple solutions of full linearized theory, however 
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in many cases at the cost of quantitative significance. 
In ref. 1 a method is presented for prediction of the pressure distribution on swept wings with subsonic attached 

flow, which appears to be very attractive. With the simplicity of full linearized theory, solutions can be obtained which, 
in many cases, are in very good agreement with experimental results. This is partly a result of the introduction of 
semi-empirical parameters to take into account the effects of compressibility. Partly it is a result of taking into 
account the most important non-linear effects which occur in the neighhourhood of round leading edges and which 
are related to the mutual influence of circulation and thickness. 

For application of the method it is necessary to determine the principle values of a number of singular integrals, 
of the type which occur frequently in linearized potential theory. The integrals are functions of the wing section 
contour. In ref. 1 these integrals are reduced to summation formulas which are very suitable for manual computation, 
however, at the cost of limitations in the choice of chordwise stations where the contour must be specified and where 
the pressure can be calculated. In the present report a computer programme is given for application of the method 
without restrictions of this type. The integrals are determined analytically in this programme by introduction of a 
suitable analytic representation of the aerofoil contour. This representation is determined by the method of the 
least squares, to make it possible to smooth given contour data. 

One of the reasons to write the said computer programme is the desirability to determine the boundaries of the 
region of applicability of the method, by comparison of a number of calculated and measured pressure distributions. 
Some examples of application of the method are discussed in section 6 of the present report. In future use will be 
made of the flexibility of the method to introduce further refinements to increase the region of applicability. 

2 The general expression for the velocity at any point at the surface of a swept wing 

The general expression for the velocity at any point at the surface of a swept wing, is given in ref. 1 together 
with an explanation of the signification of the various terms. The formula is reproduced in the present report. For 
a better understanding of the following some features of the background of the formula will be described. It will be 
made clear what choices have been made in cases where ref. 1 leaves open the possibility to make use of more than 
one approximation and two modifications will be described. 

The analysis of the flow problem, in first instance is based on the assumption of small perturbations. This validates 
the well known linearized differential equation for the potential 'p: 

a Z q  a Z q  a z 9  
at aV2 at2 - 

+ - + - - 0 ,  

Mo being the undisturbed Mach number and 5, V ,  i being a Cartesian co-ordinate system with the (-axis in the direc- 
tion of the mainstream. The details of the subsonic flow past a swept wing are predicted by making use of the simi- 
larity of this flow with incompressible flow past an affinely related wing. The analogous wing is derived from the 
given wing by shrinking all dimensions transverse to the { axis by a factor a The relations between the 
velocity increments in the compressible flow and the incompressible increments are determined by the condition 
that both wings must be stream surfaces in their respective flows. In these relations a modified factor is used as far 
as the velocities due to thickness are concerned. The modification which is introduced by Kuchemann and Weber 
(ref 3) results in a greater Mach number dependence in the subcritical speed range. 

The expression for the velocity at any point on a wing, in incompressible flow, is derived by means of a combina- 
tion of the expressions for: 
(a) the velocity on an infinite sheared wing of constant section according to full linearized theory 
(b) the velocity on the centre section of an infinite swept wing of constant section according to full linearized theory 
(c) an cmpirical spanwise interpolation between (a) and (b) 
(d) a correction for the mutual interaction of thickness and circulation from an analysis of two-dimensional flow 
(e) a multiplicative correction for round leading edges. 

The combination of (a) and (b) is based on the principle that the main three-dimensional perturbation effects are 
restricted to local regions. This means that the applicability of the result diminishes with decreasing aspect ratio of 
the analogous wing and increasing taper and sweep of this wing. 

The applicability of the corrections (d) and (e) will diminish the more the shape of the forward part of a blunt 
section deviates from an elliptic shape. 

From linearized theory no definite conclusion can be drawn with regard to the transformation of the nou-linear 
incompressible flow solution to a solution of the compressible flow. In the method of ref. I a choice is made which 
results in a variation of non-linear effects with Mach number in the same rate as the variation of comparable linear 
perturbation quantities. 
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For I zh wing section in free-stream direction a system of rectangular co-ordinates x, z is used where the x-axis 
is along the chord. The origin has been chosen at the leading edge. The chord is defined as the longest line which 
joins a point on the nose of the section and the. trailing edge where the thickness is zero. The co-ordinates of the 
section are non-dimenionalised with the section chord. When the upper and lower surfaces of the section are defined 
as z.(x) and z,(x) respectively, the half thickness z,(x) and the camber z.(x) are obtained according to 

With the notation being described in the list of symbols, the velocity at any point on the surface of a streamwise 
section of a swept wing with subsonic attached flow is approximated by: 

(1-Mi c o s 2 A , ) c o s z ( ~ . A , ~ ) - ( l - M ~ ) c o s 2  A ,  
(1 - M i  cos2 A,) cos2(;.,A,J i x  k cos ae 

( 1  -Mg cos'A,)cos2(~~A,~)-(1 -Mg)cos2 A ,  i ( I  - Mg cos' Am) 
fH, sin a, 

The symbol refers to upper and lower surface, the positive sign being taken for the upper surface and the 
negative sign for the lower surface. 
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The significance of a number of terms in this expression will be explained below as far as this is desirable with 
regard to the description in the next sections of this report. 

The first term in large curly brackets is approximately the velocity component in chordwise direction. The second 
term in large curly brackets is approximately the velocity component in spanwise direction, whereas the last main 
term can be regarded as a correction to the spanwise velocity. 

The combination of the two basic solutions (a) and (h), mentioned before, is realized by spanwise variation of 
the parameters K2n,  K3-  and ,Ir B, and A* depend on K ,  and K 2 -  respectively, contrary to ref. 1 where both fac- 
tors depend on K,. a, is the effective angle of attack which varies along the span 
as a result of wing twist and variation of the effective induced angle of attack. The present authors in general determ 
a, by iteration in such a way that a desired normal force on the wing section is realized. The subscript a indicates that 
the quantities are related to the geometry of the analogous wing. 

The velocity component in chordwise direction is formed by the sum of a component of the undisturbed flow, a 
component of the perturbation velocity due to thickness (terms with K z a  and K,.), a component of the perturbation 
velocity due to camber and a term which results from the angle of attack (the term with Ha). In the last term the 
integral which is a function of z, takes into account the intemction between angle of attack and thickness. 

u., 9,, n, and H, depend on A,,. 

The term 

is the multiplicative correction factor mentioned on page 4. This factor will be referred to later as the Riegels factor. 
The exponent p of this factor is chosen in each case in such a way that at the leading edge finite values of the velocity 
are obtained. This refinement was introduced in the present report also in the term due to camber to make it possible 
to calculate velocities very close to the leading edge. 

The interpolation factor K2*  allows for variation of root and tip effects on velocities due to thickness. In ref 1 
K 2 -  is given by means of graphs for K2,RoOT and K2,TIP as function of the co-ordinate y. The values have been de- 
termined in ref. 3 by means of full linearized theory in combination with experiments 

K 20 = K 20, ROOT - K 20,  TIP (5 )  

for each spanwise station. 
K ,  is the ratio of the supervelocity at the maximum thickness position of any spanwise station of a swept wing 

to the supervelocity at the maximum thickness of the corresponding infinite sheared wing. For K, a formula is 
presented in ref. 1 which after some rearrangement leads to the following expression: 

The notations are described in the list of symbols. The specification of the functions A n  to A ,  is given below. 

thickness position of a straight wing the supervelocity in x direction due to thickness can be expressed as 
A ,  is introduced to take into account the reduction of the velocity near the tip of unswept wings. At the maximum 

in incompressible flow. 
t .  This means that the product A IS the reduction of the velocity near the tip. By means of linearized theory the 

0 ;  
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following expression for A ,  can he found for a semi-infinite unswept wing with constant biconvex parabolic-arc 
section shape: 

(9) 

Y .  where - is the distance from the tip divided by the chord. This expression is recommended in ref. 2. 
c 

Application of eq. (9) leads to a super velocity at the tip which is half the value of this velocity at a two-dimensional 
biconvex parabolic arc section at the position of the maximum thickness. Due to a failure of linearized theory this 
value is too small (see e.g. ref. 3). In principle a semi-empirical correction can he applied to d o  in accordance with 
earlier publications about the calculation method. For the time being eq. (9) will he used. 

A is introduced in eq. (7) to approximate the effect of sweep on the super velocity due to thickness near the 
centre of a swept wing. The x-component of this velocity at the maximum thickness position can be expressed as: 

By means of full linearized theory, applied to an infinite swept wing, the Following expression can he found for 
A ,  for the analogous wing: , .  

with 

Near the tip OF swept wings A ,  is used to correct A ,  for the influence of sweep. This is based on the assumption 
that the velocity at the maximum thickness position near the tip of a semi-infinite sheared wing can he taken equal 
to the sum of A ,  and the value given by eq. (8) multiplied by the factor cos AtmLsz. The introduction of A ,  in this 
way is equivalent to the assumption that the tip of a swept hack wing can be treated as the centre of a swept forward 
wing with regard to the influence of sweep. This means that for calculation of AIn(s.+y,) the angle of sweep A .  
has to he taken equal to the opposite of the angle of sweep of the analogous wing. 

In principle it is possible to evaluate eq. (12) for the same type of aerofoil cross section as for which A ,  has been 
calculated. However, it is felt that this may lead to unacceptable discrepancies in the calcu!ated pressures near 
the centre of swept wings. For this reason eq. (12) is used in the present report to determine K, values. 

A,, A ,  and A ,  are introduced to take into account the effects ofthickness and planform taper. Values of these para- 
meters have been determined by the authors of ret 1 by means of full linearized theory applied to symmetrical wings 
under zero lift conditions. Generalized results are given in tables in ref 1 as a function of angle of sweep A,,,,.= and 
the appropriate dimensionless spanwise co-ordinates. 

In the following the interpolation functions related to camber and incidence are summarized in accordance 
with ref. 1. 

The exponent in the expression for the velocity due to camber 9, is given by 

with 
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The factor 2 which is used to allow for variation in spanwise direction of chordwise loading is given by 

with 

The chordwise loading parameter n. is 

for finite swept back wings. 
The corresponding parameter for infinite swept wings is 

The eflective aspect ratio is given by 

The factor- Ha in eq. (4) takes into account the influence of the finiteness of the wing on the sectional lift curve 
dope.  

(19) 
sin nn, 

{l-nn.(ctn nn,-ctn moa)}  COS AJma 
Ha = 

The effective thickness sweep A* is defined by 

A* =( l - lKzJ)A,  (20) 

In ref. 1 the factor K Z n  is replaced by K ,  in the expression for A*. When eq. (20) is used to approximate the influence 
of the wing root on A*, the present authors prefer to substitute the value of K2. in the expression to introduce the 
effect of compressibility on the attenuation of root effects in spanwise direction. 

The modified compressibility parameter E ,  which is substituted for {l - M i  cos‘ A,}* in the expressions for the 
super-velocity components due to thickness according to linearized theory, is given by: 

B, = {l -Mi[( l -  C,,(x,)cos2 A,(&) -Cri(xy)(l -)K2))sinZ A,(x,)]}* . (21) 

Here Cri is the local pressure coefficient calculated for Mo =O, a,=O and z,=O with the proviso that when C,, > O  
or when B, becomes imaginary with eq. (21), C,,=O. so that E,  then reduces to j1-M; COS’ A,}*. 

The pressure coefficient C, is evaluated by means of Bernouilli’s relation : 

where the ratio of specific heats y=1.4. 
It is not possible to deal with blunt trailing edges by means of linearized theory. In the present theory no measures 

have been taken to make it possible. In most practical cases, however, the section thickness is finite at the trailing 
edge. This difficulty is eliminated by the assumption that the velocity on a wing section with finite trailing edge thick- 
ness is equal to the velocity on a wing section which is derived from the given section by linear extrapolation of 
the upper and lower surface, to zero thickness. In this c a s  x, in equation (4) is measured in parts of the extended 
chord. 

The expression for the pressure distribution on a two-dimensional aerofoil is a special case of the general ex- 
pressions presented above. 

With Cpu(xv) being the pressure distribution on the upper surface of the wing section and C & )  the pressure 
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distribution on the lower surface, the following expressions define the normal force, tangential force and pitching 
moment coeffcient : 

(23) 

1 

c,= - 1, { C  Sl ( .“)-c,(xJl (x”-0.25)dx”. (25) 

The pitching moment is given with respect to the quarter chord point as can be seen in eq. (25). 
For two-dimensional now the lift coeffcient and drag coeficient can be calculated according to respectively 

and 
C, = C.  cos a, - C,  sin a, 

C d =  C .  sin a,+C, cos a, .  

So far, the method only deals with isolated wings in inviscid flow. In ref. 1 the method is outlined by which the 
effect of the presence of a fuselage can be taken into account. In first instance it can be assumed that the wing is 
completely reflected at the body side. When the fuselage does not extend far enough above or below the wing to 
generate the full reflection effect, it is possible within the scheme of the method to take into account a so-called 
partial reflection effect. In the same way it is possible to deal with the effect of other bodies mounted on the wing. 
It is possible also to simulate a circulation defect due to boundary layers by a reduction of the sectional effective 
incidence a,. 

3 Representation of the wing section geometry by means of algebraic functions 

The evaluation of eq. (4) involves the computation of the three integrals in this expression which are functions 
of the slope of the camber and the thickness distribution of the wing section. In ret 1 the computation of the in- 
tegrals is based on summation formulas given by Weber, which makes it possible to evaluate eq. (4) by means of 
desk computers. Summation formulas are also used in thk reference to obtain the slope of the thickness and camber 
distribution. This, however, imposes restrictions on the distribution of the given section co-ordinates and the 
points x, where the pressure can be calculated. As nowadays digital computers are available, restrictions of this kind 
can be eliminated. 

For the computer programme, use is made of a relatively simple representation of the aerofoil contour. The 
representation has been chosen in such a way that it is possible to evaluate the principle values of the integrals in 
eq. (4) by means ofexact integration. The representation of the aerofoil contour is determined according to the method 
of least squares with the possibility to impose constraints on fluctuations. This provides a means of smoothing 
the contour by relaxing the requirement that the approximated curve passes exactly through the specified contour 
points. Use can be made of this facility to eliminate troublesome inaccuracies in the given data which in practice very 
often occur. The character of the contour interpolation is chosen in such a way that good agreement can be obtained 
with contour shapes for which the method of ref. 1 is known to be suited. This can be elucidated as follows. 

In principle the method is based on full linearized theory in which the influence of the wing is represented by means 
of planar distributions of singularides. As a result of this a smooth continuous distribution of the radius of curvature 
of the section contour is required for application of the method. Further the slope of the camber must be small 
everywhere because the theory fails to predict the non-linear effects of camber in combination with thickness and 
angle of attack. The non-linear effect of calculating the velocities at the aerofoil surface has been taken into account 
approximately. However, large discrepancies can be expected on blunt aerofoil noses in the real now when the shape 
of the rounded nose differs too much from an elliptic shape. The choice of the analytic representation of the aerofoil 
contour has been based on the assumptions which apparently also form the basis of the calculation method, namely: 

I 

l 

I 

~ 

- the aerofoil contour is smooth 
- the slope of the camber is small everywhere 
- the thickness goes to zero at the leading edge as && (p=leading edge radius*) 
In first approximation the thickness distribution can be represented by f i & l  -x). By means of an algebraic 

polynomial this distribution has been corrected to give: 

*) With regard lo possible scaling of thickness it should be mentioned that the leading edge radius is proportional lo the square of the thickness 
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Since z,(x= 1) has to be zero it follows that 

For conventional aerofoil shapes the slope of z,(x)-&&(l -x) is finite at leading and trailing edge. When it 
is assumed that the camber has finite slopes at leading edge and trailing edge it is possible to represent z,(x) by 

ti = 0 
i = 1  

I 

with E s i=O.  

In case the upper and lower surface co-ordinates are given at different chordwise positions it is not possible to 
determine z&) and z,(x) directly according to eq. (2) and eq. (3). The upper and lower surface then can be approximat- 
ed directly in accordance with eq. (28) and eq. (29) by 

i = 1  

I 

z,(x)= -Jz;;&(l-xj+ Y i X '  (31) 
i = 1  

to give t i=$(Pi -r j )  and S ~ = + ( / ~ ~ + Y , ) ,  

The problem to find an analytic representation of the section shape now has been reduced to the determination 

of the coefficients ai in the polynomial representationf(x) = aixi where f(x) is given in discrete points in the 

interval O <  x<  1 andf(O)=f(l) =O. This problem has been solved by application of the method of least squares 
with additional conditions. The first additional condition is: 

I 

i =  1 

I 1 a i = O  
i = 1  

(32) 

becausef(1) =O. By means of the method of least squares in first instance the sum of the squares of the differences 
between the given and the approximated values off@) is minimized. In that case no constraint is imposed to minimize 
fluctuations. Fluctuations in the camber representation near the trailing edge have a large influence on the circula- 
tion around the aerofoil section. In view of this, fluctuations are being reduced near the trailing edge by application 
of a second additional condition : 

It is possible also to minimize with regard to the sum ofthe squares of the discrepancies between the first derivative 

off(.) and the first derivative of a,x! The computer programme presents the possibility to minimize with 

regard to co-ordinates and first derivatives together. By means of a weight factor F ,  the minimization can be chosen 
between best co-ordinate fit and best fit of derivatives with I fixed and under the additional conditions which are 
represented by eqs. (32) and (33). 

To obtain the best numerical accuracy the co-ordinate system is translated in x-direction. The new origin is taken 
at 3 which is defined by 

I 

i = 1  

(34) 

where x j  are the L+ 1 points where f ( x )  is given. 
With 

u = x - - x  (35) 

df . f ( u j ) = f ( x j )  is known in the points uj ( j=O,  (I), ..., N) and it is assumed that - is known in the points us 
du 
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1 

(g=O, (I), ..,, M).f(u) is interpolated byj(u) = 1 b$,withtheadditionalconditionsf(u= - i ) = O ; f ( u =  1-?)=0 
i = o  . _  

. The coeficients b, are found by minimization of the following expression: 

I 

i = 1  

I 

+pl 1 b i ( - # + p Z i  bi(l-Xy+p3 ibi(l-Fy-' 
i = 0  i = 0  

Differentiation towards the coefficients bi and the factors pl, pZ and p 3  leads to the equations for i=O, ( I ) ,  ..., I :  

which together with 
I 

b,(-X)i =O 
i = 0  

I c b i ( l - i y  =0 
i = 0  

and 

make it possible to determine the n + l  unknown quantities be From equation 
i 1 1 bi(x-Zy= 1 aixi 

i = 0  i = 1  

~ follows 

(38) 

(39) 

Herewith the representation of the aerofoil contour according to eq. (30) and eq. (31) is known. 
A number of examples of the applicability of the method are presented in section 6. Normal practice is to take I =  12. 

Discrepancies between exact contour ordinates and approximated ordinates are within 5 .  lo-' in parts of the chord 
for most aerofoils which have been investigated so far. Large discrepancies can occur when the method is applied to 
sections with rapid or discontinuous variations of radius of curvature. In this context it can be mentioned that in 
ref. 5 eq. (4) has been applied by means of a quadratic interpolation of given values of the slope of the symmetrical 
aerofoil contours. The representation according to eq. (28) was not possible iri that case as a result of nearly dis- 
continuous contour slope variations. 

A description of the computer programme for determination of the contour representation is presented in section 5.  
The following special features can he mentioned: 
- The programme provides the possibility to compute derivatives off(x) by means of the differentiated Newton 

formula with divided differences whmf(x) is given in discrete points. Use can be made of this facility when the 
derivatives are not known and all the same it is considered desirable to minimize with regard to derivatives in 
the above described procedure to determine the representation of f(x). 

- The trailing edge thickness of most aerofoil sections on which the pressure distribution must be calculated is 
finite. In those cases the programme constructs a trailing edge point where z,=O. This point is defined as the 
intersection of the linear extrapolation of upper and lower surface. The programme is such that in the output 
data x pertains to the not-extended chord. 

- The programme accepts contour co-ordinates in any rectangular axis system, with the proviso that co-ordinates 
of the leading edge point on the chord are given. 

- The programme accepts thickness and camber co-ordinates as well as upper and lower surface co-ordinates. It 
is possible to make use of the programme also when it is desired to apply a definition of thickness and camber 
which differs from the definition represented by eq. (2) and eq. (3). For instance the NACA convention can be 
chosen equally legitimately within the scope of the method of ref. 1. 
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4 Evaluation of the integrals in the geueral expression far the velociQ 

The following integrals must be computed for application of eq. (4): 

r I= ; I , - -  1 'dz, dx 
dx xu-x 

and 

(43) 

(44) 

In the following the analysis is presented on which the calculation of the integrals by means of the computer 

The evaluation of I ,  and l2 is based on the assumption that z, is known as the algebraic function given in equation 

(28). By differentiation of this expression, - IS ohtained'Substitution in equation (43) leads after integration to: 

programme is based. 

dz, . 
dx 

An analogous procedure leads to 

The evaluation of 1, is based on the assumption that zJ is known as given in equation (29). Differentiation of 
equation (29) and substitution of the result in equation (45) leads to: 

Now use can be made of 

It is also known that 

By means of these expressions it can be found that 

With rearrangement of the first term : 

Apart from the integrals which have been discussed above, it appears necessary to evaluate the integral in expres- 
sion (12) for the factor K , .  In this expression the following variables can he substituted for convenience: 

Y. p = -  
cos A. 

and 
Y =  [ P ' + ~ P  sin A~(x,~~,-x)+(x,~*=-~)~I~ 

This makes it possible to rewrite eq. (12) as: 
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For computation of the integral in equation (53) the singular hehaviour for x + 0 is eliminated through subtraction. 
With 

g1 = [ p 2 + 2 p  sin A.x,,,.a=+xkJt (54) 

p sin A, 1‘s dx 
equation (53) becomes after subtraction of 

Z(xv=*r,..) o dx (P+gi)g1 

dx because - = 0. The integral in equation (55) is evaluated by means of the trapezoidal rule, the value 

of the integrand for x=0 being zero. xZma= is determined for each aerofoil section by means of Newton’s iteration 

process and the required values of 2 again are obtained by differentiation of equation (28) 

l2 ( P + 9 1 ) Y ,  

dz 
dx 

Now all significant details concerning the determination of the pressure distribution on wings have been described. 
A detailed description of the computer programme is presented in section 5. 

5 Description of the Algol programme 

5.1 General remarks 

5.1.1 Layout of the programme 
In section 2 the expression for the velocity at any point on the surface of a swept wing is presented. By means 

of Bernouilli’s equation the local pressure coefficient is calculated in terms of this velocity. The Algol programme is 
based on the analytical evaluation of the various integrals in the expression for the velocity, which is presented 
in section 4. 

The programme is divided into three main parts. Part I covers the evaluation of the aerofoil section contour in 

algebraic functions and the computation of 2, -., I, and I ,  according to sections 3 and 4. Part I1 deals with the 

computation of the remaining integrals described in section 4 and the pressure distribution in two-dimensional 
flow. With part 111 these integrals are being calculated together with the pressure distribution on streamwise sections 
in three-dimensional flow. 

The analysis of the programme will be given in the present section, with the aid of flow diagrams and an appendix 
which contains the Algol programme. In the list ofsymbols, the symbols that occur both in the Algol programme and 
in the text have been described. 

5.1.2 Procedures programmed in internal computer code 

in internal machine code, which have been used: 
F R P  (n,m,x): 
FLOP(n, m, x): 

IMPRODO, I, n, Pb], Qb]) 
print (x) : 
PUNLCR : 
PUTEXT(+ text $): 
readn(a,b,c ...) : 
RUNOUT: gives 10 inches blank 

dz dz, 
dx dx 

For the understanding of the programme it will be of some help to know the meaning of the following procedures 

punches the fixed point npmber x with n figures before and m figures after the point. 
punches the floating point number x with a mantisse of n figures and an exponent 
of m figures 
forms the inner product of the vectors P and Q of order n. 
prints the number x in floating point representation. 
punches new line carriage return 
punches the text between the strings. 
reads a, b, c , . . 

b 
SUM(i,a,b,f,): forms cr, 

i=L1 

TAPEND : punches “1” followed by 10 inches blank. 
In the following the three parts of the programme will be described. 
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5.2 Part I 
The general flow diagram is given in fig. 1 

5.2.1 Procedures 
In this part of the programme use is made of the following procedures 

dz 
dx 

- The real procedure dif(h,s) is a recursive procedure which evaluates dX=- at x = X  from the given section or- 

dinates, following the method mentioned in section 3 based on divided differences. 2h + 1 is the number of points 
of the contour which are used. 

- the real procedure DET(A,n, p) makes DET equal to the determinant of the nth order matrix A, following Crout's 
method with row interchanges. The triangular decomposition L x (i of A which is formed when this method is 
applied, replaces A.  

- the procedure SOL(LU,rl,n,p) replaces the vector r l  by the solution 5 of the linear system L X  U x 5 = r l .  
- the real procedure DETSOL(A,rl,n) replaces the vector r l  by the solution 5 of the linear system A x  5 =r l .  

- the procedure klkw (1,n) forms the polynomial C aIx i  according to the versioq of the method of the least squares 
I 

i = 1  

described in section 3.  

5.2.2 Input and output data 
The flow diagram of the input is given in fig. 2. the tables I, 2, 3 and 4 summarize the input data in the order 

in which they are assimilated in the programme. Data concerning the section contour can be given in any rectangular 
axis system and in any consistent dimension system. Only x, in table 4 must be given in parts of the section chord 
c as indicated. 

The limitations in the choice of given data, which are indicated by means of notes on the tables. have made it 
possible to simplify the computer programme'for the time being. 

The output of the programme is presented in fig. 5. The first eight columns contain data concerning the contour 
representation. Deviations from the given contour are presented together with first and second derivatives of the 
contour representation. In practice these data are used to verify the applicability of the method in each case. The 
data can be of use to find errors in the given section co-ordinates. 

The last group ofseven columns on the output sheet forms part of the input of the programmes part.11 and .part 111. 
An other part of the input of these programmes is the group of numbers just above these seven columns. These num- 
bers refer to the degree of the polynomial which has been used for the aerofoil representation and the coefficients of 
the polynomial which represents the camber distribution. 

5.3 Part I1 
The general flow diagram of this part is presented in fig: 1. 

5.3.1 Procedures 

the trapezoidal rule. 

5.3.2 Input and output data 
The flow diagram of the input of this programme is given in fig. 3. Table 5 provides the input data which are 

required in addition to the results obtained hy means of programme part I and which are described in section 5.2.2. 
The output consists of Mach number, angle of attack, the values of the coefficients of normal force, pitching mo- 

ment, lift, tangential force and drag followed by a column in which the values ofx,,C&,) and C&,) are presented. 

5.4 Part I11 

One procedure has been used in this programme: real procedure int, which evaluates C, C,, C, and C, by means of 

The general flow diagram again is presented in fig. 1. 

5.4.1 Procedures 
In this part of the programme use is made of the procedures: 

- procedure determ K ,  which evaluates the value of Kzm and K3- according to equations (5) and (6) respectively. 
Values of KZ,,,,, and K 2 ,  which are given in ref. 1 for a number of y values, are part of the input of the pro- 
gramme. From these values K ,  is determined by means of linear interpolation. For the determination of K ,  
use is made of eq. (9) and (12) as far as A ,  and A ,  are &ncernd. Values of A , ,  A ,  and A ,  are obtained by linear 
interpolation of values from ref. 1 which form part of the input of the programme. 
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- procedure int, which calculates the coefficients of normal force and tangential force by means of the trapezoidal 
, .  rule. 

5.4.2 Input and output data 
The flow diagram ofthe input of this part is given in fig. 4, whereas the wing data which are required are presented 

in table 6. In accordance with the description in section 5.2.2 the last part of the output of programme part I is used 
also as input of this programme. 

The output of the programme is presented in fig. 6. It consists of calculated aerodynamic data, wing data and aero- 
dynamic factors by which the aerodynamic data are determined. 

6 Application of the computer programme 

It is realized that the reader will be interested in conclusions about the applicability of the method. The character 
of the method is such that general conclusions can only be drawn when a large number of applications have been 
compared with experimental results and results of more exact methods as far as these are available. Up to now this 
has not been possible in a satisfying way, mainly for lack o f  sufficient accurate experimental results. The following 
must be seen as an attempt to show the usefulness of the method to predict pressure distributions of wings and aero- 
foils in compressible flow. Attention will be paid to the-items: 
- the analytical representation of aerofoil contours 
- the calculation of pressure distributions on two-dimensional aerofoils in incompressible and compressible flow. 
- the calculation of pressure distributions on isolated wings in incompressible and compressible flow. 
- the calculation of pressure distributions on wings in the presence of a body. 

The examples which will be presented next, form a collection which is representative for the experience which the 
NLR has had with the method so far. Examples of application of the method by means of Weber’s summation for- 
mulas can be found in RAE reports which are mentioned m ref. 1. These include a Limited experimental verification 
of individual terms in equation (4). 

6.1 Two-dimensionalJows 
To calculate the pressure distribution on two-dimensional aerofoils, equation (4) can be reduced to the formula 

which has been presented by Kiichemann and Weber for this purpose. This formula has been applied by them in 
combination with Weber’s summation formula’s for the integration and differentiation. of functions which depend 
on camber and thickness. They have shown that good agreement exists with exact pressure distributions for sym- 
metrical Joukowski sections without circulation in incompressible flow. This is confirmed by application of the 
present analytic representation the aerofoil contour. An example is given in table 7 where the calculated pressure 
distribution on a 10.37% thick symmetrical Joukowski section has been presented together with exact results. In 
the table the discrepancies of the analytic contour representation from the exact contour are presented as dz in parts 
of the chord. In equation (28) I =  12 has been chosen in this case. It can he seen that the deviation LIZ does not exceed 
2.10-5. 

Lessgood results have been obtained by Kuchemann and Weber for cambered Joukowski sections. This tendency 
also exists when the present method of evaluation of equation (4) is being applied. An example is presented in table 8. 
It concerns a 12% thick Karman-Trefftz section with a 3% camber. Results of the present method are given in the 
table together with exact results; both for incompressible flow.Again I =  12 has been chosen in the analytic represen- 
tation of the aerofoil contour. Herewith the maximum deviation dz slightly exceeds 3.10-’ in parts of the chord in this 
case. It can be noted that the discrepancies between exact C, values and C ,  values according to equation (4) in table 8 
are of the sameorder ofmagnitudeas discrepancies which occur when calculationsare beingcompared with measure- 
ments under lifting conditions. This is a result of different boundary layer development on upper and lower surface 
under these conditions in viscous flow as will be illustrated next. 

A good deal of experimental verification of the method by Kiichemann and Weber has been based on wings with 
RAE thickness distributions. Of one of these, namely the RAE 101 section, reliable experimental pressure distribu- 
tions at low Mach numbers can be found in ref. 9. For this section a number of pressure distributions have been 
calculated by the present method. First results for incompressible flow have. been compared with results presented 
in ref. 8, which have been obtained by means of the Goldstein 111 approximation. In fig. 7 of the present report 
it can be seen that good agreement exists at C,=0.4. At lower and higher C,, values, up to C.=O.S, the same has 
been found. As far as the analytic representation of the aerofoil contour is concerned it can be noted that Az does 
not exceed 5.10-5 in parts of the chord with I =  12. At zero degrees angle of attack experimental C ,  values from ref. 9 
coincide with calculated results within the experimental accuracy at Mo=0.18. Also for the RAE 102 thickness 
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distribution good agreement between results of eq. (4) and results of Goldstein I11 in ref. 8 h& been found, 
Under lifting conditions the comparison of experiments and calculations is troubled by reduction of circulation 

during measurements, mainly due to different development of the boundary layer on upper and lower surface. It 
is possible in principle to correct the calculation approximately for this effect along the lines which have been 
described in ref. 1. It is necessary, however, then to know the boundary layer displacement thickness. Especially as 
far as three-dimensional wings are concerned the boundary layer thickness is not known in most practical cases. 
Comparison of calculated and measured pressure distributions at the same value of sectional lift is possible by 
equation (4), by treating the effective angle of attack a, as an empirical parameter. This procedure is recommended 
in ref. 1 as a crude way of allowing for boundary layer effects. For the two-dimensional RAE 101 section it is shown 
in fig. 8 in the present report that this is not very satisfactory. It can be seen that neglecting the effects of boundary 
layers on circulation at 4 degrees angle of attack, causes rather large differences between calculated and measured 
C, values in fig. 8. However, correction of angle of attack a, in the calculation, to obtain the same lift coeficient as 
during measurements, does not reduce the absolute values of C ,  differences. 

The two examples of symmetrical aerofoils which have been discussed above have one feature in common. 
The nose of the sections has a shape which is very similar to an elliptic shape. From the derivation of equation (4) 
it becomes clear that for this shape, results can be obtained with the present method which are in good agreement 
with exact results in incompressible flow. A characteristic dimensionless parameter for the shape of the nose must 
depend on the radius of curvature of the nose p. the position of maximum thickness x,"~ and the maximum thickness 
t .  These can be combined to give 

which is equal 1 for elliptic shapes. The parameter W is also equal to 1 for the sections which have been described 
up to now. One more example will be given of a section for which W =  1. 

The last example of an aerofoil section for which W =  1 will be the section NACA 65 A 006. In ref. 6 it has been 
shown that for this section results of a method based on a distribution of singularities on the surface differ from 
results of the high order Theodorsen method which has been applied in ref. 7. Both methods must be regarded as 
exact in incompressible flow. The present method has been applied to calculate the pressure distribution on the 
section approximately under zero lift condition. The result can be found in fig. 9 where C ,  has been plotted against the 
co-ordinate x. In fig. 9 it can be seen that the result ofref. 6 has been reproduced by the present metb0d.A~ a reference 
also the result of ref 7 has been given in fig. 9. The shape of the aerofoil section, as given in ref. 7, appeared to 
have a point of infexion near x ~ 0 . 0 5  in parts of the chord. This made it necessary to take I =  15 in the representation 
of the aerofoil shape to keep dzc 5.10-5 in parts of the chord. 

Equation (4) has been applied by NLR to a number of aerofoil sections for which W > 1. It has appeared that 
in those cases errors can occur as a result of reduced applicability of the corrections for thickness effects near round 
leading edges which are incorporated in equation (4). This will be illustrated for a 10% thick symmetrical section 
of the NACA 4-digit type for which W =  1.8. The thickness distribution of the section is 

z,=0.20000 6-0 .30959 x+0.50904 x2-0.53280 x3 forO$x<O.4 

z,= -0.00701+0.14757 (1-~)-0.01680(1-~)~-0.11797 ( l - ~ ) ~  for 0 .4<x<0.7 

and 

z, = z , ~  =",, - 1.0563 (x-0.7) for 0 . 7 ~ :  x< 1.00828 (57) 

With I =  12 in the analytic representation of this distribution according to equation (28), LIZ does not exceed 5 .  
in parts of the section chord. 

At angle of attack zero, the pressure distribution in incompressible flow has been calculated by NLR on the sec- 
tion defined by eq. (57) by means of a method based on a distribution of singularities on the surface. The results 
of this calculation can be regarded as exact. Comparison with results obtained by application of equation (4) under 
the same condition (a =0, M,, =O), in table 9, makes clear that just ahead of the minimum pressure maximal discre- 
pancies in the order of d C,=0.08 occur. By means of equation (4) compressible flow solutions are being derived from 
incompressible flow solutions by multiplication factors which depend on Mach number. From this it is clear that 
errors in the solution for incompressible flow will become apparent in the same way in the solution for compressible 
flows. This is illustrated in fig. 10 and fig. 11 where measured and calculated pressures are presented for this section 
as function of the thickness co-ordinate, for Mo = 0.5 and 0.725 respectively. The small differences between pressures 
measured on upper and lower surface are caused by a small angle of attack during experiments. 

It can be demonstrated that improvement of the basic solution for incompressible flow leads to a much better 
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agreement of the measured and the calculated pressure distnhution. According to equation (4) the velocity V(x,) 
on a symmetrical non-lifting two-dimensional section can be approximated by 

1 + q ! L  dx 
7r dx xu-x 

(58) _ -  V(XJ - 
vo Jq 

in incompressible flow. This expression can he formally generalized to 

1 r’dz, dx 

In this expression p(x,) can be calculated by substitution of the exact values V(xJ This has been done for the 
section given hy eq. (57). The values of p(xJ have been substituted in the equation for V(xJ in compressible two- 
dimensional flow to give : 

+ 

dx x,-x -- V(X”) - 

with B, according to the limit of expression (21) for two-dimensional flow 

B,=[1-M${1-CP,(xy)}]*. 

Here C,(x,)  is the pressure coefficient in incompressible flow according to the exact method. By means of eq. (22) 
C,(x,) has been evaluated for Mo = O S  and Mo =0.725. The results are given with the indication “improved m e t h d ”  
in fig. 10 and fig. 11 respectively. Within the scheme of the method of ref. 1 this type of improvement can he applied 
directly to calculate pressure distributions on three-dimensional non-lifting wings. 

However, in fact not the Riegels factor in eq. (58) has to be’improved but the integral is not correct in the original 
expression for incompressihle flow. This illustrates that the improvement has an arbitrary character. The procedure 
can only be justified hy the fact that it increases the region of applicabiliQ of the existing method in,a simple way. 
For the symmetrical aerofoil given by eq. (57) under lifting conditions, it can be shown that the mere substitution of 
p(x) in the Riegels factor does not give correct results as may he expected from the derivation of !he original ex- 
pressions by Weber. Results of application of the formula 

are presented in table 9 for a,= e, together with exact results and results ofeq. (4). Near the nose, differences between 
results of eq. (61) and exact results are about equal on upper and lower surface. 

With regard to realization of improvements for general lifting aerofoils it is considered worthwhile to study the 
applicability of higher order terms which result from existing perturbation methods. Also improvement of calculated 
compressibility effects can be expected in principle from some of these methods. 

As mentioned before, direct comparison of calculations and experiments under lifting conditions is troubled by 
boundary layer effects. As no suitable correction method for these effects is available at the moment, the authors will 
confine detailed comparisons with experiments to non-lifting conditions for the time being. 

6.2 Three-dimensionalflows 
By means of eq. (4) the pressure distribution has been calculated on the symmetrical Warren 12 wing under zero 

lift conditions in incompressible flow. The features of the wing are: aspect ratio 2.828, taper ratio 1.3; leading edge 
sweep hack 53.5 deg.; trailing edge sweep hack 32.9 deg. and streamwise section : 6% RAE 102. The results from 
eq. (4) have been presented in fig. 12 in comparison with “exact” results from Douglas according to the method of 
ref. 6. These results have been obtained through the National Physical Laboratory, Teddington. 

Apparently three-dimensional effects are such for this wing that the semi-empirical method fails to predict the 
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pressure distribution exactly. It is likely that the errors will increase with Mach number as a result of decreasing 
effective aspect ratio and increasing effective sweep and taper ratio with increasing Mach number. This cannot be 
verified because at Mach numbers which are different from zero, errors due to threedimensional effects cannot be 
separated from errors due to the approximation of compressibility effects. The errors due to compressibility are 
different in the method of ref. 6 compared with the present method. Twodimensional experimental evidence suggests 
that application of the semi-empirical factor E ,  gives better correspondance with experimental results than the 
compressibility effects which are predicted by the Goethert rule which has been applied in ref. 6. 

A second example of application of eq. (4) to a three-dimensional wing can be found in fig. 13. The wing is sym- 
metrical with 6% thick RAE 101 sections in streamwise direction and aspect ratio 2.84. The sweep of the midwing 
is 55". The wing was mounted symmetrically on a circular cylindrical body during the experiments of which results 
have been plotted in fig. 13. In the calculations the body side was treated as a full reflection plane. At Mach 0.52 
the effective aspect ratio of the wing is about 2.5 and the effective angle of sweep of the mid wing is about 60". 
These values are about the same as the corresponding values of the Warren 12 wing in incompressible flow. An 
effective sweep of600 and an effective aspect ratio of2.5 have been mentioned in ref. 1 as boundaries of the applicabil- 
ity of the method. The discrepancies between calculated and measured pressures appear to be of the same order of 
magnitude, as the accuracy of the measurements at Mach 0.52. In ret 10 it is shown that discrepancies between 
calculated and measured pressure distributions increase continuously with Mach number for this wing. The dis- 
crepancies at station 4 at Mach 0.96 can be reduced to about zero with a choice of the thickness interpolation fac- 
tors Kza and K3,  which is different from the choice which follows from the rules given in ret 1. This is demonstrated 
in ref. 10 based on an ad hoc iteration with respect to K2- and L Y ~ ~ .  

In view of the results presented in fig. 12 and the possibility to improve the results in fig. 13 as described, it seems 
to be possible to increase the range ofapplicability of the method, by improvement of the calculation of the linearized 
thickness effects which form part ofeq. (4). When these effects are being calculated directly for each three-dimensional 
wing, the semi-empirical interpolation between the basic solutions as mentioned in section 2 can be avoided. At 
least as far as the disturbance velocity in xdirection is concerned this improvement is recommended. 

Finally in fig. 14 results of application of eq. (4) have been given for a cambered wing in combination with a 
body, at Mach 0.45 under lifting conditions (C,a0.2).  The body side has been treated as a reflection plane in the 
calculations. Because it is a low-wing configuration this causes at the wing root slight discrepancies at the lower side 
of the wing between calculated and measured pressures. The calculation has been executed in such a way that the 
local normal force at each station corresponds to the local normal force from experiment. This only concerns the 
choice of a. in equation (4). The minimum pressures are predicted remarkably well under these circumstances 
by theory, However, this happens to be a result of the cancellation of an error due to boundary layer effects, as 
demonstrated in fig. 8, by a counteracting error due to non-linear thickness effects near the leading edge as demon- 
strated in fig. 10 and 11. Discrepancies between theory and experiment will increase only slightly when the calcula- 
tion is based on the local C.  from linear lifting surface theory at this relatively small angle of attack. 

7 Conclusions 

1 The applicability of the computer programme for calculation of the pressure distribution on aerofoils and wings 
in subsonic attached flow has been demonstrated. 

2 Comparison of calculated results with results obtained by means of experiments or other calculation methods 
bas shown some of the boundaries of the family of shapes for which the semi-empirical method of ref. 1 is a reliable 
means for predicting pressure distributions on wings and aerofoils. 

3 Some examples have shown that the region of applicability of the method may be increased by making use of 
results of full linearized theory for wings and exact results for symmetrical aerofoil sections in incompressible 
flow. 

4 Correction of calculated data for the influence of the boundaly layer is approximately possible within the scope 
of the method. Results have made clear that improvement with respect to this is desirable in lifting cases. 
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Appendix 

Computer programme part I, part I1 and part 111. 

In section 5 of the report the programme is discussed 

L11, 

. klo 

L12 

:11, 

, A I ,  A 2 ,  pi; 

ab[ 0:ll; 

e l x  - 
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if t h i c h e s a  then begin z [ O , n l ] z r ~ t : ~ l : - a n : - O ;  - 
if r b r ( d 0  "1-I]) <.-I2 then begin n l m l - 1 ;  x s t r x [ o , n l ] ;  e naxtrap z; 
y O , n l ]  :&:a[ 0,nl-I I - ~ n ~ a b I  01; 
c,:-1; n2:.n2-1; IQ0]:.xat*"; IQr]:. c 

Xz.vsSUM(1, 0, A, xl t ,  i ] ) / (N  + 1); 

xl[t ,O]:-I;  k l I : - i f b o o l e ~ ( l  - 2 X t )  xsOel,a; 
rlt,  ol:=r[t, NI:-O; 

rirt .  oi: -sbi t i  + = I :  
If..&& the; im k-' 1 step 1 mtil  m [ t ]  5 rEc g : c i  x:. x t m 1  :-%&I; 

far f :- 1 atep 1 mtil h do 
=in - d [ ~ l - i ~ t , ~ l ;  d[l,h+l-i1:- z[t,6-l]; 

d[O,h+l 1:- x I t , g + i l ;  d[l.h+l 1:- z [ t , g + i l ;  
.d . 
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b s  camcent Rut 11; 
Pi, 
a l h ,  L l i l l ,  L l i l 2 ,  Cn, Cnl, Cn2, C1, C l l ,  C12, 0, CT; 
i, J, n, u, *, A, k; 

kl, UT, kl2, kl3, ki4, CIJ, sn, B, C, D, E, X w ,  Al, A2, KI, KJ2, M ,  Bv, s- 
tntegr 
e a 3  PKd, f ,  d[O:151; 

new M: 
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b& c m n t  Part-IIC 
Pi,  rad, X s t ,  tT, tR, CT, CR, h, k a t ,  L1, Lo, CY:\=, SI, Y, 9c, delT, del& an, cs, csnu, 
t en tc ,  t l l ,  t10 ,  Ccl, Cc2, yC1, yC2, d e l l ,  de12, xk, k l ,  k l l ,  xnu, A l ,  112, so l ,  
0 ,  C, D, E, 01, 02, B3, t t ,  t2, t3, t b ,  t5 ,  t6,  8, 81, 82, @, &. BS, M, m, M, M2, 
14, m, h, m, nh, m >  Aa, s, tn, Cn, cn l ,  cne, a l , t l l ,  812; 

l n t e  

= = * S n a y  - 8 i, A, &, N, M, n, k, s i ,  J ,  cmnb; 
S o d ,  Xg, yg ,  z8,  d[O:121, de3[0:5 
C~,x,zu,al ,  Ibx, 51, 52, 3, 55(0:151, terml,  term2, term3[1:2,1:h.I, preas[1:2,0:451; 

0:131, d 4 [ 0 : 6 ,  0:8], deSI0:L 0:91, 

AB: 
Bc: 

AB end; 
E ? s ;  

end; 
;;;a; - 

+ d 5 [ 3 ] )  X x k )  X tT/CT + d l [ l ]  + dl [$]  + d l [ j l  + 
cos(del2) + 2 x d3[21 x ain(delR)/cos(delRl + 

xabr(xk) + 2 xd5[2)  xxk )  x tR/CR),/~1[01/M/ehb; 
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fO  i:-0 s t e p  1 u n t i l  12 dorMdn(x8[fl, ~ ~ 1 1 1 ,  zg[ i ] ) ;  
i:=O 1 5 5 f m  n:=O Step 1 u n t i l  13 d o  de?[i, n] :=red; 

F'F i:-0 1 Z S T 6  3Z ? Z n : = O  1 ZiET 8 W d&[i,  n]:=read; 
i:-O- 1 4 % = " : - O s  1 9 E d e : l i ,  n):-read; 

X D i  N : s Z :  - -- 

CE: r*&(tT, tR, CT, CR, lm, -at, L1, LO, CY, s, a l ,  y ,  Se;delT, delR, t en tc ,  clanks); 
if cnnks > 0 t n n  r e a d d d e l l ,  de12, YCl, yC2, Ccl, Cc2) el* dellrdcl2:=,~l:-yC2:=Ccl:=Cc2:-0; 
ZFmd x Im, m : = m d  X B a t ;  I 1  >rad x Ll; u):-md x 
t l l  *Sin(Ll)/cos(Ll); tlO:=sin(ID)/cos(u)); x k r t l O  - t l l ;  

ream: 

E.%35; 

m z r e u d ;  M)2zM) X Ml; Ml:=Slrt(l - M X ) ;  AI:--l/.7/m2; A2:-.2W2; determ % 
B:-1 -ab*(=);  
kl:-sin(h)/cos(h)/M; Lm:-arctan(kl); ~ : = 2  x p i  x kl x y / c y / m  x w ;  
C z B X ( ( s - y ) / y ;  l a a q r t ( 1  + B X B ) - B - a r t ( l  + C x c ) + c ;  
B ?la X Los; C a 2  X B/pii D:=.ZC,/(l + 2%bs(Lm)/pi); 
M r b  X s X (I X M/Se; kl:-cos(B); g:-cor(ln); m:=ain(B); 
m : - 1 - . 5 x ( 1  + C ) / ( ( l  + ( 2 x e J A n ) ~ Z ) ~ D ) ;  nC8:=.5 x ( 1 - C ) .  D : = p i x r a ;  
m s a I n ( D ) / ( l  - D X (cos(Dl/ain(D) - cos(p i  x nQ.]/ain(pi mm)))/kl; 

t h 3 C u c t a n ( p i / ; a ) / p i ;  if ttS < 0 t b n  t l a : = l  + tb; 

& : = s l r t ( l - ( M t x g l ) , + Z ) ;  g j : = m x k l x & ;  
t3:=g1 x gl + $1 x $1; t 5 ' r g l  x 62 + $1 x #; t6:-# x 

*:.2 x Pi x sn x (1 - In(M x t e n t c ) / p i )  - I n ( ( 1  + sn)/ (1  - an)); 
g :.g/Ml; gl zip; g2:.Tx g;- 
prad[ol:-tis; fO  i r l  XP 1 untilT!~prm[il:s(i + t i s )  x p d [ i  - i ] / ( i  + 1 

+ g5 x a; 

P h :  D r l  + ((=[a1 + si X SS[aI)/B emu) 6 2 ;  kll:=si X D  4 (:5 -m) ;  
C:=BZMl;kll:-kll*aol X D  - th); 
termlI i ,  a l : - ( t l  + (1 - K2 x M )  x (D - 1 )  x sn x sn + k l l  x ( te + tJ x k l l ) ) / ~ ;  
*mPIi.  a1:=2 X'C x ( t 4  + . t 5  x k l l ) / n  tem?[i, a] :=t6 x c  xC/n 
i:-2 si:-, 

e z n  - cycLe, 

Ca:ol; sn:-O;int; B e D ;  
raslf: k = r e d ;  sl:--d; if b O  then 112r rad x a 1  else 

Cnl :I B; a l F =  0; a m =  .05; la 1 S c n : ~  a1 e; 
i m p r O v b 1 :  

cs:-coa(al2); w:=s in(a le ) ;  i n t ;  c&:-D; 
if k = 0 V k - 1 A rba(Cn - Cn2) < .ooOO1 then p& cmple ted ;  
Cr*(sl2 - a l l )  x (Cn -Cnl)/(Cn2 -Cnl )  . a T  
cn1:- cn2; a l l  :.ale; *12:-1; e improM1; 
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TABLE I 

Data Symbol Description 

I 
n, 
n, 

X.. 

2 ° C  

a, 

extra 

degree of polynomial in the contour representation 
number of points at which upper surface or thickness is specified 
number of paints at which lower surface or camber is specified 
(n, an, 31 + I )  
x coordinate of section leading edge point axis system of 
2 coordinate of section leading edge point l table 2 
fi; p bring radius of curvature of thickness distribution at lead- 
ing edge ( p  in parts a1 c) 
value 0 for best polynomial fit irrespective ofderivatives 
value 1. best polynomial fit including requirement with regard 10 
derivatives 
value 0. values on table 2 are coordinates of upper and lower 

value I, values on table 2 are coordinates of thickness and camber 
value 0 derivatives at trailing edge arc determined by programme 
value I derivatives at trailing edge ace given with respect to the 

' . 

thick- 
ness surface 

der 

chordline 
derivative of upper surface or thickness at tr. e 
derivative of lower surface or camber at tr. e. 

1 only if 

&=I 

ab0 
ah1 

only if 
extra= I 

,,,U 

m l  
h 
F 
J j = O  programme determines derivatives 

c length of local chard 

number ofpaints in which derivative ol upper surface or thickness 
is used (trailing edge point excluded) 
as mO but with respect lo lower surface or camber 
2h+ 1 points used in procedure dif 
weight factor defined in section 3 

j = 1 derivatives are given on table 3 

Notes: I <  15 
abOand ab1 bothfO 

Table I, input data for least squares approximation (part 1). 

TABLE 2 

Data Symbol Description 
xo, 20,  - if thickness= I xD, zo refer to thickness 

- ifthickness=O xo, io refer to upper surface 

- if thickness = 1 1,. I, refer to camber 

- if thickness = O  x,, i, refer to lower surface 

distribution ; i = 0, (1) . . . n , - I 

XC, ZL 
distribution ; i = O ,  (1) . . , n, - I 

Note: n, 2n2 2 2 .  
ifthicknessvalueI.x,",~, = c a n d  2,., =O;;, ",-, #O 
ifthicknessvalue0, z o  ,,,., 

Table 2, input data for least squarer approximation (part 1) 

TABLE 3 
(only if derivatives are used for determination of contour approximatinn) 

Data Symbol Description 

9 I ; ,  ilj=O, only y is given 
if j =  1, g and 1;- are given (2;. is the derivative of zo at x I ;  g is the 
ordinal number of the x value in table 2) 

9 .  1;. ifj=O, only g is given 
i f j = l ,  g and 2;. are given (2;- is the derivative of I! at x I ;  y is the 
ordinal number of the x value in table 2) 

Note: derivative at trailing edge excluded 
Table 3, input data for least squares approximation (part 1) 
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TABLE 4 

Data Symbol Description 

N 

XI 

number af points where the pressure on both surfaces have to be 
calculated 
points on the chord where the pressure has to be calculated 
Y = 1 (1) ... N (in parts of c) 

Note:O<x.<l 

Table 4, input data for least squares approximation (part I). 

TABLE 5 

Data Symbol Description 

MO Mach 
k, 
magnitude 

choice parameter (see flow diagram fig. 3) 
value of a#. C ,  or C, (L I~ in degrees) 
choice parameter (see now diagram fig. 3) I k2 I 

Table 5 ,  Input data for C ,  calculation on two dimensional aerofoil (part 11). 

TABLE 6 

Data Symbol Description 

tT, l T  

tR> 1. 
CT, C, 
CR. C, 
Lm, A. 
Last, A,-.. 
L L A ,  
LO. A, 

CY. 4 

SI, s' 
Y 
Se 
del T. 6, 
del R, 6, 
tentc, IO tic 
cranks 

maximum section thickness a t  tip (dimensional) 
maximum section thickness at root (dimensional) 
tip chord (dimensional) 
root chord (dimensional) 
mean sween (degrees) 
sweep at max thickness position (degrees) 
sweep of trailing edge (degrees) 
sweep 01 leading edge (degrees) 
local chord (dimensional) 
semi-span (dimensional) 
extended semi-span (dimensional) 
distance to root (dimensional) 
wing area (dimensional) 
surface slope at tip in span direction (radians) 
surface slope at root in span direction (radians) 
local value of 10 tic 
choice parameter value I or 0 

only if del 1. 6, 
cranks del 2, 6, 
value 1 Y C l . Y - - Y c ,  

Yc2>Y-Y,, 
CCI, c,, 
ccz, c,, 
MO 
k, 

, magnitude 

I k2 I 

strength of thickness crank 1 (radians) 
strength of thickness crank 2 (radians) 
distance from crank 1 (dimensional) 
distance lrom crank 2 (dimensional) 
chard at crank 1 (dimensional) 
chard at crank 2 (dimensional) 

machnumber 
choice parameter (see flow diagram fig. 4) 
value a. or C.  (a, in degrees) 
choice parameter (see flow diagram fig. 4) 

Table 6 Input data for C ,  calculation on three dimensional wing (part 111) 
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TABLE 7 

Comparison of calculated pressure distributions on a symmetrical non-lifting 
10.37% thick Joukowski section MO=O 

- 
x I; 10' , A r .  10' C, exact C,, present method 

+ . m 1  
t . I N 0 8  
+ .00022 
+ ,00042 
+ .IN86 
+ .00146 
+ ,00221 
+ .XI311 
+ ,00417 
+ ,00538 
+ ,00657 
+ ,00827 
+ ,30994 
+ ,01177 
+ .01375 
+ ,01588 
t ,01816 
+ ,02059 
+ ,03079 
+ .04790 
+ ,06868 
+ ,09272 
+ .I2011 
+ ,15073 
+ ,18422 
+ ,22042 
+ ,25907 
+ . 2 w 1  
+ ,34266 

+ ,43254 
+ ,47899 
t ,52594 
+ ,57299 
+ .61973 
+ ,66570 
+ ,71047 
+ ,75357 
+ ,79456 
+ ,83295 
+ ,86833 
+ ,90024 
+ ,92829 
+ ,95212 
+ ,97679 
+ ,98962 

t . 3 m 8  

__ 

,047 
,140 
,233 
.326 
,465 
,324 
,742 
,880 

1.017 
1.154 
1.289 
1.424 
1.557 
1.690 
1.821 
1.951 
2.079 
2.206 
2.657 
3.228 
3.740 
4.184 
4.553 
4.840 
5.043 
5.158 
5.187 
5.131 
4.994 
4.784 
4,508 
4.177 
3.801 
3.393 
2.967 
2.535 
2.111 
1.707 
1.334 
1.002 
,716 
,480 
,297 
,164 
.OS6 
,017 

- .o 
t .1 
+ .I 
+ .2 
+ .3 
t .4 
+ .5 
+ .6 
t .6 
t .6 
+ .6 
+ .5 
+ .4 
+ .3 
+ .1 
- .0 
- .1 
- .3 
- .5 
- .2 
-1.5 
+ 1.2 
+ .9 
+ . I  
- .7 
- .7 
+ .0 
+ .6 
+ .5 
- .1 
- .7 
- .4 
+ .3 
+ :7 
+ .3 
- .5 
- .8 
+ .o 
+ .9 
+ .7 
- .5 
-1.2 
- .4 
t .2 
+ .2 
t .3 

t ,998 
+ .981 
+ ,949 
t ,903 
t ,814 
t ,710 
+ ,598 
+ ,485 
+ ,378 
+ ,279 
+ ,188 
+ ,108 
+ ,036 
- ,026 

- ,129 
- ,171 
- ,208 
- .305 
- ,379 
- .413 
- A24 
- ,422 
- ,409 
- ,390 
- ,366 
- ,339 
- ,309 
- ,277 
- ,244 
- ,210 
- ,176 
- ,143 
- ,110 
- ,078 
- ,947 
- 018 
+ ,010 
+ .035 
t ,059 
+ ,080 
+ ,098 
+ ,114 
t .I27 
+ ,141 
+ ,148 

- ,081 

+ ,998 
+ ,981 
t ,949 
t ,903 
t ,815 
t ,710 
+ ,598 
+ ,487 
+ ,380 
+ .281 
+ ,190 
+ .I10 
+ ,038 
- ,025 
- ,080 
- ,128 
- .I70 
- ,207 
- ,306 
- ,379 
- ,412 
- ,423 
- ,420 
- ,409 
- ,390 
- ,366 
- ,338 
- .3m 
- ,276 
- ,244 
- .210 
- ,176 
- .I42 
- ,109 
- .077 
- ,047 
- ,018 
i ,010 
+ ,036 
+ .OS9 
+ ,079 
+ ,097 
+ ,114 
+ .I29 
+ ,143 
+ .I48 
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TABLE 8 Comparison of calculated pressure distributions on a cambered Karman-Trefltz section (camber 3y0 and thickness 12%) MO=fl. 

x = f l O  

1 c, c, 
exact eq. (4) 

+ ,00078 
+ ,00635 
+ 01705 
+ .03262 
+ ,05280 
+ ,07731 
+ ,10587 

+ .I7390 
+ ,21271 
+ ,25426 
+ ,29816 
+ ,34403 
+ ,39148 
+ ,44007 

+ . m i 7  

+ ,48938 
+ ,53898 
+ ,58842 
+ ,63723 
+ ,68495 
+ ,73111 
+ ,77523 
+ ,81682 
+ ,85540 

+ ,92156 
+ .94817 
+ ,96982 
+ ,98603 
+- ,99629 

+ .8904n 

cr=6' 

CQ" CO" CP" c,, c,, CD, 
exact eq. (4) eq. (61) exact eq. (4) eq. (61) 

+ ,387 
+1.091 

1.828 

3.342 
2.585 

4.082 
4.785 
5.432 
6.008 
6.500 
6.884 
7.164 
1.326 
7.369 
7.291 
7.095 

6.379 

5.310 

4.023 
3.349 

2.053 
1.475 
,972 
,561 
,255 
,066 

6.788 

5.881 

4.684 

2.685 

12.5 
-2.0 
-1.1 
+ .9 
+ 1.1 
- .2 
- .9 
- .4 
+ .5 
+ .6 
- .0 
- .5 
- .4 
+ .2 
+ .5 
+ .1 
- .4 
- .4 
+ .I 
+ .5 
+ .3 
- .3 
- .5 
- .2 
+ .6 
+ .7 
- .2 
-1.6 
-2.0 
- .2 

10.787 
+0.254 
-0.022 
-0.173 
-0.270 
-0.339 
-0.391 

-0.455 
-0.473 

-0.428 

-0.482 
-0.483 
-0.477 
-0.464 
-0.444 
-0.419 

-0.352 
-0.313 
-0.270 
-0.224 
-0.175 
-0.125 
-0.073 
-0.019 
+0.036 
+0.092 
+0.153 
+0.22l 
+0.311 

-0.388 

+ ,823 
+ ,299 
+ ,020 
- ,134 
- .235 
- ,310 
- ,365 
- .4w 
- ,433 
- ,452 
- ,462 
- ,465 
- ,459 
- ,446 
- ,427 
- ,403 
- ,373 
- ,338 
- ,298 
- ,255 
- ,209 
- ,161 
- ,111 
- .058 
- ,004 
+ ,052 
+ ,109 
+ .170 
+ ,240 
+ ,340 

+ . m 5 9  

+ ,01640 
+ .w5n4 

+ ,03206 
+ ,05259 
+ ,07776 
+ ,10729 

+ .17823 
+ ,21895 

+ ,14089 

+ ,26268 
+ .josOo 

+ ,45898 

+ .45748 
+ ,40763 

+ .51101 
+ S6319 
+ ,61497 
+ ,66578 
+ .71505 
+ ,76221 
+ ,80665 

+ ,88516 

+ .94615 

+ ,98565 
+ ,99622 

+ ,84783 

+ ,91810 

+ ,96882 

- ,282 
- ,925 
- 1.547 
-2.142 
-2.700 
-3.208 
-3.655 
-4.033 
-4.333 
-4.550 

-4.718 
-4.671 
-4.541 
-4.334 
-4.059 
-3.727 
-.3.350 
-2.943 
-2.519 
- 2.095 

- 1.299 
- ,953 
- ,654 
- ,410 
- ,224 
- ,096 
- ,023 

-4.678 

- 1.684 

- 1.9 
+3.2 
t 1 . 6  
- 1.5 
- 1.6 
+ .3 

+ .5 
- .9 
- .9 
+ .2 
+ .9 
+ .4 
- .6 
- .I 
+ .1 

+ .4 
- .6 

+ .I 
+ 1.0 
+ .5 
- .9 
- 1.4 
+ .2 
+2.6 
+3.l 
+ .2 

f 1 . 4  

+ .n 

- .n 

+0.866 + ,848 
+0.296 + ,262 
+0.017 - .om 
-0.108 - ,122 

-0.210 - .223 
-0.231 - ,243 
-0.240 - ,251 
-0.242 - .25l 
-0.237 - ,245 
-0.228 - ,235 
-0.213 - ,221 
-0.196 - .202 
-0.175 - ,181 
-0.152 - ,157 
-0.127 - ,132 
-0.100 - .IO5 
-0.072 - ,076 
-0.043 - .046 
-0.013 - ,016 
+0.017 + ,014 

+0.078 + .077 
+0.109 + ,109 
f0.142 + ,143 
10.175 + ,177 
+0.213 + .214 
+0.259 + ,261 
+ o m  + ,341 

-0.173 - ,185 

+ o . w  ' + ,045 

0 . m 5  
0.00010 
0.ooO50 
0.00100 
O.CQ404oO 
0.00900 
0.02oM) 
0.04Wo 
0.0XooO 
0. I 2 W  
0.18000 
0.25000 
0.31006 
0.37000 
0.43000 
0.49wo 
0.57000 
0.64000 
0.70000 
0.76000 
0.82000 
o.8nooo 
0.94KN.l 

+0.987 
+0.972 
+0.871 
+0.747 
+0.226 

-0.421 
-0.419 
-0.321 
-0.243 
-0.222 
-0.221 
-0.239 
-0.261 
-0.367 
-0.252 
-0.213 
-0.164 
-0.106 
-0.051 
-0.009 
+0.033 
+0.086 

-0.182 

10.981 
+0.964 

+0.711 
, +Ill56 

-0.256 

+ o . w  

-0.468 
-0.448 
-0.34s 
-0.275 
-0.228 
-0.224 
-0.243 
-0.259 
-0.262 
-0.249 
-0.210 
-0.157 
-0.103 
-0.050 
-0.006 
+0.034 
+0.089 

-1.319 
- 1.474 
-2.101 
-2.583 
-3.506 
-3.506 
-2.847 
-2.042 
- 1.317 
-1.011 
-0.784 
-0.668 
-0.625 
-0.599 
-0.562 
-0.506 
-0.419 
-0.331 
-0.241 
-0.158 
-0.092 
+0.026 
+0.096 

- 1.835 
-1.921 
-2.439 
-2.842 
- 3.7 IO 
-3.654 
-2.904 
-2.048 
-1.332 
-1.016 
-0.781 
-0.666 
-0.624 

-0.552 
-0.499 
-0.412 
-0.320 
-0.236 
-0.156 

-0.025 
+0.055 

-0.589 

-0.088 

- 1.012 
-1.251 

-2.358 
- 3.322 
-3.381 
-2.780 
- 1.986 

-0.965 
-0.773 
-0.661 
-0.620 
-0.591 
-0.547 
-0.499 
-0.415 
-0.327 
-0.239 
-0.157 
-0.091 
-0.026 
t0.053 

- 1.836 

- 1.298 

-0.663 
-0.543 
-0.078 
+0.231 
+0.868 
+0.997 

+0.595 
+0.416 
+0.330 
1-0.252 
+0.179 
+0.117 
+0.061 
+0.022 
t0.003 
+ 0. 
+0.015 
+0.045 
+0.075 
+0.094 
+0.115 
+0.179 

t 0.828 

-0.985 
-0.773 
-0.140 
+a207 
+0.882 
+a995 
+0.812 

+0.397 
+0.317 
+0.245 
+0.172 
+0.111 
+0.059 
+0.023 
+O.W4 
+0.001 
+0.019 
+0.045 
+a072 
1-0.094 
+0.112 
+0.142 

+o.sni 

-0.409 
-0.366 
fO.060 
+0.307 
+0.892 
+0.995 
+0m8 
+ a 5 8 9  

+0.248 

+0.406 
+0.334 

c0.175 
+0.113 
+0.060 
t 0.027 
+0.004 
-0.002 
+0.013 
+0.m2 
f0.071 
+0.090 
+0.111 
+0.140 
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- Fig. 3 Flow diagram of the input of part 11. 
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i= I ( I )  ... n, - 1 for index 0 

i = l ( l )  ... n,- l for indcrI  

i-l(1) ... I 

i = l ( l )  ... f 

v=l ( l )  ... N 

.Fig. 5 Output ofprogramme paR I (for notation see list ofsymbols). 

Notes 
If thickness and camber have been given on input table I then in the 
first columns index 0 refers to the thickness distribution and index 1 
refers to the camber distribution. 

If upper and lower surface coordinates have been given on table 1 
then index 0 and 1 refer to upper and lower surface respectively. 
Of the last row of data presentd above for x. = 1 only the values of 

z., I, and 2 are used in further computation. The values of the 

integrals in that row are meaningless when c=e. 

position except for the  value^ ofn.  and I, which belong to x,=0. 

d i  
dx 

The first row of the last block refers lo the maximum thickness 

Fig. 7 Calculaled pressure dislribution on a 10% thick RAE 101 
section. 

Fig. 8 Calculated and measured pressures on a 10% thick RAE 101 
section. 
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Fig. 13 Measured and calculated pressure distributions on a sym- 
metrical wing mounted on a circular body, a=O (ret IO). 

Fig. 14 Calculated and measured pressure distribution on a wing 
in presence ofa body (low wing configuration). 
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The propagation of elastic waves 
in circular cylindrical shells 

of sandwich-type 

by 

J. van der Vooren 

Summary 

The differential equations are derived. accounting for the elfects of shear and rotaiory inertia. Numerical solutions are given for a shell which 

For low-. respectively high frequencies. the theory is analytically evaluatcd as far as possible in order to obtain simplified expressions for the 
is representativc far an actual aircraft. 

calculation of propagation speeds. Their validity is checked numerically. 

This investigation has becn periormcd under contract with the Netherlands Aircraft Development Board (NIV). 
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List of symbols 

x, p. I 

t 

axial-, circumferential- and radial co- 
ordinates, see fig. 1 
time co-ordinate, derivatives may be in- 
dicated bya flux 
axial-, circumferential- and radial dis- 
placements in the neutral plane of the 
shell, see fig. 1 
axial- and circumferential displacements 
at arbitrary r-value. see figs 2.3 
change in slope of the normal to the 
faces in the xz- and the pz-plane respec- 
tively 
average transverse shear angles of the 
shell in the xz- and the pz-plane respec- 
tively 

u, 0, w 

uz3 02 

Bxz, p,, 

L. Yulr 



transverse shear angle of the shell in the 
cpz-plane for arbitrary z-value 
thickness of sandwich shell minus the 
thickness of one face 
thickness of one face 
radius of the circular cylindrical shell 
with respect to the neutral plane 
Poisson’s ratio of the material of the 
faces 
Youngs modulus of the material of the 
faces 
shear moduli of the honeycomb core in 
the xz- and the qz-plane respectively 

-~ - 2Eh normal stiffness of the sand- 
1-v”  

Ec’ h 
wich per unit length 

- -~ bending stiffness of the 

sandwich per unit length 
= G,c, G,,c, shear stiffness of the core 
in the xz- and cpz-plane respectively 

2(1 -v2)’ 

forces and moments caused by elastic 
effects, defined in fig. 4 

m/ 
m, 

mass per unit area of one face 
mass per unit area of one glue layer 
between face and core 

1 Introduction 

mass of the core per unit area 
total mass of the shell per unit area, see 
eq. (B.6) 
= &m,c’+f(mf+m,)c2, see eq. (8.7) 

inertia forces and moments, defined in 
1 fig. 4 

= 2nf. angular frequency 
frequency at which there occurs a two- 
dimensional resonance 
frequency 
half wave length 
propagation speed of elastic waves 
propagation speed ofnearly longitudinal 
waves in the cylindrical shell in case the 
contraction in the direction of the wave 
front is not restrained. This motion only 
exists at very low frequencies 
propagation speed of longitudinal waves 
in a flat panel in case the contraction in 
the direction of the wave front is fully 
restrained 
number of waves in circumferential 
direction 
square matrix with elements u i j ,  defined 
in table 1 
determinant value of square matrix [u i j ]  
zero column matrix 
quantity of order q.  

In studies concerning the sound transmitting properties of circular cylindrical shells the radial motions which 
propagate in the direction of the shell axis are of primary interest (ref. 4). So-called coincidence occurs when the 
velocity of the sound waves along the cylinder equals the propagation speed of free travelling elastic flexural waves 
in its wall. The transmission loss then shows a strong dip and the level of the transmitted sound can be almost as 
high as that of the incident sound. In order to know whether or not coincidences are to be expected it is essential 
that plots of the propagation speed versus frequency are available for the various partial waves of different circum- 
ferential shape. 

The present paper discusses the latter subject in case of sandwich-type shells. 

2 Distortions 

For sandwiches where the stiffnesses of the core in the plane of the shell are very small with respect to those of 
the faces, Libove and Batdorf (ref. 1) state that the assumption of plane cross sections remaining plane in the deformed 
state, as far as the core is concerned, is practically correct. Because the condition mentioned holds for honeycomb 
cores, the axial- and circumferential displacements 11, and u, (figs 2, 3) in the core may be given by the expressions 

and 

In (2.1), (2.2), p,, and p,, respectively represent the change in slope of the normal to the faces in the xz- and the 
cpz-plane and u, u (figs 1, 2, 3) are the displacements in the neutral plane (z=O). Since the faces are thin compared 
with the thickness of the shell they are assumed to act as membranes and the validity of eqs (Z.l), (2.2) may be 
extended over them. 
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i' 

Fig. I .  Ca-ordinate system and positive directions ofdisplacements. Fig. 2. Cross-section of shell in p i  plane 

d x  

Fig. 3. Cross-section of shell in x-z plane. 

Deflections w in radial direction will be taken independent of z. The shear angle of the core in the xz-plane may 
now be found from the relation 

au, aw aw + - = p,, + - ax az ax YX% = - 

and is apparently constant throughout the thickness. 
In the qz-plane the shear angle reads 

av, 1 aw V* 

az a + z a q  a+z  
y&) = - + - - - ~ 

aw v 
8,z + - 

2 
1 + -  

a 
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For large values of the cylinder radius “a”, which is the case for the present analysis. eq. (2.4) may readily be simpli- 
fied into 

which differs only little from the average value 

(2.6) 
aw 

aaq  a Yvz = P,, + - - - ’ 

Elimination ofp,, and pwz from (2.1), (2 .2) ,  using the expressions (2.3), (2.6) then yields 

3 Loading of a shell element 

In fig. 4 the loading of an infinitesimal shell element is shown. 
The forces and moments caused by elastic effects are defined per unit length, while mass forces (stemming from 

the effect of inertia) will be given per unit area, both with reference to the neutral plane. 

i 
\ 

Fig. 4. Loading of an infinitesimal shell element, 

3.1 Forces and moments caused hy elastic effects 
Starting from the assumptions mentioned in section 2, appendix A gives the derivation of expressions for the 

loading caused by elastic effects. An additional assumption is that the core carries transverse shear stresses only. 
Resultant normal forces N,, N ,  and shear forces in the qx-plane are obtained in the form, 

(3.1) 
au av cz a z w  cz ay,, 
i?.x aaq a 4a ax2 40 ax 

N, = A ( -  + Y - + Y - - - - + - - 



where 

c 

(3.5) 

Transverse shear forces may under the present assumptions be assigned to transverse shear of the core only, thus 

Q, = Sxz?J,, (3.6) 

Q, = S,, yer , (3.7) 
and 

where the shear stiffnesses S,, and S,, may be related to the corresponding shear moduli G,, and G,, by the simple 
expressions 

s,, = GI, c , (3.8) 
s,, = G,,c . (3.9) 

The resultant bending- and twisting moments read 

with 

(3.10) 

(3.11) 

Ec2 h E = -  
2(1 - v 2 )  

(3.14) 

3.2 Inertia forces and moments 

in section 2, the inertia forces in x-, q- and z-direction read respectively 
Appendix B gives the derivation of expressions for the inertia loading. Accounting for the assumptions mentioned 

(3.15) 

(3.16) 

z = -mw, (3.17) 

where m (see eq. (B.6)) is the mass of the shell and I is a quantity defined in eq. (B.7) which equals the moment of 
inertia with respect to rotation. Both quantities are defined per unit area. 

Rotatory inertia effects are accounted for by the moments 

(3.18) aw 

l 
and 

(3.19) 

4 huilibrium conditions 

The equilibrium ofan infinitesimal shell element (see fig. 4) yields the conditions 
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From these six equations the last requirement (4.6) is always satisfied and therefore of no further importance, see 
appendix A. 

5 Propagation of axisymmelric waves 

When the displacements are axisymmetric all derivatives with respect to rp vanish. Furthermore it may be shown 
that no coupling exists between the set of distortions u, w, yxz and the set of distortions u, ymr. The latter set is of 
little interest from an acoustical point of view because radial deflections do not occur, but for sake of completeness 
they will be briefly discussed in appendix C .  In this sections, however, attention will only be paid to waves associated 
with u, w and y r Z .  

The expressions for the loading caused by elastic effects and the inertia loading (section 3) then reduce to 

(5.7) 

Y = o ,  
Z = - m w .  

m, = 0 ,  

while the equilibrium conditions (section 4) become 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 



I 

Differential equations for the displacements u, w and the transverse shear angle yxz may now be obtained by 
substitution of(5.1), (5.2), (5.4), (5.6), (5.9), (5.11) and (5.13) into (5.14)-(5.16). They read 

(5.17) 
a2 m a2 

axz A a t 2  

By assuming distortions in the form 

(5.18) 

(5.19) 

(5.20) 

where C ,  is the propagation speed ofelastic waves and w is the angular frequency, the differential equations yield the 
linear system 

(5.22) 

The above system only has a non-zero solution if the determinant of the coefficient-matrix (the unknowns being 

In order to explain the behaviour of axisymmetric waves this requirement is evaluated into 
U ,  W and rxz) is zero. 

(5.24) 

1 
To make thc above cxpressioii managcablc from an analytical point of view, the coefficients of each power of - 

and (or) o wcre simplified during the derivation by neglecting all terms that are small of order - When C, tends 
to infinity the characteristic equation (5.24) reduces to 

CZ cE 

a2 . 

and hence C ,  has asymptotic values at 

and 

(5.25) 

(5.26) 

(5.27) 
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To (5.26) belongs an eigenvector U=O, W, r,,=O. This mode represents radial expansion independent of the 

To (5.27) belongs an eigenvector U =0, W=O, rxz. This mode represents a shear vibration in x-direction. 
It be remarked that CE= m means an infinite wavelength, i.e. all points in x-direction are in phase, which indicates 

x(length)-direction of the cylinder. 

a two-dimensional resonance. 

5.1 Low-frequeiicy behaurour 

approximated by 
When the frequency is low, i.e. if the fourth power term in (5.24) may be neglected, the characteristic equation is 

Rearrangement of this equation in powers of gives 
C€ 

(5.29) 

1 .  
Since the coefficient of ~ is small (of order w’) the only solution for C i  that is positive for low frequencies may c: 

be approximated by r 

c; = (5.30) 
m 

a’ B A B  
When 0-0, C, tends to 

c,= c, = JT A ( l - v 2 )  (5.31) 

The displacements are mainly in axial direction (u) .  Hence the wave motion is very nearly longitudinal. Moreover, 
it can he verified that the contraction in the direction of the wave front is not restrained. Obviously, the same result 
for C E  could directly be obtained from eq. (3.28) by putting o = O .  

and - - in the numerator of (5.30) are of the same order. 

1 m  
From the eqs (3.9, (3.14), (B.6) and (8.7) it follows that B=O(Ac2),  I =O(mc’). Hence, the quantities - I I -  u2 A ( l -  v ’ )  

u2 B 
Furthermore, if 

(5.32) 

which certainly is the case for the sandwich presently investigated, the expression (5.30) for C i  can he further simpli- 
fied into 

1 m 
W’ _ -  

(1-v’)A u2 A ( 1 - v 2 )  
1 m  

u’ A CU’ 

c; = 
_ - -  m 

(5.33) 

and apparently the low frequency behaviour of axisymmetric waves is practically independent of the shear stiffness 

Both in (5.30) and (5.33) the coefficient of u2 in the numerator is only little greater than the corresponding one 
in the denominator. Therefore, the value of C, will decrease only very slowly with increasing frequency as long as 

s,:. 
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and 

which frequencies differ only little, the propagation speed C ,  will show a sudden drop at approximately (see eq. (5.31)) 

(5.34) 

In ref. 4 the environment of this frequency is called the transition region. 

5.2 High-frequency behauiour 
’’ ‘In case of high frequencies, i.e. if the’first term of the characteristic equation (5.24) is negligible, there may be put 

When the expression (5.32) holds and the wavelength, which is proportional to C,/w, is small with respect to the 
cylinder radius “a”, the expression (5.35)may fuither be simplified into 

(5.36) 

Of course this expression is not valid when C, tends to infinity because then the wavelength would also become 

One solution for C, now follows directly, i.e. 
infinite. 

(5.37) 
m c,, = c, = Jz,  

which equals the propagation speed of longitudinal waves in a flat panel in case the contraction in the direction 
of the wave front is fully restrained. 

The other two solutions are to be obtained from 

(5.38) 

which is the characteristic equation For the flat panel when the displacements u in the neutral plane are taken zero. 
After rearrangement in powers of l/C,, 

the further solutions for C ,  may be expressed as 

and 

(5.39) 

(5.40) 

(5.41) 

I I n  this region or values o f w  !he neglectcd terms in w4 (compare (5.24) and (5 .28 ) )  play their role. They ensure that C: remains positive. 
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The solution for C,, in (5.40) is always real, which can be seen by rewriting in the form 

(5.42) 

When o-m, C,, tends to 

c,, = 

and the motion ofthe shell isdue to transverse shear yxz .  
Furthermore it may be observed that C,,, according to (5.41), becomes infinite at 

(5.43) 

(5.44) 

and is only real for frequencies above this value. Notwithstanding the fact that the expression (5.41) as a high- 
frequency approximation for the cylindrical shell is no longer valid in the vicinity of oo5 (large values of C ,  imply 
large values of the wavelength) the coincidence of & and the asymptote O J , ~  of (5.27) indicates to which branch 
of C, this asymptote belongs. 

Rewriting of (5.41) in the form 

finally shows that C,, has the limiting value 

(5.45) 

(5.46) 

when w--rco. In this case the motion of the shell is again due to transverse shear yxz  only, compare eq. (5.43). This 
same phenomenon occurs with non-axisymmetric waves and is explained in the next section. 

6 Propagation of non-axisymmetric waves 

In this case, substitution of the expressions for the elastic- and inertia-loading (sections 3.1 and 3.2)into the equili- 
brium conditions (4.1), (4.5) gives the differential equations 

j u +  1 a2 I - v  a2 m+I/a2 a2 
-7+----- a2 aV 2 ax2 A at2 

I a cz a3 I - ~  cz a 3  1 I a3 

2 4a2 ax2arp a2 A aVat 
+ + ~ - ,jw+ ( aZ aP 4a4 a'p3 
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I a 2  I - ~  I a* a 3  I a 3  

When the distortions are assumed in the form 

(6.6) 

where n is an integer (n = 1, 2, 3, . . .),the differential equations yield the system oflinear equations 

[Ujj]Z = 0 (6.7) 

where Z is a column matrix with elements U ,  V, W, r,, and r,,, 0 is a zero column matrix and the square matrix 
[arj] is defined in table 1. 

Since this system is homogeneous it only has a non-zero solution if the determinant of the coefficient matrix 
Iqj, vanishes. 

Hence, the propagation speed C, may for each value ofn be solved from the requirement 

laijl = 0 . (6.8) 

Analogous to the case of axisymmetric waves the frequencies w where C, approaches infinity will first be deter- 
mined. Because at  these asymptotes the wavelength is infinite, all points in x-direction are in phase, and thus these 
asymptotes represent the two-dimensional resonance frequencies. 

Substitution of 1/C,=O in (6.8) then gives the equation (see also table 1) 

2 4a Y o A  
n n n 

n n 
A 

0 n 

0 n 

n n n 

(6.9) 
which can he separated into two requirements, viz. 

I I =o (6.10) 
I - V I  n I 1 - v  n s,, I I {M;)’+t$””I \ - T ( a )  - B f R W 2 1  I 

and 
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(6.11) 

When in the coeflicients of each power of w all terms that are small of order c2/a2 are neglected, the expression 
(6.10) may be rewritten as 

This yields the asymptotes 

w"2 = 2 
U 

and 

(6.12) 

(6.13) 

(6.14) 

At wn2 the motion of the shell mainly consists of axial displacements u and at wn5 of transverse shear yxz .  
When n=O,w,,yields thevaluew,,ofeq.(5.27). 
Generally, the further asymptotes following from (6.11) must be solved numerically due to the complex character 

of the determinant involved. However, for a few special cases some results may be obtained from analytical means. 
Using the same approximations as in the derivation of (6.12) the requirement (6.1 1) may be rewritten as 

which. for large values of n, may be approxlmated by 

Hence, 

(6.17) 

while wnj and o n , ( n  + 1) may be solved by equating the second term within brackets of (6.16) to zero. Another case 
that can be solved occurs when n = 1. The cubic equation (6.15) then reduces to 

S m2 
B A  

and since the last term is negligible (compare with 3 w')  the solutions become with fair accuracy 

(6.18) 

(6.19) 





bijl = 

I - v  s,, 114 _-  I - v u2 s~:) (y) =~ 

2 A a 4  2 a 2  + -  B 

a , ,  a l l  a13 0 a , ,  

a Z 1  a 2 2  u Z 3  a24 

%1 a 3 1  a33  a34 a 3 s  = 0 (6.20) 
0 a42 a43 a44 a4s 

as ,  %2 as3 as4 as,  

(6.21) 

During the derivation of this equation terms small oforder cZ/a2 were again neglected. 
Since this requirement can only be satisfied for n= 1, it is obvious that elastic waves as assumed in (6.6) cannot 

exist for such extremely low frequencies in case n> 1. 
A more accurate low frequency approximation for the characteristic equation than (6.21), which should include 

a few higher frequency powers, can hardly be obtained in an analytically manageable form because this would 
require the evaluation of all terms in table 2. 

In case n = 1, however, a low-frequency approximation can be suggested along quite different lines. Ref. 4 mentions 
the fact that, when the effect of transverse shear is neglected, the cylinder behaves as a uniform beam when the fre- 
quency is low. 

When this statement is extended to the present configuration, where transverse shear is certainly of importance, 
the following.analysis becomes possible. By writing the distortions in the form 

u =i icos 'p ,  

u =Csin 'p ,  

w =M'cos'p, 

Y . ~  = V,, sin 'P , 

Y,, = VI, cos 'p 1 

the forces and moments N,, T,. Qx, M, and Mx9 become from (3.1), (3.3), (3.6), (3.10) and (3.12) 

I -  V C O S ' ~ = N ~ C O S ' ~ ,  

(6.22) 

(6.23) 

sin 'p = T,, sin 'p . (6.24) ) -  I - ~  ii I - ~  a6 I - ~  c z  aic I - ) ,  c 2  aYBI 
r9 - ( 2 a 2 ax 2 4a2 ax 2 4~ ax 

T - A  - - -+- -+-- -+- - -  

a Z w  a?,: v . - 
- - + - 2  + - t - y e z  +  COS'^= M, COS 'p, ax2 a2 ax a 

(6.26) 
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I - ~  2 aw I - ~  r,, I - ~  a?,, i - v  2 a5 
2 a a x  2 a 2 ax 2 a ax M,,= B (- +- -+- - -  sin 'p = MXq sin 'p (6.27) 

The inertia loading, see (3.15) . . . (3.19) is rewritten into 

cos 'p =x cos $7, (6.28) 

sin 'p = Psin 'p , (6.29) 

(6.30) 

(6.31) 

a a  

z = { -mG} cos 'p = z cos 'p , 

a 
sin 'p =m, sin q , 

m,=-1  cos'p=iiiqcos'p.  (6.32) 

I 

LOADING OFA CYLINDER-CROSS SECTION CAUSED 
BY ELASTIC EFFECTS INERTIA LOADING O F A  CYLINDER ELEMENl 

Fig. 5 .  Loading of a cylinder element in case of a con~tan: vertical displacement/(x). 

From figs 5a, 5b and the expressions (6.23H6.32) the resultant loading for a cylinder element can now easily 
be obtained through'integration. It appears that the loading as far as elasticeffects are concerned is represented by 
the transverse shear force D and the bending moment M (all other components are zero), while the resultant inertia 
loading only consists ofthe translational load Land the rotatory inertia moment m. They read 

D = [:z(Qxcos'p-ce sin'p)ad'p=na(Q,-Tx,), (6.33) 

M =  1 (N ,acos 'p++M,cos 'p )ad 'p==a(a~~+M~) .  (6.34) 

L = (2 cos 'p- Y sin 'pjad'p = nu(Z- F) , ' (6.35) 

m = 1 ( X a  cos ' p+M,  cos 'p)ad'p = nu(aX+Mq) ,  

z,, 

. o  

2n 

. o  
2n 

(6.36) 
. o  
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or after substitution of (6.23H6.26) and (6.28), (6.29), (6.30), (6.32) 

(6.37) 

M = n u  I A ( ai a - + v v + v E - - - + - -  c2 a 2 w  c2 3 ~ )  + (6.38) 
ax 4 ax2 4 ax 

+B (6.39) 

(6.40) 
a a a  

m = n a  [ -ma&[ .. (.... j i - -  ;; 1 - I  (.. ? aG + 
(6.41) 

Now when the cylinder acts as a uniform beam and undergoes a vertical deflectionf(x) there may be put. see fig. 6. 

'* ax a ' 

Fig. 6.  Relations between a vertical deflection f (x), the radial displacement w and the tangential displacement ti 

u , = v = V  s i n @ = - f s i n q , o r f i = - f ,  

w = $ c o s q =  f c o s v ,  or E= f ,  

(6.42) 

(6.43) 

which immediately yields the additional conclusion, see eq. (2.8), yWr - - aw + = 0, o r  with (6.22). (6.42) and 
aaq a 

(6.44) 
(6.43). 

7,. = 0 

With these simplifications the number of five unknown distortions is now decreased to three, viz. u,f and yx.. 
Since the equilibrium of a cylinder-element requires satisfaction of only two conditions, which read from fig. 7 

aD 
- + L = O ,  ax 

a M  
ax 

D + m = O ,  _ -  

there is one condition lacking. It may, however, he deduced in the following way. 

(6.45) 

(6.46) 
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If the assumptions (6.42), (6.43) on 6 and i j  are correct, any element of the shell is in equilibrium when the con- 
ditions (4 . lx4 .6 )  and hence the eqs (6.45), (6.46) are satisfied. 

As it may be shown that the eqs (6.45), (6.46) are fulfilled through the conditions (4.1), (4.2), (4.3) (4.5) and (4.6), 
one could say reversely that if the assumptions on V and Ware part of an exact solution, the conditions (6.45) (6.46) 
guarantee the satisfaction of all equilibrium conditions for a shell element, but for (4.4). 

L J 
Fig. 7. Equilibrium of a cylinder element. 

Therefore, in the present case, the third equilibrium condition must be (4.4), i.e. 

With (6.22), the expressions for Q, and M, become from (3.7), (3.11) 

Q, = S,,?,, sin 'P 

ax a 
a z w  a?,, M,=B -v- { ax2 

(6.47) 

(6.48) 

(6.49) 

When all quantities small of order c2/az are neglected, evaluation of the conditions (6.45), (6.46), (6.47), by using 
the assumptions (6.42x6.44) and the special relation (see eqs (3.5), (3.14)) 

2 
B = A - ,  

4 

yields after elimination of r,, the two coupled differential equations 

(6.50) 

f = O .  
2v Sxz)l  J2 3 - v 2  I J4 4 1 1 1 3 ~  2 is,,ra2 +-- l - v 2 B  ah 1 - v  

l + v u A a x 4  (T l + v  A a J x Z  l + v a A d x z a t z  I + v u A B a t 4  I t v u A B d t 2  
+ 

(6.51) 

By taking 

the characteristic equation becomes after again neglecting all terms that are small of order c2/uz 

(6.52) 

(6.53) 
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and the only propagation speed C ,  for 
~ 

becomes 

SX, 1 l + v - - -  
B m  

S X Z  1 - v 2  +4v - 
A 

where 

a = 2  

and 
I - ?  p = 2  

1 - v 2 + 4 v -  sx: 

A 

(6.54) 

(6.55) 

(6.56) 

Of course. the expression (6.54) needs numerical verification. 

6.2 High:freqaency behnuiour 
In the first place the behavionr for extremely high frequencies will be considered. For that purpose the character- 

istic equation (6.8) will be reduced to the term of highest frequency power. Table 2 then shows that it is suflicient to 
account for the parts with highest frequency power ofeach aij in 

a1 I a33 ~2~ ~ 4 4 ~ ~ 5  - a 1  1 a33 (124442 a55 -31 a13 0 2 2  a44a55 

+a3,a,3a,,a41ass +a1 a35a42as3a24-a1 a35a44a53a22 

- a 3 1 a 1 5 a 4 2 a s 3 a 1 4 + a 3 1  a1,a,,as3a22-a51a22a33044a1~ 

+as1 a12a44a35a13 - a s l  a 2 ~ a , ~ a ~ ~ a ~ ~  + a S 1  a24a1 sa33 a42 

and the approximate characteristic equation becomes, when all quantities small of order c2/a2 are neglected. 

The solutions for extremely high frequencies thus read 

(6.58) 

which again equals the propagation speed oflongitudinal waves in a flat panel in case the contraction in the direction 
of the wave fronts is fully restrained and the motion ofthe shell is due to axial displacements u, 

(6.59) 

where shear of the faces (tangential dispbdCement u) is decisive, 

(6.60) 

being primarily due to transverse shear y x z ,  

where the motion ofthe shell again mainly consists oftransverse shear yxz  and 

(6.61) 

(6.62) 
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Jj where the shell motion is associated with transverse shear yqp. exclusively. That both CELU-- = - and CESm+- = 

- are determined by the transverse shear angle yxz can he explained by the following arguments. In case of C,, 

the mass-term m indicates that deflections w must he present, while the absence of rotatory-inertia terms indicates 
that the shell elements do not rotate (significantly) about the q-axis. The relation between y,, and w is then given by 

Y X Z  = - . 

8 
aw 
ax 

The corresponding relation between their amplitudes, which reads 

then explains why 
motion is as shown in fig. 8). 

can yet be the most important distortion (W is of the order of the wavelength and the shell. 

\ 

a )  

b) 
X-DIRECTION 

Fig. 8. Shell-motions lor im infinitely high frequency when i,; i s  the mosl important distortion. 

In case of CE5 only the quantity I and the bending stiNness (5) are ofimportance. This is only possible if the motion 
of the shell is as shown in fig. 8. 

It may be observed that the approximate characteristic equation (6.57) is no longer dependent on the number 
of waves in circumferential direction (Le. the quantity n), nor on the cylinder radius “a”. From the latter statement 
it may obviously he concluded that for extremely high frequencies the cylinder again behaves as a flat panel. It will 
be interesting to investigate in how far the “flat panel behaviour” remains valid when the frequencies are decreased 
from these extremely high to somewhat lower values. 

For that purpose all terms in Table 1 that vanish when a+ m are left out and the characteristic equation becomes 

which can immediately be separated into the two requirements 

= o  (6.64) 
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and % (J) 

(6.65) 

Evaluation of (6.64), which delivers propagation speeds associated with axial- and circumferential displacements 
u and u in the neutral plane only, yields 

and 

(6.66) 

(6.67) 

When UP+ 03 the values that were already mentioned in (6.58) and (6.59) reappear. 

than 
Furthermore it may he observed that C,, and C,, have asymptotes at and are only valid for higher frequencies 

A 
0.4 = :& 
w"2 = !! p 

a 2m 

(6.68) 

(6.69) 

respectively. 
At on,, the motion of the shell is govemed by the tangential displacements u and at wn2 by the axial displacements u. 
Theseasymptotescoincidewith thosealreadyobtainedin(6,17),(6,13)(theformeronlyforn & 1). 
The requirement (6.65) yields propagation speeds where the motion of the shell is only determined by the radial 

deflection w and the transverse shear angles yxz  and ym. of the core. 
For extremely high frequencies again only the term of highest frequency power is essential and it may easily be 

verified that in that case the values of(6.60), (6.61) and (6.62) reappear. 
Any attempt. however, to write the total determinant of (6.65) in such form that conclusions concerning the 

influence of n for high frequencies could be drawn, did fail. Therefore, this matter will be investigated by numerical 
means. 

7 Numerical example 

For the numerical calculations a configuration that is representative for an actual aircraft will be taken. 
Consider a sandwich shell having two dural faces (E=7000 kg mm-', v=0.3) of 0.5 mm thickness and a honey- 

The total thickness of the shell be 25 mm. Hence 
comb core. 

and 
h = 0.5 mm 

C = 25 -0.5 = 24.5 

The weights per unit area ofone face, one gluelayer between face and core, and the core are respectively 

G,=1.4 k g m - 2 ,  

G ,  = 0.5 kg m-' , 

C, = 0.92 kg m -2  

The transverse shear moduli of the core G,, and Gqi redd 
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G,, = 19.3 kg m m - 2 ,  

G,, = 14.9 kg mm-2 . 

The mean radius of the cylinder is 

a = 1425 mm 

When the gravitational acceleration g amounts to 

g = 9.81 m secC2 

all necessary quantities can now be computed. 
They are 

m,=G,/g= 1 . 4 2 7 ~  10- ' 0kgmm~3sec2 ,  

m,=Gg/g=0.510x 10-'0kgmm'3sec2, 

m, = GJg = 0.938 x lo-'' kg mm-' sec2 . 

From the eqs (B.6), (B.7) it then follows that 

and 
m=m,+2(mg+m,)=4.812x 10- 'okgmm-3 sec2 

I =&mCc2+$(m, +mg)c2 = 6.253 x lo-' kg mm-' sec2. 

The eqs (A.26), (A.27), (A.32), (A.33) finally yield 

= 7.692 x lo3 kg mm-' , 2Ek 
I - v  

A =- 

Ec2 h 
=-- 1.154 x lo6 kg mm 

2(1-v') - 

S,, = cC,, = 4.729 x lo2 kg mm-' , 

S,,= cG,, = 3.651 x lo2 kg mm-' 

In case of axisymmetric waves associated with u. w, yxz the determinant of the coefficient matrix of the system of 
linear equations (5.21H5.23) must he zero and the propagation speed C, can be found from this requirement by 
substituting the above numerical data and the desired value of the angular frequency o. 

For non-axisymmetric waves the propagation speeds follow in a similar way from the requirement (6.8) (see also 
table 1). Thereby the values n= 1,2,3,10 will he chosen. The latter value is representative for "large values of n" 
and it will he interesting to observe whether or not the high-frequency hehaviour is strongly influenced. 

Results for the propagation speed C ,  and the corresponding half wavelength A=nC,/w are plotted in figs 9-13 
and tables 3-7. 

Figs 9-12 and the said tables also show a comparison with the approximate formulas (5.33). (5.37), (5.42). (5.45) 
in case of axisymmetric waves and (6.54). (6.60). (6.61). (6.62), (6.65), (6.66) (6.67) in case of non-axisymmetric waves. 

8 Discussion of results 

8.1 Axisymmetric waves associated with u. w and y,, 
The results for.the propagation speeds for this kind of waves are listed in table 3 and ,plotted in fig. 9. As was 

already discussed in the theory of section 5, three types of solutions may be distinguished. They will he discussed 
successively. The first solution, C,,,  shows a nearly constant value of 3815 mjsec (see (5.33)) in the frequency range 
of 0-100 cps. This value equals the propagation speed of longitudinal waves in a flat panel that is free to expand 
in the direction of the wave fronts and the displacements are mainly axial (u). 

Above 100 cps the propagation speed C,, begins to decrease and shows a sudden steep drop at approximately 
426 cps, caused by the fact that the determining stiffness changes from axial to bending and shear of the shell itself. 

It may be observed that the low frequency approximation (5.33), which is given in fig. 9 by the dotted line, shows 
good agreement up to approximately 420 cps. 

The afore mentioned value of 426 cps is the frequency, where the approximation formula (5.33) gives a zero value 
for the propagation speed. see eq. (5.34). In literature (ref. 4) the environment of this frequency is called the transition 
region. Just above this region, at approximately 600 cps, the propagation speed has a minimum of 493 mjsec and 
thereafter shows a continuous increase up to approximately.20,OOO cps.Above this frequency the value of the pro- 
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pagation speed is again nearly constant and amounts to 991.3 mjsec. As may be seen from the dotted line in fig. 9, 
the high-frequency approximations (5.42), (5.43) show good agreement above approximately 1200 cps. Since these 
formulas are correct for the flat panel, when only deflections w and transverse shear of the core yxz  are taken into 
account, the motion of the shell may be said to be primarily due to deflections w and transverse sh,ear y x z ,  however, 
in so far that for frequencies over approximately 20,000 cps, where the propagation speed becomes nearly constant, 
the transverse shear y., is decisive. 

Finally it is remarked that for extremely high frequencies the results of the given calculations must be handled 
with care, because in the analysis the shear angles ofthe core were assumed to be constant throughout the thickness. 
Since this assumptiop is only reliable when the half wavelengths are some times greater than the thickness of the shell, 
i.e. 0.025 m. i t  is snggested that the solution CE,  for the propagation speed of axisymmetric waves is reliable up to 
10,000 cps approximately (see the curve for 1; in fig. 9). The second solution for the propagation speed, C,,, only 
exists for frequencies higher thanfo,=447 cps, see eq. (5.26), where C,,+m. 

Because then all points in axial (x)-direction are in phase, due to the fact that the wavelength tends to infinity, 
this frequency represents a two-dimensional resonance frequency, viz. that corresponding to, radial expansion (W). 

When the frequency increases the propagation speed steeply drops to reach a nearly constant value of 3998,l mjsec 
at approximately 2000 cps. This latter value may be found from eq. (5.37) and is equivalent with the propagation 
speed oflongitudinal waves in a flat panel in case the contraction in the direction of the wavefronts is fully.restrained. 
The motion of the shell is thus primarily due to axial displacements u and therefore the validity of this solution is 
not restricted to a certain high frequency. 

The third solution for the propagation speed C,, only exists abovef,, = 13841 cps, see eq. (5.27), where C,,+m. 
Again all points in axial (x)-direction are in phase, so that this frequency corresponds to a two-dimensional 

resonance, viz. that associated with y,.. Above this frequency the propagation speed again strongly decreases to the 
limiting vaIueof4295,9 m/sec (see eq. (5.46)) where the motion of the shell is again determined by y.. . Theapproxima- 
tion formula (5.49, which applies to the flat panel when only deflections w and shear y x z  are taken into account, 
gives fair agreement as long as the half wavelength i., remains small with respect to the cylinder radius. From the 
curve for A5 it is finally remarked that the results for C,, from the present theory are expected to be valid up to a 
frequency of approximately 45000 cps. 

8.2 Nun-axisymmetric waves 
The cases considered involve 1,2, 3 and 10 wavelengths in circumferential direction (indicated by n =  1, 2, 3, 10). 

Results are shown in tables 4-7 and figs. 10-13. and compared. also with those for axisymmetric waves, in fig. 14. 
In the first place the solutions C, ,  will be discussed. in  case n =  1, literature states that the cylindrical shell behaves 

as a uniform beam in the low frequency range (ref. 4) and indeed the approximation formula (6.54), which was 
derived on such basis, proves to be a fairly good approximation up to a frequency of about 100 cps (see fig. 10). 
When, in the low frequency range, the frequency becomes higher, the propagation speed C, ,  increases too, at least 
up to a maximum value at approximately 240 cps. Thereafter a strong drop occurs, due to the fact that the leading 
stiffness changes from that of the uniform beam to the bending- and shear stiffness (SJ of the shell itself. and at 
approximately 600 cps the propagation speed becomes equal to that of axisymmetric waves (see fig. 14). This latter 
phenomenon can also be observed in the cases n=2, n = 3 .  In case n =  10, however, i t  only occurs for much higher 
frequencies, viz. over 5000 cps approximately, because then the wavelength in circumferential direction becomes of 
the order of the wavelength in axial direction (or even smaller for large values of n )  so that the transverse shear 
angle ymi gains in importance. Figs 10-13 show that the flat panel, where only deflections w and shear angles yqz. yl, 
are taken into account, is a good high frequency approximation (see eqs (6.65), (6.60)). The low frequency behaviour 
in cases n = 2 _  3, IO is quite different from the cases n =O and n = 1. In fact, in these cases the solution for CEl only 
exists above a certain frequency, where the propagation speed tends to infinity (in the figs 11-13 this behdviour is 
indicated by a dotted line hecause the required data were not calculated. The asymptotes are indicated). 

I 
I 

I 

These frequencies, which read 
f21 =10.3cps, n = 2  , 
fS1 = 28.9 cps, n = 3  , 
f,,,,,,=351 cps. n = 1 0 ,  

represent two-dimensional resonance frequencies, which are mainly governed by deflections w. When the frequency 
increases the propagation speed steeply drops down to a minimum value, followed (at least in the cases n =2,3) by a 
maximum, just like in case n =  1. With increasing n-value there is a tendency for this maximum to flatten and in 
the case n=10 it is completely vanished. For the cases n=2, 3, IO no low-frequency approximation for C,, was 
derived. For the same reasons as were mentioned in case of axisymmetric waves, the validity of the solutions (2,) 
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again extends to a frequency of about 10,000 cps. Concerning the solutions CE4 and C,, it can be remarked (see 
fig. 14) that they make one family with those found for axisymmetrical waves, because they approach the same value 
when 0-m (compare eqs (5.27), (6.58) and (5.46), (6.61)), while the motion of the shell is also governed by the same 
distortions, viz. u and yqz. 

Their vertical asymptotes (two-dimensional resonance frequencies), however, are different, viz. these frequencies 
increase with increasing n-value. In case of CEI, however, this tendency is very weak and the propagation speed is 
nearly independent of n. For axisymmetric waves the motion of the shell, when the propagation speed C,, tends 
to infinity, is governed by deflections w, whereas for non-axisymmetric waves the main distortions are tangential 
displacements u. This is understandable because in both cases the normal stiffness of the shell in tangential direction 
is decisive. At C,, the main shell-motion for infinite propagation speeds remains transverse shear y,,. 

The approximation formulas (6.66), (6.58) for CEd and (6 .65)  (6.61) for C,, prove again to be fairly good approxima- 
tions as long as the wavelengths in x-direction are some times smaller than the cylinder radius. especially for C,, 
where the difference was beyond drawing in the range of values calculated. The approximations (6.19) forfld. (6.68) 
forf,, (n > l), (6.17) forf., (n % 1) and (6.14) for& (n > 1) turned out to be fairly good (see tables 4 7 ) ,  only with 
the exception that the approximation (6.68) forffi can indeed only be used for n 9 I as was to he expected, because 
the eqs (6.17) and (6.68) are identical. 

From the curves for the half wavelengths and the leading distortions for w+0 it may be concluded that the 
validity of the present theory towards high frequencies is not restricted in case of C,,, but that for C,, a boundary of 
45000 cps approximately is indicated. 

Finally the solutions C,, and CF, will be discussed.The solutionC,, only exists for frequencies higher thanf.,, 
(n= 1, 2, 3, 10) see eqs (6.13). (6.69), where the propagation speed tends to infinity and the motion of the shell is 
determined by axial displacements u. The value off.,, may be seen to increase with increasing n-value. 

the propagation speed drops down to a nearly constant value (2365,3 m/sec 
for w-m, see eq. (6.59)) which is independent of n.  The shell motion is then governed by tangential displacements 
u, in fact a torsion of the cylinder, and the validity of the present theory is not affected in the high frequency range. 
As long as the wavelength in x-direction is some times smaller than the cylinder radius the eq. (6.67) proves to be 
a good approximation. 

The behaviour ofthe solutions C,, shows much conformity with that of C,, since they also are nearly independent 
of n (see fig. 14). On the lower-frequency side their existence is bounded by two-dimensional resonance frequencies 
(infinite propagation speeds) which are related to deflection w and transverse shear y m r .  According to table 4, the 
value off,,j is approximated by eq. (6.19) in a suitable manner. Their limiting value for w+m is 2541,s m/sec, see 
(6.62). Also here the equation (6.65) proves to be a good approximation (the difference between approximate and 
exact values could not clearly be drawn for the values calculated). 

Concerning the validity of the present theory in this case it may be said that it  is not decided by the wavelength 
in x-direction, but by the value of n (the number of wavelengths in circumferential direction). 
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APPENDIX A 

Derivation of forces and moments caused by elastic effects 

From eqs (2.7), (2.8), the axial- and circumferential displacements in the faces may be given as (see figs 2. 3) 

(A.1) and vu,’= ~i 2 yqi - i 
where the superfices “u” and “I” respectively indicate the upper and lower face. 

The corresponding normal- and shear strains then read 



), (A.16) 
Mx9=--{- Ec2 h ?( i -v  a?,, I - ~  2 av 

2(1-v?) 2 ax 

I - ~  a Z w  I - ~ )  ayx. I - ~  a?,,,= I - ~  I au I - v  I av 
2(1- v') { 2 ?axaq 2 uap 2 ax 2 a u a q  2 a ax M9x = 1. (A.17) 

By inserting (A.12), (A.13) and (A.17) the equilibrium condition (4.6) proves to be always satisfied and thus needs 
no further attention. Because u 9 c the expression (A.lOHA.17) may be simplified into 

__ - - 2- + - - + - - - - - - + - - - 

with 

and 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 
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Further simplifications will not he made, because these would depend on the wavelengths in x- and q-direction. 
Within the limit of approximations used the above expressions are comparable with those derived by Naghdi 

and Cooper (ref. 2) for the isotropic shell. 
W .  

When all terms that vanish for a+ru are neglected, except for the two with -in N, and N9, the expressions are a 
the same as those obtained by Stein and Mayers (ref. 3) for curved sandwich plates 

From section 2 the shear angles of the core read respectively 

and 

With the introduction of the shear moduli G,, and G,, of the core, the transverse shear forces thus become I 
Q, = G,, ['Iz yXz (1 + :) dz = S,, y,, , (A.30) 

. -<I2 I 
where 

and 

(A.31) I 
(A.32) 

(A.33) 
I 

are the shear stiffnesses ofthe core in the xz- and qpz-plane respectively. I 

APPENDIX B I 

Derivation of inertia forces and moments 

When m,. m, and m, respectively represent the masses per unit area of the core, one face and one glue layer between 
core and face, the inertia loading (fig. 4) reads (see the expressions for the distortions in section 2 )  

1 
a 

= - {mt+2(m,+mg)] i i  - - { & m , c 2 + f ( m r + m , ) c 2 }  
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= - (B.5) 

{ m c + 2 ( m r + m g ) )  = m  (B.6) 

i$m,c2+f(ml+mq)c2  = I (B.7) 

Since 

equals the total mass and there is put 

which equals the moment of inertia with respect to rotation, the expressions (B.lHB.5) may be rewritten in the form 

X = - m ; - -  i t x z  -- ;;) (B.8) 
a 

Z =-mi0  

(B.9) 

(B.lO) 

APPENDIX C 

Axisymmetric waves associated with tangential displacements u and transverse shear of the core ymi 

In this case the only two equilibrium conditions that are to be satisfied read from (4.1H4.6) 

(B.12) 
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Qe-mx = 0 _-  
ax 

The forces and moments involved become from sections 3.1,3.2 

Substitution gives the two coupled differential equations 

~ 
which can be solved by putting 

u = V s i n  -x-uf , 
(:B i (C.10) 

This leads to two homogeneous linear equations 

which only have a solution if the determinant of the coefficient matrix vanishes. The resulting characteristic equa- 
tion is 

m + / / a 2  s,, I S,: B m + l l a 2  1 1 I 2B +{  A B B B Aa2 A B  B B AaZ 
- ~ - - 2 - 2 -  - - - 2  + ~ - o 4  - - - - w4 

B I  
A m  

Now - and -are both oforder? Hence. i f c e a  theeq.(C.l2)reduces to 

(C.13) 

which is the characteristic equation for the flat panel where ti and y w r  are uncoupled, see eq. (C.11). For shallow 
shells the coupling between ti and yqpr is thus weak and the solutions for Cs read approximately 



30 

(C.14) 

(C.15) 

The solution C,, implies nearly pure shear yqz and exists only for frequencies higher than 

(C.16) 

which is the two-dimensional resonance frequency for the case that the inner and outer face of the shell possess 
an opposite rotation. 

For very high frequencies the solution reduces to the constant value 

(C.17) 

With the solution C,, the displacements are almost pure tangential (u), i.e. the waves are of torsion type. Of course 
the value of CEi equals that of shear waves in the plane of a flat sandwich panel. 

In fig. 15 the solutions C,, and C,, are illustrated. 
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TABLE 3 

Propagation speed and half wavelength of axirymmetric elastic WBYCS in an infinitely long. sandwich-type. cylinder of circular cross-section. 

I CE, cs  I 21 C,, C& i, CE, C,, ;. * 
exact W B C l  w r .  eX,Ct CXSCI w r .  exact exact w r .  

0 3815 3815 
18.75 3813.6 3813.9 in1.71 
37.50 3812.6 3812.9 50.84 
75 3808.5 3808.8 25.39 

150 3789.9 3790.2 12.63 
225 3749.2 3749.6 8.33 
3w 3655.5 3655.8 6.09 
350 3500.7 3501.0 5.00 .$ e 

II 11 11 11 -- -- 1 i 400 2950.3 2951.4 3.69 
410 261 1.5 2614.1 3.19 m * rj 

420 1874.1 1899.1 2.26 8 8 8 8 
430 903.81 1.05 

450 638.51 0.709 10461 11.62 
500 376.5 527.41 0.527 4654.2 4.054 
550 393.3 500.64 0.455 4332.6 3.939 
600 409.1 493.00 0.41 I 4216.0 3.513 
7w 438.4 496.72 0.355 4120.1 2.943 
1200 551.6 573.43 0.239 4027.3 1.678 
2400 711.9 719.37 0.150 4004.9 0.834 
4x00 855.4 857.95 0.089 4000.0 0.417 

- - 
e cc 0 3 - n P e - P 

1 1 

11 '1- 11- 11- 
u' u' 440 712.00 0.809 2 u 

9600 943.0 943.79 0,049 3998.9 0,208 

38400 987.8 987.83 0.013 3998s 0.052 4622.2 4610.6 0.060 
19200 977.6 977.80 0.025 3998.6 0,104 6285.8 6256.6 0,163 

m 991.3 991.3 3998.1 3998.1 4295.9 4295.9 

For approximations see. far C,, eqr (5.31). (5.33). (5.42). (5.43) 
lor C,. eqs (5.26). (5.37) 

,for C,, eqs (5.27). (5.45). (5.46) 

TABLE 4 
Propagation speed and half wavelength of nbn-axisymmetric elastic waves (one wave in circumferential direction. n = 1) in an infinitely long. 

sandwich-type. cylinder of circular cross-section. 

j -  CE, C,, i ,  c,, c,, i ,  c,. c,, ;., C,, c,, A 3  C& CE, 
appr. exact cxact appr. exact exact appc. exact  e x m  appr. eract e r m  appr. exact exact 

18.75 671.1 644.69 17.19 
-! 

75 1184.9 1144.7 7.63 8 N 8 : 
Y 150 1453.5 1395,6 4.65 !I" < !), < 

225 1578 1467.4 3.26 u" 2 2 
300 1402.6 2.34 4991.5 7757.1 12.93 2 

400 909.21 1.14 3150.1 4478.0 5.60 < 

* - 3 37.50 908.7 875.22 11.67 

* 
. . .  rc 

'D 
'D - 
-? 

11 
i 

- 
c.7 350 1248.1 1.78 3605.9 5365.1 7.66 s 'D 

450 595.53 0.662 2921.8 3942.1 4.38 1 z 
500 377.8 521.30 0.521 2785.9 3538.1 3.54 8 , 8 - 

- e 
, o  

. .  

- - - s w  - 
11. 2 %  w 

550 394.5 499.06 0,454 2696.8 3216.4 2.92 11. 

700 439.4 497.21 0.355 2554.2 2712.5 1.94 5191.7 6924.8 4.946 $ 
2 

11 11 11 

I200 552.3 574.06 0.239 2424.8 2438.0 1.016 4307.5 4372.6 1.822 2 1 - 
2400 712.3 719.72 0.150 2379.8 2380.7 0.496 4069.2 4077.5 0.849 8 8 8 8 

1'- G 1 
4800 855.5 858.09 0.089 2368.9 2369.1 0.247 4015.5 4017.5. 0.418 
9600 943.0 943.83 0.049 2366.2 2366.4 0.123 4002.5, 4003.2 0,209 u u' i) u 

0 - 5 . N  600 410.3 492.73 0.41 I 2634.4 2979.7 2.48 L? L? - 
1 - '4 5 

r j  _j 

11 /I 

192~) 977.6 977.81 0.025 2365.5 2365.7 0.0616 3999.2 3999.6 0.104 3285.1 3273.0 0.085 6289.2 6259.9 0.163 
38400 987.8 2365.4 3998.4 3998.7 0.052 2679.5 4622.6 461 1.0 0.060 

m 991.3 991.3 2365.3 2365.3 3998.1 3998.1 2541.5 2541.5 4295.9 4295.9 

For approximations see. for CEx eqs (6.54). (6.65). (6.60) 

for C,, eqs (6.65). (6.62). (6.19) 

for C,, eqs (6.65). (6.61). (6.14) 

,f0rC~~eqs(6.67).(6.59).(6.13).(6.69) 

. io~C,eqs(6.66).(6.58). (6.19). (6.68) 



TABLE 5 
Propagation speed and half wavelength of non-axisymmetric elastic waves (two waves in circumferential direction. n = 2) in an infinitely long. 

sandwich-type. cylinder of circular cross-section. 

I G, C,, j., C,, c,, & CE, c,, 2, c,, c,, 2, ' CE, C,, 1, 
appr. exact e x a a  appr. exact exact appr. exact exact appr. exact exact appr. exact exact 

1 
8 0  
11 .< 
3 2  

18.75 407.51 10.87 
37s 518.83 6,918 

0 N O  
75 679.84 4,532 " 

225 886.33 1.970 w CI m 

400 625.21 0.782 8 8 8 8 8 8  ~8 a 
I/ 11. 11 

u u " u  u " u  3 

2 2  o r  
0 -  N 

- 2  - 2 "  - 
I1 I1 I1 11 11 11 11 

i i  
m CJ w d ;  

5 4  ̂
I1 I1 I1 
iu" 

-. 2. ' 
0 
OI G. G. 

150 842.81 2.809 2 2 

834.12 1,390 < % i % i %  300 
350 743.00 1.061 2 

450 544.16 0,605 '1. 
500 381.8 508.88 0.509 u u 

- * I 1 " 

11. i 

550 
600 
700 

1200 
2400 
4800 
9600 

19200 
38400 
76800 
m - 

398.3 495.61 0.451 8515.2 
413.8 492.37 0.410 4991.5 
442.6 498.78 0.356 3605.9 
554.4 575.97 0.240 2634.4 
713.3 720.76 0.150 2424.8 
855.9 858.52 0,089 2379.8 
943.2 943.97 0.049 2368.9 
977.6 977.84 0.025 2366.2 
987.8 987.84 0.013 2365.5 

990.46 0.0364 
9913 991.3 2365.3 

11028 10.03 
6249.5 5,208 
4233.4 3,024 

2427.9 0,506 4307.5 4322.0 0.900 
2380.1 0.248 4069.2 4070.5 0,424 
2369.1 0.123 4015.5 4016.3 0,209 
2366.5 0.0616 4002.5 4002.9 0.104 3287.2 3275.1 0.085 6299.5 6270.1 0.163 
2365.7 0.0308 3999.2 3999.6 0,052 2679.8 2673.8 0.035 4623.8 4612.2 0.060 
2365.5 0.0154 3998.7 0.026 2568.3 0.017 4362.0 0.028 
2365.3 3998.1 3998.1 2541.5 2541.5 4295.9 4295.9 

2690.9 1.121 5986.0 6597.8 2,749 

For approximations see, for C,, eqs (6.651, (6.60); b r  C,, eqr (6.67), (6.59). (6.131, (6.69); loor C,, eqs (6.65), (6.62): for C,. eqs (6.66). (6.58). 
(6.68); for C,, eqs(6.65), (6.61), (6.14). 

TABLE 6 
Propagation speed and half wavelength oi "on-axisymmetric elastic waves (three waves in circuhferential direction. n =3) in an infinitely long. 

sandwich-type. cylinder of circular cross-section. 

I C E ,  C& ;.I C,, c,, 2, CE. CE, i, CE, CE, 1.3 CE, CEs 2.5 

appr. exact exact appr. exact exact appr. exact exact appr. exact exact appr. exact exact 

., 
18,75 3 ;  
37.5 467,85 
75 502,76 

I50 606.41 
225 639.43 
300 616.54 
350 579.84 
400 540.43 
450 512.68 
500 388.8 498.18 
550 404,8 492.83 
Mx) 419.9 492.98 
700 448.0 501.77 

1200 557.9 579.20 
2400 715.1 722.50 
4800 856.7 859.23 
9600 943.4 944.19 

19200 977.7 977.91 
38400 987.8 987.86 

m 991.3 991 3 

6,238 
3,352 
2.02 I 
1.42 1 
1,028 
0.828 2 
0,676 
0,570 < 
0.498 2 
0,448 8 
0,411 '1 
0.358 U 
0.241 3150.1 3295.5 1.137 

0.090 2398.2 2398.8 0,250 4163.6 4166,4 
0,049 2373.4 2373.6 0.124 4037.6 4038.4 
0.025 2367.3 236715 0,062 4007.9 4008.3 
0.013 2365.8 2365.9 0.031 4000.6 m 0 . 9  

2365.3 2365.3 3998 I 3998.1 

0.151 2505.9 2513.0 0.524 4818.6 4853.1 1.011 
0.434 
0,210 
0.104 ' 3290.8 3278.6 0.085 6316.7 6287.1 0.164 
0.052 2680.2 2673.7 0.035 4625.8 4614.2 0060 

2541.5 2541.5 4295.9 4295.9 

For approximations see, for eqs (6.651, (6.60); for C,, eqs (6.67), (6;59), (6.13), (6.69); for C,, eqs (6.65). (6.62): for c,, eqs (6.66). (6.58). 
(6.68); for C,, eqs (6.65). (6.61), (6.14). 
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TABLE 7 

Propagation speed oinan-arisymmetric elastic waves (ten waves in circumferential direction. n = IO) in an infinitely long. sandwich-type. cylinder 
of circular cross-section. 

1 C,, 
appr 

4 w  
450 
500 677.8 
550 6393 
600 619.9 
700 604.4 

1200 636.9 
2400 750.2 

CE, 21 CE, C E ,  CE, 
exact exact appr. exact exact appr 

- 
.n c.3 

I1 
i - 
rj 

8 
I1 

u’ 
961.56 1,202 
770.83 0.856 N N z 
665.82 0,605 < 
646.88 0.539 fd - 
630,48 0,450 8 8 8 

11 I1 
i i 652.96 0.272 I1 

.n a 
-? * 700.45 0,700 2 N 

I/ II 
i i 
r j  

756.80 0.158 2 U U 

CC. A4 c,, c,, 2 ,  CE, CE, A 5  

exact exact appr. exact ’ exact appr. exact exact 
~ 

4800 870.1 872,57 0,091 2833,O 2838.7 0.296 10899.7 11193.0 1.166 
9603 947.5 948.35 0,049 2460.3 2460.8 0,128 4516.5 4518.0 0,235 

19200 978,8 979.03 0.025 2388.0 2388.2 0,062 4110.9 4111.4 0.107 3367.6 3344.2 
38400 988.1 988,14 0,013 2370,9 2371.1 0,031 4025.4 4025.8 0.052 2687.9 2681.3 

m 991.3 991.3 2365,3 2365.3 3998.1 3998.1 2541.5 2541.5 

0.0871 6656.4 6622.6 0,172 
0.0349 4663.0 4651.1 0,061 

4295.9 4295.9 

For approximations see. far C,, cqs (6.65). (6.60). (6.16) 
,for C,, egs (6.67), (6.59). (6.13). (6.69) 
,lor C,, eqs (6.65). (6.62), (6.16) 
, for  C,, eqs(6.66), (6.58). (6.17),(6.68) 
,for C,, eqs (6.65). (6.61). (6.14) 

1 



CE.  PROPAGATION 
SPEED. m /5ec lnn=447 

Fig. 9. Propagation speed and half wavelength of axisymmetric 
elastic waves in an infinitely long. sandwich-type. cylinder ofcircular 

cross-section. Governing distortions are given within brackets. 

1 .  FREOUENCI.CPS 

Fig. 11. Propagation spced and hall wavelength ofnon-axisymmrtric 
elastic waves (two waves in circumferential direction. n = 2 )  in an 
infinilely long, sandwich-type, cylinder of circular cross-section. 

Governing dislortions are given within brackets. 

Fig. 10. PropagAtion speed and half wavelength ofnoo-axisymmetric 
elastic waves (one wave in circumferential direction, n =  I )  in an 
infinitely long, sandwich-type, cylinder of circular cross-section. 

Governing distortions are given within brackets. 

Fig. 12. Propagation speedand hallwavelength ofnon-axisymmetric 
elastic waves (three waves in circumferential direction, n = 3 )  in an 
infinitely long. sandwich-type, cylinder of circular Cross-section. 

Governing distortions are given within brackets. 
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I. FREWENCI.CP3 

Fig. 13. Propagation speed and half wavelength ofnon-axisymmetric 
elastic wavcs (ten waves in circumferential direction, > t =  IO) in an 
infinitely long sandwich-type, cylinder of circular cross-section. 

Governing distortions are given within brackets. 

Fig. 14. Comparison between the propagation speeds ofaxisymmetric 
and "an-axirymmetric elastic waves in an infinitely long, sandwich- 

type, cylinder of circular cross-section. 

I J 
a n c " L b . . r r r  0 

Fig. 15. Propagation speed (approximate solution) of axisymmetric 
elastic waves in a shallow, infinitely long, randwich-type. cylinder 
of circnlar cross-section. Governing distortions are given within 

brackets. 






