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On a kernel-function method for the calculation
of the pressure distribution on a two-dimensional wing
with harmonically oscillating control surface in subsonic flow

by

R. 1. Zwaan

Summary

The method presented contains the numerical solution of the Possio integral equation: the pressure distrfibution is approximated by a series

of loading functions of which the coefficients are solved by collocation. Three terms in the series are singular ; their type and strength are derived

by a consideration of the local flow near the hinge axis. A convergence test on calculated results shows that two of them are important. A com-
parison with experimental results is given. This method may be extended very well to a wing of finite span.
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1 Introduction

Two occasions have led to the work reported here:

a. theoretical unsteady pressure distributions were needed to compare w1th distributions measured on a two- ‘
dimensional wing with a harmonically oscillating control surface in subsonic flow;

b. recently the need was felt of possessing a computer programme for the calculation of pressure distributions on
wings of finite span provided with oscillating control surfaces. In an introductory study some new ideas had
to be checked for the limit case of a two-dimensional wing.

These occasions effected the development of a’ computer programme to calculate pressure distributions on a
two-dimensional wing with an oscillating aerodynamically unbalanced control surface (surface rotating about its
leading edge).

Already years ago Timman and van de Vooren formulated an analytical method for such configurations, proceed-
ing directly from the linearised differential equation for the acceleration potential (ref. 1). In this work the singular
behaviour of the boundary conditions at the hinge axis was taken into account. Accurate numerical results for the
aerodynamic wing and control surface coefficients were obtained (ref. 2), which are used for comparison in the
present report. However, the expressions for the pressure distribution were rather complicated and unattractive
for programming, as — even more heavily weighing dlsadvantage — this method basically did not contain the pos-
sibility to be extended to wings of finite span.

Methods for subsonic flow that have shown a large flexibility in the application to numerous types of wing
planform, are the kernel-function methods, based on the solution of the linearised integral equation relating the
given normal wash at the wing and the unknown pressure distribution. For a two-dimensional wing this equation
degenerates to the well-known Possio integral equation (see expressions (6.1) to (6.3) in this report): '

i 1
alx) = 4_;:% AC (XY K<{x, x's b, M, dx" .

If a-control surface is present a singularity occurs in the normal wash a {x» and, through that, also in the pressure
distribution AC,{x).

Two such methods have been developed in the past dealing with oscillating control surfaces. Essence of the first
one, devised by Dietze (ref. 3), was to start from the solution for zero Mach number, given by Kiissner and Schwarz
(ref. 4) and to apply an iterative procedure to the integral equation. Numerical results have been given in ref. 5.
In the second method, devised by Schade (ref. 6), the pressure distribution and kernel-function were expanded in
Legendre polynomials through which, making use of their orthogonality properties, the integral equation was
transformed to a matrix equation for the unknown coefficients in the expansion of AC, (x). One difference between
both methods should be noted : in the first one the convergence of the solution for the pressure distribution is rather
poor, especially in the neighbourhood of the hinge axis, as has been pointed out already by Karp and Weil (ref. 7).
The convergence in the second method has been improved by including a singular term in the expansion of AC,{x}.
Schade demonstrated by a limit process that the singularity should be logarithmic and calculated the strength of
it. No numerical results were given by him. Although extension to wings of finite span is possible, both methods
have been superseded by the nse of modern computers.

'Recently the correctness of Schade’s logarithmic term has been confirmed by Landahl (ref. 8). He considered the
local flow near the hinge axis by stretching the geometrical co-ordinates in the differential equation for the pressure
potential.

At the NLR experience has been gamed with the apphcatxon of a kernel-function method to wmgs ‘without
control surface (ref. 9). In this method the pressure distribution is approximated by a series of prescribed functions.
The coefficients in this series are determined by collocation, i.e. by requiring that in a number of points on the wing




the calculated normal wash should be equal to the wash derived from the vibration mode. Because of this experience
extensions are being investigated in order to deal also with control surfaces. A combination of this method together
with Landahl’s technique seems to yield an attractive way.

In the present report the two-dimensional wing is considered as a first step. The method discussed extends refs.
6 and 8 in that it regards two more logarithmic terms in the series for the pressure distribution. Results are compared
with values taken from refs. Z and 4. A convergence test is made for a combination of high Mach number and
reduced frequency. Finally, comparisons are made with experimental values obtained by Tijdeman and Bergh
(ref. 10).

2 Formu_lation of the prohlem

An infinitely thin aerofoil of length 21 is considered, immersed in an ideal fluid that is moving with an uniform
subsonic velocity U, far upstream in the direction of the positive x-axis. The aerofoil consists of a stationary front
part and a controf surface with hinge at x=x_/, oscillating harmonically with amplitude é and radial frequency w.
In the mean position the aerofoil has zero incidence.

In the following con31derat10ns only dimensionless quantities will be used : lengths divided by !, velocmes by U,
and time by I/U_. The aerofeil motion is defined by

2¢xy = —dh(xde™ ' (2.1)
where
BOxXy = [x—xJul{x~x. . (2.2)

t (x) represents the unit-step function and k the reduced frequency wl/U,. Premise in the following considerations
is that J be a small quantity,

5<1. ‘ - (2.3)

Assuming an isentropic non-viscous flow, it is allowed to introduce a velocity potential ¢{x, z, t>. From the con-
tinuity equation, Bernoulli equation and equation of state a non-linear second order partial differential equation
can be derived that should be satisfied by ¢ (see ref. 11):

(@ = Ut (0= $2)bry—2Usprs— $u— 22Ut o) =0, ~ 24)

where a denotes the local speed of sound given by
at =M’ ~-”—;3 .+ o2+62+26) (2:5)

and where U denotes the local velocity in x-direction

U=1+¢,. i . (2.6)

The boundary conditions at the aerofoil are dictated by the requirement that the -flo‘w be tangential to the surface:
= —3(Uh,+ikh)e™ = —8[Uulx— x> +ik(x—x)ulx~x.>]e™ on z=—she™. = 27

Additional boundary conditions require that the flow should be undisturbed at infinity and that the pressure should
be continuous at the trailing edge. The pressure coefiicient depends on the velocity potential as foliows”
- Pe

€=t - Mz{[lvv—l)Mz(qb +¢x+7¢2+5¢=)]wv1 . 28)

_ - It is immediately seen from (2.7) that a smgularlty oceurs in the boundary condition at x =x,. One may expect
that this gives rise to a singularity in the pressure distribution at the aerofoil as well. The problem that will be
. studied in the following chapters is how to obtain a solution for the pressure distribution along the aerofoil to first
" order in & in which the influence of the d1sc0ntmu1ty at x=x, has been fully taken into account. In order to in-
vestigate this singuiar behaviour the flow in the vincinity of the hinge line will be subjected to a detailed study.
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The pressure distribution found in this region - designated as “inner region” - will be matched afterwards with
the distribution in the “outer region” that extends from leading to trailing edge, but excludes the small inner region
at x=x_. '

3 Pressure distribution in outer region

First a straight forward solution for ¢ in the outer region is sought without bothering about the singularity in
the boundary conditions at x=x,. For ¢ the following asymptotic expansion, the “outer expansion”, is substituted

¢0<x9 2, t) - Z /,i'(":.(é) ¢(")<x5 Zy t) b . (31)

where the coefficients 13", representing the orders of the corresponding solutions ¢, depend on the parameter .
By doing this in boundary condition (2.7), § will appear explicitly as well as implicitly in the derivatives of ¢. To
remove this inconvenience primarily Taylor expansmns for ¢ are used to express the boundary condition in terms
valid for z=0 (it is assumed that ¢ is analytic in z). Thus, the boundary condition becomes

$,<x, 0, 1) +0h, . {x,0, D +... = —[(1+¢.<{x,0, 3+, {x,0,t>+...)h e™ 4 ikhe™]
on z= —8he’™. {3.2)

After substitution of ¢ in cond. (2.7) terms of equal order are compared. Then it appears that a proper choice
for the coefficients A% is

A = on (3.3)

The solutions ¢§ can be found from a series of linear differential equations with linear boundary conditions. To
first order, 4§ =4, they read (after dividing by the time-dependent factor e™):

(1=ML)pl") +oi) —2ikMZ o) +k* M2 o) =0

Oect , (3.4)
o) = —(h +ikh) at z=0.
Higher order solutions will not be considered here, To first order the pressure coefficient becomes _
Cop = —2(e§) +ikel) o (39)
Due to the antisymmetry of ¢ with respect to z, the pressure jump across the aerofoil is
ACH = CWCx, —05—C(x, +05 = 4(P +ikol). © . (36)

" "The solution of (3.4) together with the additional boundary conditions mentioned in sect. 2, has been subject of
most studies referred to in sect. 1. It proved advantageous to introduce the acceleratlon potential defined by

Y = (p‘”+1kqo‘” (3.7

W0 also satisfies eq. (3.4) and simplifies the boundary condition on the x-axis to ' '
Yo' =0 for x< =1 and xz21. (3.8)
Moreover, the pressure jump is simply obtained by _
ACY = 4V . (3.9)

A solution for ¥4’ is conveniently found after transforming the differential equation and boundary conditions
into an integral equation. This equation, derived at first by Possio {see ref. 12), relates the unknown AC&,‘O) ‘and the
- given normal wash ¢} at the aerofoil. The integral equation may be solved by approximating the pressure distribu-
tion by the series expression

N R . - - i
ACR = 3, ah () (3.10)
in which each function h,{x» should exhibit a singularity for x— —1 of the type .
lim &~ * ‘ : S - (3.11)
£-+0 . -
and k,{x} should become zero for x—1 like : c '
| lim £* . - ' (3.12)

£—=0
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This behavicur can be revealed in an analogous way as is discussed here for the region near the hinge axis, by
studying the local flow at leading an trailing edge (see ref. 8). Such a study is not pursued here and the behaviour
of k. {x) at leading and trailing edge is put to be given by (3.11} and (3.12). Functions that meet these requirements
are

2 cos rf+cos(r+1)8
R sin

h(xy = ,  r=0,1,..,R (3.13)

where 6 is an angular co-ordinate, given by
cos 0= —x. (3.14)

The first three functions are shown in fig. 1. After substitution of (3.10) in the integral equation the unknown coef-
" ficients a{!? may be solved by some coliocation procedure. Details about the integral equation and the collocation
procedure are not given here with reference to sect. 6,

It is important to realise that all functions k,{x) are continuous at x =x_, so that they are potentially unfit for
approximating the singular behaviour of the pressure distribution with a finite {and preferably small) number R.
However, to the series (3.10) other functions may be added that are singular itselves or in its derivatives at x=1x,,
but otherwise do not violate the behaviour as expressed by (3.11) and (3.12). This means that the singularity at the
leading edge may not be stronger than ¢~ * as é~0 and the exponent of ¢ at the trailing edge may not be less than
3. Such functions are:

2 1 —cos(+6,) '
LO = E In —i——COS_(Bt_GT) 5 (315)
Ly= (x—~x)Lo, (3.16)
Ly=(x—~xJ)"Lo- (3.17)

These functions have been drawn in fig. 2 for 1=0.25. They have been taken from the analytic solution of Wi} for
M, =0, which has been derived by Kiissner and Schwarz (ref. 4). Of course also other functions with singularities
at x=x, and satisfying the above requirements may be added.
Allowing for the singular terms, the pressure distribution can be written as
R

ACY = Y @, hi{xy+a, LolX, X )+, L (X, x>+, Ly{x, x D+ (3.18)

r=0

The coefficients a,,, a,, and a,, are unknown as yet, but shouid be determined after matching ACY with the pressure
distribution in the inner region.

4 Pressure distribution in inner region

In order to study the local flow in the vicinity of the hinge line at x =x_, the x- and z-co-ordiniate are stretched
using a stretching parameter &:

z
1 — - . 4.
X; R z . (4.1)

This proceeding pushes away the influence of leading and trailing edge on the local flow at the hinge line. To obtain
a well-posed inner problem the velocity potential should be transformed simultaneously

6=2 @)

&

Like for the outer region an “inner expansion” is introduced for ¢;: S
¢i<x9 ziv t> = Z ;{gn) <6= 6> (P(i") <xi5 zr’s t> (43)

and substituted in eq. (2.4) and cond. (3.2) (also in this case the boundary condition for x >x, or x; >0 may be
expressed in terms valid for z;=0 as the control surface deflection & has not been changed under the stretching of
x and z). Examination of the boundary condition reveals that a proper choice for the coefficients is

ADN=38, AP =3dg, AP =52, 1V =6, etc. . (4.4)
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To first order in & the following series of linear differential equations with corresponding boundary conditions are
found: ‘

order JV;

(1-M2)gl!) +eol}), =0, ¢ (4.5)
@) = —ulx at z;=0; J .
order 11):

| (1=M2)o2), + 02 =2ikME ), 49
¢\ = —ikx;ulx) at z;=0; )

- order 13-

(1= M2)o, + ol =2k ME 02—k ME0lP, ¢ @)
@?=0 at z=0. ) J '

The additional boundary conditions mentioned in sect. 2 are not relevant here, as they belong completely to the
outer region.
The pressure coefficient, expressed in inner variables, becomes to first order

= o aCh ROy,
where: C3% = —2¢!7, ? : )
Co = —2(p2+ikef"),
= 2o eikof).

The pressure jump across the aerofoil is defined analogous to (3.6):
ACH) = CR<x;, —0) =€) (x,, +0p = —2C,<x;, +05. (49)

The solutions of (4.5) to {4.7) are not given here, but reference is made to appendix A for details. When these solu-
tions are substituted in (4.9) the pressure distribution appears to be

ACY = ACUD 45 ACUD 4 62 JCUD 4 PO

where: ACU® = _1_1%; In |x;|
ACUY = —% 2—;2@ x;In |x;| (4.10)
ACYD = ;;m 2+7"ﬁ_6m’ x} In x|

4

with B, =+/1—M?2. P represents a set of regular eigensolutions of all kinds of order; besides 1, ¢ and &* also
In £, & In g etc. may occur. Some of these eigensolutions may be determined after matching with the pressure distribu-
- tion in the outer region.

5 Matching procedure

The outer expansion (3.17) shall be matched with the inner expansion (4.10) according to the limit matching
principle, stating :

‘the outer limit of the inner expansion = the inner limit of the outer expansion.

(for a discussion of this principle, see ref. 13).
The inner limit of the outer expansion as x—x,, is:




4 4
ACR~— L ag T be—xd = = aq (x=x) In lx—x—

- % a,,(x—x* In |x —x) +regular terms in x. , {5.1)
r

The outer limit of the inner expansion as |xj— o0, is:

4 4ik 2-M2 k? 24TMZ—6M2
ACH ~ — — Inix|—e—— x; 1 — 2] lar t
P - njix; B n|x|+e e i n |x;| + regular terms in x;
dik 2—M? k* 2+7M2-6M?
~————ln}x x| — —— B lr—x) o x—x ]t —— e T e x P n fx—x ]+
Bm ‘ nﬁm ﬁ2 ( ) ﬁm ﬁ:ﬁ ( ) l
+regular terms in x. (5.2)

Comparison of (5.1) and (5.2) reveals that

1
ey = E— f (53)
2—M?
a,_.l = lk _ﬁg_m’ (54)
24+ TM2—6M
R e (5.5)

The-above matching principle has only applied to the terms that are singular or have singular derivatives as x—>x,.
When this principle is also applied to terms that are regular in x as x—x, some unknown eigensolutions in the
inner region (see (4.10)) may be determined. Because they play no role furthermore, they will not be investigated.

Thus, the final result of the matching procedure is that the pressure distribution along the aerofoi} can be re-
presented to order & by the series

R 1 2—M? 2+TM2 —6M2
AC,=384C = 6[ Y ah, + — Lo+ik—32 L, —k? L—“’;—i’i Lz} (5.6)
r=0 ﬁco ﬁ 4ﬂoo
in which full allowance has been made for the profile discontinuity at the hinge axis.
6 Determination of the matched pressure distribution
6.1 Discussion of integral equation
The Possio integral equation, already mentioned in sect. 3, reads
1
a(xd = &1&# AC, (x> K(x, x'; k, M,,>dx’ (6.1)
where the normal wash a is given by
oh '
wlx>=—0 (6 + 1kh) —dulx—x)+ik(x—xJul{x—x2), (6.2)

and the kernel-function K is given by

Tl PR M,k M,k
Ko x5 b My == {e-tktmmﬂm[- lxxx]x) m< e "‘l H‘2‘< b~ x']

[ Mx—xVpI,
2!—@3111 <li-£§> +iﬁ§oj e“‘Hf)z)()Wm ?u?)du}. (6.3)
T M. 0

This equation has been derived in ref. 12. The unknown pressure distribution 4C, is approximated by the series
expression (5.6).

Thus, the solution of the pressure distribution involves the determination of the coefficients a,. Rearranging terms,
eq. {6.1) can be written as (per unit 8)




8
2—-M2 [!
Uy {XD> = ac(x)—‘:‘)8 fiﬁ Lodx'> K<{x, X k, M, >dx — ik ——== o) § Li<x>K{x, x'; k, M, >dx'+

2 2+TM2—

+k 6Mz, Ly{xy K{x, x": k, M >dx =
16ﬂﬁ; . 2 ’ 3 My 0 -

12
= EO a, %ﬂ B x> K x, x5 k, M >dx" . (6.4)

The left hand side of this equation, «,,{x ), represents a modified normal wash that is smoothly distributed from lead-
ing to trailing edge. In this way the difficulties have been removed in approximating the pressure distribution by
functions h,, that were due to the discontinuous distribution of the normal wash 4{x>.

The kernel-function is singular for x'—x. In the integration procedure it is convenient to separate the singular

parts, being B
. K, =- e}’ {6.5)
i F ey (6.6)
Ksz_izﬂw In jx—x'].

The remaining regular part is

K,=K-K,-K,,. (6.7)
In a condense notation eq. (6.4) can be written as
1 ‘
alx) — aco(gol+gll+921) -0 c1(902+912+922)+
1 1k
- 47! 02(903+913+923) - 4 Z a (f0r+f1r+f2r) (68)

=0

1

where : Go1 = (f:—i Lo (x> Ky, {x, x'; k, M_>dx
1

g1 = J Lo{x") Kg,{x, x'; k, M dx'
-1
1

21 = f L0<xf> K,,,(x,x'; k! Moo>dxl
-1
1

Go2 =fﬁ Ly (X K Cx, X5k, Mgy dx
-1
1

g1z = J Ly (x5 K, {x, X753 ey M, > dX
i

922 =j Ly X' K x, x5k, M >dx'
-1 °
1

do3 =f{T: Ly{x") Kg {x, x"; k, M >dx'
-1
1

i3 = j L2<x'> KS2<x= x’; k, Muo>dx’
-1
l ~

023 =J La{x'y Ky, x5 K, M) d
-1
L

fOl’ =¢ h’<x’>KS,<xs x’; ks Mm>dx’
-1

1
fir = J' h{x'y Kg,{x, X' k, M,>dx’
-1

1 | S
fo =) BGOKx X kMpax. (69)




The functions gzll, d22, §23 and f5, are calculated numerically using a trapezoidai rule; the inner integral in K, is
calculated analytically after approximating the Hankel function by a polynomial. The remaining functions in {6.9)
can be calculated analytically ; results are given in appendix B.

6.2 Collocation procedure
The unknown coeflicients 4, in eq. (6.8) are determined by a collocation procedure: in R+1 points x=x, on the
aerofoll, of which the location is given by

2n(p+1)

x_,,: ‘COS—Zm‘, p=0, 1, ...,R, (6.10)
the modified normal wash is calculated (right hand side of (6.8)) and put equal to the prescribed wash (left hand side
of {6.8)). In this way a set of R+ 1 linear algebraic equations for a, is formed which can be represented in matrix
notation:

{4na} = [D]{a,} . (6.11)

Then, the coefiicients a, are easily solved:

{a} =[D]"{4na,} . . (612)

A useful alternative to improve the accuracy of the g,’s is the application of a least squares method {refs. 14 and
15) or a variational method (refs. 16 and 17}. The latter can be reduced to a collocation method as described above
with an optimum location of the collocation points as given by (6.10),

6.3 Calculation of pressure distributions and aercdynamic coefficients

Once the coefficients a, are known, the pressure distribution is readily calculated from (5.6).

Other aerodynamic quantities of interest are the wing lift and moment coefficient and the hinge moment coel-
ficient. They will be defined here according to the notation introduced by Kiissner :

1t R
_ 1 ) 1
k= o LAC‘,, dx, (613)
[ ‘
m,= EJ ACP(x +0.25)dx, (about j-chord point) (6.14)
_1 ,
1 1
_ [y — ) .
ne= o L;dcp (x —x.)dx {6.15)

All three coefficients can be expressed in analytical forms, see appendix C.
7 Applications

7.1 Comparison with results for incompressible flow

In ref. 4 Kiissner and Schwarz have given an analytical solution of the first order problem in case of incom-
pressible flow. Their results for the pressure distribution should be exactly the same as the results obtained with
the present method for R=2. In the following table the coefficients a, in the pressure series as well as the wing
and control surface coefficients have been compared for t=0.25 and k=1.

M=0 Kiissner/Schwarz - Present method
k=t
ag +0.55291 +1.79724 +0.55286 +1.797201
a; +0.17122 —2.004351 +0.17115 ~2.09431i
Cay —~0.26180 0 —0.26170 0 _
k. +0.65841 +0.29642i +0.65839 +0.296401
m, +0.37763 +0.33333i +0.37764 +0.33332i,

e +6.02631 +0.04155i +0.02631 +3.041551
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The values obtained with the present method did not change after increasing the accuracy of the integrations in
(6.9). _ . ;

The agreement of the above values is satisfactory.

7.2 Convergence test and comparison with results for compressible flow

To get an idea: of the effectiviness of the logarithmic terms in the pressure series a convergence test has been made
on the wing and control surface coefficients for 1=0.3, M =038 and k=0.9. The procedure is that the logarithmic
terms have been added successively to the pressure series, as in each stage the value of R has been increased from
2 to 14 by steps of 2. The results should be compared with “exact” values, i.e. values corresponding to such large
R that an increase of it has no influence on the coefficients any more. In the test this value of R has not been pursued
in order to avoid a lengthy computational labour, but the “exact” coeflicients have been estimated by taking the
mean values for R=10, 12 and 14 with ali logarithmic terms included in the pressure series. The convergence
test is presented in table 1. The accuracy of the coefficients is indicated by asterisks: one asterisk marks that the
signed values and also those for higher R are accurate within 1%/, of the modulus of the “exact™ values, two asterisks
mark an accuracy of 1°/,,. :

Although the procedure in this test may be somewhat rough, nevertheless two facts can be observed:

a. a'satisfactory convergence is only obtained by including the first two logarithmic terms in the pressure series;
b. the nfluence of the third logarithmic term on the convergence may be neglected.

To illustrate the effectiveness of the logarithmic terms the original normal wash as well as the wash modified by
successively adding the terms to the pressure series, have been depicted in fig. 3. They show that the discontinuity
in the slope of Tm {a,,> has been completely removed after adding the term a, L,.

Another fllustration of the influence of the logarithmic terms is given in fig, 4 by the pressure distributions for R=8.
The mutual differences between the distributions 1, 2 and (3,4) are not negligible as those between 3 and 4 are to
small to be drawn in the figure.

In the following table the “exact” values are compared with coefficients given in ref. 2:

M=08 Timman/van de Vooren Present method
k=09
ke 0.48031 —0.08675i 047953 —0.08752i
Com 0.65482 —0.06814i 0.65478 —0.067761
n, 0.09313 0.07388i 0.09319 0.073791

The agreement is satisfacotry.

7.3 Comparison with experimental results for compressible flow.

In ref. 10 Tijdeman and Bergh have given measured pressure distributions and aerodynamic coefficients for a
wing-control surface system in subsonic flow. Control surface chord was 25%, and wing thickness 67/. The experi-
mental results cover a large number of Mach numbers and reduced frequencies.

In fig. S the measured coefficients have been compared with those calculated with the present method for a
radial frequency @ =150 cps. A striking feature is that the qualitative agreement — even to high Mach numbers —
appears to be rather good : both experimental and theoretical k.- and m_-values show a rapid decrease, the theoretical
one lagging about 0.05 in Mach number. The decreases in the imaginary parts of n, coincide, however.

An analysis of this feature may be given after considering the corresponding pressure distributions in fig. 6.
The greater part of this figure has been taken from ref. 10. When the free stream Mach number exceeds the critical
Mach number M,, =0.85, a supersonic region appears at about 40% of the wing chord. As easily can be observed
from the distributions of local Mach numbers, the average M, -values relating to the flow patterns which are still
subsonic or to those which contain only small supersonic regions, are higher than the corresponding values of M,,..
Considering M,_=0.8, 0.825, 0.85 and 0.875, an estimate of this difference yields about 0.05 in Mach number. This
means that it should be fair to compare the measured distribution for M, =0.8 with the calculated one for M, =
0.85, and so on. Indeed, on this basis the agreement is qualitatively good. '

An analogous difference in Mach number does not appear in the n-distribution, because the average M;-values
over the control surface are nearly equal to the corresponding M -values.
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8 Concluding remarks

1:-The results of the convergence test indicate clearly that the presence of the logarithmic loading functions L,
and L, in the approximating pressure series is necessary to assure a satisfactory convergence rate of the pressure
distribution as the number of “regular” loading functions is increased. In the example given, i.e. for t=0.3, M, =08
and k=09, already four regular loading functions provide for an accuracy of 1% and ten functions for an accuracy
of 1°/s0. For a combination of both low M- and k-values a smaller number of loading functions may be needed.
The influence of L, on the convergence rate is small.

1t is expected that analogous results are found when the present method is extended to a wing of finite span. Of
course then, additional loading functions should be included in the pressure series to treat the discontinuities in
the boundary conditions at the control surface side edges. \
-2. Calculated and experimental results show a good qualitative agreement up to the lower transonic Mach numbers
where a small supersonic region is present. The influence of the mean flow field on the unsteady pressure distribution
at the higher Mach numbers, explained in ref. 10, is not considered in the present method, but can be roughly taken
into account by introducing an average Mach number for which the calculations are to be performed. The theory
should be improved if also characteristics of the mean flow field could be considered, e.g. in a way as has been
pointed out in ref. 18.

-~
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APPENDIX A
Determination of the inner selution

The determination of the inner solution involves the solution of a series of linear boundary value problems of
which the first three have been given in (4.5) to (4.7). As the boundary conditions are eletnentary the method of
conformal transformations may be used to obtain the desired solutions.

First the x;-co-ordinate is transformed like

k'
5. | A
which makes the differential equations of the Laplace type. Then, problems {4.5) to (4.7) become
(Ps,‘l‘:‘ (pll) = 0 (A 2)
o= —u(x> at z=0;
2 P
o z) +(P(12) = 2ik —= M. ‘PE“,
B (A.3)
(P[li)= —!kﬁwf,u<f,> at Zt':'O; )
2
o+ = ik Az 20—k MZ 1",
Be (A.4)
¢P=0 at z=0 ]
1 Solution of ¢!
A conformal transformation is applied to a uniform parallel flow as indicated in the following figure.
£ 2
| o 4
n= (y eta)u,‘(fﬂél
—_— -
T ¢ : ey
%=E4L YR+ 2 %5
Thus, the complex velocity potential &{¥ becomes
B =y = (e, (A3)
After expanding (A.5) asymptotically to 6, the following expression for the velocity potential ¢! is found :
s ‘ .
@it = — - [%)'c, In{x?+z7)+ (ﬁ-arctg %)zi]+ 08y . {A.6)

2 Solution of p*

A particular solution making eq. {A.3) homogeneous and satisfying the zero boundary condition at z,=0is

- @ = _ kM0 (X2 +2%) In (X2 +27) . A7)
’ 4nf.,
The boundary value problem for the remaining part of ¢,
PP = i — 2, {A.8)
becomes:
P+ =0 } (A.9)
qpl‘z" = —ikf,0xulx> at z;=0

Its solution may be found using the conformal transformation
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vielding, after expanding terms asymptotically to 4 and putting 4 equal to idkp
(21 _ ; Skf.o 1,2 22 2, 2 Zi = 2
gi=i—= zi —FH In (xP+2H)+ arctg;_c-an Xiz; 06, (A.10)

Addition of #'? and ¢ results in

o = _j 2 ; [a‘cf-ﬁ-(ZMj,—l)zf In (X7 +27)—4p2 (arctg% — n) 5c',~z,-]+0<52>. (A.11)
f., i

3 Solution of ¢

The only solution is a particular solution making eq. (A.4) homogeneous and satisfying the zero boundary con-
dition at z,=0:

2a82 — 1 — 4 2
o= o =& ﬁ?é[(B zMw %+ 3+8 M z;) %o (% +27) ~ 303 6 avctg - 4%,2? + B;Zﬂ (A.12)

i

APPENDIX B

Anazlytic expressions for some integrals in (6.9)

g01=5ﬁmQ

gis = —41’};—(— [{(1+2In 2)sin 8, +2(cos §,—cos H)Q]

0

doz = 2B, [sin 6,—2(cos 8 —cos 6,)Q]
gy, =2i ﬂi [sin 6, cos 8—(3+1n 2) sin 6, cos 8. —(cos 6, —cos 6)* Q]
go3 =3B [sin 8,(3 cos ,—2 cos 0) +4(cos §,~cos 0)* Q]

gia= i%— [ —15(1+61n2) sin 30,—3(1 +2 In 2)sin §,—3 sin 6, cos 26+
)

+4 sin 26, cos 8 —% sin 20, cos §,~%(cos 0, —cos.0) QT

im—-0), 6 <0,
where =
_'%Bc’ o> Bc
sin rf+sin (r+1)6
sin @

fOr = _'zﬁw

5; k [cos r0  cos (r+1}8
Bl r r+1
flr =

—22‘%[2]112-}—(:08 a1, r=4
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APPENDIX C

Analytic expressions for wing 1ift and moment coefficient and hinge moment coefficient

P—

k. = =[ay+2a,, sin 0. +a,, sin 6, cos §,+4a,, sin 0,(1+2 cos? 6,)]

:‘-1

L3

m,= = { —4nk +4(ag—a,}+1a,, sin 6,(2—cos 8,)—%a,, sin 6, (cos®6,—3 cos 0. — 1)+

A

+3a,, sin 0,[(}+% cos 6,)][(1 +2 cos?8,)—cos*0,]}

n, = %{—focrc"-i[l - %(Bcasin 0. cos ec)]ao—%.[l -~ %(Bn—sin g cos HR—%sin39R)Ja1+

' R sin{r+2)8, sin(r+1)6, sinrf, sin(r—-l)@c]
+4-1r,,z a,[ r+2 T+l r + r—1 +

=2
6, 1,1, AW ; 3.,
+ % am 1 - E sin 0.(2—cos 6,) + —sin B.1—%a,| |1 — —)sin f.(cos*f,—3 cos 8,—1) — —sin 6.+
+ac2[% (1 - %) sin @[ {3+ cos 8.)(1+2 cos*6.) —cos*6,] +
1 iy 2 ) P ] 1 o2 2 .
+ 2—(sm 8. cos 0.+ % sin* 6, — 75 sin“ 0, cos*f,)
T

where:

1 1 R sin 16, sin (r+1)9{|
r(—-;;{[ E(G+sm6:|aﬁ ﬂr; [ FrT +

' 1
+2a,, (1 — %) sin 8,+acl[(1 - g‘—) sin 6, cos 8, + — sin? 95] +
n n mo

+a, |} _ 0 sin 8,(1+ 2 cos? c)+lsin28ccos B¢
2 n n o
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TABLE 1: Convergence test on wing and control surface coefficients for 7=0.3, Mm=6.8, k=09,

R Aegs Ty az;:D atu_;é[); ey ac::() B 001#0; ﬂ‘.2=0 Ao {ll‘.l, 2y #0
E Re Im Re Im Re Im Re Im B
k, 2 0.32592 —-0.12223 0.46913 —0.20817 0.44840 —0.11586 0.39679 —0.15663
4 0.46250 -0.08047 0.48461 —0.07700 0.47507 —0.08604* 0.47929 —0.08913+*
6 0.51526 —0.10330 048151 —0,08281 0.48088 —0.08830 0.‘_17938 —0.08715%*
8 0.54602 —~0.12061 0.47430 —0.09814 0.47999 —0.08761** (0.47953 | —0\08753*')
10 0.45324 —~(.07594 347942 —0.08733* 047928 —0.08720 0.47989 —G.08752
l2 048013 -~0.08754 0.48040 —0.08514 0.47959 —0.08758 0.47964° —0.08756
14 0.50129 -~0.09770 0.47929 —0.08750** 047975 —0.08761 0.47949 —0.08748
n, 2 0.61872 ~-0.13671 0.78763 —0.05082 0.66651 —0.07957 0.76725 —0.14594
4 0.64831 ~0.0834% 0.65399 —0,04739 0.6536%9 —007282* 0.65819 —3.06513*
6 0.70070 ~0.05511 0.64955 —0,06381 0.65688 —006774 0.65355 —0.06772
g 0.73359 ~0.03819 0.65830 —0.08171 0.65491 —006725 _ 0.65471 —0.06806** ) )
10 0.62265 ~0.07868 0.65517 —0.06706 065414 —0.06783** 0.65500 —006760
12 0.65634 ~0.06895 0.65346 —0.06488* 0.65479 —0.06798 0.65476 —0.06783
14 0.68166 --0.05975 0.65406 —0,06812 0.65495 —-0.06776 0.65459 —0.06786
n, 2 0.12179 0.01880 0.09960 0.04934 0.10181 0.04617 .\ 0.08134 0.07139
4 0.09837 006974 0.09050 0.06631 0.09408 0.07267* 009263 0.07152
6 0.08591 0.08094 009357 0.07359 0.09285 0.07421 0.09358 0.07380%*+}
8 0.08251 0.08433 0.09525 0.07654 0.09340 0.07372 0.09315 0.07388%**)
10 0.10051 0.06915 009292 0.07303* 0.09336 0,07370** (.09311 0.07379
12 0.09258 0.07415 0.09280 0.07298 0.09320 (4.07384 (0.09323 0.07381
14 0.08828 0.07749 009329 0.07386%* 0.09318 0.07380 0.09324 0.07377
¥ aceuracy: 19, ** accuracy: 1°/,, ') One collocation point nearly coincides with x,.=0.50.
<0 LalX X >
Q c
|— LK Koy
he<x> . LodX . X3
1.8 \ 28 ‘i
1.2 24
\ )
0.8 L \ \ 2.01
+ 04 \ \ \ //—\il 1.6 / —
0 1.2 ———1— —
-1.0 n 1
~-0.4 Ay / o8
]
-asf- \ 7 ~04 / —
—-&._\ Lz )
~1.2 i B 10
—_— Xe
Fig. 1. Approximating functions h.(x). oa
- -
Fig. 2. Approximating functions Lo, L, and L,. -08 L— J
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A new approach to the numerical solution of the equation of
subsonic lifting surface theory

by . .

P. J. Zandbergen®, Th. E. Labrujere and J. G. Wouters

Summary

The present report deals with the numerical treatment of the linearised tifting surface theory through a method which is based uwpon the
representation of the pressure distribution on chordwise direction by a series of Chebyshew polynomials according to Laschka, and upon the
determination of the spanwise integral involved by means of trigonometric polynomials such as also applied by Multhopp,

When calculations are performed vsing Multhopp’s method the results show strong variations with increasing number of the spanwise stations
and chordwise points, to which the boundary condition is applied. This makes it impossible to obtain a plausible solution. Hence a new method
has been developed, where the representation of the pressure distribution in spanwise direction is separated from the representation of the
regularised kernel function in spanwise direction. This makes it possible to obtain accurate integrals for a given distribution of pivétal points
and leads to results which show a rapid decrease of variation as either the number of spanwise stations or the number ¢f chordwise points or
both are increased. This is demonstrated by including a number of results for some well-known wings.

As the methed allows of the possibility to take arbitrary positions for the pivotal points, some computations have been performed for different
distributions of spanwise stations. The results indicate that further investigations may be useful.

This investigation has been performed under contract for the Ministry of Defence of the Netherlands,
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; physical co-or dinates of wing Bu} coefficients defining rounding (fig. 3)

z F,  spanwise function

o local angle of attack H.,  chordwise integral

B compressibility factor H, regularized kernel function

B1.8; quantities used in evaluating the chordwise I,  integral occurring in chordwise integration pro-
integration cedure i '

¢ x co-ordinate non-dimensionalized by s K kernel function ‘

n y co-ordinate non-dimensionalized by s K, , measure for radius of curvature of wing edges

' angular co-ordinate in chordwise direction H,, local slope of wing edges

¢ value of  in pivotal points R number of chordwise functions — 1

9 angular co-ordinate in spanwise direction T.  Chebyshev polynomial of order r

v index of spanwise co-ordinate of pivotal points X . .

A index of integration points Y } auxiliary wing co-ordinates

¥ M, Mach number of free stream

E . . A humber of integration points in spanwise direc-
influence functions .

4 tion

Ay

1 Introduction

One of the most important problems of acrodynamics is the calculation of the lift-distribution over a wing of
arbitrary planform. It is therefore not surprising that famous names in aerodynamics are connected with the study
~of this problem. :

One of the first solutions was given by Prandtl, when he developed his so-called “lifting line” theory. In this
theory the lift on a wing is represented by a bound vortex, the strength of which is a function of the spanwise co-
ordinate, followed by a trailing vortex sheet. The theory leads to a singular integral equation, which was solved by
a collocation method. ‘

Although a tremendous namber of papers all based on this theory was produced, no real approach to a more
satisfactory description of the pressure distribution over a wing was made, until “lifting surface™ theory was used.
The most successful method for the evaluation of this theory is due to Multhopp (ref. 1). In this method the pressure
distribution over a wing is represented by means of trigonometric series; the chordwise distribution is based on

" a series, which had turned out to be suitable for two-dimensional thin wings with arbitrary camber, while the
spanwise distribution is given by a sine series. The coefficients of these series are found by using a collocation
technique, starting from the appropriate integral equation and applying the boundary condition at a number of
pivotal points distributed over the wing in spanwise and chordwise direction. Originally it was thought sufficient
to use two functions in the chordwise direction and up.to 15 stations in spanwise direction. Although it is true
that this may give a fair indication for wings with small sweep and camber, it was found later that there are examples
of inaccurate results due to this limitation, especially for the center of pressure line. This has resulted in attempts
to perform calculations with more than two functions in chordwise direction. One such an attempt is the subject
of ref. 2, which presents a modification of Multhopp’s method with a view to the application of digital computers.
During recent years computations have been made, using this method, especially with the objective to obtain an
insight into the requirements for an accurate solution.

These computations show that for a given number of spanwise stations and for different numbers of chordwise
points there exist very strong variations in the results which do not decrease as the number of chordwise points
is increased. Moreover the deviation between the different results becomes worse when increasing either aspect
ratio or sweep of the wing.

Considering the method used in these ¢computations, there are at least three reasons which may explain this
phenomenon. :

In the first place it had been observed that the spanwise integrand is not completely regular for all values of the
spanwise co-ordinate. This must lead to serious difficulties in trying to represent this function by a polynomial.

The two other reasons are connected with the fact that occur in the Multhopp method. The spanwise integrand
consisting of the product of the pressure series coefficient and the spanwise influence function is represented by
a single trigonometric polynomial. After integration of this polynomial, it is ot possible to judge from the results
whether the representation of the pressure series coefficients or the accuracy of the integral gives rise to poor results.
This makes it difficult to investigate the separate influence of each.
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Since the need for more accurate methods for calculating wing characteristics is growing rapidly, it is quite
obvious that the results, described above, have given rise to a search for more reliable methods for computing
the lift distribution over a thin wing both in this country and abroad.

“The first requirement that should be met is the achievement of an accurate 1ntegratlon This can be accomplished
by regularizing the spanwise integrand and by using an integration scheme that is mdepcndent of the number of
pivotal points. Such a method would avoid the errors due to the singularity of the integrand mentioned above
and would allow the separate study of the two effects of representation and integration. Now of course this can be
done in a number of ways, cach having its own pitfalls.

The method which will be described is the result of a development in which several schemes were tried and rejected,
until at last one remained for which all major difficulties seemed to be resolved.

In essence the method is still closely connected with Multhopp’s method because Multhopp’s interpolation
polynomials have been applied both for the representation of the pressure series coefficients in spanwise direction
and as an aid for the determination of the spanwise integrals..

It differs from Multhopp's method with respect to the regularization of the spanwise integrand and with regard
to the determination of the spanwise integrals, which has been made independent of the number of pivotal stations.
Moreover a sufficient accuracy of the chordwise integrals is guaranteed.

Due to the time-consuming character of the computer operations required by these measures, special attention
has been given to the optimization of the programme. A remarkable saving of computer time has been obtained by
using rather simple methods.

In the meantime some of the essential features of the present method have been applied by van de Vooren to some
problems connected with the calculation of T-tails (ref. 4).

The present report gives an outline of the method and discusses and analyses the specific characteristics of the
results which can be obtained.

A detailed derivation of the necessary formulae has been given in appendix A, while in appendix B the features
of the chordwise integration have been described. The computer programme, written in ALGOL, together with
general purpose input and output programmes will be presented in a separate report.

2 An outline of the method

As usual in lifting surface theory, the wing is assumed to be thin and to deviate so slightly from the z=0 plane
that the boundary conditions can be applied at points in the projection of the wing onto this plane (see fig. 1 for
the definition of the co-ordinate system). From the linearized potential equation for compressible flow

4

Bt dyyt+ ¢, =0 (2.1)

it can be derived {sec ref 4) that the following represcntatlon is valid for the local angle of incidence in terms of
the pressure distribution Ac, over the wing:

1 £+s [ %)

afx, y) = —J' T A, (X, Y) K (x, y; x, y)dx'dy , (2.2)
81[ x, (¥

in which s denotes the semi-span, x{y") and x,{y') are the equations for respectives the leading edge and the trailing

edge, and where K is given by '

| B .
Kix,y:x.,y) = 1 . _ .
) (y"y’)z[ i \/(x—x')zwz(y—y')*’] 23

Since the problem to be solved is the determination of the unknown Ac, for given values of a, eq. (2.3) is a highly
singular integral equation®. By making a number of appropriate assumptions, the solution of this integral equation
can be reduced to the solution of a system of linear equations.

As is common in lifting surface theory, it is assumed that Ac, can be represented by the following formula

sl = s Lalhx) 24

¢ To give a sense 1o this equation, some kind of regularizing process has to be applied, e.g,

r—fi’idyeﬁm{ J S0 o r ) d,_m}'

O T, P =P T
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where instead of x and y the following dimensionless quantities are used
. y " '
. A
and

T {5 &)y - ' (2.6)
The quantlty I(n) is the local chord.
According to Laschka (ref. 5) the functions h, have been chosen as follows.

1 T(1—2X')+’1‘1+1(1—2X)

) = — 27N
(_ ) X(1-X)
where T, is a Chebysev polynomial of order r.
By introducing the angular co-ordinate i defined by A
x = lzeosy (2.8)
2
the functions h, can be written as ‘
2r+1
5 cos ! ; W
hiy) =~ (29)
sm 5 . .
By eqs (2.4), (2.5) and (2.6) the integral equation (2.2} can be written as follows.
B &nsn)
ﬂ(iﬁ?)*** jL &) 15 nsm) dn ' 210
Z (n n): . 210

where the bar through the integral sign denotes the principal value according to Mangler (see note and ref. 1)
and where H, is given by X_ X

1
H(& ) = 5 h(X) 1 1+ 3 dx’. @1
4] \/ r 2 n2
X-X
( Y+ - ‘
To allow for the fact that the integrand of eq. (2.10) contains a Jogarithmic singularity, this equation can be rewritten
as (see appendix A) .

2.2 : +1
alf, n)= - — Z’} wdn o BS s dh',(n’=n)j a,(n)nlg—y|dy (212}

-1

where
2 2

10y

So far the analysis is identical to that of Multhopp, at least in principle; from here on however a different way
will be followed, which, although being more tedious, is also more flexible.
First it is assumed that the functions a,{') can be represented by a trigonometric interpolation formula

F,=H{Ln; n)+ 3 {1 —n")? Inly— rﬂ{i—{n ﬂ)} | ' (2.13})

m

i m .
an)=—-—- a.{n, sin uf sin pb, . 2.14
() il 2 (n)“}::1 pd’ sin e (2.14)

where 7 = —cos § and 0, = —~ {(2.15)

m+1’
When this is inserted in equation (2.12) one obtains

1 & n LA *FA&n; 0)sin pf) sin ¢
a(f, ?7) = — 51—_{' Z m ;; ﬂ,(?),,) ugl sin u@, JD (COS 0 —cos 91)2 df'+
R m m r
+1y ———I— ( dh, =0 > afn) .Y sin ,uﬂ,,j in)cos 0 —cos ') sin. uf sin & d0’ . (2.16)
r=0 =1 g=1 0 -

Il




When considering this equation, it will be clear that, if in a number of N points on the wing the quantities « (£, n)
are given, with N 2m(R+ 1), and provided the integrals can be determined, a system of linear equations for the
unknowns.a,(n,) is the result. This system may be solved by using a feast squares technique. In general the solution
for given m and R will depend on the number N and the positions of the collocation’ péints, while moreovcr the
accuracy of the integrals will play an important role.

The attention will be focussed on the latter point first. Instead of the function F,, a new function H, is constructed.

'=§) sin 9’}

{F.(6.1: 0)=F,eons 0)—(cos 0—cos ) 2
Aen;0) =

(cos 0—cos 8)* 217)
The introduction of this function is of essential importance because the determination of the spanwise integral by
using interpolation polynomials can only be achieved with sofficient accuracy if the integrand is completely regular.
The fact that Multhopp considered the function F, instead of H, may be one of the .reasons for the difficulties that
arise when it is tried to get a plausible solution using his method. When the function H, itself is written as a sum
of trigonometric terms, the resulting integrals can be determined, and provided the number of terms used to represent
H, is sufficiently large a good result for the first integral in eq. (2.16) is obtained. In the present case the number
chosen is a(m+1}— 1, a being an integer. Using eq. (2.16} together with eq. (2.17) and evaluating the integrals in-
volved, the following algebraic relation is found (£ and  are replaced now by &, and #.)

R m aim+1)—1 ] ﬁ B : sin 9"
é:ps 'i'v) :Z ;1 ar(’?n){ lgl a(_m+—1) r(ep’ vs Bl)?nl""Fr(fp’ Bv: Bv) mﬁvn +
' OF 5232 dh . . ) ‘ o
(= — T o= ‘ 2.18
=)0~ 1 G O =005, .18

The detailed derivation of the quantities occurring in this formula, is given in Appendix A. The meaning of the
abbreviations v, &, { and § is summarized in table 1. Special care has to be taken in those cases where 8, =8, since
the calculation of the function H, is not trivial then (see also Appendix A). .

By specifying the points (£, n,) eq. (2.18) becomes a system of linear equations. In the present. mvestlgatmn the
points £, are chosen in the usual way, such that

1—cos 23;—:_1;71 )
XP:-—————————z——— p=012 .. R (2.19)

while the stations #, can be chosen arbitrarily. In the following section the numerical evaluation of eq. (2.18) will
be discussed. :

3 The numerical evaluation of the method

In order to obtain a solution of eq. {2.18) it is necessary to ca]culate the functions H,.(Z,, 8,; 6,), F.{&,, 0 ; 8} and
oF,
wr = (
by eq. (2.11). If n £ 1 the evaluation of the function H, requires the calculation of the mtegral in eq. (2.11). Although
in principle H, can be expressed in terms of elliptical functions, this in itself does not provide a useful way for the
evaluation, certainly not for the higher values of the index r. Therefore a numerical method was applied. To achieve
a maximum of accuracy at a-minimum of computer-time it was decided to establish a separate procedure for the
calculation of the function H,. This procedur'e has been described in Appendix B. It assures an accuracy of 9 decimal
places for the H, with r ranging from 0 to 10. As will be clear from Appendix B, a separate analysis was needed
of the behaviour of this function in the vicinity of Y =0. If n=#’ the evaluation of the function H, requires in essence
the calculation of the second derivative of the function H,. At the same time this involves the calculation of the,

&n0,:6,). As is evident from eq. (2.13) the real problem here is to investigate the funcuon H,(&,n; ) given

‘quantjtles F(&,8,;0,)an d (Cp, f,; 8,). The above mentioned analysis, given in Appendix A, section A.2, pro-

vided analytical expressions Which did not' lead to numerical difficulties. The function F,(¢,,0,; d,) is given in
principle by eq. A(13). Using the trigonometric representation of A, it follows that

F,(ﬁp,.B,,; 8,) = ;1[-{% sin r¢p + r—jjsit;((+l)¢} . (3.9
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oF, . . )
The value of 551 (¢, 6,:0,) is given by eq. A(15), while the very complicated expression A(18) gives the value of
Hr(ﬁp: Bv; BV)

“As will be evident from the analysis leading to eq. A(18), it is assumed that the second derivatives of the leading
and trailing edges of the planform with respect to the spanwise co-ordinate exist. In other words it is assumed that
the edge of the planform has a continuous radius of curvature. It should be stressed that it is not shown, and probably
not even true, that the lifting surface problem of a wing with one or more kinks can be obtained as the limit of
a sequence of solutions with continuous radius of curvature ,which in one way or another gives an increasing degree
of approximation to the kinked wing.

Another assumption which has been made implicitly is thai for this class of wings a unique solution exists with
a regular part which is continuous and continuously differentiable, and a singular part having a coefficient which is
a continuous and continuously differentiable function of the spanwise co-ordinate. The series of functions used to
represent the pressure coefficient lies dense in this class of continuous functions and will therefore converge to the
function to be approximated for increasing values of m and R.

Since also the integration procedures used have either known accuracy or rely on a convergent process, it is
allowed to consider the successive decreasing deviations of the numerical results as convergence to the solution
of the problem. ' '

In the following section the results for a number of cases are discussed, especially with regard to the speed of
convergence i.e. the number of pivotal points necessary to obtain results of a given accuracy,

4 Discussion of some numerical results

_In this section a survey will be given of the results obtained at the study of the following subjects:
L. The improvement achieved by the present method in comparison with Multhopp’s method.
2. The convergence of the results with respect to the various parameters,
3. The influence of the way in which the pivotal points are distributed.

4.1 An example of the improvement obtained in comparison with Multhopp’s method
- As has been mentioned before serious difficulties will be encountered at the determination of a plausible solution
if the method of ref. 2 is applied. These difficulties are due to the strong variation of the solution when the number
of chordwise points is increased. An illustration of these difficulties is given on the basis of some results for a rec-
tangular wing with s=1, {(3) =+ at M =0and for m=21 and R=1, 2, 3, 4. The results are presented in table 12a.
It is clear that the fluctuations are so strong that it is impossible to derive a plausible solution from these results.
When the method, presented in this report, is applied to this wing for the same values of m and R, without making
use of the possibility to improve the spanwise integration accuracy, in other words taking a=1, the.results show
a very similar behaviour (see table 12b). When the integration accuracy is increased at the same values of m and R,
a completely different behaviour of the solution is obtained, as appears from table 12c.
A good comparison of these results becomes possible when the deviations between the solutions for succeeding
values of R are considered. From table 12d it appears that:
~ the deviations between the results for different values of R obtained with the method of ref. 2, hardly decrease
with regard to a, and fluctuate strongly with respect to a,.
— the deviations between the solutions obtained with the present method for 4A=1 are somewhat smaller, but when
R is increased, they increase very rapidly with respect to a, and they are nearly constant with regard to a,.
— there are hardly any deviations between the solutions for A =28, When R is increased they decrease very rapidly.
From these observations it may be concluded, that the possibility to increase the spanwise integration accuracy
independently of the number of pivotal spanwise stations, which is offered by the present method, can be a great
advantage. Apparently the integration inaccuracy may offset the attainment of a plausible result. Also it may be
ctated that there possibly are cases where with the application of the present method a plausible solution may be
obtained at a lower value of m than with the application of Multhopp’s method. This should be the case when
the number of spanwise stations to provide a sufficient accurate spanwise interpolation polynomial is less than
the number of stations to provide a sufficient accurate spanwise integration.
In order to obtain a better insight into the merits of the method presented, it is necessary to investigate the variation
of the solution not only with respect to R but also with regard to m and with the elimination of .the effect of the
integration inaccuracy. ‘

4.2 The convergence with respect to a, m and R
The essential and new feature of the method is that in principle, for a given representation of the lift distribution
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by means of a number of (R+ 1) chordwise terms and m spanwise terms (see egs. (2.4) and (2.14) ) and for given
positions and given number of pivotal points, a solution can be obtained with an accuracy which can be checked.*

Therefore it is possible to investigate the convergence of the solutlon w1th respect to m and R, maintaining for
each set of m and R a constant accuracy of the integrations. :

In the cases to be studied here, the distribution of the pivotal points along the span has been chosen in the usual
way, that is

v

0‘, = m (41)

Moreover b has been taken equal to 1, Le. the number of equations is equal to the number of pivotal points.
For illustrative reasons the chosen examples belong to those which have been studied extensively throughout
the years. They comprise ‘
The circular wing at M,=0
The Warren 12 wing at M, =0

The Warren 12 wing at M, =0.6
The Multhopp wing at M, =0

where M, indicates the free stream Mach number .

Both the Warren 12 and the Multhopp wing are swept wings with a kink at the centre. The geometry of these
winigs has been given in figs. 2a and 2b. Since, as has been said, this method is not appropriate for such planforms,
a rounding of these kinks, so that the radius of curvature remains continuous, is necessary. In fig. 3a general scheme
has been given for defining such a rounding. As is evident, the amount of rounding is dependent on the arbitrary
co-ordinates 17, and 1. This makes it possible to investigate the influence of the rounding on the solution; for the
time being a constant rounding has been applied. In the following sections the four cases will be discussed one at
a time by considering the variation of the quantities a,. The first two of these quantities (¢, and a,) are directly
related to the local lift and the local centre of pressure.

4.2.1 The circular wing at M, =1

For a number of cases with different m and R, the coefficients a, have been calculated. First we will consider the
convergence of these coefficients with respect to the number of spanwise integration points for given m and R.
Typical examples have been given in tables 2a and 2b. As can be seen, the convergence in the two cases is evident
and at a=6 the results may be considered to be correct in 4 to § decimal places. In table 3a the convergence of a,
and a, with respect to R is shown for fixed numbers m and a. As can be expected, the convergence of a, is somewhat
slower than that of ag, but still remarkable. In table 3b the convergence with respect to m is shown for fixed number
R and constant integration accuracy.

It is concluded from these results, that a plausible solution of the circular wing problem, which is accurate in
3 to 4 decimal places can be obtained with m=7, R=3 and a=6.

4.2.2 The Warren 12 wing at M, =0

Since the Warren 12 wing has a kink at the centre in both the leading and the trallmg edges (see fig. 2a), at these
places a rounding has been applied according to fig. 3. In the present case the co- ordlnates #, and y, have been
chosen as follows #, = —#,=0.195090,

This rounding has been maintained throughout the calculations to be discussed here.

In tables 4a and 4b typical examples have beer presented to show the convergence of a, with respect to the number
of spanwise integration points for fixéd m and R. -

In table 5a the convergence with respect to R is shown, while in table 5b the convergence with respect to m has
been given. In all these cases the convergence is evident, although that with respect’ to m (table 5bj clearly shows,
that in this case far more spanwise terms are required than for the circular wing.

. In fig. 4a and 4b the convergence with respect to a of the pressure difference Ac, (eq. (2.4)) along two spanwise
stations has been presented. From these figures it will be quite clear how fast the convergence really is obtained.

423 The Warren 12 wing at M, =06

Since the present method allows the free-stream Mach number to be changed, the same set of cases has been
computed for the free-stream Mach number M, = 0.6 as for the Mach number M, = 0. From these results something

* This accuracy is dependent on the integer a which is a measure of the number of integration points (see eq, (2.18)}.
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can be learned about the influence of the free-stream Mach number (i.e. the effective aspect ratio) on the rate of
convergence. As is evident when studying the tables 6a—b and 7a-b, the convergence is analogous to that for the
case M_=0. - :

4.2.4" The' Multhopp wing at M, =\. ’ : :

The wing studied by Multhopp as a test-case for his method (ref. 1) has ever since remained a test-case for new
developments in lifting surface theory. This s the reason why it was felt that it could not be left out here as an
example.

The kink, which is again present, has been rounded according to fig. 3 with #, = —#, = 0.195090.

.In table 8a the convergence with respect to the number of integration points has been studied form=15and R=1.
As can be seen, even at a=6 convergence is not achieved. Therefore in table 8b the same convergence has been
studied for m=31 and R=3 at higher values of . It is clear that in this case sufficient accuracy has been reached
at a=8.

From table 9a it can be concluded that convergence with respect to the number of chordwise points is reached
at R=4. Convergence with regard to m is not convincing from the results presented in table 9b.

In figs. 5a and 5b the convergence of Ac, with respect to a is shown for two spanwise stations. The convergence
is again remarkable.

The results presented so far, clearly show that with the method presented here the convergence of the results
can be judged. This is true not only as far as the lift is concerned, but also for the higher moments. This leads to
the fact that the chordwise loading also can be calculated with a high degree of accuracy. This is especxally important
as far as the determination of the local centre of pressure line is concerned.

4.3 Some results obtained with arbitrary distribution of pivotal points

As has been explained in the introduction, the method presented here allows an arbitrary choice of the spanwise
points. This can be of advantage in those cases where strong gradientshare expected in the solution. It is then possible
. tochoose a greater density of the pivotal points in the region where the gradients should occur, thereby giving this
region more “weight” than the rest. It may be hoped then that a better solution will be obtained. :

- In the Multhopp distribution of spanwise stations weighting occurs at the tip region. [t is however, totally absent
at the centre section. This is not at all serious for straight wings, but certamiy it is for swept wings. For the latter
class of wings the freedom of choice offered by the present method should be beneficial. One of the great problems,
of course, is to take optimal advantage of this possibility. That this is not a trivial question wiil appear when dis-
cussing the results of some of the trials made with arbitrary positions of the spanwise stations for the Warren 12
wing at M, =0. In table 10a the results are given for various values of a for a distribution of pivotal stations dif-
fering from Multhopp’s distribution halfway between the tip and the centre only in having one point less in the
tip region and, one point more in the centre region.

In table 10b the results for another distribution are given. In this case the density of pwotal stations in the tip
region is the same as in the Multhopp distribution, but the centre region has one point more ‘and the region in
between one point less,

Table 10c again shows the results that occur if the tip region has very few spanwise stations.

These three results, whlch are also presented in fig. 62 and 6b, together with the solutlon belongmg to Multhopp 5
distribution of pivotal points, make it quite clear that the solution of the lifting: surface problem is rather sensitive
to the position of the pivotal stations.

However, it may be assumed that this effect becomes less 1mportant as the number of the pomts 111 any dlstrlbunon
is increased and that finally the solutions obtained will be the same. S

Furthermore fig. 6 suggests that the basic distribution should not deviate too much from Multhopp s distribution.
This is confirmed by the results shown in table 11a and in figs. 7a and 7b. In these the solution for Multhopp’s
distribution of pivotal points (m=17).is compared with those fot three other cases given in table 11b. The latter
distributions are in fact those of tables 10, with one point added in each case. It is seen that the agreement of the
results is much better 1ndeed except for case 4. Although it looks much more sen51ble than in table 10, it still
deviates quite severely from the other solutions.

On the basis of the results presented here it remains an open question whether the freedom of choice of the pivotal
points will be useful in trying to obtain plausible solutions for the centre of a swept wing. This should be the subject
of a special investigation. It scems plausible from the results obtained so far that in order to obtain better results
{or the centre, one should choose a distribution with some more density in the vicinity of the centre.

There is one other possibility which so far has not been tested. Since the number and the place of the pivotal
stations can be prescribed independently: of the sumber of functions representing the pressure difference across




the wing, it is possibie to obtain more equations than unknowns. This sysiem can then be solved by applying a

least squares approximation. In this way it is also possible to give more weight to the centre region than to the
rest-of the wing. It seems worthwhile to investigate this point also.

5 Concluding remarks
In this report a new method has been outlined, by which it is possible to obtain accurate numerical results for

the pressure difference across a lifting surface. The theory has been formulated such that exact results are possible
for wings with a continuous radius of curvature along the leading and trailing edges of the planform. The pressure

“difference across the wing is given as a series of chordwise terms with coefficients which are functions dependent

on the spanwise co-ordinate. These functions themselves are also represented as a series of terms, The convergence
of the results for an increasing number of chordwise and spanwise terms can be judged, and this is confirmed by
the numerical results presented, which are based on Multhopp’s distribution of pivotal points. It should be em-
phasized that one of the great advantages of the method seems to be the accurate determination of the local centre
of pressure line.

Since the method permits of the arbitrary choice of pivotal stations, their distribution has been varied. It is
shown that one has to be rather careful in selecting the positions. It seems that further investigations.are required
to decide whether or not this freedom of choice may be used to reduce the number of pivotal points at which-
plausible solutions are obtained for swept wings.
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APPENDIX A

A detailed derivation of the basic equations

Al The calculation of the quantities y,;, €, {,, and S,
In this appendix a detailed derivation will be given of eq. (2. 18) starting from eq. (2.16). First the ]atter equation
will be written down again for reference

2 #; 8')sin pb* sin 0

_ 1% 2 a2 omo [ERE .
O((g, '1) == 5;[ rgo m+ 1 NZ‘ a,(n,,) Z.] S1n “9ﬂ£ (COS 9—cos 91)2 do* +
1R2232dh1 n o ‘ Do ot ol ani
+5- Y g R Tl - (0" =86) Z a, (1} Y sinp6,| In(cos f—cos 8")sin ub' sin 6'd9" . A(l)
r=0 n=1 u=1 o ’

The singularity occurring in the first integral demands a special treatment. To reduce the integration to a formal
procedure, the following function is constructed

F.(£0;0)=F.(50;6")—F,(0; ) —(cos 0—cos 8"} g%(ﬂ‘ =0). A)

* As will be clear the function F (£, 8; 0%) is of order (cos 8—cos 0')? near the point 8! =8. This then leads to the

introduction of a new function H, which is completely regular for all values of 6'.
| - F(£,0; 6")sin §'

A0, 00 =2 27 /7 7 A3

\ ] (6,056 (cos 8 —cos 01)* G)
| Te avoid a numerical integration in spanwise direction, the function H, has been represented by a sum of sine
| P y
\ terms
‘ A

A
H(6;0Y) = Z H.(¢,0;0,) lein wh! sin wl, A(4)

|
A
where §# = ——
| A+1
| In the case considered here A will be taken equal to a(m+1)—1, where a is an integer. By taking « large enough,
| a sufﬁc1ently accurate representation of H, can be obtained.
|

Inserting the equations A(2), A(3) and A(4) into eq. A(1) one obtains, when performing the summation over @

in eq. A(4)
\
1 &2 p = 4 - "sin(A+1)6" sin pf' .
\ = — E) 1
e 2y £ e £ e 5 G000 -y sin0s | SATDE SHAT gy,
& 2 " " sin 6' sin uf*
- = SRy SR 4
27 ,;) m+1 ,,; ) £,(4. 6, 6) Z sin pe"J‘o (cos 8 —cos ') 0+
1 2 2 = dF, | L sin 8! sin p6'
_ Ly 2 9F v _ me " qe?
21 ,Z‘O m+1 ,,;1 4 1o dn' © 6) ,E sin u6, (cos @ —cos ') ao"+
+ ! i N f:a Z sin u0 II [cos §—cos 0! sin pbd' sin 0* d§’ A(5)
D 2n Sy m+1 ()t dX? 5 (1, o) 0 s nu. n o

The problem has now been reduced to the determination of the integrals in eq. A(5). The following abbreviations
will be used where @ has been replaced by 4,

ANsind, & d6* | A(6)a

. rsin(AH)el sin pf"
ni
0

m+1) e cos 0, —cos 0"
bm = n(mz-%—sin(fm &) .= i sin .j;n (cstrff:—sizsﬁgi)z l A6}
o= s S | e A6
S, = n(m2+ 0 é:k sin ud, J‘:l‘nlcos f,~cos 0'[sin uf* sin 6 dO*.. | A(6)d
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These functions will subsequently be evaluated.
The integral in eq. A(6)a becomes _
r sin(A+1)0 sinpd* (7 cos(A+1—u)f! —cos(A+ 1+ u)0"
o - cos@,—cos f' T2 cos 0, —cos 0!

46!

1Rsin(A+1—u)Gz—sin(A+1+,u)9,1
)

sin 0,
o cos(/i-l-.l)ﬁ,l sin 6, _ (=) Sifl uf, .
sin @; sin 8,
This leads to 2 m
' Yo = “; sin ¢, sin uf, ,
and after summation to
. AT,
1- sin -— sin 4,
=— (- —— if 6,6 A7)
Tnr = h (=) cos B, —cos B’ 6, # 0 @ .
For the integral in eq. A(6)b, it follows immediately, by partial integration, that
C[® sin uB* sin @ sin u0,
————df! = — : .
‘fo {cos B,—cos 8"y MG o,

1t should be observed that this formal procedure is in accordance with the definition of the principal value. Hence

it is found

2 m
e A — in pd, sin ub, .
Fon (m+1)sin 0, ,Z‘l psup H

" - m
Since _ 3. psin uf, sin pb, = — — 3 cos pf, sin pb,
=1 dg =

it is found after some manipulation that

1 d{1-(=)cos(m+1)0 }
= _ P SN A, S A W h
o=t da,{ cos B,—cos B, 2nd henee
(=1 sin(m+1)4, 1 1—(—Ycos(m+1)8, .
T T e o Wy 8.#8,. A(8
Fm cos #,—cos 6, t il (cos 8,—cos 0,)? sin 0, v On ®)a
ymtl '
= —1= 8, = A(8)b
Evn 3 sin 6" v 9!! R ( )
To paléulate the function {,,, the follovy‘ing integral has_ to be considered.
* sin p0* sin 6*
—— df!' = :
jo cos #,—cos §' d ™ cos pl,
Inserting this result into the expression for {,,, gives
2 -
Cv” = }«,Tﬁ ”gl sin )U'Bn Cos ﬂev ,
and by the procédure used for ¢,,, it is immediately clear that ,
. sinf, 1—(—)"cos(m+1)8,
= 8,+#8 A9
S m+1  cosf,—cos 8, v ¥ O O
‘:vn = O _ . Gv = 9,, - A(g)b

The last quantity that has to be considered is §,,. First it is remarked that for 1> 1 the following relation is valid

f sin uf' sin 6" In|cos #,—cos 8*|d0' = ~ zn i (u sin u@, sin 8,+cos pb, cos 6,)
0 H—
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This follows by applying partial integration and some of the previous results. The integral for u= 1 proves to be
r - T i
J sin? ' injcos @, —cos ' {df* = — 3 In2+ 7 o8 20, .
O

Hence the total result is

 sin 0, sin 6, +cos pf, cos 6,)sin uen] A(10)

: 2 . (
S = m[(—% In 2+ cos 26,)sin 6,,-—; | iy
In table | the expressions for the quantities Yoz, € v and S,, have been summarized.

aF,
A.2 The calculation of the quantities —— (6"

ar" =0,} and H,(£,6,; _3\;)

oF — - . .
In order to calculate the quantities —aJ (0'=0,) and H,(£,0,; 6,) it 1s necessary to consider the expression for
, n
H(&n:nY

! el '
~H,(¢,q;ﬁl)=j0h,(x')[l + W]dxl-. CAQ)

The quantities x and y are defined as follows
X = —s1 {€-&')} and y ='—S1‘(’T*nl)
) ; In")

The value of x for y=x' will be denoted by x¢ so that

This shows that x is dependent on n' and hence on y. Therefore the following series expansion is valid.
dl
X=X+ —-n} ‘{ gy d:zo + o A(12)

d2
for n!=nand
dn?

dx,
where % is equal to — ®is defined correspondingly. Since the point of interest is the behaviour
0o

d Tl
of H, at 0'=6,, the investigation can be restricted to small values of y.
First it is remarked that

o
Hemim =2  hlxaxt A(13)
JO
The first derivative of H, with respect to #' can be written as _
1 - |
dH,  dx 5 ) X—X el
dnl d’? dxl (x_xz)z_l_ﬂzyz
dy (! d 1 .
-y L) me —lax.
dnl o dx‘ (x~x1)2+ﬁ2y2
dh, . L C
By using the expansion h,(x')=h (x0)+(x Xo) =% O * {xo)+ ... and performing some partia) integrations it is found
that
dH, dx X
S = —— x—Xo) — | +0(/)+
' dn‘{\/m? \/m‘}[ Fhm } v
L dy (' dh, 1
SN (3 S WS N ey A4)
dnl Jg dxl (x—x‘)2+32y2 \/xz_}_ﬁz},z ]

It_ can be observed that the integrand occurring in this expression is integrable for x'=0, but that difficulties can
arise when x'—x, and y—0. Using again the series expression for h,(x'), it is found immediately that
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dH, dx x 1—x | dh :
Dbl A S — e\ |} — —_r
d’?l dﬂl {\/x2+ﬁ2 2 + \/(—1 —x)"'+ﬁ2yl} [],.(XO)+(X xO) dxl (xU) +

+00) — § o) Py g (P +00).

From this it follows at once that

GH, o O
dnt. =1 T dn!

(01 =0,) = 2h,(xo) ‘%. A(15)

_ . . . d’H, .
I order to obtain the function H, (£, 0, ; 6,) it is necessary to consider the expression for T From eq. A(14) it is
clear that the following expression is valid. a '

d2H 'dzx{ X 1—-x 1

e e (@) e e
2 dy % 1 e xl
+0 ()+ﬁ( ) J dxl{ (x—xyY+p°y ‘/x2+ﬁ2)’2}d ’

dy 1 ah, dx d 1 1dy d - ox—x' .
ty? - + = =7 7 dx!.  A(l6
TR % dn’ dx! (x—x‘)2+ﬁ2y2} ydn' dxt fxox'Y 4 1)

This can be written as follows by using some of

H,
dp!

s = (3 S () e Su
dql d Xo nl dxl 0 d dx! Xo \/Tﬁ,,? W
2 ﬂ’_ 12}2 1 3 o
t (dnl) Jo dx? {W —f——m}d +0(y).

The real problem now is to evaluate the integral occurring in this expression, and the objective is a formula which
can easily be calculated numerically. .
The integral is written as follows

U dh 1 1 :
— - dx' =
jo dxl{ ,'{x_xl)z +ﬁ2y2 ,v‘x2+ﬁ2yl}

1 r dh, x! 2x—x! dxl
/x2+ﬁ2y2 Jo dx! (x—x1)2+,82y2 \/(x—x1)2+[)’2y2+\/3_62+ﬁ2y2

S dh, dx 1 b ()
dx’ fx—x P+ 257 /xz'+‘ﬁ2‘y2 r

The next step is to add expressions which are 1dentmally equal to zero, but which serve two purposes; first to control
expressions in which the limits x—x, and y—0 may be applied, and second to obtain expressions which can be
calculated analytically. Hence the above expression is rewritten as

1 {‘ dh, X1 (2x x1)dx! 1 dh xldx? }

f—“m N ey TN ey Sy IRy SN R
s dh, [ x{1-x) dx!
% +52 2 J { 2+ﬂ 2 At (xo) xl(l_xl)} (x—xl)"—{-ﬁzyz
/ \c(l- : dx!
—1
[ { } (x—x")y+ 57y ’

oo 1 Jldh X +ﬁ2y2—x 1 b
dxg ﬁ x4 By \/x Ry ) dxt  Se— xR+ By S O /x'__—_z+ﬂzyz r
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This expression can be simplified considerably by observing that almost all integrands remain bounded for x—-x,
and y-+0, The result is

1 (Ydh X 2 \/xo (1- xo)} dx?
i r - +
Xg L dx! xg—x! pdx + xOJ’ { dx! xod 1( o) x1=xY)} x'—x,

B [ g S

x!t—xq dxg By
The integrals occurring in eq. A(16) can now easily be expressed by using the trigonometric representation of egs.
{2.8) and {2.9). It follows that

‘b _x! 2 . .
L FT—— dx' = —— %[(1’+1)sm rifo—r sin(r+ 1).1;{]
while
1 dh dh Xo(I—x )} dx! o ‘
i i 1 _L—'_g“ = — 1 —_
j Xo{x dxl xO dxl (XO) xl(l—"xl) xl_xo ﬂ'[(r+ )I" r1r+1]
where

I __J”' COS 1 g —COS i

‘wo COS Yo—COS Y

dy . A(l7)
The calculation of this integral can be performed by using the recursive relation
2
I,.—Z cos ng,_l +I,_2 = — : Sln(r—- l)wo

with the accessory relations I, =0 and I, =m—y,,.
Finally the last integral occurring in eqn. A(16) proves to be

X "—xO
Combining the results we at last obtain

st =l [ o r [ et ]

[ 1)sin o= rsin(r D96 + [+ D1, —rT 0,1+ 5 (ol Beaf1 =) + hxo}

{_ 1
- xpsinyy,

27| 2] $5 a0,

it follows from eq. (2.17) that

R—(é: 9\:: gv) =

2
F,
v anl (GI=BV)

while further from eq. (2.13) it is ¢vident that

d2F dz ﬁ22 ﬁZZ
G = g+ {23 G )

' 2 2
With the observation that [g—ﬂ = {l(—s)—} , there 1s finally obtained
n

— o d2\:0 dx, Bs 2
R60,0) =| T2 nwo+2[ 2] e %} sin 0,5 0,75 -
. {_ %Tln% [(r+1)sin rgo—rsin(r+1)y,] + nz-?; [r+0)L—rksq] + h NEMW
2 dh 1n)
w ('ﬁo) sin ‘f’o sin l!/o dl,h {¥o) In [ Bs sin 'J’o] } . A(18)
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APPENDIX B

The integration in chordwise direction

In this appendix a detailed description will be given of the numerical procedure used in evaluatmg the function

H.(&n;n").

1 : X‘-X’
H,(C,n;n1)=j B (X") dx! B(1)
o ,'(X__Xl)l_f_ﬁZYz
. , y  l—cosy . . .
In terms, of the angular co-ordinate given by X' = S the integral can be written as
HGni ') =4 Leos -+ coste+ 1010w BQ)
Q
where f(y) = - PLtE%Y B(3)
(B +cos ¢y + 3
while the quantities f§, and f§, are defined as follows
f,=2X-1 : . B(4)a
=fY. B(4)b

Since the integrand is periodic with peried 2r and since the integral from 0 lo # is equal to the integral from = to 2x
the best fitting integration rule is the simple trapezoidal rule.
Thus

H.A&n;n") = Flye)+ Z [cos r;+cos{r+ 1)y ] f(¥) B(5)

G

where L+1 is the number of integration points and ¢; = % 1t is obvious that the quantity L will depend on

the parameters 8, and f, and it seems quite natural to rely on a test of accuracy in the programme for its deter-
mination. This, however, proves to be a very time-consuming procedure, especially when small values of f, are
encountered, in which case the function f(if} is almost discontinuous at yy =arccos f3,. Therefore another way was
followed. It was decided to investigate the function H, as a function of §, and f, and to establish regions in the
B.— B, plane where a given number L would assure an integration accuracy up to 9 decimals for r=0 up to r=10.
It appeared that in this way an accurate result could be obtained for almost the whole region of interest. Only for
very small values of §, a different scheme had to be followed. These regions with the accessory number L are g:ven
in figure B.1. These procedures, though less elegant, provided a very fast programrme.

As is indicated in the figure, the region where the above mentioned integration rule does not apply is |8, < 0,02
and [ff,] < 1. In this region a new parameter is introduced by defining f#, = —cos ¢. Hence

. Ccos i —cos
f) = _cod__ B(6)
Jcos y—cos ¢+ B3
As can be seen, the following relations.are. valid
Clim flgr=~1 - . B(7)a
820
_W*¢+
and ,
lim f IJJ)" +1 - B(7}b
- P20
} b \

The integral can then be written as

H = %[j: (cos\rl,b+cos(r+ D)L f)— 1](_1!{1+ 5’: (cos ry +cos{r+ 1)) f () —1]dy

+j-:(cos rg+cos(r+ )y f)+1]dy + E(cos ry +cos(r+ D[ f(¥) + 1]dy +g,(¢)] B(8}
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. 72 L . 2
where gold)}= {q§+sln ¢ — —Z-}EA g.()= \7 sin r¢p + msm(r+1)¢};
The quantities P and @ are defined as follows .
P = arccos(cos ¢+ 10 f,) B(9)a
Q = arccos{cos ¢ — 10 f,) : B(9)b

Taking this into account the integrals from 0 to P and from Q to r are easily computable without loss of accuracy.
The attention can now be focussed on the remaining integrals. We consider the second integral

J¢(cos riy+cos(r+ 1)) f(¥) — 1] dy = ZJ cos $(2r+ Dy cos 3y [ f(y)—1]dy .

Now the main part of this integral will be subtracted in such a way that it ¢an be integrated analytically while
the remaining part again can be computed numerically in an accurate way. We therefore write

cos $(2r+ 1)y cos 3y sin ¢p—cos £(2rix1) ¢-cos.3 ¢ sin
: sin ¢

J-(bcos (2r+ 1)y cos Ty [f(y)—1]dy = 2j

L e
L1 —1)ay +2 2 EDL €008 [ gy tysin yay.
The second integration can be perfor‘med analytically and gives
¢ .
—27?} cos 3y [cos ${2r+ 1)y sin 3 —cos 5(2r+1)¢ sin s AW — 1 dy +
sins¢ Jp

o N SUARET

This may be written as !
isTnEfEJ‘ cos 7(E+ @) {sin 1r& cos 3{r+ 1){¢ +2¢) —sin %l(r—# )¢ coé r{é+2¢)}
cos 3(2r+ ¢

LS+ ag s ¢ g LI+ JT0T-10 ]

In the same way it is found that

J teos ruvoostre )+ 110w =

2
sin 3¢

e-¢ -
f cos %_(54*@5) {sin $r& cos 3(r+ 1){Z+2¢) —sin $(r+ 1) cos $r(E+2¢)} [f({-.f- Y)+1]dE+

cos 3{2r+ 1) ¢

snlg (B2l =182 /101410 B,] . B(11)

By combining the various terms it is found at last that

=] | teosrycont 0 =11+ [ toos s coste 9110 + 1000 ) + - 2

. JO' cos 3{& -+ ) {sin 1r& cos $(r+ 1){¢ +2¢) —sin %(.H-l)é cos 3r(E+29) [ fIE+P)—1]dE+

P-4

[ cos e @yt irE co e+ e+ 20)—sin e+ 1)E cos IrE 120G+ )+ 1102

0
This formuia offers no serious difficulties in numerical computation and gives good results as long as
leos ¢ £1018,1|< 1
or |8, £1018,l< 1

This restriction amounts to |f,| < ! — 10|8,|. Therefore the procedure is successful in the shaded part of fig. B.1.
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TABLE 1
The various influence functions in spanwise direction.

. Amo,
sin — sin 8,
a

{-1r
1L A A 9,0
Pt m+1 cos @, —cos &, *
1 0,=8,
(—1)"sin(m+1)8, 1 1—(—1)cos{m+1}0, .
DRI o ST PR Py sin g, B, %0,
Em cos 0, —cos 8, m+1  {cos B,—cos 6,)° n *
m+1
N Rty B,=0
%sin a, "
. i 0
0 sin 8, 1—{~1Y cos(m+1)0, 0,0,
m+1 cos #,—cos 8,
0 Bv = ed
s (~%1n2+4cos 20)sin 0,— ¥

123

2
m+1

™ (u sin ud, sin 8, +cos uf, cos 8,)sin _;18,]

u=2 B-1

TABLE 2A
Wing: circle; Machnumber —0
Convergence of the quantities @, with respect to a (corresponding to number of spanwise integration points)

m=5 R=2
coeff. T a 1 2 3 4 6 8
0.866025 (0.438516 0.439264 .439101 0439138 0.439071 0.435046
dg 0.5 0.776970 0.777409 0777249 0.777294 (.777256 0.777245
0. 0.903304 0.903592 0.903452 0.903503 . 0.903481 0.903475
0.866025 0.130948 0.128578 0.122295 0.123775 0.123618 0.123687
a, 0.5 0.177755 0.175390 0173908 0.174195 G.174165 (0.174182
Qo 0.188145 0.187484 0187048 0.187106 0.187098 0.187103
0.866025 0.017825 0.019095 0.011190 0.013121 3.012710 0.012707
[ t 0.5 0.009661 0.0089%6 0.007991 0.008212 0.008146 0.008140
0. 0.003711 0.004762 0.005024 0.0035024 0.005042 (.005045
TABLE 2B
Wing: circle; Machnumber —0
Convergence of the guantities a, with respect to a (corresponding to number of spanwise integration points)
m=11 R= 3
coefl. a 4 6 8 10 coeff, AN 4 6 ] 10
0.96593 0.22081 0.22077 0.22070 0.22067 0,96593 0.00555 0.01013 0.00864 0.00895
0,86603 043741 043735 0.43731 043730 0.86603 0.01079 0.01089 0.01075 0.01077
0.70711 0.62840 0.62838 0.62835 0.62835 b7l 0.00942 0.00923 0.00925 0.00924
o 0.5 0.77686.  0.77685 0.77683 0.77683 2 " os 0.00695 0.00692 G.00692 (00692
025882 087086 087087  0.87085  (.87085 025882  0.00512 Q00509 000510 000510
Q. 0.90302 0.90303 0.90301 0.90301 0. 0.00441 0.00443 0.00444 0.00444
006593 007859 008186 008109 008139 006503 —001664 —001260 —001370 —0.01336
086603 012727 012816 012798  0.12806 086603 —001743 -001759 ~-001756 ~0.01758
0.70711 0.15648 0.15669 0.15666 0.13663 070711 —00i469 —0.01504 —0.01495 -~0.01498
o s -00 - —0.01123  —0.01124
0.5 0.17454 0.17467 0.17465 0.17466 0.5 0.01117 0.01125 0112
(.25882 0.18446 0.18452 0.18452 0.18452 025882 —0.00841 —0.00847 -—0.00845 —0.00846
0. 0.18765 0.18771 0.18770 0.18771 Q. —0.00745 —0.00746 000746 —0.00746
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TABLE 3A
Wing: circle; Machnumber —0
Convergence of a, and a, with respect to R (R+ l=number of
chordwise collocation points) at a selected accuracy of the spanwise

integration
m=35
coefl. R ) 1 2 3
" s
0.866023 0.438174 0439046 0.438876
a, 0.5 ‘ 0.776237 0.777245 0.777248
0. 0.902756 0.903475 0.903488

0866025 . 0.136106 0.123687 0.125616

a, 0.5 0.184655 0.174182 0.174529
0. 0.195090 0.187103 0.187240
TABLE 3B

Wing: circle; Machnumber — 0

Convergence of the quantities a, with respect to # (number of spanwise collocation points) at a selected accuracy of the spanwise integration

R=3
coeff. m 5 7 9 11 coefl. " m 5 7 9 11
n
08660  0.43%9 0.4373 08660 00107 00108
07071 ' 06285 0.6284 . 0.7071 0.0092 0.0092
G4 o5 0.7772 0.7768 Y 0.0069 0.0069
0. 0.9035 09031 09031  0.9030 0. 0.0044 0.0044 00044  0.0044
08660 01256 0.1281 08660  —0.0143 —00176
0.7071 0.1567 0.1567 ] 0.7071 —0.0015 — 00149
g5 0.1745 0.1747 305 -00111 —00112
0. 0.1872 01877 01876  0.1877 0. —0.0074  —00074 —00075 —00075
TABLE 4A

Wing: Warren 12; Machnumber —0.

Convergence of the quantities 4, with respect to a (number of spanwise integration points)

m=15 R=1|
coeff. a 1 2 3 4 3
"
0.980783 0.138462 0.138383 0.138369 0.1383606 0.138365
0.923880 0.268391 0.268206 0.268176 0.268169 0.268167
0.831470 0.377686 0.377365 0.377307 0.377294 0.377289
g 0.707107 0.461157 0.460756 0.460680 0.460663 04606356
(.555570 0.523118 0.522600 .522509 0.522489 0522481
(1.382683 0.565057 0.564505 0.564416 0.564397 0.564389
0.195090 0.585560 “0.585017 0.584929 0.584911 . 0.584902
0. ’ 0.584859 0.584745 0.584740 0.584745 0.584751
(.980785 Q077877 .- 0077831 0.077832 0.077833 0077833
(.923880 0.097727 0.097410 0.097401 0.097398 0.097397
0.831470 0.066016 0.064695 0.064660 0.064652 0.064647
a, 0.707107 0.029628 0.027177 0.027113 0.027099 0.027090
0.555570 0.000155 —0.002702 —0.002770 ~(.002783 ~0.002792
0.382683 —0.03249%8 —0.034638 -0.034733 . —0.034756 —0.034772
0.195090 —0.098055 —0.099471 — (09961 —0.099649 —0.099679
0. —0.185548 —0.183778 —0.183491 —0.183388 —{(.183313
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TABLE 4B

Wing; Warren 12; Machnumber -0
Convergence of the guantities o, with respect 10 g [number of spanwise integration points)

m=31 R=3
coeff. " a 2 4 8 coeff, . a 2 4 .8
0.080785 * 0.139480 0.139478 0.139476 0.980785 0.050628 0.050623 0.050622
0.923880 0.268329 0.268324 0.268319 0.923880 0.019119 0.019066 0.019055
0.831470 0.376985 0.376979 0.376971 0.831470 —0.011617 —0.011612 —0.011634
2 8.767107 0.461019 0461014 4.461002 2, 0.?07107 —0.012474 - 0.012476 —0.012511
0.555570 0.522742 0.522738 0.522725 0.555570 —0.008999 —0.008973 ~0.009013
0.382683 0.564570 0.564566 0.564553 0.382683 —0.010205 —0.010152 —0.010187
(193090 (.584875 0.584875 (.584864 0.195690 —(.016755 - (016788 —0.016818
0. 0.586769 0.586813 0.586809 0. —0.014644 —0014558 —0.014541
0980785 0.085443 0.085445 0.085444 0.980785 +(.024060 +0.024060 ~ +0.024059
0.923880 0.101676 0.101662 0.101657 0.923880 —0.006795 - 0.006821 —0.006828
0.831470 0.066549 0.066556 0.066546 0.831470 —{.006551 —0.006528 —0.006540
2 0.707107 0.026665 . 0.026674 0.026661 a 0.707107 -~ 0.000190 —0.000183 —0.000197
! 0.555570 —0.002435 —0.002411 —0.002424 o 0.555570° +0.000717 +{0.000748 +0.000737
0.382683 —0.034222 ° -0.034166 —0.034176 (.382683 +0.000949 +0.001004 +0.000996
0.195090 —0.100440 ~0.100459  —0.100478 (.195090 +0.000357 +0.000354 +0.000347
a. —-0,190276 — 3190275 —0.190262 12 —(.007622 —0.007662 — 0007655
TABLE SA

Wing: Warren 12; Machnumber — @
Convergence of ay and ¢, with respecl to R (R+1 =number of chordwise collocation pomts) at a selected accuracy of the spanwise integration

m=13
coefl. ‘ R 1 3 4 coelf. R~ 1 3 4
n i
098079 0.13837 0.13952 0.13954 0.98079 0.07783 0.08562 0.08579
0.92388 . 0.26817 -0.26829 0.26827 0.92388 0.09740 0.10207 0.10244
0.83147 0.37729 0.37706 037711, . (.83147 0.06465 3.06611 0.06603
a 0.70711 0.46066 0.46096 0.46097 a 0.70711 0.02709 0.02720 0.02732
o 0.55557 0.52248 0.52285 0.52290 t 0.55557 —0.00279 ~0.00308 —0.00314
0,38268 0.56439 0.56452 0.56454 0.38268 —0.03477 ~0.03305 —0.03297
0.19509 " 0.58490 0.58512 0.58515 0.19509 —0.09968 --0.10040 —0,10040
0. (.58475 0.58652 0.58659 0. — (18331 —0.19306 —0.19325
TABLE 5B

Wing: Warren 12; Machnumber —Q
Convergence of the quantitics a, wnlh respect to m (aumber of spanwise collocation points) at a selected accuracy of the spanwise integration

R=13
15 23 . ] coefl, , mo 15 23 31

0.98079 0.13952 0.13948 0.98079 + 0.050048 0.050622
0.92388 0.26829 0.26826 0.26832 092388 0.019612 0019085  0.019055
4.83147 0.37706 '0.37697 0.83147 —D.012441 —0.011634
0.70711 0.46096 0.46085 0.46100 _ 0,70711 —0.011574 —0.012490 —0012511

%o 0.55557 0.52285 0.52273 % 0.55557 — 0010028 —0,009013
0.38268 0.56452 0.56427 0.56455 0.38268 —D.008848 ~0.01024% —0.010187
0.19509 0.58512 0.58486 0.19509 — 0018354 —0,016818
0, 0.58652 0.58624 058681 - 0, —0.012932 -0.014033 —0.014541
0.98079 0.08562 0.08544 . 0.98079 0.024432 0.024059
0.92388 0.10207 0.10162 0.10166 092388 —0.006976 —~0.006779 —0.006828
0.83147 0.06611 0.06655 0.83147 — 0.006477 — (0.006540
0.70711 002720 0.02668 0.02666 0.70711 —0,000175 —0.000233 0000197 °

e 0.55557 —0.00308 —0.00242 = 0.55557 +0.000684 +0.000737
0.38268 ~003305 —0.03449 ~0.03418 0.38268 +0.001198 +0.001124 +0.000996
019509  —0.10040 —0.10048 019500 +0.000[16 +0.000347

0. —0.19306 -0.19173 —0.19026 Q. —0.007603 —0.007376 —0.007655
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TABLE 6A
Wing: Warren 12; Machaumber —0.6
_Convergence of the quantities g, with respect to a.

y -m=15 R=l
coeff. 1 4 6 g
0.980783 0.146866 0.146803 0.146802 0.146801
0.923880 0.286347 0.286192 0.286190 0.286189
0.831470 0.405808 0.405492 0.405488 0.405487
a, 0.707107 0.497080 0.496691 0496685 0.496684
0.555570 0.563152 0.562690 0.562683 0.562681
0.382683 0.606349 0.605903 0.605895 0.605893
0.195090 | 0.626288 0.625888 0.625879 0.625877
Q. 0.623969 0.624194 0.624200 0.624203
0.980785 0.089657 0.089666 0.085666 0.089566
0923330 0.117391 0.117303 0.117302 0.117301
0.831470 0.080932 0.080595 0.080590 0.080589
a, 0.707107 0.032353 0.031699 0031690 0.031689
0.55557 -0.009379 —0.009885 - 0009892 —~0.009834
0.382683 —0.054843 —0.054590 —0.054604 —0.05460%
0.195050 —0.137523 —0.137139 —0.137167 C-0.137177
0. ~0238777  —0235630  —0235540  —0235509
TABLE 6B
Wing: Warrep 12; Machnumber — 0.6
Convergence of the quantities a, with respect to a.
m=31 R=3
RS
coefl \ 2 4 ] coeff, o 2 4 8
1 f
0.980785 0.148202 0.14819¢6 0.148195 0.980785 0.061018 0.061012 0.061011
0923380 0.286400 0.266395 0.286390 (0.923880 0.025789 0.025716 0.025708
0.831470 (.404826 0.404807 0.404802 0831470 ~ —0.018478 -0.018394 —0.018411 -
a 0.707107 0.497137 0.497108 0.497100 a 0.707107 —0.021574 -0.021277 -0.021301
o 0.555570 0.563231 0.563202 0.563192 2 0.555570 —0.015548 —Q.0135277 —0.015305
0382683 - Q.6063(5 0.666291 | (.606281 0.382683 —0.016056 --0,015993 —0.016021
0.195050 0.626280 0.626267 0.626259 0.195090 —0.020276 ~0.020488 —{.020513
0. 0.627485 0.627521 0.627518 0. —0.009792 ~0.009344 —0.009230
(L980783 0.09869% 0.098702 0.098701 0.9807835 0.029813 0.029806 (029805
0.923880 0.123376 0.123363 0.123359 0.923880 —0.009500 ~0.008541 —0.009547
0.831470 0.084703 0.084785 0.084777 0.831470 —-0.010669 ~0.010547 0010557,
Q707107 2031928 0032220 - 0032212 0.707107 0.000359 0.000609 0.000601
&t 0.555570 . —0.009585 —=0.009204 —0.009210 4 0.553570 0.001878 0.002110 0.002103
(0.382683 —{.054116 —0.053827 ~0.053834 0.382683 0.002218 0.002328 0.002322
0.195090 —10.139378 —0.139335 -0.139353 0.1950%90 0.001811 0.001778 0.001773
0. ’ —0.246157 —0.246109 —0.246087 0. —0.006134 —0.009117 —0.009103
TABLE 7A

Wing: Warren 12; Machnumber—0.6 .
Convesgence of a, and g, with respecs to R at 2 selected accuracy of the spanwise integration

m=15
coefT. R 1 b 3 4

0.980785 0.146801 0148499 0.145253 0.148270

0.923880 0286189 0.28697¢ 0286341 0.286320

- 0.831470 0.405487 0.404948 0.404948 0.405018

g 0.707107 0.496684 0.497003 0497040 0.497055
0.555570 0.562631 0.563234 0.563353 0.563443

0.382683 0.605893 0.606187 0.606231 0.606363

0.195090  0.625877 0.626471 0.626570 0.626643

o 0.624203 0.626678 0.627207 0.627390

(continued on next page)
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TABLE TA (continued)

coeff, 0 " R 1 2 3 4
0.980785 0.089666 0.054643 0.098948 0.099439
0.023880 0.117301 0.124385 0123811 0.124532
0831470 0.080589 0.083881 0.084204 0.084035
a, 0.707107 0.031689 0.032743 0.032898 0.033138
0.555570 —0.009894 —0.000832 - 0.010030 —0.010136
0.382683 —0.054609 —0,052424 ~0.052438 —0.052294
0195090 —0.1371717 —0.139349 -0.139377 —0.139476
0. —0.235509 —0.247673 ~-0.249368 —0.249759
TABLE 7B

Wing: Warren 12; Machnumber ~0.6
Convergence of the quantities 2, with respect to nt{(number of spanwise collocation points) at a selected accuracy of the spanwise integration

R=3 a=8§
<
coeff. n\ 15 23 3 coeff. m- 15 23 31
0.980785 0.148253 0.148§95 0.980785 0.061673 0.061011
0.923880 0:286341 0.286322 0.286390 0.923880 0.026013 0.025753 0.025708
0.831470 0.404915 0.404802 0.831470 —0.019158 —0.018411
a 0.707107 0.497040 3.496920 0.497100 2 4.707107 —(.020310 ~0.021288  -0.021301
0 0.555570 0.563353 0.563192 2 0.555570 —0.016375 —0.015305
0.382683 0.606231 0.605958 0.606281 0.382683 —0.014582 - —0.016100 —0.016021
0.195090 0.626570 0.62625% 0.195090 —0.022309; —0.020513
0. 0.627207 0.626877 0.627518 0. —0.007677 —-0.009107 —0.009830
0.980785 0.098%48 0.098701 0.980785 0.030306 0.029805
0.923880 0.123811 0.123309 0.123359 0.923880 —0.009873 ~0.009491 —0.009547
0.831470 0.084204 0.084777 0.831470 —0.010343 —~0.010557
a 0.707107 0.032898 0.032223 0.032212 a 0.707107 0.000521 0.000553 0.000601
! 0.555570 —0.010030 —0.009210 ? 0.555570 0.002139 (4.002103
0.382683 —0.052438 ~0.054258 - 0033834 0.382683 0.002438 0.0024385 0.002322
0.195080 -0.139377 —0.139353 0.195050 0.001668 0.001773
0. —0.249368 —0.247890 —-0.246087 0. —0.009317 —0.008779 ~0.009103
TABLE 8A
Wing: Multhopp; Machnumber —0
Convergence of the quantities @, with respect to «
. m=15 R=1
coeff, a 1 2 3 4 6
b X
0.980785 0.123783 0.123799 0.123810 0123812 0.123814
0.923880 0.237135 0.237167 0.237185 0237188 0.237193
(0.831470 0.328093 0.328124 0.328142 0.328143 0.328149
aq 0.707107 0.393449 0.393593 0.393639 0.393642 (1393652
0.555570 0.440277 0.440424 0.440505 0.440516 0.440533
0.382683 0470153 0.470515 0470665 0.470702 0.470738
0.195090 0481011 0.481797 0.482078 0482168 0.482242
0. ’ (G.46B048 0.470315 (.470945, 0471157 0.471310
0.980785 0.063295 0.063349 0.063368 0.063372 0.063376
0.923880 0.076618 0.076459 0.076480 0.076485 0.076488
0831470 - 0.050332 0.048946 0.048944 0.048943 0.048949
a, G.707107 0.025522 0022727 0.022671 0.022666 0.022663
0.555570 0.007741 0.003681 0.003617 0.003615 0.003617
0.382683 ~-0.007540 -0.011387 —0.011428 —0.011420 ~0.011411
0.195090 -0.055216 —0.057101 —0.056773 —0.056632 ~-0.056527
0. ~-0.168714 —0.163311 —0.162117 —-0.161657 ~0.161313
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. TARLE 8B TABLE 94
Wing : Multhopp; Machnumber —0 (continued)
Convergence of the quantities g, with respect to o
"m=31 R=3 '
coefl. a [ 8 10 coefl. R | 2 3 4

0930785 . 0,124360 0.124880 0.124860 0980785  0.063377 0.067042 0.069387 0.069495
0923880 0.237803 0237802 0.237801 0923880 0.076489 0.080550 0.080405 0.080577
0.831470 0.328771 0.328768 0.328768 0.831470 0048950  0.049304 0049377  0.049340

a 0.707107 0.395133 0395130 0.395129 ) 0.707107 0.022662 0022626 0.022649 0.022740

o 0.555570 0.442237 0.442233 0.442233 & 0.555570  0.003617 0.0029350 0002930  0.002946

(.382683 0473361 0473358 Q473357 0382683 —0011408 —0010108 —Q.010097 —0.010012
0.195090 0.486069 0.486068 0.486068 0.195090 —-0.056490 —0.056251 —0056156 —0(.056139
0. 0.480531 0.480537 0.480539 0, —0.161189 —0.170862 —0.171789 —0.171816
0.980785 0.069646 0.069646 0.069646
0.923880 0.079967 0.079966 0.079966
0.831470 0.050292 0.050291 0.050290

. 0.707107 0.021827 0.021826 0.021825 ) TABLE 98

! 0.555570 0.004513 0.004512 0004511 Wing: Multhop; Machnumber—0

0.382683 —0.011638 —0011639 — Q011640 Convergence of the quanties @, with respect to m at a selected
0.195090 —0.049158 —0.049154  —0.049152 accuracy of the spanwise integrations
0. —0.156372 —0.156348  —0.156335 R=3
(.980785 4.039303 0.039303 0.039302 coell m 15 23 31
0.923880 0.015004 0.015002 0.015002
0.831470 —0.005227 —0005232  ~0.005234 .

g 0707107 — 0005299 —0.005308  —0.005311 0.980785 0.12466% 0.124859
(.555570 —0.003227 —0003216  —0.003243 0.923880 0.237242 0237183 237801
(.382683 —0.003574 —{.003586 —0.003590 0.821470 0.328140 -(.328768
0.195090 —0.008804 . —{0.008813 —0.008815 0.707107 0.393921 0.394992 0.395129

.0 —0.017566 —0.017557 —0.017553 o 0.555570 0.440841 0.442233

0.382683 0.470925 0473186 0473357

0.980785 0.018399 0.018399 0.01839% 0.195090 0.482437 0.486068

0.923880 —0.003211 —0.003212 —0.0032]13 0. 0473113 0.479581 - 0.480539
0.831470 —0.003358 —0.003360 —0.003361

2 0.70117 —0.000343 —0.000346 —0.000347 0980785 0069387 0069646

? 0.555570 0.000122 0.000119 0000118 0.923880 0.080404 0.079806 0.079966

- 0.382683 0.000307 0.000305 0.000304 0.831470 0.049373 0.050290

0.195090 0.001143 0.001142 0001142 0.707107 0.022639 0.021985 0021825

0. —0.011437 —0.011433 —-0.011431 n 0.555570 0.002513 0.004511

(.382683 —0010108 —0.012360 - 0011440

0.195090 —0.056145 —0.049152

0. —0.171745 -0.160089 ~0.156335

TABLE 9A Q980785 0.038951 0.039302

Wing: Multhopp: Machnumber — 0.0 0.923880 0.015541 0.014730 0.015002

Convergence of @, and a, with respect to R at a selected accuracy of 0.831470 —0.006559- —0.005234

the spanwise integration 0.707107 —0.003926 —0.004999  —0.005311

m=1% a=% 2 0.555570 —0.005155 —~0.003243

. 0.382683 —0.001339 —0.004467 —0.003590

0.195090 —0.013092 - 0.008815

coefl R ! 2 3 4 0. —0.008405  —0016135  —0017553

0980785 "0.123816  0.124812: (.124670 0.124681 Q.980785 0018615 0.018399

0923880 0237196 - 0237094 0.237243 0.237227 0.923880 —0.003265 —~0.003222 -0.003213

0.831470  0.328153 0.328138 0.328144 = 0328155 0831470 —0.003352 --0.003361

0.707107  (.393657 0.393883 ©  0.393925  (.393%08 o 0.707107 -0.00031% —~0.000288 —0.000347

4o 0555570 0.440542 0440802  0.440844° 0.440839 o 0.5585570 —0.000018 0.000118

0.382683 0470753 0.470900 0.470925  0.470907 0.382683 0.000638 0.000044 0.000304

0.195090  -0.482270 0.482390" - (.482429  0.482422 0.1950%0 0.000572 0.001142

0. 0.472893 - 0.473094 0. —0.009122 —0.011198 —{.011431

0471364

0.473085

{continued)




TABLE 10A
Wing: Warren 12; Machnumber -0
The calculated quantmes a, corresponding to the indicated distri-

bution of pivotal points with R=3
=0;0.14; 0.28; 0.42; 0.56, 0.70; 0.84; 0.98.

25

TABLE 108
Wing: Warren 12; Machnumber —0
The calculated quantities a, corresponding to the indicated distri-

‘bution of pivotal points with R =3

1,=00; 0.07;0.17;0.39; 0.61; 0.83; 0.93; 0.98.

coeff. | a 2 4 6 8 coeff. 2 4 6 8
1 : 1
0980785 0086539, 0084322 0.085608  0.085209 .0 0980785 0130925 0.132117 0132272 0.132287
0923880  0.1135%6  0.109576  0.113764  0.112357 © 0923880 0248250  0.249982 0250201  0.250323
(.831470 0290223 0282916, 0281717  0.282841 0.831470. 0324508 0332491 0333583  0.333382
. 0.707107, 0431075 = 0422188 0420811 0421772 a 0.707107 . 0.338555  0.356970 0359669  0.359149
° 0.585570 0507037 0501783 0501037 0501573 90535570 0484269  0.483301  0.483130  0.484228
. 0382683 0555283  0.552054  0.551521  0.551813 0.382683 0547365  0.550145  0.550359  0.550650
0195090 0577776 0.575538 0575111 0.575344 0.195090 . 0.569586  0.571600  0.571830 0.571954
0. 0.579888  0.578162  0.577931  0.578120 0. 0.574081  0.575432  0.575602  (.575722
0980785 —0.007309 —0.039439 —0.048253 —0.043019 0980785  0.084201  0.083481  0.083656  0.083357
0.923880 —0.026031 -0.220318 ~0.262538 —0.238093 0.923380 0120701  D118333  D118454 0117515
0831470  0.173258 0123081  0.116323  0.119662 0831470 —0.019835 —0.022800 —0.022718 —0.020904
0.707107 0067208 0075048  0.076792  0.075844 0707107 —0.288949 —0.261132 0262718 —0.252367
910555570 0.019402° 0016698 0017255  0.016616 %1 0.555570 0137573 0.141573 0141452 0.137651
0.382683 —0.028755 —0.027055 —0.025567 —0.026§22 0.382683  0.008611 —0.002589 —0.003134 —0.004416
0.195090 —0.098296 -—0.095609 —0.094171 —0.094588 0.195090 —0.103455 —0.103846 —0.103884 —0.104015
Q. —-0.187770 ~-0.184849 —0.183937 —0.184262 0. —0.182052 —0.182260 —0.182256 —0.182525
0980785  0.119859 0071265 0067979  (G.670394 (.980785  (0.035030 0034855  (.035084  (0.035193
0.923880  0.663476 0444302 0435112 0.441189 0523880  0.012494 0000844 0000157  0.000024
0.831470 0030688 0065350 0071503 00675619 0831470 —0.047657 —0.037570 —0.036631 —0.035673
a 0.707107 —0.054988 --0.035825 —0.033880 —0.034619 a“ 0.707107  0.112154  0.188665  0.190808  0.190915
© 0.555570 —0.002657 —0.012212 —0.012291 —0.012463 » 7 05555700 0.036909  0.000808 —0.000821 —0.003354
0.382683 ~0.012979 -0.012690 —0.012186 —0.012291 v 0382683 —0.038938 —0.045932 —0.045618 . —0.045245
0.195090 -0.022523 —0.020940 —0.020921 —0.020837 0.193090 —0.023449 —0.017597 —0.017333 —0.017147
0. ~0.017125 —0015871 --0.016007 —0.015918 0. —0014786 —0.013500 —0.013400 —0.013357
0.980785. 0071437  (.041586 0038191  0.040144 0970785 0021952 - 0.024998  0.025280  0.025263
0923880 --0.040583 —0.079713 —0.097797 —0.089503 0923880 —0.002153 —0.004253 —0.003%00 —0.004453
0.831470- —0.090929 —0.047675 —0.043842 - 0.046395 0.831470 —0.001524  0.007355 | 0.007698  0.008256
a 0707107 0.004820 —0.005074 —0.00573¢ —0.005013 a 0.707107 -—0.020674 - 0.040024 —0.045593 —0.042230
0555570 0006454 00012901 Q001273 0.000954 ®0.555570 (005759 0.001595  0.003385  0.000679
0382683 0000075  0.000421  0.000999  0.001011 0.382683 —0.009043 —0.005899 —0.005756 —0.005214
0.195090 —0.001777 —0.000386  0.000235  0.000076 0195090  0.003062- 0.003940  0.003756  0.003498
0. —0.006935 —-0.007001 —0.006940 —0.007025 0. —0.004211 —0.005022 -0.005052 —0.005252
t
TABLE 10C
. . Wing: Warren 12; Machnumber —0 ,
Thc calculated quantities a; correspondmg to the indicated distribution of pivotal points with R 3
. : =0;0.076; 0.17; 0.30; 0.45; 0.62; 0.79; 0.96. :

2 4 6 8 coeff. a 2 4 6 - 8
0980785  0.599408  0.608325 0.679017 0676590 0980785  6.637549 4077165 . 4180148 4245443
(0.923880 .—1.179589 —1.221134 —1.179459 — 1.182906 0923880 —9.667894 —7.096393 —7.194322 —7.229340
0831470 —1.374013 —1.326563 —1.303413 —1.305802 0.831470 —4.646490 —2762343 —2.82925% —2864205
0707107 —0.533708 — .365390 —0.364885 --0.367610 0707107 1430219 1255849  1.254755 1.255551
& 0555570 —0.017553  0.096466  0.098392  0.096104 1 pssss70 0423418 0323673 0325619  0.325639
0382683 0266528 0322793 0323527  0.322299 0382683 0239740  0.185119 0 184624  0.185972
0.195090 0376935 0414240 0414927 0414124 0.195090  0.079067  0.045557  0.045016  0.045538
0. 0404267 0437349 0437988 0437300 0. —0.006378 —0.039397 —0039868 —0.035240

{continued on next page}
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. _ TABLE 12B
Results obtained with the present method for the rectangular wing
with s=1 l{) =% at M, =0 and for m=21 a=1, the variation with
respect to R

27

TABLE 12C
Results obtained with the present method for the rectangular wing

with s=11I(n} =4 at M,,=0 and for m=21 a=3§, the variation with
respect to R

R 1 2 3 -4 coeff. R 1 2 3 4 coeff.
n '?
0000 3298 3303 3334 3393 0000 3330 3329 3329 3328
1423 .328¢6 .3290 3319 3377 .1423 3317 3316 3316 3315
2817 3247 3249 3276 3329 2817 3276 3275 3275 3274
1454 376 317 3199 3244 4154 3202 3201 3201 .3200
.5406 3064 .3063 3080 37 5406 3086 .3086 3085 .3085
.6549 2897 2895 2907 2935 ag 6549 2915 2915 2914 2914 dg
1557 2657 2654 2662 2682 7557 2670 2670 2670 2670
8413 2324 2321 2325 .2339 8413 2333 2333 .2333 .2333
9096 1881 1879 1882 1891 9096 1887 1888 .1888 1887
9595 1328 1329 1330 1335 9595 1332 1334 1334 1334
3898 0688 0690 0690 0693 9898 0690 0692 0692 0692
0000 0009 — 0038 0058 —.0080 0000 0028 0028 0028 0028
1423 0012 —.0035 — 0053 —.0076 1423 6030 0030 0030 0030
2817 0019 —.0026 0046 —.0063 2817 0035 0035 0035 0035
4154 0033 —.0009 0029 —.0043 4154 0046 0046 0046 0046
.5406 0055 0018 .0002 —.0013 5406 0064 0064 0064 0064
6549 0087 0058 0039 0029 M 6549 0093 0093 0093 0093 a,
7557 0134 01147 0096 0087 1557 0137 0137 0137 .37
8413 0193 0183 0158 0159 8413 0194 0195 D196 0196
9096 0244 0247 0237 0230 9096 0244 0252 0252 0252
9595 0246 0258 0257 0253 9595 0246 0260 0264 0264
980§ L0160 017 D177 0177 9898 D160 0172 0179 D180

TABLE 12D .
Comparison of the results presented in tables 12a, 12b, 12c; differences between the results obtained for succeeding values of R
Method of ref. 2 r Present method
A=1 ( A=8 coefl.
n Ay A, A, A, A, A, A, A, Ay
0000 0095 Ho70 0041 —.0005 —.0001 —.0059 0001 0000 0001
1423 0092 0070 0040 —.0004 —.0029 —.0058 0001 L0000 .0001
2817 0087 0067 0039 —.0002 —.0027 --.0053 00601 0000 .0001
4154 0078 0062 0037 —.0001 —.0022 —.0045 0001 0000 0001
.5406 0066 0055 0034 0001 —.0017 —.0037 0000 0001 0000
6349 0052 0047 0030 0602 -~ 0012 —.0028 0000 0001 0000 g
7557 0038 0038 0 0025 0003 — 0008 — 0020 L0000 {0000 L0000
£413 0026 0028 0020 0003 —.0004 —.0014 0000 0000 .0000
9096 0018 0019 0014 0002 —.0003 —.000% ~.0001 0000 0001
9595 0007 0012 0009 —.0001 —.0001 —.00035 ~.0002 0000 0000
9898 0002 0006 0004 —.0002 .0000 —.0003 ~.0002 0000 . 0000
T o |

0000 0087 0115 0079 0047 0020 0022 .0000 .0000 0000
1423 0083 0115 0078 0047 0020 0021 L0000 .0000 0000
2817 0074 .o 0077 0045 0020 0017 0000 0000 D000
4154 0059 0104 0076 0042 0020 0014 L0000 0000 0000
.5406 0040 0093 0073 0037 0020 0011 0000 .0000 .000 a,
6549 0018 0077 0068 0025 0019 .0D1D 0000 0000 0000
1557 —.0002 0056 0058 .0020 0018 0009 0000 0000 L0000
8413 — 0017 0032 0045 0010 0013 0009 —.0002 0000 0000
9096 —.0025 0010 L0029 —.0003 0010 0007 —.0008 .0000 0000
9595 —.0026 -.0002 0015 —.0012 0001 0004 —.0016 —.0004 0000
9898 —.0017 -.0004 0006 —.0o11 L— 0006 0000 —.0012 —.0007 -.0001

A; = (result)e -, — (result)g -+ -
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Fig. 1. Geometry of wing planform and co-ordinate system. Fig. 2. Geometry of the Warren 12 and the Multhopp wing,
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Fig. 3. The rounding at a kink in the wing planform. Given are:
i d*¢
ateg,: £ te gy, i/,
a2
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Fig. 4a. Convergence of AC, as a function of the number of inte-  Fig. 4b. Convergence of AC, as a function of the number of inte-  Fig. 5a. Convergence of AC, with respect to the number of integra-
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Fig. 7a. The quantity a, as a function of n for some different distri- Fig. 7b. The quantity a, as a function of  for some different distri-
butions of the spanwise stations. butions of spanwise stations.
B 30r
i
2.5 | LB12
20
L=25 L=12
151
10 Leot .
\ L=413 [ L=207 L=51 L=25
05
\ L=
103 v
1 L L
0 002 01 0.2 0.5 10 : 1.5 [[3 Iz.o
2

Appendix B, fig. I: The regions in the §, — 8, plane where an indicated number L is sulficient to chtain an accurate integration in chordwise
direction.
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Vi) _ siTl {i cos:l1 u} Chebychew polynomial £ integration variable in chordwise direction
sin{cos™tu} . azs
of the second kind of degree { and argu- alx, y) == (x, y) slope of the wing contour
ment u
i =/ M¢—1 Og .o belonging to the bottom of the wing
integration variable-in.spanwise direction o1 o belonging to the top of the wing

n
A{x,y)  slope of the streamline at the point (x ¥) @(x, y,z} velocity potential
in & plane y=constant

1 Introduction

In linearised theory the perturbation caused by a lifting surface can be resolved into two components, one due
to the thickness and one due to the camber of that surface. The respective pressure distributions can be determined
separately and by superposition the complete flowfield around the surface can be obtained. 7

The method and the computer program used to determine these fields strongly depend on the relation between the
Mach number of the undisturbed flow and the planform of the surface.

The boundaries of a surface in a supersonic flowficld can be divided into subsonic and supersonic leading edges
and trailing edges; by definition an edge is called subsonic when the component of the undisturbed velocity normal
to this edge is subsonic and supersonic when this component is supersonic.

Though based on the same principles the methods for treating different combmanons of subsonic and supersonic
edges vary considerably in degree of complication.

The present report deals with one of the least complicated cases, i.e. the determination of the lift on a surface
with a possible partly subsonic leading edge with a completely supersonic trailing edge subject to the condition that
the subsonic regions do not interfere with each other.

For the determination of the pressure distribution due to thickness reference can be made to NLR report TN-G.48
“The calculation of the pressure distribution due to thickness for thin wings of arbitrary planform at supersonic
speed” (ref. 3).

The appiied method is based on the thin wing theory of Evvard (ref. 1). Special attention has been given to the
numerical evaluation. By applying Chebychew polynomials to describe the camber distribution in chordwise direc-
tion, it was possible to perform the chordwise integration analytically thus coupling the accuracy of this integral
directly to the accuracy of the camber representation, In order to perform the spanwise integration the integral has
been regularised by subtracting the singularities. The actual integration is achieved by means of the 5-point Gauss
formula.

A description and a complete print of the Algo! program for the determination of the liftfield, written for the
Electrologica XI computer, has been inserted. '

2 Description of the method

From the linearised potential equation for supersonic flow

o  Fe O
Bt ay(f + 57 =0 1)
with | B =Mi—1

it has been demonstrated by Evvard {ref. 1) that the velocity potential at a point (x, y, 0) can be determined by

L w(S, 1)
. 3 0= — — déd 2.2
on0= | o

in which § is the region in the plane z=0 enclosed by the forward Mach cone emanating from the point (x, y, 0),

the downwash w being related to the local slope of the streamline — measured in the plane z=0 along a line =
constant — by

En) = Uyo(&, n) in a point on the wing ' (2.3a)
’ __ UyA(£, 1) in a point outside the wing (2.3b)

zs(&, n) representing the wing surface, o given by:

dzs(S. )

ol n) = =

(2.4)



In order to determine the boundaries of S, the region within the forward Mach cone where the downwash w has
values deviating from zero, must be considered. If the wing part lying within the Mach cone is bounded by supersonic
edges-the region § is-limited by the Mach cone and the wing boundary (see fig. 1a). In that case the integral of
eq. (2.2) can be evaluated immediately for then w is a known function of £ and 5 by virtue of the relation expressed
in eq. (2.3a) and thus

o - a{&, )
10 =—-— déd 2.5
el ] e - - ®

If the forward Mach cone includes both supersonic and subsonic leading edges, the region § is limited by the
Mach cone, the supersonic part of the wing boundary, and the Mach lines originating in the points of intersection of
the supersonic and subsonic edges (see fig. Ib). In that case the determination of the integral of eq. (2.2) must be
preceded by the evaluation of an integrai over the region Sd between the subsonic edge and the foremost Mach line,
as indicated in fig. 1b.

SUPERSONIC EDGE o SUPERSONIC £DGE

FOREMOST
MACH LIRE

FORWARD MACHCON d )
(LY) SUBSONIC -

(@) -y
Fig. 1. Supersonic and subsonic edges included by the forward
Mach cone. . .
In the region Sd, w is related to the local slopes of the streamlines, which are unknown {eq. (2.3b)}. In ref. 1 it
is shown, that in case of a subsonic leading edge the integral over §d can be replaced by an integral over that part
of the wing which generates this part of the downwash field. To understand this, one has to bear in mind that in

~ a supersonic flow the velocity potential in a point of S4 may be independently determined with respect to either

the top or the bottom of the wing surface. Thus considering a point (xp, y,) in the flowfield near the wing (see fig. 2)
the integral refation: ' ‘

2 Adcdy Uo (C’T—Un)dﬁd”l
R =7 H(yp 26
| Ty~ S T e 09

can be derived by applying eq. (2.2) to the top and bottom of the wing respectively and requiring the pressure to be
continuous across the region Sdof the plane z=0. The function H, introduced here, represents the jump in the velocity
potential across the plane z=0. :

With regard to this function two different kinds of regions $d can be distinguished (see fig. 3). In region Sd,,

SUPERSONIC £DGE

SUBSONIC LEADING
EDGE

SUBSONIC TRAILING
EDGE

. . Spy !
Fig. 2. Fields.of integration for equation {2.6). ) Fig. 3. Difference between subsonic leading and subsonic trailing
edge,

H(yp}=0 due to the fact that the foremost Mach line, originating on the leading edge, generally represents a line of
infinitesimal disturbance, along which H may be set equal to zero. The function H remains zero along y=constant
lines for values of x not intercepted by the wing. In region Sd,, H (vp) #0, due to the perturbation caused by the wing.
In the latter case, ie. a subsonic trailing edge, €q. (2.6} can only be solved by making a further assumption for the
flow in this region, e.g. by appiying the Kutta condition. The present report, however, does not consider this case, so
that only wings with completely supersonic trailing edges can be treated by the computer programme presented.
In the former case, that of a subsonic leading edge, the integration over Sd can simply be replaced by an integral




4

- over the region Sw,, as indicated in fig. 4. Then the expression for the velocity potential, eq. {2.2) applied to the
top of the wing, becomes:

g, odidy  Uspr | idedy
olun0= “” (x— &7 =By—n “”m/(x%)z—ﬁzb’—")z

- (2.7a)

oy [ 2 B g@” ardédy
2 swe S =B -2 TS s Sx—EP - Fly—n)

A complication occurs if the supersonic leading edge is connected to two subsonic leading edges, being located in
the forward Mach cone emanating from the point (x, y) (see fig. 5}. In the case that the subsonic regions do not

FOREMOST

I
FOREMOST MACHLINE

MACHLINE

SUBSONIC
ERGE

(9]
Fig. 4. Replacement of flow field region by wing region at the Fig. 5 Two subsonic leading edges included in the forward Mach
integration of eq. (2.7a}. cone, not interfering subsonic regions.

interfere, the velocity potential can be determined straightforwardly from the following expression, which has been
derived in a way similar to that indicated above:

optdr

dédy

Uy 2 U, apdédy Uy( ( oydédy '

0= — =2 S —— I L R | (N s ol S
Pon= -3 H G- -1 © jL S Pl n“sm\/(x—c)zem-(m)z
(2.7b)

In the case that the subsonic regions interact, similar formulae can be derived. This leads to expressions which are
getting more complicated as the interaction is more pronounced. If the interaction is continuous, as is the case
for wings with completely subsonic leading edges, the solution of an integral equation for the streamline slopes in the
subsonic regions concerned is required. These cases, however, will not be considered.

Thus three expressions have been obtained for the determination of the velocity potential in the plane z=0,
namely, eq. {2.5) in the case of a supersonic edge and egs. {2.7a) and (2.7b) in the cases that a supersonic edge is
connected to one or two subsonic edges respectively. With the aid of these equations the velocity potential can be
determined in any point of a wing in a supersonic flow under the conditions mentioned before, namely that the .
subsonic regions do not interact and that the irailing edge is completely supersonic.

By partial differentiation of the velocity potential the perturbation velocity components may be obtained. From
the three equations mentioned above the following can be derived:

— in the case of a supersonic edge as indicated in fig. 1a:

de
d_ b _:i?i__gj oty o5
dx s Jx=E = fly—nf 7} aa JSx— ~Fly—n) ‘

do
.d_wz_&” ay e L S 285)
dy \/(xé "R y—nP T Jaa JSx -7~ BHy—n)?
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— in the case of a supersonic’edge connected with one subsonic edge as indicated in fig. 4:

d
doy 9 (o+on)dédy

do_ Ui M gy e
dx HJLM V=& = pHy—nP Qﬂj. swo Jx—E = Flr—n T o Sx=P=Fly—n)
Uy ’ (op+o1)dn U/ B ‘ {07 —ag)dy 29
2%.’:,0.1 JE=~Fly-nf " (dx’ ,;) ‘ (x =& B> (r—ny* 2%
dy d
dG'T d
Y N | A g
dy (x—&F—By~n? 2 lise Jx—EP~Bly—n T Jan Jx—E—fHy—1)?
Sy
Us J (op+oq5)dé Uo dy ) (or—op)dé
+ 8 b0 296
2n Jooa Slx—Ef —Fly—n)®* T ﬁ+%xl ,‘bd\/(x—é)z_ﬁz(Y—ﬂ)z (299
Y/a

in the case of a supersonic edge connected to two subsonic edges as indicated in fig. 5.

. doT dch d
i U, f dédn U dédn - (6p+ap)dédy

& “” \/(x—cfi:f—w " U (x—(:f;—m(y—n)z ) 7’-U_J [ J?f-f)z—ﬁz(y‘”)l

Uy [ B (oa—ar)dy U/ 8 o GT)drr
i (,Hd_x’> { G- —F-mp (d_xl ) L\/ Flr—n)’

dy dy
Uoj (UB*GT)d'I Up | (GB*JT)d'T (2 10 )
il - 5= \10a
21 ) eoa \/(X"'f)z —ﬁz(}”‘”)z n Jeod \/(x—, g)z_ﬁz(y_n)z
dog daB d
do _ —EH E"—dé‘dn —%” o dédy —99” d_ﬂ(GB+GT)déd”
dy T M swe Jx—=E2=BHy—n T Vs Sx—EP —2r—n) 27 ) Jswiisw (x— &P — B3y —n)*
‘ dxl dxl
Uy l _ los=ondd U dy (05— av)dE
dx{ (x— é)z—ﬁz(y ﬂ)2 n dxt Lbd Vx— &=y —n)?
B+ 3

(4

UO (GB + O-T) dé _ % Jg dé . UD (GB + O-T) di

_ﬁ.[cpeﬁcvé)z—ﬁz(%n)z n [em\/x &Y —pAy— n)2+ 2 Jaga f(x— &2 — BHy—n)?

Considering a liftfield the expressions (2.9) and (2.10) may be simplified by introducing O’B-[-O‘T_—_:b and phtting
g =0r= — 6y, thus obtaining: ,

(2.10b)

d—adidn

d_co=_gq” d¢ '_ggg ody Uy /28 [ ody
dx s '“Swl (x_f)z“ﬂz(y—??)z L S {x—f)z-—,b’z(y_p?)z ot (ﬁ dx! (x__az_ﬁz(y__’?)z
' dy /4 (2.11a)
do ~dxi )
o] hﬂifﬁ__ o — >y [t
dy m s, JE==BP-n"  n o/ x-O=F(-n® = g 4 S s/ x == By —n)?

v/ (2.11b)



de ) d
. —déd ' d
dx Toddses Sx =0 —FHy=nP T swa (x— &P —pHy—n)?
_Usf 28 J ady U 2 ' ady
mlg 9] Jee Sx=P-pPG-n? 7 g X S S 8P - Fy— )
dy a dy ¢ ’
E‘l J ady
" S S BT (212
do - do -
dy T s S - p-ny T s \ﬂx—é)2~ﬁ2(y—ﬂ)2
2Ade’- o 4 dx]
LU Ty [ sdé Uy T dy J sdé
C PUNEEl RS/ Fro a T R PN E: ) SOV s o ey
B+ B+
dy /. dy /.
UOJ odé
LY 2.12b
(x—= &y = B —n)* (2120
The linearized relation between the pressure coefficient ¢, and the velocity reads:
2 d(p
Cp= — T, ax (2.13)

So the pressure distribution on a given wing at a given Mach number of the undisturbed stream can be determined
with the aid of eqs (2.8a) (2.11a) and (2.12a). For this purpose an Algol programme has been written using numerical
techniques, which are described in the following chapter.

3 Numerical evaluations

From eqs (2.4) through (2.13) it appears that the slopes of the profile camberlines and their first derivatives must
be known. Generally, the camber distribution is not given analytically, but only in a number of discrete points. This
number may be insufficient to perform an accurate numerical determination of the integrals appearing in the
equations mentioned above. Hence it may be necessary to increase this number by mterpolatlon In order to make
the interpolation as simple as possible the wing will be represented analytically.

3.1 Representation of the wing surface and the wing planform

The anaiytical representation of the camber distribution may be performed in several ways. For two reasons a
series of Chebyshew polynomials has been applied in the present method. The first reason is that for a fairly smooth
camber distribution the cocfficients of this series can very easily be obtained by taking advantage of the orthogonality
of the polynomials. The second is that the chordwise integration can be performed analytically when Chebyshew
polynomials are used.

Thus the camber distribution in chordwise direction is representedy by:

“ x—~xI(y) }
alx, y) = -1 : (3.1.1)
2,40 J( c(y)
where T; is a Chebyshew polynomial of the first kind, defined by:
T;(u) = cos(i cos ™! u) ' (3.1.2)

‘and where x{(y} is the x-co-ordinate of the leading edge and c(y) is the local chord of the wing profile.

The coefficients g; can be determined by integration from:
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| . o
“xiiyy+ et a(x, .V)Tf{zgi—(yl - 1} ) p when =0

a;(y) = sj c(y) L o1
a N =X HxG) e () —x}

2 .
— when iz 1
T

The determination of the coefficients g is not performed by the computer program presented in this report. The
coefficients @; are assumed to be known in a number of spanwise stations and thus form part of the input of the
program.

When the camber distribution is given analytically in some way, the determination of g, may be achieved by formal
integration.

In the case that the camber is given in a number of discrete points, the mtegratmn can be performed by connecting
the given points linearly and integrating analytically over the segments thus obtained. The number of points given
and the number of terms in the polynomial series both influence of course the accuracy of the approximation of the
contour.

Further the assumption has been made that the number of spanwise stations with given camber distribution will
be large enough to make a guadratic interpolation of the coefficients a;(y) in spanwise direction possible. Thus,

‘during the actual computations, the camber in each desired point on the wing, is calculated by means of a series of

Chebyshew polynomials the coefficients of which are determined by quadratic interpolation.
. Concerning the planform it has been assumed that the leading edge may be represented by means of two poly-
nomials, each valid over a certain part of the span, and that the trailing edge is a straight line,

3.2 The numerical integration

The integrals appearing in eqs (2.8a) (2.11a) and (2.12a) must be calculated numerically and so it is necessary that
the integrands have a sufficiently smooth behaviour.

Considering, however, an integrand of the type
' do

dé
(=& =By —np
it can be scen that this integrand contains a singularity at the point {=x, n=y.
Accordingly the function:

do

F(wn)—r————h da¢ (3.2.1)
’ N A
is singular for =y, &, =x. -

However, this singularity being logarithmic the integration in spanwise direction is possrble Hence the numerical .
integration can be performed once F(x, y, n) has been regularized by subtraction of this singularity.

Putting:

d¢

Foyon) = F(xyn) — ( df) Inif(y—n)l (322

- afunction F' is obtained which is regular over the whole integration range, but which has one disadvantage namely

]

an infinite derivative g at the point (x, y).
: n

So putting:

F(x, yon) = F*(x, ) { (j—g) " i(f)x,yum —y)} Inif(y—n) 623

dn\ dé
a function F* is obtained which behaves in such a way that the numerical integration can be performed without any
difficulty.” 4 /de .
The reason for putting |y| as a factor of —( q ) becomes clear when consideting the fact that the plane =0
is a plane of symmetry for the wing. /s '

The chordwise integration can be performed, taking advantage of the appr0x1mat10n of the profile-slopes by
Chebychew polynomials.
From eq. (3.1.1) it follows that

2




2 2 -
N 18 E’Gﬁ Z in {2 (Cc(;)[('?))} .
Flx, y,m) = j ———— ¢ (324)
o \/(x - 6) ﬂ (y - '7)
where
oS
sin y <)
V; can be written as follows: ,
oo 2(E—xI{n)) . : (i+1) ‘
Vi=Y b u*t-% =" _ 1 N =entier | — 3.2.5
g ,-; ! c(n) 2 323)
where b;; can be determined from the recurrence relation:
Vi-—’luV!-_l—Vi_z V0=0 Vl': i i (3.26)
Thus can be obtained :
2 L] N “y uH« 1— “du
F(x wh) = —= 2an) XY by | —Y—m—m—— 3.27
C('i’ ; J'ES:J. d Ho (u—"ul)2"—B2 ( )
- 2(x —xl(m)) 2(Eo—xIim)) 2(&—xi{m) 2
with Uy =———= -1 yp=—""— y =220 B=py—n —
T R ) 0=
. e W du . . .
From the integrals I, = ——————— another recurrence relation can be derived; viz.:
Jug v (ul_u)lﬁBl
0+ Dls Qo+ Vg I+ (uf — B?)pl,_ 1 = () (wy—~ 1)’ — B* — (o) /(g —u,}* ~ B? (3.2.8)
by means of which it is possible to determine the integrals I, consecutively from: i
_ _ B2 _ 2
I,=In Up— Uy + +(ﬂb “1) and I =ul,= \/( u0+ul Bz-i-\/ Hul)z——Bz (3_2'9)
—u0+u1— (_uo‘i‘ul)z_B-z

In this way I, can be determined with a slight decrease in accuracy for increasing values of p. The growth of
the error has been investigated by introducing a small perturbation of I, and comparing the results for I, determined

from disturbed and undisturbed values of k. The conclusion may be drawn that for vatues of p up to 15 the accuracy
N

of I, 1s sufficient. Because of the fact that the expression Z biiliiy—2; appearmg in eq. (3.2,7) contains the coefficients

b;; which increase rapidly as the value of i increases, a small deviation in I -2 may cause a much larger deviation -

m the value of this sum. On the other hand it may be assumed that for increasing i the values of a; will decrease
and also that the number of terms in the series representing the camber distribution will in general be limited.

So it seems reasonable to assume that the chordwise integration may be performed by means of the egs (3.2.7)
through (3.2.9) when i does not exceed the value 20.

The spanwise integration must be carried out with the aid of some integration rule,

Assuming that the coefficients g,{n) can be determined in any spanwise station a 5-point Gauss formula can be used,
which has the advantage of giving a high accuracy using relatively few integration points. Of course, the application
of this formula is only advantageous if the accuracy thus obtained is known to be sufficient. The computer program
presents the possibility to subdivide the integration domain into a number of intervals to each of which the inte-
gration formula is applied. Thus the integration accuracy can be checked by increasing this number. It is assumed
that it will not be necessary to vary the number of intervals during the actual calculations for each wing, but that
for a given class of wings the number of intervals can be determined by means of a suitabic tesi-case.

When the integration domain Sw contains the point {x, y) the integral in spanwise direction, which has the shape:

Ny
S F(x, v, n)dy
fo

must be treated according to eq. -(3.2.3) as follows:

LDF(x ¥, n)dy ~L: F*(x, y, n)dy _ (j_?)ma(x, y—H(x, y) (gg) (3.2.10)
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inwhich F*(x, y, n)is defined by eq.(3.2.3) and the functions G and H are obtained by formaily integrating the singular
part of this expression.

G(x, y) = (1y—y) Il B — ) - (10— ¥} n| B{no — ) — (15— 116)

e i1 ~ P i~ i-1} mo>0
H(x,y) =

2 2
- _ Ho—Y 1y Y
(ﬁ"]—i {210 [Blm =y =1} + == 2010+ 3y) nlBlo— ) = o+ T} + 5 2In(fy) =3} no<0
In the case that the integration domain Sw does not contain the point {x, y) the function F(x, y, n)can be integrated
directiy.
The line integrals in spanwise direction which have one of the integration boundaries, or both, on a Mach line
through (x, ¥} give another complication.

The integrand of the shape: . pu

ix—xdln)} - FHy )’
contains a singufarity for {x —x/(1)}?~ B*(y —n)* = 0. This is the case whenever an integration boundary coincides
with a Mach line through (x, y). This difficulty is solved by transformation to another integration variable by means
of

7= ) + M~ Ho cos 0 (3.2.11)
2 2
Putting
p=x=Bly—n L=x+ply—n) (3.2.12)
gives:
G o

=17 (o xln)]} (e X))

For n~n, there may be written

x{n) = xl(ne) + %%I(n—m) = &y{no) + %’(nw@) and & () = & (ol + Alir— o)

So:

&) - xllo) = (ﬁ _ %})m—no)

From this it follows that:

dn qn—b;—”q\/l+0050d0

T o) v

and the boundary singularity has vanished.
The same derivation holds for # = #,,.
So, using the appropriate integration variables, all spanwise integrations can be performed by means of the Gauss

for nx=n,

formula. All formulae concerning the determination of C—E in the three different cases as indicated in chapter 2 are

presented in Appendix A in the form in which they appear in the Algol program. A flow diagram of the program is
presented in appendix B and the program itsell in appendix C.

3.3 Description of the Algol program

Though the flow-diagram of the program is sufficient to provide insight into its structure it would be convenient,
however, to have more detailed information. Therefore a short outline of the various procedures will be given first.

The procedures xle, dxl, xte, dxt refer to the planform of the wing and do not need any further description.

The procedure estac requires some explanation. Assuming the camber of the wing profiles to be given in a number
of spanwise stations (ygs) in a form as indicated by eq. (3.1.1):
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id x—xle(ygs)
o(x, ygs) = Y acgs;(vgs}Ti(u y=2——--—"-1,
121 (g5)Ti) c{ygs)
and also assuming that the number of the given stations is large enough to enable a quadratic interpolation in span-
wise direction, the Chebychew coeficients for a certain value of n may be obtained from:

ac;(n) = apt; {n—ygs(k)}* + ap®, {n— ygs(k)} + acgs, {ygs(k)}

The value of £ is chosen in such a way that ygs(k) refers to the given spanwise station nearest to #, this to get the

best possible results within the limits of the quadratic interpolation. The formulae for ap{¥! are giveu in appendix A.
2

In the case that the derivative of o dd az must be determined, the derivatives of ag; (n) d * are needed as well.

Therefore the procedure estac possesses a boolean parameter derac, which must be true if T‘ has to be calculated.

In that case the following formula is used:

~—— = 2ap} {n—ygs(k)} +ap%}
dn

The procedure inters! delivers the co-ordinates of the intersection point of some line £ =a+ by and the leading edge
¢ =xle{n)During this procedure the real procedure ZERO is used which delivers the roat of the function f(x)=
by means of the Regula Falsi. e[ 1] and e[2] are array elements which determine the accuracy of the root.

The boolean variable B04 has been used in order to deal with the special case when the subsonic leading edge
coincides with the line 7= +s. In that case B04=false and the intersection point of the line ¢ =a+ by and the sub-
sonic leading edge is determined by = +s and £=a+ bs.

The procedure dercamber delivers the values dsigma = (%) and d2sigma = a% (%g) according to the for-
xX.¥ B ,

mulae of eqs (A.24) to (A.26) and does not need any further explanation.
'The procedure chebint delivers the integrals in

uP du
in
[in] = Jm Jiu—uY—B*
according to eqs (A.19) through (A.20).

The procedure surfint delivers the surface 1ntegrals I, or I of eqs (A.2) through (A.4), where the difference between
the calculation of I, and [, is indicated by means of the boolean variable B03, which should be false when I, has to be
calculated.

The procedure lineint delivers, the line integrals I, to I; of egs (A.2) through {A.5). It has a special feature that, in
view of the kink which often appears at the centre section in the leading edge, the integration has been divided into
two parts in case one of the integration boundaries has a negative value.

The possible appearance of a kink at another point of the leading edge has not been taken into account. In that
case the integration accuracy may be checked by making use of the possibility, mentioned before, i.€. to increase the
number of integration intervals.

The procedure XEEN is an internal machine-code procedute, which offers the possibility to influence the flow of
the computation by means of the control desk of the computer.

Finally a survey of ‘the input data will be given:
nl = degree of the polynomial, describing the first part of the leading edge
n? = degree of the polynomial, deseribing the second part of the leading edge

.np = highest degree of the used Chebychew polynomials

ns = number of given spanwise stations counting from 0 {centre section) to ns (tip)
al[1,i{]i=0~nl coefficients of polynomial of first part of leading edge
al[2,i}i=0-n2 coefficients of polynomial of second part of the leading edge

at[1] at[2] coefficients of polynomial of trailing edge.

5= semi span

xp, yp = co-ordinates of the junction of the first and the second part of the leading edge.
ygs[i] q—coordmate of a given spanwise station.

acgs[0, i} ' - coefficients of the Chebychew polynomials, describing the slope of the camber along
: the given station ygs|i]

i=0-ns

a.cgs [np, i]
mon = M, = Mach number of undisturbed flow.
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i coordinates of the point where ¢, has to be calculated; any desired sequence of x, y values may be given.
— 1 = numnber which ends the calculation (see flow diagram)
4 Numerical results
As a check on the correctness of the computer program the described calculation method has been_ applied tc; two

different wings: .
~ The F 104 G wing for M, =2 (see fig. 6). The bodyside has been treated as a plane of reflection.

_,_

Fig. 6. The F 104 wing 5=13.3435 ¢(0) =3.946 c(s) = 1.492 A = 26.8°. zs(Z, ) = 0.

— A rectangular wing with camber o (¢, n)=a&* +b&+c semi span s=1, ¢(y)=1, for M0=\/2. Two different sets
of the coefficients a4, b and ¢ have been considered.

As these two wings have a simple planform and a simple camber distribution it is also possible to achieve the
calculation of ¢, analytically. In Appendix I the formulae involved are presented .

TABLE 2
Comparison of the numerical and analytical results for the rectan-
gular wing.
M,=.2 o(€, #)=—4 E+0.2

x y ci) numerical Cp-nnlylw-l

2 .05 2399 .2400

4 05 0798 0800

6 .05 ~— 0803 -— 0800

.8 .05 —.2404 —.2400

t 2 .55 2399 .2400

4 .55 G798 0800

6 .55 —.1861 —.1856

TABLE 1 8 .55 -.3320 —.3316

Comparison of numerical and analytical results for the F 104 wing. 2 95 0359 0359
4 95 —.04%0 —.0490

My=2 o(, n)=.0349 6 .95 0994 —.0993
X y CFnumerlc-: CP analytical 8 95 e 1373 - 1372

4 16718 —.036555 — 036554 -
8 16718 — 034674 —.034674 My=./2 o€, n)=21333 £2-2311 £+0.3333
12 16718 — 034384 —.034384 x ¥ Cp mmmertont LA
1.6 16718 — 034285 — 034285 -

20 16718 —.034240 —.034240 2 .05 —.0876 —.0871
24 16718 —.034216 —.034216 4 03 —.5005 — 4995
28 16718 —.034201 —.034201 6 .05 —.5720 —.5706
32 16718 —.034192 —.034192 .8 .05 —.3024 - —.3004
2 35 -0877 | —.0871

22 1.83898 — 042156 —.042156 4 .55 —.5005 . — 4995
34 1.83898 —.039253 — 039284 .6 .55 —.6520 —.6509
: .8 .55 -2172 ~—.2160

22 3.17642 - 024891 . — 024890 2 95 —.2134 —.2133
26 317642 —.017832 —.017832 4 95 ’ —.2766 —.2766
10 317642 — 014677 — 014677 6 85 —.1589 —.153%
32 - 317642 —.031623 —.013623 8 .95 +.0657 +.0657

In tables 1 and 2 a comparison has been made betweén the numerical and the analytical results. The agreement is
very good. The results are presented in fig. 7 and § as well.
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5 Conclusions

A program has been developed which can be used to determine the lift on a wing in steady supersonic flow. On
the condition that the subsonic regions do not interfere, the program in its present form can be applied to wings with
leading edges whigh may be both supersonic and subsonic and trailing edges which are completely supersonic.

In principie the program can be extended to cases with interfering subsonic regions and to cases with subsonic

_trailing edges but this will require some additional analytical and numerical work.
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APPENDIX A

Survey of the formulae, used in the Algol program

In order to make this appendix more useful for those who wish to study the program itself, afl formulae, used '

in the Algol program, are presented here in the notation of the program.
According to egs (2.8) to (2.13):

2 2dy, 2dy,
CP_E{IlnIZ—I3+m}_1I4'+ 1+dy¢15}, (Al)
where I, to I are given by the formulae below. The various cases are indicated by the adjoining sketches:
do ‘
rn4 xbim T Tm . —LEADING EDGE
|- | S . S (2) . -
JoJxlim \/{xr(ﬂ)_é} {x‘?(ﬂ)“‘f} 1\\\5'1 7 i
T - N
L=IL=1=0 w
r der
Ha (xbin) dz
I,= j 5 d¢ dédy
m Jx0pm fxr(n) — &} {xq(p) — &}
n L=L=0 (A3)
- an adn
g= ——_—
w N X7 (0) ~xa ()} {xq(n) — xa(n}}
I do_ ™
na [xb{n) AF
I, = g g 4¢ , dédny a
ni Jxplm) \/{xr(rr)-—&} {W(ﬂ)—f}
L,=0 J \
do ) ! N Sy h 4
‘ny xbp a? A ! P
L= ‘ . dédy m\ i
] ' Sm Jxk () \/{xr(n)—f} {XQ(W)—g} : \\\//./
. . b %%
I do :
5 n3 [xmin) qF
5 5'8 - g ds dedy (Ad)
) 2 Jxl(my {xr(ﬂ)—é} {Jﬁ](’?)"é} J
3 .
I, = S i dn
dne N xr(n) = x, ()} {xqln) - x ()}
Ha G
I = S dy
m ~/Oer(n) —xa(n)} (xa ) —x, 0n)}
13 e ’
L= g drp in all cases [ to 111 (A5)
I~/ e ) = b )} {xq (o} — xdn)}
xb{n)=x—Bly—n| {A6)
“m
Z aly ' 0 <<y,
xlfy) = (A7)

n2

Y aly o Vo<
i=0



xq(n)=x+py—n)

xr(n) = x—~Bly—n)
B
dyi = dx!
d'? — (1)

14

x ()=
x4(’1) =

dyy =

mEnEN,
PR/ R

LIRS ESE
'73‘~<-'T<"Il
HrS s,

)+, —n)
xl(ns) —Blns—1n)

dxl

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

The subscripts of # refer to the intersection points 1 to 5 as indicated in the figures. yp is the g-coordinate of the point

where the representation of the leading edge changes it

s form.

The surface integrals I, and I, are treated somewhat differently from each other. The area § Wy does not contain the
the singular point (x, y) as Sw; does. Hence according to eq. (3.2.10):

N4 d
I =j F*(x, y, m)dn — (E%

L}

ki

) Gt - {j;jn}x,ymx, "

I, sj F (x, ¥y, n)dn

12
where -

F*.(x, o my=Fix y,n) + {(%) Xy

d?e
+ (dn dé)x,yu"lf)’)} In Bln—) and

9_0
dg

b
Flopm=| ————S"_ 4
3, Ln Jixr(n) =& {xqi -} :

with &,=xb{n) and &, equal to either xo, xp, xk or xi(y).

The integration in chordwise direction is carried out analytically according to egs (3.2.7) 10 (3.2.9):

F(x, pn) = i aci(’?){i bviilni+1—21} N=(i+1)+2
Mo 1P du
ny = j (i—u) B2
with :
y _ 2o—xm)} _2{&—~xl)}
’ cln) “ cln)
S Lokl )1 _ 2 a_
Y el LB C(ﬂ)ﬁ(y L

c(n} = xt(n)—xl(n)

A}

xt(n) = aty+at,n

(A14)

(A15)

(A16)

(A17)

(AL8)

(A19)

{A20)
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At last ¢ must be determined from:

o)==

1

I

ac,{r) T(w) (A33)
(i+2y+2 ) )
Tw= 3 byu*? % (A34)
=1
The coefficients br,; are determined from the recurrence relation for T
' T=2uT,_ —T., To=1 Ti=u {A35)

u is given by eq. (A26) again.
The coefficients ac,(n) of eq. (A33) will be determined by means of quadratic interpolation from:

acy() = ap(1, i. k) (= ygs(k))2+ ap(2, i, k) {n - ygs()} +ap(3, i k) (A36)
where ap is given by:
o Jacgs(i, k+1)—acgs(i, k}  acgs(i, k) —acgs(i, k—1)] - 1
apil. L k) _{ ygs{k+1)— ygs(k) ygs(k) - ygs{k—1) }ygS(kH)"yQS(k"l)

acgs(i, k+1)—acgs(i, k)

sl ) —ygsl)
ap(3,i, k) = acgs(i, k)

vgs(k) denotes the y-coordinate of the given spanwise station nearest to 5. acgs(i, k) denotes the coefficients of the

Chebyshew polynomials belonging to ygs(k).
In this way a complete survey of all the formulae used in the Algo! program bas been given.

ap (2.0 k) = ~ ap(1, ) Dygsth+ 1)~ ygs(R)} )
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APPENDIX B
" Flowdiagram of the program

BEGIN OF PROGRAMME

¥

DET. OF COEFF. BV, BT (SEE EQS A22, A23, A35)

r

INPUT PLANFORM

READ : AL (1,1 :N1)
AL (2.} N2)} SEE EQ A7
AT 1, AT 2 SEE EQ A20
S = HALF OF SPAN WIDTH
Xp.¥Yp SEEEQ A7

!

INPUT CAMBER DATA

READ :¥ ivEN sTATION (1:7S)

9 GIVEN 5TATION (0 :mp, 1 ns)
(SEE EQ A33)

DETERMINATION OF SPANWISE INTERPOLATION
COEFFICIENTS AP (1:3,0:np, 1 :ns-1)

t

READ : Mo=MACH NUMBER OF UNDISTURBED FLOW

)

DETERMINATION OF YS = M ~ COORDINATE OF JUNCTION
OF SUPERSONIC AND SUBSONIC LEADING EDGE

r’START:

FROM FINISH

K]
READ Y
Y<0 | YES 1 eND OF PROGR.
§ NO
READ X
20
DETERMINATION OF D SIGMA = (%—g—) (A. 24)
X, Y
e
AND D 2 SIGMA = A. 25
{a.“a 2 )x' , { )
]
DETERMINATION OF (X£y, Y£y)
= POINT OF INTERSECTION OF =
LEFT MACH LINE THROUGH
(X, Y) AND LEADING EDGE. .
' yes | Bo s = TRUE; DETERMINA-
Y8 <YS [ TION OF (X{3,Y &) = POINT
70 OF INTERSECTION OF
Bol:— FALSE ; RIGHT MACH LINE THROQUGH
X£3:=XQ]QYE3:=Y'E] (X{’],Y{])AND £.e.
Lea

— ¥
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{

DETERMINATION OF (X by, Y¥4)
= POINT OF INTERSECTION OF

RICHT MACHLINE TROUGH (X, Y)
AND LEADING EDGE
t ‘ Bo2: = TRUE; DETERMINA-
YES
YL42YS TION OF { X129, Y £2)= POINT
T OF INTERSECTION OF LEFT
Bo?2: = FALSE ; :‘QSH \'j'aNE ZHRoch
Xi9: = X% 4 Y8 =Yy 4 YEs) AND £ e.
-
YES
Y4y<— YSV Y P3>YS THIS POINTS TO A CASE
THAT CAN NOT BE TREATED
NO BY THIS PROGRAMME ;
CALCULATION IS ENDED
' YES
"Bo 1 A Bo 2 | CASE | OF APPENDIX A :
v DETERMINATION OF 11.]
lo=lg=15=0
CONSIDERING A (SEE EQ A2)
SYMMETRIC WING AND
CALCULATING Cp
ONLY FOR Y>0, THE "Bol A Bo 2 YES [ CASE 11 OF APPENDIX A:
CASE BELONGING TQ DETERMINATION OF iy | |
Bo 1A’80 2 DOES NQT NO AND I, 19 14=0
OCCUR. HENCE THE (SEE EQ A3)
PROGRAMME HAS NOT| NO
BEEN PREPARED TO BolA Bo2
DEAL WiTH THIS CASE ; YES ves
THE PROGRAMME 15 Y23<Y$2 |——e={ CASE illa OF APPENDIX
ENDED WITH OUT PUT A : DETERMINATION OF | g
OF THE MESSAGE : § NO 1ely=0
WRONG INPUT CASE 111 OF APPENDIX A - (SEE EQ A4)
DETERMINATION OF 11 AND)
P (SEE EQ A4)
-
y
TOSTART DETERMINATION OF
A I3 (SEEEQ AS5)
dy 1,dy 4 (SEEEQ A13)
C, (SEE EQ A1)
OUTPUT OF Mo, 5,Y, X.C )
- FINISH
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APPENDIX C
The Algol program

begin comment progr. 5.9, Determination of lift field for symmetric wing

with partly subsoniec, partly supersonic leading edge

and a supersonic trailing edge: the subsonic reglons may

not interact — MC-procedures ZERO(AP230) and XEEN are used

in this program

integer ni,nmax, nl,n2,np,n,1,]),ns,k;

reaﬁl ni,nl,n2,np,ns);

nmax:= if nl>n2 then nl else n2;

355113 real pi,s,XD,yp,X,¥,x0,y0,xb,dyl,dy2,dy3,be,mon,dxp,ys,c,dsigma,
5 E‘-mm: eta, cp; .

boolea.n Bol,Bo2,Bo3,Bok,BoS;

Eglﬂxl,yl,yi,gp,gw,inth 5];5-1" 3[1 2]3 '
al{1:2,0:nmax],bv[0:np+2,1:2+(np+1):2],bt[Oinp+1,1: 1+(np+2) 12],
in[O: np],ac dac[o-np],a.cgs[O np,0:ns],ygs[O:mns],
ap[1:3,0:np,0:ns5});

real procedure ZERO(x, &, b, fx, e); value a, b; real x, a, b, fX; array e
begin real ¢, fa, fb, fc, m, 1, tol, re, ae;
re:=e[1]; ae:=e[2];
xi=a; faisfx; x:=b; fb:=fx; goto entry;
goon: if abs(i ~ 1)< tol then i:=b + sign(c = b) X tol;
Xi= if sign(i = m)= sign(b = 1) then i else m;
ai=b; fa:=fb; b:=x; fbi=fx;
if sign(fc)=sign{fb) then

' entfy: begin ci=a; fc:i=fa end;

IT abs(fb)>abs (fo) then
begin a:=b; fai=fb; b:=c; fbi=fc; ci=a; fe:=fa end;
m:=tb + C)/2
ii= if fb — fa . O then(a X fb = b X fa)/(fb —'fa) else m;
tol:=abs(b X re) + ae; ‘
if abs(m — b) > tol then goto goon;
ZERQ:=x:=b

end ZERO;

v

real procedure xle(y); value y; real y;

- begin real ya,sum; integer k n,i ;

ya:=a’bslyf,

if ya<yp V 1 Bo% then begin k:=1; n:=n! end
élse begin k:=2; ni=n2 end;

sum:s= &Tn],

for 1:en—1 step =! until O do
sum:=sunixya+al Ek,il,

xXle:=sum :

end,

real procedure dxl(y); value y;real ¥;

begin real ya, sum; integer k,n,i R
ya:=abs(y);

1f ya<yp+p—9 then begin ki=1; n:=nl end else
begin k:=2; n:=nz2 end, -
sum:=nxal(k,n];

for i:=n—1 step ~1 until 1 do

Bum: =sumxy+ixallk, 1 I,

dxl :=sign(y )xsum;

end;
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real procedure xte(y); real y;
xte.na.tl‘l vet[2lxabs(y);
real procedure dxt(y); real y;
dxt:=at|2]xsign(y);
Emcedure estac(eta,derac); real eta; boolean derac;
begin real y,dy; integer 1 K
v:imabslets);
for i:=0 step 1 until ns—-1 do
begin 1f Foer 1<y7y<resli+1 T then
begin ki= 1f ygs{i+) }-y>y—ygs{I] then ielse 1+1;
g k=ns t.hen ki=ns—;
k=0 then ki=l; ot la.
4 end. ; goto
end,
IeT ay:=y-ygs(k];
er 1:=0 5 1 until np do
Begin ae(iTim(eplToDk nayean(2, 1, k] Jedy+ap(3, 1, kl;
_i_g derac then dac[il]:i=2xap[1,1,k]xdy+ep[2,1,k]
end
end;
real procedure intersl{a,b,xi,yb);. velue a,b,yb; real a,b,xi,yb;
begin real y,yi,xipl,xip2,y1,y2;
in‘beger si;
si:=sign(b); xipl:=a+bxXsixyp; xip2:=a~bxsixyp;
¥1:= if a<O A xipi<xp A abs(b)>dxp then
sixyp else (if a>0 A xipI>xp A " X1pe>xp then —sixyp else 0);
y2:= if a<0 then Gf xip1<xp then yb—siXy—10 “else siXyp)
else (1f xipi>Xp A xip2>xp then —sixs else —siXyp),
ir a>0 A xipi>xp A xip2>xp A 1BoW then
begin xi:=xip2; yiims end else
begdin y1:=2ERO(y,¥1,¥y2, x1e(y )—a—bxy,e); xi:=xle{yl)
end;
Tntersliayl
end, ( y
grocedure dercamber ksi,eta. ; real ksi,eta;
begin real u,:d,c,vi,dvi,dx,de, su..ﬂ BumE ,u2;
integer T 1, 23,03
xl:-xle(eta.); c:=xte(eta)—xl;
u=2X({ksi=xl)/c=1;
suml :=sum2:=0; u2:=uf2;
for 1:=1 gtep 1 until np do
begin n:={1+1):25 viz T vis=bv[I,1);
forjue ste T untilndo
'ﬂbv[i
v:lxwk 1+1-e><n),
sunn 1=suml+ixae (1 IXvi;
sum? msum+ixdac {1 ]xvi;
end;
dsigma :=2xsun! Je; sl :=0;
for 1:=2 3_1322 1 until np do
hegi.n n=al:2; dvi=(i~ )xbv[1,1];
forj 2_s_t_e£1 until n do
dvi smdvixu2+bv(i; J IX(1+1=2X] );
dvis=dvixup( i-2xn);
sum) :=suml +1xac[ 1 )xdavi;
end)
dx:=dxl(eta); de:=dxt{eta)—dx;
d2sigma:=(—dexdsigmna~ix((ksi-~x1)/exde+dx)/cxsum +2><sum2) ILH
end;
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rocedure chebint{xo,xb,xl,c,eta); real xo,xb,xl,c,ete;
be, teger 1,§,n; :
real-ul,u0,ub,A,B,C,D, sum;

intf[O:np+1);
;ﬁx(x-xl)/c-—t; u0:=2¢( x0-x1)/c~1;
gb:saxixb-xl()/c—u)/ )
t=ghs(2xbex(y—~eta)/c);
Az=sqri((u0-ul Jj2-Bi2);
D:= if abs(ub+B~ul)<y~T then O else sqrt((ub~ul)j2~Bi2});
C=ul ; :
int{0]:=In(abs( (ub—ui+D)/(uO-ui+a)});
int[1]:=D-A+uixint{0];
for i:=1 step 1 until np-t do
INE[1+1 }:={ udADDUOMXA+{2XT+1 Ixulxint{1 ]-Cxixant[1~1])/(1+1 };
for 1:=1 step 1 until np do
begin sum:=0;n:=(1+] 5_:.2;
for J:=1 step 1 until n do
sum: esum+bvl 1, J IXIntli+1-3x3 ] ;
in[i}:=sum
end;
end;
reel procedure surfint(iy,xoy,xby,k}; real iy,xoy,xby;
integer k;
begin integer q,1,J,p;
real yyo,yyb,suml,sume,yo,yb,hs,hd,cly,x1, sum3,G,H;
suml :=0;
for i:=1 gtep 1 until k do
begin ryorsstlal; yybi=yi[i+1];
for g:=1 step 1 until ni do
begin yo:=yyo+{q—1)X{yyb=yyo)/ni;
ybi=yyo+rgX(yyb—yyo)/ni;
hs:=0,5%{ yo+yb); hd:=0.5%{yb~yo);
sum? :=0;
for j:=1 step 1 until 5 do
begin iy:shs+haxgpldl; xIi=xle(iy); cly:=xte(iy)—xl;
X0i=xoy; xbi=xby; chebint(xo,xb,x1,ciy,iy);
estac(iy,false}; sum3:=0;
for p:=1 step 1 until np do
sum3 :=sum3+pxac(pJXin(pl;
sum ;=suml+gw( § Ix{2xsum3/cly+( if Bo3 then
(dsigma+d2sigmax{ebs{iy }=v) }X1n{bexabs{1y—y)) else 0));
end;
suml :=suml +sum2xhd;
end;
end;
if Bo3 then
begin real dyb,dy0,1lnb,1n0,etab,etal;
e"ta'%:’uﬁ[i ); etabi=yi{k+1]; dyb:=etab-y;
dyG:=etal~y;
inb:=In(bexabs(dyb)); InO:=ln(bexabs(dy0));
G :=dybxinb~dyaxinO-{etab—etal);
Hz=0, 25xdybix( 2XAnb~1 }=0.25xdy0fex

" {2}XIn0-1 }4+{ if etal> O then O else

(e ta0+y IxadyOXAnO-dyOx0, 5] eta0~3Xy )+
yA2x(1n(vexy )}-1.5));

sunl :=guml--dsigmaxXG-i2s1gmaxH;

end; »

surfint:=suml

end;
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real procedure lineint(iy,x1i,y0,yb); real iy,xii,y0,yb;
% Teal xT,%3,xD,theta,ets,u,xl,hs,hd,signs,t, sumu2,yl,y2;
_.EE__ i:p)n:k W; arrey yi(te 1313

sum:i=(;

ify0<0Vyb<0then
begin k:=2; yi(21:=0; yi[3]:ayb end

else be in k'=1 ; yif2):=yb end; yil1]:=y0;

for m:= 1 until k do

begin y! '=y1 m; ;yZmyilmer]; ;
8130, 5X(y1+y2); hd:=0.5x(y2-y1);

for 1:=1 gtep V'until 5do

begin theta:=0. 5><pix(1+gp[1]), iy :=hs+hdxcos{theta);
Xri=x-bex{y=-iy); xq: =x+bex(y—iy), xpi=x1i;

estac(iy,false); xl:=xle({y); u.=2><(xp-xl)/(x‘be(iy)-xl)-1
sigma:=0; upi=

for p:=0 step 1 until np do

begin ti:=btlp,1T; ni=(p+2):2;

for j:=2 gstep 1 until n do

=t otlp, 31

siamamsigmamc[p]xuxwh(wz-em),

EB_:

=gum+hdxpix0. Sxgw[i JXsignaXsin( theta)/ sqrt( {xr—xp X(xq=xp) ) ;
end,

end;
Tineint:=sum

end;
Pii=3,1415926536;
bv(1,1]):=1; bv[E‘ 1]:=2; bvi2,2]):=0;
for 1:=3 st 'I until np 4o
begin bv[I,1]:=2%0v[I~1,1T;

n=(1+1):: 2
for J 921‘:._5'9_1 until n do
bvli, 3l —2><bv[1—_—r,J “pv[12,3~1];
bvii,n+1]s=
end;
_[o 11:=13 ve[1,1]:=1 ,bt[l a]-=o,
for 1:=2 gtep 1 until np do
begin m[—ﬁ e[ 1-1,17;
n:=(1+2):2;
for j:=2 _s_tggl until n do
btl1,3]:=30mt[1~T, J J~ot[1=2, -1 1;
bt[i,n+1]:=0;
end; )
‘begln comment input planform;
for i: =0 step step 1 until nl do all?l,i}:=read;
for 1:=0 ste 1 until n2 rlo 8.1[2 1}:=read;
readn(et{TT,at[27,5,%p,yp);
Boli:=abs(a~yp)/s > p~10;

end; : \
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begin comment input camber—data snd determinastion
of gpanwise Interpolation coefficients;
_for _1:=0 ste p ! until ns do

begin ygsTi]i=rea 3 ) '
for §:=0 step 1 until np do acgsl},i):=read end;
for 1:=1 s7t_e£ 1 until na-l do
Begin dy1iaygs[i+1 I=ygs(11;
aﬁ oygs[iJygs[1~1};dy3:=dy1+dy2;
for J:=0 step 1 until np do
be in ¢: =GE‘§S[J 1+ J-acgalj,1])/dy1;
>3,11:=(c—acesl 3, 1 ]-acasl 3, 1~11)/ay2)/ay3;
ap[a 3,1]:=c-apl1,],1]xayl;
ap(3,,1]):=acgsly,1];
end
end
%ﬁ w85 e[2]):my6;
@ ] 3 ef2]i=y
mon:=read; be: =sqrt{mon.rf\2-1 };
B L axL{y)ve,e) el
ys:i=i e thenZ ¥,0,¥p, Yy s@) gr8e
ZERDG.!YPJS dxlTﬂ-be,e):
gpl5]):=0,906179645939; epl1]:=~gp[5]; ‘
gwl1]:=guw(5]:=0.236926885056;
gplh]:=0.538469310105;
gpl2):=—gpll];
ewi ] s=gwll]:=0.578628670409;
gp[31:=0; gw[3]:=0.568888808889;
if XEEN(-O)=1 then
Pegin PUTEXT!(fintermediate results of S9b);
for 1:=) step 1 until np do
in PUNLCR; )
=1 step 1 until (i+1):2 do FIXP(10,0,bv{1,J]);
end. PUNLCR; PUNICR;
1:=0 g 1 until np do
Bt
=1 step 1 until (i+2):2 do FIXP(10,0,bt(1,4]);
nd PUNICR; PUNICR;
or i:=1 step 1 until ne—I do
in PUNICR;
r J:=0 step 1 until np do
:Ln r’UN'I.—.C_R'? for k:=1,2,3 do
9,2,ap(k,J,11);

En‘df PUNICR; PUNLCR;

F'LDP(Q, »¥8);

end;

start:

yi=read; if y<O then stop;x:=read;
estac(y,true); dercamber(x,y);

if XEEN(-O)=1 then

begin PUNLCR; PUNLCR; FLOP(9,2,dsigma); FLOP(9,2,d2sigma);
for 1:=0 step 1 until np do

begin PUNICR; FLOP(9,2,ecl1]);
FLOP(9,2,dac[1]);

‘ end

end,

¥I[1 ) :=intersl(x=vexy,be, Al1]y)

lm

e e
2}
5

i

I"lﬁfl
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1f yl[1]<-ys then

begin Bol:istrue; -
yli 31:=intersi(xL[1 }+bexyl[t ],~be,x1[3],y2[1]);
end elase

Sevmpmeny.

begin Bol:=false;

ylE§]==31[1 T; x1[3):=x1[1]; end;
y1[4]:=intersl{x+bexy,~be,xi[F],y);
1f y1[4>ysvabs(yl(hlys)<y~10 then

begin Bo2:=true;
| yliﬁl:=inte?§{xl[h]-bexyl[‘+],be.xl[al,ylih]);

end else

begin Bo2:=false;
-xliEhax.l[lL[; vi{2):=yl[4] end;

if yl[2] < s V y1[3]>ys then

"begin PRINTTEXT(4Wrong mschnumber}) ;

0to finish end;

1¥ XeeN(—0)=T then begin PUNLCR; PUNLCR;
Por 1:=1,2,3,4 do FLON12,2,y1[1]); ends
if BoIAIBO2 then
begin yif1]:=yil[1];
yilZ21i=y; yil3):=y1ib]);Bod=true;
int[1]:=surfint(eta,xle(eta), x—bexabs(y-eta),2);
int[2]:=1nt{h]i=int[5]:=0;

end else
T__f"_’lBo’I/\Bo? then s vil2]

begin yi[1 s=yll1]; yi[2]:=

if y<yi[2lthen y elsge yl{2};

- ¥I[3):= 1f yy1[2T then yl[2] else y;

yi[h):=yIT4]; Bo3:=true;

int[1]:=surfint(eta, ( if eta<yl{2] then xle{eta}

else xi[bl-bex(ylik]-ela)),x-bexabs{y-eta),3);

int[2) s=int{l}:=0;
int[5]):=1lineint(eta, x1[k J-bex(yl[4]-eta),y1[2]),y2[4]);
end else

1F BoTAB02 then

begin if yi[3)<yl[2] then .

begin yil1):=yl[1]); yil2]):=y1[3];
. y._%”

; = 1f yi{2]<y then yil2] else y;
yilk]:= IF y1[2)<y Then y else ¥i[2]; .
yi{5):=yITh1;B03:= True;
int[1]:=surfint(eta, if eta<yl[3] then
xL[1 ]+bex(yl[1]~eta) else if eta<y

then xle{eta) else x1[B]-vex(yl[k]—eta),

. x~bexabs(y-eta),F);

int[2]:=0;
end else

S S——

begin yi[1}:=yl[11];

y'iEEJ 22 2L[1 Jcd [ 4 )+pex(y1[1 J+yLI4]) )/ (2xve)
yi[2]:=1if yl[5]< y then y1(5] else y;

yi{3):=if yl[S]<y then y else yil5);
yilb):=yIlh]); Bo3:strue;
int(1):=surfint{eta, if eta<yl{5] then
x1{1)+bex(y1{1 }~eta) else .

x1[4 J-vex(yL(4]-eta), x-bexabs(y—eta),3);
yi[1]:=y1[2]; yi[2):=y;y1[3)i=yl{3]; Bo3:=false;
int{2)}:=surfint(eta, xle(eta), if eta<yl[5] then
¥1( 4 J-bex(yl{l]~eta) elae

xL{1 J+oex(y1[1 }-eta),2];
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end
int[uj =lineint(eta,x1{1 J+vex(y1(1 ]-eta),yln 1,v1(31);
int{5]):=lineint{eta, xl[h(];bex(yl[h]—-eta 3y1[2],yl[1&]),
end else begin PRINTTEXT(§ wrong input }); goto finish end;
Int{3]:=1Ineint(ete,xle(eta),y1[2),¥1{3]);
dyt:= if x1{1]> xpA 1 Bob then O else

Tbe/ax1(y1(11);
dyh:= 1f x1{4]> xp A 7 Bos then O else

“ve/axl(y1ll]);
epi=2x( 1nt[) }-int[2 }=1nt]3 ]+xdy1/(1+dy} )x ‘
int[h}+axdyh/(1+dyk)xint(5])/pi;
if XEEN(~0)=1 then
Begin PUNLCR; PONLCR;
Por 1:=1,2,3,4,5 do begin PUNLCR;
FIOP(12,2,1int{1]); FLOP(12,2,yi[1]}; end;
PUNLCR; FLDP(12 2,dy1); pr(12 2,dyL4);
end,
PUNLCR; PUNLCR; PUNLCR;
PUPEXT1(dkresults of 59$), PUNLCR; PUNLCR;
PUTEXT1{4Mon=}); FIXP(1,%,mon);
FUTEXT1( {s= )J FLUP(9:2;5): PUNLCR;
PUTEXT( ; FLOP(9,2,7);
PUTEXT1{ ; FLOP(9,2,x);
PUTEXT1(4Cp= ).v FLOP(12,2,cp);
finish:
EEt_o, start
end; 59:
g_lg

APPENDIX D

Suvrvey of the formulae used to obtain analytical results

v

The F 104 wing

The camber distribution is given by o(x, ¥) = constant and the representation of the leading edge by xI(y) =

)y
for 0< [y <5 s=semi span.
At the chosen Mach number M, =2 two of the three cases described in app. A arise, namely:
case I to which the following formulae apply:
— i when fily—x =0
,82 _ 052
do _ (D1)
dx G {a 2By 2}
— -1 O A when fiy—x<0
,F‘_'_Vz — r————__ " o’
case 11 to which the foliowing formulae apply:
—28) =2 (y— ‘
- ——i—_cos‘{x+a(y 5= 28l S)} when fy—x 20
/B o’ X—ay
do _ (D2)
dx _ _ PN
X 3 g cos-! x+oly—2s)+28(y—s) N 2g an- 4% [ - ﬁf{} when By —x <0
TT. ﬁzbaz X‘—'ny i ﬁz_a X ﬂ — &
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The rectangular wing '
The camber distribution is given by a(x, y) = ax® +bx+¢ 0< x< 1 and the leading edge by xl(y)=Q o<giy<.
At the chosen Mach number My=./2 case I and casc 11 of app. A arise again. For case 1 the following formula
- is valid: -
de

it %(ax2+bx+c) (D3)

and for case I1:

de
dx

= — ;:—g(ax"ﬂ-bx%—c) cos™{1-21) + n—lﬁJ {3(2t—S)ax*~2bx} Jt(l-t) t= Bls=y) (D4)
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Summary

A numbet of comparative flutter calculations for a two-dimensional wing-control surface system has been performed to demonstrate the
usefulness of empirical formulae for the control surface derivatives.
Furthermore attention has been paid to the influence of the chord ratio ¢ on the flutter behaviour and to the sensitivity of the system to
each of the aerodynamic derivatives.
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1 Introduction

In conclusion of an extensive experimental programme conducted to determine aerodynamic derivatives for
wings in two-dimensional incompressible flow, a systematic series of unsteady pressure measurements was carried
out on various wing-control surface combinations (ref. 1). To reduce scale effects, these tests were performed at
highest possible Reynolds numbers, ranging from 2 to 8 million.

An analysis of the test results revealed that for the reduced frequency range considered, the measured aerodynamic
derivatives Tor varions contro) surface chord ratios conld be approximated rather well by empirical relations (ref. 2).
As certain discrepancies still remain, an assessment of their influence on the flutter behaviour was necessary.

The main purpose of the present report is to demonstrate the usefulness of the empirical expressions for the
control surface derivatives. This has been achieved by performing a number of binary flutter calculations for a
two-dimensional wing-control surface sysiem, using either measured or empirical aerodynamic derivatives, The
flutter calculations have also been performed with purely theoretical derivatives to demonstrate the influence which
the differences between experiment and theory have on the critical speed. Attention has been paid to the influence
of the relative chord ratio = and to the sensitivity of the system-to each of the acrodynamic derivatives.

Far the sake of completeness a short description of the unsteady pressure measurements reported in ref. 1, and
the final results of that investigation, have been included in the report.

4




2 The experimental aerodynamic forces

2.1 Short description of the wind tunnel tests 7 ’

Since important discrepancies were found to exist between control surface derivatives, measured on similar
models at various Reynolds numbers (ref. 3), it was decided to conduct a new series of measurements at sufficiently
high values of the Reynolds number. The main aim of these tests was the determination of aerodynamic derivatives
for control surfaces of various chord ratios. To make the information as complete as possible detailed instationary
pressure distributions were required. These have been obtained by employing the NLR pressure measuring technique
(ref. 4}.

The tests were conducted in the NLR low speed windtunnel LST, ha'ving a tesi section of 2 x 3 m?. Three rectangu-
lar models were used (fig. 1}, which spanned the test section from top to bottom.

Model I representing a wing with a 40 percent control surface, was almost identical to the model described in
ref. 3. It only differed from the latter one in that the original convex shape (NACA 0012) of the control surface
was modified into a straight contour. The total wingchord was 0.82 m.

* Model I consisted of a new wing part, followed by the rearward 80 percent of model |, provided with a semi-
circular nose part. The total chord of the new combination was 1.64 m, the profile being almost identical to NACA
16009 with maximum thickness reduced to 6.5 percent. This model may be considered to represent a wing with a
AD percent control surface and a 20 percent tab.

Model ITT was derived from model II by inserting a rectangular piece of 0.23 m length at the point of maximum
thickness, thus obtaining a wing of 1.87 m chord with a 35 percent control surface and a 17.5 percent tab.

The modes of vibration of these models are shown in fig. 2. For various values of reduced frequency w and for
Reynolds numbers between 2 and 8 million (see fig. 3), pressure distributions were measured on the three models
osciifating in these modes. The limit values for w — 0 were deduced from stationary tests, while the [imit values for
w — o0 were measured directly in stilt air.

The experimental results were corrected for tunnelwall interference, using an extension of the theory developed
in ref. 5. In an attempt to account for the differences between experimental and theoretical pressure distributions,
the ratio between local pressure coefficients with and without tunnelwalls was assumed to be equal in theory and
experiment.

22 Results

From tests at various amplitudes it could be concluded, that the local pressures showed a good linearity with the
vibration amplitudes, even near the trailing edge, Measurements on the same configuration at Reynolds numbers
between 2 and 8 million did not show a systematic influence of this parameter.

Compared with the limiting case @ — co of the incompressible flow theory (ref. 6), the results of still air tests were

in close agreement as far as the real part was concerned. In the still air tests always a small imaginary part was
measured, which is not predicted by the theory for incompressible flow. This may be due to the fact that the infinitely
large propagation speed of small disturbances, assumed in the above mentioned theory, is not an adequate re-
presentation of what actually happens at zero airspeed.
On model I pressure distributions were measured corresponding to plain wing rotation about axes at 20 and 40
percent of the chord (see fig. 2). The results have been used to derive the pressure distributions for pure translation
and rotation about the quarter chord axis. In order to avoid difficulties from experimental scatter in this separation
process, use has been made of a similar correction matrix as described in ref. 7.

The final results for the pressure distributions are given in figs. 4 to 15. The presented values include the still air
reactions. Compared with theory, the measured local pressures are generally smaller, except for the real parts in
case of pure translation.

The aerodynamic derivatives, obtained by integration of the pressure distributions, are presented in figs. 16 to 21
and in the tables 1 to 3. As could be expected from the pressure distributions, the measured values are generally
smaller than the theoretical predictions.

A comparison of results for model 1, obtained by direct pressure measurements (ref. 3) and by the special technique
used in the present tests, (described in refl 4) is made in fig. 22. The mutual agreement is very satisfactory.

For tables 1, 2 and 3 see next page.
2.3 Empirical formulae for control surface derivatives

An analysis of the aerodynamic derivatives without still air reactions revealed a surprisingly good phase relation
between theoretical and experimental results. Furthermore the ratio between the theoretical and the experimental
pressure amplitudes appeared to be rather independent on the type of derivative and on the reduced frequency,
although it differed from its static value.
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TABLE 1
Measured aerodypamic wing derivatives.

w k. ky m, ny ki, kv my, my
0 0 0 ] 0 1.4500 0 —0.0461 0
0.20 00248 0.2082 —0.0249 —0.0058 1.0870 0.0073 —0.0467 0.1442
0.40 —0.0485 0.3577 —0.0879 —0.0100 0.9327 0.3252 —0.0874 0.2610
0.60 —0.2206 0.4975 —0.189¢6 ~-0.0141 0.8072 0.6345 —0.1586 0.3790
- 0.30 —0.4831 0.6360 —0.3306 —0.0183 0.6676 (.9323 —0.2589 .4976
1.00 —0.8320 0.7749 ~-0.5109 —0.0225 0.5009 1.2220 —0.3880 0.6167
TABLE 2
Measured aerodynamic control surface derivatives (¢ = 0.20)
0} k. A m; ", n
0 0.79 0 0.039 0 0.017 0
0.40 0.389 —-0.005 0.310 0.044 0.011 0.005
-0.60 0.370 0005 0308 (.063 0.011 Q.007
(.80 0.368 0.051 0.308 0.099 G011 G010
1.00 0.390 0.077 0.327 0.132 0.011 0.013
1.20 0.327 0.118 0.271 0.151 0.009 0.015
1.50 0.294 © 0208 0235 Q.216 0.005 0.018
Measured acrodynamic control surface derivatives (t = 0.175),
. A
w kY m, “my n; ny
0 012 0 034 0 0012 ©
0.52 0322 0.018 0.284 0.050 0.008 0.004
0.78 0.336 0044 0297 0.086 0.009 0.007
104 0316 0.065 0.282 0.104 0.008 0.608
1.30 0.309 0.114 0.282 0.145 0.008 0.011
156 0.241 0200 0202 0.197 0.004 0.013
195 0.249 0254 0209 (245 0.004 0018
TABLE 3
Measuted aerodynamic control surface derivatives {1 =0.4).

w " n ny, ny k; kY . m; n, n’
1) Q 4] 0.04074 Q 131 Q .35 4] 0.082 0
0.20 —-0.00335 0.00593 0.02715 0.02052 0.826 -0.014 0316 0.081 0.049 0.019
0.40 —0.01685 0.01019 . 001205 0.04798 0.761 0.073 0319 0.164 0.050 0.066
0.60 —0.04058 G.01415 —0.00925 .07530 0.450 0.208 0201 0.251 D033 0.039
0.80 —0.07433 0.01807 —0.03795 0.10230 0.676 0.375 0.261 0336 0.035 0.088
1.00 —0.11800 0.02198 —-0.07443 0.12910 0.583 0.449 0236 0.395 0.027 0.109

Measured aerodynamic control surface derivatives {1 = 0.35),
o k, k! i, my " ny
0 0.99 0 033 0 0.051 0_ .
Q.52 0.464 0.109 0.248 0.143 . 0.026 0.028
0.78 0.407 0.205 0.218 0.215 .017 0.048
Lo4 0.367 0.341 0.194 0.301 0.009 0.065
130 0342 0.450 0.135 0.398 ~0.008 0.085
L56 0.289 0.582 0.089 0.445 ~0.014 0.097
1.95 0.233 0.772 —-0.003 0.638 ~0.043 0.139




Finally a correlation was observed between the mentioned amplitude ratio for various models and the static
value of the ratio between measured and theoretical mean pressure level. The mentioned observations could be
described by the following empirical relations between the flow dependent parts (i.e. without still air reactions) of
experimental and theoretical control surface derivatives:

k% =084 5-k%,
X =0845-m¥ +005

¥ =084 5-n¥,

r¥, =0845r¥

k..
5= (Z;)Fo

The approximate values of the derivatives with still air reactions included may simply be obtained by adding their
corresponding theoretical values, because the measured still air reactions agreed well with the theoretical values.
The empirical expressions approximate the measured aerodynamic derivatives quite well, as is demonstrated for
k. m_ and n, in the figs. 18 to 21. Here two remarks have to be made:
(1) The static values (w=0) do not fit in the empirical approach, so the empirical refations can only be applied within
the w-range used in the tests, being roughly 0.2 < w< 2.0. :
(2) In case the factor S is derived from three-dimensional tests, it is doubtful whether the constant 0.84 is still
applicable.

02<m<20

with

24  Approximations for plain wing derivatives

For the purpose of making systematic flutter-calculations for a wmg—control sur[ace system, it was desirable to
have also approximate expressions for the acrodynamic derivatives, corresponding to plain wing translation and
rotation. These were obtained by using similar formulae as given in eq. 1. As the plain wing derivatives were measured

only for one wing profile, it makes little sense to express the constants into a ratio between some measured and

theoretical stationary derivatives.
The expressions used to approximate the measured derivatives are given in appendix A. The good agreement is
demonstrated in figs. 16 and 17.

3 Comparative flutter calculations based on measured, approximated and theoretical aerodynamic derivatives

In order to investigate whether the remaining discrepancies between measured and approximated aerodynamic
derivatives would give unacceptable differences in flutter behawour several binary flutter cases were calculated
using both types of derivatives. Also calculations with theoretical aerodynamic forces were made for reference. The
flutter calculations have been performed for a two-dimensional wing-control surface system of given wing properties
(clastic axis at 40 c, inertia axis at 502/ c and a density ratio u of 15).

As only one complete set of acrodynamic derivatives was measured for a wing with a control surface of 40 percent
{(maodel I), these comparative flutter calculations were restricted to this chord ratio.

For the binary cases, summarized in table 4, the variation of damping and frequency with airspeed has been calculated.

The results for wing bending-control surface rotation are presented in figs. 23 and 24. The points computed by

applying approximated derivatives are in good agreement with those obtained with the measured quantities..
Compared with calculations with theoretical acrodynamic derivatives the results based on experimental derivatives

TABLE 4
System parameters for the comparative flutter calculations digcussed in section 3.

3 g u ® T o, Uy - Mg v, Fig.

wing bending-control -03 02 15 0.55 04 0.04 45 04 0 23
surface rotation -03 0.2 15 0.55 0.4 0.04 4.5 04 07wy 24
wing torsion-control —03 02 - 15 0.55 04 0 45 04 0 25
surface rotation —-0.3 0.2 15 0.55 04 0 4.5 0.4 0.7v, © 26
-03 0.2 15 0.55 04 0.04 4.5 04 0 27

—-0.3 0.2 15 0.55 04 0.04 4.3 0.4 0.7v 28
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show a slightly higher critical speed in case of a free floating control surface. For the elastically clamped control
surface there is little difference between the variation of damping with airspeed in both cases.

The results for wing torsion-control surface rotation are presented in figs. 25 to 28. In all cases considered the mutual
agreement between results calculated with approximated and measured aerodynamic derivatives is satisfactory. For
the elastically clamped control surface (figs. 26 and 28) the results obtained with theoretical aerodynamic derivatives
show already flutter of a very mild type at very low speeds. _

Summarizing, it can be stated that the empirical formulae for the control surface derivatives (section 2.3), together
with the approximations for the plain wing derivatives (section 2.4) are sufficiently accurate for flutter calculations.

4 Stability diagrams for various chord ratios z

To study the difference in flutter behaviour predicted with theoretical and experimental derivatives respectively,
again binary flutter calculations have been made for a two-dimensional wing-control surface system. In this case the
solutions of the characteristic equation for several values of w have been given as stability diagrams, showing the
variation of a non-dimensional flutter speed with the squared ratio of control surface frequency and wing frequency.

As the approximated aerodynamic derivatives were proved to be sufficiently accurate, they have been used to
investigate a variation of the chord ratio t in the flutter calculations. To have a consistent set of experimental acro-
dynamic derivatives the ratio S in the empirical expressions for the C-modes was taken equal to the value of modei 1
{5 =0.88). The values of the derivatives for the A- and Bmodes have been obtained by interpolating the corresponding
coefficients 4;; to the chord ratio 1. The values of the coefficients 4;; used, are given in table 6.

The combmatlons investigated have been summarized in table 5.

_ TABLE §
System parameters for the flutter calculations discussed in section 4.

g o St * oy Jr oy Fig. T
wing bending-control —0.3 0.2 15 0.55 01t 0.75 pr T 29
surface rotation : . t=0.40; 0.30
wing torsion-control =03 - 02 15 055 0 0.75 pt 1 1 0.20;0.15
surface rotation —0.3 0.2 15 0.55 0lz 0.75 ut T 31
TABLE 6

Empirical coefficients A;; used for the calculations discnssed in section 4,

T 5 A Ay Ay B, Az Az Ay Aas B, Asz
0.15 0.88 0.70 0.43 0.64 0.15 0.62 0.43 0.74 0.74 0.05 0.74
0.20 0.88 0.70 0.45 0.64 0.15 0.62 0.45 0.714 0.74 0.05 0.74
030 088 0.70 0.49 0.64 0.15 0.62 0.49 0.74 0.74 0.05 0.74

0.40 0.88 0.70 0.53 0.64 0.15 0.62 0.53 - 074 0.74 0.05 0.74

The results for wing bending-control surface rotation are pfesentéd in fig, 29,

In general, the lower flutter boundarics show remarkably small differences for all chord ratios considered, not-
withstanding the rather large discrepancies between theoretical and experimental derivatives. The latter apparently
have more influence on the upper boundary, which has little importance in practice.

The weakly restrained control surface has the lowest flutter speed in case of theoretical derivatives. Thls conclusion

2
holds for a fairly large range of (?) -values, depending on t.
B

The foregoing is itlustrated also in fig. 30, where the influence of the chord ratio 7 on the critical speed is shown.
The results for wing torsion-control surface rotation are presented in fig. 31 for both o =0 and o, =0.1 . In these
cases, there is a greater difference between the lower flutter boundaries, especially at the higher t-values. This is
clearly demonstrated in figs. 32 and 33 where the variation of the critical speed with the chord ratio 7 is shown

L
for several values of the frequency ratio —= .
v

T




5 Influence of each aerodynamic derivative on the critical speed

To investigate the sensitivity of the flutter boundary to the various experimental derivatives, a number of cal-
culations with approximated values has been performed, replacing alternatively one of them by its theoretical value.

" This has been restricted to wing bending-control surface rotation and wing torsion-control surface rotation both .

with 1=0.4 and o, =0.04. : S
Wing bending-control surface rotation: The results for this case have been collected in;fig. 34.. To discuss the

results, it should be remembered that for the degrees of freedom considered flutter mainW.ﬁCéhfﬁif the energy input

by the lift due to control surface rotation overcomes the damping action of the lift due to wing translation.
Knowing this, it is not surpnsmg that replacement of k, by its theoretical value, thus enlarglng the value of this

derivative, gives rise to an increase in critical speed and that enlarging k. leads to a rather important decrease of
the flutter boundary, together with a considerable extension of the unstable region, The influence of the derivative

n, appears to be very small. Taking n, according to theory gives somewhat lower critical speeds in the range 0<
(v./ve)* < 0.6, while at large values of this parameter the flutterboundary is raised.

Wing torsion-control surface rotation: For this system it.is more difficult to predict whether it will flutter or not.
Unlike the bending motion the damping of the torsion motion of the wing is relatlvely small and the system is
considerably more sensitive to small changes in the derivatives.

The influence of the various derivatives on the critical speed is shown in fig. 35. It appears that taking k, or n,
according to theory gives rise to an increase in critical speed and a smaller extent of the unstable region. Replacing
k. or n, by its theoretical value, leads to very small unstable regions. Using the theoretical value of m, gives no
instability at all. On the other hand the derivatives m,, n, and k,, have a very large, unfavourable effect on the flutter
boundary. In these cases there is no lower flutter boundary at all, in other words flutter occurs directly at zero
airspeed. : :

In the next section attention will be paid to this phenomenon.

6 Stability of the wing torsion-control surface rotation system at large values of the reduced frequency

To get some insight into the mechanism of the observed instabilities at very low speeds, discussed in the foregoing
section, the stability of the system at large values of the reduced frequency has been investigated. For simplicity this
study has been restricted to a free oscillating control surface.

Before discussing the wing with control surface, the flutter behaviour at vanishing a1rspeed (ie. w— oo) of a plain
wing (t=0), which is free to rotate about a fixed axis, is considered. 1t is well known from two-dimensional, incom-
pressible flow theory that such a wing reaches a zero flutterspeed if the axis of rotation is located at the three-quarter
chord point. For all other axis locations the wing appears to be stable.

It has been shown in appendix B, that flutter may occur at very low speeds for a certain range of axis locations
if experimental acrodynamic forces, approximated by the formulae of Appendix ‘A, are used. Then a necessary
condition to be fulfilled for flutter is:

- . ) . . . . Ay Ay
In fig. 36, the axis locations where instability occurs, which depend only on the ratios ~**and =22 P 2, have been
12 12

Ay Az
_ plotted against — L1222 for various values of T Taking all aerodynamic derivatives accordmg to theory,

12 12 12
50 A;;=1, gives the aforementioned axes location at 75 percent chord. Instability is absent for the numerical values

of A;;, which have been used in the calculations described in sections 3 and 4 (see table of appendix A).

For the two degree of freedom system, consisting of a rotating wing with a free floating control surface, itis also
possible to derive a stability criterium for very high reduced frequencies (see appendix B). The stability is shownto
be dependent on the chord ratio 1, the coefficients A,J, the inertia properties and the wing axis location.

Taking theoretical aerodynamic forces this criterion is simplified in Appendix B to:

_ —ltag,
1“ﬁ¢z

The constants « and f, defined in eq. B.8 of Appendix B, are fully determined by the inertia properties and the
chord ratio 7 (fixing the functions ¢,). So with theoretical aerodynamic forces, a given wing-control surface system
has again one wing axis location for which the flutter speed is zero. The expression for ¢ includes the-limit case of a
plain wing, as ¢, =0 for 1=0, leading to ¢=— L. '
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For the wing-control surface system considered in the present report, fig. 37a shows the variation of the critical
axis location with z. It appears that the critical axis moves forward with increasing t, but the range of r-values in-
vestigated still gives damped oscillations for a wing axis at 40 percent, as used in this report.

The result of this stability investigation suggests that in practice flutter at low speeds is likely to occur for wing-
- control surface systems with nodal lines located closely to the critical position.

In contrast with its behaviour based on theoretical aerodynamic forces, the system appears to be completely
stable at vanishing airspeed if the approximations for the measured acrodynamic derivatives are used (ie. 4;
values according to table of app. A). However, one has to be careful, as minor changes in one or more of the co-
efficients 4;; may give a completely different result. This is shown in fig. 37b, presenting the unstable region that
oceurs if only the coefficient A, , is raised from 0.64 to 0.70.

To explain the result of fig. 35, where no lower flutter boundary exists in case either m,, n,, or k, is taken according
to theory, the stability criterion B7 of Appendix B has been used. As this criterion is restricted to a free floated
control surface, it only indicates whether the origin of fig. 35 becomes part of a stable or an unstable region. The
result has been summarized in the table here under.

Derivative, chosen Valie of D Conclusion about
according to theory {eq. B. 7 of App. B) origin of fig. 35
kY A, =1 +0.0567 stable
n* Ay, =1 +0.0355 stable
k¥ A,=1 ~0.1863 unstable
m¥ Az=1 +0.4079 stable
nf Aj=1 ~0.1088 unstable
B A,=1 +0.1018 stable
m¥ A,,=1 _ -0.1459 unstable
nt Aj;=1 -+ 0.0909 stable
none +0.0297 stable

note: ma* =0 in both theory and experiment.

The conclusions about the position of the origin can be easily verified in fig. 35. The magnitude of D appears to
give an indication of the size of the unstable region. For instance the unstable region for k¥ is much smaller than
for n?*, while for m¥ the system is even completely stable.

7 Conclusions

From the investigation of two dimensional wing-control surface systems in incompressible flow, the following

conclusions can be drawn: '

1 The presented empirical formulae for control surface derivatives appear to be sufficiently accurate for flutter
calculations.

2 Using theoretical aerodynamic forces, any given wing with free control surface is shown to have one wing axis

_ location, for which flutter. at zero air speed occurs.

3 In case a combination of theoretical and empirical aerodynamic derivatives is used in a flutter calculation, flutter
at zero airspeed may occur within a certain range of wing axis locations.
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APPENDIX B

Stability criterion for a wing torsion-control surface rotation system at large values of the reduced frequency

The equations of motion for a wing torsion-control surface rotation system in case of a free floating control
surface (v, =0) can be written as:

Ly || L
l:ﬂ. a +3{2)(1 Z) — —GT:I[ RUR(G'+a+O'R)+|uR%R - a:z:‘:l q;
—0 (B.1)
Ly, L
[#R orfo+a+op)+pp ok — Zf_:l I:JHR (o8 +g) — ;23} _ 9s

where Z=Z'+iZ"=v}/v? is the unknown quantity to'be solved . The acrodynamic quantities L;; of eq. (B.1) can
be expressed as:

' 3
L22 = Azzm:+A1132k:+A12ak§+Bl - (g -+ 8+82)C{)2
1
Lys=Apsm+B,+ A, ek¥ — an (P42, )w?

1
Laz= A + Apyen? = 2 (6r-+268,)0 52

1
L3 = Aszn¥ — i P10

{(Note: mg =0) J .

Using the expressions for the aerodynamic derivatives given in Appendix A, and assuming « — 0, the aerodynamlc
terms in (B.1} are reduced to:

L
f = 1—[A22+f: Ay +2ed4,,] - (g + £+82)
Las
P lw [A23¢5+3A13¢2+23A13¢3] - _(¢7+25¢4)
(B.3)
L 1
ﬁ 15‘5[-’432(¢B+¢9)+A318¢8] _EE(¢7+2£¢A"_)
Ly . 11 1 1
ﬁ = lmlizd’zd’s + i‘i’ujl - ﬂiﬁbu
The condition for damped oscillations of the system described by eq. (B.1) is
Z2"<0 ' (B.4)
From eq. {B.1) it can be derived: 4
L L
e, (@) (-
"= —1Im |3 B.5).
VA C. m |3 + (C L33) ‘ (B.5)
3 (J.Jl

where for convenience the following notations have been used:
C, = p(e?+3x%%)
C, = ppoglo+a+ o)+ prxi
Cs = prloa+x3)

Thus the condition for damped oscillations (B.4) yields:
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Crack propagation in aluminum alloy sheet materials
under flight-simulation loading

by

J. SCHIJVE, F. A. JACOBS and P. J. TROMP

Summary

A large number of flight-simulation tests were carried out on sheet specimens of 7075-T6 and 2024-T3 clad material. A gust load spectrum
was adopted and a flight-by-flight loading was applied. The investigation is essentially concerned with macro-crack propagation though a
few exploratory tests were conducted on the crack nucleation period. The majot trends emetging from tests with a variety of loading programs are:
1. The omission of taxiing loads from the ground-to-air cycles did not affect the crack propagation.

2. The sequence of the gust cycles in a flight (random, programmed, reversed gust cycles) did not have a significant influence on the crack propa-
gation.

3. Omission of gust cycles with small amplitudes systematically increased the crack propagation life.

4. The mast predominant effect on the crack propagation was coming from the maximum gust amplitude included in the test. Increasing this
amplitude gave a large increase of the crack propagation life,

5. Application in each flight of a single gust load only, namely the largest upward gust load, increased the crack propagation life three times.

6. Omission of the ground-to-air cycle increased the life 1.5-1.8 times. ’

The discussion and the analysis of the results inclode such aspects as fractographic analysis, possible mechanisms for interaction effects between
load cycles of different magnitudes and damage calculations. The conclusions at the end of the report have a number of implications for testing
procedures to be applied in full-scale testing aiming at crack propagation data for fail-safe considerations. A recommendation is made for selecting
the maximum foad level in such a test. Recommendations for further study are also made.
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List of Abbreviations and Symbols

- GTAC

ground to air cycie (in the literature some-
times: GAG=ground-air-ground transi-
tion)

TL taxiing loads

Crack propagation life: number of flights for crack
growth from { = 10 mm to complete failure
of the specimen.

[ semi crack length, see fig. 4

n number of flights (or cycles)

di/dn crack propagation rate

An number of flights (or cycles) to cover the
crack growth interval from [, to [,

N crack propagation life, or fatigue life

S, stress amplitude )

Sa mean stress

Sein minimum stress gross stress

Snax maximum stress | (in kg/mm? if

Sa, min minimum S, of [ not specified
the gust cycles | otherwise)

S, max maximum S, of
the gust cycles | :

1 mm = 1073 meter=0.04 inch; 1 inch=25.4 mm

L kg/mm? = 1,422 psi; 1000 psi=90.703 kg/mm?

1 ke = 1 kilocycle = 1000 cycles

1 u/fl.  =crack rate of 1 micron {10~% meter) per
flight '

1 Introduction

Full-scale fatigue testing at the present time is
generally accepted as a useful procedure, if not the only
one, for evaluating the fatigue qualities of an aircraft
structure, Major goals to be achieved are:

a. Indication of structural deficiencies, fatigue critical
elements.

b. Determination of fatigue lives until visible cracking
occurs,

¢, Determination of crack propagation rates in view of
inspections.

d. Evaluation of inspection procedures.

e, Measurements on residual strength,

In order to obtain realistic data on (b} and (c) it will
be clear that the fatigue loads to be appliéd in a full-
scale test should be a realistic representation of the
load-time history in service. This problem was ex-
tensively discussed in ref. 1, which was the Final Report
of a preceding investigation. It was concluded in this
report that the load sequence should have the character
of a flight by flight simulation. This conclusion still
leaves various questions to be answered, such as:

1. The sequence of loads within each flight, should it be

a random sequence or could a programmed sequence

be allowed? A fully randomized sequence and a

programmed sequence are thought to be the most

extreme posstbilities.

2. What is the maximum load to be applied in the test

{truncation of load spectrum)?

3. Could small load fluctuations be omitted from the
test in view of time saving?

These three questions were also extensively discussed
in ref. 1 and certain recommendations were made,
Nevertheless it had to be admitted that more empirical
data was urgently desirable.

The present investigation deals with fatigue crack
propagation tests on sheet specimens of two aluminum
alloys (2024 and 7075). Load sequences were selected
in such a way as to shed some further light on the three
questions mentioned above. In addition test series were
carried out to study the damaging cffect of ground-to-
air cycles, the effect of reversing the order of positive
and negative gusts and the effect of applying only the
most severe gust load in each flight. Some constant-
amplitude tests were made for damage calculations.
A survey of all test series is given m the following
chapter.

It should be pointed out that the present test series
involves the propagation of visible cracks only. It is
thought that the results will be helpful in planning
fatigue tests with flight simulation loading on full-scale
structures or components, especially if crack propaga-
tion has to be studied {fail-safe structures). This report
gives a full description of the experiments and the
results obtained. The analysis of the data (chapter 7)
includes a discussion of related test programs reported
in the literature. The report is completed by a general
discussion and a number of conclusions.

2 Sarvey and scope of the test series

A gust load spectrum was approximated by a stepped
function as indicated in fig. 1. This spectrum was
subsequently broken down into 10 different types of
flight (A-K), each characterized by its own load
spectrum, varying from “good weather” conditions to
“storm” conditions (see chapter 5). The sequence of the
various types of flights in the tests was random, while
the gusts in each flight were also applied in a random
order. A schematic picture of a flight is shown in fig. 1
and a load record of the severest flight is presented in
fig. 2. Each gust cycle consisted of an upward gust load
immediately followed by a downward gust load of the
same magnitude, the mean stress being 7.0 kg/mmz
(10.0 ksi). Taxiing loads applied in the ground-to-air
cycle (GTAC) or air-ground-air transition had a
constant amplitude (S,= 1.4 kg/mm?) and the number
of these cycles per GTAC was 20.

As outlined in the introduction, the main purpose of
the present investigation was a comparative study of
several load sequences to be adopted for flight-simula-




tion testing A summary of the variables studied in the
present test program is given in the table in fig. 1 and
a survey of-the test parameters is presented in table 1.

a Truncation of the gust load spectrum. Extremely high
gust loads are very rare. Unfortunately they may have
a large effect on crack propagation and since one can
not be sure that all aircrafi of a fleet will meet the same
high gust loads it is a delicate issue to assess the
maximum load to be applied in a flight simulation test
{ref. 1). In view of this problem comparative tests were
carried out with the maximum gust load level (trunca-
tion of load spectrum, see fig. 1) as a variable.

b Omission of small gust loads. The omission of small
gust load cycles in a flight simulation test would save
a considerable amount of time since these cycles are
relatively numerous, see fig. 3. Since these cycles may
still contribute to crack growth comparative tests were
made with and without the smallest gust cycles.

C Spmin in the GTAC (ground-to-air cycle). In some
exploratory tests S, in the GTAC was — 1.4 kg/mm”?
whereas in the major part of the investigation a value
of —3.4 kg/mm?® was adopted. This allows a limited
comparison 1o be made.

d Taxiing loads. Taxiing loads {TL) are superimposed
on the GTAC. For a wing structure they are thought to
be relatively unimportant for the fatigue life, except for
decreasing the minimum stress level in the GTAC
(ref. 1). Comparative tests were made to explore this
question, since the omission of the taxiing loads
implies again an appreciable time saving. Since the
present test program confirmed the negligible damage
contribution of the taxiing loads these loads were
omitted in various test series of the program when
studying other variables (see fig. 3).

€ Omission of the GT AC. Two test series were carried
out without ground-to-air cycles in order to estimate
the damaging effect of the GTAC,

{ One gust cycle per flight. Flight-simulation tests were
carried out with only the largest positive gust load of
each flight being applied. It implies that in each flight
all smaller gust cycles are omitted except for the positive
half of the largest one, see fig. 3: This simplification,
implying a further time saving, was based on the idea
(ref. 2) that the highest (and the lowest) stress level in a
flight will have a predominant effect on the fatigue
damage contribution of the flight.

g Reversed random sequence. In the present tests a
positive gust load was always followed by a negative
gust load of equal magnitude since this was thought to

be just slightly conservative {ref. 3}. The other extreme
is that each positive gust load is preceeded by a negative
one of equal magnitude. In view of a possible influence
two test series were carried out with the sequence of
each gust cycle in this reversed sequence, see fig. 3.

h Programmed sequences. Several test series were
carried out with programmed gust load sequences, that
means that within each flight the gust load cycles were
applied in an increasing-decreasing order of amplitudes,
see fig. 3. The sequence of the flights, however, remained
unchanged. Such a programmed flight simulation may
give indications on the importance of load sequences
within a flight.

j Materials. Apart from the exploratory tests almost
all load sequences were applied to both 7075-T6 and
2024-T3 specimens. This allows a comparison of the
two alloys and in addition it may show whether certain
influences are more important for one material than
for the other.

A small number of tests were carried out on sheet
specimens with a central hole instead of a sharp notch.
The aim of these tests was to see whether the significant
effect of truncation as found for crack propagation also
applies to crack nucleation. These tests on specimens of
2024-T3 material, see table 2, were of an exploratory
nature only.

After the completion of the flight-simulation tests, 2
small number of specimens wasstill left. These specimens
have been used for constant-amplitude tests. The results
allow some damage calculations to be made. A survey
of these tests is given in table 3.

3 Materials and specimens

Specimens were cut from 2024-T3 Alclad and 7075-
T6 Clad sheet materials. The nominal thickness of the
sheets was 2 mm (0.08 inch). The material properties as
determined on tensile specimens cut in the longitudinal
and transverse direction from the sheets are given in
table 4. The results are considered as being typical for
these alloys. .

The specimens were cut to a width of 160 mm and a
length of 233 mm. The free length between the clampings
was 160 mm, that is equal to the specimen width, see
figure 4. A sharp central notch was made by drilling a
small hole and making two short saw cuts at both sides
of the hole. The specimens were subsequently pre-
cracked to a crack length =10 mm (0.4 in} by cycling
between S,,,,— 10 kg/mm? and §,,;, =0 kg/mm?. Since
the stresses in the flight-simulation tests are beyond these
values it was thought that an effect of precracking on
subsequent crack growth should be negligible.



4 Experimental procedures

4.1 The anti-buckling guides

In order to prevent buckling of the specimens two
aluminum alloy plates were used as anti-buckling
guides, see (ig. 4 and the picture in fig. 5. At the inner
side felt was bonded to the plates to minimize the
friction between the specimens and the gnide plates.
Each plate was provided with a window for observation
of the crack growth.

The bolts connecting the two plates were hand
tightened. The NLR had previously used such a device
for riveted joints. Nevertheless it was checked by stram
gages whether no load was transmitted through the
plates. At the same time these measurements were used
to check the stress distribution in the sheet specimen.
A dummy specimen without central notch and cracks
was provided with three strain gages at each side of the
specimen, located at the two ends and the centre of the
windows. [t turned out that no load transmission
through the guide plates could be indicated, provided
the bolts were loosely tightened. Moreover sheet
bending was practically absent and the stress distribu-
tion was satisfactory. Differences between dynamic and
static strain readings were in the order of 1% or less.
The measurements covered the stress ranges to be
applied in the fatigue tests.

After the first preliminary tests were carried out it
became desirable io speed vp the test program by
testing two specimens in series. The specimens are

interconnected by two relatively heavy strap plates of -

steel and a single row of bolts in each specimen. A rigid
clamping had to be made since the clamping in the
machine itsell is also a rigid one. Fig 6 shows the
various parts involved. The anti-buckling guides had
to be made larger in order to cover both specimens.
Tests were continued until one of the two specimens
fractured completely. Since the scatter of the crack rate
was low crack growth in the second specimen covered
a large part of the cross section. :

4.2 The fatigue apparatus

The specimens are loaded in an MTS fatigue machine,
type 901.55, maximum dynamic capacity 25 tons. In
this hydraulic machine the load control occurs by an
electro-hydraulic servo valve in a closed circuit feed
back system. The valve is fed by an electric signal
representing the required fatigue load. This signal is
generated by a piece of apparatus, called PAGE
{Programmed Amplitude GEnerator) developed at the
NLR. It employs the function generator of the MTS-
machine for preducing half sine wave functions. PAGE
allows any sequence of half sine waves with different
amplitudes to be selected as welil as a shift between two
selected mean values of the cyclic load. The latter is
required in view of the GTAC (ground-to-air cycle).

The sequence of amplitudes and the selection of the
corresponding mean load is punched into a binary digit
tape. A Creed model 92 tape reader is part of the PAGE
apparatus. It further includes a patch board on which
the cycling frequency can be set separately for each
amplitude. In general a lower frequency will be selected
for a large amplitude and vice versa.

A sample of a load sequence (recorded at a low load-
ing rate in view of the recorder) is shown in fig. 2. Load
frequencies adopted in the tests are 10 ¢ps for the taxiing
loads and the lower gust loads (5,=1.1-4.4 kg/mm?)
while for the higher gust loads the frequency was
inversely proportional to the stress amplitude, varying
from 8§ to 3.6 cps for S, from 5.5 to 12.1 kg/mm°.

4.3 The crack propagation tests

Pre-cracking of the specimens occurred in an Amsler
High Frequency Pulsator (frequency 100 cycles per
second). After pre-cracking the specimens were mount-
ed into the MTS machine and flight simulation loading
was started. The propagation of the cracks was observed
continuously with a magnifying glass or a stereo-
microscope (30 x ).

The specimens were provided with fine scribe-iine
markings, see fig. 4. If the tip of a crack just reached
such a line the number of flights covered was recorded
and these data were used for the evaluation of the crack
propagation,

If one specimen of a pair tested in series failed the
fatigue life until failure for the other one was obtained
by extrapoiation of the crack propagation curve
employing the data of the fractured specimen, see fig. 7.
It wiil be clear that this will not introduce inaccuracies
of any importance. Results obtained did not indicate
systematic differences between the results of specimens
tested in series and specimens tested separately.

5 The fatigne loads

5.1 The gust loads

A gust spectrum was recently derived in the Nethet-
lands from flight data obtained in England, Australia
and the USA. The shape of the spectrum is shown in
fiz. 1. The gust spectrum was converted into a stress
spectrum, by using a conversion factor 1 fi/sec = 0.3 kg/
mm? (430 psi), a value frequently adopted by the NLR
for program tests, As a mean stress a value S, =7.0 kg/
mm? (10 ksi) was selected.

For the flight simulation tests the load spectrum as
given in fig. 1 had to be distributed over a number of
different flights. Tt will be clear that the load spectrum
cannot be the same for all flights since the more severe
gusts have an average frequency of occurrence of less
than once in a flight. Ten different types of flights were
designed, each characterized by its own.load spectrum
varying from “good weather” conditions to “storm”




conditions. This was done in such a way that the shape
of the load spectrum (statistically speaking: the distri-
bution function) is approximately the same for all
flights except for the severcty which is different.
Justification for this procedure is found in gust load
measurements evaluated by Bullen {(ref. 4), and in the
modern power spectral density conception indicating
that the shape of the spectral density function of the
gust is invariable but the intensity is depending on
weather conditions and flying height (ref. 5). Starting
from the stepped function in fig. 1 numbers of gust
cycles for the flights A-K were obtained as shown in
table 5.

The sequence of the gust cycles in the flights is one of
the variables to be studied in the present program, that
means a random sequence has 1o be compared with'a
programmed sequence. It should be noted that each
positive gust amplitude is immediately followed by a
negative one of equal magnitude. In other words gust
cycles are applied as complete cycles around a mean
load. This applies to both the random and the pro-
grammed sequence, see figure 3. For the random gust
loads this is a restriction on the randomness, which is
thought to be slightly conservative (ref. 3), see also the
discussion in section 7.5,

The sequence of gust cycles of different magnitudes
in each flight is a random sequeﬁce produced by a
computer. An example i1s shown in fig. 2, see also fig. 3.
The sequence of the flights is also random, with the
exception of the very severe flights. Since it had to be
expected that the severe flights may have a predominant
effect on crack growth it was thought undesirable that
these flights have a chance to cluster together, which is
the risk of a random selection. The most severe flights
were thercfore uniformly distributed over the total
sequence. This is diagrammatically indicated in table 6.

In the tests such a block of 5000 flights was repeated
periodically. Since a block of 5000 flights contains
approximately 200.000 gust cycles in arandom sequence
the repetition of the block is thought to be irrelevant
with respect to the randomness of the load-time history.
It was recommended in ref. 1 that the maximum load
in a full-scale flight simulation test should not exceed
the load level anticipated 10 times in the desired life
time in view of the predominant and favorable effect
of larger loads on the fatigue life. If the desired fatigue
life is taken as 50.000 flights this leads to a truncation
at the load level that will be reached or exceeded once
in 5000 flights, that means the maximum level shown
in fig. 1.

A similar recommendation was made in ref. 1 for
crack propagation. Assuming an inspection period
of 500 flights the stress amplitude that is equalled or
exceeded 10 times in 500 flights (or 100 times in 5000
flights) according to fig. 1 is about 6.6 kg/mm?. This
truncation level was used in several test series, but in

addition two higher truncation levels (S,=7.7 and
8.8 kg/mm?) and two lower ones (S,=5.5 and 4.4 kg/
min?) were employed. The test results clearly confirmed
the slower crack propagation at higher truncation
levels. A few preliminary tests were carried out with the
load spectrum shown in fig. 1 fully untruncated.

5.2 The ground-to-air cycles and the taxiing loads

In the preliminary tests the mean stress of the ground-
to-air cycles (GTAC) was more or less arbitrarily
assessed at §,,=0. On this mean stress 20 taxiing loads
cycles were superimposed with an amplitude of
S,=1.4 kg/mm?2, the stress range 2.8 kg/mm? thus
being 40 Y% of the S,,-value of the gust cycles. A similar
pattern for the taxiing loads was adopted previously
by Gassner and Jacoby {ref. 6). It was considered to be
a relatively severe air-ground-air transition, which was
made somewhat more severe for the major part of the
tests by adopting S, = —2.0 kg/mm? for the taxiing
loads. Since it was expected that the damaging effect
of the taxiing loads would be negligible {the tests have
confirmed this view) it was thought unnecessary to
refine the GTAC by varying bbth the number and the
amplitude of these load cycles, although that would
have been possible.

6 Test results

6.1 Results of the flight-simulation tests

In each specimen two cracks were started by the
central notch, In general crack propagation was sym- -

_metric, that means /, 2 1,, and hence all data presented

will refer to the average crack length ! as defined in
fig. 4. The complete crack propagation records for all
specimens are presented in tables 7 and 8 by giving the
incremental numbers of flights, An,, corresponding to
successive crack growth intervals, I,—1;, ;. The I-values
were associated to the scribe-line markings on the
specimens, The plotting positions for crack propagation
curves have not been presented, but they can easily be
calcuiated from the tables. An example with two crack
propagation curves is given in fig. 7.

The crack growth data were converted into crack
propagation rates by taking at I=(},+1;4,)}/2:

Al k=l
An An

This formula in fact gives the average crack rate of the
crack growth interval, which is assumed to apply to
midpoint of the interval, a sufficient approximation for
small intervals. Calculations of the crack rate were
made only for the mean result of each test series. The
results have been plotted in figs 8-11.

The crack propagation life is defined as the number
of flights for crack growth from /=10 mm until
complete faiture. The crack propagation life turned out




to be useful for a first appreciation of the trends
emerging from the tests. Results are given in tables
11-17 and figs 13 and 14, which will be used as a
starting point for the discussion. For a more refined
approach the crack propagation data will be used.

6.2 Results of the constant-amplitude tests and damage
calculations

The evaluation of the data was performed in a
similar way as for the flight-simulation tests, see table 9,
In fig. 15 the results have been plotted as §—N data.
Damage calculations could not be made for all tests
since insufficient $—N data were obtained. However, it
was possible to calculate the Zn/N value for the random
tests {2024 specimens) with the GTAC being omitted
(series No. 45). This has been done in table 18 and the
result was Tn/N =3.4. A still higher value has to be
expected for the 7075 specimens since the n-values are
approximately half as large as for the 2024 specimens,
see table 16, while the N-values are only one fourth
approximately (see fig. 15).

Secondly the constant-amplitude data for both
materials obtained at §,=1.1 and 2.2 kg/mm? allowed
a prediction on the difference between the crack
propagation lives with and without small gust cycles,

-Adopting the symbols: M =crack propagation life
with small gust cycles included, and M’ =crack
propagation tife without small gust cycles being applied,
then the Palmgren—Miner rule for a test with the small
gust cycles included can be written as:

M n .
—+ M (Z — for the small gust cycles per fhght) =1.
M N
With this eguation M’ may be derived from M or
vice versa. In the former case M’ becomes infinite for
many test series since the damage of the small gust
cycles (second term in the equation) is already equalling
or exceeding 1, This clearly illustrates that the Palm-
gren—Miner rule is highly overestimating the damage
contribution of the small gust cycles. The same trend is
observed when deriving A from A, that means
calculating the reduced fatigue life when small gust
cycles are included. The results are shown in table 19
and a comparison is made with the test results. The
table shows that the prediction of the reduced fatigue
life is much smaller than the reduced test life, again
implying an overestimation of the damage contribution
of the small gust cycles. This feature is also thought
responsible for the high Zn/N obtained in the random

tests without GTAC (table 18).

It 15 noteworthy that the overestimation of the
damage contribution of the small gust cycles appears
to be larger for the 7075 specimens than for the 2024
specimens, compare the ratios in the last column of
table 19.

6.3 Results of the tests on the specimens with a central '
hole .
These tests were carried out on 2024 specimens only.
The crack propagation records are given in table 10,
while the average crack propagation curves are shown
in figure 16. Crack nucleation occurs at the edge of the
hole and the nucleation period was arbitrarily defined
as the number of flights to create a crack with a length
of 2 mm {/ =2 mm or =12 mm, see fig. 16). The crack
propagation life then started and lasted until failure.
The variable studied was the truncation level and fig. 16
shows that this level had a large effect on the crack
propagation life, similar to the results as found in the
normal crack propagation tests, see table 14. However,
for the crack-nucleation period the truncation effect is
much smaller as clearly illustrated by the life ratios in
fig. 16.

In fig. 17 the crack rates in the specimens with a
central hole are compared with those of specimens with
a small central notch. Comparative results were
available only for S, n,=66 kg/mm® (and S, =
2.2 kg/mm?). The figure shows that after some crack
growth the two curves practically coincide, as might be
expected.

6.4 Some fractographic observations

Although the 200 specimens tested would have
allowed an extensive fractographic examination this
was beyond the scope of the investigation. Some
macroscopic observations will be recapitulated below,
since they may have some meaning for explaining the
trends of the crack propagation results. A few.fracto-
graphs obtained with the electron microscope will be
presented also,

A large number of specimens showed growing bands
on the fracture surfaces, that could easily be detected
by the unaided eye, see fig. 18. The bands were better
visible if the difference between the maximum and the
minimum gust amplitude (S, max— S, min) Was large,
while the bands were virtually absent when this dif-
ference was small. A similar correlation was found for
the macroscopic roughness of the fracture surface, that
means that the surface was relatively smooth for a high
value of S, pnu— Samin and relatively rough if this
difference was small. Both observations indicate that
the interaction between high and low amplitude cycles
had some effect on the cracking mechanism. Since
fatigue striations could not be detected in the dark
bands whereas they could be found between the dark
bands the dash bands have to be associated with the
load cycles with a high amplitude. The dark bands have
been associated previously (ref. 7) with some kind of a
“brittle” crack extension. Since the bands were more
clearly present for a high value of S, .., — S, mn the
numerous low amplitude cycles apparently are condi-
tioning the material in order to promote the brittle




crack extension in the high amplitude cycles.

Macroscopically the fracture plane of a slowly
propagating fatigue crack is perpendicular to the
loading direction. When the crack propagation is
accelerating the growing direction remains the same
but the fracture plane will make an angle of 45 degrees
with the loading direction. This transition from the
“tensile” mode to the “shear” mode has frequently been
observed and has been correlated with the transition
from plane strain to plane stress conditions,

In the present investigation the transiiion was
observed in all specimens, but this phenomenon in
general did.not develop as clearly as under constant-
amplitude loading. This is probably a consequence of
the variety of amplitudes applied. Low amplitudes
will promote the tensile mode, whereas high amplitudes
will promote the shear mode. These then are two com-
peting influences and the result is a slow transition from
one rmode into the other one when the crack is growing.

Unfortunately the transition also occurred during
the precracking of the 2024 specimens, while it has
occurred to a minor degree in the 7075 specimens, see
fig. 18. Consequently the very first part of crack growth
in the 2024 specimens may have been influenced by the
retransition to the tensile mode. In order to check this
point some test series were carried out on specimens
precracked to a crack length {=6 mm and /=5 mm for
the 2024 and the 7075 specimens respectively. As shown
by plotting the crack rate as a lunction of the crack
length in figs 8b and 8d a noticeable effect of the pre-
cracking was found only for the 2024 specimens
truncated at a low S, ., value (S, .., =88 kg/mm?)
and this effect was restricted to the very first part of the
crack growth. Therefore it will not be considered any
further.

It is neoteworthy that the macrobands were still
visible after the transition from the tensile mode to the
shear mode was completed, although it should be'said
that the bands were less distinct then.

Two-stage carbon replicas for observation in the
electron microscope were obtained from the fracture
surfaces of several specimens, but as said before, a
systematic study was not made. Striations could be
observed in all specimens examined and two pictures
are shown in fig. 19. In general the striations were more
clearly observed in the 7075 specimens than in the 2024
specimens, while several features were found that have
been described elsewhere (recently in ref. 8). If it had
been possible to indicate the GTAC in the electron
graphs this would have been a promising result. How-
ever, no confirmation of this possibility was obtained
for the random flight simulation tests. In the program-
med flight simulation tests certain batches of gust cycles
of equal magnitude could easily be indicated, see for
instance the lower picture in fig. 19. From this in-
formation the striations corresponding to the GTAC

could be indicated in some cases, although in general
this still remained difficult. :

7 Analysis of the present results and compérison with
data from the literature

In the literature comparative investigations con-
cerning macro-crack growth under flight simulation
loading could hardly be found. This is somewhat
surprising since the problem is an essential part of the
fail-safe conception. However, the fatigue life of notched
elements under flight simutation was studied in the
literature and reference will be made to this work.
Secondly some crack propagation studies under ran-
dom loading without GTAC were also reported in the
literature, :

In this chapter the various aspects of the present
investigation are discussed separately while a general
discussion is given in the following chapter. Before the
present results will be analysed the possibilities for
interaction effects between load cycles of different
magnitudes will be discussed first, since that may be
helpful for explaining the empirical trends.

7.1 Interaction between load cycles of different magni-
tudes

If the fatigue load is changed from one level to a
second level (by either changing §, or S,, or both) the
fatigue crack propagation at the second level will
inittally be different from the propagation occurring
when the second level had been applied from the begin-
ning of the test. This interaction effect according to
macroscopic observations was practically negligible if
the change was an increase of the stress amplitude,
whereas important crack growth delays were observed
if the stress amplitude was reduced (refs 9 and 10).
Positive peak loads could most drastically reduce the
crack growth. -The explanation was.based on residual
stresses set up in the crack tip region.

In recent publications of the group of McMillan,
Pelloux and Herzberg (refs 11, 12 and 13) it has been
suggested that crack tip blunting and sharpening as
well as cyclic strain hardening may be of more than just
secondary importance. This view was based on ex-
cellent electron fractography. In addition it appears
that changes of the state of stress may also be significant.
Low stress amplitudes are associated with slow crack
propagation and plane strain at the tip of the crack
{tensile mode fracture, macroscopically), while high
stress amplitudes will induce fast crack propagation
with predominantly plane stress at the tip of the crack
{shear mode fracture}. Changing from a low amplitude
to a high amplitude may then imply that the crack front
has not the spatial configuration associated with the
high amplitude. The same applies to the reversed
amplitude change and this phenomenon will also lead




to interaction effects. It is partly confirmed by the

fractographic observations presented in section 6.4.

- Listing the various arguments for interaction effects
during crack propagation gives:

1. Residual stresses.

2. Crack blunting or sharpening.

3. Cyclic strain hardening (or softening) and associated
influences on the material structure.

4. Mismatch between the macroscopic fracture planes
as a consequence of different states of stress at the tip
of the crack.

It has been known for a long time that crack growth
at a certain stress amplitude is depending of the mean
stress {or the maximum stress). This result is substanti-
ated by physical conceptions about crack extension
(refs 14 and 15). It is then a natural consequence that
- residual compressive stresses will reduce the crack
propagation rate. It is much more difficult to make
gualitative predictions on the effect of the other aspects
listed above. Crack blunting is a matter of plastic de-
formations and it therefore will introduce residual
stresses. Hence the effect of crack blunting cannot be
separated from an additional effect of residual stresses.
It is noteworthy, however, that the interaction effects
-are more significant for the 7075 alloy as compared to
the 2024 alloy, see section 7.9. In the former alloy
higher residual stresses can be introduced due to the
higher yield stress, and secondly crack blunting will be
Iess than in the more ductile 2024 ailoy. The larger
interactions in the 7075 alloy are then in favor of the
residual stress argument rather than crack blunting.

The third and the fourth argument do not readily
allow simple speculations. In section 6.4 it was said that
low amplitude cycles may condition the material and
thus stimulate brittle crack extension at a higher ampli-
tude, which would be an unfavorable interaction.

It is noteworthy that McMillan and Pelloux (refs 11
and 12) on the basis of electron fractography came to
the conclusion that interaction effects when changing
the fatigue load are hardly observed on the fracture
surface. An exception, however, was made for the first
cycle applied after changing the fatigue load. There
were some indications that interactions might be active
then. it was further observed by McMillan and Herzberg
(ref. 13) that a drop of S,,,, first induced an increased
striation spacing followed by a decreased spacing
afterwards. The latter as well as the macroscopically
delayed crack growth are compatible with the residual
stress argument, whereas the former is not.

An important conclusion from the above discussion
is that changing the fatigue load may introduce an
interaction that is only significant for the first cycle
following that change. The implication is that inter-
action effects could be very important for random load
sequences, since the amplitude is changing from cycle

to cycle. However, for tests with a programmed load

sequence such interaction effects may remain almost
unnoticed since changing the stress amplitude is a
relatively infrequent occurrence.

In conclusion it has to be admitted that with the
exception of the influence of residual stresses the quali-
tative understanding of the other interaction effects is
still partly speculative and requires a further systematic
study.

7.2 The omission of the taxiing loads (TL) from the
ground-to-air cycle (GTAC)

As shown by table 11 the omission of the TL had a
practically negligible effect on the crack propagation
life. Important arguments are:

a. The minimum stress in the GTAC (S,,,;,) was the same
for tests with and without TL.

b. 8, in the GTAC was the lowest stress of a flight.

¢. The TL had a compressive mean stress (—2.0 kg/

mm?).

In view of the last argument it is difficult to see how
the TL should contribute to crack growth. In view of
arguments (a) and (b) the omission of the TL does not
affect the overall loading cycle of a flight. Hence one
should expect a negligible effect on the crack propaga-
tion life as shown by the tests. This justifies the omission
of TL in a flight simulation test, provided that the
minimum stress of the GTAC has been adjusted in
order to account for the largest taxiing load cycle'.
The omission may save a considerable amount of
testing time.

The same reasoning was already presented in ref. 1
for full-scale testing in general. Reference was made
there to results of Gassner and Jacoby (ref. 6) who
found that the omission of 20 TL cycles per GTAC did
not affect the fatigue life in flight simulation tests on
notched bars (K,=3.1) of 2024-T3 material.

7.3 The minimum stress of the GTAC

The minimum stress (S,,;,) of the GTAC was in fact
not a parameter to be studied in the present (est series.
However, since some exploratory tests were carried out
at S, = — 1.4 kg/mm? while for other tests a value of
— 3.4 kg/mm? was adopted a limited comparison could
be made. Table 12 shows that the effect of S, for the
7075 specimens was negligible whereas for the 2024
specimens there might be a small systematic effect, that
means a shorter crack propagation life if the GTAC is
going further downwards. The latter trend has not been
well substantiated in view of the small number of tests.

In the GTAC the specimens were loaded in compres-
sion and.one may expect the crack to be closed and to
be no longer a severe stress raiser, since it then can
transmit compressive loads. As a consequence the

LIf a part of a structure is carrying a significant tensile stress

during the GTAC it will be clear that TL may give the major fatigue
damage contribution and TL should obviously be considered.




effect of S, should be unimportant. This argument
was suggested by Illg and McEvily (ref. 16) who found
it to be more applicable to 7075 sheet material as
compared to 2024 sheet material. The latter was
explained by the higher ductility of the 2024 alloy,
implying more crack opening due to plastic deformation
in the crack tip area, and hence a larger compressive
stress before crack closure occurs. This reasoning is in
agreement with the effect of S in the GTAC as
indicated above.

The meaning of S, of the GTAC for notched ele-
ments will be more important than for macro-cracks,
since the crack-closing argument does no longer apply.
Hence the assessment. of S,;, in a full-scale test on a
structure should be made most carefully, the more
since there is ample evidence of the large damaging
influence of the GTAC (refs 1 and 17).
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7.4 Omission of the small gust loads
Onmission of the smaller gust load cycles implies that

a relatively large part of the gust cycles is omitted (see

table 5) and hence much shorter durations of the flights

will be the result, see fig. 3. Testing times for 5000 flights
were:

All gust cycles included: 346 minutes

Gusts with §,=1.1 kg/mm? omitted: 96 minutes

Gusts with 5,=1.1 and 22 kg/mm? omitted:
30 minutes.

The attractive feature of omitting the smaller gust

cycles is thus clearly illustrated. However, the omission

in general increased the crack propagation life, see
table 13 and fig. 13. If the cycles with both §,=1.1 and

§,=22 kg/mm? were omitted the increase of life was

about twofold, for both random and programmed

flight simulation tests and for two truncation levels

(S.. max = 6.6 and 7.7 kg/mm?). When omitting only the

smallest cycles (S, = 1.1 kg/mm?) the increase'was about

209 for the 2024 specimens and 409, for the 7075

specimens (table 13). The former result is a moderate

increase and it might be acceptable under certain
circumstances.

The effect of omitting small gust loads is shown in
more detail in fig. 9 by plotting the crack rate as a
function of the crack length. It turns out that the larger
differences are found if the crack rate is low while for
relatively large cracks and high crack rates the effect
has vanished. The trend is more clear for the 7075 alloy.

For an explanation two lines of thoughts may be
considered :

a. During the small gust cycles there will be some crack
extension. In other words these cycles give some
direct contribution to the crack propagation.

b. Secondly the small gust cycles may induce an un-
favorable interaction effect on the crack extension
during larger amplitude cycles, see the discussion in
section 7.1,

The fractographic observations (section 6.4) seem to
favor the latter view, since the macro growth bands
were more readily visible if the small gust cycles were
included. However, as pointed out in section 7.1 it
remains difficult to separate the contributions of the
possibilities (a) and (b).

Comparable evidence was not found in the literature.
Tests of McMillan and Pelloux (ref. 11} with program-
med sequences (without GTAC and not conforming
to a gust spectrum) indicate little if any damage of the
low amplitude cycles, but these cycles were so less
numerous that a comparison with the present data is
hardly justified.

Flight simulation tests on notched elements, in-
volving the effect of omitting small gust cycles were
reported by Naumann (ref. 3) and by Gassner and
Jacoby (ref. 6). Naumann employing random flight-
simulation loading found a small life increase when
omitting gust cycles with §,=1.05 kg/mm?, namely
16 and 7 per cent depending of §,,, in the GTAC
(7075 edge notched specimens, K,=4.0, S,,=14 kg/
mm?). Gassner and Facoby reported a 2.5 times longer
fatigue life in programmed flight simulation tests if the
cycles with the smallest amplitude (S,=1.3 kg/mm?)
were omitted (2024 central-notch specimens, K,=3.1,
S,=9.5 kg/mm?). '

1.5 The effect of the gust cycles with a high amplitude

The truncation of the gust spectrum (see fig. 1),
implies that the amplitude of the more severe gust
cycles are reduced to a common S, ,,.-value. The
present results have shown that this value has a pre-
dominant effect on the crack propagation life, see
table 14 and fig. 14. The latter figure clearly illustrates
that the effect is large. irrespective of random or
programmed gust sequences being adopted and taxiing
loads being applied or not. Table 14 further shows that
the effect is of a similar magnitude if the two smallest
gust cycles are omitted (S, i, =3.3 kg/mm?). Figure 14
also shows that the effect is slightly larger for the 7075
alloy than for the 2024 material.

The effect of the truncation level is shown in more
detail in fig. 8. The figures 8a and 8b indicate that the
effect for the 7075 material has a maximum at /=20 mm,
whereas such a maximum is less clear for the 2024
specimens. Figure 8¢ including some data for S, ;,..=
12.1 kg/mm? most dramatically demonstrates the
significance of truncating the gust spectrum. A test with
S, max=12.1 kg/mm? on a 2024 specimen had to be
stopped in view of the extremely slow crack growth.

For an explanation the interaction effects mentioned
in section 7.1 have 1o be considered. Since the trends
were the same for programmed and random gust
scquences and also for random sequences with and
without small gust cycles it is thought that residual
stresses were indeed the main agent responsible for the




effect of the truncation level.

In view of the predominant and almost frightening
effect of §, ., on the crack propagation a few tests
were carried out to explore this effect with regard to
the life time for crack nucleation from a central hole.
These tests were restricted to 2024 specimens and as
fig. 16 shows the effect fortunately is much smaller for
the nucleation period. It has to be admitted, however,
that for the nucleation period the truncation levels were
relatively low when considering for instance a target
life of 50000 flights. More tests on this topic with respect
to the pre-crack life appear to be desirable.

In the literature similar tests concerning crack
propagation were not found and there was only one
reference for the fatigue life under flight simulation
loading for notched elements. Gassner and Jacoby
(ref. 6) for a notched bar (2024-T3, K,=3.1, §,=9.5
and 11.0 kg/mm?) with programmed flight simulation
loading reported a 30 and 10 percent life reduction
when S, ., was reduced from 2.1 S, to 155 §,.
Qualitatively it is the same trend as in the present
investigation.

7.6 Random or programmed sequences in each flight and
reversion of the gust cycle

Within a flight the gusts were applied in ecither a
random or a programmed sequence, see fig. 3. As table

15 shows the differences between the crack propagation

lives for the two sequences were very small. This is
further substantiated by fig. 11. Table 15 gives the
impression that the truncation level might have a small
systematic effect on the comparison that means that for
Sa.max=8.8 kg/mm* the crack propagation life with a
programmed gust sequence is some 10 percent longer
than for the random sequence, while for S, .. =44 kg/
mm? it is about 7 percent shorter. However, these
differences are so small that it cannot be said with any
certainty that a systematic trend was found.

In two test series the reversion of the gust cycles
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is of secondary importance. Apparently the S, .-

value, within the limits of flight-simulation loading, was

the predominant parameter for crack propagation
rather than the load sequence in each flight.

Crack propagation under random loading, however,
without GTAC but axial loading and positive mean
stresses was studied by Smith (refs 18 and 19) for 2024
and 7075 sheet material and for different shapes of the
spectral density function of the loading. The results
indicated a small influence of the spectral shape. A
similar trend was observed for the fatigue life of notched
aluminum alloys by Kowalewski (ref. 20, K,= 1.8, plane
bending, S,=0), Naumann (ref 21, K,=4, axial
loading, §,,=12.2 kg/mm?) and Clevenson and Steiner
(ref. 22, K,=22, axial loading, S,=0). Since the
“degree” of randomness is a function of the spectral
shape those test programs suggest the sequence of loads
to be of minor importance as long as it is random (see
also the discussion of Swanson in ref. 23). If periodic
loads such as the GTAC are then added to a random
load history it may be expected that the sequence effect
will be limited even further.

Interesting information is coming from random tests
published by Naumann (ref. 3) and Gassner and Jacoby
(ref. 24}. Naumann performed tests on an edge notched
specimen (K, = 4) of 7075 material with a random gust
loading with and without GTAC. Three types of
randomness were adopted, indicated by Naumann as:
1. Random cycle: Each positive half cycle was followed

by a negative half cycle of the same magnitude.

2. Random half cycle, restrained: Each positive half
cycle was followed by a negative half cycle; the-
magnitude of which was selected at random from the
load spectrum and which therefore was generally not
equal to that of the preceding positive half cycle.

3.Random half cycle, unrestrained: Positive and
negative half cycles were randomly selected with no
restrictions on the sequence of positive and negative.

The results are summarized in the table below.

Randemness Fatigue life in flights F atigﬁe life ratio®
No GTAC GTAC No GTAC GTAC
" 1. Random cycle 5815 1334 0.66 0.84
2. Random half cycle, restrained 7358 1515 0.84 095
3. Random half cycle, unrestrained 8798 1588 1 1

@} Ratio=1 for case (3}

(random sequence) implied that each gust cycle now
started with the negative half cycle followed by the
positive one of the same amplitude. It turned out that
the effect on the crack propagation was practically
negligible, see table 16 and fig. 10. This is a second
indication that the sequence of the gust loads in a flight

Gassner and Jacoby (ref. 24) performed flight
simulation tests with a random gust sequence and with
two different programmed sequences. The tests on
2024-T3 specimens (K,=3.1) yielded fatigue lives of
2500, 2800 and 5800 flights respectively. There were
approximately 400 gust cycles per flight programmed -




in a high-low-high amplitude sequence (life=2800
flights) or in a low-high-low sequence (5800 flights).
With such a large number of gust cycles per flight
different programming techniques apparently may
cause significantly different fatigue lives. Hence a
realistic sequence should be preferred. In an additional
study (ref. 25) Jacoby performed flight simulation tests
on the same specimen loaded with a random sequence
of complete gust cycles, or with a random sequence of
maxima and minima. The fatigue lives were practically
the same. Jacoby also performed tests without GTAC
and then found large differences between the fatigue
lives under random and programmed load sequences,
that means much larger as found in other investigations.
The latter result requires further clarification and a
discussion is beyond the scope of the present report.

1.7 Application of a single gust load per flight

In the load sequence as shown in fig. 3f, only the
largest upward gust of each flight was applied. As a
result the crack propagation life was more than 3 times
longer as compared to the standard random sequence,
see table 16. In fact such a highly simplified load
sequence can be envisaged as a simulation of flights
from which all gust cycles were omitted except for the
positive half cycle with the largest amplitude. The
fatigue life is longer than for omitting gust cycles with
§,=1.1 and 2.2 kg/mm?* as shown by table 16. The
effect on the crack rate is illustrated by figs 9¢ and 9g.
Apparently the simplification of applying a simple gust
load per flight is unacceptable for crack propagation
studies.

7.8 Omission of the GTAC

Omission of the GTAC increased the fatigue life
with some 50 and 80 percent for the 7075 and 2024
specimens respectively, see the bottom line of table 16.
That means adding the GTAC reduced the fatigue life
with 33 and 44 percent respectively. Hence the omission
seems to be unjustified. The larger figure for the 2024
alloy may be explained in a similar way as the influence
of 8, of the GTAC, see section 7.2.

In a previous investigation of this laboratory (ref. 26)
crack propagation in 2024 and 7075 sheet material
under random and programmed load sequences was
studied in an indoor and an outdoor environment. Data
on the effect of the GTAC were available for the 2024
material only. The GTAC induced life reductions of 27
and 2 percent for the indoor and the outdoor environ-
ment respectively. The small reductions are not sur-
prising when taking notice of the stress levels (kg/mm?):
gusts: §S,=121, S, ,..=11.6, S, nn=1.15, GTAC:
Spin=+2.6.

In another test series on 2024-T3 Alclad specimens
(ref. 27) a constant-amplitude loading (S,=9 and
5,=3 kg/mm?) was interspersed with GTAC (S

min —
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+0.7 kg/mm?} every 50 or every 10 cycles. Reductions
of the crack propagation life were 12 and 28 percent
respectively.. ‘
Much larger reductions have been found in several
flight-simulation test series for notched specimens and
structures (see for a survey Appendix G of ref. 1) and
hence realistic fatigue information requires a flight by
flight testing. Although the present data have shown a -
smaller effect during macro-crack propagation it has
to be said that a flight-simulation loading should be
preferred also, then, rather than testing without GTAC
or testing with ground-to-air cycles applied in groups.

7.9 Comparison between the two alloys, 7075 and 2024

In general all tests were carried out on specimens of
both alloys using the same stress-time histories. With-
out any exception the crack propagation life was
larger for the 2024 alloys, and as shown by table 17
approximately twice as large. It was already illustrated
by fig. 14 that this ratio was dependent of the S, ..~
value, the ratic becoming smaller at higher truncation
levels. In this respect it is interesting to compare the
crack rates as a function of the crack length, see figures
10 to 12. This shows that the differences between the
two alloys become smaller at higher values of the crack
length (higher stress intensities), larger values of
S, max and smaller values of §, ;.. Apparently these
trendsindicate that favorable interaction effects become
more significant in the 7075 material as compared to
the more ductile 2024 alloy if the stress intensity at the
tip of the crack is increased (higher { and S, ,.,). This
argument was referred to in section 7.1.

1t is noteworthy that the differences between the two
alloys were considerably larger in the constant-
amplitude tests, see fig. 15, than in the flight-simulation
tests. This is another indication for the more favorable
interaction effects in the 7075 alloy.

7.10 Damage calculations

It was shown in section 6.2 that ) n/N=1 highly
underestimates the crack propagation life for the tests
without GTAC. Calculations for tests with GTAC could

‘not be made since constant-amplitude data for the

GTAC were lacking.

A comparison between predicted crack rates and
actual crack rates under random loading conditions
(without GTAC) was made by several authors. For a
positive mean stress Smith (ref. 18) found the linear
damage rule to be conservative (2024 and 7075 material)

. while Swanson et al. (ref. 28) arrived at good estimates

{7079 alloy). Both investigations apply to axial load
tests. For program loading Y n/N far in excess of one
had previously been found (ref. 29).

As shown by table 18 the damage contribution in the
flight-simulation tests should be very small for the
higher §,-values. However, according to the test results,




load cycles with the high S,-values had a large positive
effect on the crack propagation life, rather than a small
negative one.

It was already mentioned in section 6.2 that the
Palmgren—-Miner rule also gave a very bad prediction
of the damage of the small gust cycles (table 19). The
invalidity of the Palmgren—Miner rule is not a sut-

- prising conclusion since interaction effects as discussed
in section 7.1 are essentially ignored by this fule. How-
ever, from the present data the conclusion can also be
given as follows: The effect of changing the load
spectrum on the fatigue life cannot be predicted from
the Palmgren—Miner rule.

8 Discussion

8.1 Recommendation for the maximum load in a flight-

simulation test
The main theme of the present investigation is the

question: Which load sequences can be adopted in a
flight-simulation test in order to obtain crack propaga-
tion data with practical significance? This is an urgent
question if fail-safe tests are carried out on a full-scale
structure, It appears that the present investigation has
shown some variables to be of minor importance and
some others to be of major importance.

1. The omisston of taxiing loads did not affect the crack
propagation.

2. The minimum stress in the GTAC, being compres-
sive, had only a small influence if any.

3. The sequence of the gust cycles.in a.flight turned out
to be of secondary importance.

Influences of major importance were concerned with
the following topics:

4. Omission of the gust cycles with small amplitudes did
systematically increase the fatigue life, see fig. 13, and
should therefore be limited to very small amplitudes
(say S,< 1 kg/mm?).

5. The predominant effect on the crack propagation
was cxerted by the maximum gust amplitude
(S,.max) Included in the test, see fig. 14. Increasing this
amplitude gave a considerable decrease of the crack
propagation rate. -
In fact the selection of 8, ., now appears to be the

most delicate issue when planning a flight-simulation

program for crack propagation studies. Although it
may appear realistic to apply all gust loads that are
anticipated to occur, it has to be recognized that one
then applies an averaged expected load spectrum, The
load spectrum is statistically variable in such a way that
the spectrum for a certain aircraft will be more severe,
while it will be less severc for another nominally
identical aircraft. If the target for the crack propagation
life is 2000 flying hours (as an example) the gust load
that on the average is reached or exceeded once in that
~ period will be met more than once by some aircraft
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while others will not see it. If we then know that this high
gust load is highly beneficial for a slow crack propaga-
tion it would be both unrealistic and unconservative

_ toinclude it in a test. A truncation of the load spectrum

to a lower level has therefore to be proposed.

In ref 1 a similar argumentation was already used
for full-scale testing in general and it was proposed that
a load level exceeded 10 times in the target life should
be the maximum level applied in the test. The number
of 10 admittedly has been chosen somewhat arbitrary,
but the number is thought to be large enough for being
sure that each aircraft will meet the load at least a few
times. The recommendation presupposes that the load
spectrum was estimated as accuratcly as possible
without any unduly over-conservatism.

It now appears that the same recommendation is
equally applicable te crack propagation studies. The
question then arises as what shall be the target life for
crack propagation. For a fail-safe structure the target
may obviously be much lower than the anticipated
useful life of the aircraft. It has to be associated with the
inspection period in service. The proposal is to truncate
the load spectrum at the level that will be equalled or
exceeded 10 times in the service inspection period. The
question of safety factors is again difficult and will not
be discussed here. It should be pointed out, however,
that the truncation as suggested is in some way
accounting for the scatter of the load spectrum.

8.2 Alternatives to flight-simulation

For full-scale fatigue testing only one structure will
in general be available and there appears to be no
reasonable alternative to a realistic flight-simulation
test. This view has been expressed several times, notably
by Branger (ref. 30). It appears to be true also for crack
propagation. Fortunately the problems of load control
in such a test are no longer an objection.

If smaller structural elements have to be tested during
the design stage it may be worthwhile to adopt simpler
testing methods such as program tests or even constant-
amplitude tests. For crack propagation there appears
ta be as yet no empirical justification for such a proce-
dure. On the contrary the present investigation suggests
that interaction effects between load cycles of different
amplitudes are important enough to retrieve the main
line of service loading. This is the flight-by-flight
character, at least for a wing structure mainly loaded by
gusts. In other words also then a flight-simulation test
has to be advocated. As discussed by Jacoby (ref. 25)
this is no longer a problem for medern fatigue machines.
A major difficulty, however, is to arrive at a useful
flight-simulation load-time history.

If one still uses simpler loading programs in view of
available fatigue apparatus one has to consider the
uncertainties regarding the relevance of the test Tesults.

Finally an alternative solution might be “calcula-




tions”, or borrowing and extrapolating from data in
the literature, It is almost euphemistic to state that this
problem has not yet been solved. Nevertheless there
are certain prospects for the future, A discussion would
be beyond the scope of this report.

8.3 Suggestions for further work

1. An obvious recommendation is to perform a similar
test program as the present one, but now with typical
notched elements as a specimen in order to cover the
fatigue life part of the problem. Although some
studies were reported in the literature as referred to
in the previous chapter (see also the exploratory tests
of the present investigation, fig. 16) several aspects
have to be studied in more detail.

2. Regarding crack propagation in aluminum alloys
systematic studies of interaction effects are certainly
worthwhile. In other words the accumulation of
fatigue damage is still a topic of present interest, both
for practical and fundamental reasons.

3. Fatigue under random loads generally appears to be
a useful field for investigations. This topic was
extensively reviewed by Swanson (ref. 23) and the
recommendations at the end of his recent paper are
well taken.

4. A study of the characteristics of flight-simulation
loading should be recommended. The application
of such load histories in fatigue tests for various
purposes has to be considered. One aspect of this
problem is the mixture of random and non-random

. loads.

9 Conclusions

_Flight-simulation tests with various load sequences
were carried out to study the macro-crack propagation
in sheet specimens of 7075-T6 and 2024-T3 clad
material. A gust load spectrum was adopted, the mean
stress being 7.0 kg/mm? {10 ksi). In each test 10 different
types of flight were simulated varying from good te bad
weather conditions. A variety of load sequences has
been adopted related to the truncation of high-
amplitude gust cycles, to the omission of low-amplitude
gust cycles, taxiing loads and ground to air cycles, and
to random and programmed gust sequences in a flight
(see figs 1 and 3 and table 1}. About 200 specimens were
tested. The main results of the investigation ar¢ sum-
marized in the conclusions below.

1. Omission of the taxiing loads from the ground-to-
air cycles did not affect the crack propagation.

2. In the majority of tests S, of the ground to air
cycle was —3.4 kg/mm? (4.8 ksi) but in a few
exploratory tests a value of — 1.4 kg/mm? (2.0 ksi)
was used. The limit data indicated a practically
negligible effect on the crack propagation.

3. Omission of the gust cycles with §,=1.1 kg/mm?
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{75 percent of the cycles) increased the crack

propagation life with.20 and 40 percent for the 7075

and 2024 material respectively. Omitting the gust

cycles with §,=1.1 and 2.2 kg/mm? (95 percent of

the cycles) increased the life with some 100 percent
. {fig. 13). '

4. The predominant effect on the crack propagation
life was exerted by the maximum amplitude of the
gust cycles (truncation level). Increasing this
amplitude from 4.4 to 8.8 kg/mm? (6.3 ksi to
12.6 ksi) linearly increased the crack propagation
life from 2500 to 15000 flights and from 6000 to
25000 flights for the 7075 and 2024 specimens
respectively (fig. 14). The eflect was somewhat
larger for the 7075 alloy.

5. A programming of the gust cycles in each flight in
a low-high-low sequence has given the same crack
propagation as for the random sequence.

6. In the majority of tests complete gust cycles were
applied, starting with the positive gust followed by
the negative one of equal amplitude. Reversion of
this sequence in negative-positive did not noticeably
affect the crack propagation.

7. Application in each flight of the largest upward gust
load only increased the crack propagation life
approximately three times.

8. Omission of the ground-to-air cycle increased the
crack propagation life approximately 1.5 and 1.8
times for the 7075 and the 2024 specimens respec-
tively. This effect is smaller than usual for the fatigue
life of notched elements.

9. The crack propagation life in the flight-simulation
tests for the 2024 specimens were on the average
twice as long as for the 7075 specimens. The ratio
in some additional constant-amplitude tests was
larger, namely approximately four.
Damage calculations have shown that the Palm-
gren—Miner rule highly misjudges the effect of
changing the load .spectrum both in the high-
amplitude and in the low-amplitude region.
11. In some exploratory tests on specimens notched by
a central hole the effect of truncating the high-
amplitude gust cycles was smaller for the crack-
nucleation period (up to crack length 2 mm) as
compared to the large effect on the subsequent
macro-crack propagation (fig. 16).
A discussion on interaction effects between load
cycles of different magnitudes indicates residual
stresses, crack blunting, (cyclic) strain-hardening
effects and mismatch between macro-fracture planes
as the possible mechanisms for an explanation. It
is thought that for the present test series residual
stresses had a predominant effect with respect to
the trends observed.

13. Conclusions 1-8 have some bearing upon proce-
dures for full-scale tests conducted for obtaining

10.

12.



crack propagation data in view of fail-safe con-
siderations. With respect to the maximum load in
such a test it has to be recommended that this load
should not exceed the level which is anticipated to
be equalled or exceeded ten times in the related
inspection period.
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TABLE 1: Survey of the test parameters in the various test series
Stresses in kg/mrn’ 1 kg/mm? = 1.422 ksi: Gust cycles: S, =7.0 kg/mm?; Taxiing loads: Spe— Smin=2.8 kg/mm?, 20 cycles per GTAC ‘

r Load sequence GTAC Gust loads Test series No®
S Taxiing S, max S min 7075-T6 | 2024-T3 ‘
loads '
Random 14 yes 121 11 L m|2oq ‘
{exploratory tests) 1.7 3 ()

6.6 4 (1) 70 ‘
55 5 |

44 I
Random ’ —-34 yes ‘ 88 11 9 (1) ) ‘

177 10 (5 |21 ()
6.6 : no(m |2 p |

7.7 33 23 ()

66 2 4,24 @

no . 838 11 13 (49) 25 (49

- 3a (2} | 25 (2)

117 14 {8 | 26 (3

, 6.6 15 (6 |27 (4

152 (2) | 272 () )

5.5 16 (4 |28 (@

4.4 17 @ |29 @

172 (4 | 293 (2)

66 22 18 (4 |30 @

7.7 33 T T I B )

6.6 0 4 |2 @

1 gust load 46 (4 |47 @

per flight™ - ;
GTAC omitted 66 ol @ |4 @
Random, reversed gusts —-34 | no 6.6 L 42 (4) 43 (4}
Programmed —34 yes 7.7 1.1 a4 ()

10 8.8 11 B @) |37 @

6.6 ' M4 |38 @

44 35 (@) | ¥ @

| s 33 % @ (0 @

®} The numbers between brackets indicate the number of tests carried out.
wg =66

TABLE 2: Survey of the flight-simulation tests on sheet specimens with a central hole.
Specimen size: Length and width similar to crack propagation specimen, see fig. 4. Central hole with diameter 20 mm.
Material : 2024-T3 Alclad; Gust cycles: S ="7.0 kg/mm?; Stresses in kg/mm?, 1 kg/mm?* =1.422 ksi.

Load sequence GTAC Gust loads Test series
' No.®
Smin Ta‘Xiing Sl. max Sa‘ min
- loads
—
Random -34 ne 8.8 22 48 (4)
6.6 49 4
4.4 50 (4)

@ The numbers between brackets indicate the number of tests carried out.
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TABLE 3

Survey of the constant-amplitude tests.
§,=7.0kg/mm?, load frequency 10 cycles per second.

Material S, Specimen Crack propagation life
{(kg/mm?} Nao. (kilocycles)
7075-T6 - 22 B19/B7 31.3/32.0
11 B80/BI3 192/184
B6/B13 tal
2024 8.8 AblL 265
6.6 A35 8.63
44 A54 212
22 ASD/AL03 1247125
1.1 Ad4 1031
AT/AST ®
i

@ Crack propagation started at 1 =18 mm}
) Crack propagation started at 1> 14 mm

Specimens previously used for
flight-simulation tests,

TABLE 4
Static properties of the materials.
Material Direction S, So.z Elongation *
of loading B (2 in. gage length}
: (kg/mm?) | (ksi) | (kefmm?) | (ksi)
2024-T3 Alclad Longitudinal 474 67.4 36.0 512 18
Transverse 45.6 64.8 310 44,1 21%
7075-T6 Clad Longitudinal 539 76.6 48.5 69.0 3%
Transverse 54.1 76.9 47.2 67.1 139
All data in this table are mean values of six tests.
TABLE 5
Gust load occurrences in the 10 different types of {lights
Flight | Number of Number of gust cycles with amplitude S, (kg/mm?) Total
type flights in number
5000 flights | §,=12.1 | §,=11.0| §,=9.9| §,=88| §,=7.7  $,p6.6 | 5,=55 [ $,=4.4 |5,=33 | §,=22 | S,=L1| ofcycles
per flight
A 1 1 1 1 2 3 5 9 15 - 27 43 107
B 2 1 1 1 { 2 4 8 14 26 43 101
C 2 1 1 1 2 3 7 12 25 43 95
D 10 1 1 I 3 5 11 24 43 89
E 27 1 1 2 3 9 22 43 31
F 91 1 1 3 7 18 43 73
G 301 1 2 4 15 42 64
H 858 1 3 11 38 53
] 3165 1 7 28 36
K 543 1 19 20
Total number of ! 2 5 15 43 139 495 1903 | 8000 ; 39252 | 149902
cycles in all flights '
Number of 1 3 8 23 66 | 205 | 700 | 2603 | 10603 | 49855 | 199757
exceedings, see fig. 1
- L— 4]
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TABLE 6
Diagrammatic picture of the sequence of the various flights in 5000 flights
A
B B
c | C C
D D D D D D D

ARARARK LTATEA ATAEA A?ATA ? ? ? ? ?ATA AEIA?A A?A ATA?A AEL\EA jljﬁ. zj

5000 FLIGHTS

AlATAIA ATA ATA]A

The most severe flights A, B, C, D, E, are shown separately. These flights are homogeneously distributed over a sequence of 5000 flights. A indicates
a group of 118 flights.
The 42 groups A consist of a random sequence of: 91 flights type F; 301 flights type G; 858 flights type H; 3165 flights type F; 543 flights
type K.

TABLE 7
Crack propagation recotds of the flight-simulation tests. Values of An in numbers of flights.
First column: crack length interval. First and second line: Test series No. and Specimen No. A dash indicates that the two specimens were
tested in series. Arithmetical mean values of An are given in the last columns of the test series. The two bottom values in these columns are the
arithmetical and the geometrical mean values of the crack propagation lives {I=10-80 mm).

=ty 3 4 5 6 7 8 9 10
(mm)
B21 | B9O | BSO | B4l | A2 | A47 Al | Mean| B2 B20/B89 B22/B71 | Mean

10-12 584 | 668 | 407 | 366 | 1631 | 951 — | 951 589 1 452 661 591 602 | 577
12-14 748 | 390 | 304 ; 229 | 1999 | 848 — | 848 | 764 | 642 652 566 725 | 646
14-16 668 | 392 | 301 ; 208 | 1862 | 705 — | 705 | 1027 | 735 688 657 717 | 699
16-18 708 | 359 | 223 | 176 | 1723 | 585 — | sS85 [ 909 | 716 657 594 701 | 667
18-20 706 | 316 | 212.| 162 | 1496 | 517 783 | 650 | 973 | 818 781 658 85 | 76!

20-25 1800 328 596 306 3270 | 989 1141 | 1065 3151 11805 1826 1718 1795 | 1795
25-30 1762 428 408 225 1892 | 883 786 835 2569 | 1568 1561 1572 1624 | 1581
30-35 1368 936 350 200 1390 | 455 524 480 1789 1106 1089 1177 1076 | 1112

3540 947 302 223 184 675 | 271 319 295 1073 | 535 — 736 484 385
40-45 342 129 78 85 } 342 141 165 153 38 127 — 339 — 233
45-50 m 45 52 44 69 64 67 148 | — — 74— 74
50-55 — — — 16 28 15 24 20 49 | — — 17 — 17

10-80 | 9617 | 4800 { 3075 | 2205 | 16308 {6240 6793 | 6516 | 13406 | 8568 8641 8716 8956 | 8720

6511 8719
L=y, 1 12 13
(mm)
B67/B24  B42 B4/B53 Mean | B27/B76 B47/BY% | Mean|  B25/B60 B45/B94  |[Mean
1(»12} lpp7 536 632 612 575 | 594 | 1444 1236 1787 184S |IS78 | 19 S48 912 588 | 7I7
12-14 571 606 587 700 | 616 | 1594 1580 1621} sigy |1598 | 912 863 891 777 | s6l
14-16 448 545 474 585 625 | 535 (1332 1390 1448 1390 | 1064 1081 918 887 | 988

16-18 452 416 362 502 546 456 | 1005 1198 1269 1262 | 1184 1253 1282 1179 1051 | 1191
18-20 397 359 424 474 486 428 875 958 1052 1100 | 996 1167 1187 1275 1270 | 1225
20-25 1020 1113 911 1088 1253 | 1077 | 1440 1629 1358 1795 | 1556 3274 3345 3442 3028 [ 3272

25-30 902 933 911 895 994 927 523 — 736 891 | M7 2570 2427 2959 2592 | 2637
30-35 834 750 785 701 631 600 3 — 400 404 | 391 — 1217 — 1655 | 1436
35-40 181 — 424 345 — 317 245 — 230 — 238 — 585 — 664 625
40-45 8 — 136 109 — 110 103 — 108 — 106 — 254 — 295 275
45-50 64 — 44 5t — 53. 58 — — — 58 - 120 — 39 80
50-55 24 — 2 45 — 24 | — * — — — — 27 - 14

10-80 5637 5600 5809 6001 6437 | 5897 | 9010 9311 10089 (1182 | 9898 | 13269 12943 14298 12915 | 13356
5889 9863 13329

{continued)
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TABLE 7 (continued)

L=t 14 : 15 16
(mm)

B40/B69 B8/B77 | Mean | B88/B39 B68/B15 B5/B54 Mean | B57/B28 - B48/BS1 | Mean
10-12 | 611 733 657 552 | 640 | 514 625 650 470} eg T2 | 602 | 435 4T 436 503 | 462
12214 | se1 78 712 710 | 698 | 475 429 500 486 $81 | 494 | 379 443 452 405 | 420

14-16 659 T2 750 733 716 387 440 - 479 432 558 573 477 1 328 317 342 364 338
16-18 651 687 713 673 681 395 397 429 503 448 405 430 | 282 343 319 337 320
1820 786 762 811 723 773 346 364 395 334 414 449 384 | 309 299 289 278 294
20-25 1994 2230 1985 1812 | 2005 863 950 900 874 1123 1115 971 587 627 624 621 615

\
2530 1943 1825 1765 1634 | 1792 | 763 848 841 797 1027 877 | 859 | 466 s09 |
30-35 | 1374 1351 1239 1210 | 1294 | 475 . 521 S45 — 48T | 507 267} 751} 825} W ‘
3540 | 749 565 .- 654 | 656 | 183 — 203 227 — 206 | 205 | 197 156 134 141 | 157
4045 | 168 — _— 27| 198 | 104 _— 82— - 81 89 | 11 o4 63 — 7% |
45-50 | — - — 80 80 K J— 47— - 38 41 ko p— 40 — 38 ‘

50-55 | — - — — 4 — — - = 13 4 | _ - - _

10-80 9583 10061 9624 9019 | 9572 4555 4865 5047 4738 5685 5583 | 5079 | 3390 3571 3541 3656 | 3540
9565 5062 3538

b=l 17 . 18 19 20
(mm)

B30/B73 BIO/B59 | Mean | BA43/A92 B29/B78 | Mean | B51/B85  |Mean | B72/B23 BY/BS2 | Mean

10-12 417 322 359 345 361 810 810 927 979 882 | 2406 2776 | 2591 [1660 1628 2016 1945 | 1812
12-14 3l 274 342 222 289 713 770 846 808 799 | 2048 2534 | 2309 (1770 1802 1681 1608 | 1715
14-16 234 248 168 219 217 71 810 849 811, 810 | 2418 2400 | 2409 (1576 1121 1219 1418 | 1334

16-18 237 23_1} 417 174 "+ 214 893 845 759 758 814 | 2247 2820 | 2534 [1162 1055 1141 1239 | 1149
18-20 202 161 194 186 591 566} 1880} 2054 579 1765 1746 | 1756 | 902 925 991 936 | 939
20-25 402 392 413 299 377 (1571 1278 1425 | 5200 4919 | 5060 |1125 1455 1335 1605 | 1380

25-30 359 317 337 288 325 | 1020 917 675 1078 923 | 2774 2937 | 2856 | 807 73 675 749 | 751

30-35 151 184 — 193 176 N 554 405 — 443 940 — 940 | 254 381 310 218 291
3540 128 121 — 133 127 203 323 159 — - 228 370 — 370 | 185 11 219 — | 205
4045 — 66 — 65 66 — 112 89 — 101 — 85 92 131 — | 103
45-50 =~ 40 — 2 3 —_ 34 4 — 34 — — — 43 — 13

50-55 | — L J— 9 9 | — = 4 — 14 — - 9 — 9

10-80 2565 2369 2461 2065 .i"2390 | 7159~ 7029 6649 7200 | 7009 | 20552 21826 |.21189°( 9515 9532 9872 :10214'|9783
2385 - "1 7006 21179 ' 9779

L—1I,, 7t 22 23 24 25
(mm) -

A8l A24 AB4/A43 A99/A4 Mean‘ Ad8 AB3/AG A22/AT9 Mean Al2/AG9 A35/ARS Mean

10-12 1790 | 1655 1466 1198 1267 1237 | 1365 | 3093 | 3117 3528 2916 3436 | 3249 (1706 1663 2194 1881 | 1861
12-14 2150 | 1269 1450 1461 1357 1473 | 1402 | 4893 | 2801 3038 3132 3297 | 3063 [3365 2993 3336 3727 | 3355
14-16 2004 | 1127 1234 (369 1402 1482 | 1323 | 3839 | 2300 2760 2817 2667 | 2638 |3420 3444 2946 3804 3404
16-18 1843 1019 1241 1256 1108 1280 | 1175 | 3608 | 2117 2114 2255 2426 | 2228 | 3205 2858 2899 3383 | 3086
18-20 1548 950 . 906 1070 1023 1084 | 1007 {3122 | 1792 2261 1871 1842 | 1942 | 2615 2541 2127 2430 | 2428

20-25 2829 1748 1940 2119 2073 2376 | 2051 3427 3805 3672 3797 | 3675 (4573 4362 39B0 4635 | 4388
25-30 1848 1233 1259 1406 1407 1453 | 1352 2000 — 2156 2233 | 2153 [ 2838 2418 2407 — 2554
30-35 1067 816 784 852 g0z — 814 1094 —— 1005 — 1050 | — 1474 1194 — 1334
3540 502 367 361 — 404 3717 319 — 383 — _351 — 657 613 — 635
40-45 216 193 141 — 181 — 172 145 — 158 — 182 | — 170} 311 — 170
45-50 37 33 — — — 35 43 — 35 — 39 | — 84 — 34
110
50-55 — — — — — - _ _ - _ _ _ 4 — 14

10-80 15921 | 10427 10808 11189 11112 10860 | 10879 | 31000 | 19236 21196 20405 21284 | 20530 [ 24126 22683 22034 24410 | 23313
10876 { 20513 23292

(continued)
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[ 26 27 28
{(mm)

) All/A68 A34/A01, Mean ATE/A28 ©AS/A100 Mean A31/A88 AB/AGS Mean
10-12 1896 1440 1599 1816 | 1688 | 1542 1404 1381 1665 | 1498 | 1177 1202 1201 1210 | 1198
i2-14 L2231 2306 1915 2267 | 2180 | 1352 1398 1549 1542 } 1460 | 973 1008 1053 977 | 1003
14-16 2170 2197 20106 2205 | 2146 | 1260 1391 1466 1403 | 1380 | 832 898 967 839 884
16-18 T1785 1996 1873 1875 | 1882 | 1148 1227 1146 1216 | 1184 | 8§12 750 713 742 754
18-20° 1601 1647 1487 1493 | 1557 955 1117 1197 1046 | 1079 | 687 684 670 639 670
20-25 3063 3311 2502 2725 | 2900 | 1968 2130 2151 2218 | 2116 | 1226 1271 1235 1236 ¢ 1242

. 25-30 1874 1957 1670 1788 | 1822 | 1370 1482 1447 1445 | 1436 | 953 982 9135 921 943
30-35 1137 1115 108t — 1111 817 855 913 870 864 | 594 622 570 565 588
3540 633 519 428 — 527 441 — 469 423 |- 444 | 301 334 282 306 306
40-45 194 — 187 191 193 — 216 203 204 46 — 120 147 138
45-50 60 — 50 — 55 63 — 81 — 72 70 — 40 61 57
50-55 3 — — — 36 P S 26— 28 2 — — — 12
10-80 16685 16783 14798 15915 {16045 11144 11736 12056 12217 (11788 | 7768 7984 7809 7676 | 7814

16025 11781 7813
L=y 29 30 31
(mm) .
A33/A90 Al0/A67 Mean A9/AGL A32/A89 Mean A82 A3/A104 | Mean
10-12 904 997 949 889 935 1982 2288 1733 1595 1900 | 2690 3105 3848 | 3214
12-14 736 789 763 769 764 1899 1939 1791 1859 1872 | 4657 4387 5367 | 4804
14-16 628 658 649 656 648 1741 1902 1581 1506 | 1683 | 4073 4078 4217 4123
16-18 567 592 5973 664 604 1547 1424 1574 1370 1479 | 3460 3660 4124 | 3748
1820 490 450 527 506 493 1281 1312 1224 1215 1258 | 2852 3513 3549 3305
20-25 891 880 900 916 897 2508 2583 2453 2260 | 245] 5739 6133 6275 | 6050
25-30 580 620 557 654 603 1732 1742 1639 1512 1656 | 3425 4213 3926 3855
30-35 380 —_ 384 303 386 981 977 _ 912 957 1 1854 2090 — 1972
35-40 266 — 254 — 260 527 485 — 364 459 642} 976 642
40-45 131 — i249. 128 — 138 = 170 179 206 A — 206
45-50 57 — 53 — 55 - 61 73 67 49 97 — 73
50-55 — — 15 — 15 — 21 — 21 L J— — 26 .
10-80 5661 5849 5767 5898 5794 | 14470 14924 13536 12858 § 13947 | 29482 32249 34466 | 32066
5793 13924 32000
li—liyy 32 33 34
{mm) :
Ad2/AR3 A60/A26 Mean B14/B&4 B35/B61 Mean B12/B55 B46/B75 Mean
10-12 2823 2554 2141 2740 2565 593 781 719 745 710 | 505 368 500 488 515
12-14 3153 3141 . 2907 3265 3117 821 1056 904 1051 958 | 575 527 413 479 499
14-16 2511 2725 2680 2737 | 2663 93% 1043 1070 1029 | 1020 | 404 490 430 436 440
16-18 2166 2314 2400 2503 | 2346 | 1048 1386 1035 1196 | 1166 | 456 414 402 397 417
[8-20 1950 2035 2105 2005 2024 | 1299 1514 1254 1377 | 1361 | 351 436 389 375 388

" 20-25 3685 3765 3675 4177 3826 | 3188 2958 3696 3815 | 3414 | 966 1035 945 955 975
2530 2405 2460 2518 2693 | 2519 | 2493 3800 2823 2520 | 2909 | 826 837 815 809 822
30-35 760 120 1202 994 | 2036 — 1989 1741 | 1922 | 593 — 747 536 626
3540 550 — 444 497 828 833 310 857 | 212 — — 225 219
4045 18¢ — 149 — 165 | — —_ 228 — 228 74 — _ 111 93
45-50 0 — 72 — 61 | — — 1o — 110 | — — — 45 45
50-55 — — 31 31| — — a0 — 40 — —_ —_ — —_
10-80 20170 20571 20327 22021 | 20772 [ 13534 15614 14710 14833 |14673 | 5045 5269 5052 4886 | 5063

20759 14670 | 5061

{continued)
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TABLE 7 {continued)
L=l 35 36 37
(mm}
B18/R66 B33/B82 Mean | B16/B63 B31/B83 Mean Al6/A94 Ad0/ATL Mean
10-12 52 331 351 302 | 334 | 1135 1306 1079 1090 | 1153 | 2848 2458 2990 2115 | 2603
12-14 257 236 229 253 | 244 [ 1105 1261 1079 1094 | 1135 | 4394 5024 4463 3230 | 4278
14-16 218 210 226 219 | 218 | 1359 1177 1016 1037 | 1147 | 3874 4434 4675 3502 | 4121
16-18 207 212 187 205 | 203 | 1103 1188 1072 1140 | 1126 | 3148 3787 3756 2850 | 3385
18-20 160 166 174 162 | 166 943 1142 773 945 | 951 | 2542 2960 2710 2682 | 2724
20-25 349 326 380 360 | 354 | 1855 1596 1473 1674 | 1650 | 4373 4695 — 4109 | 4392
25-30 312 303 235 263 | 278 890 1126 915 830 | 940 | 2558 2615 — 2257 | 2477
30-35 215 197 196 201 202 461 — L1 J— 606 | 1200 — — 1505 | 1353
3540 _ 137 1200 122 | 126 | — — 232 — 232 633 — — 612 | 623
40-45 — 49 51 — 50 | — — 97  — 97 189 — — 149 | 169
45-50 — 21 22 — 2 | — — 53 — 53 — — - — —
50-55 — t1 9 — 10 | — — — — — — — —_ — —
10-80 2289 2170 2186 2179 | 2206 | 9271 9667 8161 8660 | 8940 | 25856 28092 27418 2320326142
2205 8921 26072
L
I 38 39 40
{mm)
Al3/ATO A29/A86 Mean Al14/A64 A33/A87 Mean | Al7/A95 AdL/AT2 Mean
10-12 1370 1364 1558 1492 | 1446 | 790 851 940 799 | 845 | 2627 2869 3292 3684 | 3118
12-14 1438 1496 1468 1370 | 1443 | 766 737 813 694 | 753 | 2961 2858 3102 2751 | 2918
14-16 1920 1654 1332 1237 | 1536 | 619 613 560 664 | 614 | 2667 2742 3128 2843 | 2845
16-18 698 883 1112 1253 | 987 | 560  s25 497 527 527 | 1958 2226 2115 2524 | 2206
18-20 1033 1057 957 1066 | 1028 | 476 468 436 445 456 | 1897 1916 2037 1843 | 1923
20-25 2070 2043 2015 2063 | 2048 | 802 856 819 890 857 | 3557 3640 3752 3744 | 3673
25-30 1496 1434 1266 1400 | 1390 | 474 3597 611 547 557 | 2025 2224 2344 2158 | 2188
30-35 888 ' 835 781 878 846 | 416 412 406 337 391 | 984 — 110 1033 7| 1042
3540 _ 455 355 — 405 | 253 219 — 234 235 | 408 — 439 443 | 430
40-45 — 158 176 — 167 93 — — 107 100 | 159 — — 161 160
45-50 _ 46 56 — 51 57 — — 42 50 40 — — 55 48
50-55 _ _ 21 — 21 25 — — 17 21 — — — 24 24
10-80 L1572 11423 11101 11371 |11367 | 5384 5445 5546 5307 | 5421 [19290 20071 21356 21278 |20499
11365 5420 20480
L—i., 41 42 43 44
{mm) -
A59 BI17/B79 B32/B64 Mean Al1B/A96 A36/ATS Mean | B9/B58 B26/B86 Mean
10-12 1509 | 522 s17 460 591 538 1594 1630 1431 1507 | 1541 | 797 394 786 771 737
12-14 2237 | 463 492 409 488 463 1214 1626 1330 1321 | 1373 [ 720 682 703 670 | 694
14-16 2376 | 463 430 393 415 425 1292 1453 134t 1363 | 1362 | 655 630 548 651 | 62f
16-18 2145 | 406 439 380 433 | 415 924 1285 1204 1009 | 1106 | 663 560 557 566 | 587
18-20 1826 | 379 368 367 327 | 360 942 [164 946 994 | 1012 | 637 599 535 546 | 579
20-25 3565 | 842 944 701 846 833 1986 2173 1894 1950 | 2001 [1349 1382 1184 1304 [ 1305
2530 2362 | 743 847 680 782 | 763 1349 — 1472 1336 | 1386 (1074 1015 1014 1082 | 1046
30-35 - 1316 | 643 43 555  — 614 3] — 867 882 | 857 | 923 95  §56 962 | 924
35-40 655 | 312 261 — 316 368 — 382 422 391 | 713 706 649 682 | 688
40-45 237 | 102 93 — 98 159 — 130 — 155 |— — 175 — 175
45-50 136 P — ) — 28 64 — 8 — 61 | — — 91 — 91
50-55 6 | — — p S 28 21 — — — 21 |— — — — —
10-80 18413 | 4975 5254 4359 4861 | 4862 [10737 12116 10941 11002 | 11199 | 7921 7514 7127 7529 | 7523
4851 11184 7518

(c

ontinued)
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TABLE 7 {continued)

b=l 45 46 47
(mm) -

A45/A101 A30/A93  [Mean | B3I7/B36 Bi11/B74 | Mean | AlY/AT4 A37j/A97  {Mean

10-12 2451 2576 2881 3083 | 2748 | 2394 2550 2384 2135 2366 | 6337 8573 5516 3980 | 6602
12-14 2092 2354 2352 2498 | 2334 | 1980 2320 2027 2123 | 2113 | 6089 4672 5924 5668 | 5588
14-16 2128 2219 2251 2242 | 210 | 2225  ZI5O0 2180 2210 | 2191 | 4780 4741 47001 4317 | 4635
16-18 1861 1914 1930 2093 | 1950 | 1827 2162 1765 1726 | 1870 | 4179 4353 4138 3869 | 4135
18-20 1740 1745 1802 1812 | 1775 | 1508 1508 1802 1296 | 1529 | 3700 3833 3458 3110 | 3537

20-25 | 3610 3670 3721 3830 | 3708 | — 2340 — 1860 | 2100 | 6771 6948 6284 6050 | 6513
2530 | 2664 2689 2640 2778 | 2693 | — 1465 — 945 | 1205 | 2963 3523 3801 3025 | 3328
30-35 | 1716 1899 1810 1829 | 1814 | — 493 _ 619 | 556 | 1542 —  — 1369 | 1456
3540 | 1010 — 994 — | 1002 | — BT 339 | 338 | 06 — 2 — 447 s»
40-45 456 — 490 — an | — 139 — 204 | 172 208 — — 2330 218
45-50 s — 136 — 127 | — 81 — 87| 84| 81 —  — 7|76
5655 | — @ — 54— 54 | — 23 20 2|l - - - -0 —

10-80 19870 20674 21121 21859 | 20881 | 14916 15572 14239 13573 | 14575 | 37266 39096 35995 34152 |36627
20869 14556 36583

TABLE 8

Crack propagation records of the additional flight-simulation tests, Values of An in numbers of flights.
First column: erack length interval. First and second line: test series No. and specimen No. Mean values are arithmetical averages.

Material 7075-T6 Clad

1.—1 13a 15a 17a

()

B44/B62 | Mean | B36/B4y | Mean| B87/B95  B6/Bi3 |Mean

56 381 495 | 438 | 434 4dp4| 419 | 260 317 333 318 | 307
6-7 590 509 | 550 | 432 apg | 420 | 250 285 274 236 | 261
7-8 439 402 | 421 | 334 286 310 | 222 186 231 226 | 216
8-9 425 430 | 428 | 264 270 | 267 | 162 183 194 191 | 183

9-10 386 353 [ 370 | 263 37| 290 | 185 182 185 214 | 192
10-12 761 737 | 749 | 417 409 | 413 | 224 240 266 224 | 239
12-14 819 744 | 782 | 398 480 | 439 | 204 202 232 211 | 212
14-16 1021 903 | 962 | 394 367 | 381 | 189 185 199 218 | 197
16-18 1008 1237 | 1123 | 331 375 | 353 | 137 140 161 145 | 146

Material 2024-T3 Alclad

hi—ha 2%a 27a 29a
{mm) |

Ad6/AL02 Mean A23/AT5 Mean AT/AST Mean
6-7 2354 1663 | 2008 1446 1531 | 1489 932 1072|1002
7-8 2888 2926 | 2907 1168 938 | 1053 712 781 | 746
8-9 2697 2658 | 2677 1058 993 1026 649 706 | 677

9-10 2637 2878 j 2757 954 885 920 568 586 | 577
10-12 5175 5047 | 5i11 1817 1681 | 1749 948 1016 1 982
12-14 3947 4358 | 4152 1448 1493 | 1470 738 §29 | 783
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TABLE ¢: Crack propagation records of the constant-amplitude tests. Values of An in cycles.
" First cobomn : Crack length interval. Second line : stress amplitude in kg/mm®. Third line: specimen No. Mean values are arithmetical averages,

7075-Té6 2024-T3

=ty §,=| 8= 5=
(mm) S.=2.2 Sa= 1.1 ) 8.8 6.6 4.4 Sa =22 . S,= 1.1

B19/B7  |Mean B6/B13 -B80/B93 Mean |A61 | ASS | AS4 | ASG/AI05  |Gem | A4d . . AT/AST
10-12 4941 5277 | 5109 |—  — 56410 34168 | 45289 [ 855 | 1795 | 4220 | 23700 21785 | 22743, 247080 — —
12-14 3361 3320 | 3341 | — @ — 21545 26035 | 23790 | 558 | 1470 | 3195 | 15700 18470 |17085] 155240 — —
14-16 2942 2708 | 2825 |— @ — 17200 19735 | 18468 | 338 | 1145 | 2790 | 14320 13590 |13955| 101735 — —
16-18 2396 2465 | 243 |— @ — 12005 14495 | 13250 | 210 | 945 | 1930 | 11315 11880 |11598 | 89740 73219 91344-
18-20 2230 2250 17240 | —  — 12035 12405 | 12220 ) 185 620 | 1790 | %920 10185 | 95531 70615 67695 59066

20-23 4315 4475 | 4395 | 23600 19500 20205 23790 | 21874 | 240 ] 1200 | 3040 | 17455 17215 |17335 | 124945 112803 121636
25-30 | 3165 3248 3207 | 16795 16000 14985 15443 | 15806 | 140 | 715 1855 | 12363 11765 |12064 | 86805 76322 77489

30-35 2645 2726 2686 | 11850 11250 11330 10838 | 11317 73— 1140 | 8152 — 8152 | 52340 52143 51020
3540 | 2213 2121 | 2167 | 9085 8480 8555 7960 | 8520 | 22| — 645 | 5320 — 53201 39815 36475 —
4045 1306 1805 | 1656 | — 6160 6330 9555 ) 6148 | — 100 | 310 3333 — 3333 1- 27255 24760 —
45-50 924 — 924 | — 4370 4855 4105 | 4443 | — | — — 2127 — 2127 | 19190 17565 —:
50-55 — - — |— 3170 32000 2955 ! 3108 | - { — — 1100 — 1100 | 10430 11185 —
10-80 | 31274 31955 [31615 ) —  — 191951 180948 1136450 | 2653 | 8626 | 21165 | 124306 125423 12486j 1031470 — —
L
TABLE 10: Crack propagation records for the 2024-T3 specimens with a central hole
T () 48 .49
A27 / A62 A56 / All0 A20 / AT5
12 21055 23542 19906 14580 19291 18604 19400 25858 18304 12285 19603 15098
14 23542 24980 21143 16869 20845 20279 22208 28078 19195 13903 20239 16914
16 26237 27347 23387 20000 22731 22280 25081 30073 20032 15432 21065 18522
18 28882 30078 25745 22543 — 24693 28052 32426 21025 — 22078 19868
20 sz 32219 27347 24835 27185 26722 30428 34271 22188 18904 22043 21025
25 — — 31000 29805 31365 31086 34983 — 23856 21611 24863 23599
30 — - 33666 32616 34247 33381 — — 25188 23838 26057 25220
35 — —_ 34950 . 34380 35571 35407 — — 25882 25078 — 26311
40 — — 35455 35276 36130 36087 @ — — 26204 25851  — —
45 I — - 35534 35427 36328 36283 . — — 26307 26220 — —
50 — — 35594 35566 36385 36371 — — 1.26339 26300 — —
55 — — 35615 35608 36394 36388 — — ’ 26335  — —
80 41422 41422 35617 35617 36396 36396 41792 41792 26354 27480 27480 J
! (mm) 49 o 50
A8 / AD8 “ A2l / AT? AlS / A92
12 14328 17458 13576 15842 15491 13976 12360 14980 14278 12700 11202 12654
14 15295 18548 15105 16644 16096 14614 13047 15421 14910 13520 11888 13160
16 16644 19488 16374 17627 16560 15311 13856 15834 15402 14252 12674 13653
18 18216 20326 17404 18600 16988 15918 14443 16194 /15828 14880 13180 14044
20 19382 21223 18548 19495 17382 16447 — — 16243 . 15402 13738 14436
25 121793 23033 20802 21352 — 17492 16270 17145 — — 14783 15153
30 — — 22308 22740 — — 17014 17492 — — 15453 15657
35 — — 23365 23574 — — 17477 17736 — — 15840 15954
49 — — 23843 — — — 17718 17866 — — 16057 16136
45 — - 23960 24033 | — — 17858 17943 — — 16186 16227
30 — — 24043 24051 — — 17936 17970 — — 16243 16230
55 — — — — — — 17965  — — —_ — —
80 25392 25392 24056 24056 ‘19112 19112 17981 17981 18004 18004 16268 16268
Values in the table are numbers of flights as counted from the beginning of the test. For each specimen two values are given, corresponding
to the cracks at both sides of the hole. The first column gives the crack length as measured from the center of the hole. First and second line:

Test series No. and specimen No.
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TABLE 14: Effect of truncating the gust spectrum
Values of stresses in kg/mm?

Test conditions . Crack propagation life {{lightsf™ - Life ratios™
Material Load Taxiing | GTAC Gusts 54, mas Of gUSt cycles ) 8., mex O gust cycles
: sequence | loads St 4, min :
88 1.1 6.6 3.5 44 88 | 71| 66| 55
7075 | Random | yes —14 1.1 9617 (1) | 4800 (1) | 3075 (1) | 2714 (1) 200 | 1 | 064
~34 13406 (1) | 8719 (4) | 5889 (5) ' 228 | 148 | 1
no —34 11 13320 (4) | 9565 (4) | 5062 (6) | 3538 (4)] 2385 (4) | 263 [1.89 ] 1 |00
33 179 ()] 97 () 217 1
Program| no | 34 1 14670 (4) 5061 {4) 2205 (4) | 290 1
2024 | Random | yes —1.4 11 16308 (1) | 6516 (2) 1
_34 15921 (1) | 10876 () : 146 | 1
_34 3.3 3000 (1) | 20513 (4) - 151 | 1
no 34 11 23292 (4) | 16025 (4} | 11781 (4) | 7813 (4)] 5793 (4) | 198 | 136 | t | 0.66
33 32000 (3) | 20759 (4) .. 154 | 1
Program| mo | 34 . Lzﬁon @) 11365 (4) a0 @) 2 1

@ Mean values drawn from table 7. The numbers between brackets indicate the numbers of tests carried out.
) The life for S, qc=6.6 kg/mm? was taken as being 1.

TABLE 1.5: Comparison between the random and the programmed flight simulation tests.
Values of stresses in kg/mmZ2, GTAC without GL.

- —
Test conditions Crack propagation life®! (ﬂights)‘\ Life ratio
Material Gust cycles Random gust Programmed Programmed/
§ 7 s sequence gust sequence Random
7075 1.1 88 13329 (4) 14670 (4) L10
6.6 5062 (6) 5061 (4) © 100
44 2385 (4) 205 (4 | 0.92
3 66 | 9779 (4} 8921 (4} 0.91
E
2024 1.1 88 23292 (4) 26072 (4) | 112
6.6 11781 (4) 11365 (4} 0.96
44 5793 (4) 5420 (4) 0.94
13 6 20759 (4) 20480 (4) 0.99
Average - 1. 0.99
) Gee table 16. N

TABLE 16: Effects of reversing the gust cycles, of applying one gust per flight and of omitting the GTAC.
Gust cycles in random sequence (S, .., = 6.6 kg/mm?). GTAC without TL

Characteristic test Sy, min Crack propagation life'™ Relative crack
conditions (see also fig. 3) of gusts {flights) propagation
{kg/mm?) life™
7075 2024 7075 2024
Standard random sequence 1.1 5062 (6) 11781 (4) 1 1
Reversed gust cycles 1.1 4851 (4) 11184 (4) 0.96 0.95
Small gusts omitted 22 7006 (@) | 13924 (4) 1.3 118
- 33 9779 (4). | 20759 (4) 193 | 176
Only one gust per flight' ] — 14556 (4) | 36583 (4) 2.88 3.10
GTAC omitted 11 7518 (4) | 20869 (4) 149 | 177
—

@' Mean values drawn from table 7. The numbers between brackets indicate the number of tests carried out-"The life for the standard random
sequence was taken as being 1. ® The largest positive gust load of each flight was applied.
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TABLE 17: Comparison between the two alloys; Values of stresses in kg/mm?

Test conditions Crack propagation life Life
(flights)® ratio
Gust sequence Taxiing Gust cycles (2024)/(7075)
loads
S4.min Sa, max 7075 2024

Random yes 1.1 7.7 8719 (4 | 15921 (1) 1.8 -
6.6 5889 (5) | 10876 (5) 1.8

33 6.6 9863 {4) | 20513 (4) 2.1

no 1.1 8.8 13329 (4) 1 23292 (4) LT

' 77 9565 (4) | 16025 (4) 1.7

6.6 5062 (6) | 11781 (4) 2.3

55 3538 (4) | 7813 (@) 2.2

44 2385 (4) | 5793 (4) 24

23 6.6 7006 (4) | 13924 (4) 20

33 77 ] 21179 (2) | 32000 (3) L5

6.6 9779 (4) | 20759 (@) 2.1

® 66 | 14556 (4) | 36583 (4) 25

1.1 66© | 4851 (4) | 11184 (4) 23

Random, no GTAC | — k.l 6.6 7518 {4) | 20869 {4) 28
Programmed 1.1 2.8 14670 (4) | 26072 (4) 1.8
6.6 5061 {4) | 11365 (4) 2.2

44 2205 (4 5420 (4) 25

1.3 6.6 8921 (4) | 20480 (4) 23
A\)erage 2.1

" Mean values drawn from table 7. The numbers between brackets indicate the numbers of tests carried out; ™ Only one gust load {the largest
one) per flight; " Gust cycles in reversed sequence, :

TABLE 18: Damage calculations for test series No. 45. Material: 2024-T3 Alclad; S, o= 6.6 kg/mm?; S, m.=1.1 kg/mm?; GTAC omitted.

§, (kg/mm?) 11 22 33 4.4 55 6.6 7.7 8.8 ’

n/N in 5000 Mights® 0.145 0.312 0.115 0.077 0016 0.006 0.003 0.002 ‘

@ Not applied in test serics No. 45; ® n from table 5, N from fig. 15.

Sum of damage increments for §,=1.1—6.6 is 0.808.

Predicted life: 1/0.808 - 5000 =6188 flights Test result corresponds to
Crack propagation life in tests = 20869 flights.| ¥ (r/N)=3.4.

TABLE 19: Fatigue life reduction if small gust cycles are included. Comparison between tests and predictions.
M =crack propagation life with small gust cycles included ; M’ =crack propagation life without small gust cycles.
The predicted M values have been calculated from M’ and the constant-amplitude test data, see section

* Material Test conditions Small gust MM’ Ratio
cycles (percentage) test/predicted
Taxiing R~ Load S,-values

loads sequence test predicted
7075 yes 6.6 Random Lland 2.2 60 20 3.0
no 77 44 10 44
6.6 52 20 26
6.6 Programmed 47 2 21
6.6 Random Ll 72 47 TS
2024 es 7.7 Random 1.1and 2.2 51 26 20
Y 6.6 53 35 1.5
no 7.7 50 25 20
6.6 57 35 L6
6.6 Programmed 55 35 1.6
6.6 Random LI ‘85 71 . 1.2
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Material 2 Al-alloys, 2024-T3 and 7075-T6

Fig. 1. Survey of variables studied in the present test series,
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Fig. 2. The load sequence in the most severe flight {type A).
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Fig. 3. Load records of flight no. 19 {type F) for different types of
flight simulation.
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LAYER OF FELT,
1mm

FLATE QF 2024-T3,
HICKNESS 10 mm
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T
ALL DIMENSIONS /N MILLIMETERS
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Fig. 4. Dimensions of the specimen and anti-buckling guides.
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Fig. 5. Picture of the specimen, anti-buckling guides with window and
clampings. Stereo-microscope {30 x) for crack observation in the
background.

a

Fig. 6. Two specitnens connected by a double strap joint, anti-
buckling guides covered by felt at the inner side and provided with
two windows each.
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Fig. 8a-c. Elfect of truncation (S, ..} on the crack propagation rate for material 7075-T6.
Fig. 8d-¢. The same as in figure 8a-c, but for material 2024-T3.
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Fig. 9a—d. Effect of omitting small gust loads on the crack propagation rate for material 7075-Té.

Fig. 9¢-h, The same as in figure 9a—d, but for material 2024-T3.
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Fig. 10. The effects of omitting the GTAC and of reversing the gust
cycles on the crack propagation rate.
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Fig. 14. The effect of truncating the gust load spectrum on the crack
propagation life.
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Fig. 13. The effect of omitting small gust loads on the crack propaga-
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Fig. 16. Crack propagation curves for the 2024-T3 specimens with a
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Fig. 19. Two examples of fatigue striations as observed with the electron microscope
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Summary

The results of the computation of 10 symmetrical non-lifting quasi-elliptical aerofoil sections in transonic potential flows are presented.
No approximations have been made in the potential theory. Results are summarized in figures and tables. The figures permit a rapid
appraisal of the overall properties. More detailed information is given in the tables,

The precision of the given data in the tables is a few units of the last decimal place specified. The data can serve as a reference for
the testing of (approximate) computational methods for transonic flows.

.
i

Contents M — Mach number
page M, — free stream Mach number
List of Symbols 1 My — maximum value of M on. aerofoil section
1 Introduction 1 contour
2 The computattons 2 M; —rate of change of M along aerofoil section
3 Results 2 contour
4 References 2 R — radius of curvature of acrofoil section contour
Appendix A Formulae for the interpolation with R —radius of curyature .at lea'd ing edge
a fifth degree polynominal /R — curv-ature of _aerofml section c‘ontou_r

4 — maximum thickness of aerofoil section
11 tables ‘ x — chordwise co-ordinate
12 figures xze — chordwise position of leading edge

i% — co-ordinate normal to chord
List of symbols ¥ — ratio of specific heats (y=1.4)

g —- thickness parameter
¢ — chord length T — velocity parameter
¢p  — pressure coefficient 71— free stream value of ©
ep  — pressure coefficient for M=1 ] — flow angle

1 Introduction

The pressure distribution on aerofoil sections, caleulated by an exact potential theory, is of great interest for many
aerodynamicists for different reasons. Such an exact potential theory is described by Nieuwland in ref. 1. This
theory has been used to calculate 10 transonic symmetrical non-lifting aerofoil sections, A variety of section shapes
and related pressure distribution curves have been computed at different free stream Mach numbers.

The results can be used in evaluating the validity of computational methods for transonic flows, for example
finite difference methods.

Section 2 gives some information on the computations. In section 3 the results are presented.




2 The computations

For the computations use has been made of three ALGOL programmes. The sections with a blunt leading edge
have been calculated by the programme of ref. 5, while for the lenticular aerofoil sections and the flow ficld of one
of the sections the programme of ref. 3 has been used. The results have been checked and, where necessary, corrected
by a smoothing method discussed in ref. 4 and 5.

3 Results

3.1 The steady potential flow around a quasi-lliptical acrofoil section is characterized by three parameters viz.
74, & and A. The free stream Mach number M, is determined by 7, according to

27, .
(y—D(l—1y)

The thickness ratio, #/c, is mainly determined by &; the parameter A mainly determines the leading edge radius R,
and governs the flow expansion on the front part of the sections. The values of 7, £ and 4 are used to identify
the sections. For example, section 0.1025-0.675-1.3 has 7,=0.1025, ¢=0.675 and A1=1.3. In choosing these pa-
rameters use has been made of results of ref. 2.

M: =

3.2 The results are presented in tables and figures. In table 1 all profiles are listed together with their identification
as a quasi-elliptical aerofoil section, M, M, tjc, ¢, Ryfe, x,, and an index referring to the figures and the other
tables, In the figures | through 10, c,~x curves and the contour have been plotted; the value of ¢ has also been
indicated. The figures and table 1 allow a rapid appraisal of the most important section properties. More detailed
information is contained in the tables 2 through 11, where values of 7, x, y, ¢,, M, M, 6 and 1/R are given. The
given quantities have a precision up to some units of the last decimal place specified (see ref. 3 and 4). The figures
11 and 12 contain detailed information about the flow field around quasi-ellipse 0.1025-0.675-1.375 and can be
used for example to check results of other computation methods in points in the flow field.

If more values of the ordinates are needed than are given in the tables, it is advised to interpolate between two
successive points by means of a fifth-degree polynomial making use of the given values of x, y, 6 and I/R in the
two points. The formulae, needed for the interpolation, are given in the appendix. In this way values of the ordinates
are obtained which are in the experience of the authors sufficiently accurate for most purposes.
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APPENDIX A
Formulae for the interpolation with a fifth-degree polynominal

For the interpolation of the ordinates use is made of the given values of y, # and 1/R in two successive points. The

ordinates of these points are indicated by x,_, and x;. The values of y, 8 and 1/R are indicated accordingly, cf. the
figure below.

-

8| {S5LOPE)

Ri{RACIUS OF CURVATURE)

{
i
|
|
!
|
I
x

Xj1 Xi

—_— X
To interpolate the ordinate y, in the point x the following formula is recommended:
We=apta, xk-}-angf +x,::' [as ta,(x,—A)+as{x— Ai)z] (A.1)

where X, =x—x;_y, d;=x;—x;_,, and the coefficients a4~ can be calculated as given below, First # and 1/R have
to be transformed to first and second derivatives:

y/=tan 0, Yiog=tan@;_, (A.2)
= —(1+ )} (1/R), yity = —(L+p2 D% (YR, (A3)
Then ag, a, and a, are given by:
g = Y-y (Ad)
a, =y, (A.5)
ay =4, ' (A.6)

The coefficients a4, 4, and @5 can be computed from the expressions:

a3 = 43 = yi-1=4 yi- =342y, (A.7)
a, = A—[ 3y, 3y 1+ 4,4+ 201 ) +347 9L, (A8)
as = -5 [6_}7[ 6y| 1= =34, (y|+y|'- )+%A 2(yl”_y )] (A.g)

Using the equations (A.2)-(A.9) and substituting in eq. (A.1), the ordinate for any given value of x, (x;~; € X, < X))
can be calculated.

TABLE 1
Main aerofoil characteristics

Profile quasi-elliptical M Mn 2 ¢ Ro/c Xie figure fable
number aerofoil section ' number number

5 0.1025 —0.6750 —1.300 0.7557 1.222 0.1572 3.20343  0.046105 —1.69058 1 2

6 01100 —0.7500 —1.250 0.7861 1.136 0.1162 3.30546  0.032469  —1.79504 2 3

7 0.1075 —0.6750 —1.050 0.7760 1.257 0.1466 3.22519 0.026685 —1.69718 3 4

8 0.1100 —0.7500 —0.900 0.7861 1.060 0.1137 3.37728  0.006030 —1.79504 4 5
10 0.1125 —0.7500 —1.325 0.7961 1.280 0.1138 3.27161  0.040094 —1.79929 5 6
11 0.1150 —0.7500 —1.200 0.8061 1.257 0.1092 3.28558  0.029408  -—1.80375 6 7
12 Q1175 —0.8000 —1.260 0.8139 1.291 0.0894 332802 0.029981  —1.87247 7 8
14 0.1200 —0.7000 —0.000 0.8257 1.083 0.1077 3.38080 — —1.69040 8 9
15 ¢.1200 —0.7500 —0.00C 0.8257 1121 0.0953 3.45960 — —1.72980 9 10
13 0.1025 —0.6750 —1.375 0.7557 1.291 0.1578 3.19192  0.052543 —1.6%058 10,11,12 11




Tab. 2
QUASI-ELLIPTICAL AEROFOIL SECTION 9.1025 — 0.6750 — 1.3000
PROFILE NUMBER 5 )
FREE STREAM MACH NUMBER 0.7557

T X ¥ €p M M, 6 1/R
0.00000 -—1.69058 0.00000 1.1510 0.0000 £.000000 1.57080  6.770223
001000 —1.68621 0.03569 1.0248 0.2247 6.22 1.328 6.70
0.02000 -—1.68179 0.05028 0.9017 0.3194 6.19 1.226 6.64
0.03000 —1.67731 0.06135 0.7817 0.3932 6.16 1.147 6.56
0.04000 —1.67277 0.07059 0.6647 0.4564 6.110 1.0797 6.49
0.05000 —1.66813 0.07865  0.5508 0.5130 6.046 1.0198 6.40
0.06000 —1.66341 '0.0858%  0.4398 0.5649 5.961 0.9648 6.306
0.07000 —1.65855 0.09252 0.3317 0.6135 5.851 0.9134 6.194
0.08000 —1.65355 0.09868  0.2265 0.6594 5.710 0.8648 6.062
009000 —1.64836 0.10449 0.124] 0.7032 5.531 0.8181 5.903
0.10000 —1.64292 0.11005 0.0245 0.7454 5.307 0.7730 5,713
011000 —1.63717 0.11541- —0.0724 0.7861 5.032 S 0729 5.480
0.12000 —1.63098 Q.12070 —0.1666 0.8257  4.703 0,6857 5.203
0.13000 ——1.62424 0,12598 —0.2582 (.8644 4,321 0.6424  4.880
014000 —1.61674 0.13133 —0.3471 0.9022 3.894 0.599( 4.506
0.15000 ~ —1.60824 0.136856 —0.4336 0.9393 3.437 0.5554 4.088
0.16000 —1.59840 0.14267 —0.5175 09759  2.977 . 05112 3.6350
0.16667 -——1.59091 (.14672 —0.5721  1.0000 2.686 04814 3.334i
0.17000 —1.58684 0.14881 —0.5980 1.0120  2.550 0.4668 3.18i3
0.18000 —1.57321 0.15529 —0.6780 1.0476 2.1986 0.4220 27510
0.19000 —1.55746 0.16194 —0.7546 1.0830 1.9626 0.3782  2.3851
0.20000 —1.54022 (.16838 —0.8290 1,1180 1.8748 0.3370  2.1195
0.21000 —1.52276 0.17412 —0.9010 1.1529 1.9363 0.2995 1.9714
0.22000 —1.50592 0.17901 —0.9708 1.1875 1.9726 0.2658 1.8657
0.23000 —1.48560 0.18415 —1.0384 1.2221 1.1429 0.2314 1.3890
0.23000 —1.36595 0.20607 —1.0384 1.2221 —0.27150 014972  0.40402
0.22000 —1.24047 0.22218 —0.9708 1.1875 —0.26246 0.10853  0.268234
0.21000 —1.10064 G.23500 —0.9016¢ 1.152¢ —0.232042 0.07582  0.205308 ~
0.20000 —0.94358 0.24456 —0.8200 1.1180 —0.210504 0.04666  0.168193
0.19667 —0.88716 0.24693 —0.8044 1.1064 -—0.203479 003746  0.158587
0.19333 —0.82862 0.24886 —0.7797 1.0947 —0.195858 0.02844  0.149674
0.19000 —0.76752 0.25032 —0.7546 1.0830 —0.187417 0.01956  0.141263
0.18750 —0.71967 0.25110 —0.7357 10742 —0.180545 0.01294  0.135256
0.18500 —0.66984 0.25158 —0.7166 1.0653 —0.173373 0.00634  0.129552
0.18250 —0.61772 025173 —0.6974 1.0565 —0.166155 —0.00026 0.124235
0.18000 —0.56321 0.25154 —O0.6780 1.0476 —0.159202 —0.00690 0.119399
017750 —0.50625 0.25095 —0.6584 1.0388 —0.152823 —0.01357 0.115132
0.17500 -—0.44687 0.24995 —0.6388 1.0299 —0.147280 —0.02027 0.111497

Tab. 3

QUASI-ELLIPTICAL AEROFOIL SECTION

0.1100 — 0.7500 — 1.2500

PROFILE NUMBER 6
FREE STREAM MACH NUMBER 0.7861
T X y Cp M M, 8 1,"R

0.00000 —1.79504 0.00000 1.1642  0.0000 0.000000 1.57080  9.317575
0.01000 —1.79217 0.02463 1.0440 0.2247 - 9.3 1.339 9.35
0.02000 —1.78932 0.03453 09269 0.3194 2.26 1.242 ©.40
0.03000 —1.78650 0.04192 0.8127 0.3932 9.40 1.168 9.46
0.04000 —1.78369 0.04797 - 0.7014 0.4564 9.55 1.105 9,53
0.05000 —1 78090 0.05314 0.5930 0.5130 9.70 1.048 9.60
0.06000 —1.77813 0.05767 04874 0.5649 9.84 0.9%7 9.69
0.07000 —1.77538 0.06172 0.3845 0.6135 9.97 0.9494 8.79
0.08000 —1.77263 0.06539 0.2844 0.6594 10.07 0.9044 9.88
0.09000 -—1.76987 0.06874 0.1870 0.7032 i0.12 0.8613 9.96
0.10000 —1.76709 0.07184 0.0922 0.7454 10.09 0.8197 1001
0.11000 —1.76426 0.07475 0.0000 0.7861 9.95 0.7790 10.01
0.12000 —1.76133 007754 —0.0896 0.8237 9.63 0.7387 9928
0.13000 —1,75823 0.08025 —0.1768 0.8644 9.07 0.6981 9.717

T 0.14000 —1.75483 008298 —0.2614 0.9022 8.22 0.6565 9.310
0.15000 —1.75081 0.08586 —0.3437 0.9393 7.015 0.6127 8.647
0.16000 --1.74603 0.08912 --0.4235 09759 5.460 0.5647 7.655

- 0.16667 —1.74181 0.09169 —0.4754 1.0000 4.273 0.5297 6.772
0.17000 —1.73%18 0.09319 —0.5010 1.0120 3.659 0.5109 6.259
0.18000 —1.72718 0.09933 —0.5762 1.0476 1.833 0.4385 4.491
0.19000 —1.69756 0.11116 —0.6492 1,0830 0.6891 0.3328 2,4312
0.19333 —1.67876 0.11721 —0.6730 1.0947 0.5223 0.2916 1.8405
0.19667 —1.65489 0.,12383 —0.6966 1.1064 0.4312 0.2516 1.3921
0.20000 —1.62597 0.13068 —0.7199 1.1180 0.3528 0.2154 1.05898
0.20167 —1.60850 0.13434 —0.7315 1.1239 0.29757 0.1978 0.91374
0.20333 —1.58624 0.13858 —0.7430 1.1297 0.21417 0.1789 0.76322
0.20500 —1.53958 0.14625 —0.7545 1.1355 0.04288 0.1489 0.53715
0.20500 —1.50975% 015050 —0.7545 1.1355 —0.04834 0.1344 0.43619
0.20333 —1.44272 0.15869 —0.7430 1.1297 —0.11921 0.10979  0.304970
0.20167 —1.39820 0.16331 —0.7315 1.1239 —0.137868 0.09732  0.255216
0.20000 —1.35734 0.16710 —0.7199 1.1180 —0.144678 0.08754  0.223082
0.19750 —1.29775 0.17195 —0.7024 1.1093 —0.146745 0.07526  0.189977
0.19500 —1.23794 (.17613 —0.6848 1.1005 —0.144955 0.06459  0.166710
0.19250 —1.17688 0.17978 —0.6671 1.0918 —0.141727 0.054%6 = 0.149229
0.19000 —1.11402.0.18295 —0.6492 1.0830 —0.137925 0.04603 0.135506
0.18750 —1.04951 0.18566 —0.6312 1.0742 —0.133864 0.03763 0.124383
0.18500 —0.98246 0.18792 —0.6130 1.0653 —0.129568 0.02962  0.115105
0.18250 —0.91303 0.18971 —0.5947 1.0565 —0.125065 0.02191 0.1067210
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~—0.0896
—0.0600
—0.0302

0.0000

0.0458

0.0922

0.1870

0.2844

0.3845

0.4356

0.4874

0.5092

1.0476
1.0417
1.0358
1.0299
1.023%
1.0179
1.0120
1.0000
0.9910
0.9819
0.9759
0.9698

" 0.9638

0.9577
0.9516
0,9455
0.9393
0.9301

0.9208
0.9115
0.9022
0.8928
0.8834
0.8739
0.8644
0.8516
0.8387
0.8257
0.8126
0.7994
0.7861

0.7659
0.7454
0.7032
0.6594
0.6135
0.58%6
0.5649
0.5544

—0.120437
—0.117368
—0.114406
—0.111640
—0.109156
—0.107042
—0.105343
—0.103381
—0.103196
—0.104079
—0.105222
—0.106776
—0.108702
—0.111015
—0.113648
—0.116600
—0.119846
—0.125243
—0.131244
—0.137802
—0.144919
—0.1526
—0.1608
-0.1696
—0.177
—0.192
—0.206
—0.221
—0.238
—0.255
—0.275
—0.307
~-0.342
—0.4216
—0.52499
—0.6592
—0.7422
—0.8392

0.01442
0.00952
0.00468
~—0.00012
—0.00487
—0.00960
—0.0142%
—0.02358
—0.03046
—0.03724
—0.04170
—0.04610
—0.05046
—0.05475
—0.05899
—0.06316
—0.06727
—0.07332
—0.07922
—0.08498
—0.09058
--0.0960
—0.1013
—0.1065
—0.111
—0.118
—0.124
—~0.130
—0.135
—0.140
—0.145
—0:151
—0.157
—0.1612.
—0.15672
~0.13575
—0.11225
—0.0637
0.00000

0.100421
0.096435
0.092856
0.089674
0.086883
0.084479
0,082450
0.079461
0.078069
0.077310
0077112
0.077129
0.077338
0.077711
0.078233
0.078882
0.079639
0.080943
0.082405
0.083970
0.085598
0.0873
0.0889
0.0904
0.091
0.093
0.095
0.095
0.095
0.093
0.091
0.084
0.071
0.0123
—0.12424
—0.48710
—0.9446
—2.4983




Tab. 4 Tab. 5

QUASI-ELLIPTICAL AEROFOIL SECTION 0.1075—0.6750-—-1.0500 QUASI-ELLIPTICAL AEROFOIL SECTION (.1100—0.7500—0.9000
PROFILE NUMBER 7 PROFILE NUMBER 8 B
FREE STREAM MACH NUMBER 0.7760 FREE STREAM MACH NUMBER 0.7861

T X ¥ Cy M M: ] /R T x ¥ Cp M M, é iR
0.00000 —1.69718 (.00000 1.1598 0.0000 0.000000 1.57080 11.619188 0.00000 —1.79504 0.00000 1.1642  0.0000 0.000000 1.5708¢  49.100807
0.01000 —1.69357 0.02482  1.0377 0.2247 848 1.286 10.72 0.01000 —1.79307 0.00918 1.0440  0.2247 18.9 1.13 30.8
0.02000 —1.68964 0.03575 0.9187 0.3194 7.80 1.167 9.82 0.02000 —1.79046 0.01432 09269 0(.3194 14.2 1.031 21.5
0.03000 —1.68534 0.04463  0.8026 0.3932 7.14 1.074 897 0.03000 -1.78714 0.01920 0.8127 0.3932 11.04 0.923 15,79
004000 —1.68060 005259 0.6895 0.4564 6.51 0.995 8.14 004000 —1.78303 0.02414 0.7014 0.4564 877 0.334 12.01
0.05000 —1.67536 0.06006 0.5794 0.5130 5.894 0.9242 7.35 0.05000 —1.77798 0.02928  0.5930 0.5130 7.05 0.758 9.33
0.06000 —1.66953 0.06728 04720 0.5649 5.307 0.8595 6.592 0.06000 —1.77184 0.03470 0.4874 0.5649 5.710 0.6904 7.34
0.07000 —1.66300 0.0743% 03675 0.6135 4.752 0.7994 5.877 0.07000 —1.76437 0.04048  0.3845 0.6135 4.635 0.6287 5.822
0.08000 —1.65566 0.08152  0.2658 0.659%4 4.229 0.7427 5.205 0.08000 —1,75528 0.04668 0.2844 0.6594 3.760 0.5716 4.630
0.09000 —1.64735 0.08874 0.1668 0.7032 3.744 0.6889 4.578 0.0%000 —1.74418 0.05340 0.1870 0.7032 3.038 0.5181 3.681
0.10000 —1.63790 0.09612 0.0705 0.7454 3.300 0.6376 4.001 0.10000 —1.73052 0.06073  0.0922 0.7454 2.440 0.4674 2916
0.11000 —1.62711 0.10369 --0.0232 0.7861 2,899 0.5885 3.474 0.11000 —1.71360 0.06873  0.0000 0.7861 1.9438 0.419¢ 2.295
012000 —1.61479 0.11149 —0.1143 0.8257 2,546 0.5414 3.0024 0.12000 -—1.69241 0.07756 —0.08%6 (.8257 1.5328 0.3724 1.791¢
0.13000 —1.60073 0.11951 -—0.2028 0.8644 2.2431 0.4962 2.5879 0.13000 —1.66555 0.08733 —0.1768 0.8644 1.1955 0.32736 1.3831
0.14000 —1.58487 0.12765 —0.2888 0.9022 1.9955 0.4533 2.2311 0.14000 —1.63114 0.09815 —0.2614 0.9022 0.9227 0.28406 1.05582
0.15000 —1.56704 0.13589 --0.3724 0.9393 1.8083 0.4126 1.9360 0:15000 —1.58661 0.11009 —0.3437 0.9393 0.70583 0.24180  0.79811
0.16000 —1.54763 0.14394 —(.4535 0.9759 1.6911 0.3745 1.7054 0.16000 —1.52848 0.12310 —0.4235 0.9759 0.53469 0.20059  0.59896
0.16667 —1.53416 014905 —0.5063 1.0000 1.6601 0.35079 1.5901 0.16667 —1.47946 0.13236 —0.4754 1.0000 0.43638 0.17360  0.49208
0.17000 —1.52737 0.15149 —0.5323 1.0120 1.6619 0.3395% 1.5450 0.17000 —1.45077 0.13718 —0.5010 10120 0.38760 0.16001  0.44399
0.18000 —1.50744 0.15817 —0.6087 1.0476 1.7591 0.30793 1.4695 0.17500 —1.39976 0.14485 —0.538% 1.0299 0.30655 0.13901 0.37417
0.19000 —1.48953 0.16360 —0.6828 1.0830 2.0777 0.2803%  1.5148 0.18000 —1.32987 (.15376 —0.5762 1.0476 0.15932 0.11539  0.297747
0.20000 —1.47545 0.16748 --0.7547 1.1180 2.9022 0.25658 1.7984 0.18167 —1.29638 0.15748 —0Q.5886 1.0536 0.152049 0.10591  0.267000
0.21000 —1.46652 0.16973 —0.8244 1.1529 5.454 0.23687  2.8355 0.18333 —1.24843 0.16228 —0.6008 1.0595 0.093757 0.09399  0.229433
0.22000 —1.46280 0.17061 —0.8918 1.1875 21.24 0.22011 9.58 0.18333 —0.94118 0.18268 —0.6008 1.0595 —0.048027 0.04422  0.120369
0.23000 —1.46192 0.17080 --0.9572 11,2221 19.94 0.20463 943 018167 —0.83289 0.18680 —0.5886 10536 -—0.059795 0.031%4  0.106563
0.24000 —1.44519 0.17386 —1.0205 1.2566 0.36860 0.1795 0.73395 0.18000 —0.73948 0.18933 —0.5762 1.0476 —0.066266 0.02239  0.098506
0.24000 —1.40359 0.18088 —1.0205 1.2566 —0.15930 0.15687  0.41750 0.17833 —0.65319 0.19090 —0.5639 1.0417 —0.070852 0.01414  0.093190
023500 —1.32573 0.19206 —0.9891 1.2393 —0.24217 013003 0.29022 0.17667 —0.57171 0.19175 —0.5514 10358 —0.074641 0.00670  0.089533
0.23000 —1.25484 (.20063 -—-0.9572 12221 --0.23740 0.11131 0.238669 0.17500 —0.49395 0.19200 —0.5389 1.0299 —0.073088 —0.00016 0.0869%4
0.22667 —1.20570 0.20584 —0.9357 1.2106 —0.228017 0.10013  0.214822 0.17333 -—0.41934 019175 —0.5263 1.0239 —0.081398 —0.00658  0.085257
0.22333 —1,15426 0.21073 —0.9139 1.1951 —0.,217678 0.08554  0.195721 017167 —0.347534 0.19106 —0.5137 1.0179 —0.084670 —0.01266 0.084117
0.22000 —1.10024 0.21530 —0.8918 1.1875 —0.207518 0.07937  0.180001 0.17000 —0.27837 0.18998 —0.5010 1.0120 —0.087952 —0.01845 ' 0.083436
0.21667 —1.04344 0.21954 ~—0.8696 1.1760 —0.198078 0.06930  0.166881 0.16667 —0.14708 0.18684 --0.4754 1.0000 —0.094633 -—0.02938  0.083092
©.21333 —0.98389 0.22339 —0.8471 1.1644 —0.189572 0.0598%  0.133839 : 0.16417 —0.05444 0.18376 —0.4561 09910 —0.09%816 —0.03709  0.083498
021000 —0.92167 0.22682 —0.8244 1.1529 —0.182099 0.05048  0.146516 0.16167 0.03372 0.18016 —0.4366 09819 —0.105203 —0.04449  (.084339
0.20667 —0.85689 0.22980 —0.3014 1.1413 —0.175651 0.04124  0.138626 0.16000 0.09011 0.17752 —0.4235 0.9759 —0.10894F —0.04928 0.085101
0.20333 —0.,78979 0.23226 —0.7782 1.1297 —0.170112 0.03216  0.131925 0.15833 0.14468 0.17470 —0.4104 0.9698 —0.112795 —0.05395  (.086004

0.20000 —0.72039 0.23418 —0.7547 1.1180 —0.165370 0.02321  0.126220 0.15667 0.19748 0.17173 —0.3972 09638 --0.116816 —0.05853  0.087030




0.19750
0.19500
0.19250
0.19000
0.18750
0.18500
0.18250
0.18000
0.17750
0.17500
0.17250
0.17000
0.16667
0.16333
0.16000
0.15750
0.15500
0.15250
0.15000
0.14667
0.14333
0.14000
0.13667
0.13333
0.13000
0.12500
0.12000
0.11500
0.11000
0.10500
0.10000
0.09000
0.08000
0.07000
0.06000
0.05500
0.05000
0.04321

—0.66701 0.23524
—0.61256 0.23597
—0.55706 0.23634
—0.50057 0.23635
—0.44313 0.2359%
—0.38483 0.23525
—0.32578 0.23412
—0.26615 0.23260
—0.20612 0.23069
—(.14594 0.22839
—0.08582 0.22570
—0.02599 0.22266
0.05290 0.21807
0.13038 0.21201
0.20608 0.20725
0.26154 0.20270
0.31570 0.19793
0.36852 0.19296
0.42001 0.18781
0.48622 0.18072
0.54990 0.17341
0.61092 0.16593
0.66933 0.15833
0.72514 0.15066
0.77851 0.14292
0.85381 0.13135
0.92383 0.11987
0.98885 0.10859
1.04913 0.09751
1.10500 0.08667
1.15669 0.07624
1.24894 0.05669
1.32780 0.03919
1.39510 0.02405
1.45240 0.01166
1.47771 0.00670
1.50099 0.00275
1.52801 0.06000

—0.7369
—0.7190
—0.7010
—0.6828
—0.6645
—0.6460
—0.6274
—0.6087
—0.5898
—0.5708
—0.5516
-=0.5323
—0.5063
—0.4800
—0.4535
—0.4335
—0.4132
—0.3929
—0.3724
—0.3448
—{.3169
—0.2888
—0.2604
—0.2317
—0.2028
—0.1588
—0.1143
—0.0690
—0.0232

0.0233

0.0705

0.1668

0.2658

0.3675

0.4720

0.5253

0.5794

(0.653%

1.1093
1.1005
1.0918
1.0830
1.0742

1.0653

1.0565
1.0476
1.0388
1.0299
1.0209
1.0120
1.0000
0.9880
0.9759
0.9668
0.9577
0.9485
0.9393
0.9270
0.9146
0.9022
0.8897
0.8771

0.8644
0.8452
0.8257
0.8061

0.7861

0.7659
0.7454
0.7032
0.6594
0.6135
0.5649
0.5394
0.5130
0.4752

—0.162233
—~0.159378
—0.156768
—0.154390
—0.152260
—0.150456
—0.14%055
—0.148138
—0.147770
—0.147991
—0.148830
—0,150234
—0.153024
—0.156789
—0.161475
—0.165569
—0.170143
—0.175192
—0.180702
—0.188777
—0.197687
—0.207445
—0.2181
-—0.2296
—0.2421
—0.263
—0.286
—0.311
—0.340
—0.372
—0.406
—0.4923
—0.60032
—{0.7410
—0.931
—1.0510
—1.1963"

0.01657
0.01000
0.00347
—0.00302
—0.00948
—0.01550
—0.02231
—0.02863
—0.03506
—0.04140
—0.04772
—0.05401
—0.06233
—0.07059
—0.07877
—0.08484
—0.0%086
—0.09683
—0.10273
—0.11051
—0.11817
—0.12571
—0.1331
—0.1404
—0.1474
—{0.158
—0.167
—0.176
—0.187
—0.196
—0.203
—0.2145
—0.221i6
—0.21945
—0.20236
—0.1831
—0.1494
0.00000

0.122487
0.119157
0.116187
0.113555
0.111253
0.109292
0.107685
0.106445
0.105575
0.105068
0.104910
0.105076
0.105766
0.106931
0.108517
0.109950
0.111569
0.113354
0.115285
0.118057
0.121012
0.124102
0.1273
0.1305
0.1337
0.135
0.142
G145
0.144
0.140
0.135
0.1142
0.044607
—0.12184
—0.5417
—1.06030
—1.9694

0.15500
0.15333
0.15167
0.15000
0.14750
0.14500
0.14250
0.14000
0.13750
0.13500
0.13250
0.13000
0.12667
0.12333
0.12000
0.11500
0.11000
0.10500
0.10000
0.09000
0.08000
0.07000
0.06500
0.06000
0.05285

0.24861
0.29799
0.34589
0.39217
0.45876
0.52204
0.58223
3.63943
0.69383
0.74553
0.79471
0.84152
0.90033
0.95545
1.00698
1.07833
1.14317
1.20234
1.25596
1.35001
1.42858
1.49459
1.52352
1.55001
1.58224

0.16861
(.16539
0.16205
0.15863
0.15335
0.14795
0.14244
0.13687
0.13126
0.12563
0.12002
0.11442
0.10703
0.09974
0.09258
0.08214
0.07210
0.0624%
0.05332
0.03656
0.02234
0,01079
0.00617
0.060250
0.00000

—0.383%
—0.3705
—0.3571
—0,3437
—0.3233
—(.3028
—0.2822
—0.2614
—0.2405
—0.2194
-~0.1982
—0.1768
—0.1480
—0.1190
—0.089¢
—0.0451
0.0000
0.0458
0.0922
0.1870
0.2844
0.3845
0.4356
0.4874
0.5626

0.9577
09516
0.9455
0.9393
0.9301
0.9208
0.9115
0.9022
0.8928
0.8834
0.8739
0.8644
0.8516
0.83387
0.8257
0.8061
0.7861
0.765%
0.7454
0.7032
0.6594
0.6135
0.58%6
0.5649
0.5282

—0.120983
—0.125319
—0.129835
—0.13453¢6
—0.141961
—0.149836
—0.158200
—0.167067
—0.1765
—0.1864
—0.1969
—0.208 .
—0.224
—0.240
—0.258
—0.288
—0.321
—0.357
—0.395
—0.4925
—0.61322
—0.7697
—0.8665
—0.9796

—0.06301
—0.06741
—0.07173
—0.07597
—0.08220
—0.08827
—0.09419
—0.09997
—0.1056
—0.1111
—0.1164
—0.122
—0.128
—0.135
—0.141
—0.150
—0.158
—0.185
—0.172
—0.1786
—0.17808
—0.16506
—0.14975
—0.1229
0.00000

0.088171
0.089412
0.090744
0.092156
0.094401
0.096768
0.099225
0.101737
0.1043
0.1068
0.1092
0.112
0.116
0.115
0.117
0.120
0.118
0.113
0.111
0.0520

—0.070293

—0.37512

—0.7015

—1.3626




Tab, 6
QUASI-ELLIPITICAL AEROFOIL SECTION 0.1125—0,7500—1.3250
PROFILE NUMBER 10 )
FREE STREAM MACH NUMBER 0.7961

T x ¥y Cp M M, 8 /R
0.00000 —1.79929 0.00000 11687 0.0000 0.000000 1.57080  7.623522
0.01000 —1.79617 002844 10503 0.2247 7.98 1.352 7.69
0.02000 —1.79311 0.03974 0.9350 0.3194 8.21 1.261 7.78
0.03000 —1.79012 0.04807 0.8226 0.3932 8.47 1.192 7.89
0.04000 —1.78721 0.05481 0.7130  0.4564 8.77 1.133 80
0.05000 —1.78438 0.06048 0.6062 0.5130 9.10 1.082 8.16
006000 —1.78164 0.06536  0.5022 0,5649 9.47 1.0361 8.34
0.07000 —1.77899 0.06962 0.4009 0.6135 9.90 0.9937 8.55
0.08000 —1.77645 007337 0.3024 0.6594 10.38 0.9545 8.79
0.09000 —1.77400 0.07669 0.2064 0.7032 10.92 0.9177 9.07
010000 —1.77167 0.07963 01131 07454  11.52 0.8830 9.40
0.11000 —1,76944 0.08225 0.0223 0.7861 12.20 0.8500 9.78
0.12000 —1.76732 0.08459 —0.0660 0.8257 12.95 0.8185 10.21
0.13000 —1.76532 008667 —0.1518 0.8644 1376 Q7882 1070
0.14000 —1.76341 0.08854 —0.2351 09022 14.60 0.75%0 1124
0.15000 —1.76159 0.09022 —0.3161 0.9393 15.43 0.7305 11.80
0.16000 —1.75984 0.09174 —0.3947 0.9759 16.13 0.7025 12.36
0.16667 —1.75871 009268 —0.4459 1.0000 16.46 0.6841 12.68
0.17000 —1.75814 0.09314 —0.4710 1.0i20 16.55 0.6748 12,82
0.18000 —1.75644 009446 —0.5451 1.0476 16.43 0.6469 13,06
019000 —1.75466 D.09576 —0.6169 1.0830 1548 0.6183 12,91
0.20000 —1.75268 0.09713 —0.6866 11180 13.48 0.5880 1221
0.21000 —1.75023 0.09870 —0.7541 1.1529 1042 0.5544  10.86
022000 —1.74672 Q10078 —0.8195 11875 6.66 0.5163 8.884
0.23000 —1.73983 0.10441 —0.8828 {.2221 2.844 0.457 6,452
0.24000, —1.71256 0.11536 —0.9442 1.2566 0.809 . 0.322 3373
0.24333 —1.70112 0.11893 —0.9642 1.2680 1.127 0.2845 2,956
0.24667 —1,69193 0.12149 —0.9839 12795 1.182 0.2579 2.6352
0.24667 —1.65132 0.13050 —0.983% 12795 —0.5969 0.1905 0.9622
0.24333 —1.63314 0.13385 —0.9642 12680 —0.6237 017518 0.75546
0.24000 —1.61458 013701 —0.9442 1.2566 —0.59274 0.16229  0.62537
0.23667 —1.59468 0.14015 —0.9239. 1.2451 —0.545%0 0.15075  0.52968
0.23333 —1,57281 0.14334 —0.9035 1,2336 —0.49637 0.13988  0.45458
023000 —1.54863 0.14662 —0.8328 12221 —0.44782. 0.12960  0.39320
0.22000 —1.4587t 0.15692 —0.8195 11,1875 —0.32862 0.1005%  0.265015
0.21500 —1.40258 0.16219 —0.7871 1.1702 —0.284593 0.08688  0.222154
0.21000 —1.33737 0.16742 —0.7541 1.1529 —0.250195 0.07354  0.189181
0.20667 —1,28925 (.17075 —0.7318 1.1413 —0.231962 0.06486  0.171573
020333 —1,23751 0.17389 —0.7093 1.1297 —0.216932 0.05637  0.156792
0.20000 —1.18237 0.17677 —0.6866 1.1180 —0.204565 0.04807  0.144321

Tab. 7

QUASI—ELLIPTICAL AEROFOQOIL SECTION 0.1150 — 0.7500 — 1.2000
11

PROFILE NUMBER

FREE STREAM MACH NUMBER 0.8061

T x ¥ Cp M M, 6 1/R
000000 —1,80375 0.00000  1.1732  0.0000 0.000000 1.57080 10.349575
0.01000 —1.80103 0.02276 1.0566 0.2247 9.81 1.333 10.31
0.02000 —1.79830 0.03200 0.9430 0.3194 9.85 1.234 10.28
003000 —1.79556 0.038%¢  0.8322 (.3932 9.88 1.157 10.23
0.04000 —1,79280 0.04472  0.7242 0.4564 9.89 1.092 10.22
0.05000 —1.79002 0.04972 0.6190 0.5130 9.89 1.034 10.18
0.06000 —1.78721 0.05416 0.5166 0.5649 9.86 0.980 10.13
0.07000 —1.78436 0.05819 04168 0.6135 9.80 0.9303 1007
0.08000 —1.78146 0.06190  0.3197 0.6594 9.68 0.8830 9.98
0.09000 -—1.77848 0.06536  0.2252 0.7032 9.48 0.8377 9.86
0.10000 —1.7754% 0.06865 0.1332 0.7454 9.20 0.7936 9.67
0.11000 —1.77214 0.07180  0.0438 (.7861 8.30 0.7504 9.41
0.12000 —1.76868 0.07489 —0.0432 0.8257 825 0.7075 9.05
013000 —1.76490 007799 —0.1277 0.8644 7.540 0.6644 8.569
0.14000 —1.76064 0.08117 —0.2088 0.9022 6.662 0.6204 7.934
0.15000 —1.75564 0.08457 —-0.2896 (.9393 5.636 0.5748 7.138
0.16000 --1.74949 (.08835 —0.3671 0.9759 4,523 0.5265 6.187
0.16667 —1.74444 0.09116 —0.4174 1.0000 3.783 0.4932 5479
0.17000 —1,74149 0.09272 —0.4423 1.0120 3.429 0.4761 5111
0.18000 —1.73045 0.09801 —0.5152 1.0476 2,506 0.4201 4.030
0.19000 -—1.71535 0.10422 —0.5860 1.0830 1,909 0.3629 3.0776
0.20000 —1,69684 0.11068 -—0.6546 1.1180 1.7508 0.3100 2.4404
0.21000 —1.67917 0.11592 —0.7211 1.1529 21709 0.2670 22592
0,22000 —1.667i0 0,11902 --0.7855 1.1875 3944 0.2358 2,850
0.23000 —1.66180 0.12026 —0.8480 1.2221 12.96 0.21503 6.828
0.24000 —1.65932 0.12079 —0.9084 1.2566 5.726 0.1969 3.665
0:24000 —1.60196 0.13020 —-0.9084 1.2566 —0.41992 0.14875  (.48781
0.23000 —1.51504 0.14164 —0.8430 1.2221 —0.35181 0.11571 0.29898
0.22500 —1.46284 0.14732 —0.8170 1.2048 —0.30677 0.10148  0,246192
0.22000 —1,40279 015301 —0.7855 1.1875 ~-0.268263 0.08791 0.2065%6
0.21500 —1.33406 0.15864 —0.7536 1.1702 —0.236113 0.07479 0175569
0.21000 —1.25633 0,16398 —0.7211 1.1529 —0.210966 0.06205  0.152497
0.20667 —1.19960 0.16726 —0.6992 1.1413 —0.19751¢% 0.05376  0.139923
(.20333 —1.13913 0.17026 —0.6770 1.1297 —0.186621 0.04562  0.129443
0.20000 —1.07525 0.17292 —-0.6546 [1.1180 —-0.177716 003763  0.120612
0.19750 —1.02527 0.17466 --0.6376 1.1093 --0.171996 0.03175  0.114832
0.19500 —0.97373 017615 —0.6206 1.1005 —0.166792 0,02595  0.109598
019250 —0.92024 017738 —0.6033 1.0918 —0.161741 0.02023  0.104740
0.19000 —0.86498 0.17834 —0.5860 1.0830 -—0.156552 0.01457  0.100133
0.18750 —0.80795 0.17901 --0.5685 1.0742 —0.151015 0.00897  0.095701




0.19667
0.19333
0.15000
0.18750
0.18500
0.18250
0.18000
0.17750
0.17500
0.17250
0.17000
0.16667
0.16417
0.16167
0.16000
0.15833
0.15667
0.15500
0.15333
0.15167
0.15000
G.14750
0.14500
0.14250
0.14000
0.13750
0.13500
0.13250
0.13000
0.12667
0.12333
0.12000
0.11667
0.11333
0.11000
0.10500
0.10000
0.09667
0.09333
0.05000
0.08000
0.07500
0.07000
0.06152

—1.12382
—1.06211
-~0.99702
—0.94559
—0.85142
—0.83460
—0.77411
—0.70978
—0.64144
—0.56921
—0.49352
—0.38843
—0.30766
—0.22627
—0.1720%
—0.11826
—0.06494
—0.01235
0.03939
0.09017
0.139%0
0.21237
0.28219
0.34930
0.41365
047531
0.53427
0.5906%
0.64446
0.71280
0.77687
0.83710
0.89350
0.94707
0.99654
1.07061
1.13137
1.17099
1.20835
1.24360
1.33792
1.37936
L41741
1.47232

0.17934
0.18156
0.18339
0.18448
0.18532
0.18588
0.18612
0.18601

0.18550
0.18454
0.18308
0.18033
0.17765
0.17446
0.17207
0.16948
0.16671

0.16377
0.16068
0.15745
0.15410
0.14888
0.14348
0.13792
0.1322¢
0.12652
0.12074
0.11483
0.10915
0.10144
0.09384
0.08636
0.0790]

0.07185
0.06483
0.05421

0.04524
0.03931
0.03368
0.02835
0.01440
0.00872
0.00407

0.00000

—0.6636
—0.6404
—0.6169
—0.5592
—0.5813
—0.5633
—0.5451
—0.5268
—0.5084
—0.4898
—0.4710
—0.4459
—0.4268
—0.4076
—0.3947
—0.3818
—0.3688
—0.3557
—0.3426
—0.3294
—0.3161
—0.2961
—0.2759
—0.2556
—0.2351
—0.2145
—0.1937
—0.1728
—0.1518
—0.1234
—0.0948
—0.0660
—0.0368
—0.0074
0.0223
0.0674
0.1131
0.1439
0.1750
0.2064
0.3024
0.3513
0.4009
0.4866

1.1064
1.0947
1.0830
1.0742
1.0653
1.0565
1.0476
i.0388
1.0299
1.0209
1.0120
1.0000
0.9910
0.9819
0.9759
0.9698
0.9638
0.9577
0.9516
0.9455
0.9393
0.9301

0.9208
0.9115
0.9022
0.8928
0.8834
0.8739
0.8644
0.8516
0.8387
0.8257
0.8126
0.7994
0.7861
0.7659
0.7454
0.7315
0.7174
0.7032
0.6594
0.6367
0.6135
0.5725

—0.1%4071
—0.184528
—0.175035
—0.167471
—0.159361
~—0.150845
~0.142266
-—0.134089
—0.126780
~0.120706
—0.116076
—0.112246
—0.111045
—0.111135
—0.111841
—0.113004
—0.114593
—0.116573
—0.118911
—0.121577
—0.124553
—0.129552
—0.135155
—0.141347
—0.1481
—0.1553
—0.1631
—0.1714
—0.180
—0.193
—0.206
—0.221
—0.236
—0.253
—0.27%
—0.302
~~{.3348
—0.3590
—0.3851
—0.41331
—0.51296
—0.57324
—0.6425

0.03994
0.03199
0.02419
0.01842
0.01268
0.00696
0.00123

—Q.00455

—0.01038

—0.01626

—0.02220

—0.03017

—0.03616

—0.04212

—0.04608

—0.05001

—0.,05390

—0.05776

—0.06158

—0.06536

—0.06909

—0.07458

—0.07996

—0.08521

—0.0904

—0.0953

—0.1002

—0.1049

—0.109

—0.115

—0.121

—0.126

—0.131

—0.136

—0.140

—0.145

—0.1476

—0.1492

—0.1500

—0.14978

—0.14123

-—0.13015

—0.11090
0.00000

0.133612
0.124141
0.115458
0.109254
0.103269
0.097553
0.092223
3.087420
0.083267
(0.079841
0.077151
0.074688
0.073573
0.072997
0.072872
0.072924
0.073133
0.073475
0.073935
0.074491
0.075129
0.076206
0.077388
0.078617
(L0803
0.0807
0.0822
0.0833
0.084
0.085
0.085
0.084
0.083
0,080
0.076
0.067
0.0474
0.0307
0.0083
—0.021396
—0.18762
—0.35776
—0.67871

0.18500
0.18250
0.18000
0.17750
0.17500
0.17250
0.17000
0.16667
0.16417
0.16167
0.16000
0.15750
0.15500
0.15250
0.15000
0.14750
0.14500
0.14250
0.14000
0.13750
0.13500
0.13250
0.13000
0.12667
0.12333
0.12000
0.11667
0.11333
0.11000
0.10500
0.10000
0.09917
0.09833
0.09750
0.09667
0.05583
0.09500
0.09417
0.09333
0.09250
0.09167
0.09083
0.09000
0.08000
0.07500

0.07000

0.06292

—0.74816
—0.68591
—0.62068
~0.55252
—0.48145
—0.40793
—0.33255
—0.23040
--0.15354
—0.07719
—(.02687
0.04723
0.11984
0.19026
0.25839
0.32419
0.38756
0.44850
0.50703
0.56312
0.61690
0.66858
0.71785
0.78055
0.83947
0.89516
0.94741
0.99738
1.04352
1.10885
1.16866
1.17814
1.18746
1.19665
1.20576
1.21467
1.22347
1.23218
1.22074
1.24922
1.25739
1.26574
1.27385
"1.36263
1.40174
1143769
148183

0.17938
0.17942
0.17909
0.17838
0.17723
0.17563
0.17356
0.17007
016695
0.1634]
0.16084
0.15672
0.15229
0.14761

0.14272
0.13766
0.13246
0.12715
0.12177
0.11635
0.11090
0.10544
0.10001

0.09279
0.08570
0.07872
0.07193
0.06521
0.05881

0.04950
0.04076
0.03936
0.03798
0.03662
0.03527
0.03394
0.03263
0.03133
0.03006
0.02880
0.02758
0,02634
0.02514
0.01233
0.00719
0.00307
0.00000

—0.5509
—0.5331
--0.5152
—0.4972
—0.4790
—0.4607
—0.4423
—0.4174
—0.3987

—0.3798

—0.3671
—0.3479
—0.3286
—0.3092
—0.2896
—0.2699
—0.2500
—0.2300
—0.2098
—0.1895
—0.1691
—0.1434
—0.1277
—0.0998
—0.0716
—0.0432
—0.0145
0.0145
0.0438
0.0882
0.1332
0.1408
0.1484
0.1560
0.1636
0.1712
0.1789
0.1866
0.1942
0.2019
0.2097
0.2174
0.2252
0.3197
0.3679
0.4168
0.4872

1.0653
1.0565
1.0476
1.0388
1.0259
1.0209
1,0120
1.0000
0.9910
0.9819
0.9759
0.9668
0.9577
0.9485
0.9393
0.9301

©.9208
0.9115
0.9022
0.8928
0.8834
0.8739%
0.8644
0.8516
0.8387
0.83257
0.8126
0.7994
0.7861
0.7659
0.7454
0.7419
0.7384
0.7350
0.7315
0.7280
0.7245
0.7210
0.7174
0.7139
0.7103
(.7068
0.7032
0.6594
0.6367
0.6135
0.5794

—0.145095
—0.138984
—0.133028
—0,127635
—0.123164
—0.119848
—0.117775
—0.116915
—0.117554
—0.119223
—0.120808
—0.123858
—0.127631
—0.132057
—0.137088
—0.142688
—10.148824
—0.1555
—0.1627
—0.1704
—0.1786
—0.187
—0.197"
—0.210
—0.224
—0.23%
—0.256
—0.275
—0.293
—0.323
—0.3580
—0.3643
—0.3704
—0.3768
—0.3833
—0.3899
—0.3967
—0.40355
—0.41057
—0.41773
—0.42502
—0.43247
—0.44007
—{),54432
—0.60744
—0.679%

0.00340
—0.00217
—0.00775
—0.01335
—0.01898
—0.02463
—0.03031
—0.03787
—0.04351
—0.04910
—0.05280
—0.05829
—0.06370
—0.06902
—0.07425
—0.07937
—0.08438
—0.0893
—0.0941
—0.0987
—0.1032
0.108
—0.112
—0.117
—0.122
—0.327
—0.131
~0.136
—0.139
—0.144
—0.1465
—0.1468
—0.1471
—0.1474
—0.1476
—0.1477
—0.1478
—0.14788
—0.14786
—0.14778
—0.14763
—0.14741
—0.14713
—0.13647
—0.12381
—0.10174
0.00000

0.091440
0.087424
0.083769
0.080594
0.077984
0.075975
0.074552
0.073479
0.073208
0.073312
0.073557
0.074147
0.074954
0.075928
0.077025
0.078203
0.079429
0.0807
0.0819
0.0830
0.0840
0.085
0.085
0.086
0,085
0.084
0.082
0.079
0.073
0.054
0.0394
0.0350
0,0303
0.0252
0.0198
0.0141
0.0078
0.001205
—0,005936
—0.013593
—0.021828
—0.03066]
.0.040152
—0.23229
—0.43356
—0.8346




Tab. 8 Tab, 9

QUASI-ELLIPTICAL AEROQFOIL SECTION 0,1175 — 0.8000 — 1,2600 QUASL-ELLIPTICAL AEROFOIL SECTION 0.1200 — 0.7000 — 0.0600
PROFILE NUMBER i 12 PROFILE NUMBER 14
FREE STREAM MACH NUMBER 0.8159 FREE STREAM MACH NUMBER 0.825_7’
T x ¥y cp M M 8 1/R T x y €y M M, [} "R
0.00000 —1.87247 0.00000 1.1777  0.0000 0.000000 1.57080 10.022243 0.0339 —1.69040 0 0.8097 0.4188 ) 0
0.01000 —1.87026 0.02085 1.0628 0.2247 11.0 1.359 10.2 00400 —1.67783 0.00208 0.7459 Q4564 3.0632 0.21257 —4.9004
0.02000 — 1.86812 0.02907 0.9508 0.3194 11,38 1.272 10,32 0.0500 —1.65718 0.00729 0.6437  0.5130 2,3252 0.26946 —1,35505
0.03000 —1.86605 0.03508 0.8416 0.3932 11.87 1.206 10.51 0.0508 —1.65530 0.00781 0.6353 0.5175 2.27669 0.27191 —1.21974
0.04000 —1,86407 0.03939% 0,7352  0.4564 12,44 1.151 10,74 0.0517 —1.65340 Q.00835 0.6269 0.521% 2.22981 027419 ° —1,09629
0.05000 —1.86216 0.04389 0.6315 0.5130 13.10 1.103 11.02 0.053.3 —1.64952 0.00945 0.6102  (0.5307 2.14044 0.27815 —0.88019
0.06000 —1.86035 0.04730 0,5305 0.5649 13.86 1.060 11,34 0.0550 —1.64553 0.01059 05935 0.5394 205649 0.28140 —0.69846
0.07000 —1.85863 0.05023 0.4322 06135 14.75 1.020 11.73 0.0567 —1.64144 0.01178 0.5770  0.5480 1.97751 0.28405 —0.54478
0.08000 —1.85701 0.05277 0.3365 0.6594 15.80 0.984 1219 0.0583 —1.63723 001301 0.5605 0.5565 1.90307 0.28613 —0.41416
0.09000 —1.85549 0.05497 0.2433  0.7032 17.04 0.951 12.74 . 0.0600 —1.63292 0.01429 0.5441 0.5649 1.83280 0.28770 —0.30271
0.10000 —1.85408 0.05689 0.1527 Q.7454 18.52 0.920 13.40 0.0617 —1.62850 0.01560  0.5277 0.5732 1.76642 0.28887 —{3.20730
011000 —1.83279 0.05854 0.0645 0.7861 20.31 0.8912 14.20 0.0633 —1.62396 0.01695 0.5115 0.5814 1.70356 0.28966 —0.12539
012000 —1.85160 0.05997 —0.0212 (.8257 22,50 0.8639 15.20 0.0650 —1.61930 0.01834 04953 (.5896 1.64400 0.29008 —0.05494
Q13000 —1.850583 0.06119 —0,1045 0.8644 2520 0.8383 16.41 0.0675 —1.61210 0.0204% 04711 0.6016 1.56028 0.29011 0.03282
0.14000 —1.84957 0.06223 —0.1855 0.9022 28.56 0.8142 17.94 (.0700 —1.60463 0.02272 0.4471 0.6135 1.48273 0,28957 0.10314
0.15000 —1.84872 0.06311 —0.2641 0.9393 32,81 0.7912 19.89 0.0725 —1.59688 0.023505 04233  0.6252 1.41071 0.28851 0.15940
016000 —1.84799 (0.06384 —0.3404 0.9739 38.23 0.7694 22,41 0.0750 —1.58884 0.02740 0.3996 0.6367 1.34371 0.28693 0.20438
0.16667 —1.84756 0.06425 —0.3901 1.0000 42,67 0.7554 24.49 0.0800 —1.57186 0.03238 03527  0.65%4 1.22293 0.28262 0.26851
0.17000 —1.84736 0.06444 —04146 1.0120 452 0.7486 25.70 0.0850 —1.55364 0.03761 0.3065 0.6815 1.11734 027714 0.30774
018000 —1.84682 0.06492 —0.4865 1.0476 54.1 0.7286 29,90 0.0900 —1.,53413 0.04309 02608 07032 1.02459 0.27066 0,33005
0.19000 —1.84637 0.06532 —0.5562 1.0830 64.8 0.7091 353 0.1000 —1.49100 0.05471 0.1715  0.7454 0.87056 0.25556 0.34375
0.20000 —1.84599 0.06564 —0.6239 1.1130 76.5 0.6901 41.5 01100 —1,44196 0.06708 0.0845 (.7861 0.75021 0.23835 0.33552
021000 —1.84566 0.06591 —0.6894 1.1529 84.4 0.6711 46.6 0.1200 —1.38694 0.079%1 0.0000 0.8257 0.65695 0,21991 0.31799
0.22000 —1.84534 0.06616 —0.7529 1,1875 81.2 0.652 46,9 0.1300 —1,32593 0.09202 —0.0822 (.8644 0.58688 0.20070 0.29844
0.23000 —1.84496 0.06644 —0.8144 1.222% 63.0 0.631 40.1 0.1400 —1.25968 0.10572 --0.1620 0.9022 0.53867 0.18118 0.28116
0.24000 —1.84439 0.06685 —0.8740 1.2566 379 0.610 29.1 (L1500 —1.18985 (Q.11780 —0.2395 0.9393 0.51321 0.16165 0.26949
0.25000 —1.84324 006762 —0.9316 1.2910 15.88 0,581 18.63 0.1600 —1,11918 0.12863 —0.3148 0.9759 0.51508 0.14255 0.26719
0.25000 —1.83108 0.07414 —09316 1.2910 —4.145 0.433 7.249 0.1667 —1.07356 0.13489 —0.3638 1.0000 0.53516 0.13015 0.27326
0.24000 —1.82355 0.07738 —0.8740 1.2566 —4.018 0.3806 5.587 0.1700 —1.05168 0.13769 —0.3879 1.0120 0.55158 0.12406 0.27913
0.23000 -—1.81436 0.08079 —0.8144 1.2221 —2.976 0,3329 4,127 0.1800 —0.99074 0.14474 —0.4588 1.0476 0.61281 0.10614 0.30642
0.22000 —1.79972 0.08540 —0.7529 1.1875 —1.647 0,2809 27325 0.1875 —0,94765 014904 —Q.5106 10742 0.58291 0.09265 0.30876
L 021000 —1.75929 0.09518 —0.6894 1.1529 -—0.3607 0.2037 1.3026 01500 —0.93185 0.15047 —0.5276 1.0830 0.52338 (0.08785 0.29286
0.20833 —1,73705 0.09946 —0.678¢ 1.1471 —0.1784 0.1779 (.98529 0.1925 —0.91344 015204 —0.5444 1.0918 0.42836 0.08271 0.26347
0.20667 —1.69234 010661 —0.6678 1.1413 —0.11462 0.1422 }.62459 G.1956 —Q0.88961 (.{5395 —0.5612 (.1005 0.38855 0.07692 ©.22277
020500 —1.64793 0.1124]1 —0.6569 1.1355 —0.14578 0.11881 0.43082 0.1975  —0.85282 0.15664 —0.5778 1.1093 0.17945 0.06965 0.17457
0.20333 —1.61066 0.11658 —0.6460 1.1297 —0.16206 0.10461-  0.33516 0.1983  —0.83436 0.15795 —0.5833 1.1122 0.13757 0.06658 0.15763
0.20167 —1.57548 0.12008 —0.6349 1.1239¢ —0.16608( 009387 0,275680 .1992  —0.8093%9 0.15963 —0.5888 1.1151 0.09783 0.06286 0.14099
0.20000 -—1.54046 0.12321 —0.6239 1.1180 —0.164606 0.08494 0.234554 0.1995 -—0.78840 0.16093 —0.5913 1.1164 0.06000 0.13003

0.19750 —1.48649 0.12748 —0.6072 1.1093 —0.157894 0.07345  0.191551 0.2000 —0.77096 0.16199 —0.5943 1.1180 0.05758  0.05786 0.12210

01




0.19500
0.19250
0.1%000
0.18750
0.18500
0.18250
0.18000
0.17833
0.17667
0.17500
0.17333
0.17167
0.17000
0.16667
0.16417
0.16167
0.16000
0.15833
0.15667
0.15500
0.15333
0.15167
0.15000
0.14833
0.14667
0,14500
0.14333
0.14167
0.14000
.13750
0.13500
0.13230
0.13000
0.12750
0.12500
0.12250
0.12000
0.11667
0.11333
0.11000
0.10500
0.10000
0.05000
0.08000
0.07260

—1.42971
--1.36945
—1.30525
—1.23812
—1.16758
—1.09282
—1.01425
—0.95951
—0.90274
—.84395
—0.78307
—0.72035
—0.65557
—0.52224
—0.42034
—0.31842
—0.25114
—0.18486
—0.11981
—0.05613
0.00589
0.06619
0.12469
0.18143
0.23611
0.28906
0.34017
0.39007
043767
0.50524
0.57011
0.63088
0.68878
0.74415
0.79591
0.84374
0.89219
0.95223
1.00525
1.05235
1,12803
1,19259
1.30480
1.39844
1.45555

0.13137
0.13492
0.13814
0.14096
0.14339
0.14542
0.14700
0.14780
0.14838
0.14872
0.14881

0.14863
0.14818
0.14639
0.14428
0.14155
0.13941

0.13704
0.13445
0.13169
0.12875
0.12568
0.12249
0.11920
0.11584
0.11240
0.10892
0.10535
0.10185
0.09651

0.09114
0.08585
0.08058
0.07533
0.07023
0.06536
0.06028
0.05378
0.04786
0.04236
0.03320
0.02553
0.01247
0.00299
0.00000

—0.5903
—0.5733
—0.5562
—0.5390
—0.5216
—0.5041
—0.4865
—0.4746
—0.4027
—0.4508
—0.4388
—0.4267
—0.4146
—10.3901
—0.3716
—0.3530
-—0.3404
—0.3279
—0.3152
—0.3026
—0.2898
—0.2770
—0.2641
—0.2512
—0.2381
—0.2251
—0.2119
—0.1987
—0.1855
—0.1654
—0.1453
—0.1250
—0.1045
—0.0839
—0.0632
—0.0423
—0.0212

0.0071

0.0357

0.0645

0.1083

0.1527

0.2433

0.3365

0.4070

1.1005
1.0918
1.0830
1.0742
1.0653
1.0565
1.0476
1.0417
1.0358
1.0299
1.0239
1.0179
1.0120
1.0000
0.9910
0.9819
0.9759
0.9698
0.9638
0.9577
0.9516
0.9455
0.9393
0.9332
0.9270
0.9208
0.9146
0.9084
0.9022
0.8928
0.8834
0.8739
0.8644
0.8548
0.8452
0.8355
0.8257
0.8126
0.7994
0.7861
0.7659
0.7454
0.7032
0.65%4
0.6256

—0.149590
—0.141451
—0.134022
—0.127388
—0.121324
—0.115622
-—0.109997
—0.106305
—0.102712
—0.099309
—0.096208
-—0.093520
—0.09133%9
—0.088723
—0.088340
—0.089236
—0.090479
—0.09218%
—0.094322
—0.096847
—0.099732
—0.102844
—0.106453
—0.110280
—0.1144
—0.1187
-—0.1233
—0.1281
—(.1333
—0.1414
—0.150
—0.159
—0.168
—0.179
—0.189
—0,201
—0.213
—0.231
—0.249
—0.268
—0.2992
—0.3343
—0.41716
—0.52188

0.06348
0.05443
0.04607
0.03822
0.03080
0.02370
0.01685
0.01239
0.00799
0.00364
- 0.00066
—0.00493
—0.00918
—0.01756¢
—0.02375
—0.02983
—0.03381
—0.03773
—0.04138
—0.04536
—0.04507
—0.05270
—0.05626
—0.05574
—0.0631
—0.06635
—0.0697
—0.0729
—0.0760
—0.0804
—0.085
—0.089
—0.093
—0.097
-—0.100
—0.103
—0.106
—0.110
—0.113
—0.i16
—0.1178
—0.1183
—0.11109
—0.08458
0.00000

0.161657
0.139758
0.123111
0.110087
0.099601
0.090965
0.083671
0.079425
0.075622

0.072243

0.069284
0.066739
0.064602
0.061486
0.060056
0.059278
0.05%062
0.059049
0.059208
0.052509
0.059%26
0.060474
0.061016
0.061654
0.0623
0.0630
0.0637
0.0643
0.0649
0.0658
0.066
0.067
0.067
0.067
0.065
0.065
0.063
0.057
0.051
0.043
0.0222
—0.0088
—0.135133
—0.52282

02008 —0.67726 0.16692 —0.5998 1.1209 0.01256  0.04773 0.09643
0.2009 —0.60230 0.17024 —0.6006 1.1214 0.04101 0.08433
0.2008 —0.53150 0.17294 —0.5998 1.1209 —0.00760 0.03518 0.07823
0.201 —0.46940 0.17500 —0.600 1.1222 0.03120 0.07085
0.201 —0.40780 0.17678 —0.598  1.1201 0.02642 0.07103
0.200 —0.31940 0.17884 —0.596 1.1189 0.02003 0.06795
0.2000 —0.22714 0.18041 —0.5943 1.1180 —0.00760  0.01405 0.06348
01999 —0.16310 0.18118 —0.5936 1.1176 0.01006 0.06130
e

It



Tab. 10
QUASI-ELLIPTICAL AEROFOIL SECTION 0,1200—0.7500—0.000
PROFILE NUMBER 15
FREE STREAM MACH NUMBER 0.8257

T x ¥ €p M M, 0 1/R
0.0428 —17298 O Q7175  0.4725 4]
0.0500 —1.71287 0.00223 0.6437 0.5130 2.3038 0.17261 —3.2286
00508 —1.71093 0.00257 0.6353 0.5175 2.2534 0,17862 —2.8875
0.0517 —1.708%6 0.00293 0.6269 0.5219 2.2045 0.18407 —2.5917
0.0533 —1.70495 0.00370 0.6102 0.5307 2.1115 0.19365 —2.1032
0.0550 -—-1.70092 0.00451 0.5935 0.5394 2.0242 0.20165 —1.71774
0.0567 —1.69657 $.00541 0.5770  0.5480 1.9420 0.20839 —1.40714
0.0583  -—1,69221 0.00635 05605 0.5565 1.86457  0.21408 —1.15284
0.0600 —1.68773 0.00734 0.5441 0.5649 1.79147  0.21888  —0.94206
0.0617 —1.68311 0.00837 0.5277 0.5732 1.72238 0.22290 —0.76564
0.0633  —1.67837 0.00945 0.5115 0,5814 1.65702  .22626 0.61676
0.0650 —1.67350 0.01058 0.4953 0.5896 1.59500  0.22%01 —0.49047
0.0667 —1.66850 001176 0.4791 0.597¢6 1.53617  0.23125  —0.38268
00683  —-1.66336 0.01297 0.4631  (.6056 143026  0.23302 —0.29030
0.0700 -—1.65807 0.01423 0.4471 0.6135 1.42712 0.23435 —0.21092
0.0725 —1.64983 0.01619 0.4233  0.6252 1.35208 0.23570 —0.11182
0.0750 —1.64135 0.01824 0.3996 0.6367 1.28212 0.23632 —0.03216
00775 —1.63249 (.0203% 03761 0.6481 1.21702 0.23632 0.03193
0.0800 —1.62325 0.02260 0.3527 0.6594 1.15609  0.23563 0.08368
0.0850 —1.60365 0.02728 0.3065 0.6815 1.04555 0.23318 0,15853
0.0900 —1.58245 0.03228 0.2608 0.7032 0.94811 0.22911 0.20617
01000 —1.53475 0.04313 0.1715 0.7454 0.78512 0.21788 0.25087
0.1100 —1.47910 0.05503 0.0845 0,7861 0.65468 0.20340 0.25737
0.1200 —1.41447 006777 0.0000 (0.8257 0.55277  0.18639 (.24875
0.1300 —1.33982 0.08113 —0.0822 0.8644 047162  0Q.16815 0.23194
0.1400 —1.25460 0.09474 —0.1620 09022 0.40908 0.14897 0,21344
(.1500 —1.15886 0.10813 —0.2395 0.9393 0.36343  0.12914 0.19765
0.1600 —1.054i2 0.12065 —0.3148 09759 0.33166 0.10904 0.18479
01667 097977 0.12828 —0.36383 1,0000 0.31295 0.09547 0.17855
0.1700 --0.94094 0.13186 —0.3879 1.0120 0.30062 0.08862 0.17508
0.1800 —0.80573 0.14231 —0.4588 1.0476 021171 0.06629 0,14941
0.1833  —~0.74041 0.14635 —0.4820 1.0595 0.15069 0.05719 0.12902
0.1850 —0.69597 0.14879 —0.4935 1.0653 0.11497 0.05174 0.11595
0.1867 —0.63413 0.15185 —0.504% 1.0712 0.07736  0.04505 0.10096
0.1883  —-0.52990 0.15601 —0.5163 11,0771 0.03960 0.03549 0.08378
0.1892  —043000 0.15915 —0.5220 1.8000 0.02108 0.02765 0.07378
0.1896 —0.32040 0.16175 —0.5252 1.0817 © 001977 0.07024

0.06181

0.1899  —0.16470 0.16403 —0.5271 1.0827 0.00981

Tab. 11

QUASL-ELLIPTICAL AEROQOFOIL SECTION 0.1025 — 0.6750 — 1.3750

PROFILE NUMBER 13
FREE STREAM MACH NUMBER 0.7557

T x ¥ cp M M, 7 1/R
0,00000 —1.69058 0.00000 1.1510  0.0000 0.000000 1.57080 5.962550
0.01000 —1.68599 0.03897 1.0248 0,2247 5.75 1.336 © 595
0,02000 —1.68141 0.05473 0.9017 0.3194 5.79 1.239 5.94
0.03000 —1.67683 0.06656 07817 0.3932 5.85 1.163 5.94
0.04000 —1.67225 0.07630 0.6647 0.4564 |, 5.897 1.0995 5.94
0.05000 —1.66767 0.08469 0.5508 0.5130 5.946 1.0428 5.941
0.06000 —1.66310 0.09208 04398 0.5649 5,991 0.9911 5.943
0.07000 —1.65851 0.09873  0.3317 0.6135 6.028 0.9431 5944
0.08000 —1.65391 010477  0,2265 0.565%4 6.052 0.8979 5.940
0.09000 —1.64928 0,11033 01241 0. 7032 6.057 0.8550 5.929
0.10000 —1.64460 0.11550 00245 0.7454 6.034 0.8137 5.904
0.11000 —1.63984 0.12034 —0.0724 (.7361 5973 0.7737 5.858
0.12000 —1.63497 0.12492 —0.1666 0.8257 5.862 0.7347 5787
013000 —1.62993 0.12929 -—0.2582 0.8644 5.689 (1.6965 5.671
0.14000 —1.62464 0.13355 —0.3471 0.9022 5.442 0.6585 5.509
0.15000 —1.61905 0,13771 —0.4336 0.9393 5.114 0.6206 5.282
0.16000 —1.61286 0.141%95 —0.5175 0.9759 4,706 0.5823 4.991
0.16667 —1.60840 (.14481 —0.5721 1.0000 4.398 0.5565 4,760
0.17000 —1.60605 0.14625 —0.5989 1.0120 4.237 0.5436 4.633
0.18000 —1.59830 0.15072 —0.6780 1.0476 3,742 0.5039 4,225
0.19000 —1.58935 .15542 —0.7546 1.0830 3.284 0.4635 3.797
0.20000 —1.57912 0.16027 —0.82%90 1.1180 2,942 0.4226 3.402
0.21000 —1.56790 0.16505 —0.9010 1.1529 2.814 0.3832 3.1064
0.22000 —1.55664 0.16935 —0.9708 1.1875 3.006 0.3468 2.992
0.23000 —1.54660 0.17279 —1.0384 1.2221 3,580 0.3145 3111
0.24000 —1.53798 0.17546 —1.1039 1.2566 3.814 0.2863 3.130

025000 —1.52414 0.17926 —1.1672 1.2910 1.0314 0.2521 1.6930

0.25000 —1.48295 0.18874 —1.1672 1.2910 —0.3663! 0.2070 0.75233
0.24000 --1.40363 0.20334 —1.1039 1.2566 —0.42304 0.16107 0.44926
0.23000 -—1.31607 0.21597 —1.0384 1.2221 —0.35718 0.12744  0.32544
0.22500 —1.26589 0.22200 —1.0049 1.2048 —0.32686 0.11211 0.284110
0.22000 —1.21107 0.22773 —0.9708 1.1875 —0.30110 0.09740  0.2514¢6!
0.21500 --1.15159 0.23310 —0.9362 1.1702 —0.280100 0.08318 0.225478
0.21000 —1.08781 0.23797 —0.9010 1.1529 —0.263337 0.06946  0.204587
0.20500 —1.02005 0.24223 —-0.8653 1.1355 —0.249612 0.05618 0.187383
0,20000 —0.94843 024579 —0.,8290 1.1180 —0.237050 0.04329  0.172493
0.19667 —0.89843 0.24774 —0.8044 1.1064 —0.228189 0.03489 0.163222
0.19333 —0.84606 0.24935 —0.7797 1.0947 —0.218278 0.02658 0.154169

7l




0.1900

—0.03231 0.16481 —0.5276

1.0830  0.00058

0.00195

0.06021

¢.19000
0.18667
0.18333
0.18000
0.17750
0.17500
0.17250
0.17000
0.16667
0.16333
0.16000
0.15750
0.15500
0.15250
0.15000
0.14750
0.14500
0.14250
0.14000
0.13750
0.13500
0.13250
0.12000
0.12667
0.12333
0.12000
0.11667
0.11333
0.11000
0.10500
0.10000
0.09500
0.09000
0.08500
0.08000
0.07000
0.06000
0.05500
0.05000
0.04255

—0.79100 0.25059 —0.7546

—10.73255
—0.66998
—0.60268
—0.54889
—0.49222
—0.43282
—0.37098
—0.28542
—0.19766
—0.10880
—0.04222
0.02383
0.08893
0.15259
0.21513
0.27584
0.33476
0.39183
0.44699
0.50021
0.55152
0.60092
0.66387
0.72358
0.78037
0.83405
0.88490
0.93307
1.00051
1.06262
1.11930
1.17250
1.22095
1.26560
1.34448
1.4111%
1.44054
1.46746
1.50134

0.25141
0.25179
0.25162
0.25110
0.25018
0.24884
0.24703
0.24387
0.23984
0.234%6
0.23077
0.22618
0.22122
0.21594
0.21034
0.20451
0.19847
0.19225
0.185%0
0.17944
0.17289
0.16629
0.15744
0.14859
0.13974
0.13097
0.12230
0.11377
0.16125
0.08914
0.07762
0.06644
0.05598
0.04614
0.02855
0.01412
0.00830
0.00362
0.00000

—0,7293
—0.7038
—0.6780
—0.6584
—0.6388
—0.6189
— 10,5989
—0.5721
—0.5449
—0.5175
—0.4967
—0.4758
—0.4548
—0.4336
—0.4122
—0.3907
—0.3690
—0.347]
—0.3251
—0.3030
--0.2807
—0.2582
—0.2279
—0.1974
—0.1666
—0.1355
—0.1041
—0.0724
—0.0243

0.0245

0.0739

0.1241

0.1749

0.2265

0.3317

0.4398

0.4949

0.5508

0.6353

1.0830
1.0712
1.0595
1.0476
1.0388
1.0299
1.0209
1.0120
1.0000
0.9880
0.9759
0.9668
0.9577
0.9485
0.9393
0.9301
0.9208
0.9115
0.9022
0.8928
0.8834
0.8739
0.8644
0.8516
0.3387
0.8257
0.8126
0.7994
0.7861
0.7659
0.7454

0.7245

0.7032
0.6815
0.6594
0.6135
0.5649
0.5394
0.5130
0.4714

—0.207051
—0.194709
—0.181884
—0.169471
—0.160973
—0.153512
—0.14728%
—0.142407
—0.138001
—0.135869
—0.135782
—G.136902
—0.138923
—0.141754
—0.145320
—0.149557
—0.154419
—0.159866
—0.165876
—0.172426
—0.179509
—0.187111
—0.1953
—0.2070
—0.21%6
—0.233
—0.248
—0.264
—0.281
—0.309
—0.340
—0.376
—0.4156
—0.4602
—0.51079
—0.63463
—0.8010
—0.9072
—1.0348

0.01835

0.01011

0.00183
—0.00654
—0.01291
—0.01936
—0.02589
-0.03250
—0.04140
—0.05037
—0.05936
—0.06609
—0.07278
—0.07943
—0.08602
—0.09254
—0.0989%
—0.10535
—0.11163
-—0.11781
—0.12390
—0.1298%
—0.1358
—0.1435

. —0.1509

—0.158
—0.165
—0.172
—0.179
—0.188
—0.197
—0.204
—0.2100
—0.2150

' —0.21843

—0.21848
—0.20369
—0.18610
-~(.1549
0,00060

0.145239
0.136536
0.128305
0.120864
0.115972
0.111760
0.108267
0.105494
0.102864
0.101343
0.100786
0.100911
0.101436
0.102308
0:103478
0.104903
0.106546
0.108370
0.110343
0.112434
0.114613
0.116848
0.1192
0.1226
0.1243
0.130
0.129
0.132
0.133
0.134
0.131
0.125
0.1121
0.0910
0.057322
—0.07781
—0,42141
—0,7959
—1.5593
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