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On a kernel-function method for the calculation 
of the pressure distribution on a two-dimensional wing 

with harmonically oscillating control surface in subsonic flow 
by 

R. J. Zwaan 

Summary 

The method presented contains the numerical solution oithe Possio integral equation: the pressure distiibution is approximated by a series 
ofloading functions of which the coelficients are salved by collocation. Three terms in the Series are singular; their type and strength are derived 
by a consideration oithe local flow near the hinge axis. A convergence test on calculated results shows that two of them are important. A cam- 
parison with experimental results is given. This method may be extended very well to a wing of finite span. 
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specific heat ratio 
control surface deflection, (2.1) 
stretching parameter, (4.1) 
angular co-ordinate, (3.14) 



1 coefficient in inner or outer expansion, c relates to: hinge axis location 
(3.1) or (4.3) I inner region 

T ratio betweemcontrol surface chord and o outer region 
wing chord 
velocity potentials Positive directions: 

c p 3  6 
$ acceleration potential, (3.7) 
0 radial frequency 

Subscripts 
m rebtes to : free stream 

I 1 Introduction 

I Two occasions have led to the work reported here: 
a. theoretical unsteady pressure distributions were needed to compare with distributions measured on' a two- 

dimensional wing with a harmonically oscillating control surface in subsonic flow; 
b. recently the need was felt of possessing a computer programme for the calculation of pressure distributions on 

wings of finite span provided with oscillating control surfaces. In an introductory study some new ideas had 
to be checked for the limit case of a two-dimensional wing. 
These occasions effected the development of a'computer programme to calculate pressure distributions on a 

two-dimensional wing with an oscillating aerodynamically unbalanced control surface (surface rotating about its 
leading edge). 

Already years ago Timman and van de Vooren formulated an analytical method for such configurations, proceed- 
ing directly from the linearised differential equation for the acceleration potential (ref. 1). In this work the singular 
behaviour of the boundary conditions at the hinge axis was taken into account. Accurate numerical results for the 
aerodynamic wing and control surface coefficients were obtained (ref. Z), which are used for comparison in the 
present report. However, the expressions' for the pressure distribution were rather complicated and unattractive 
for programming, as ~ even more heavily weighing disadvantage ~ this method basically did not contain the pos- 
sibility to be extended to wings of finite span. 

Methods for subsonic flow that have shown a large flexibility in the application to numerous types of wing 
planform, are the kernel-function methods, based on the solution of the linearised integral equation relating the 
given normal wash at the wing and the unknown pressure distribution. For a two-dimensional wing this equation 
degenerates to the well-known Possio integral equation (see expressions (6.1) to (6.3) in this report): 

a ( x )  = - dC,(x')K(x,x'; k, M,)dx'. 

If a control surface is present a singularity occurs in the normal wash a ( x )  and, through that, also in the pressure 
distribution dC,(x). 

Two such methods have been developed in the past dealing with oscillating control surfaces. Essence of the first 
one, devised by Dietze (ref. 3), was to start from the solution for zero Mach number, given by Kiissner and Schwarz 
(ref. 4) and to apply an iterative procedure to the integral equation. Numerical results have been given in ref. 5. 
In the second method, devised by Schade (ref. 6), the pressure distribution and kernel-function were expanded in 
Legendre polynomials through which, making use of their orthogonality properties, the integral equation was 
transformed to a matrix equation for the unknown coefficients in the expansion ofdC,(x). One difference between 
both methods should be noted : in the first one the convergence of the solution for the pressure distribution is rather 
poor, especially in the neighbourhood of the hinge axis, as has been pointed out already by Karp and Weil (ref. 7). 
The convergence in the second method has been improved by including a singular term in the expansion ofdC,(x). 
Schade demonstrated by a limit process that the singularity should be logarithmic and calculated the strength of 
it, No numerical results were given by him. Although extension to wings of finite span is possible, both methods 
have been superseded by the use of modem computers. 

Recently the correctness of Schade's logarithmic term bas been confirmed by Landahl (ref. 8). He considered the 
local flow near the hinge axis by stretching the geometrical co-ordinates in the differential equation for the pressure 

At the NLR experience has been gained with the application of a kernel-function method to'. wings-without 
control surface (ref. 9). In this method the pressure distribution is approximated by a series of prescribed functions. 
The coeficients in this series are determined by collocation, i s .  by requiring that in a number of points on the wing 

. .~ . .. . potential. . .  
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the calculated normal wash should be equal to the wash derived from the vibration mode. Because of this experience 
extensions are being investigated in order to deal also with control surfaces. A combination of this method together 
with Landahl's technique seems to yield an attractive way. 

In the present report the two-dimensional wing is considered as a first step. The method discussed extends refs. 
6 and 8 in that it regards two more logarithmic terms in the series for the pressure distribution. Results are compared 
with values taken from refs. 2 and 4. A convergence test is made for a combination of high Mach number and 
reduced frequency, Finally, comparisons are made with experimental values obtained by Tijdeman and Bergh 
(ref. 10). 

2 Formulation of the problem 

~~ .~ 

An infinitely thin aerofoil of length 21 is considered, immersed in an ideal fluid that is moving with an uniform 
subsonic velocity Um far upstream in the direction of the positive x-axis. The aerofoil consists of a stationary front 
part and a control surface with hinge at x=x,l, oscillating harmonically with amplitude 6 and radial frequency o. 
In,the mean position the aerofoil has zero incidence. 

* L x  - f  

In the following considerations only dimensionless quantities will be used: lengths divided by l, velocities by Um 
and time by l/Um. The aerofoil motion is defined by 

z(x)= -6h(x)eik', (2.1) 

h(x) = (x-x,)u(x-x,) . (2.2) 
where 

u (x) represents the unit-step function and k the reduced frequency wljU,. Premise in the following considerations 
is that 6 be a small quantity, 

& < I .  (2.3) 

Assuming an isentropic non-viscous flow, it is allowed to introduce a velocity potential @(x, z, t ) .  From the con- 
tinuity equation, Bernoulli equation and equation of state a non-linear second order partial dilferential equation 
can be derived that should be satisfied by 4 (see ref. 11): 

(a' - U')4,,+ (a' - 434zz-2u4s4xz-  A t -  2(U4,,+ 4 A t )  =o 3 (2.4) 

where a denotes the local speed of sound given by , 

and where U denotes the local velocity in x-direction 

U = 1 + 4 , .  (2.6) 

The boundary conditions at  the aerofoil are dictated by the requirement that the flow be tangential to the surface: 

, 4z = -6(Uh,+ ikh)e"' = - 6[ Uu(x -x,) + ik(x -xJ u(x -x< j] eih on z = -6he"' . (2.7) 

Additional boundary conditions require that the flow should be undisturbed at infinity and that the pressure should 
be continuous at the trailing edge. The pressure coelticient depends on the velocity potential as follows. 

' .. . 

It is immediately seen from (2.7) that a singularity occurs in the boundary condition at x=x,. One may expect 
that this gives rise to a singularity in'the.pressure distribution at  the aerofoil as weil. The problem that will be 
studied in the following chapters is how to obtain a solution for the pressure distribution along the aerofoil to first 
order in 6 in which the influence of the discontinuity at  x=x,  has been fully taken into account. In order to in- 
vestigate this singular behaviour the flow in the vincinity of the hinge line will be subjected to a detailed study. 
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The pressure distribution found in this region - designated as “inner region” - will he matched afterwards with 
the distribution in the “outer region” that extends from leading to trailing edge, but excludes the small inner region 
at x=x,. 

3 Pressure distribution in outer region 

First a straight forward solution for 6 in the outer region is sought without bothering about the singularity in 
the boundary conditions at x=x<. For 4 the following asymptotic expansion, the “outer expansion”, is substituted 

$Jo(x, z, t> = 1 n‘:Y6> cpb“)(x, z, t> 2 (3.1) 

where the coefficients At), representing the orders of the corresponding solutions q$), depend on the parameter S. 
By doing this in boundary condition (2.7), S will appear explicitly as well as implicitly in the derivatives of 6. To 
remove this inconvenience primarily Taylor expansions for 6 are used to express the boundary condition in terms 
valid for z=O (it is assumed that 4 is analytic in z). Thus, the boundary condition becomes 

6% (x. 0, t) +6h6,,(x, 0, t) + .. . = - 6[(1+ #,(x, 0, t) + 6hq4,, (x, 0, t )  + ...) hxeik‘+ ikhe*‘] 
on z= -&he”‘. (3.2) 

After substitution of &, in cond. (2.7) terms of equal order are compared. Then it appears that a proper choice 
for the coefficients Ab“’ is 

(3.3) A(”) - 6” 
0 -  ’ 

The solutions 98’ can he found from a series of linear differential equations with linear boundary conditions. To 

(1’- M 2 ) ~ p b ; ~  + 9pb1Jz -2 ikM;  &+ k2 M:rpbl’ = 0 

&I= -(h,+ikh) at z = O .  

first order, Apb”=6, they read (after dividing by the time-dependent factor efk‘): 

(3.4) 

Higher order solutions will not be considered here. To first order the pressure coefficient becomes 

C g ) =  -2(9pb2+ik9pb1’). (3.5) 
Due to the antisymmetry of &’ with respect to z, the pressure jump across the aerofoil is 

’ d Cb‘,’ = Cf; (x, -0) - CyJ(x, +0) = 4(9pbY+ ikrpk”). (3.6) 
The solution of (3.4) together with the additional boundary conditions mentioned in sect. 2, has been subject of 

most studies referred to in sect. 1. It proved advantageous to introduce the acceleration potential defined by 

$pbl) = qpb~+ikqpb”. (3.7) 

$b”=O for x <  -1 and x > l .  (3.8) 

ACE) = 4$pb” . (3.9) 

$pbl’ also satisfies eq. (3.4) and simplifies the boundary condition on the x-axis to 

Moreover, the pressure jump is simply obtained by 

A solution for $,b” is conveniently found after transforming the differential equation and boundary conditions 
into an integral equation. This equation, derived at  first by Possio (see ref. 12), relates the unknown ACYJ’and the 
given normal wash at the aerofoil. The integral equation may be solved by approximating the pressure distribu- 
tion by the series expression . .  

R 

ACfJ= 1 a,h,(x) 
r=o 

(3.10) 

in which each function h , ( x )  should exhibit a singularity for x- -1 of the type 

lim E - +  (3.11) 
e-0 

and h , ( x )  should become zero for x 4  like . ’ . .  

. . Iim E+ (3.12) 
a-0 



This behaviour can be revealed in an analogous way as is discussed bere for the region near the hinge axis, by 
studying the local flow at leading an trailing edge (see ref. 8). Such a study is not pursued here and the behaviour 
of h , ( x )  at leading and trailing edge is put to be given by (3.11) and (3.12). Functions that meet these requirements 
are 

2 cos rB+cos(r+l)B 
x sin 0 

h , ( x )  = - , r=O,l ,  ..., R (3.13) 

where 8 is an angular co-ordinate, given by 

cos 0 = - x  . (3.14) 

The first three functions are shown in fig. 1. After substitution of (3.10) in the integral equation the unknown coef- 
ficients a!’) may be solved by some collocation procedure. Details about the integral equation and the collocation 
procedure are not given here’with reference to sect. 6. 

It is important to realise that all functions h , ( x )  are continuous at x = x , ,  so that they are potentially unfit for 
approximating the singular behaviour of the pressure distribution with a finite (and preferably small) number R. 
However, to the series (3.10) other functions may be added that are singular itselves or in its derivatives at  x=x,, 
but otherwise do not violate the behaviour as’expressed by (3.11) and (3.12). This means that the singularity at  the 
leading edge may not be stronger than E - *  as 8-0 and the exponent of E at the trailing edge may not be less than 
4. Such functions are : 

L o =  ? i n /  i-COs(e+o,) 
x 1-cos(8-8,) ’ 

(3.15) 

(3.16) 

(3.17) 

These functions have been drawn in fig. 2 for r=0.25. They have been taken from the analytic solution of $bl’ for 
M,=O, which has been derived by Kussner and Scbwarz (ref. 4). Of course also other functions with singularities 
at x = x ,  and satisfying the above requirements may be added. 

, 
Allowing for the singular terms, the pressure distribution can be written as 

R 
ACbl,’ = a ,h ; (x )  +a,,Lo (x, x,) +a,, I., (x, x,) +a,, L ,  (x, x,) + . . . (3.18) 

The coefficients a,,, a,, and a,, are unknown as yet, but should be determined after matching ACiJ with the pressure 
distribution in the inner region. 

4 Pressure distribution in inner region 

,=0 

In order to study the local flow in the vicinity of the hinge line at x=x,, the x -  and z-co-ordinate are stretched 
using a stretching parameter E: 

This proceeding pushes away the influence of leading and trailing edge on the local flow a t  the hinge line. To obtain 
a well-posed inner problem the velocity potential should be transformed simultaneously 

4.= - .  4 ’  
E 

(4.2) 

Like for the outer region an “inner expansion” is introduced for &: . ,  

&(x, Zir t )  = 21“’(6, E )  pPl“’(x, zi, t )  (4.3) 

and substituted in eq. (2.4) and cond. (3.2) (also in this case the boundary condition for x >x, or x i  20 may be 
expressed in terms valid for zi=O as the control surface deflection 6 has not been changed under the stretching of 
x and z) .  Examination of the boundary condition reveals that a proper choice for the coefficients is 

p = 6 ,  4 2 ’ = S E ,  4”’=6&*, 4 4 ’ = 6 2 ,  etc. (4.4) 
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To first order in 6 the following series of linear differential equations with corresponding boundary conditions are 
found : 

order A{’): 

(4.7) 

The additional boundary conditions mentioned in sect. 2 are not relevant here, as they belong completely to the 
outer region. 

The pressure coefficient, expressed in inner variables, becomes to first order 

(1) - C“0’ +&CU ”+&2 C“2’ 
CP, - P I  Pi P1 I 

where: Cgo’= -2q!: ! ,  

C;”= -2(cp!;,)+ikq!”), 

Cg2’ = - 2 (qPg) + ikq!”) . 
The pressure jump across the aerofoil is defined analogous to (3.6): 

ACi’= C:)(xi, -0 ) -C: ) (x i ,  +0) = - 2 d ” ( x .  Pi ’3 +0) . (4.9) 

The solutions of (4.5) to (4.7) are not given here, but reference is made to appendix A for details. When these solu- 
tions are substituted in (4.9) the pressure distribution appears to be 

1 A C E )  = A C ~ O ’ + , ~ C ~ : ’ J + ~ ~ A C ~ ~ ; + P ( ~ J  

4 
In bit where: ACEo’ = -- 

n B m  

(4.10) 

with P m = m 2 .  P“) represents a set of regular eigensolutions of all kinds of order; besides 1, E and E’ also 
In E ,  E In ~,etc .  may occur. Some oftheseeigensolutionsmay bedeterminedafter matching with the pressure distribu- 
tion in the outer region. 

5 Matching procedure 

The outer expansion (3.17) shall be matched with the inner expansion (4.10) according to the limit matching 
principle, stating : 

‘the outer limit of the inner expansion= the inner limit of the outer expansion. 

(for a discussion of this principle, see ref. 13). 
The inner limit of the outer expansion as x-+x,, is: 
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4 
, , h l x - x , l  - - a , , ( x - x , ) I n I x - x , l -  ACFJ- - ~a 

4 
7I 7I 

4 

n,- 
- - a , , ( ~ - x , ) ~ I n  Ix-x,l+regular terms in x .  (5.1) 

The outer limit of the inner expansion as Ix i ( -+oo,  is: 

4ik 2 - M i  k2 2+7M:-6M: 
In I x < ~ - E -  __ x i  In Ix,(+e2- x f  In (xil+regular terms in x i  

4 A c t )  - - - 
X B ,  .P, B’, nB, 84, 

4ik 2-M: k’ 2+7M;-6M: In Jx-x , (  - - __ ( x  - x J  In Jx -x,I + - (x-x.)’ In (x-x, l+ 
4 --- 

nD, zBm B’, n B m  6: 

+regular terms in x .  (5.4 
Comparison of (5.1) and (5.2) reveals that 

The.above matching principle has only applied to the terms that are singular or have singular derivatives as x-x,. 
When this principle is also applied to terms that are regular in x as x - + x , ,  some unknown eigensolutions in the 
inner region (see (4.10)) may be determined. Because they play no role furthermore, they will not he investigated. 

Thus, the Final result of the matching procedure is that the pressure distribution along the aerofoil can be re- 
presented to order 6 by the series 

1 2 - M i  2+7M:-6M: 
A C P = 6 A C Y ’ = 6  [ s O a , h r  + - L,+ikT L , - k 2  

B, B, 482 
in which full allowance has been made for the profile discontinuity a t  the hinge axis. 

6 Determination of the matched pressure distribution 

6.1 Discussion of integral equation 
The Possio integral equation, already mentioned in sect. 3, reads 

A C , ( X ‘ )  K ( x ,  x ’ ;  k, M,)dx’ 

where the normal wash a is given by 

a ( x ) =  - 6  - + ikh = - 6 ( u ( x - x , ) + i k ( x - x , ) u ( x - x , ) ) ,  (;: 1 
and the kernel-function K is given by 

This equation has been derived in ref. 12. The unknown pressure distribution A C ,  is approximated by the series 
expression (5.6). 

Thus, the solution of the pressure distribution involves the determination of the coellicients a,. Rearranging terms, 
eq. (6.1) can be written as (per unit 6) 
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+ k2 L2(x') K(x,x'; k, M,)dx'= 

1 R  1 

4n,=, 
= - a,$ h,(x')K(x,x'; k, M,)dx' (6.4) 

The left hand side of this equation, a,(x), represents a modified normal wash that is smoothly distributed from lead- 
ing to trailing edge. In this way the dificulties have been removed in approximating the pressure distribution by 
functions h,, that were due to the discontinuous distribution of the normal wash ~ ( x ) .  

The kernel-function is singular for x'--rx. In the integration procedure it is convenient to separate the singular 
parts, being 8, 

2(x -x') ' (6.5) K,, = - - 

k K,, = i - In 1x -x'I 
28, 
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The functions gz,, gzz, gz3 and f2, are calculated numerically using a trapezoidal rule; the inner integral in K, is 
calculated analytically after approximating the Hankel function by a polynomial. The remaining functions in (6.9) 
can be calculated analytically; results are given in appendix B. 

6.2 Collocation procedure 

aerofoil, of which the location is given by 
The unknown coefficients a, in eq. (6.8) are determined by a collocation procedure: in R +  1 points x = x p  on the 

p=0,  1, ..., R ,  W P +  1) xp = -cos 
2R+3 ' 

(6.10) 

the modified normal wash is calculated (right hand side of (6.8)) and put equal to the prescribed wash (left hand side 
of (6.8)). In this way a set of R +  I linear algebraic equations for a ,  is formed which can be represented in matrix 
notation : 

(6.11) 

Then, the coeflicients a,  are easily solved: 

{a , }  = [ D ] -  ' {4na,} . (6.12) 

A useful alternative to improve the accuracy of the a,'s is the application of a least squares method (refs. 14 and 
15) or a variational method (refs. 16 and 17). The latter can be reduced to a collocation method as described above 
with an optimum location of the collocation points as given by (6.10). 

6.3 Calculation of pressure distributions and aerodynamic coeflcients 
Once the coeflicients a, are known, the pressure distribution is readily calculated from (5.6). 
Other aerodynamic quantities of interest are the wing lift and moment coefficient and the hinge moment coef- 

ficient. They will be defined here according to the notation introduced by Kiissner : 

(6.13) 

dC~)(x+0.25)dx, (about +-chord point) (6.14) m , =  -J 1 '  
2n - 1  

All three coefficients can be expressed in analytical forms, see appendix C. 

7 Applications 

7.1 Comparison with results for incompressibleflow 
In ref. 4 Kussner and Schwarz have given an analytical solution of the first order problem in case of incom- 

pressible flow. Their results for the pressure distribution should be exactly the same as the results obtained with 
the present method for R=2. In the following table the coefficients a,  in the pressure series as well as the wing 
and control surface coefficients have been compared for r=0.25 and k = l .  

~~ 

M=O 
k = l  

Kiissner/Schwarz Present method 

+0.55291 + 1.79722i +0.55286 t 1.79720i 
+ 0. I7 122 -2.09435i +0.17115 - 2.0943li 
-0.26180 0 -0.26170 0 
+0.65841 +0.29642i +0.65839 +0.29640i 
f0.37763 +0.33333i ~ 0 . 3 7 7 6 4  +0.33332i 
+0.02631 + 0.041 55i +0.02631 + 0.041 55i 
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The values obtained with the present method did not change after increasing the accuracy of the integrations in 

The agreement of the above values is satisfactory. 
(6.9). 

7.2 Convergence test and comparison with results for compressibleflow 
To get an idea of the effectiviness of the logarithmic terms in the pressure series a convergence test has been made 

on the wing and contro1,surface coefficients for z=O.3, M, =0.8 and k=0.9. The procedure is that the logarithmic 
terms have been addedsuccessively to the pressure series, as in each stage the value of R has been increased from 
2 to 14 by steps of 2. The results should be compared with “exact” values, i t .  values corresponding to such large 
R that an increase ofit has no influence on the coefficients any more. In the test this value ofR has not, been pursued 
in order to avoid a lengthy computational labour, but the “exact” coeflicients have been estimated by taking the 
mean values for R = 10, 12 and 14 with all logarithmic terms included in the pressure series. The convergence 
test is presented in table 1. The accuracy of the coeficients is indicated by asterisks: one asterisk marks that the 
signed values and also those for higher R are accurate within 1% of the modulus of the “exact” values, two asterisks 
mark an accuracy of 

a. a’satisfactory convergence is only obtained by including the first two logarithmic terms in the pressure series; 
b. the influence ef the third logarithmic term on the convergence may be neglected. 

TO illustrate the effectiveness of the logarithmic terms the original normal wash as well as the wash modified by 
successively adding the terms to the pressure series, have been depicted in fig. 3. They show that the discontinuity 
in the slope of Im (a,) has been completely removed after adding the term a,,&. 

Another illustrationofthe influence ofthe logarithmic terms is given in fig. 4 by the pressuredistributions for R=8. 
The mutual differences between the distributions 1, 2 and (3,4) are not negligible as those between 3 and 4 are to 
small to be drawn in the figure. 

Although the procedure in this test may be somewhat rough, nevertheless two facts can be observed: 

In the following table the “exact” values are compared with coefficients given in ref. 2 :  

M ~ 0 . 8  Timman/van de Vooren Present method 
k=0.9 

k, 0.48031 -0.08675 0.47953 -0.08752i 
m. 0.65482 -0.06814i 0.65478 -0.067761 
n, 0.09313 0.07388i 0.09319 0.07379i 

The agreement is satisfacotry 

7.3 Comparison with experimental results for compressibleJ7ow. 
In ref. 10 Tijdeman and Bergh have given measured pressure distributions and aerodynamic coeficients for a 

wing-control surface system in subsonic flow. Control surface chord was 25% and wing thickness 6%. The experi- 
mental results cover a large number of Mach numbers and reduced frequencies. 

In fig. 5 the measured coefficients have been compared with those calculated with the present method for a 
radial frequency o = 150 cps. A striking feature is that the qualitative agreement - even to high Mach numbers - 
appears to he rather good : both experimental and theoretical k,- and m,-values show a rapid decrease, the theoretical 
one lagging about 0.05 in Mach number. The aecreases in the imaginary parts of nr coincide, however. 

An analysis of this feature may be given after considering the corresponding pressure distributions in fig. 6. 
The greater part of this figure has been taken from ref. 10. When the free stream Mach number exceeds the critical 
Mach number M, =0.85, a supersonic region appears at about 40% of the wing chord. As easily can be observed 
from the distributions of local Mach numbers, the average M,-values relating to the flow patterns which are still 
subsonic or to those which contain only small supersonic regions, are higher than the corresponding values of M,. 
Considering M, =0.8,0.825,0.85 and 0.875, an estimate of this difference yields about 0.05 in Mach number. This 
means that it should be fair to compare the measured distribution for M, =0.8 with the calculated one for M, = 
0.85, and so on. Indeed, on this basis the agreement is qualitatively good. 

An analogous difference in Mach number does not appear in the n,-distribution, because the average M,-values 
over the control surface are nearly equal to the corresponding &-values. 

, 
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8 Concluding remarks 

1.  the results of the convergence test indicate clearly that the presence of the logarithmic loading functions Lo 
and L ,  in the approximating pressure series is necessary to assure a satisfactory convergence rate of the pressure 
distribution as the number of “regular”1oading functions is increased. In the example given, i.e. for 7=0.3, M,=O.X 
and k=0.9, already four regular loading functions provide for an accuracy of 1% and ten functions for an accuracy 
of For a combination of both low M,- and k-values a smaller number of loading functions may be needed. 
The influence of L, on the convergence rate is small. 

It is expected that analogous results are found when the present method is extended to a wing of finite span. Of 
course then, additional loading functions should be included in the pressure series to treat the discontinuities in 
the boundary conditions at the control surface side edges. 
2. Calculated and experimental results show a good qualitative agreement up to the lower transonic Mach numbers 
where a small supersonic region is present. The influence of the mean flow field on the unsteady pressure distribution 
at  the higher Mach numbers, explained in ref. 10, is not considered in the present method, but can be roughly taken 
into account by introducing an average Mach number for which the calculations are to be performed. The theory 
should be improved if also characteristics of the mean flow field could be considered, e.g. in a way as has been 
pointed out in ref. 18. , 
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APPENDIX A 

Determination of the inner solution 

The determination of the inner solution involves the solution of a series of linear boundary value problems of 
which the first three have been given in (4.5) to (4.7). As the boundary conditions are elementary the method of 
conformal transformations may be used to obtain the desired solutions. 

First the x,-co-ordinate is transformed like 

which makes the differential equations of the Laplace type. Then, problems (4.5) to (4.7) become 

11) (1) = 0 
'pix,?, + ' p i Z ~ = ,  

'p(zf(= -u(xj)  at zi=O ; 

'p\:)= 0 at q = O .  J 
1 Solution of pi'! 

A conformal transformation is applied to a uniform parallel flow as indicated in the following figure. 

Thus, the complex velocity potential @:I) becomes 

( A 4  @!I)=  ~ ~ (ye id )n / ln td l ,  

After expanding (AS) asymptotically to S ,  the following expression for the velocity potential 'p!" is found : 

'ppjv= - - '[.xi 7l 1- In(Zf+zf)+ ( A 4  

2 Solution of p!ZJ 

A particular solution making eq. (A.3) homogeneous and satisfying the zero boundary condition at z,=O is 

The boundary value problem for the remaining part of 'ppj2J, 

'pi21) = 'pi  12)  -'pp, 
becomes : 

(21) + ' p w ~  0 
'pir,*, ljljl 

'p:'"= - ika,SZiu(Zj )  at zi=O. 

Its solution may be found using the conformal transformation 



(A.10) 

(A.11) 

The only solution is a particular solution making eq. (A.4) homogeneous and satisfying the zero boundary con- 
dition at zi=O: 

APPENDIX B 

Analytic expressions for some integrals in (6.9) 

S o i = W w Q  

g1 = -4i - [(l + 2 In 2) sin e,+ 2(cOs 0,- cos s)Q] 

goz=2~,[sin 0,-2(cos &cos SJQ] 

g, ,=2i - [ s1n~,cos8- (~+ln2)s in8 ,cos~ , - (cos8 , -cos  O)'Q] 

go3 =+flB, [sin 8,(3 COS e,-2 COS O ) + ~ ( C O S   COS qzQ] 

g,3 = i - [ -&1+ 6 In 2) sin 38,-&(1+ 2 In 2) sin e,-$ sin 0, cos 2 0 t  

k 
B, 

k .  
8, 

k 
28, 

++sin 28, COS 8 - t  sin 20, cos S,-$(cos 8,-cos e)"] 

where 

sin rO+sin (r+ 1)e 
sin 0 f o p  = -28, 

r > O  
r+ 1 

r = O  
f i r  = 



14 

APPENDIX C 

Analytic expressions for wing lift and moment coeflicient and hinge moment coefficient 

1 k, = - [u,+~u,, sin &+a,, sin 0, COS ec+fu,, sin e,(1+2 cos2 e,)] 
R 

2 mc= - { - ~ n k , + ~ ( ~ ~ - a ~ ) + ~ u ~ , s i n ~ , ( 2 - ~ o s B , ) - ~ u ~ , s i n B , ( C o s ~ 8 , - 3 c o s 8 , - 1 ) $  
R 

++a,, sin  cos 0,)][(1+2 C O S ~ O J - C O S ~ O J  

OR cos B,-zsm 4 ’ 3  O,)]a,+ 

. .  
R 

I+ sin(r+l)O, sin re, sin(r-l)8, + - -__ 
r + l  r r - l  

R 
++uco[ ( l  - ; , ) s m ~ . ( ~ - c o s ~ ~  e .  + 

11 

+uc,[+ (1 - g) sin 6’,[(++& cos 8,)(1+2 cos2 Oc) -cos3 OC] + 

+ - (sin’e, COS e,+) sinZ 

R 

I1 1 .  
211 

sin20, cos’8,) 

where: 

+2u, (I - !$)sin t),+a,,[b -:)sin  cos e, + R 

11 1 .  
n 8,(1 f 2  coszB,) + - sin’8, cos 0, 
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TABLE I: Convergence test on wing and control surface coeficients for r=0.3, M,=0.8, k=0.9. 

k, 2 
4 
6 
8 

10 
12 
14 

m, 2 
4 
6 
8 

10 
I 2  
14 

ne 2 
4 
6 
8 

10 
I 2  
14 

0.32592 -0.12223 
0.46250 -0.08047 
0.51526 -0.10330 
0.54602 -0.12061 
0.45324 -0,07594 
0.48015 -0.08754 
0.50129 -0.09770 

0.61872 -0.13671 
0.64831 -0.08349 
0.70070 -0.05571 
0.73359 -0.03819 
0.62265 -0.07868 
0.65634 -0.06895 
0.68166 -0.05975 

0.12179 0.01880 
0.09837 0.06974 
0.08591 0.08094 
0.08251 0.08433 
0.l0051 0.06915 
009258 007415 
0.08828 0.07749 

0.46913 
0.48461 
0.48151 
0.47430 
0.47942 
0.48040 
0.47929 

0.78763 
0.65399 
0.64955 
0.65830 
0.65517 
0.65346 
0.65406 

0.09960 
0.09050 
0.09357 
0.09525 
0.09292 
0.09280 
0.09329 

-0.20817 
-0.07700 
-0.08281 
-0.09814 
-0.08733- 
- 0.085 I 4  
-0.08750** 

-0.05082 
-0,04739 
-0.06381 
- 0.08 17 1 
-0.06706 
-0.06488. 
'0.06812 

0.04934 
0.06631 
0.07359 
0.07654 
0.07303. 
0.07298 
0.07386" 

0.44840 
0.47507 
0.48088 
0.47999 
0.47928 
0.47959 
0.47975 

0.66651 
0.65369 
0.65688 
0.65491 
0.65414 
0.65479 
065495 

0.10181 
0.09408 
0.09285 
0.09340' 
0.09336 
0.09320 
0.09318 

-0.11586 
-0.08." 
-0.08830 
-0.08761** 
-0.138720 
-0.08758 
-0.08761 

-0.07957 
-0.07282. 
-0,06774 
-0.06725. 
-0.06783'' 
-0.06798 
-0.06776 

0.04617 
0.07267' 
0.07421 
0.07372 
0.07370** 
0.07384 
0.07380 

0.39679 
0.47929 
0.47938 
0.47953 
0.47989 
0.47964 
0.47949 

0.76725 
0.65819 
0.65355 
0.65471 
0.65500 
0.65476 
0.65459 

0.08134 
0.09263 
0.09358 
0.09315 
0.09311 
0.09323 
0.09324 

\ 

-0.15663 
-0.08913- 
- 0.087 1.5.. 
- 0,08753 *) 
-0.08752 
-0.08756 
-0.08748 

-0.14594 

-0.06772 
-0.06806'*+) 
-0.06760 
-0,06783 
-006786 

0.07139 
0.07152 
0.07380**') 
0.07388"') 
0.07379 
0.07381 
0.07377 

-0.06513* 

* accuracy: 1% ** accuracy: *)  One collocation point nearly coincides with x,=0.50. 

-X 

Fig. 1. Approximating functions h,(x).  

Fig. 2. Approximating functions Lo. L, and L,. -01) 

- X  
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Fig. 3. Distribution of normal wash over wing chord in different approximations. 

Fiz. 4. Pressure distributions over wing chard in different approximations. 

Fig. 5,'Aerodynamic coefficients us. Mach number. 
-. . .. 
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i 
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physical co-ordinates of wing 

OL local angle of attack 
p compressibility factor 
D1,P2 quantities used in evaluating the chordwise 

5 
q 
$ 
4 
8 
v 
2. index of integration points 

integration 
x co-ordinate non-dimensionalized by s 
y co-ordinate non-dimensionalized by s 
angular co-ordinate in chordwise direction 
value of $ in pivotal points 
angular co-ordinate in spanwise direction 
index of spanwise co-ordinate of pivotal points 

A } coeficients defining rounding (fig. 3) 
4 . 2  

F, spanwise function 
H, chordwise integral 
E, regularized kernel function 
I ,  

K kernel function 
Ki.2 measure for radius of curvature of wing edges 
H,,* local slope of wing edges 
R number of chordwise functions - 1 
T, Chebyshev polynomial of order r 

auxiliary wing co-ordinates Y 
M ,  Mach number of free stream 
,I number of integration points in spanwise direc- 

tion 

integral occurring in chordwise integration pro- 
cedure 

I 1 Introduction 

One of the most important problems of aerodynamics is the calculation of the lift-distribution over a wing of 
arbitrary planform. It is therefore not surprising that famous names in aerodynamics are connected with the study 
of this problem. 

One of the first solutions was given by Prandtl, when he developed his so-called “lifting line” theory. In this 
theory the lift on a wing is represented by a hound vortex, the strength of which is a function of the spanwise co- 
ordinate, followed by a trailing vortex sheet. The theory leads to  a singular integral equation, which was solved by 
a collocation method. 

Although a tremendous number of papers all based on this theory was produced, no real approach to a more 
satisfactory description of the pressure distribution over a wing was made, until “lifting surface” theory was used. 
The most successful method for the evaluation of this theory is due to Multhopp (ref. 1). In this method the pressure 
distribution over a wing is represented by means of trigonometric series; the,chordwise distribution is based on 
a series, which had turned out to be suitable for two-dimensional thin wings with arbitrary camber, while the 
spanwise distribution is given hy a sine series. The coefficients of these series are found by using a collocation 
technique, starting from the appropriate integral equation and applying the boundary condition at  a number of 
pivotal points distributed over the wing in spanwise and chordwise direction. Originally it was thought sufficient 
to use two’functions in the chordwise direction and up.to’ 15 stations in spanwise direction. Although it is true 
that this may give a fair indication for wings with small sweep and camber, it was found later that there are examples 
of inaccurate results due to this limitation, especially for the center of pressure line. This has resulted in attempts 
to perform calculations with more than two functions in chordwise direction. One such an attempt is the subject 
of ref. 2, which presents a modification of Multhopp’s method with a view to the application of digital computers. 
During recent years computations have been made, using this method, especially with the objective to obtain an 
insight into the requirements for an accurate solution. 

These computations show that for a given number of spanwise stations and for different numbers of chordwise 
points there exist very strong variations in the results which do not decrease as the number of chordwise points 
is increased. Moreover the deviation between the different results becomes worse when increasing either aspect 
ratio or sweep of the wing. 

Considering the method used in these computations, there are at  least three reasons which m a y  explain this 
phenomenon. 

In the first place it had been observed that the spanwise integrand is not completely regular for all values of the 
spanwise co-ordinate. This must lead to serious difficulties in trying to represent this function by a polynomial. 

The two other reasons are connected with the fact that occur in the Multhopp method. The spanwise integrand 
consisting of the product of the pressure series coefficient and the spanwise influence function is represented by 
a single trigonometric polynomial. After integration of this polynomial, it isnot possible to judge from the results 
whether the representation of the pressure series coefficients or the accuracy of the integral gives rise to poor results. 
‘This makes it difficult to investigate the separate influence of each. 
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Since the need for more accurate methods for calculating wing characteristics is growing rapidly, it is quite 

obvious that the results, described above, have given rise to a search for more reliable methods for computing 
the lift distribution over a thin wing both in this country and abroad. 

=The first requirement that should he met is the achievement of an accurate integrati0.n: This can be accomplished 
by regularizing the spanwise integrand and by using an integration scheme that is independent. of the number of 
pivotal points. Such a method would avoid the errors due to the singularity of the integrand mentioned above 
and would allow the separate study of the two efFects of representation and integration. Now of course this can be 
done in a number of ways, each having its own pitfalls. 

The method which will bedescribed is the result of a development in which several schemes were tried and rejected, 
until at last one remained for which all major difficulties seemed to he resolved. 

In essence the method is still closely connected with Multhopp's method because Multhopp's interpolation 
polynomials have been applied both for the representation of the pressure series coefficients in spanwise direction 
and as an aid for the determination of the spanwise integrals. 

It differs from Multhopp's method with respect to the regularization of the spanwise integrand and with regard 
to the determination of the spanwise integrals, which has been made independent of the number of pivotal stations. 
Moreover a sufficient accuiacy of the chordwise integrals is guaranteed. 

Due to the time-consuming character of the computer operations required by these measures, special attention 
has been given to the optimization of the programme. A remarkable saving of computer time has been obtained by 
using rather simple methods. 

In the meantime some of the essential features ofthe present method have been applied by van de Vooren to some 
problems connected with the calculation of T-tails (ref. 4). 

The present report gives an outline of the method and discusses and analyses the specific characteristics of the 
results which can be obtained. 

A detailed derivation of the necessary formulae has been given in appendix A, while in appendix B'the features 
of the chordwise integration have been described. The computer programme, written in ALGOL, together with 
general purpose input and output programmes will be presented in a separate report. 

2 An outline of the method 

As usual in lifting surface theory, the wing is assumed to be thin and to deviate so slightly from the z=O plane 
that the boundary conditions can he applied at points in the projection of the wing onto this plane (see fig. 1 for 
the definition of the co-ordinate system). From the linearized potential equation for compressible flow , 

. .  . .  

.* 824Lx+%,+4,,=0 (2.1) 

it can be derived (see ref. 4) that the following representation is valid for the local angle of incidence in terms of 
the pressure distribution Ac, over the wing: 

Acp(x', y ' )K(x ,y ;  x',y')dx'dy' 

in which s denotes the semi-span, xl(y') and x,(y') are the equations for respectives the leading edge and the trailing 
edge, and where K is given by 

(x - X')Z + B'(y - y')Z x--x' 1 K ( x , J J ; x ' , ~ ' )  = __ - l  [ I + ;  
(Y - Y'IZ 

Since the problem to he solved is the determination of the unknown Acp for given values of a, eq. (2.3) is a highly 
singular integral equation'. By making a number of appropriate assumptions, the solution of this integral equation 
can be reduced to the solution of a system of linear equations. 

As is common in lifting surface theory, it is assumed that Ac, cag he represented hy the following formula 

To give a sense to this equation, some kind oiregularizing process has to be applied, e.& 

(2.4) 
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where instead,of x and y the following dimensionless quantities are used 

< = -  X v = -  Y 
S S 

and 

The quantity l(v') is the local chord. 
According to Laschka (ref, 5) the functions h, have been chosen as follows 

I T,(l-2x')+T,+,(1-2x') 
J2jcFj 

h , ( X )  = - n ! 

! 

I 
I 

where T, is a Chebysev polynomial of order r. 
. .  . .  By introducing the angular co-ordinate $ defined by 

l -cos$ x'= 
2 I 

the functions h, can be written as 
2r+1 

cos __ $ 
2 2 

A,($) = - n 
sin - 

2 
IL 

By eqs (2.4), (2.5) and (2.6) the integral equation (2.2) can be written as follows 

where the bar through the integral sign denotes the principal value according to Mangler (see note and ref. 1) 
and where H, is given by x - X '  

(2.11) ldX,. 5: [ J  +7')' 

HA<, v ; q') = h,(X')  1 + 
82s' 

(X-x')'+ -(q-q')' 

To allow for the fact that the integrand of eq. (2.10) contains a logarithmic singularity, this equation can be rewritten 

I where 

(2.13) 

So far the analysis is identical to that of Multhopp, at least in principle: from here on however a different way 
will he followed, which, although being more tedious, is also more flexible. 

F , = H , ( L ~ ;  v ' )+  - ( q - q ' ) ' ~ n ~ v - v , ~ r ~ ( q , = i l ) ] .  P'S' 

l ( v Y  

First it is assumed that the functions a,(q') can be represented by a trigonometric interpolation formula 
m I m  

a h ' )  = m+l a,(q.) sin pf?' sin p8. 
n= I p =  1 

(2.15) nn 
m+l' where = -cos 8 and 8. = ~ 

When this is inserted in equation (2.12) one obtains 

(2.9) 

(2.10) 

m DI 

(@'=e) C a&) .E sin p0" 0-cos 0') sin p f f  sin Wd8' . (2.16) 2 P's' dh, 
+f,?om+lipdX' " = I  p= 1 
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When considering this equation, it will be clear that, if in a number of N points on the wing the quantities a( [ ,  q)  
are given, with N z m ( R +  I), and provided the integrals can be determined, a sysiem of linear equations for the 
unknowns a&) is the result. This system may be sshed-by using = _ ~ _  a least squares technique. In general the solution 
for given m and R will depend on the number N and the positions of tke~ collocation points, while moreover the 
accuracy of the integrals will play an important role. 

The attention will be focussed on the latter point first. Instead of the function F,, a new function 17, is constructed. 

3F, 
all 

JF.(c, q ; 8') - F,([, q ; e) - (cos O- cos W )  (B' = e) sin 8') 
(2.17) 

(cos 0-cos e.)' m, v ;  8') = 

The introduction of this function is of essential importance because the determination of the spanwise integral by 
using interpolation polynomials can only be achieved with suficient accuracy if the integrand is completely regular. 
The fact that Multhopp considered the function F, instead of E, may be one of the.reasons for the difficulties that 
arise when it is tried to get a plausible solution using his method. When the function ffr itself is written as a sum 
of trigonometric terms, the resulting integrals can be determined, and provided the number ofterms used to  represent 
g, is suficiently large a good result for the first integral in eq. (2.16) is obtained. In the present case the number 
chosen is a(m+ 1)- 1, a being an integer. Using eq. (2.16) together with eq. (2.17) and evaluating the integrals in- 
volved, the following algebraic relation is found (< and q are replaced now by cp and q") 

(2.18) 

The detailed derivation of the quantities occurring in this formula, is given in Appendix A. The meaning of the 
abbreviations y, 6, [ and S is summarized in table 1. Special care has to be taken in those cases where @,=fly, since 
the calculation of the function g, is not trivial then (see also Appendix A). 

By specifying the points ( E , ,  qV) eq. (2.18) becomes a system of linear equations. In the present investigation the 
points [, are chosen in the usual way, such that 

2(p+l)n 
2 R + 3  

2 

I-cos 
p=O,1,2 ,_.., R x, = (2.19) 

while the stations 7" can be chosen arbitrarily. In the following section the numerical evaluation of eq. (2.18) will 
be discussed. 

3 The numerical evaluation'of the method 
. .  

In order to obtain a solution ofeq. (2.18) it is necessary to calculate the functions Br(<,, 0,; e,), F,(t,,, 0 ; 8,) and 

$(<,R,; eA). As is evident from eq. (2.13) the real problem here is to investigate the function H , ( [ , q ;  q') given 

by eq. (2.11). If q # q' the evaluation of the function H ,  requires the calculation of the integral in eq. (2.1 1). Although 
in principle H, can be expressed in terms of elliptical functions, this in itself does not provide a useful way for the 
evaluation, certainly not for the higher values of the index r .  Therefore a numerical method was applied. To achieve 
a maximum of accuracy at a minimum of computer time it was decided to establish a separate procedure for the 
calculation of the function H,. This procedure has been described in Appendix B. It assures an accuracy of 9 decimal 
places for the H, with r ranging from 0 to 10. As will he clear from Appendix B, a separate analysis was needed 
of the behaviour of this function in the vicinity of Y =O. If = q' the evaluation of the function R, requires in essence 
the calculation of the second derivative of the function H,. At the same time this involves the calculation of the, 

aF, quantities F,([,, 8,; 0,) and (t, 0,; 8"). The above mentioned analysis, given in Appendix A, section A.2, pro- 

vided analytical expressions which did not lead to numerical difficulties. The function F,(c, 8,; 0,) is given in 
principle by eq. A(13). Using the trigonometric representation of k, it follows that 

all 
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e The value of (c,Op; 0,) is given by eq. A(15), while the very complicated expression A(18) gives the value of 
av 

fl ,(tg2eV; 8”). 
AS will be evident from the analysis leading to eq. A(18), it is assumed that the second derivatives of the leading 

and trailing edges of the planform with respect to the spanwise co-ordinate exist. In other words it  is assumed that 
the edge ofthe planform has a continuous radius ofcurvature. It should he stressed that it is not shown, and probably 
not even true, that the lifting surface problem of a wing with one or more kinks can be obtained as the limit of 
a sequence of solutions with continuous radius of curvature ,which in one way or another gives an increasing degree 
of approximation to the kinked wing. 

Another assumption which has been made implicitly is that for this class of wings a unique solution exists with 
a regular part which is continuous and continuously differentiable, and a singular part having a coefficient which is 
a continuous and continuously differentiable function of the spanwise co-ordinate. The series of functions used to 
represent the pressure coefficient lies dense in this class of continuous functions and will therefore converge to the 
function to he approximated for increasing values of m and R. 

Since also the integration procedures used have either known accuracy or rely on a convergent process, it is 
allowed to consider the successive decreasing deviations of the numerical results as convergence to the solution 
of the problem. 

In the following section the results for a number of cases are discussed, especially with regard to the speed of 
convergence i.e. the number of pivotal points necessary to obtain results of a given accuracy. 

4 Discussion of some numerical results 

In this section a survey will he given of the results obtained at the study of the following subjects: 
1. The improvement achieved by the present method in comparison with Multhopp’s method. 
2. The convergence of the results with respect to the various parameters. 
3. The influence of the way in which the pivotal points are distributed. 

4.1 An example of the improvement obtained’in comparison with Multhopp’s method 
As has been mentioned before serious difficulties will he encountered at the determination of a plausible solution 

if the method of ref. 2 is applied. These dificulties are due to the strong variation of the solution when the number 
of chordwise points is increased. An illustration of these dificulties is given on the basis of some results for a rec- 
tangular wing with s= I, {(q) = a at M,=O and for m=21 and R =  1, 2, 3, 4. The results are presented in table 12a. 
It is clear that the fluctuations are so strong that it is impossible to derive a plausible solution from these results. 

When the method, presented in this report, is applied to this wing for the same values of m and R, without making 
use of the possibility to improve the spanwise integration accuracy, in other words taking a =  1, the.results show 
a very similar behaviour (see table 12h). When the integration accuracy is increased at the same values of m and R, 
a completely different behaviour of the solution is obtained, as appears from table 12c. 

A good comparison of these results becomes possible when the deviations between the solutions for succeeding 
values of R are considered. From table 12d it appears that : 
-the deviations between the results for different values of R obtained with the method of ref. 2, hardly decrease 

with regard to a. and fluctuate strongly with respect to a , .  
-the deviations between the solutions obtained with the present mithod for A =  1 are somewhat smaller, hut when 

R is increased, they increase very rapidly’with respect to a ,  and they are nearly constant with regard to a , .  
- there are hardly any deviations between the solutions for A = 8, When R is increased they decrease very rapidly. 

From these observations it may he concluded, that the possibility t o  increase the spanwise integration accuracy 
independently of the number of pivotal spanwise stations, which is offered by the present method, can he a great 
advantage. Apparently the integration inaccuracy may offset the attainment of a plausible result. Also it may he 
r.tated that there possibly are cases where with the application of the present method a plausible solution may he 
obtained at a lower value of m than with the application of Multhopp’s method. This should he the case when 
the number of spanwise stations to provide a sufficient accurate spanwise interpolation polynomial is less than 
the number of stations to provide a sufficient accurate spanwise integration. 

In order to obtain a better insight into the merits ofthe method presented, it is necessary to investigate the variation 
of the solutjon not only with respect to R but also with regard to m and with the elimination of.the effect of the 
integration inaccuracy. 

4.2 The convergence with respect to  a,  m and R 
The essential and new feature of the method is that in principle, for a given representation of the lift distribution 



by means of a number of (R+  1) chordwise terms and m spanwise terms (see eqs. (2.4) and (2.14) ) and for given 
positions and given number of pivotal points, a solution can be obtained with an accuracy which can be checked.* 

Therefore it is possible to investigate the convergence of the solution with respect t o  m and R, maintaining for 
each set of m and R a constant accuracy of the integrations. 

In the cases to be studied here, the distribution of the pivotal points along the span has been chosen in the usual 
way, that is 

VX 
0, = __ 

b ( m f 1 )  

Moreover b has been taken equal to 1, i.e. the number of equations is equal to the number of pivotal points. 

the years. They comprise 
For illustrative reasons the chosen examples belong to those which have been studied extensively throughout 

The circular wing at M, = 0 
The Warren 12 wing at M, = 0 
The Warren 12 wing at M, = 0.6 

- The Multhopp wing at M, = 0 

where M ,  indicates the free stream Mach number. 
Both the Warren 12 and the Multhopp wing are swept wings with a kink at the centre. The geometry of these 

wings has been given in figs. 2a and 2h. Since, as has been said, this method is not appropriate for such planforms, 
a rounding of these kinks, so that the radius ofcurvature remains continuous, is necessary. In f i i 3 a  general scheme 
has been given for defining such a rounding. As is evident, the amount of rounding is dependent on the arbitrary 
co-ordinates q, and q2. This makes it possible to investigate the influence of the rounding on the solution; for the 
time being a constant rounding has been applied. In the following sections the four cases will be discussed one at 
a time by considering the variation of the quantities a,. The first two of these quantities (ao and a , )  are directly 
related to the local lift and the local centre of pressure. 

4.2.1 The circular wing at M, = 0 
For a number of cases with different M and R, the coeficients a, have been calculated. .First we will consider the 

convergence of these coeficients with respect to the number of spanwise integration points for given m and R. 
Typical examples have been given in tables 2a and 2b. As can be seen, the conv&gence in the two cases is evident 
and at a = 6  the results may be considered to be correct in 4 to 5 decimal places. In table 3a the convergence of a, 
and a, with respect to R is shown for fixed numbers m and a. As can he expected, the convergence of a, is somewhat 
slower than that of a,, but still remarkable. In table 3b the convergence with respect t o  m is shown for fixed number 
R and constant integration accuracy. 

It is concluded from these results, that a plausible solution of the circular wing problem, which is accurate in 
3 to 4 decimal places can be obtained with m=7, R = 3  and a = 6 .  

4.2.2 The Warren 12 wing at M, = 0 
Since the Warren 12 wing bas a kink at the centre in both the leading and the trailing edges (see fig. 2a), at these 

places a rounding has been applied according to fig. 3. In the present case the co-ordinates q ,  and q2 have been 
chosen as follows q l =  -q2=0.195090. 

This rounding has been maintained throughout the calculations to be discussed here. 
In tables 4a and 4b typical examples have been presented to show the convergence of a, with respect to the number 

of spanwise integration points for fixed m and R. ' 

In table Sa the convergence with respect to R is shown, while in table 5b the convergence with respect to m has 
been given. In all these cases the convergence is evident, although that with respect'to m (table Sb) clearly shows, 
that in this case far more spanwise terms are required than for the circular wing. 

In fig. 4a and 4b the convergence with respect'to a of the pressure difference Ac, (eq. (2.4)) along two spanwise 
stationshas been presented. From these figures it will be quite clear how fast the convergence really is obtained. 

4.2.3 The Warren 12 wing at M, = 0.6 
Since the present method allows the free-stream Mach number to he changed, the same set of cases has been 

computed for the free-stream Mach number M, = 0.6 as for the Mach number M, = 0. From these results something 

' 

This accuracy is dependent on the integer a which is a measure of the number of integration points (see eq. (2.18)) 

. .  
' . L  

.. .. 
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can be learned about the influence of the free-stream Mach number (i.e. the effective aspect ratio) on the rate of 
convergence. As is evident when studying the tables 6a-b and 7a-b, the convergence is analogous to that for the 
case M, = 0. 

I 4.2.4' The'Multhopp wing at M,= 0. . .  
The wing studied by Multhopp as a test-case for his method (ref. 1) has ever since remained a test-case for new 

developments in lifting surface theory. This is the reason why i t  was felt that it could not be left out here as an 
example. 

The kink, which is again present, has been rounded according to fig. 3 with q I  = - q 2 =  0.195090, 
In table Sa the convergence with respect to the number of integration points has been studied form = 15 and R = 1. 

As can be seen, even at a = 6  convergence is not achieved. Therefore in table 8b the same convergence has been 
studied for m =  31 and R = 3  at higher values of a. It is clear that in this case sufficient accuracy has been reached 
at a = &  

From table 9a it can be concluded that convergence with respect to the number of chordwise points is reached 
at R=4. Convergence with regard to m is not'convincing from the results presented in table 9b. 

In figs. Sa and 5b the convergence of Acp with respect'to a is shown for two spanwise stations. The convergence 

The results presented so far, clearly show that with the method presented here the convergence of the results 
can be judged. This is true not only as far as the lift is concerned, but also for the higher moments. This leads to 
the fact that the chordwise loading also can be calculated with a high degree ofaccuracy. This is especially important 
as far as the determination of the local centre of pressure line is concerned. 

4.3 Some results obtained with arbitrary distribution of piootal points 
As has been explained in the introduction, the method presented here allows an arbitrary choice of the spanwise 

points. This can be of advantage in those cases where strong gradients are expected in the solution. It is then possible 
. to  choose a greater density of the pivotal points in the region where the gradients should occur, thereby giving this 

region more "weight" than the rest. It may be hoped then that a better solution will be obtained. 
In the Multhopp distribution of spanwise stations weighting occurs at the tip region. It is ,however, totally absent 

at the centre'section. This is not at all serious for straight wings, but certain'ly it is for swept wings: For the latter 
class of wings the freedom of choice offered by the present method should be beneficial. One of the great problems, 
of course, is to take optimal advantage of this possibility. That this is not a trivial question will appear when dis- 
cussing the results of some of the trials made with arbitrary positions of the spanwise stations for the Warren 12 
wing at M, =O. In  table 10a the results are given for various values of a for a distribution of pivotal stations dif- 
fering from Multhopp's distribution halfway between the tip and the centre only in having one point less . .  in the 
tip region and one point more in the centre region. 

In table lob the results for another distribution are given. In  this case the density of pivotal stations in the tip 
region is the same as in the Multhopp distribution, but the centre region has one point more'and the region in 

, is again remarkable. 

I 
I 
I 

I 

between one point less. : .  

Table 1Oc again sbows,the results . ,  that occur if the tip region has very few spanwise stations. 
These three results, which are also presented in f i g . &  and 6b, together with the solution belonging to Multhopp's 

distribution ofpivotal points, make it quite clear that the solution of the 1ifting.surface problem is rather sensitive 
to the position of the pivotal stations. 

However, it  may be assumed that this effect becomes less important as the number of the points &any distribution 

Furthermore fig. 6 suggests that thebasic distribution should not deviate too much from Multhopp's distribution. 
This is confirmed by the results shown in table l l a  and in figs. ?a and, 7b. In these the solution for Multhopp's 
distribution of pivotal points (m= 17),is compared with those for three other cases given in, table Ilb. The latter 
distributions are in fact those oftables 'lO,.with one point add,ed in each case. It is seen that the agreement of the 
results is much better indeed, except for case 4. Although it looks much more sensible than in table 1oC; it still 
deviates quite severely from the other solutions. 
On the basis of the results presented here it remains an open question whether the freedom of choice ofthe pivotal 

points will be useful in trying to obtain plausible. solutions for the centre ofa swept wing. Thisshould be the subject 
of a special investigation. It seems plausible from the results obtained so far,that in order to obtain better results 
for the centre, one should choose a distribution with some more density in the vicidty of the centre. 

There is one other possibility which so far has not been tested, Since the number and the place of the pivotal 
stations can be prescribed independently: of the number of functions representing the pressure difference across 

. ... , , 

is increased and that finally the solutions obtained will be the same. ', 

,. .~ ' 

. .  
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the wing, it is possible to obtain more equations than unknowns. This system can then be solved by applying a 
least squares approximation. In this way it is also possible Io give more weight t o  the centre region than to the 
rest of the wing. It seems worthwhile to invcstigate this poiot also. 

5 Concluding remarks 

In this report a new method has heen outlined, by which it is possible to obtain accurate numerical results for 
the pressure difference across a lifting surface. The theory has been formulated such that exact results are possible 
for wings with a continuous radius of curvature along the leading and trailing edges of the planform. The pressure 
difference across the wing is given as a series of chordwise terms with coeficients which are functions dependent 
on the spanwise co-ordinate. These functions themselves are also represented as a series of terms. The convergence 
of the results for an increasing number of chordwise and spanwise terms can he judged, and this is confirmed by 
the numerical results presented, which are based on Multhopp’s distribution of pivotal points. It should he em- 
phasized that one of the great advantages of the method seems to  he the accurate determination of the local centre 
of pressure line. 

Since the method permits of the arbitrary choice of pivotal stations, their distribution has been varied. It is 
shown that one has to be rather careful in selecting the positions. It seems that further investigations.are required 
to decide whether or not this freedom of choice may be used to reduce the number of pivotal points at which. 
plausible solutions are obtained for swept wings. 
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APPENDLX A 

A detailed derivation of the basic equations 

A.1 

will be written down again for reference 

The calculation ofthe quantities ynl, evm, i,. and S,, 
In this appendix a detailed derivation will be given of eq. (2.18), starting from eq. (2.16). First the latter equation 

m m 'I 

(0' = 0) a,(qn) sin h0.j In (cos 0 -cos 0') sin p0' sin 0' do1 . A(1) 
" = I  & = l  0 

The singularity occurring in the first integral demands a special treatment. To reduce the integration to a formal 

A!2) 

As will be clear the function F (t,O; 0') is of order (cos &cos 8')' near the point @=O. This then leads to the 

procedure, the following function is constructed 
'.'.. ~ , ( t , e ; e l ) = ~ , ( t , ~ ;  B ~ ) - F , ( ~ , o ; ~ ) - ( c o s o - c o s ~ ~ )  l(el dF, = o ) .  

drl 

introduction of a new function E, which is completely regular for all values of 8' .  

I 
i 

To avoid a numerical integration in spanwise direction, the function R, has been represented by a sum of sine 

I nr(t,o;el) = ~ 2 i7,(5,8; 0,) sin w0' sin wB, A(4) 
A 

terms 
2 "  

A + l  i r l  o= 1 

An I 
1 where 0 = - 

A + l  
1 
1 ' in eq.A(4) 

In the case considered here A will be taken equal to a ( m + l ) -  1, where a is an integer. By taking a large enough, 
a sufficiently accurate representation of R, can be obtained. 

Inserting the equations A(2), A(3) and A(4) into eq. A(l) one obtains, when performing the summation over w 

The problem has now been reduced to the determination of the integrals in eq. A(5). The following abbreviations 
will be used where B has been replaced by 0, 

2 
S,, = I_ 

sin p0, {'InIcos 0,-cos 0'1 sin p0' sin B1dO1 
n(m+ 1) ,,= 0 
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These functions will subsequently be evaluated. 

The integral in eq. A(6)a becomes 

de’ ” sin@+ 1)O’ sin pQ’ 1 cos(/i + 1 -p )e l  -c& + 1 f p ) o l  
de’ = $1 cos e,-cos 01 io cos e,-cos 01 0 

I sin(/i + 1 -p)O, -sin(A + 1 +p)O, 
sin 0, 

= -211 

cos(A+l)O, sin 8, sin pb’, 
= n  = K ( - y  7 

sin 0, sin e, 
2 ”  This leads to 

ynL = ~ 1 sin m + l  sin le , ,  
and after summation to 

if 0, = Oi 

For the integral in eq. A(6)b, it follows immediately, by partial integration, that 

sin p0’ sin 8’ sin p0, 
sin 6, 

do’ = - ~ K T .  x (cos 8,-cos 0’)‘ 

It should be observed that this formal procedure is in accordance with the definition of the principal value. Hence 
it is found . 

m 
p sin pOv sin p8.. 

2 
& = -  
”” (m+l)sinO.,,=, 

1 p sin pop sin pen = - - 
~ p = l  d8 p = l  

d ”  m 

Since 

it is found after some manipulation that 

cos pOv sin pen , 

’ and hence 
l-(-)”cos(m+l)e, 

cos @,-cos 8, 

(-l)”sin(m+1)8, 1 1-(-)”cos(m+l)e, , 
E”” = +- sin 0, e,# 0, 

cos Q,-cos 8, m +  1 (COS 8,-cos 

A(8)b 
m +  1 

E”“ = -1 2. sin e, 0, = e. . 

To calculate the function cvn, the following integral has to  be considered. 

sin sin 8‘ ! cos 8,-cos 8’ do‘ = K COS pQV.  
. .  

Inserting this result into the expression for Cy”, gives 

and by the procedure used for E,, it is immediately clear that 

sin 0, 1 - (-)” cos(m + I )& 
m + l  cos8,-cosO, 5”” = __ 6, + 0. 

5, = 0 e, = e. 
The last quantity that has to be considered is Svn. First it is remarked that for p > 1 the following relation is valid 

ji sin PO‘ sin 8’ lnlcos 0,-cos 0’1dO’= - r ( p  sin p0, sin 8,+cos p8, cos 6’”) 
n 

P - 1  
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This follows by applying partial integration and some of the previous results. The integral for p= 1 proves to he 

n n 
2 4 

!:sin2 8' lnicos e,-cos O'Jd8' = - -In 2 + -cos 28,. 

Hence the total result is 

In table 1 the expressions for the quantities yOI, c, and S,. have been summarized. 

aF, A.2 The calculation ofthe quantities (S1=8,) and R,(t,e,; 8,) 

In order to calculate the quantities - (8' = O v )  and R,(C,S,; 0") it is necessary to consider the expression for 

a7 
aF, 
an 

H,(Lv; v ' )  

The quantities x and y are defined as follows 

The value of x for q = q' will be denoted by xo so that 

This shows that x is dependent on 7' and hence on y. Therefore the following series expansion is valid. 

dxo . dx d2xo.  
where - IS equal to -i for 0' = q and -is defined correspondingly. Since the point ofinterest is the behaviour 

of H, at 8'=8,, the investigation can he restricted to small values of y. 
dv ' dv dv2 

First it is remarked that 
-xo 

. o  
H,(t,v; v) = 2 1 h,(x')dx' . 

The first derivative of H, with respect to q' can be written as 

dh 
dx' . o  

By using the expansion h,(x') = h,(xo) + (x' - x,,) 2 (x ) + . . . and performing some partial integrations it is found 
that 

It can he observed that the integrand occurring in this expression is integrable for x'=O, but that difliculties can 
arise when x'+xo and y+O. Using again the series expression for h,(x'), it is found immediately that 
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From this it follows at once that 

dzH, 
In order to obtain the function IT,({, 8,; 8,) it is necessary to  consider the expression for --iir. From eq. A(14) it is 
clear that the following expression is valid. Gv 

I dy  1 x - x  ]}dx' .  A(16) +' @. dx {-d̂ l[ dq' dxl , , / ( x - ~ ' ) ~ + p ~ y ~  

dH. 
dv This can be written as follows by using some of the results obtained when deriving the expressions for 7 

The real problem now is to evaluate the integral occurring in this expression, and the objective is a formula which 
can easily be calculated numerically. 
The integral is written as follows 

The next step is to add expressions which are identically equal to zero, but which serve two purposes; first to control 
expressions in which the limits x+xo and y-0 may be applied, and second to obtain expressions which can be 
calculated analytically. Hence the above expression is rewritten as 
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This expression can be simplified considerably by observing that almost all integrands remain bounded for x+x0 
and y-0. The result is 

The integrals occurring in eq. A(16) can now easily be expressed by using the trigonometric representation of eqs. 
(2.8) and (2.9). It follows that 

(r+l)sinr$o-rsin(r+l)$o 1 dx' xo-x' 

while 

where 

d$ 
cos r$,-cos r$ 

The calculation of this integral can be performed by using the recursive relation 

L 
1,-2 cos $01,-1+1,-2 = -a sin(r-l)ILo 

with the accessory relations l o = O  and I,=n-$@ 
Finally the last integral occurring in eqn. A(16) proves to be 

Combining the results we at last obtain 
d2H, dh, 2 

11 dv = 2 { ~ h , ( ~ ~ ) + [ ~ ] ~ ~ ( x , ) - P ' [ $ ]  @(x0)] +2P2 E:] . 
~~ 

2 dh 1 
xo sin $o ZXO dx X O  

[(r+ 1)sin r$o-r sin(r+ + - [(I+ I)& rr,, ,] + + (xo)ln 8x0(1 -xo) + - h,(xo)] 1 

It follows from eq. (2.17) that 

while further from eq. (2.13) it is evident that 

With the observation that 

i7,(5,0,; 0,) ={ 7 h,($,)+2 [%I2 $ ($o) 3d sin f?,+sin 0,- . 

, there is finally obtained 

d2xo 1 pzs' 

dv '(d' 
2 I 

[ ( r  + 1) sin r$o - r sin(r + l)@O] + - [(r + 1)L- rr,, ,] + - h,(xo) 
, i- xo sin $o zxo XO 
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APPENDIX B 

The integration in chordwise direction 

In this appendix a detailed description will be given of the numerical procedure used in evaluating the function 

dX1 . B(1) 
x-XI H,(t,v; vl). 

J ( X  - x 1)’ + p’ Y2 

1 -cos * the integral can be written as 
2 In terms.of the angular co-ordinate given by XI = 

while the quantities PI and P2 are defined as follows 

Since the integrand is periodic with period 2n andsince the integral from 0 to K is equal to the integral from K to 272 
the best fitting integration rule is the simple trapezoidal rule. 

Thus 

where L+ 1 is the number of integration points and + j  = - j n  It is obvious that the quantity L will depend on 
L+1’  

the parameters and Pz and it seems quite natural to rely on a test of accuracy in the programme for its deter- 
mination. This, however, proves to be a very time-consuming procedure, especially when small values of /?’ are 
encountered, in which case the functionf($) is almost discontinuous at $=arccos PI. Therefore another way was 
followed. It was decided to investigate the function H, as a function of PI and p2 and to establish regions in the 
p1 -8’ plane where a given number L would assure an integration accuracy up to 9 decimals for r=O up to r =  10. 
It appeared that in this way an accurate result could be obtained for almost the whole region of interest. Only for 
very small values of a2 a different scheme had to be followed. These regions with the accessory number L are given 
in figure B.l. These procedures, though less elegant, provided a very fast programme. 

As is indicated in the figure, the region where the above mentioned integration rule does not apply is 18’1 < 0,02 
and l f i l l  < 1. In this region a new parameter is introduced by defining p,  = -cos 4. Hence 

B(6) 
cos *-cos 4 

J(c0s *-cos q+)’+/g. 

lim f($)= - 1  . B(7)a 

f(*) = 

As can be seen, the following relations.are valid . 
82-0 
* - b +  

and 

The integral can then be written as 

p ,  
H, = I[ 1 (cos r* +cos(r + l)$)[f($) - I]d$ + (cos r$ +cos(r + l)*)[f($) - I] d$ 

n o  
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Sa($)= {$+sin4 - - - g,($)= .JI ,;sinr$ . + -sin(r+1)4}- 1 .  2 "I 2 n' r + l  n 
where 

The quantities P and Q are defined as follows 

P = arccos(cos ++ 10 /Iz) B(9)a 
Q = arccos(cos + - 10 &) B(9)b 

Taking this into account the integrals from 0 to P and from Q to  n are easily computable without loss of accuracy. 
The attention can now he focussed on the remaining integrals. We consider the second integral 

1 (cos r$+cos(r+ l)$)[f($)- l]d$ = 2 1 cos +(2r+ l)$ cos f$[f($) - 1]d$ 

Now the main part of this integral will be subtracted in such a.way tllat  it can be integrated analytically while 
the remaining part again can be computed numerically in an accurate way. We therefore write 

4 4 

P P 

cos+(2 r+1)$cos+$s in~-cos+(2 r+1)~  cos+4 sin $ 
sin $ 

cosf(2r+l)$cos~$[f($)-l]d$= 2 

The second integration can he performed analytically and gives 

cos +$[cos +(2r+l)$ sin +4-cos'+(2r+ l )+ sin $$][f($)-l]d$ t 

. .  

[ - IP2 I  +ID21 J E T - 1 0  P 2 1  
cos +(2r+ t)$ 

. [f(t + $1 - 11 d t  + 
sin +$ 

In the same way it is found that 

c," {cos r$+cos(r+ l )~}[ f ($)+  l]d$ = 

L { Q - 4 ~ ~ s  t(t+ 4)  {sin f r t  cos $(r+ 1)(t+2$) -sin f ( r+  1)5 cos f r ( t + 2 4 ) \ ,  [ f( t+ $)+ l ]d t+  sin+$ ,, 

[IP2I-1821 m + l O P 2 1 .  B(11) 
cos +(2r + 1) 4 

+ sin++ 

By combining the various terms it is found at last that 

' 1 " cos + ( 5 +  $){sin + r t  cos )(r+ 1)(5+24) -sin + ( r +  1)5 cos +r(T+24)}[f(5+4) - t]d(+ 
p-4  
Q-4 +I n cos f( t+ $) {sin i r t  cos $(r + 1)(< + 24) -sin +(r+ 1)5 cos f r(t  + 24)} [f(<+ 6) + l]dr 

This formula offers no serious difliculties in numerical computation and gives good results as long as 
. .  

lcos 4i101821)< 1 
or 1-81 f1018*11< 1 

This restriction amounts to lp,l< 1 - 101p21. Therefore the procedure is successful in the shaded part of fig. B.l 
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TABLE I 
The various influence functions in spanwise direction 

1 0” = 8, 

(-1)’ sin(m+l)O, I 1-(-1)” cos(m+ 1)8, 
cos O,-cos 8. m +  1 (cos B.-cos VJ2 

t- sm 0. C”” 0. d 0. 

m t l  4- 
Sln am 8, = 8“ 

sina. I-(- l )”cos(m+l)V,  - 
i.. m + l  cosH,-cosH. 

0 8, = 8, 

1 (9 sinfiH. ainO,,+cosflV, cosVJsinp8. 1 F - t  In 2 t t  cos 2H)sin 0.- 1 
m + l  ”=>  p1- I S,. 

TABLE ZA 
Wing: circle; Machnumber-0 

Convergence of the quantities (1, with respect to u (corresponding to number of spanwise integration points) 
m = 5  R=2 

C O d X  ‘ 1 ,  1 2 3 4 6 n 

0.~66025 0.438516 0.439264 0.439101 0.439138 0.439011 0.439046 
a0 0.5 0.776970 0.777409 0.177249 0.777294 0.117256 0.777245 

0. 0.903304 0.903592 0.903452 0.903503 0.903481 0.903475 

0.n66025 0.130948 0.128578 0.122295 0.123775 0.123618 0.123687 

0. 0,188145 0,187484 0.187O48 0.187106 0.187098 0.1871 03 
0 ,  0.5 0.177755 0,175390 0,173908 0.114195 0.114165 0.1 74182 

0.866025 0.017825 0.019095 0.011190 0.013121 0.012710 0.012707 
I 0.5 0.009661 0.008996 0.001991 0.008212 0.008146 0.008140 

0. 0.003711 0.004762 0.005024 0.005024 0.005042 0.005045 

TABLE 2B 
Wing: circle; Machnumber-0 

Convergence of the quantities a. with respect to a (corresponding lo number of spanwise integration points) 
m = l l  R = 3 .  

~~ ~~ 

coeff 6 n IO cocr. & 4 6 8 10 A 4 ,  
0.96593 0.00555 0.01013 0.00864 0.00895 

0.5 0.77686. 0.71685 0.17683 0.77683 0.5 0.00695 0.00692 0.00692 0.00692 
0.25882 0.87086 0.87087 0.87085 0.87085 0.25882 0.00512 0.00~09 0 . ~ 5 1 0  o.00~10 

0.96593 0.22081 0.22077 0.22070 0.22067 
0.86603 0.43741 0.43735 0.43731 0.43130 0.86603 0.01079 0.01089 0.01075 0.01071 
0.70711 0.62840 0.62838 0.62835 0.62835 0.70711 0.00942 0.00923 0.00925 0.00924 

111 

0.90302 0.90303 0.90301 0.90301 0. 0.00443 0.00443 0.00144 0.00444 0. 

0.96593 0.07859 0.08186 o.onio9 0.08139 0.96593 -0,01664 -0.01260 -0.01370 -0.01336 

0.70711 0.15648 0.15669 0.15666 0.15668 0.70711 -0.01469 -0.01504 -0.01495 -0.01498 
0.17454 0.11467 0.17465 0.17466 a, 0.5 -0.dl111 -0,01125 -0,01123 -0.01124 0.5 

0. 0.18765 0.18771 0.1871n 0.18771 0. -0.00745 -0.00746 -0.00746 -0.00746 

- 

0.86603 0.12727 0.12816 0.12798 0.12806 0,86603 -0.01743 -0.oii59 -0.01156 -0.01158 

0,25882 0.18446 0.18452 0.18452 0.18452 0.25882 -0.00841 -0.00841 - 0 . ~ 8 4 5  -0.00846 
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TABLE 3A 
Wing: circle; Machnumber-0 

Convergence of a, and aI with respect to R (R+ l=number a! 
chordwise collocation points) at a selected accuracy of the spanwise 

integration 
m = 5  

0.866025 0.438174 0.439046 0.438876 

0. 0.902756 0.903475 0.903488 

0.866025 . 0.136106 0.123687 0.125616 
G I  0.5 0.184655 0.174182 0.174529 

0. 0,195090 o.in7163 0.187240 

0 0  0.5 ' 0.776237 0.777245 0.777248 

- 

TABLE 3B 
Wing: circle; Machnumber-0 

Convergence ofthequantitiesa,wiih respect tam(numberofspanwise collocation poinis) at a selected accuracy of the spanwise integration 
R = 3  

COeN. m 5 7 9 
'1 

0.8660 0.4389 
0.7071 ' 0.6285 

a0 0.5 0.7772 
0. 0.9035 0.9031 0.9031 

I! 

0.4373 
0.6284 
0.7768 
0.9030 

0.8660 0.1256 
0.7071 0.1567 
0.5 0.1745 
0. 0.1872 0.1877 0.1876 

0.1281 
0.1567 
0.1747 
0.1877 

coeff. m 5  7 9 11 
'I 

0.8660 0.0107 0.0108 
0.7071 0 0092 0.0092 
0.5 0.0069 0.0069 
0. 0.0044 0.0044 0.0044 O . w  

08660 -0.0143 -0.0176 
0.7071 -0.0015 -0.0149 

0. -0.0074 -0.0074 -0.0075 -00075 
'' 0.5 -0.0111 -00112 

TABLE 4A 
Wing: Warren 12; Machnumber-0. 

Convergence of the quantities a, with respect to a (number of spanwise integration points) 
m=15 R = l  

A. coeff. 

0.980785 
0.923880 
0.831470 

a0 0.707107 
0.555570 

0.195090 
0. 

0.382683 

1 2 3 

0.138462 
0.268391 
0.377686 
0.461157 
0.5231 18 
0.565057 
0.585560 
0.584859 

0.138383 0.138369 
0.268206 0.268176 

0.460756 0.460680 

0.5n5017 0.5n4929 
0.584745 0 .~847~0  

0.377365 0.377307 

0.522600 0.522509 
0.564505 0.564416 

4 

0.138366 
0.268169 
0.377294 
0.460663 

0.564397 
0.522489 

0.584911 
0.584745 

6 

0.138365 
0.268167 
0.377289 
0.460656 
0.522481 
0.564389 
0.584902 
0.584751 

0.980785 
0.923880 
0.831470 

0.382683 

or 0.707107 
0.555570 

0.195090 
0. 

0.077877 
0.097727 
0.066016 
0.029628 
0.002155 

-0.032498 
-0.098055 
- 0.185548 

'0.077831 
0.097410 
0.064695 
0.027177 

-0.002702 

-0.099471 
-0.183778 

-0.034638 

0.077832 0.077833 

0.064660 0.064652 
0.0271 13 0.027099 

0.097401 0.097398 

-0.002770 -0.002783 
-0.034733 . -0.034756 

-0.183491 -0.1m8n 
-0.09961 -0.099649 

0.077833 
0.097397 
0.064647 
0.027090 

-0,002792 

-0.099679 
-0.183313 

-0.034772 
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TABLE 48 

Wing: Warren 12; Machnumher-0 

m=31 R=3 
Convergence ofthe pantitieso, with respect roo(number ofspanwise integration points) 

C O d l .  a 2 4 n coer. (1 2 4 n 
'I '1 

0.980785 ' ai39480 0,139478 0.139476 0.980785 0.050628 0.050623 0.050622 
0.923880 0.268329 0.268324 0.268319 0.9238nO 0.019119 0.019066 0.019055 
0.83 1470 0.376985 0.376979 0.376971 0.831470 -0.01 1617 -0.01 1612 -0.01 1634 
0.707107 0.461019 0.461014 0.461002 o.707107 ~ 0.012474 - 0.012476 -0.01251 1 
0.555570 0.522742 0.522738 0.522725 0.555570 - 0 . w ~ ~  - 0 . ~ 8 9 7 3  -0 .wo i3  
0.382683 0.564570 0.564566 0.564553 0.382683 -0.oi0205 -0.Ol0152 -0.010187 

0. 0.586769 0.586813 0.586809 0. -0.014644 -0.014558 -0.o14s41 

0.980785 0.085443 0.085445 0.085444 0.980785 +n.n24060 +a024060 . +0.024059 
0.923880 0.101676 0.101662 0.101657 0.923880 -0.006795 -0.006821 -0.006828 
0.831470 0.066549 0.066556 0.066546 0.831470 -n.wssi -0.006528 -0.006540 
0.707107 0.026665 0.026674 0.026661 0.707107 -0.m190 -0.000183 -0.000197 

0.382683 -0.034222 . -0.034166 -0.034176 0.382683 + o . m 4 9  +o.ooioo4 +0.000996 

0. -0,190276 -0.140275 -0.190262 0. -0.0076~2 -0.007662 -a007655 

0.195090 0.584875 0.584875 0.584864 0.195090 -0.016755 -0.016788 -0,016818 

0.555570' f0.000717 t0.000748 +a000737 

0.195090 -0.100440 - 0 . 1 ~ 5 9  -0.100478 0.195090 +0.000357 +0.000354 +0.000347 

0 ,  
'I 0.555570 -0.002435 -0.002411 -0.002424 

TABLE SA 
Wing: Warren 12; Machnumbcr-0, 

Convergence of a, and a t  with respect to R (R+ 1 =number of chordwise collocation points) at a selected accuracy of the spanwise integration 
*=I5 

R '  1 3 4 coeN. 3 4 coeN. 
II  

0.98079 0.13837 0.13952 0.13954 0.98079 0. o 7 7 n 3 0.08562 0.08579 
0.92388 0.26817 . .om29 0.26827 0.92388 0.09740 0.10207 0.10244 

0.55557 0.52248 0 . ~ 2 2 ~ s  0.52290 0.~5557 -0.00279 -0.00308 -0.00314 
0.38268 0.56439 0.56452 0.56454 0.38268 -0.03477 -0.03305 -0.03297 
0.19509 ' 058490 0.58512 0.58515 0.19509 -0.09968 -0.10040 -n.io040 
0. 0.58475 0.58652 0.58659 0. -0.18331 -0.19306 -0.19325 

3. I 

0.83147 0.37729 0.37706 0.37711. 0.83147 0.06465 0.0661 1 0.06603 
0.7071 1 0.46066 046096 0.46097 0.70711 0.02709 0.02720 0.02732 

TABLE 5B 
Wing: Warren 12; Machnumber-0 

Convergence of the quantities a, with respect to m (numher of spanwise collocation points) at a 
R=3 

, selected accuracy of the spanwise mtegratton 

0.98079 
0.92388 
0.83147 

0.38268 

0.70711 
0.55557 

0.19509 
0. 

15 23 31 

0.13952 
0.26829 0.26826 
0.37706 

0.52285 
0.56452 0.56427 

0.46096 0.46085 

0.58512 
0.58652 0.58624 

0.13948 
0.26832 
0.37697 
0.46100 
0.52273 
0.56455 
0.58486 
0.58681 

caef( 
'I\ 

0.98079 
0.92388 
0.83147 
0.70711 
0.55557 

0.19509 
0. 

0.38268 

I5 23 31 

I 0.050948 
0.019612 

- 0.012441 
-0.011574 
- 0.010028 

- 0.018354 
-0,012932 

- o.oon84n 

0,050622 
0.019085 0.019055 

-0.011634 
-0.012490 -0.01251 I 

-0.009013 
-0.010248 -0.010187 

-0.016818 
-0.014033 -0.n14541 

0.98079 0.08562 
0.92388 0.10207 
0.83147 0.0661 I 
0.70711 0.02720 

'I 0.55557 -0.0030s 
0.38268 -0.03305 
0.19569 -0.lo040 
0. -0.19306 

0.08544 

0.06655 

-0.03449 -0.03418 

o.ioi62 0.10166 

0.02668 0.02666 
-0.00242 

-0.10048 
-0,19173 -0.19026 

0.98079 
0.92388 
0.83147 

0.38268 

0.70711 
0.55557 

0.195C9 
0. 

0.024432 
-0,006976 - 0.006477 
-0.000175 
+0.000684 
+o.o0119n 
+ 0.000116 
-0.00W3 

0 024059 

- 0.006540 
-0.006779 -0.006n2n 

-0000233 -0.000197 
+0.000737 

+O.O01124 +OCW996 
+O.MK)347 

-0.007376 -0.001655 
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TABLE 6A 

Wing: Warren 12; Machnumber-0.6 
Convergence ofthe quantities 0, with respect t oa  

m=15 R = l  

0,980785 
0.923880 
0.831470 

a, 0.707107 
0.555570 
0.382683 

0. 
. 0.195090 , 

I 

0.146866 

0.405808 
0.497080 
0.563152 
0.606349 
0.626288 
0.623969 

0.286347 

4 

0.146803 
0.286192 
0.465492 
0.496691 
0:562690 
0.605903 
0.625888 
0.624194 

6 8 

o 146802 0.146801 
0.286190 0.286189 
0.405488 0.405487 
0.496685 0.496684 
0.562683 0.562681 
0.605895 0.605893 
0.625879 0.625877 
0.624200 0.624203 

I 0.980785 0.089657 0.089666 0.089666 0.089666 
0.923880 0.117391 O.ll7M3 0.117302 0.117301 

aI 0.707107 0.032353 0.031699 0.031690 0.031689 
0.55557 -0.009379 -0.039885 -0009892 -0.009894 

0.195090 -0.137523 -0.137139 -0.137167 -0.137177 
0. -0.238777 -0.235630 -0,235540 -0.235509 

0.831470 0.080932 0.080595 0.080590 o.oaosu9 

0.382683 -0.054843 -0.054590 -0.054604 -0.054609 

TABLE 6B 
Wing: Warren 12; Machnumber-0.6 

Convergence of the quantities a, with respect to a .  
, m=31 R=3 

\ 

COeK 0 2 4 8 coeff a 2 4 8 
1 II 

0.980785 0.148202 0.148196 0.148195 0.980785 0.061018 0.061012 0.061011 

0.831470 0.404826 0.404807 0.404802 0.831470 -0.018478 -0.018394 -0.018411 
0.707107 0.497137 0.49710a 0.497100 0.707107 -0.021574 -0.021277 -0.021301 
0.555570 0.563231 0.563202 0.563192 a' 0.555570 -0.015548 -0.015277 -0.015305 
0.382683. 0.606315 , 0.606291, 0.606281 0.382683 -0.016056 -0,015993 -0.016021 

0. 0.627485 0.627521 0.627518 0. -0.009192 -0.009844 -0.W830 

0.923880 0.286406 0.286395 0.286390 0.923880 0.025789 0.025716 0.025708 

0.195090 0.626280 0.626267 0.626259 o.195090 -0.020276 -0.020488 -0.020513 

0.980785 0.098699 0.098702 0.098701 0.980785 0.029813 0.029806 0.029805 
0.923880 0.123376 0.123363 0.123359 0.923880 -0.009500 -0.009541 -0.009547 
0.831470 0.084705 0.084785 0.084177 0.831470 -0.010669 -0.010547 -0.010557, 
0.707107 0.03 1928 0.032220 . 0.032212 0.707107 0.000359 0.000609 O.oM)601 
0.555570. -0.009585 -0.W9204 -0.009210 0.555570 0.001878 0.002110 0.002103 
0.382683 -0.054116 -0.053827 -0.053834 0.382683 0.002218 0.002328 0.002322 
0.195090 -0.139378 -0.139335 -0.139353 0.195090 0.001811 0.001778 0.001173 
0. . -0.246157 -0.246109 -0.246087 0. -0.009134 -0.009117 -0.009103 

TABLE 7A 
Wing: Warren 12; Maehnumber-0.6 

Convergence. of no and a, with respect t o  R at a selected accuracy oi the spanwise integration 
m-15 

\ 
coea \R I 2 3 4 

q 

0.980785 0.146801 0.148499 0.148253 0,148270 
0.923880 0.286189 0.286971 0.286341 0.286320, 
0.831470 0.405487 0.404948 0.404948 o.qoym 

a0 0.707107 0.496684 0.497003 0.497040 0.497055 
0.555570 0.562681 0.563234 0.563353 0.563443 
0.382683 0.605893 0.6n6187 0.606231 0.606363 
0.195090 0.625877 0.626471 0.626570 0.626643 
0. 0.624203 0.626678 0.627207 0.627390 

(continued on nexf page) 
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caeff. 7 
0.980785 
0.923880 
0.831470 

a I  0.707107 
0.555570 
0.382683 
0.195090 
0. 

TABLE 7A (conrinued) 

1 2 

0.089666 0.094643 
n.117301 0.124385 
0.080589 0.083881 
0.031689 0.032743 

-0.009894 -0.w9832 
-0,054609 - 0.052424 
-0.137177 -0.139349 
-0,235509 -0.247673 

3 4 

'0.098948 
0.123811 
0.084204 
0.032898 

-0.010030 
-0.052438 
-0.139377 
-0.249368 

0.099439 
0.124532 
0.084035 

-0.010136 
-0.052294 
-0.139476 
-0.249799 

0.033138 

TABLE 7B 
Wing: Warren 12; Machnumber-0.6 

Convergenceoilhequantities a,withrespecttom(numberofspanwise collocation points) at a selected accuracy ofthe spanwise integration 
R = 3  a=8 

caeff. 

, - 
;\ I 

0.980785 
0.923880 
0.831470 
0.707107 

, 0.555570 
0.382683 
0.195090 
0. 

15 

0.148253 
b286341 
0.404919 
0.497040 
0.563353 
0.606231 
0.626570 
0.627207 

23 31 

0.148195 

0.404802 
0.496920 0.497100 

0.563192 
0.605958 0.606281 

0.626259 
0.626877 0.627518 

0.286322 0.286390 

0.980785 
0.923880 
0.831470 
0.707107 
0.555570 
0.382683 
0.195090 
0. 

0.098948 
0.123811 
0.084204 
0.032898 

-0.010030 
-0,052438 
-0.139377 
-0.249368 

0.098701 
0.123309 0,123359 

0.084777 
0.032223 0.032212 

-0.009210 

-0.139353 
-0.05425a -0,053834 

-0.247890 -0.246087 

coeN. m .  15 23 31 
'I 

0.980785 0.061675 0.061011 
0.923880 0.026013 0.025753 0.025708 
0.831470 -0.n19158 - 0.01 841 1 
0.707107 -0.020310 -0.021288 -0.021301 
0.555570 -0.016375 70.015305 
0.382683 -0.014582' -0.016100 -0.016021 
0.195090 -0.022309. - 0.020513 
0. -0.007677 -0.oo9107 -0.009830 

0.980785 0.030306 0.029805' 

0.831470 -0.010343 -0.OlO557 
0.707107 O.OCQ521 0.000553 0.000601 

'' 0.555570 0.002139 0.002103 

0.923880 -0.009873 - 0 . 0 ~ 4 9 1  -0.009547 

0.3a2683 0.002438 0.0024a5 0 .~2322 
0.195090 0.001668 o.001773 
0. -0.009317 -0.008779 -0.009103 

TABLE 8A 
Wing: Multhopp; Mashnumber-0 

Convergence oithe qnantities o, with respect to 
I m=15 R = l  

coeN. a 1 2 3 4 6 
'1 

0.980785 0.123783 0.123799 0.123810 0,123812 0.123814 
0.923880 0.237135 0.237167 0.237185 0.237188 0.237193 
0.83 I470 0.328093 0.328124 0.328142 0.328 I43 0.328149 

no 0.707107 0.393449 0.393593 0.393639 0.393642 0.393652 
0.555570 0.440277 0.440424 0.440505 0.440516 0.440533 
0.382683 0.470153 0.470515 0.470665 6.470702 0.470738 
0.195090 0.48101 1 0.481797 0.482078 0.482168 0.482242 
0. 0.468048 0.47031 5 0.470945, 0.471 157 0.471310 

0.980785 0.063295 0.063349 0.063368 0.063372 0.063376 

0,831470 0.050332 0.048946 0.048944 0.048948 0.048949 
0.707107 0.025522 0.022727 0.022671 0.022666 0.022663 
0.555570 0.007741 0.003681 0.W3617 0.003615 0.003617 
0.382683 -0.007540 -0.011387 -0.011428 -0.011420 -0.011411 
0.195090 -0.055216 -0.057101 -0,056773 -0.056632. -0.056527 
0. -0.168714 -0.163311 -0.162117 -0.161657 -0.161313 

0.923880 0.076618 0.076459 0.076480 0.076485 0.0i6488 



, TABLE 8 8  
Wing: Multhopp; Machnumber-0 

Convergence of the quantities o, with respect 10 u 
m=31 R=3  

24 

TABLE 9A 
(continued) 

coeff. A 0.980785 

0.923880 
0.831470 
0.707107 
0.555570 
0.382683 
0.195090 
0. 

6 

0.1 24860 
0.237803 
0.328771 
0.395133 
0.442237 
0.473361 
0.486069 
0.480531 

8 

0.124860 
0.237802 
0.328768 
0.395130 
0.442233 
0.473358 
0.486068 
0.480537 

10 

0.124860 
0.237801 
0.328768 
0.395129 
0.442233 
0.473357 
0.486068 
0.480539 

coeii. R 1 2 3 4 
ll 

0.980785 0.063377 0.067042 0.069387 0.069495 
0.923880 0.076489 0.080550 0.080405 0.080577 
0.831470 0.048950 0.049304 0.049377' 0.049340 
0,707107 0.022662 0.022626 0.022649 0.022740 
0.555570 0.003617 0.002950 0.002930 0.002946 
0.382683 -0.011408 - 0 , O I O l ~  -0.010097 -0.OlWl2 
0.195090 -0.056490 -0.056251 -0.056156 -0.056139 
0. -0,161189 -0,170862 -0.171789 -0.171816 

0.980785 
0.923880 

0.707107 
, 'I 0.555570 

0.382683 
0.195090 
0. 

0.831470 

0.069646 0.069646 
0.079967 0.079966 
0.050292 0.050291 
0.021827 0.021826 
0.004513 0.004512 

-0.011638 -0.011639 
- 0.049 158 - 0.0491 54 
- 0.156372 - 0.156348 

0.069646 
0.079966 
0.050290 
0.021825 
0.004511 

-0.011640 
-0.049152 
-0.156335 

TABLE 9B 
Wing: Multhop; Machnumber-0 

Convergence of the stanties a, with respect to m at a selected 
accuracy of the spanwise integrations 

R=3 

0.980785 
0.923880 
0.831470 
0.707107 
0.555570 
0.382683 
0 195090 
0. 

0.980785 
0.923880 
0.831470 
0.707107 

a3 0.555570 
0.382683 
0.195090 
0. 

0.039303 
0.015004 

-0.005227 
-0,005299 
-0.003227 
-0.003574 
-0.008804 
-0.017566 

0.039303 
0.015002 

-0.005232 
-0.005308 
-0.003239 
-0.003586 
- 0.00881 3 
-0.017557 

0.039302 
0.015002 

-0.005234 
-0.005311 
-0.003243 
-0.003590 
-0.008815 
-0.017553 

0.018399 
-0.003211 
-0.003358 
-O,OW343 

O.cNn122 
0.000307 
0.001143 

-0.01 1437 

0.018399 
- 0.003212 
-0.003360 
-0.000346 

0.000119 
0.000305 
0.001142 

-0.011433 

0.018399 
-0.003213 
-0.003361 
-0.000347 

O.cNnI18 
0.000304 
0.001142 

- 0.011431 

TABLE 9A 
Wmg: Multhopp: Machnumber-0.0 

Convergence of uo and a, with respect to R at a selected accuracy of 

m=15 a=8 
the spanwise integration 

0.980785 .0.123816 
0.923880 0.237196 
0.831470 0.328153 
0.707107 0.393657 
0.555570 0.440542 
0.382683 0.470753 
0.195090 .0.482270 
0. '0.471364 

2 . 3  4 

0.124812. 0,124670 
0.237094 0.237243 

0.393883 ' 0.393925 
0.440802 0.440844: 
0.470900 0.470925 
0.482390'. 0.482429 
0.472893 0.473085 

0.328138 0.328144 

0.124681 
0.237227 
0.328155 
0.393908 
0.440839 
0.470907 
0.482422 
0.473094 

15 23 31 

0.980785 0.124669 0.124859 
0.923880 0.237242 0.237783 0.237801 
0.821470 0.328140 0.328768 
0.707107 0.393921 0.394992 0.395129 
0.555570 0.440841 0.442233 
0.382683 0.470925 . 0.473186 0.473357 
0.195090 0.482437 0.486068 
0. 0.4731 13 0.479581 0.480539 

0.980785 0.069387 0.069646 
0.923880 0.080404 0.079806 0.079966 
0.831470 0.049373, 0.050290 
0.707107 0.022639 0.021985 0.021825 

0.382683 -0.OlOlO8 -0.012360 -0.011640 
0.195090 -0.056145 - 0.049152 
0. - 0.171745 -0.160089 -0.156335 

'' 0.555570 0.002918 0.004511 

0.980785 
0.923880 
0.831470 
0.707107 
0.555570 
0.382683 
0.195090 
0. 

0.038951 
0.015941 

-0.006559 
-0.003926 
-0.005155 
-0.001339 
-0.01 3092 
-0.008405 

0.039302 
0.014730 0.015002 

-0,005234 
-0.004999 -0.005311 

-0,003243 
-0.004.167 -0.003590 

-0.008815 
-0.016135 -0.017553 

0.980785 
0.923880 
0.831470 
0.707107 

' a' 0.555570 
0.382683 
0.195090 
0. 

0.018615 
-0.003265 
-0,003352 
-0.000319 
-0.ooool8 

0.000638 
O.oW572 

- 0.009 122 

' 0.018399 
-0.003222 -0.003213 

-0.003361 
-0.ooO288 -0.000347 

O.CcQ118 

0.001142 
-0.01 1 198 -0.01 I431 

n.ooOo44 0.0~304 



TABLE LOA 
Wing: Warren 12; Machnumber-0 

The calculated quantities a, corresponding lo the indicated distri- 
~bu&of $Total points with R=3  

%=O; 0.14 ; 0.28 ; 0.42 ; 0.56 ; 0.70; 0.84 ; 0.98. , 

TABLE IO8 
Wing: Warren 12; Machnumher-0 

The calculated quantities a, corresponding to the indicated distri- 
bution of pivotal points 9ith R=3  

q.=O.O; 0.07; 0.17; 0.39; 0.61; 0.83;0.93; 0.98. 

COCN. 4 6 8 
?!\ . 2  

0.980785 0.086539, 0.084322 0.085608 0.085209 
0.923880 0,113566 0.109576 0.113764 0.112357 
0.831470 0.290223 0.282916, 0.281717 0.282841 
0.707107, 0.431075 , 0.422188 0.420811 0.421772 

0,382683 0.555283 0.552054 0.551521 0.551813 
0.555570 0.507037 0.501783 0.501037 o:so1573 

o.195090 0.577776 0,575538 0.575111 0.575341 
0. ' 0.579888 0.578162 0.577931 0.578120 

. 0.980785 - 0 . ~ 7 3 ~  -0.039439 -0.048253 -0.043019 
0.923880 -n.o26031 -a220318 -0.262538 -0.238093 
0.831470 0,173258 0.123081 0.116323 0.119662 
0.7071137 0.067208 0.075048 0.076792 0.075844 
0.555570 0.019402' 0.016698 0.017255 0.016616 
0.382683 -0.0~8755 -0.02713~~ -0.025567 -13.026122 
0.195090 -0.098296 -0.095609 -0.094171 -0 .094~~8  
0. -0.187770 - 0.184849 - 0.183937 -0.184262 

0.980785 0.119859 0.071265 0.067979 0.070394 

0.831470 0.030688 0.06535n o.071503 0.067619 
0.707107 -0.054988 -0.035825 -0.033880 -0.034619 

u2 0.555570 -0.002657 -0.012212 -0.oi229i -0.012463 
0.382683 -0.012979 -0.012690 -0.012186 -0.012291 

0. - 0.01 7 12s - 0.01 587 1 - 0.016007 - 0.01 591 8 

0.923880 0.663476 0.444302 0.435112 0.441189 

0.195090 -0.022523 -0.020940 -0.020921 -0.020837 

coefl. a 2 ' 4  6 8 
I I :  

,; 0.980785 0.130925 0.132117 0.132272 0.132287 

. , 0.831470. 0.324508 0.332491 0.333583 0.333382 
0.707107 . 0.338555 0.356970 0.359669 0.359149 

0.923880 0.248250 11.249982 o.250201 0.250323 

0.555570 0.484269 0.483301 0.483130 0.484228 
0.382683 0.547365 0.5~0145 0.550359 0.550650 
0195090 .0.569586 0.s71600 0.571830 0,571954 

0.980785 o.084201 0.083481 0.083656 0.083357 

0. 0.574081 0.575432 0.575602 0.575722 

0.923880 0.120701 0,118333 0.118464 0.117615 
0.831470 -0.019835 -0.022800 -0.022718 -0.020904 
0.707107 -0.288949 -0.261132 -0.262718 -0.252367 
0.555570 0.137573 0.141573 0.141452 0.137651 
0.382683 n.008611 -0.00~589 -0.003134 -0.004416 
0.195090 -0.103455 -0.103846 -0.103884 -0.104015 
a -0.182052 - 0.182260 -0.182256 -0.182528 

0.980785 n.03~030 0.0348~5 0.035084 0.035193 

0.831410 -0.n4765i -0.037570 -0.036631 -0.035673 
0.707107 0.112154 0.188665 0.190808 0.190915 

. , I 0.382683 -0.038938 -0.045932 -0.045618 -0.04524s 
0.195090 -0.023449 -0.017597 -0.017333 -0.017147 
0. . -0.n147y -0.013500 - 0 . 0 1 3 4 ~  -0.013357 

0.923880 0.012494 0.000844 0.000157 O.ooOo24 

; a! 0.555570 0.036909 0.000808 -0.000821 -0.003354 

0.980785. 0.071437 0.041586 0.038191 0.040144 

0.831470 -0.090929 -0.047675 -0.043842 -0.046395 
0.707107 0.024820 -0.005074 -0.005734 -0.W5013 
0.555570 0.006454 0.001291 0.001273 0.000954 

0.195090 -0,001777 -0.000386 0.000235 O.ooOo76 
0. . -0.006935 -0.007001 -0,006940 -0.007025 

0.923880 -0.040583 -0.079713 -0.097797 -0.089503 

. :a ,  

0.382683 0 . ~ ~ 7 5  o.o~)421 0.~0999 n.ooioi1 

0.970785 0.021952 
0.923880 -0.002153 
0.831470 -0.001524 
0.707107 -0.020674 

'' 0.555570 0.005759 
0.382683 -0.W9043 
0.195090 0.003062. 
0. - 0.00421 I 

0.024998 0.025280 0.025263 
-0.024253 -0.003900 -0.004453 

0.007355 , 0.007698 0.008256 
-0.040024 -0.045593 -0.042230 

0.001595 0.003385 0.000679 

0.003940 0.003756 0.003498 
-0.005022 -0.005052 -0.005252 

-0.005899 - 0 . ~ 5 7 5 6  -0.005214 

) .  

,. ; TABLE 1OC . ,  

, ,  I . ,  Wing: Wapen 12; Machnumher-0 
. , The calculated quantities 0, corresponding to the indicated distribution of pivotal points with R=3  
: ;. W O ;  0.076; 0.17; n.30;0.4~;0.62;0.79;0.96. . . , .. 

cat#. \ a 2, , 4 6 8 
q 

\ .:.. 
0.980785 0.599408 0.69sizs 0.679017 0.676590 
0.923880 .-1.179589 -1.221134 -1.179459 -1.182906 
0.831470 -1.374013 -1.326563 -1.303413 -1.305802 

0.555570 -0.017553 0.096466 0.098392 0.096104 
0.382683 0.266528 0.322793 0.323527 0.322299 
0.195090 0.376935 0.414240 0.414927 0.414124 
0. 0.404267 0.437349 0.437988 0.437300 

0.707107 -0.533708 - .365390 -0.364885 -0.367610 

. .  

coeff 4 6 8 A. 
0.980785 6.637549 4.077165 . 4.180148 4.245443 
0.923880 -9.667894 -1.096393 -7.194322 -7.229340 
0.831470 -4.646490 -1762343 -2.829259 - z m m  
0.707107 1.430219 1.255849 , 1.i54755 1.255551 

0.195090 0.079067 ,O.W~SS? , o.045016 0.045538 

0.555570 0.423418 0.323673 , 0,325619 . 0.325639 
0.382683 0.239740 0.185119 0.184624 0.185972 

0. -0.006378 -0.039397 -0.039868 -0.039240 

(continued on next page) 
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Method of ref 2 Present method 
A = l  A=8 

q A ,  A 2  A3 AI  A2 A, A, A2 A3 

TABLE 12B 
Results obtained with the present method for the rectangular wing 
withs-l  l(q)=&at M,=Oandform=21 o = l ,  thevariationwith 

respect 'to R 

coeff. 

.ow0 

.I423 
,2817 
,1454 
,5406 
,6549 
,7557 
,8413 
,9096 
,9595 
,9898 

.0000 ,0095 ,0070 .W41 -.0005 
,1423 ,0092 ,0070 .o040 -.0004 
,2817 ' ,0087 ,0067 ,0039 -.wO2 
,4154 .0078 ,0062 ,0037 -.0001 
,5406 ,0066 ,0055 ,0034 ,0001 
,6549 .m52 ,0047 ,0030 .ooO2 
,7557 ,0038 ,0038 ,0025 ,0003 
,8413 ,0026 ,0028 ,0020 . W 3  
,9096 ,0016 ,0019 ,0014 .wO2 
,9595 ,0007 ,0012 ,0009 -.oooi 
,9898 ,0002 . O W 4  - .wo2 

.ooOO .0087 ,0115 ,0079 ,0047 
,1423 .no83 ,0115 ,0078 ,0047 
,2817 ,0074 ,0111 ,0077 ,0045 
.4 I 54 "9 ,0104 ,0076 ,0042 
,5406 ,0040 ,0093 "3 ,0037 
,6549 ,0018 ,0077 ,0068 ,0029 
,7557 - ,0002 ,0056 ,0058 ,0020 
,8413 -.0017 ,0032 .OM5 .XI10 
.9096 -.0025 ,0010 .M29 -.0003 
,9595 -.0026 -.0002 ,0015 -.0012 
,9898 -.0017 -.ooo4 ,0006 -.0011 

2 

-.oOol -.0059 .Ow1 ." .w01 
-.WD -.no58 .ooO1 .oM)O ,0001 
-.GO27 -.0053 , 0 0 1  .woo .w01 
-.0022 -.0045 ,2031 .m ' .wol 
-.mi7 -.0037 .m .mi .ma 
-.0012 -.W28 .m .m1 .m 0 0  

-.0008 -.0020 .m .Om .woo 
- . W 4  -.0014 .m .m . O W  
-.ON3 - . m 9  -.ooO1 .m .0001 
-.owl -.ooos - .wo2 .m .m 

.ow0 -.om3 - .wo2 .oooo. ." 

.0020 ,0022 .ooOO .oooo .oooO 

.0020 ,0021 .ow0 ." .OooO 
,0020 ,0017 .oooo .m .oooo 
,0020 ,0014 .m .OooO .m 
,0020 .0011 .m ,0000 .ooo 0, 

,0019 ,0010 .woo .ooOO .00w 
,0018 ,0009 .OooO .mil . O N  
,0015 .ow9 - ,0002 .m .m 
.0010 . ,0007 -.OW8 .m .ooOO 
,0001 .wo4 -.MI16 -.0004 .WOO 

-.OW6 .0000 -.XI12 -.OW7 -.0001 

,3298 
,3286 
.3247 
,3176 
,3064 
,2897 
.2657 
,2324 
,1881 
,1328 
,0688 

,3303 
,3290 
,3249 
.3177 
,3063 
,2895 
,2654 
,2321 
,1879 
,1329 
,0690 

3 - 4  coeff. 

,3334 ,3393 
,3319 ,3377 
,3276 ,3329 
,3199 ,3244 
,3080 ,3117 

,2662 ,2682 
,2325 ,2339 
,1882 ,1891 
.I330 ,1335 
,0690 ,0693 

,2907 .2935 a. 

TABLE 12C 
Results obtained with the present method for the rectangular wing 

with s = 1 I(q) = 4 at M, =O and for m = 21 a = 8, the variation with 
respect to R 

R I 2 3 4 caelf 
'I 

.moo .3330 ,3329 .3329 ,3328 
,1423 ,3317 ,3316 ,3316 .3315 
,2817 ,3276 ,3275 ,3275 ,3274 
,4154 ,3202 ,3201 ,3201 ,3200 
,5406 .3086 .3086 .3085 ,3085 
,6549 ,2915 ,2915 ,2914 ,2914 
,7557 ,2670 ,2670 ,2670 ,2670 
,8413 ,2333 ,2333 ,2333 ,2333 
,9096 ,1887 ,1888 ,1888 ,1887 
,9595 ,1332 ,1334 ' ,1334 ,1334 

,0690 ,0692 .M92 ,0692 

0 0  

. O W  
,1423 
.2817 
,4154 
,5406 
,6549 
.7557 
,8413 
,9096 
,9595 
,9898 

,0009 ,-.no38 -.ws8 
,0012 -.0035 -.0055 
,0019 -0326 -.W46 
,0033 -.W -.a29 
.0055 ,0018 -.0002 
,0087 ,0058 ,0039 
,0134 ,0114' ,0096 
,0193 ,0183 ,0168 
,0244 ,0247 , ,0237 
,0246 ,0258 ,0257 
,0160 ,0171 ,0177 

- ,0080 
- ,0076 
-.0063 
- ,0043 
-.IN13 

,0087 
,0159 
.0230 
,0253 
,0177 

,0029 a, 

.m 
,1423 
,2817 
,4154 
.5406 
,6549 
,7557 
,8413 
,9096 

'.9595 
,9898 

,0028 
,0030 
,0035 
,0046 
.lo64 
,0093 
,0137 
,0194 
,0244 
,0246 
,0160 

,0028 
,0030 
,0035 

,0064 
,0093 
,0137 
,0196 
,0252 
,0260 
,0172 

,0046 

,0028 
,0030 
.0035 
.XI46 
,0064 
,0093 
,0137 
.Dl96 
,0252 
.0264 
,0179 

,0028 
,0030 
,0035 
.0m6 
,0064 
. a 9 3  05 
,0137 
,0196 
,0252 
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Fig. 1 .  Geometry of wing planform and co-ordinate system. 

Fig. 3, 

I. 5 

Fig. 2. Geometry ai the Warren 12 and the Multhopp wing. 

WITH KINK AT ‘I* 

The rounding at a kink in the wing planform. Given are: 

di. d 2 t  at q,: continuity of C, - and - 
dq dq2 
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Fig. 4a. Convergence of ACo as a function of the number of inte- 
gration points 0=0.38268 (m= IS R = 2  MI=O). 

Fig. 4b. Convergence of A& as a function of the number of inte- 
gratianpoints. 0=0.92388 (",=I5 R = 2  M;=O). 

Fig. 5a. Convergence of ACo with respect to the number bf integra- 

tion pointsiorq=O.38268 ( m = t S  R = 2  M,=O). 
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u(x, y) 

integration variable in chordwise direction 

= -(I, y) slope of the wing contour 

- - Chebychew polynomial 

of the second kind of  degree i and argu- 
azs 

W 
2., 
"A ment u 

B' fJB u belonging to the bottom of the wing 
n integration variable-in.spanwise direction OT c belonging to the top of the wing 

Y) slope of the streamline at the point (x, p) @(x, Y ,  2) velocity Potential 
in a plane y=constant 

1 Introduction 

In linearised theory the perturbation caused by a lifting surface can be resolved into two components, one due 
to the thickness and one due to the camber of that surface. The respective pressure distributions can be determined 
separately and byi superposition the complete flowfield around the surface can be obtained. 

The methodand. the computer program used to determine these fields strongly depend on the relation between the 
Mach number of the undisturbed flow and the planform of the surface. 

The boundaries of a surface in a supersonic flowfield can be divided into subsonic and supersonic leading edges 
and trailing edges,; by definition an edge is called subsonic when the component of the undisturbed velocity normal 
to this edge is subsonic and supersonic when this component is supersonic. 

Though based on the same principles the methods for treating different combinations of subsonic and supersonic 

The present report deals with one of the least complicated cases, i.e. the determination of the lift on a surface 
with a possible partly subsonic leading edge with a completely supersonic trailing edge subject to the condition that 
the subsonic regions do not interfere with each other. 

For the determination oftbe pressure distribution due to thickness reference can be made to NLR report TN-G.48 
"The calculation of the pressure distribution due to thickness for thin wings of arbitrary planform at supersonic 
speed (ref. 3). 

The applied method is based on the thin wing theory of Evvard (ref. 1). Special attention has been given to  the 
numerical evaluation. By applying Chebychew polynomials to describe the camber distribution in chordwise direc- 
tion, it was possible to perform the chordwise integration analytically thus coupling the accuracy of this integral 
directly to the accuracy of the camber representation. In order to perform the spanwise integration the integral has 
been regularised by subtracting the singularities. The actual integration is achieved by means of the 5-point Gauss 
formula. 

A description and a complete print of the Algol program for the determination of the liftfield, written for the 
Electrologica XI computer, has been inserted. 

2 Description of the method 

I 

I 

l edges vary considerably in degree of complication. 
. 

, From the linearised potential equation for supersonic flow 

with 

it bas been demonstrated by Evvard (ref. 1) that the velocity potential at a point (x, y, 0) can be determined by 

8 2  = Ivf; - 1 

in which S is the region in the plane z=O enclosed by the forward Mach cone emanating from the point (x, y, 0), 
the downwash w being related to the local slope of the streamline - measured in the plane z=O along a line q= 
constant - by 

lJoa(5, q)  in a point on the wing 
5, q)  in a point outside the wing 

(2.3a) 
(2.3b) 

zs(5, 7) representing the wing surface, u given by: 

(2.4) 
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In order to determine the boundaries of S, the region within the forward Mach cone where the downwash w has 
values deviating from zero, must be considered. If the wing part lying within the Mach cone is bounded by supersonic 
edges~the region S is4mited by the Mach cone and the ~ wing ~.~~ boundary (see fig. la). In that case the integral of 
eq. (2.2) can be evaluated immediately for then w is a known function of 5 and q hy virtue of the relation expressed 
in eq. (2.3a) and thus 

If the forward Mach cone includes both supersonic and subsonic leading edges, the region S is limited by the 
Mach cone, the supersonic part of the wing boundary, and the Mach lines originating in the points ofintersection of 
the supersonic and subsonic edges (see fig. Ib). In that case the determination of the integral of eq. (2.2) must be 
preceded by the evaluation of an integral over the region Sd between the subsonic edge and the foremost Mach line, 
as indicated in fig. Ib. 

(a) (b )  
Fig. 1 .  Supersonic and subsonic edges included by the ianvard 

Mach cone. 

In the region Sd, w is related to the local slopes of the streamlines, which are unknown (eq. (2.3b)}. In .ref. 1 it 
is shown, that in case of a subsonic leading edge the integral over Sd can be replaced by an integral over that p?rt 
of the wing which generates this part of the downwash field. To understand this, one has to bear in mind that in 
a supersonic flow the velocity potential in a point of Sd may be independently determined with respect to either 
the top or the bottom of the wing surface. Thus considering a point (xn, y,) in the flowfield near the wing (see fig. 2) 
the integral relation: 

can be derived by applying eq. (2.2) to the top and bottom of  the wing respectively and requiring the pressure to be 
continuous across the region Sdof the plane z = 0. The function H ,  introduced here, represents the jump in the velocity 
potential across the plane z=O. 

With regard to this function two different kinds of regions Sd can be distinguished (see fig. 3). In region Sd,, 

IUPESYwlC Ear 

IUBIOulC LEADING 
E D G E  

%’\ 
I”BICII,C TR.ILINC 3 so1 [“yo I 1 \ .  

Fig. 2. Fie1ds.d integration for equation (2.6). Fig. 3. Dillererice between subsonic leading and subsonic trailing 
edge. 

H(y, )  E O  due to the fact that the foremost Mach line, originating on the leading edge, generally represents a line of 
infinitesimal disturbance, along which H may be set equal to zero. The function H remains zero along y=constant 
lines for values o f x  not intercepted by the wing. In region Sd,, H(y,) #0, due to the perturbation caused by the wing. 
In the latter case, Le. a subsonic trailing edge, 6q. (2.6) can only be solved by making a further assumption for the 
flow in this region, e.g. by applying the Kutta condition. The present report, however, does not consider this case, so 
that only wings with completely supersonic trailing edges can be treated by the computer programme presented. 
In the former case, that of a subsonic leading edge, the integration over Sd can simply be replaced by an integral 
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over the region Sw2, as indicated in fig. 4. Then the expression for the velocity potential, eq. (2.2) applied to the 
top of the wing, becomes: 

(2.7a) 

A complication occurs if the supersonic leading edge is connected to two subsonic leading edges, being located in 
the forward Mach cone emanating from the point (x, y) (see fig. 5). In the case that the subsonic regions do not 

Fig. 4. Replacement of flaw field region by wing reglon at the 
integration of eq. (2.7a). 

" 
I L " 1  -. 

Fig. 5. Two subsonic leading edges included in the forward Mach 
cone, not interfering subsonic regions. 

interfere, the velocity potential can he determined straightforwardly from the following expression, which has been 
derived in a way similar to that indicated above: 

(2.7b) 

In the case that the subsonic regions interact, similar formulae can be derived. This leads to expressions which are 
getting more complicated as the interaction is more pronounced. If the interaction is continuous, as is the .case 
for wings with completely subsonic leading edges, the solution of an integral equation for the streamline slopes in the 
subsonic regions concerned is required. These cases, however, will not be considered. 

Thus three expressions have been obtained for the determination of the velocity potential in the plane z=O, 
namely. eq. (2.5) in the case of a supersonic edge and eqs. (2.7a) and (2.7b) in the cases that a supersonic edge is 
connected !o one or two subsonic edges respectively. With the aid of these equations the velocity potential can be 
determined inany point of a wing in a supersonic flow under the conditions mentioned before, namely that the 
subsonic regions do not interact and that the trailing edge is completely supersonic. 

By partial dilTerentiation.of the'velocity potential the perturbation velocity components may be obtained. From 
the three equations mentioned above the following can be derived: 
- in the case of a supersonic edge as indicated in fig. la:  

(2.8a) 

(2.8b) 
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- in the case of a supersonic'edge connected with one subsonic edge as indicated in  fig. 4:  

(2.9a) 

(2.9b) 

in the case of a supersonic edge connected to two subsonic edges as indicated in fig. 5. 

Considering a liftfield the expressions (2.9) and (2.10) may be simplified by introducing o,+uT=O and putting 
u=uT= -uB, thus obtaining: 



6 

I The linearized relation between the pressure coefficient c, and the velocity reads: 

(2.12h) 

(2.13) 

So the pressure distribution on a given wing at a given Mach number of the undisturbed stream can be determined 
with the aid of eqs (2.8a) (2.11a) and (2.12a). For this purpose an Algol programme has been written using numerical 
techniques, which are described in the following chapter. 

3 Numerical evaluations 

From eqs (2.4) through (2.13) it appears that the slopes of the profile camherlines and their first derivatives must 
be known. Generally, the camber distribution is not given analytically, but only in a number of discrete points. This 
number may he insufficient to perform an accurate numerical determination of the integrals appearing in the 
equations mentioned above. Hence it may be necessary to increase this number by interpolation. In order to make 
the interpolation as simple as possible the wing will be represented analytically. 

3.1 Representation of the wing surface and the wing planform 
The analytical representation of the camber distribution may be performed in several ways. For two reasons a 

series of Chebyshew polynomials has been applied in the present method. The first reason is that for a fairly smooth 
camber distribution the coefficients ofthis series can very easily be obtained by taking advantage of the orthogonality 
of the polynomials. The second is that the chordwise integration can be performed analytically when Chehyshew 
polynomials are used. 

Thus the camber distribution in chordwise direction is representedy by: 

where r is a Chebyshew polynomial of the first kind, defined by: 

r ( u )  = cos(i cos-‘ u )  

(3.1.1) 

(3.1.2) 

and where x l ( y )  is the x-co-ordinate of the leading edge and cQ is the‘local chord of the wing profile. 
The coefficients ai can he determined by integration from: 
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The determination of the coefficients ai is not performed by the computer program presented in this report. The 
coeficients ai are assumed to be known in a number of spanwise stations and thus form part of the input of the 
program. 

When the camber distribution is given analytically in some way, the determination ofa, may he achieved by formal 
integration. 

In the case that the camber is given in a number of discrete points, the integration can be performed by connecting 
the given points linearly and integrating analytically over the segments thus obtained. The number of points given 
and the number of terms in the polynomial series both influence of course the accuracy of the approximation of the 
contour. 

Further the assumption has been made that the number of spanwise stations with given camber distribution will 
be large enough to make a quadratic interpolation of the coefficients a,(y) in spanwise direction possible. Thus, 
during the actual computations, the camber in each desired point on the wing, is calculated,by means of a series of 
Chebyshew polynomials the coefficients of which are determined by quadratic interpolation. 

Concerning the planform it has been assumed that the leading edge may be represented by means of two poly- 
nomials, each valid over a certain part of the span, and that the trailing edge is a straight line. 

3.2 The numerical integration 
The integrals appearing in eqs (2.8a) (2.11a) and (2.12a) must be calculated numerically and so it is necessary that 

the integrands have a sufficiently smooth behaviour. 
Considering, however, an integrand of the type . I  

du 
d t  
- 

J(x-O*-b’(Y-tl)* 
it can be seen that this integrand contains a singularity at the point {=x, q=y. 

Accordingly the function: 
du 

(3.2.1) 

is singular for rr=y, &=x. 

integration can be performed once F ( x ,  y, q)  has been regularized by subtraction of this singularity. 
However, this singularity being logarithmic the integration in spanwise direction is possible. Hence the numerical 

Putting : 

(3.2.2) 

a function F’ is obtained which is regular over the whole integration range, but which has one disadvantage namely 

d F  
an infinite derivative - at the point (x, y), 

dtl 
So putting: 

(3.2.3) 

a function F* is obtained which behaves in such a way that the numerical integration can be performed without any 

The reason for putting 1111 as a factor of - - becomes clear when considering the fact that the plane q=O 
difficulty. 

is a plane of symmetry for the wing. 
The chordwise integration can be performed, taking advantage of the approximation of the profile-slopes by 

Chebjchew polynomials. 
From eq. (3.1.1) it follows that 

dv (““) d5 X.Y 
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where 

where bjj  can he determined from the recurrence relation: 

K=2uKi- , -5-2  v , = 0  v l = l  

Ub uPdu 
From the integrals I, = another recurrence relation can be derived; viz.: 

( p +  l)Ip+ 1 - (2p+ l )u l l ,+  (u: - B 2 ) p l p -  1 = (ub)'J(ub - ~ 1 ) '  -BZ - ( U , ) ' J ( U ~  - ~ 1 ) ~  - B2 

by means of which it is possible to determine the integrals I ,  consecutively from: L 

(3.2.4) 

(3.2.5) 

(3.2.6) 
I 

(3.2.7) 

(3.2.8) 

ub-ul + , / - B 2 + ( ~ b - ~ i ) 2  
and I, =ul / ,  = J( - U , + U , ) ~  -B '+ , / (u~-u , )~  - B 2  (3.2.9) I -u,+ u1 -J( -uo  + u , ) 2 - 8 2  

/, = In 

In this way I, can he determined with a slight decrease in accuracy for increasing values of p .  The growth of 
the error has been investigated by introducing a small perturbation of I, and comparing the results for I' determined 
from disturbed and undisturbed values of I,. The conclusion may be drawn that for values ofp up to 15 the accuracy 

of1,issufficient. Because ofthe fact that theexpression 1 b,jlj+,~,jappearingineq. (3.2.7)contains thecoefficients 

bij which increase rapidly as the value of i increases, a small deviation in I j +  may cause a much larger deviation 
in the value of this sum. On the other hand it may be assumed that for increasing i the values of ai will decrease 
and also that the number of terms in the series representing the camber distribution will in general be limited. 

So it seems reasonable to assume that the chordwise integration may be performed by means of the eqs (3.2.7) 
through (3.2.9) when i does not exceed the value 20. 

The spanwise integration must be carried out with the aid of some'integration rule. 
Assuming that the coeficients ai(v) can be determined in any spanwise station a 5-point Gauss formula can he used, 

which has the advantage of giving a high accuracy using relatively few integration points. Of course, the application 
of this formula is only advantageous if the accuracy thus obtained is known to be sufficient. The computer program 
presents the possibility to subdivide the integration domain into a number of intervals to each of which the inte- 
gration formula is applied. Thus the integration accuracy can be checked by increasing this number. It is assumed 
that it will not he necessary to vary the number of intervals during the actual calculations for each wing, hut that 
for a given class of wings the number of intervals can be determined by means of a suitable test-case. 

When the integration domain Sw contains the point (x, y )  the integral in spanwise direction, which has the shape: 

N 

i = 1  . .  

[:Fb. Y ,  ddv 

must be treated according to eq. (3.2.3) as follows: 

(3.2.10) 
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in which F* (x, y, q )  is defined by eq. (3.2.3) and the functions G and Hare obtained by formally integrating the singular 
part of this expression. 

G (x. Y )  = ( q h -  Y )  In I/% - 141 - (qo - Y )  In I - y)l- ( ‘ l b  - q d  

In the case that the integration domain Sw does not contain the point (x, y )  the function F(x ,  y,  q )  can be integrated 

The line integrals in spanwise direction which have one of the integration boundaries, or both, on a Mach line 

The integrand of the shape: 

directly. 

through (x, JJ) give another complication. 

a 

,/(.Y-xl(q)) ’- b’(J> -v)’ 
contains a singularity for {x - x l (q) ] ’ -  p2 (y  - q)‘ = 0. This is the case whenever an integration boundary coincides 
with a Mach line through (x, y), This difficulty is solved by transformation to another integration variable by means 
of 

Putting 

(3.2.1 I) 

(3.2.12) 

gives: 

For q%qo  there may be written 

so: 

From this i t  follows that: 

and the boundary singularity has vanished. 
The same derivation holds for q % qw 
So, using the appropriate integration variables, all spanwise integrations can be performed by means ofthe Gauss 

formula. All formulae concerning the determination of - in the three different cases as indicated in chapter 2 are dx 
presented in Appendix A in the form in which they appear in the Algol program. A flow diagram of the program is 
presented in appendix B and the program itself in appendix C. 

3.3 Description of the Afgol program 
Though the flow-diagram of the program is suficient to provide insight into its structnre it would be convenient, 

however, to have more detailed information. Therefore a short outline of the various procedures will be given first. 
The proredures x fe ,  dxl, xfe,  dxt refer t o  the planform of the wing and d o  not need any further description. 
The procedure estac requires some explanation. Assuming the camber of the wing profiles to be given in a number 

d v  . 

of spanwise stations (ygs) in a form as indicated by eq. (3.1.1): 
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x-xle(ygs) 
G(X, ygs) = acgs,(ygs)T(u) u = 2 - 1,  

i = 1  c(ygs) 
and also assuming that the number of the given stations is large enough to enable a quadratic interpolation in span- 
wise direction, the Chebychew coefficients for a certain value of q may be obtained from: 

a s ( d  = apY,\ {q  - w ( k ) Y  + {v - y g W l +  {ygs(k)l 
The value of k is chosen in such a way that ygs(k) refers to the given spanwise station nearest to 7, this to get the 
best possible results within the limits of the quadratic interpolation. The formulae for up:!! are given in appendix A. 

In lhe case that the derivative of G ~ must be determined, the derivatives of aci(q) 2 are needed as well. 

Therefore the procedure estac possesses a boolean parameter derac, which must be true i f 2  has to be calculated. 

In that case the following formula is used: 

d20  dac. 
dvd4 d7 

dv 

The procedure intersl delivers the co-ordinates of the intersection point of some line 5 = a  + fq and the leading edge 
(=xle(,q)During this procedure the real procedure ZERO is used which delivers the root of the functionf(x)=O 
by means of the Regula Falsi. e111 and e121 are array elements which determine the accuracy of the root. 

The boolean variable BO4 has been used in order to deal with the special case when the subsonic leading edge 
coincides with the line q= ks. In that case BO4=false and the intersection point of the line (=a+bq and the sub- 
sonic leading edge is determined by q = * s and < = a +  bs. 

according to the for- The procedure dercamber delivers the values dsigma = ($)x,y and d2sigma = 

mulae of eqs (A.24) to (A.26) and does not need any further explanation. 
' The procedure chebint delivers the integrals in 

uPdu 

according to eqs (A.19) through (A.20). 
The procedure surfint delivers the surface integrals I ,  or l2 of eqs (A.2) through (A.4), where the difference tietween 

the calculation of I ,  and I ,  is indicated by means of the boolean variable B03, which should be false when I, has to  be 
calculated. 

The procedure h i n t  delivers, the line'integrals I, to I, of eqs (A.2) through (AS). It has a special feature that, in 
view of the kink which often appears at the centre section in the leading edge, the integration has been divided into 
two parts in case one of the integration boundaries has a negative value. 

The possible appearance of a kink at another point of the leading edge has not been taken into account. In that 
case the integration accuracy may be checked by making use of the possibility, mentioned before, i.e. to increase the 
number of integration intervals. 

The procedure XEEN is an internal machine-code procedure, which offers the possibility to influence the flow of 
the computation by means of the control desk of the computer. 

Finally a survey of lhe  input datu will be given: 
n l  = degree of the polynomial, describing the first part of the leading edge 
n2 = degree of the polynomial, describing the second part of the leading edge 
n p  = highest degree of the used Chebychew polynomials 
ns = number of given spanwise stations counting from 0 (centre section) to ns (tip) 
al[l, i]i = 0-nl coefficients of polynomial of first part of leading edge 
al[2, i ]  i = 0 - n2 coefficients of polynomial of second part of the leading edge 
at[1] at[2] coefficients of polynomial of trailing edge. 
s = semi span 
xp,  yp s co-ordinates of the junction of the first and the second part of the leading edge. 

acgs[O, il 
Ygs [il 

ucgs[np, il 
mon = Mo = Mach number of undisturbed flow. 

ycoordinate of a given spanwise station: 

; = O + n s  -' ' 
. '  coeficients of the Chebychew polynomials, describing the slope of the camber along 

the given station ygs[i] 
I I '  
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coordinates of the point where cp  has to be calculated; any desired sequence of x, y values may be given. ' 
- 1 =number which ends the calculation (see flow diagram) 

4 Numerical results 

X 

As a check on the correctness of the computer program the described calculation method has been applied to two 
dikerent wings : 
- The F 104 G wing for M o = 2  (see fig. 6). The bodyside has been treated as a plane of reflection. 

Fig. 6 .nheF  i ~~ ings=3 .3435c(0 )=3 .946c ( s )=1 .492~=26 .8 ' .  z s ( ( , q ) = o .  

- A rectangular wing with camber u(<, q)=a<*+b(+c semi span s=  I, c(y)= 1, for Mo= J2. Two,different sets 
of the coeflicients a, b and c have been considered. 

As these two wings have a simple planform and a simple camber distribution it is also possible to  achieve the 
calculation of cp analytically., In Appendix D the formulae involved are presented. 

TABLE 2 
Comparison of the numerical and analytical results for the rectan- 

gular wing. 

Mo= J2 rJ(C 'I) = - .4 5 +0.2 
x Y CP m"",z/I.l cP...,"tx.l 

TABLE I 
Comparison of numerical and analytical results for the F 104 wing. 

M0=2 
x 

.4 

.8 
1.2 
I .6 
2.0 
2.4 
2.8 
3.2 

2.2 
3.4 

,16718 
,16718 
,16718 
,16718 
,16718 
.I6118 
,16718 
,16718 

1.83898 
1.83898 

-.036555 
-.a34674 
-.034384 
-.034285 
- ,034240 
- ,0342 16 
-.034201 
-.034192 

- ,042156 
-.039253 

-.a36554 
-.034674 

-XI34285 
- ,034240 
-.a34216 
-.034201 
- ,034192 

-.M2156 
-.039284 

-.a34384 

2.2 3.11642 -.024891 . -.024890 
2.6 3.17642, -.017832, -.017832 
3.0 3.11642 -.a14617 -.014671 
3.2 3.17642 - .03 I623 -.a13623 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

.2 

.4 

.6 

.8 

.os 

.os 

.os 
SI5 
.55 
.55 
.55 
.55 
.95 
.95 
.95 
.95 

,2399 
,0798 

-.OXO3 
-.2404 

,2399 
,0798 

-.I861 
-.3320 

,0359 
- ,0490 
-.a994 
-.I373 

,2400 
.0n00 

- ,0800 
-.2m 

,2400 
,0800 

-.I856 
-.3316 

,0359 
- ,0490 
- ,0993 
-.I372 

M,=J2 0(&)1)=2.1333 52-2.311 {+0.3333 
x Y Cp""m..*., =p.m.l,,*.> 

.2 .os 

.4 .os 

.6 . .05 

.8 .os 

.2 .55 

.4 .55 

.6 .55 

.8 .55 

.2 .95 

.4 .95 

.6 .95 

.8 .95 

-.OX76 
-so05 
-.5720 
-.3024 
-.ox77 
- .so05 
-.6520 
-.2172 
-.2134 
- ,2766 
-.1589 
+.a657 

-.OX71 
74995 
-.5706 
- . 3 w  
-.OX71 
- ,4995 
-.6509 
-.2160 
-.2133 
-.2766 
-.I589 
+ ,0657 

In tables 1 and 2 a comparison has been made between the numerical and the analytical results. The agreement is 
very good. The results are presented in fig. 7 and 8 as well 
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-7 

Fig 7 Pressure drstnbution on the F IC4 wing, 

Fie. Sa. Pressure distribution on the rectangular wing o[€, n)= . 
- .4 ( f0.2 

-7 

Fig. 
u 
8b. Pressure distribution on the rectangular wing a(<, ?)= 

2.1331 ('-2.311 <+0.3333 

5 Conclusions 

A program has been developed which can be used to  determine the lift on a wing in steady supersonic flow. On 
the condition that the subsonic regions d o  not interfere, the program in its present form can be applied to wings with 
leading edges which may be both supersonic and subsonic and trailing edges which are completely supersonic. 

In  principle the program can be extended to cases with interfering subsonic regions and to cases with subsonic 
trailing edges but this will require some additional analytical and numerical work. 
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Translation by A. H. Stroud Mac Millan Cy New York. 
Labmiere, T h  E. and Visser, L., The calculation of the pressure distribution due to thickness for thin wings with arbitrary planform at super- 
sonic speeds. NLR-TN G.48 (to be published). 
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APPENDIX A 

Survey of the formulae, used in the Algol program 

In order to make this appendix more useful for those who wish to sfudy the program itself, all formulae, used 

According to eqs (2.8) to (2.13): 
in the Algol program, are presented here in the notation of the program. 

where I ,  to I ,  are given by the formulae below. The various cases are indicated by the adjoining sketches: 

do - 
d t  dv ( A 4  

d t  

'*' 
l X . " ,  I I ,  = I, = I, = 0 

r 
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The subscripts of il refer to the intersection points 1 to 5 as indicated in the figures. y p  is the q-coordinate of the point 
where the representation of the leading edge changes its form. 

The surface integrals I, and I2 are treated somewhat differently from each other. The area Sw, does not contain the 
the singular point (x, y) as Sw, does. Hence according to eq. (3.2.10): 

where: 

du - 
d5 (A 17) 

d5 1:; J i x r ( q ) - t )  { x q ( v ) -  t) 
F ( x ,  Y, rl) = 

with Sb=xb(q) and to equal to either xo, xp, x k  or xl(q) .  
The integration in chordwise direction is carried out analytically according to eqs (3.2.7) to (3.2.9): 

(A181 I 2 "  
F ( x , y , q )  = - 2 iac,(q) bui iZni+l -2 j  N = ( i + l ) t 2  

4 7 )  i - l  

u'du s., J ( i Z q i 3  In, = 

with: 



(6ZV) 

(9ZV) 

: pau!urraiap aq isnm raq iny  



At last u must he determined from: 

The coefficients bt, are determined from the recurrence relation for 'I: 

7 ; ~ 2 u ' J - , - ' I - ~  To=l  T , = u  

u is given by eq. (A26) again. 
The coeficients aci(q) of eq. (A33) will he determined by means of quadratic interpolation from: 

a s h ) =  w ( 1 ,  i, k ) { q - ~ g s ( k ) ) ~ + o p ( Z  i, k ) { v - y g s ( k ) }  +ap(3, i, k)  

where up is given by : 

acgs(i, k + l ) - a c g s ( i ,  k )  acgs(i, k ) -acgs( i ,  k - 1 )  1 i' y g s ( k + 1 ) - w ( k )  ygs(k)  -J'gs(k - 1) ygs(k  + 1) - ygs(k  - 1) 
ap(1, i, k )  = 

ap(3,  i, k)  = acgs(i, k )  

ygs(k)  denotes the q-coordinate of the given spanwise station nearest to v .  acgs(i, k )  denotes the coefficients of the 
Chehyshew polynomials belonging to ygs(k).  

In this way a complete survey of all the formulae used in the Algol program has been given. 
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AT 1, AT 2 SEE E Q  AZO 
S = HALF OF SPAN WIDTH 
xp,yp SEE E Q  A 7  + ~ 

INPUTCAMBERDATA 

GIVEN STATION ( 1  : ns ) 
GIVEN STATION ( O  ' "P, 

READ : Y  

: ns)  
(SEE E Q  A33)  

ac 

------_----- 
DETERMINATION OF SPANWISE INTERPOLATION 

COEFFICIENTS A P  ( 1 : 3,0 : np, 1 : ns 1 1 ) - 

APPENDIX B 
Flowdiagram of the program 

BEGIN OF PROGRAMME 

4 

+ DET. OF COEFF. BV, ET  (SEE E Q S  A22, AZ3, A351 

INPUT PLANFORM 1 

DETERMINATION OF Y S = 11 - COORDINATE OF JUNCTION 
OF SUPERSONIC AND SUBSONIC LEADING EDGE 

R E A D : A L ( I , l : N l )  
A L  ( 2 , l  : N 2 )  

END OF PROGR. YES 

NO 

REA0 X I 1 

TSTART:l READ Y I 

I I DETERMINATION OF D SIGMA = (g 

= POINT OF INTERSECTION OF 
LEFT MACH LINE THROUGH 
( X .  Y )  AND LEADING EDGE - Bo 1 : = FALSE ; 

x t 3  : = x e ,  ; Y t 3  : = YO1 

Bo 1 : = TRUE; DETERMINA- 
TION OF ( X  43,Y !3 ) = POINT 
OF INTERSECTION OF 
RIGHT MACH LINE THROUGH 
(X?l,Y!1) AND 4. e. 

F I 



Y12<- Y S V  -p Y t 3 7 Y S  

NO 

1 

1 YES CASE I1 OF APPENDIX A:’ ONLY FOR Y70. THE 
CASE BELONGING TO 
Bo 1 A’Bo 2 DOES NOT 
OCCUR. HENCE THE 
PROGRAMME HAS NOT NO 
BEENPREPAREDTO I 

DETERMINATION OF 11 
AND 15, 1 2 =  i 4 = 0  

(SEE E Q  A 3 )  

B o  1 A 602 

THIS POINTS TO A CASE 
T H A T C A N N O T B E  TREATED 
BY THIS PROGRAMME ; 
CALCULATION IS ENDED 

DEAL WITH THIS CASE 
THE PROGRAMME IS 
ENDED WITH OUT PUT 
OF THE MESSAGE : 

’ B o  1 A ’ B o  2 CASE I OF APPENDIX A : 
DETERMINATION OF I 1 .  

(SEE E Q A 2 )  
NO 1 2 =  l 4 = 1 5 = ; O  

SYMMETRIC WING AND 

TO START I 

-, 

CASE Ill. OF APPENDIX 
A : DETERMINATION OF --L 

J . 1,.12,0 NO 

L (SEE E Q  A 4 )  
CASE l l lb  OF APPENDIX A : 

DETERMINATION OF 1 1  ANC 
12 (SEE E Q  A 4 )  

DETERMINATION OF 
13 (SEE E Q  A 5 )  

dy 1 , d y 4 ( S E E E Q A 1 3 )  

C, (SEE EQ A l )  

i 
I 1 OUTPUT OF Ma, S,Y,X,Cp 

I t 
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APPENDIX C 

The Algol program 

be@;l11 comment ptogr. S.9, Determination of lift field for symmetric w i n g  
with partly subsonic, par t l y  supersonic leading edge 
and a supersonic traillng edge: the subsonic regions may 
not interact - a-procedures ZERO(AP230) and XEEN are used 
in this program 

xl,yl,yi,m,gw,int[l :5I,at,e[l:21, I 

a l [ t  :2,O:nma~],bv[O:npt2,1:2+(np+1):2],bt[O:npcl,1 :l+(np+2)$], 
in[~:np],ac,dac[~:npI,acgs[~:np,~:n;jI,ygs[~:ns], 
apt 1 :3, o:np, 0:ns I ; 
real procedure zERO(x, a, b, fx, e); v& a, b; x, a, b, fx; array e; 

real c, fa, fb, fc, m, i, tol, re, ae; 
re:=e[l]; ae:=e[2]; 
x:=a; fa:=fx; x:=b; fb:=fx; goto entry; - if abs(i - b)< to1 then i:=b + sign(c - b) X tol; 
x:= if sign(1 - m)=si@r(b - i) then i else m; 
a:=brfa:=fb; b:=x; fb:=fx; 

- begin 

g0Cn: 

if si&n(fc)=sign(fb) 
entry: rs c:=a; fc:*fa end; 

if abs(fb)>abs (fc) - then 

i:= if fb - fa,+ 0 then(a - x fb - b x fa)/(fb -!fa) e& m; 
tol:zbs(b x re) + ae; 
if abs(m - b) > to1 then 
z R O : = x :  =b 

a:=b; fa:=fb; b:*c; fb:=fc; c:=a; fc:=fa e; 

goon; - 
end ZERO; 

red rocedure xle(y); e y; real Y; 
=*sum; integer k,n,i; 
ya:=abm; 
if y a w  V 1 E d  then - begin k:=1; n:=nl end 
xse be in k:=2; n:=n2 g; 
z = & n  I i 
for i:pn-l s t e  -1 until 0 do 
sum:=suMya+al -f kl i ] ;  - -  
xle:=sum 

- 
end; 
real procedure dxl(y); y ; a  Y; e real ya, sum; Integer k,n,i; 
ya : = a b m ;  
if y a w & ’  then begin k:=l; n:=nl end else z&in k:&; n:=n2 e&; 
sum:=nxal[k,n]; 

- 

for 1:~n-l step -1 until 1 - I  do 
sum:=sm+ixal[k, i]; 
dxl:=sign( y )xsu!n; 
end; 
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real m e d w e  xte[y); real y; ==hZ']Xabs( y); - 
procedure estac(eta,derac); eta; boolean derac; 
bogin real y,dy; integer 1,k; 
Y:=absml; 
for i:=O 
!ij& ygs i I ~ ~ y ~ g s [ ~ + ~ T t h e n  
b- k:= if Ygs[i+l ]+y-ygsmthen -- ielse i+l ; 
if kpns then k:=ms-l; 
Tf k=O then k:=1; goto la  

1 u n s  ns-1 do 

I_ - - ' S  

e d ;  - real procedure intersl(a,b,xl,yb); d y d  a,b,yb; 
begin red ~,~I,xi~l,xip2,~1,~2; 
integer si; 
si:=slgn(b); xlpl :=a+hXsiXyp; xlp2:=a+XsiXyp; 
y1:- a<O A xiplep A abs(b)Axp - then 

slXyp else (if a>o A xlpl>xp A xIp2Xp a:= if ~ C O  then vf xiplep then - yb-si~~-10 else - SU(YP) 
&e (if xipl>xp A x i e x p  then -sixs - else - s ~ ( y p ) ;  

if aSTxi3>xp A xiexp A 1 m T p  a xi:=xig; yi:=s else 
begin yi :=ZEW( y, yl ,y2, fie-+y, e); x i  :-Ae( yi) 
e&; 
lntersl:=yi 
&; 
procedure dercamber(ks1,eta); ksi,eta; 

htcger i, j ,n; 
A:-de(eta); c:=xte(eta)-xl; 
u:=2X(ksid)/c-l; 
sum1 :=sUm2:=0; e:=&!; 

a,b,xl,yb; 

s i X y p  e& 0); - -  

b&l red. 'Ll,Xl, CtVi, dVi> &K, dc, 6U31, St&,*; 

for i:=l p 1. u n y n  np 
Ka n:= i+1):2; vi:=bv[i,l]; 
for 3:=2 1 n 
VT-bv[i j +viXu2; 
vi:=viXu$( icl-2Xn); 

end; 
dx:=dxl( eta); dc:5dxt(eta)-dx; 
d2sl&na:=(-dcXdsigma-kX( (ksi-xl)/cXdc+dx)/cXsuml+atsI.&)/C; e; 
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xo,xb,xl,c,eta); xo,xb,xl, c,ets; 

then 0 else sqrt( (ubul)&&2); - -  
+A) ) ); 

l)/(i+l); 
for - i :=1 steq 1 until  np 

E j:al 9 1 until-n do 
sum:=sum+bv i,J ]Xmi+l& 1; 
end; 

a procedure surfint( iy,xoy,xby,k); real iy,xoy,xby; 

b& sum:=o;n:=m:2; 

in[il.- .-SUm 

a; 

sum3,G,K; 

for i:=l s t e  1 until k do 
begin yyo:=y [i]; yyb:=yTi+l]; - for q:=l step 1 until n i  do 

+ -  - 
begin yo:=yyo+~x(yy&yo)/ni; 

yb:=xfotqx( mMo)/ni; 
hs :=O. %( yo+yb) ; hd:=O.%( y&yo); 
Sum2 :=0; 
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mal procedure linelnt(iy,xli,yO,yb); real iy,xli,yO,yb; 
real xr,~,xp,theta,eta,u,xl,hs,hd,lgma,ti,:~um,u;?,yl,$; 

sum:=o: 

& i:=l atep 1 until 5 

si!gma:=o; *:E&; 

- 
&& theta: 00. !%pix( 1 +gp[ 1 ] ) ; iy :=hs+hd%cos ( theta) ; 

estac(iy,=)* fi:=fie(iy); u:=a~(~p?rl)/(xtc(iy)-d 
xc : = x a W (  y-ly ) ; xq :*x+beX( y-iy) ; xp:=nll; 

em3; 
lineint :=sum 

:=0; 

I; 
end; 
m0,l 1 ~ 1 ;  bt[l,l]:=l;bt[1,2]:=0; 



23 

k e a  canmrnt Input cambeFdeta and determination 
of spanwise interpolation coefficients; 

:=read 
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end else 



I ) ;  
I) ;  
ish end; 

APPENDIX D 

Survey of the formulae used to obtain analytical results 

The F 104 wing 
The camber distribution is given by a(x, y) = constant and the representation of the leading edge by x l ( y )  = sly/ 
for O <  l y l<  s s = semi span. 

At the chosen Mach number M,=2 two of the three cases described in app. A arise, namely: 

cuse I to which the following formulae apply: 

case iI to which the following formulae apply: 

U x +a(y- 2s) - 2 B ( y -  s) cos ~ ' - 
n J j F 2  

n J Z 7  
U x +  a(y- 2s) + 28(y- s) 

- cos-1 

when Dy-x > O  
(D21 
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The rectangular wing 
The camber distribution is given by u(x, y )  = ax2 + b x + c  Og x< 1 and the leading edge by x l (y )=O O <  ( y (  < 1. 
At the chosen Mach number M 0 = J 2  case I and case I1 of app. A arise again. For case I the following formula 

is valid : 

1 - - - ( a x 2 + b x + c )  drp 
dx B 
_ -  

and for case 11: 

- drp = - -(ax2+bx+c)cos-'(l-2t) 1 + -{(:(2t-5)ax2-2bx} 1 t = __ P(s-y)  (D4) 
dx nfi nB X 
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REPORT NLR-TR 68069 U 

C.C.L. Class.: D 310 I 
I 

Binary flutter calculations with theoretical and empirical 
aerodynamic derivatives for a wing-control surface system 

in two-dimensional incompressible flow 

H. Bergh and H. Tijdeman 

Summary 

A number of comparative flutter calculations for a two-dimensional wing-control surface system has been performed tb demonstrate the 

Furthermore attention has been paid to the influence of the chord ratio T on the flutter bchaviour and to the sensitivity of the system to 
usefulness of empirical formulae for the control surface derivatives. 

each of the aerodynamic derivatives. 

This investigation has been performed under contract for the Netherlands Aircraft Development Board (N.I.V.) 
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moment derivatives for control surface, ::I defined in Appendix A 
nc 
re normal force derivative for control 

surface 

air speed 
co-ordinate in chordwise direction 
dimensionless. distance between elastic 
axis and i chord axis 
dimensionless radius of inertia of total 
wing 
dimensionless radius of inertia of control 
surface 

wing mass ratio 

control surface mass ratio 

frequency of oscillation 

vB uncoupled wing bending frequency 
v c  uncoupled wing torsion frequency 
"7 uncoupled control surface rotation fre- 

quency 
P air density 
U dimensionless distance between 4 chord 

axis and inertia axis of wing 
uti dimensionless distance between hinge 

axis and inertia axis of control surface 
7 ratio of control surface chord to total 

wing chord 
$ 8 1  

w = -  reduced frequency 
V 

subscripts : 
E experimental 
T theoretical 

superscripts : 
* without still air reactions 

real part 
imaginary part 

1 Introduction 

In conclusion of an extensive experimental programme conducted to determine aerodynamic derivatives for 
wings in two-dimensional incompressible flow, a systematic series of unsteady pressure measurements was carried 
out on various wing-control surface combinations (ref. 1). To reduce scale effects, these tests were performed at 
highest possible Reynolds numbers, ranging from 2 to 8 million. 

An analysis of the test results revealed that for the reduced frequency range considered, the measured aerodynamic 
derivatives for various control surface chord ratios coiild be approximated rather well by empirical relations (ref. 2). 
As certain discrepancies still remain, an  assessment of their influence on the flutter behaviour was necessary. 

The main purpose of,the present report is to demonstrate the usefulness of the empirical expressions for the 
control surface derivatives. This has been achieved by performing a number of binary flutter calculations for a 
two-dimensional wing-control surface system, using either measured or empirical aerodynamic derivatives. The 
flutter calculations have also been performed with purely theoretical derivatives to demonstrate the influence which 
the differences between experiment and theory have on the critical speed. Attention bas been paid to the influence 
of the relative chord ratio z and to the sensitivity of the systemto each of the aerodynamic derivatives. 

For the sake of completeness a short description of the unsteady pressure measurements reported in ref. 1 ,  and 
the final results of that investigation, have been included in the report. 
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2 The experimental aerodynamic forces 

2.1 
Since important discrepancies were found to exist between control surface derivatives, measured on similar 

models at various Reynolds numbers (ref. 3), it was decided to conduct a new series of measurements at sufficiently 
high values of the Reynolds number. The main aim of these tests was the determination of aerodynamic derivatives 
for control surfaces of various chord ratios. To make the information ad complete as possible detailed instationary 
pressure distributions were required. These have been obtained by employing the NLK pressure measuring technique 
(ref. 4). 

The tests were conducted in the NLR low speed windtunnel LST, having a test section of 2 x 3 m2. Three rectangu- 
lar models were used (fig. I), which spanned the test section from top to bottom. 
Model I representing a wing with a 40 percent control surface, was almost identical to the model described in 
ref. 3. It only differed from the latter one in that the original convex shape (NACA 0012) of the control surface 
was modified into a straight contour. The !otal wingchord was 0.82 m. 

' Model rr consisted of a new wing part, followed by the rearward 80 percent of model I, provided with a semi- 
circular nose part. The total chord of the new combination was 1.64 m, the profile being almost identical to NACA 
36909 with maximum thickness reduced to 6.5 percent. This model may be considered to represent a wing with a 
40 percent control surface and a 20 percent tab. 
Model 111 was derived from model I1 by inserting a rectangular piece of 0.23 m length at the point of maximum 
thickness, thus obtaining a wing of 1.87 m chord with a 35 percent control surhce and a 17.5 percent tab. 

The modes of vibration of these models we shown in fig. 2. For various values of reduced frequency w and for 
Reynolds numbers between 2 and 8 million (see fig. 3), pressure distributions were measured on the three models 
oscillating in these modes. The limit values for w -t 0 were deduced from stationary tests, while the limit values for 
w--' 03 were measured directly in still air. 

The experimental results were corrected for tunnelwall interference, using an extension of the theory developed 
in ref. 5. In an attempt to account for the differences between experimental and theoretical pressure distributions, 
the ratio between local pressure coefficients with and without tunnelwalls was assumed to be equal in theory and 
experiment. 

2.2 Results 
From tests at various amplitudes it could be concluded, that the local pressures showed a good linearity with the 

vibration amplitudes, even near the trailing edge. Measurements on the same configuration at Reynolds numbers 
between 2 and 8 million did not show a systematic influence of this parameter. 

Compared with the limiting case w +  m of the incompressible flow theory (ref. 6), the results of still air tests were 
in close agreement as far as the real part was concerned. In the still air tests always a small imaginary part was 
measured, which is not predicted by the theory for incompressible flow. This may be due to the fact that the infinitely 
large propagation speed of small disturbances, assumed in the above mentioned theory, is not an adequate re- 
presentation of what actually happens at zero airspeed. 
On model I pressure distributions were measured corresponding to plain wing rotation about axes at 20 and 40 
percent of the chord (see fig. 2). The results have been used to derive the pressure distributions for pure translation 
and rotation about the quarter chord axis. In order to avoid difficulties from experimental scatter in this separation 
process, use has been made of a similar correction matrix as described in ref. 7. 

The final results for the pressure distributions are given in figs. 4 to 15. The presented values include the still air 
reactions. Compared with theory, the measured local pressures are generally smaller, except for the real parts in 
case of pure translation. 
The aerodynamic derivatives, obtained by integration of the pressure distributions, are presented in figs. 16 to 21 
and in the tables 1 to 3. As could be expected from,the pressure distributions, the measured values are generally 
smaller than the theoretical predictions. 

A comparison of results for model I, obtained by direct pressure measurements (ref. 3) and by the special technique 
used in the present tests, (described in ref. 4) is made in fig. 22. The mutual agreement is very satisfactory. 
For tables 1, 2 and 3 see next page. 
2.3 

An analysis of the aerodynamic derivatives without still air reactions revealed a surprisingly good phase relation. 
between theoretical and experimental results. Furthermore the ratio between the theoretical and the experimental 
pressure amplitudes appeared to be rather independent on the type of derivative and on the reduced frequency, 
although it differed from its static value. 

Short description ofthe wind tunnel tests 

Empirical forrnulae for control surface derioatiues 
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TABLE 1 
Measured aerodynamic wing derivatives. 

W k: k, m: m, k b  & mb m i  

0 0 0 0 0 1.4500 0 -00461 0 
0.20 0.0248 0.2082 -0.0249 -0.0058 1.0870 0.0073 -0.0467 0.1442 
0.40 -0.0485 0.3577 -0.0879 -0.01W 0.9327 0.3252 -0.0874 0.2610 
0.60 -0.2206 0.4975 -0.1896 -0.0141 0.8072 0.6345 -0.1586 0.3790 
0,80 -0.4831 0.6360 -0.3306 -0.0183 0.6676 0.9323 -0.2589 0.4976 
1.00 -0.8320 0.7749 -0.5109 -0.0225 0.5009 1.2220 -0.3880 0.6167 

W 

0 
0.20 
0.40 
0.60 
0.80 
1.00 

TABLE 2 
Measured aerodynamic control surface derivatives (T = 0.20) 

k: w 

0 0.79 
0.40 0.389 
0.60 0.370 
0.80 0.368 
1.00 0.390 

1.50 0.294 
1.20 0.327 

k, 

0 
- 0.005 

0.005 
0.051 
0.077 
0.118 
0.208 

m: 

0.039 
0.310 
0.308 
0.308 
0.327 
0.271 
0.235 

m: 

0 
0.044 
0.063 
0.099 
0.132 

0.216 
n.151 

n: __ 
0.017 
0.01 1 
0.011 
0.011 
0.011 
0.009 
0.005 

n: - 
0 

0.007 
0.010 
0.013 
0.015 
0.018 

n.cm 

Measured aerodynamic control surface derivatives (r  = 0.175). 

W k: k: m: m: n; n: 

I 

0 0.72 0 0.34 0 0.012 0 
0.52 0.322 0.018 0.284 0.050 0.008 0.004 
0.78 0.336 0.044 0.297 0.086 0.009 0.W7 
1.04 0.316 0.065 0.282 0.104 0.008 0.W8 
1.30 0.309 0.114 0.282 0.145 0.008 0.011 
1.56 0.241 0.200 0.202 0,197 0.004 0.013 
1.95 0.249 0.254 0.209 0.245 0.004 0.016 

TABLE 3 
Measured aerodynamic control surface derivatives (i = 0.4). 

n: 

0 
-0.00335 
-0.01685 
-0.04058 
-0.07433 
- 0.1 I800 

n: nb 

0 O . W I 4  
0.00593 0.02715 
0.01019 0.01205 
0.01415 - 0.w925 
0.01807 -0.03795 
0.02198 -0,07443 

"; 

0 
0.02052 
0.04798 
0.07530 
0,10230 
0.1291 0 

k: __ 
1.31 
0.826 
0.761 
0.690 
0.676 
0.583 

k: 

0 
-0.014 
0.073 
0.208 
0.375 
0.449 

m: 

0.35 
0.316 
0.319 
0.291 
0.261 
0.236 

m: n: 

0 0.082 
0.081 0.049 
0.164 0,050 

0.336 0.035 
0.395 0.027 

0.251 0.038 

n, 
~ 

0 
0.019 
0.066 
0.039 
0.088 
0.109 

Measured aerodynamic control surface derivatives ( r  = 0.35). 

W k: k: m: m: n: n:' 

0 0.99 0 0.33 0 0.051 0 

0.78 0.407 0.205 0.218 0.215 0.017 0.048 
1.04 0.397 0.341 0.194 0.301 0.009 0.065 

1.56 0.289 0.582 0.089 0.445 -0.014 0.097 
1.95 0.233 0.772 -0.003 0.638 -0.043 0.139 

0.52 0.464 0.109 0.248 0.143 0.026 0:028 

1.30 0.342 0.450 0.135 0.398 -0.008 n.085 
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Finally a correlation was observed between the mentioned amplitude ratio for various models and the static 
value of the ratio between measured and theoretical mean pressure level. The mentioned observations could be 
described by the following empirical relations between the flow dependent parts (i.e, without still air reactions) of 
experimental and theoretical control surface derivatives: 

k:, = 0.84 S. k f ,  1 
0.2 < w < 2.0 I m,*,=0.84S.m~, i0 .05  

n& = 0.84 S . n:,? 

with 
J r;, = 0.84 S . rr;- 

The approximate values ofthe derivatives with still air reactions included may simply be obtained by adding their 
corresponding theoretical values, because the measured still air reactions agreed well with the theoretical values. 

The empirical expressions approximate the measured aerodynamic derivatives quite well, as is demonstrated for 
k,, m, and n, in the figs. 18 to 21. Here two remarks have to be made: 
(1) The static values (o=O) do not fit in the empirical approach, so the empirical relations can only be applied within 

(2) In case the factor S is derived from three-dimensional tests, it is doubtful whether the constant 0.84 is still 
the o-range used in the tests, being roughly 0.2< w i  2.0. 

applicable. 
I 

l 2.4 Approximationsfor plain wing deriuatiues I 

For the purpose of making systematic flutter-calculations for a wing-control surface system, it was desirable to 
have also approximate expressions for the aerodynamic derivatives, corresponding to plain wing translation and 
rotation. These wereobtained byusingsimilarformulaeasgiven ineq. 1.As theplain wingderivatives weremeasured 
only for one wing profile, il makes little sense to express the constants into a ratio between some measured and 
theoretical stationary derivatives. 

The expressions used to approximate the measured derivatives are given in appendix A. The good agreement is 
demonstrated in figs. 16 and 17. 

3 Comparative flutter calculations based on measured, approximated and theoretical aerodynamic derivatives 

In order to investigate whether the remaining discrepancies between measured and approximated aerodynamic 
derivatives would give unacceptable differences in flutter behaviour, several binary flutter cases were calculated 
using both types of derivatives. Also calculations with theoretical aerodynamic forces were made for reference. The 
flutter calculations have been performed for a two-dimensional wing-control surface system ofgiven wing properties 
(elastic axis at 40% c, inertia axis at 50% c and a density ratio p of 15). 

As only one complete set of aerodynamic derivatives was measured for a wing with a control surface of 40 percent 
(model I), these comparative flutter calculations were restricted to this chord ratio. 
For the binary cases, summarized in table4, thevariationofdamping and frequency withairspeed has beencalculated. 

The results for wing bending-control surface rotation are presented in figs. 23 and 24. The points computed by 
applying approximated derivatives are in good agreement with those obtained with the measured quantities, 

Compared with calculations with theoretical aerodynamic derivatives the results based on experimental derivatives 

I 

TABLE 4 
System parameters for the comparative flutter calculations discussed in seetion 3 

~ ~ ~~ ~~ ~ ~ 

wing bending-control -0.3 0.2 15 0.55 0.4 0.04 4.5 0.4 0 23 
surface rotation -0.3 0.2 15 0.55 0.4 0.04 4.5 0.4 0.7". 24 

wing torsion-control -0.3 0.2 ' 15 0.55 0.4 0 4.5 0.4 0 25 
surface rotation -0.3 0.2 IS 0.55 0.4 0 4.5 0.4 0.7~~ ' 26 

-0.3 0.2 15 0.55 0.4 0.04 4.5 0.4 0 21 
-0.3 0.2 I5 0.55 0.4 0.04 4.5 0.4 0.7"- 28 
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show a slightly higher critical speed in case of a free floating control surface. For the elastically clamped control 
surface there is little difference between the variation of damping with airspeed in both cases. 

The results for wing torsion-controlsurface rotation are presented in figs. 25 to 28. In all cases considered the mutual 
agreement between results calculated with approximated and measured aerodynamic derivatives is satisfactory. For 
the elastically clamped control surface (figs. 26 and 28) the results obtained with theoretical aerodynamic derivatives 
show already flutter of a very mild type at very low speeds. 

Summarizing, it can be stated that the empirical formulae for the control surface derivatives (section 2.3), together 
with the approximations for the plain wing derivatives (section 2.4) are sufficiently accurate for flutter calculations. 

4 Stability diagrams for various chord ratios 7 

To study the difference in flutter hehaviour predicted with theoretical and experimental derivatives respectively, 
again binary flutter calculations have been made for a two-dimensional wing-control surface system. In this case the 
solutions of the characteristic equation for several values of o have been given as stability diagrams, showing the 
variation of a non-dimensional flutter speed with the squared ratio of control surface frequency and wing frequency. 

As the approximated aerodynamic derivatives were proved to be sufficiently accurate, they have been used to 
investigate a variation of the chord ratio i in the flutter calculations. To have a consistent set of experimental aero- 
dynamic derivatives the ratio S i n  the empirical expressions for the C-modes was taken equal to the value of model I 
(S=O.88). The values of thederivatives for theA- and Bmodes have been obtained by interpolating thecorresponding 
coefficients A ,  to the chord ratio T ,  The values of the coefficients Aij used, are given in table 6. 

The combinations investigated have been summarized in table 5. 

TABLE5 ' 
System parameters for the flutter calculations discussed in section 4 

wing bending-control -0.3 0.2 15 0.55 0.1 r 0.75 p r  
surface rotation ,*I. r=0.40; 0.30 

surface rotation -0.3 0.2 15 0.55 0.1 i 0 . 7 5 ~ ~  31 
wing torsion-control -0.3 . 0.2 15 0.55 0 0.75 p 31 0.20; 0.15 

TABLE 6 
Empirical coefficients A,, used for the calculations discussed m section 4. 

S A , ,  A,! ,412 E ,  A,, A32  '41, A,, B1 A,, 

0.15 0.88 0.70 0.43 0.64 0.15 0.62 0.43 0.74 0.74 0.05 0.74 
0.20 0.88 0.70 0.45 0.64 0.15 0.62 0.45 0.74 0.74 0.05 0.74 
0.30 0.88 0.70 0.49 0.64 0.15 0.62 0.49 0.74 0.74 0.0s 0.74 
0.40 0.88 0.70 0.53 0.64 0.15 0.62 0.53 . 0.74 0.74 0.05 0.74 

The results for wing bending-control surface rotation are presented in fig. 29. 
In general, the lower flutter boundaries show remarkably small differences for all chord ratios considered, not- 

withstanding the rather large discrepancies between theoretical and experimental derivatives. The latter apparently 
have more influence on the upper boundary, which has little importance in practice. 

The weakly restrained control surface has the lowest flutter speed in case oftheoretical derivatives. This conclusion 

holds for a fairly large range of 2 .-values, depending on T ,  (3 
The foregoing is illustrated also in fig. 30, where the influence of the chord ratio 7 on the critical speed is shown. 
The results for wing torsion-control surface rotation arc presented in fig. 31 for both u,=O and 0,=0.1 1. In these 

cases, there is a greater difference between the lower flutter boundaries, especially at the higher r-values. This is 
clearly demonstrated in figs. 32 and 33 where the variation of the critical speed with the chord ratio T is shown 

for several values of the frequency ratio 2 
V T  

V 



5 Influence of each aerodynamic derivative on the critical speed 

To investigate the sensitivity of the flutter boundary to the various experimental derivatives, a number of cal- 
culations with approximated values has been performed, replacing alternatively one of them by its theoretical value. 
This has been restricted to wing bending-control surface rotation and wing torsion-control surface rotation both 
with 7=0.4 and nR=0.04. . .. 

Wing bending-control surface rotation: The results for this case have been collected 
results, it should be remembered that for the degrees of freedom considered flutter main1 
by the lift due to control surface rotation overcomes the damping action of the lift due't 

Knowing this, it is not surprising that replacement of k,  by its theoretical value, thus 
derivative, gives rise to an increase in critical speed and' that enlarging k, leads to a-rather important decrease of 
the flutter boundary, together with a considerable extension of the unstable region. The influence of the derivative 
n, appears to be very small. Taking n, according to theory gives somewhat lower critical speeds in the range O,< 
(vJvR)' < 0.6, while at large values of this parameter the flutterboundary is raised. 

Wing torsion-control surface rotation: For this system it,is more diflicult to predict whether it will flutter or not. 
Unlike the bending motion the damping of the torsion motion of the wing is relatively small and the system is 
considerably more sensitive to small changes in the derivatives. 

The influence of the various derivatives on the critical speed is shown in fig. 35. It appears that taking k. or n, 
according to theory gives rise to an increase in critical speed and a smaller extent of the unstable region. Replacing 
k,  or n, by its theoretical value, leads to very small unstable regions. Using the theoretical value of mb gives no 
instability at all. On the other hand the derivatives m, nb and k,  have a very large, unfavourable effect on the flutter 
boundary. In these cases there is no lower flutter boundary at all, in othe; words flutter occurs directly at zero 
airspeed. 

In the next section attention will he paid to this phenomenon. 

6 Stability of the wing torsion-control surface rotation system at large values of the reduced frequency 

To get some insight into the mechanism of the observed instabilities a t  very low speeds, discussed in the foregoing 
section, the stability of the system at large values of the reduced frequency has been investigated. For simplicity this 
study has been restricted to a free oscillating control surface. 

Before discussing the wing with control surface, the flutter hehaviour a t  vanishing airspeed (Le. o+ m) of a plain 
wing (r=O), which is free to rotate about a fixed axis, is considered. It is well known from two-dimensional, incom- 
pressible flow theory that such a wing reaches a zero flutterspeed ifthe axis of rotation is located at the three-quarter 
chord point. For all other axis locations the wing appears to he stable. 

It has been shown in appendix B, that flutter may occur at very low speeds for a certain range of axis locations 
if experimental aerodynamic forces, approximated by the formulae of Appendix A, are used. Then a necessary 
condition to be fulfilled for flutter is: 

A l l  A2* < 
A12 '412  

A I ,  A22 

A 1 2  A12 
In fig. 36, the axis locations where instability occurs, which depend only on the ratios -and-, have been 

plotted against 2 .- for various values of - . Taking all aerodynamic derivatives according to theory, 

so A,= 1, gives the aforementioned axes location at 75 percent chord. Instability is absent for the numerical values 
of A ,  which have been used in the calculations described in sections 3 and 4 (see table of appendix A). 

For the two degree of freedom system, consisting of a rotating wing with a free floating control surface, it.is also 
possible to derive a stability criterium for very high reduced frequencies (see appendix B). The stability is shownto 
be dependent on the chord ratio I ,  the coefficients Aij, the inertia properties and the wing axis location. 

A A22 A 2 2  

A 1 2  A12 A12 

Taking theoretical aerodynamic forces this criterion is simplified in Appendix B to: 

-1+aQ5, 

l -PQ52  
E =  

. .  
The constants a and /?, defined in eq. B.8 ofAppendix E, are fully determined by the inertia properties and the 

chord ratio T (fixing the functions Q5J. So with theoretical aerodynamic forces, a given wing-cnntrol surface system 
has again one wing axis location for which the flutter speecis zero. The expression for E includes the.limit case of a 
plain wing, as &=O for r=O, leading to E =  - 1. 
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For the wing-control surface system considered in the present report, fig.-37a shows the variation of the critical 
axis location with T. It appears that the critical axis moves forward with increasing T, but the range of T-values in- 
vestigated still gives damped oscillations for a wing axis at 40 percent, as used in this report. 

The result of this stability investigation suggests that in practice flutter a t  low speeds is likely to occur for wing- 
control surface systems with nodal lines located closely to the critical position. 

In contrast with its hehaviour based on theoretical aerodynamic forces, the system appears to be completely 
stable at vanishing airspeed if the approximations for the measured aerodynamic derivatives are used (Le. A ,  
values according to table of app. A). However, one has to he careful, as minor changes in one or more of the co- 
effcients Ai j  may give a completely different result. This is shown in fig. 37h, presenting the unstable region that 
occurs if only the coefficient A , ,  is raised from 0.64 to 0.70. 

To explain the result of lig.~35, where no lower flutter boundary exists in case either m,, nb or k ,  is taken according 
to theory, the stability criterion B7 of Appendix B has been used. As this criterion is restricted to a free floated 
control surface, it only indicates whether the origin of fig. 35 becomes part of a stable or an unstahle,region. The 
result has been summarized in the table here under. 

Derivative, chosen Valhe of D Conclusion about 
according to theory (eq. B. 7 of App. B) origin of fig. 35 

k.' A l , = l  +0.0567 
n: A 3 , = l  +0.0355 

m: A , , = l  +0.4079 
k: A t 2 = l  - 0.1863 

n: A,,=l  
k,' A , , = l  
m,' ~ , , = i  

-0.1088 
f0.1018 
- 0.1459 

stable 
stable 
unstable 
stable 
unstable 
stable 
unstable 

n: A3,=1 + 0.0909 stable 
none +0.0297 stable 

note: ma*=O in both theory and experiment. 

The conclusions about the position of the origin can be easily verified in fig. 35. The magnitude of D appears to 
give an indication of the size of the unstable region. For instance the unstahle region for kf is much smaller than 
for n:, while for m: the system is even completely stable. 

7 Conclusions 

From the investigation of two dimensional wing-control surface systems in incompressible flow, the following 
conclusions can be drawn : 
1 The presented empirical formulae for control surface derivatives appear to he sufficiently accurate for flutter 

2 Using theoretical aerodynamic forces, a n y  given wing with free control surface is shown to have one wing axis 

3 In case a combination of theoretical and empirical aerodynamic derivatives is used in a flutter calculation, flutter 

calculations. 

location, for which flutter. at zero air speed occurs. 

at zero airspeed may occur within a certain range of wing axis locations. 
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APPENDIX B 

Stability criterion for a wing torsion-control surface rotation system at large values of the reduced frequency 

The equations of motion for a wing torsion-control surface rotation system in case of a free floating control 
surface (w,=O) can he written as: 

where Z = Z ' + i Z =  w+/w2 is the unknown quantity to be solved. The aerodynamic quantities L,, of eq. (B.l) can 
be expressed as : 

L z , = A 2 2 m , * + A 1 , ~ 2 k : + A 1 2 a k , * + B I -  

1 
471 L z 3 =  A,,m:+B,+A,,ekf - -(4,+2~4.,)0~ 

I 1 
L3,=  A3zn,*+A,,en.',- (47 +2E44)02 

1 
L , ,  = A,,@ - - 4nZ 412w2 

(Note: m." = 0) 

Using the expressions for the aerodynamic derivatives given in Appendix A, and assuming w -t 00, the aerodynamic 
terms in (B.1) are reduced to: 

1 i-[A2,+&2A,1+2&A1J- L22 1 
Id - w 
_ -  

I The condition for damped oscillations of the system described by eq. (B.l) is 

Z < O  

From eq. (B.l) it can be derived : 

where for convenience the following notations have been used: 

c, =p(u2+xZ) 

C2 = P R u R ( u + ~ + u R ) + / L R ~ :  

c3 =k(';+x:) 

Thus the condition for damped oscillations (B.4) yields: 



(11.0) 

(8.0) 

(90) 
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MODEL I!, T-Fq e,,,< 

c.1117," 

Fig. 1. Tested model configurations. 

MODEL I 

1.2 as 1,s 
a. 

w 
70 

r.2 1.6 
. ,  . .  " 

Fig. 3. Investigated combinations of Reynolds'number (Re) and 
reduced frequency (o). 

. . , .  

/ .  . 

Fig. 4. Real part of pressure distribution for wing translation (note 
positive direction of C, being opposite to that in all other figures). Fig. 5. Imaginary part of pressure distribution for wing translation. 



Fig. 6. Real part of pressure distribution for wing rotation. Fig. 7. Imaginary pan of pressure distribution for wing rotatian. 

Fig. 8. Real part of the pressure distribution for control surface 
rotation (T = 0.40). 

Fig. 9. Imaginary part of pressure distribution for control surface 
rotation (T = 0.40). 

I 

I t I I  

Fig. 10. Real part of pressure distribu!ion for. control ,surface ' Fig. .11. Imaginary part of pressure distribution for control surface 
rotation (r  = 0.20). ' . rotation (T = 0.20). 



14 

Fig. 12. Real part of pressure distribution for control surface 
rotation (T = 0.35). 

Fig. 14. Red part of pressure distribution for control surface 
rotation (r = 0.175). 

k. 
q.5 

/ 

.I I ’  
Fig. 13. Imaginary part of pressure distribution for control surface 

rotation (T = 0.35). 

I 
Fig. IS. Imaginary part of pressure distnbution for control surface 

rotation (z = 0,175). 

-0.1 I 
Fig. 16. Aerodynamic derivatives for wing translation (model I ;  

hinge moment derivative n. for r = 0.40). 
. 



. I  

,'I 

Fig. 17. Aerodynamic derivatives for wing rotation about one 
quarterchordaxis(mode1 I;hingemomentderivativen,forr = 0.40). 

-u 
Fig. 19. Aerodynamic derivatives for control surface rotation 

(model 11, r = 0.20). 

a, 1 0  

- w  

Fig. 18. Aerodynamic derivatives lor control surface rotation 
(model I ;  r = 0.40). 

0 2  

"e 

0 

0, -w 

- T * E W  

. 
0 

Fig. 20. Aerodynamic derivatives for control surface rotation 
(model 111, 7 = 0.35) 
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Fig. '21. Aerodynamic ~ derivatives for control surface rotation Fig. 22. Comparison between results of the present tests and the 
results of ref. 3, obtained by direct pressure meisurements.' . . .  -(model,lII, i =0.175). 

. ,  
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Fig. 25. Wing torsion-control surface rotation flutter (vJvT = 0). Fig. 26. Wing torsion-control surface rotation flu& ( V J X . ~ =  0.7). 
~ 

Fig. 21. Wing torsion-control surface rotation flutter ( v J v r =  0). Fig. 28. Wing torsion-control surface rotation flutter (vJv,= 0.7) 
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Fig. 32. Influence of T on the critical speed in case of wing torsian- 
control s&ace rotation (a. = 0). 

Fig. 33. lnfluence of T on the critical speed in case of wing torsian- 
control surface rotation (0. = 0.1 7). 

TAKEN FROM THEORY: ALL OTHER 

Fig. 34. Influence of the various aerodynamic derivatives on the 
flutter baundary in case of wing bending-control surface rotation. 

0 
I I 

os 1.0 - k/""/.d: ' 
Fig. 35. Influence of the various aerodynamic derivatives on the 
flutter boundary in case of wing torsion-control surface rotation. 
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Fig. 36. Axis location5 for unstable wing oscillations (c  = 0). 

T 

Fig. 37. Wing axis location for which wing with free floating c~ntrol surface is unstable. 
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Crack propagation in aluminum alloy sheet materials 
under flight-simulation loading 

J. SCHIJVE, F. A. JACOBS and P. J. TROMP 

Summary 

A large number of flight-simulation tests were carried out on sheet specimens of 1075-T6 and 2024-T3 clad material. A gust load spectrum 
was adopted and a night-by-night loading was applied. The investigation is essentially concerned with macro-crack propagation though a 
few exploratory testswereconductedon thecrack nucleation period.The majjortrendsemergingfromtestswitha variety ofloading programs are: 
1. The omission of taxiing loads from the ground-to-air cyclcs did not affect the crack propagation. 
2. The sequence of the gust cycles in a flight (random, programmed, reversed gust cycles) did not have a significant influence on the crack propa- 

3. Omission of gust cycler with small amplitudes systematically increased the crack propagation life. 
4. The most predominant effect on the crack propagation was coming from the maximum gust amplitude included in the test. Increasing this 

5.  Application in each night of a single gust load only, namely the largest upward gust load, increased the crack propagation life three times. 
6. Omission of the ground-to-air cycle increased the life 1.5-1.8 times. 

The discussion and the analysis afthe results include such aspects as fractographic analysis, possible mechanisms for interaction effects between 
load cycles afdiffcrent magnitudes and damage calculations. The conclusions at the end of the report have B number of implications for testing 
procedures to be applied in full-scale testing aiming at crack propagation data for bdil-Safe considera1ions.A recommendation is made for selecting 
the maximum load level in such a test. Recommendations for further study are also made. 

gation. 

amplitude gave a large increase of the crack propagation life. 
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List of Abbreviations and Symbols 

GTAC ground to air cycle (in the literature some- 
times: GAG=ground-air-ground transi- 
tion) 

TL taxiing loads 
Crack propagation life: number of flights for crack 

growth from I =  10 mm to complete failure 
of the specimen. 
semi crack length, see fig. 4 
number of flights (or cycles) 

number of flights (or cycles) to cover the 
crack growth interval from 1; to I ; ,  , 

1 
n 
dl/dn crack propagation rate 
An 

- 
crack propagati' 
stress amplitude 
mean stress 
minimum stress 
maximum stress 
minimum Sa of 
the gust cycles 
maximum Sa of 
the gust cycles 

= lO-'meter=O.a 

. 
I life, or fatigue life 

gross stress 
(in kg,"m2 if 
not specified 
otherwise) 

inch; 1 inch=25.4 mm 
1 kg/mm2 = 1,422 psi; 1000 psi=0.703 kg/mm2 
1 kc = 1 kilocycle = 1000 cycles 
1 p/fl. = crack rate of 1 micron meter) per 

flight 

1 Introduction 

Full-scale fatigue testing at the present time is 
generally accepted as a useful procedure, if not the only 
one, for evaluating the fatigue qualities of an aircraft 
structure. Major goals to be achieved are: 
a. Indication of structural deficiencies, fatigue critical 

b. Determination of fatigue lives until visible cracking 

c. Determination of crack propagation rates in view of 

d. Evaluation of inspection procedures. 
e. Measurements on residual strength. 

In order to obtain realistic data on (b) and (c) it will 
be clear that the fatigue loads to be applied in a full- 
scale test should be a realistic representation of the 
load-time history in service. This problem was ex- 
tensively discussed in ref. 1, which was the Final Report 
of a preceding investigation. It was concluded in this 
report that the load sequence should have the character 
of a flight by flight simulation. This conclusion still 
leaves various questions to be answered, such as:  
1.  The sequence of loads within each flight, should it be 

a random sequence or could a programmed sequence 
be allowed? A fully randomized sequence and a 

elements. 

occurs. 

inspections. 

2 

programmed sequence are thought to be the most 
extreme possibilities. 

2. What is the maximum load to be applied in the test 
(truncation of load spectrum)? 

3. Could small load fluctuations be omitted from the 
test in view of time saving? 
These three questions were also extensively discussed 

in ref. 1 and certain recommendations were made. 
Nevertheless it had to be admitted that more empirical 
data was urgently desirable. 

The present investigation deals with fatigue crack 
propagation tests on sheet specimens of two aluminum 
alloys (2024 and 7075). Load sequences were selected 
in such a way as to shed some further light on the three 
questions mentioned above. In addition test series were 
carried out to study the damaging effect of ground-to- 
air cycles, the effect of reversing the order of positive 
and negative gusts and the effect of applying only the 
most severe gust load in each flight. Some constant- 
amplitude tests were made for damage calculations. 
A survey of all test series is given in the following 
chapter. 

It should be pointed out that the present test series 
involves the propagation of visible cracks only. It is 
thought that the results will be helpful in planning 
fatigue tests with flight simulation loading on full-scale 
structures or components, especially if crack propaga- 
tion has to be studied (fail-safe structures). This report 
gives a full description of the experiments and the 
results obtained. The analysis of the data (chapter 7) 
includes a discussion of related test programs reported 
in the literature. The report is completed by a general 
discussion and a number of conclusions. 

2 Survey and scope of the test series 

A gust load spectrum was approximated by a stepped 
function as indicated in fig. 1. This spectrum was 
subsequently broken down into 10 different types of 
flight (A-K), each characterized by its own load 
spectrum, varying from "good weather" conditions to 
"storm"conditions (see chapter 5). The sequence of the 
various types of flights in the tests was random, while 
the gusts in each night were also applied in a random 
order. A schematic picture of a flight is shown in fig. 1 
and a load record of the severest flight is presented in 
fig. 2. Each gust cycle consisted of an upward gust load 
immediately followed by a downward gust load of the 
same magnitude, the mean stress being 7.0 kg/mmz 
(10.0 ksi). Taxiing loads applied in the ground-to-air 
cycle (GTAC) or air-ground-air transition bad a 
constant amplitude (Sa= 1.4 kg/mm2) and the number 
of these cycles per GTAC was 20. 

As outlined in the introduction, the main purpose of 
the present investigation was a comparative study of 
several load sequences to be adopted for flight-simula- 



tion testing. A summary of the variables studied in the 
present test program is given in the table in fig. 1 and 
a survey of~the test parameters is presented in table 1 .  

a Truncation of the gust load spectrum. Extremely high 
gust loads are very rare. Unfortunately they may have 
a large effect on crack propagation and since one can 
not be sure that all aircraft of a fleet will meet the same 
high gust loads it is a delicate issue to assess the 
maximum load to be applied in a flight simulation test 
(rel. 1). In view of this problem comparative tests were 
carried out with the maximum gust load level (trunca- 
tion of load spectrum, see fig. l) as a variable. 

b Omission of small gust loads. The omission of small 
gust load cycles in a night simulation test would save 
a considerable amount of time since these cycles are 
relatively numerous, see fig. 3. Since these cycles may 
still contribute to crack growth comparative tests were 
made with and without the smallest gust cycles. 

c S,;. in the GTAC (ground-to-air cycle). In some 
exploratory tests S,, in the GTAC was - 1.4 kg/mm2 
whereas in the major part of the investigation a value 
of -3.4 kg/mm2 was adopted. This allows a limited 
comparison to be made. 

d Taxiing loads. Taxiing loads (TL) are superimposed 
on the GTAC. For a wing structure they are thought to 
he relatively unimportant for the fatigue life, except for 
decreasing the minimum stress level in the GTAC 
(ref 1). Comparative tests were made to explore this 
question, since the omission of the taxiing loads 
implies again an appreciable time saving. Since the 
present test program confirmed the negligible damage 
contribution of the taxiing loads these loads were 
omitted in various test series of the program when 
studying other variables (see fig. 3). 

e Omission of the GTAC. Two test series were carried 
out without ground-to-air cycles in order to estimate 
the damaging effect of the GTAC. 

f. One gust cycle perflight. Flight-simulation tests were 
carried out with only the largest positive gust load of 
each flight being applied. It implies that in each flight 
all smaller gust cycles are omitted except for the positive 
half of the largest one, see fig. 3. This simplification, 
implying a further time saving, was based on the idea 
(ref. 2) that the'highest (and the lowest) stress level in a 
flight will have a predominant effect on the fatigue 
damage contribution of the flight. 

g Reversed random sequence. In the present tests a 
positive gust load was always followed by a negative 
gust load of equal magnitude since this was thought to 

be just slightly conservative (ref 3). The other extreme 
is that each positive gust load is preceeded by a negative 
one of equal magnitude. In view of a possible influence 
two test series were carried out with the sequence of 
each gust cycle in this reversed sequence, see fig. 3. 

h Programmed sequences. Several test series were 
carried out with programmed gust load sequences, that 
means that within each flight the gust load cycles were 
applied in an increasing-decreasing order ofamplitudes, 
see fig. 3. The sequence of the flights, however, remained 
unchanged. Such a programmed flight simulation may 
give indications on the importance of load sequences 
within a flight. 

j Materials. Apart from the exploratory tests almost 
all load sequences were applied to both 7075-T6 and 
2024-T3 specimens. This allows a comparison of the 
two alloys and in addition it may show whether certain 
influences are more important for one material than 
for the other. 

A small number of tests were carried out on sheet 
specimens with a central hole instead of a sharp notch. 
The aim ofthese tests was to see whether the significant 
effect of truncation as found for crack propagation also 
applies to crack nucleation. These tests on specimens of 
2024-T3 material, see table 2, were of an exploratory 
nature only. 

After the completion of the flight-simulation tests, a 
small number ofspecimenswasstill left. Thesespecimens 
have been used forconstant-amplitude tests. The results 
allow some damage calculations to be made. A survey 
of these tests is given in table 3. 

3 Materials and specimens 

Specimens were cut from 2024-T3 Alclad and 7075- 
T6 Clad sheet materials. The nominal thickness of the 
sheets was 2 mm (0.08 inch). The material properties as 
determined on tensile specimens cut in the longitudinal 
and transverse direction from the sheets are given in 
table 4. The results are considered as being typical for 
these alloys. 

The specimens were cut to a width of 160 mm and a 
length of235 mm. The free length between the clampings 
was 160 mm, that is equal to the specimen width, see 
figure 4. A sharp central notch was made by drilling a 
small hole and making two short saw cuts at both sides 
of the hole, The specimens were subsequently pre- 
cracked to a crack length I =  10 mm (0.4 in) by cycling 
between S,,,= 10 kg/mm2 and S,,,=O kg/mm2. Since 
thestresses in theflight-simulation testsare beyond these 
values it was thought that an effect of precracking on 
subsequent crack growth should be negligible. 
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4 Exprimental profedures 

4.1 The anti-buckling guides 
In order to prevent buckling of the specimens two 

aluminum alloy plates were used as antilhuckling 
guides, see fig, 4 and the picture in fig 5. At the inner 
side felt was bonded to the plates to minimize the 
friction between the specimens and the guide plates. 
Each plate was provided with a window for observation 
of the crack growth. 

The bolts connecting the two plates were hand 
tightened. The NLR had previously used such a device 
for riveted joints. Nevertheless it was checked by strain 
gages whether no load was transmitted through the 
plates. At the same time these measurements were used 
to check the stress distribution in the sheet specimen. 
A dummy specimen without central notch and cracks 
was provided with three strain gages at each side of the 
specimen, located at the two ends and the centre of the 
windows. It turned out that no load transmission 
through the guide plates could be indicated, provided 
the bolts were loosely tightened. Moreover sheet 
bending was practically absent and the stress distribu- 
tion was satisfactory. Differences between dynamic and 
static strain readings were in the order of 1 ;( or less. 
The measurements covered the stress ranges to be 
applied in the fatigue tests. 

After the first preliminary tests were carried out it 
became desirable to speed up the test program by 
testing two specimens in series. The specimens are 
interconnected by two relatively heavy strap plates of 
steel and a single row of bolts in each specimen. A rigid 
clamping had to be made since the clamping in the 
machine itself is also a rigid one. Fig. 6 shows the 
various parts involved. The anti-buckling guides had 
to he made larger in order to cover both specimens. 
Tests were continued until one of the two specimens 
fractured completely. Since the scatter of the crack rate 
was low crack growth in the second specimen covered 
a large part of the cross section. 

4.2 The fatigue apparatus 
The specimens are loaded in an MTS fatigue machine, 

type 901.55, maximum dynamic capacity 25 tons. In 
this hydraulic machine the load control occurs by an 
electro-hydraulic servo valve in a closed circuit feed 
hack system. The valve is fed by an electric signal 
representing the required fatigue load. This signal is 
generated by a piece of apparatus, called PAGE 
(Programmed Amplitude GEnerator) developed at the 
NCR. It employs the function generator of the MTS- 
machine for producing half sine wave functions. PAGE 
allows any sequence of half sine waves with different 
amplitudes to he selected as well as a shift between two 
selected mean values of the cyclic load. The latter is 
required in view of the GTAC (ground-to-air cycle). 

The sequence of amplitudes and the selection of the 
corresponding mean load is punched into a binary digit 
tape. A Creed model 92 tape reader is part of the PAGE 
apparatus. It further includes a patch board on which 
the cycling frequency can be set separately for each 
amplitude. In general a lower frequency will be selected 
for a large amplitude and vice versa. 

A sample of a load sequence (recorded at a low load- 
ing rate in view of the recorder) is shown in fig. 2. Load 
frequencies adopted in the tests are 10 cps for the taxiing 
loads and the lower gust loads (S,=l.14.4 kg/mm2) 
while for the higher gust loads the frequency was 
inversely proportional to the stress amplitude, varying 
from 8 to 3.6 cps for Sa from 5.5 to 12.1 kg/mm2. 

4.3 The crack propagation t e , m  
Pre-cracking of the specimens occurred in an Amsler 

High Frequency Pulsator (frequency 100 cycles per 
second). After pre-cracking the specimens were mount- 
ed into the MTS machine and flight simulation loading 
wasstarted.Thepropagation ofthecracks wasohserved 
continuously with a magnifying glass or a stereo- 
microscope (30 x ). 

The specimens were provided with fine scribe-line 
markings, see fig. 4. If the tip of a crack just reached 
such a line the number of flights covered was recorded 
and these data were used for the evaluation of the crack 
propagation. 

If one specimen of a pair tested in series failed the 
fatigue life until failure for the other one was obtained 
by extrapolation of the crack propagation curve 
employing the data of the fractured specimen, see fig. 7. 
It will he clear that this will not introduce inaccuracies 
of any importance. Results obtained did not indicate 
systematic differences between the results of specimens 
tested in series and specimens tested separ;itely. 

5 The fatigue loads 

5.1 The gust loads 
A gust spectrum was recently derived in the Nether- 

lands from flight data obtained in England, Australia 
and the USA. The shape of the spectrum is shown in 
fig. 1. The gust spectrum was converted into a stress 
spectrum, by using a conversion factor 1 ftjsec -0.3 kgj 
mmz (430 psi), a value frequently adopted by the NLR 
for program tests. As a mean stress a value S,= 7.0 kg/ 
mmz (10 ksi) was selected. 

For the flight simulation tests the load spectrum as 
given in fig. 1 had to be distributed over a number of 
different flights. It will he clear that the load spectrum 
cannot be the same for all flights since the more severe 
gusts have an average frequency of occurrence of less 
than once in a flight. Ten different.types of flights were 
designed, each characterized by its owmload spectrum 
varying from “good. weather” conditions to “storm” 
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conditions. This was done in such a way that the shape 
of the load spectrum (statistically speaking: the distri- 
bution function) is approximately the same for all 
flights except for the severety which is dikerent. 
Justification for this procedure is found in gust load 
measurements eyaluated by Bullen (ref. 4), and in the 
modern power spectral density conception indicating 
that the shape of the spectral density function of the 
gust is invariable hut the intensity is depending on 
weather conditions and flying height (ref. 5). Starting 
from the stepped function in fig. 1 numbers of gust 
cycles for the flights A-K were obtained as shown in 
table 5. 

The sequence of the gust cycles in the flights is one of 
the variables to he studied in the present program, that 
means a random sequence has to be compared witha 
programmed sequence. It should be noted that each 
positive gust amplitude is immediately followed by a 
negative one of equal magnitude. In other words gust 
cycles are applied as complete cycles around a mean 
load. This applies to both the random and the pro- 
grammed sequence, see figure 3. For the random gust 
loads this is a restriction on the randomness, which is 
thought to be slightly conservative (ref. 3), see also the 
discussion in section 7.5. 

The sequence of gust cycles of different magnitudes 
in each flight is a random sequence produced by a 
computer. An example is shown in fig. 2, see also fig. 3. 
The sequence of the flights is also random, with the 
exception of the very severe flights. Since it had to he 
expected that the severe flights may have a predominant 
effect on crack growth it  was thought undesirable that 
these flights have a chance to cluster together, which is 
the risk of a random selection. The most severe flights 
were therefore uniformly distributed over the total 
sequence. This is diagrammatically indicated in table 6. 

In the tests such a block of 50M) flights was repeated 
periodically. Since a block of 5000 flights contains 
approximately 200.000 gust cycles in a random sequence 
the repetition of the block is thought to he irrelevant 
with respect to the randomness of the load-time history. 
It was recommended in ref. I that the maximum load 
in a full-scale flight simulation test should not exceed 
the load level anticipated IO times in the desired life 
time in view of the predominant and favorable effect 
of larger loads on the fatigue life. If the desired fatigue 
life is taken as 50.000 flights this leads to a truncation 
at  the load level that will he reached or exceeded once 
in 5000 flights, that means the maximum level shown 
in fig. I .  

A similar recommendation was made in ret 1 for 
crack propagation. Assuming an inspection period 
of 500 flights the stress amplitude that is equalled or 
exceeded 10 times in 500 flights (or 100 times in 5000 
flights) according to fig. 1 is about 6.6 kg/mm2. This 
truncation level was used in several test series, hut in 

addition two higher truncation levels (S,=7.7 and 
8.8 kg/mm2) and two lower ones (Sa= 5.5 and 4.4 kg/ 
mm’) were employed. Thetest results clearly confirmed 
the slower crack propagation at higher truncation 
levels. A few preliminary tests were carried out with the 
load spectrum shown in fig. 1 fully untruncated. 

5.2 The ground-to-air cycles and the taxiing loads 
In the preliminary tests the mean stress of the ground- 

to-air cycles (GTAC) was more or less arbitrarily 
assessed at S,=O. On this mean stress 20 taxiing loads 
cycles were superimposed with an amplitude of 
S,=1.4 kg/mm2, the stress range 2.8 kg/mm2 thus 
being 40% of the S,-value of the gust cycles. A similar 
pattern for the taxiing loads was adopted previously 
by Gassner and Jacoby (ref. 6). It was considered to be 
a relatively severe air-ground-air transition, which was 
made somewhat more severe for the major part of the 
tests by adopting S,= -2.0 kg/mm’ for the taxiing 
loads. Since it was expected that the damaging effect 
of the taxiing loads would be negligible (the tests have 
confirmed this view) it was thought unnecessary to 
refine the GTAC by varying bbth the number and the 
amplitude of these load cycles, although that would 
have been possible. 

6 Test results 

6.1 Results of theflight-simulation tests 
In each specimen two cracks were started by the 

central notch. In general crack propagation was sym- 
metric, that means I ,  % I , ,  and hence all data presented 
will refer to the average crack length I as defined in 
fig. 4. The complete crack propagation records for all 
specimens are presented in tables 7 and 8 by giving the 
incremental numbers of flights, Ani, corresponding to 
successive crack growth intervals, I j + I j +  The /,-values 
were associated to the scribe-line markings on the 
specimens. The plotting positions for crack propagation 
curves have not been presented, hut they can easily be 
calculated from the tables. An example with two crack 
propagation curves is given in fig. 7. 

The crack growth data were converted into crack 
propagation rates by taking at I = ( I j + I i +  #2: 

AI - I j + , - I j  
An Ani 

This formula in fact gives the average crack rate of the 
crack growth interval, which is assumed to apply to 
midpoint of theinterval, a sufficient approximation for 
small intervals. Calculations of the crack rate were 
made only for the mean result of each test series. The 
results have been plotted in figs 8-11. 

The crack propagation life is defined as the number 
of flights for crack growth from l= lO  mm until 
complete failure. The crack propagation life turned out 

- -__ 
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to be useful for a first appreciation of the trends 
emerging from the tests. Results are given in tables 
11-17 and figs 13 and 14, which will be used as a 
starting point for the discussion. For a more refined 
approach the crack propagation data will be used. 

6.2 Results of the constant-amplitude tests and damage 
calculations 

The evaluation of the data was performed in a 
similar way as for the flight-simulation tests, see table 9. 
In fig. 15 the results have been plotted as S-N data. 
Damage calculations could not be made for all tests 
since insuficient S-N data were obtained. However, it 
was possible to calculate the X n/N value for the random 
tests (2024 specimens) with the GTAC being omitted 
(series No. 45). This has been done in table 18 and the 
result was Xn/N=3.4. A still higher value has to be 
expected for the 7075 specimens since the n-values are 
approximately half as large as for the 2024 specimens, 
see table 16, while the N-values are only one fourth 
approximately (see fig. 15). 

Secondly the constant-amplitude data for both 
materials obtained at Sa= 1.1 and 2.2 kg/mm2 allowed 
a prediction on the difference between the crack 
propagation lives with and without small gust cycles. 
Adopting the symbols: M = crack propagation life 
with small gust cycles included, and M=crack 
propagation life without small gust cycles being applied, 
then the Palmgren-Miner rule for a test with the small 
gust cycles included can be written as: 

for the small gust cycles per flight 
M '  

With this equation M' may be derived from M or 
vice versa. In the former case M' becomes infinite for 
many test series since the damage of the small gust 
cycles (second term in the equation) is already equalling 
or exceeding 1. This clearly illustrates that the Palm- 
gren-Miner rule is highly overestimating the damage 
contribution of the small gust cycles. The same trend is 
observed when deriving M from M ,  that means 
calculating the reduced fatigue life when small gust 
cycles are included. The results are shown in table 19 
and a comparison is made with the test results. The 
table shows that the prediction of the reduced fatigue 
life is much smaller than the reduced test life, again 
implying an overestimation of the damage contribution 
of the small gust cycles. This feature is also thought 
responsible for the high Xn/N obtained in the random 
tests without GTAC (table 18). 

It is noteworthy that the overestimation of the 
damage contribution of the small gust cycles appears 
to be larger for the 7075 specimens than for the 2024 
specimens, compare the ratios in the last column of 
table 19. 

6.3 Results of the tests on the specimens with a central 
hole 

These tests were carried out on 2024 specimens only. 
The crack propagation records are given in table IO, 
while the average crack propagation curves are shown 
in figure 16. Crack nucleation occurs at the edge of the 
hole and the nucleation period was arbitrarily defined 
as the number of flights to create a crack with a length 
of 2 mm (1'=2 mm or I =  12 mm, see fig. 16). The crack 
propagation life then started and lasted until failure. 
The variable studied was the truncation level and fig. 16 
shows that this level had a large effect on the crack 
propagation life, similar to the results as found in the 
normal crack propagation tests, see table 14. However, 
for the crack-nucleation period the truncation effect is 
much smaller as clearly illustrated by the life ratios in 
fig. 16. 

In fig. 17 the crack rates in the specimens with a 
central hole are compared with those of specimens with 
a small central notch. Comparative results were 
available only for S,,,.,=6.6 kg/mm2 (and S.,,;,= 
2.2 kg/mm2). The figure shows that after some crack 
growth the two curves practically coincide, as might be 
expected. 

6.4 Some fractographic observations 
Although the 200 specimens tested would have 

allowed an extensive fractographic examination this 
was beyond the scope of the investigation. Some 
macroscopic observations will be recapitulated below, 
since they may have some meaning for explaining the 
trends of the crack propagation results. A few.fracto- 
graphs obtained with the electron microscope will be 
presented also. 

A large number of specimens showed growing bands 
on the fracture surfaces, that could easily be detected 
by the unaided eye, see fig. 18. The bands were better 
visible if the difference between the maximum and the 
minimum gust amplitude (Ss,,ax - Sa,mcn) was large, 
while the bands were virtually absent when this dif- 
ference was small. A similar correlation was found for 
the macroscopic roughness of the fracture surface, that 
means that the surface was relatively smooth for a high 
value of and relatively rough if this 
difference was small. Both observations indicate that 
the interaction between high and low amplitude cycles 
had some effect on the cracking mechanism. Since 
fatigue striations could not be detected in the dark 
bands whereas they could be found between the dark 
bands the dash bands have to be associated with the 
load cycles with a high amplitude. The dark bands have 
been associated previously (ref. 7) with some kind of a 
"brittle" crack extension. Since the bands were more 
clearly present for a high value of Sa,max-Sa,min the 
numerous low amplitude cycles apparently are condi- 
tioning the material in order to promote the brittle 
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crack extension in the high amplitude cycles. 
Macroscopically the fracture plane of a slowly 

propagating fatigue crack is perpendicular to the 
loading direction. When the crack. propagation is 
accelerating the growing direction remains the same 
but the fracture plane will make an angle of 45 degrees 
with the loading direction. This transition from the 
“tensile” mode to the “shear” mode has frequently heen 
observed and has been correlated with the transition 
from planz strain to plane stress conditions, 

In the present investigation the transition was 
observed in all specimens, hut this phenomenon in 
general did.not develop as clearly as under constant- 
amplitude loading. This is probably a consequence of 
the variety of amplitudes applied. Low amplitudes 
will promote the tensile mode, whereas high amplitudes 
will promote the shear mode. These then are two com- 
peting influences and the result is a slow transition from 
one mode into the other one when the crack is growing. 

Unfortunately the transition also occurred during 
the precracking of the 2024 specimens, while it has 
occurred to a minor degree in the 7075 specimens, see 
fig. 18. Consequently the very first part ofcrack growth 
in the 2024 specimens may have been influenced by the 
retransition to the tensile mode. In order to check this 
point some test series were carried out on specimens 
precracked to a crack length 1=6 mm and 1=5 mm for 
the 2024 and the 7075 specimens respectively. As shown 
by plotting the crack rate as a function of the crack 
length in figs 8b and 8d a noticeable effect of the pre- 
cracking was found only for the 2024 specimens 
truncated at a low S,,,,, value (S,,,,,=8.8 kg/mmz) 
and this effect was restricted to the very first part of the 
crack growth. Therefore it will not he considered any 
further. 

It is noteworthy that the macrobands were still 
visible after the transition from the tensile mode to the 
shear mode was completed, although it should be’said 
that the hands were less distinct then. 

Two-stage carbon replicas for observation in the 
electron microscope were obtained from the fracture 
surfaces of several specimens, hut as said before, a 
systematic study was not made. Striations could he 
observed in all specimens examined and two pictures 
are shown in fig. 19. In general the striations were more 
clearly observed in the 7075 specimens than in the 2024 
specimens, while several features were found that have 
been described elsewhere (recently in ref. 8). If it had 
been possible to indicate the GTAC in the electron 
graphs this would have heen a promising result. How- 
ever, no confirmation of this possibility was obtained 
for the random flight simulation tests. In the program- 
med flight simulation tests certain hatches ofgust cycles 
of equal magnitude could easily he indicated, see for 
instance the lower picture in fig. 19. From this in- 
formation the striations corresponding to the GTAC 

could he indicated in some cases, although in general 
this still remained difficult. 

7 Analysis of the present results and comparison with 
data from the literature 

In the literature comparative investigations con- 
cerning macro-crack growth under flight simulation 
loading could hardly he found. This is somewhat 
surprising since the problem is an essential part of the 
fail-safe conception. However, the fatigue life of notched 
elements under flight simulation was studied in the 
literature and reference will he made to this work. 
Secondly some crack propagation studies under ran- 
dom loading without GTAC were also reported in the 
literature. 

In this chapter the various aspects of the present 
investigation are discussed separately while a general 
discussion is given in the following chapter. Before the 
present results will he analysed the possibilities for 
interaction effects between load cycles of different 
magnitudes will be discussed first, since that may be 
helpful for explaining the empirical trends. 

7.1 Interaction between load cycles of dij‘ierent magni- 
tudes 

If the fatigue load is changed from one level to a 
second level (by either changing S. or S, or both) the 
fatigue crack propagation at the second level will 
initially be different from the propagation occurring 
when the second level had been applied from the begiu- 
ning of the test. This interaction effect according to 
macroscopic observations was practically negligible if 
the change was an increase of the stress amplitude, 
whereas important crack growth delays were observed 
if the stress amplitude was reduced (refs 9 and IO). 
Positive peak loads could most drastically reduce the 
crack growth. The explanation was.based on residual 
stresses set up in the crack tip region. 

In recent publications of the group of McMillan, 
Pelloux and Herzberg (refs 11, 12 and 13) it has been 
suggested that crack tip blunting and sharpening as 
well as cyclic strain hardening may he of more than just 
secondary importance. This view was based on ex- 
cellent electron fractograpby. In addition it appears 
that changes ofthestateofstressmay also he significant. 
Low stress amplitudes are associated with slow crack 
propagation and plane strain at the tip of the crack 
(tensile mode fracture, macroscopically), while high 
stress amplitudes will induce fast crack propagation’. 
with predominantly plane stress at the tip of the crack 
(shear mode fracture). Changing from a low amplitude 
to a high amplitude may then imply that the crack front 
has not the spatial configuration associated with the 
high amplitude. The same applies to the reversed 
amplitude change and this phenomenon will also lead 
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to interaction effects. It 'is partly confirmed by the 
fractographic observations presented in section 6.4. 

Listing the various arguments for interaction effects 
during crack propagation gives: 
1. Residual stresses. 
2. Crack blunting or sharpening. 
3. Cyclic strain hardening (or softening) and associated 

influences on the material structure. 
4. Mismatch between the macroscopic fracture planes 
as a consequence of different states of stress at the tip 
of the crack. 
It has been known for a long time that crack growth 

at a certain stress amplitude is depending of the mean 
stress (or the maximum stress). This result is suhstanti- 
ated hy physical conceptions about crack extension 
(refs 14 and 15). It is then a natural consequence that 
residual compressive stresses will reduce the crack 
propagation rate. It is much more dilficult to make 
qualitative predictions on the effect of the other aspects 
listed above. Crack blunting is a matter of plastic de- 
formations and it therefore will introduce residual 
stresses. Hence the effect of crack blunting cannot be 
separated from an additional effect of residual stresses. 
It is noteworthy, however, that the interaction effects 
are more significant for the 7075 alloy as compared to 
the 2024 alloy, see section 7.9. In the former alloy 
higher residual stresses can be introduced due to the 
higher yield stress, and secondly crack blunting will be 
less than in the more ductile 2024 alloy. The larger 
interactions in the 7075 alloy are then in favor of the 
residual stress argument rather .than crack blunting. 

The third and the fourth argument do not readily 
allow simple speculations. In section 6.4 it was said that 
low amplitude cycles may condition the material and 
thus stimulate brittle crack extension at a higher ampli- 
tude, which would he an unfavorable interaction. 

It is noteworthy that McMillan and Pelloux (refs 1 I 
and 12) on the hasis of electron fractography came to 
the conclusion that interaction effects when changing 
the fatigue load are hardly observed on the fracture 
surface. An exception, however, was made for the first 
cycle applied after changing the fatigue load. There 
were some indications that interactions might be active 
then.Itwasfurtherobserved by McMilldnand Herzherg 
(ref. 13) that a drop of S,,, first induced an increased 
striation spacing followed by a decreased spacing 
aflerwards. The latter as well as the macroscopically 
delayed crdck growth are compatible with the residual 
stress argument, whereas the former is not. 

An important conclusion from the above discussion 
is that changing the fatigue load may introduce an 
interaction that is only significant for the first cycle 
following that change. The implication is that inter- 
action effects could be very important for random load 
sequences, since the amplitude is changing from cycle 
to cycle. However, for tests with a programmed load, 

sequence such interaction effects may remain almost 
unnoticed since changing the stress amplitude is a 
relatively infrequent occurrence. 

In conclusion it has to he admitted that with the 
exception of the influence of residual stresses the quali- 
tative understanding of the other interaction effects is 
still partly speculative and requires a further systematic 
study. 

7.2 The omission of the taxiing loads (TL)  from the 
ground-to-air cycle (GTAC)  

As shown by table 11 the omission of the TL had a 
practically negligible effect on the crack propagation 
life. Important arguments are: 
a. The minimum stress in the GTAC (Smin) was the same 

b. Smi, in the GTAC was the lowest stress of a flight. 
c. The TL had a compressive mean stress (-2.0 kg/ 

mm'). 
In view of the last argument it is difficult to see how 

the TL should contribute to crack growth. In view of 
arguments (a) and (b) the omission of the TL does not 
affect the overall loading cycle of a flight. Hence one 
should expect a negligible effect on the crack propaga- 
tion life as shown by the tests. This justifies the omission 
of TL in a flight simulation test, provided that the 
minimum stress of the GTAC has been adjusted in 
order to account for the largest taxiing load cycle'. 
The omission may save a considerable amount of 
testing time. 

The same reasoning was already presented in ref. 1 
for full-scale testing in general. Reference was made 
there to results of Gassner and Jacoby (ref. 6) who 
found that the omission of 20 TL cycles per GTAC did 
not affect the fatigue life in flight simulation tests on 
notched bars ( K , =  3.1) of 2024-T3 material. 

7.3 The minimum stress of the GTAC 
The minimum stress (Smin) of the GTAC was in fact 

not a parameter to he studied in the present test series. 
However, since some exploratory tests were carried out 
at S,,= - 1.4 kg/mm2 while for other tests a value of 
- 3.4 kg/mm2 was adopted a limited comparison could 
be made. Table 12 shows that the effect of Smj. for the 
7075 specimens was negligible whereas for the 2024 
specimens there might he a small systematic effect, that 
means a shorter crack propagation life if the GTAC is 
going further downwards. The latter trend has not been 
well substantiated in view of the small number of tests. 

In the GTAC the specimens were loaded in compres- 
sion and.one may expect the crack to be closed and to 
he no longer a severe stress raiser, since it then can 
transmit compressive' loads. As a consequence the 

for tests with and without TL. 

' I f  a part of a structure is carrying a significant tensile stress 
during the GTAC it will be clear that TL may give the major fatigue 
damage contribution and TL should obviously 6e considered. 



effect of Smj, should be unimportant. This argument 
was suggested by Illg and McEvily (ref. 16) who found 
it to be more^ ~~~~~~~ applicable to 7075 sheet material as 
compared to 2024 sheet material. The latter was 
explained by the higher ductility of the 2024 alloy, 
implying more crack opening due to plastic deformation 
in the crack tip area, and hence a larger compressive 
stress before crack closure occurs. This reasoning is in 
agreement with the effect of Smi. in the GTAC as 
indicated above. 

The meaning of S,;, of the GTAC for notched ele- 
ments will be more important than for macro-cracks, 
since the crack-closing argument does no longer apply. 
Hence the assessment of S,;, in a full-scale test on a 
structure should be made most carefully, the more 
since there is ample evidence of the large damaging 
influence of the GTAC (refs 1 and 17). 

7.4 Omission of the small gust loads 
Omission of the smaller gust load cycles implies that 

a relatively large part of the gust cycles is omitted (see 
table 5 )  and hence much shorter durations of the flights 
will be the result, see fig. 3. Testing times for 5000 flights 
were: 

All gust cycles included: 346 minutes 
Gusts with S,=l.l kg/mm’ omitted: 96 minutes 
Gusts with S,=l.l and 2.2 kg/mm2 omitted: 

30 minutes. 
The attractive feature of omitting the smaller gust 
cycles is thus clearly illustrated. However, the omission 
in general increased the crack propagation life, see 
table 13 and fig. 13. If the cycles with both Sa= 1.1 and 
S,=2.2 kg/mm2 were omitted the increase of life was 
about twofold, for both random and programmed 
flight simulation tests and for two truncation levels 
(S,,,,,=6.6 and 7.7 kg/mm2). When omitting only the 
smallest cycles (Sa= 1.1 kg/mm2) theincreashasabout 
20% for the 2024 specimens and 40% for the 7075 
specimens (table 13). The former result is a moderate 
increase and it might be acceptable under certain 
circumstances. 

The effect of omitting small gust loads is shown in 
more detail in fig. 9 by plotting the crack rate as a 
function of the crack length. It turns out that the larger 
differences are found if the crack rate is low while for 
relatively large cracks and high crack rates the effect 
has vanished. The trend is more clear for the 7075 alloy. 

For an explanation two lines of thoughts may be 
considered : 
a. During the small gust cycles there will be some crack 

extension. In other words these cycles give some 
direct contribution to the crack propagation. 

b. Secondly the small gust cycles may induce an un- 
favorable interaction effect on the crack extension 
during larger amplitude cycles, see the discussion in 
section 7.1. 
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The fractographic observations (section 6.4) seem to 
favor the latter view, since the macro growth bands 
were more readily visible if the small gust cycles were 
included. However, as pointed out in section 7.1 it 
remains difficult to separate the contributions of the 
possibilities (a) and (b). 

Comparable evidence was not found in the literature. 
Tests of McMillan and Pelloux (ref. 11) with program- 
med sequences (without GTAC and not conforming 
to a gust spectrum) indicate little if any damage of the 
low amplitude cycles, but these cycles were so less 
numerous that a comparison with the present data is 
hardly justified. 

Flight simulation tests on notched elements, in- 
volving the effect of omitting small gust cycles were 
reported by Naumann (ref. 3) and by Gassner and 
Jacoby (ref. 6). Naumann employing random flight- 
simulation loading found a small life increase when 
omitting gust cycles with Sa= 1.05 kg/mm2, namely 
16 and 7 per cent depending of S,, in the GTAC 
(7075 edge notched specimens, K,=4.0, &=I4  kg/ 
mm2). Gassner and Jacohy reported a 2.5 times longer 
fatigue life in programmed flight simulation tests if the 
cycles with the smallest amplitude (Sa= 1.3 kg/mm2) 
were omitted (2024 centrdhotch specimens, K , =  3 .1 ,  
S,=9.5 kg/mm2). 

7.5 The effect of the gust cycles with a high amplitude 
The truncation of the gust spectrum (see fig. I) ,  

implies that the amplitude of the more severe gust 
cycles are reduced to a common Sa,,,,-value. The 
present results have shown that this value has a pre- 
dominant effect on the crack propagation life, see 
table 14 and fig. 14. The latter figure clearly illustrates 
that the effect is large, irrespective of random or 
programmed gust sequences being adopted and taxiing 
loads being applied or not. Table 14 further shows that 
the effect is of a similar magnitude if the two smallest 
gust cycles are omitted =3.3 kg/mm2). Figure 14 
also shows that the effect is slightly larger for the 7075 
alloy than for the 2024 material. 

The effect of the truncation level is shown in more 
detail in fig. 8. The figures 8a and 8b indicate that the 
effect for the 7075 material has a maximum at 1-20 mm, 
whereas such a maximum is less clear for the 2024 
specimens. Figure 8c including some data for Sa,,,,= 
12.1 kg/mm2 most dramatically demonstrates the 
significance of truncating the gust spectrum. A test with 
S.,,.,= 12.1 kg/mm2 on a 2024 specimen had to be 
stopped in view of the extremely slow crack growth. 

For an explanation the interaction effects mentioned 
in section 7.1 have to be considered, Since the trends 
were the same for programmed and random gust 
sequences and also for random sequences with and 
without small gust cycles it is thought that residual 
stresses were indeed the main agent responsible for the 



10 

Randoinness 

effect of the truncation level. 
In view of the predominant and almost frightening 

effect of Sa,,ax on the crack propagation a few tests 
were carried, out to explore this effect with regard to 
the life time for crack nucleation from a central hole. 
These tests were restricted to 2024 specimens and as 
fig. 16 shows the effect fortunately is much smaller for 
the nucleation period. It has to he admitted, however, 
that for the nucleation period the truncation levels were 
relatively low when considering for instance a target 
life of 50000 flights. More tests on this topic with respect 
to the pre-crack life appear to he desirable. 

In the literature similar tests concerning crack 
propagation were not found and there was only one 
reference for the fatigue life under flight simulation 
loading for notched elements. Gassner and Jacoby 
(ref. 6)  for a notched bar (2024T3, K,=3.1, S,=9.5 
and 11.0 kg/mm2) with programmed flight simulation 
loading reported a 30 and IO percent life reduction 
when S,,,,, was reduced from 2.1 S, to 1.55 S,. 
Qualitatively it is the same trend as in the present 
investigation. 

7.6 Random or  programmed sequences in eachflight and 
reversion of the gust cycle 

Within a flight the gusts were applied in either a 
random or a programmed sequence, see fig. 3. As table 
15 shows the differences between the crack propagation 
lives for the two sequences were very small. This is 
further substantiated by fig. 11. Table 15 gives the 
impression that the truncation level might have a small 
systematic effect on the comparison that means that for 
Sa,,,, = 8.8 k g h "  the crack propagation life with a 
programmed gust sequence is some IO percent longer 
than for the random sequence, while for S.,,.,=4.4 kg/ 
mmz it is about 7 percent shorter. However, these 
differences are so small that it cannot be said with any 
certainty that a systematic 'trend was found. 

In two test series the reversion of the gust cycles 

i Fatigue life in flights Fatigue life ratiois1 

No GTAC GTAC No$X"TC GTAC 

is of secondary importance. Apparently the Sa,,,,- 
value, within the limits of flight-simulation loading, was 
the predominant parameter for crack propagation 
rather than the load sequence in each flight. 

Crack propagation under random loading, however, 
without GTAC hut axial loading and positive mean 
stresses was studied by Smith (refs 18 and 19) for 2024 
and 7075 sheet material and for different shapes of the 
spectral density function of the loading. The results 
indicated a small influence of the spectral shape. A 
similar trend was observed for the fatigue life of notched 
aluminumalloys by Kowalewski (ref. 20, K , =  1.8, plane 
bending, S,=O), Naumann (ref. 21, K,=4, axial 
loading, S,= 12.2 kg/mmz) and Clevenson and Steiner 
(ref. 22, K,=2.2, axial loading, S,=O). Since the 
"degree" of randomness is a funciion of the spectral 
shape those test programs suggest the sequence ofloads 
to be of minor importance as long as it is random (see 
also the discussion of Swanson in ref. 23). If periodic 
loads such as the GTAC are then added to a random 
load history it may he expected that the sequence effec! 
will be limited even further. 

Interesting information is coming from random tests 
published by Naumann (ref. 3) and Gassner and Jacoby 
(ref. 24). Naumann performed tests on an edge notched 
specimen (K,=4) of 7075 material with a random gust 
loading with and without GTAC. Three types of 
randomness were adopted, indicated by Naumann as: 
I .  Random cycle : Each positive half cycle was followed 

by a negative half cycle of the same magnitude. 
2. Random half cycle, restrained: Each positive half 

cycle was followed by a negative half cycle, the. 
magnitude of which was selected at random from the 
load spectrum and which therefore was generally not 
equal to that of the preceding positive half cycle. 

3. Random half cycle, unrestrained: Positive and 
negative half cycles were randomly selected with no 
restrictions on the sequence of positive and negative. 

The results are summarized in the table below. 

5815 
7358 
8798 

1334 0.66 0.84 
1515 0.84 0.95 
1588 1 I 

1. Random cycle 
2 Random half cycle, restrained 
3. Random halfcycle, unrestrained 

1.1 Ratio = I far case (3) 

(random sequence) implied that each gust cycle now Gassner and Jacoby (ref. 24) performed flight 
started with the negative half cycle followed by the simulation tests with a random gust sequence and with 
positive one of the same amplitude. It turned out that two different programmed sequences. The tests on 
the effect on the crack propagation was practically 2024T3 specimens (K,=3.1) yielded fatigue lives of 
negligible, see table 16 and fig. IO. This is a second 2500, 2800 and 5800 flights respectively. There were 
indication that the sequence of the gust loads in a flight approximately 4M) gust cycles per flight programmed 
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in a high-low-high amplitude sequence (life=2800 
flights) or in a low-high-low sequence (5800 flights). 
With such a large number of gust cycles per flight 
different programming techniques apparently may 
cause significantly different fatigue lives. Hence a 
realistic sequence should be preferred. In an additional 
study (ref. 25) Jacoby performed flight simulation tests 
on the same specimen loaded with a random sequence 
of complete gust cycles, or with a random sequence of 
maxima and minima. The fatigue lives were practically 
the same. Jacoby also performed tests without GTAC 
and then found large differences between the fatigue 
lives under random and programmed load sequences, 
that means much larger as found in other investigations. 
The latter result requires further clarification and a 
discussion is beyond the scope of the present report. 

7.7 Application of a single gust load per flight 
In the load sequence as shown in fig. 3f, only the 

largest upward gust of each flight was applied. As a 
result the crack propagation life was more than 3 times 
longer as compared to the standard random sequence, 
see table 16. In fact such a highly simplified load 
sequence can be envisaged as a simulation of flights 
from which all gust cycles were omitted except for the 
positive half cycle with the largest amplitude. The 
fatigue life is longer than for omitting gust cycles with 
S,=l.l and 2.2 kg/mm2 as shown by table 16. The 
effect on the crack rate is illustrated by figs 9c and Yg. 
Apparently the simplification of applying a simple gust 
load per flight is unacceptable for crack propagation 
studies. 

7.8 Omission of the GTAC 
.Omission of.the GTAC increased the fatigue life 

with some 50 and 80 percent for the 7075 and 2024 
specimens respectively, see the bottom line of table 16. 
That means adding the GTAC reduced the fatigue life 
with 33 and 44 percent respectively. Hence the omission 
seems to be unjustified. The larger figure for the 2024 
alloy may be explained in a similar way as the influence 
of Smj, of the GTAC, see section 7.2. 

In a previous investigation of this laboratory (ref. 26) 
crack propagation in 2024 and 7075 sheet material 
under random and programmed load sequences was 
studied in an indoor and an outdoor environment. Data 
on the effect of the GTAC were available for the 2024 
material only. The GTAC induced life reductions of 27 
and 2 percent for the indoor and the outdoor environ- 
ment respectively. The small reductions are not sur- 
prising when taking notice of the stress levels (kg/mm2) : 
gusts: S,=12.1, Ss,,,ax=ll.6, Sa,,in=l,15, GTAC: 
Smj,= +2 .6 .  

In another test series on 2024-T3 Alclad specimens 
(ref. 27) a constant-amplitude loading (S,=Y and 
S.=3 kg/mmz) was interspersed with GTAC (Smi,= 

+0.7 kg/mm2) every 50 or every 10 cycles. Reductions 
of the crack propagation life were 12 and 28 percent 
respectively. 

Much larger reductions have been found in several 
flight-simulation test series for notched specimens and 
structures (see for a survey Appendix G of ref. 1) and 
hence realistic fatigue information requires a flight by 
flight testing. Although the present data have shown a 
smaller effect during macro-crack propagation it has 
to be said that a flight-simulation loading should be 
preferred also, then, rather than testing without GTAC 
or testing with ground-to-air cycles applied in groups. 

1.9 Comparison between the two alloys, 7075 and 2024 
In general all tests were carried out on specimens of 

both alloys using the same stress-time histories. With- 
out any exception the crack propagation life was 
larger for the 2024 alloys, and as shown by table 17 
approximately twice as large. It was already illustrated 
by fig. 14 that this ratio was dependent of the Sa~-x- 
value, the ratio becoming smaller at higher truncation 
levels. In this respect it is interesting to compare the 
crack rates as a function of the crack length, see figures 
10 to 12. This shows that the differences between the 
two alloys become smaller at higher values of the crack 
length (higher stress intensities), larger values of 
S,,,,, and smaller values of Sa,,,jn. Apparently these 
trends indicate that favorable interaction effects become 
more significant in the 7075 material as compared to 
the more ductile 2024 alloy if the stress intensity at the 
tip of the crack is increased (higher I and Sa,,,ax). This 
argument was referred to in section 7.1. 

It is noteworthy that the differences between the two 
alloys were considerably larger in the constant- 
amplitude tests, see fig. 15, than in the flight-simulation 
tests. This is another indication for the more favorable 
interaction effects in the 7075 alloy. 

7.10 Damage calculations 
It was shown in section 6.2 that C n / N = l  highly 

underestimates the crack propagation life for the tests 
without GTAC. Calculations for tests with GTAC could 
‘not be made since constant-amplitude data for the 
GTAC were lacking. 

A comparison between predicted crack .rates and 
actual crack rates under random loading conditions 
(without GTAC) was made by several authors. For a 
positive mean stress Smith (ref,. 18) found the linear 
damage rule to be conservative (2024 and 7075 material) 
while Swanson et a!. (ref. 28) arrived at good estimates 
(7079 alloy). Both investigations apply to axial load 
tests. For program loading E n l N  far in excess of one 
had previously been found (ref. 29). 

As shown by table 18 the damage contribution in the 
flight-simulation tests should be very small for the 
higher Sa-values. However, according to the test results, 



load cycles with the high S,-values had a large positive 
effect on the crack propagation life, rather than a small 
negative one. 

It was already mentioned in section 6.2 that the 
Palmgren-Miner rule also gave a very had prediction 
of the damage of the small gust cycles (table 19). The 
invalidity of the Palmgren-Miner rule is not a sur- 
prising conclusion since interaction effects as discussed 
in section 7.1 are essentially ignored by this rule. How- 
ever, from the present data the conclusion can also he 
given as follows: The effect of changing the load 
spectrum on the fatigue life cannot he predicted from 
the Palmgren-Miner rule. 

8 Discussion 

8.1 Recommendation for the maximum load in uflight- 
simulation test 

The main theme of the present investigation is the 
question: Which load sequences can he adopted in a 
flight-simulation test in order to obtain crack propaga- 
tion data with practical significance? This is an urgent 
question if fail-safe tests are carried out on a full-scale 
structure, It appears that the present investigation has 
shown some variables to be of minor importance and 
some others to  he of major importance. 
1. The omission oftaxiing loads did not affect the crack 

propagation. 
2. The minimum stress in the GTAC, being compres- 

sive, had only a small influence if any. 
3. The sequence of the gust cycles in a flight turned out 

to be of secondary importance. 
Influences of major importance were concerned with 
the following topics: 

4. Omission of the gust cycles with small amplitudes did 
systematically increase the fatigue life, see fig. 13, and 
should therefore be limited to very small amplitudes 
(say Sa< 1 kg/mm*). 

5. The predominant effect on the crack propagation 
was exerted by the maximum gust amplitude 
(S,,,,,) included in the test, see fig. 14. Increasing this 
amplitude gave a considerable decrease of the crack 
propagation rate. 
In fact the selection of S,,,,, now appears to be the 

most delicate issue when planning a flight-simulation 
program for crack propagation studies. Although it 
may appear realistic to apply all gust loads that are 
anticipated to occur, it has to he recognized that one 
then applies an  averaged expected load spectrum. The 
load spectrum is statistically variable in such a way that 
the spectrum for a certain aircraft will he more severe, 
while it will he less severe for another nominally 
identical aircraft. If the target for the crack propagation 
life is 2000 flying hours (as an example) the gust load 
that on the average is reached or exceeded once in that 
period will.be met more than once by some aircraft 

whileothers willnot seeit. Ifwe then know that this high 
gust load is highly beneficial for a slow crack propaga- 
tion it would he both unrealistic and unconservative 
to include it in a test. A truncation of the load spectrum 
to a lower level has therefore to he proposed. 

In ref, 1 a similar argumentation was already used 
for full-scale testing in general and it was proposed that 
a load level exceeded IO times in the target life should 
he the maximum level applied in the test. The number 
of 10 admittedly has been chosen somewhat arbitrary, 
hut the number is thought to he large enough for being 
sure that each aircraft will meet the load at least a few 
times. The recommendation presupposes that the load 
spectrum was estimated as accurately as possible 
without any unduly over-conservatism. 

It now appears that the same recommendation is 
equally applicable to crack propagation studies. The 
question then arises as what shall he the target life for 
crack propagation. For a fail-safe structure the target 
may obviously he much lower than the anticipated 
useful life of the aircraft. It has to he associated with the 
inspection period in service. The proposal is to truncate 
the load spectrum at the level that will he equalled or 
exceeded IO times in the service inspection period. The 
question of safety factors is again difficult and will not 
he discussed here. It should be pointed out, however, 
that the truncation as suggested is in some way 
accounting for the scatter of the load spectrum. 

8.2 Alternatiues to flight-simulation 
For full-scale fatigue testing only one structure will 

in general he available and there appears to he no 
reasonable alternative to a realistic flight-simulation 
test. This view has been expressed several times, notably 
by Branger (ref. 30). It appears to be true also for crack 
propagation. Fortunately the problems of load control 
in such a test are no longer an objection. 

Ifsmaller structural elements have to he tested during 
the design stage it may he worthwhile to adopt simpler 
testing methods such as program tests or even constant- 
amplitude tests. For crack propagation there appears 
to he as yet no empirical justification for such a proce- 
dure. On the contrary the present investigation suggests 
that interaction elfects between load cycles of different 
amplitudes are important enough to retrieve the main 
line of service loading. This is the flight-by-flight 
character, at least for a wing structure mainly loaded by 
gusts. In other words also then a flight-simulation test 
has to he advocated. As discussed by Jacohy (ref. 25) 
this is no longer a problem for modem fatigue machines. 
A major difficulty, however, is to arrive at a useful 
flight-simulation load-time history. 

If one still uses simpler loading programs in view of 
available fatigue apparatus one has to consider the 
uncertainties regarding the relevance of the test results. 

Finally an alternative solution might he “calcula- 

12 I 
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lions”, or borrowing and extrapolating from data in 
the literature. It is almost euphemistic to state that this 
problem has not yet been solved. Nevertheless there 
are certain prospects for the future. A discussion would 
be beyond the scope of this report. 

8.3 Suggestions for further work 
1 .  An obvious recommendation is to perform a similar 

test program as the present one, hut now with typical 
notched elements as a specimen in order to cover the 
fatigue life part of the problem. Although some 
studies were reported in the literature as referred to 
in the previous chapter (see also the exploratory tests 
of the present investigation, fig. 16) several aspects 
have to be studied in more detail. 

2. Regarding crack propagation in aluminum alloys 
systematic studies of interaction effects are certainly 
worthwhile. In other words the accumulation of 
fatigue damage is still a topic of present interest, both 
for practical and fundamental reasons. 

3. Fatigue under random loads generally appears to he 
a useful field for investigations. This topic was 
extensively reviewed by Swanson (ref. 23) and the 
recommendations at the end of his recent paper are 
well taken. 

4. A study of the characteristics of flight-simulation 
loading should be recommended. The application 
of such load histories in fatigue tests for various 
purposes has to be considered. One aspect of this 
problem is the mixture of random and non-random 

. loads. 

9 Conclusions 

Flight-simulation tests with various load sequences 
were carried out to study the macro-crack propagation 
in sheet specimens of 7075-T6 and 2024-T3 clad 
material. A gust load spectrum was adopted, the mean 
stress being 7.0 kg/mm2 (10 ksi). In each test 10 different 
types of flight were simulated varying from good to had 
weather conditions. A variety of load sequences has 
been adopted related to the truncation of high- 
amplitude gust cycles, to the omission of low-amplitude 
gust cycles, taxiing loads and ground to air cycles, and 
to random and programmed gust sequences in a flight 
(see figs 1 and 3 and table I). About 200 specimens were 
tested. The main results of the investigation are sum- 
marized in the conclusions below. 
1. Omission of the taxiing loads from the ground-to- 

air cycles did not affect the crack propagation. 
2. In the majority of tests S,,,,” of the ground to air 

cycle was -3.4 kg/mm2 (4.8 ksi) hut in a few 
exploratory tests a value of - 1.4 kg/mmz (2.0 ksi) 
was used. The limit data indicated a practically 
negligible effect on the crack propagation. 

3. Omission of the gust cycles with S.=l . l  kg/mm2 

(75 percent of the cycles) increased the crack 
propagation life with 20 and 40 percent for the 7075 
and 2024 material respectively. Omitting the gust 
cycleS with S,=l.l and 2.2 kgjmm’ (95 percent of 
the cycles) increased the life with some 100 percent 
(fig. 13). 

4. The predominant effect on the crack propagation 
life was exerted by the maximum amplitude of the 
gust cycles (truncation level). Inireasing this 
amplitude from 4.4 to 8.8 kg/mm2 (6.3 ksi to 
12.6 ksi) linearly increased the crack propagation 
life from 2500 to 15000 flights and from 6000 to 
25000 flights for the 7075 and 2024 specimens 
respectively (fig. 14). The effect was somewhat 
larger for the 7075 alloy. 

5. A programming of the gust cycles in each flight in 
a low-high-low sequence has given the same crack 
propagation as for the random sequence. 

6. In the majority of tests complete gust cycles were 
applied, starting with the positive gust followed by 
the negative one of equal amplitude. Reversion of 
this sequence in negative-positive did not noticeably 
affect the crack propagation. 

7. Application in each flight of the largest upward gust 
load only increased the crack propagation life 
approximately three times. 

8. Omission of the ground-to-air cycle increased the 
crack propagation life approximately 1.5 and 1.8 
times for the 7075 and the 2024 specimens respec- 
tively. This effect is smaller than usual for the fatigue 
life of notched elements. 

9. The crack propagation life in the flight-simulation 
tests for the 2024 specimens were on the average 
twice as long as for the 7075 specimens. The ratio 
in some additional constant-amplitude tests was 
larger, namely approximately four. 

IO.  Damage calculations have shown that the Palm- 
gren-Miner rule highly misjudges the effect of 
changing the load..spectrum both in the high- 
amplitude and in the low-amplitude region. 

11. In some exploratory tests on specimens notched 6y 
a central hole the effect of truncating the high- 
amplitude gust cycles was smaller for the crack- 
nucleation period (up to crack length 2 mm) as 
compared to the large effect on the subsequent 
macro-crack propagation (fig. 16). 

12. A discussion on interaction effects between load 
cycles of different magnitudes indicates residual 
stresses, crack blunting, (cyclic) strain-hardening 
effects and mismatch between macro-fracture planes 
as the possible mechanisms for an explanation. It 
is thought that for the present test series residual 
stresses had a predominant effect with respect to 
the trends observed. 

13. Conclusions 1-8 have some hearing upon proce- 
dures for full-scale tests conducted for obtaining 



crack propagation data in view of fail-safe con- 
siderations. With respect to the maximum load in 
such a test it has to be recommended that this load 
should not exceed the level which is anticipated to 
be equalled or exceeded ten times in the related 
inspection period. 
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Programmed - 3.4 yes 7.7 1.1 41 (1) 

no 8.8 1.1 33 (4) 37 (4) 
6.6 34 ’ (4) 38 (4) 
4.4 35 (4) 39 (4) - 
6.6 3.3 36 (4) 40  (4) 

Load sequence GTAC Gust loads 

S.L. Taxiing s.,- s.,,,. 
loads 

~ 

Random - 3.4 no 8.8 2.2 
6.6 
4.4 

- 

Test series 
NO.’“ 

48 (4) 
49  (4) 
50 (4) 
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Sa Specimen 
(kgimm’) No. 

2.2 B19/B7 
1.1 B80/B93 

861813 

8.8 A61 
6.6 A55 
4.4 A54 
2.2 A50iAl05 
1.1 A44 

A7IA57 

TABLE 3 
Survey of the constant-amplitude tests. 

S,=7.0 kgjmm’, load frequency 10 cycles per second. 

Crack propagation life 
(kilocycles) 

31.3/32.0 
192/181 
,I/ 

2.65 
8.63 

21.2 
1241125 
1031 
lb) 

- 
:light 
type 

- 
A 
B 
C 
D 
E 
F 
G 
H 
J 
K 
- 

Elongation 
~ (2 in. gage length) 

Material Direction 
of loading 

(kg/mm’) (ksi) (kgimm’) (ksi) 
____ - 

21324T3 Alclad Longitudinal 47.4 67.4 36.0 51.2 18% 
Transverse 45.6 64.8 31.0 44.1 21 % 

~ ~ 

7075.T6 Clad Longitudinal 53.9 76.6 48.5 69.0 13% 
Transverse 54.1 76.9 47.2 67.1 13 YO 

~ 

Material 

7075-T6 

‘’I Crack propagation started at I2 18 mm Specimens previously used for 
Ib’ Crack propagation started at 1 B 14 mm flight simulation tests. } . . ’ 

iumber of 
flights in 
SMX) nights 

1 
2 
2 

10 
27 
91 

301 
858 

3165 
543 

Total number of 
cycles in all nights 

Number of 
exceedings, see fig. 1 

TABLE 5 
Gust load occurrences in the 10differenl types offlights 

Number of gust cycles with amplitude S, (kglmm‘) 

0 
I 

2 

3 

__ 

- 
;P6.6 

- 
3 
2 
2 
1 
1 
1 

- 
139 

- 

205 

~ 

___ 
. = 5 5  

- 
5 
4 
3 
3 
2 
1 
1 

- 
495 

- 

700 

- 

- 
.=4.4 

- 
9 
8 
7 
5 
3 
3 
2 
1 

- 
1903 

- 
2603 

- 

- 
.=3.3 

- 
I5 
14 
I2 
I1 
9 
7 
4 
3 
1 

- 
Eo00 

- 
10603 

- 

- 
.=2.2 

- 
27 
26 
25 
24 
22 
18 
15 
11 

7 
I 

19252 
- 

- 
19855 

- 

- 
: = = I .  

- 
43 
43 
43 
43 
43 
43 
42 
38 
28 
19 

4990 
- 

- 

997s 

- 

Total 
number 
of cycles 
per flight 

107 
101 
95 
89 
81 
73 
64 
53 
36 
20 
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TABLE 6 
Diagrammatic picture of the sequence of the various nights i n  5000 nights 

A 
B A B 

5000 FLIGHTS 

ThemostseverellighaA, B, C, D, E,areshown separately. These flights are homogeneouslydiatributed overasequence of50WIlights. Aindicates 
a group of 118 nights. 

The 42 groups A consist of a random sequence of: 91 nights type F ;  301 flights type G;  858  nights type H ;  3165 flights type J ;  543 nights 
type K. 

TABLE 7 
Crack propagation records of the flight-simulation tests. Values of An in numbers of flights. 

First column: crack length interval. First and second line: Test series No. and Specimen No. A dash indicates that the two specimens were 
tested in series. Arithmetical mean values of An are eiven in the last columns of the test series. The two bottom values in these columns are the I 

arithmetical and the geometrical mean values of the crack pj 

12-14 

18-20 

40-45 
45-50 111 

- 
4 

B90 

668 
390 
392 
359 
316 

- 

- 

328 
428 
936 
302 
I29 
45 - 
- 
1800 

- 

- 
7 

A2 

1631 
1999 
1862 
1723 
1496 
3270 

I390 
675 

342 

- 

~ 

1892 

28 
- 
6308 

- 

12-14 

25-30 
30-35 
3 5 4 0  
4-5 
45-50 
5c-55 24 

556 
571 
545 
416 
359 

1113 
933 
750 

~ 

- 
- 
- 
__ 

5600 

..632 612 575 
606 587 700 
414 585 625 
362 502 546 

911 1088 1253 
911 895 994 
785 701 631 
424 345 - 
136 IW - 
44 51  - 

2 45 - 

424 474 486 

~ 

Mear 

594 
616 
535 
456 
428 

1077 
927 
600 
317 
110 
53. 
24 

- 

- 
5897 
5889 

~ 

8 

A47 AI 

951 - 
848 ~ 

705 - 

517 783 
58s ~ 

989 1141 
883 786 
455 524 
271 319 
141 165 
69 64 
15 24 

240 6793 

~ 

Mean 

951 

705 
585  
650 

1065 

~ 

848 

835 
480 
295 
153 
67 
20 

6516 
651 I 

- 

~ 

agation lives ( I =  l(t80 mm). 

589 
764 

1027 
909 
973 

3151 
2569 
1789 
1073 
338 

49 
148 

- 

53s ~ 736 484 
127 - 339 - 

74 - 
17 - 

~ ~ 

- - 

12 

8271676 B47/B96 
- 
Mean 

1578 
- 

1598 
1390 
1184 
996 

1556 
717 
391 

106 
58 

238 

- 
- 
9898 
9863 
- 

13 

1217 - - 
58s - - 

I20 - - 
~ 27 - 14 

13269 12943 14298 12915 13356 
13329 

(continued) 
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TABLE 7 (continued) 

I5 16 14 

8401869 B8/B77 

611 733 657 552 
591 778 712 710 
659 721 750 733 
651 687 713 673 
786 762 811 723 

1994 2230 1985 I812 
1943 1825 1765 1634 
1374 1351 1239 1210 
749 565 - '654 
168 - - 227 
- - -  80 

- _ -  - 

- 
Mea" 

640 
698 
716 
681 
773 

2005 
1792 
1294 
656 
198 
80 

- 

- 
- 
9572 
9565 
- 

- 

Mean 

602 
494 
477 
430 
384 
971 
859 
507 
205 
89 
41 
14 

5079 

- 

- 

$062 
- 

- 
lean 

462 
420 
338 
320 
294 
615 
509 
29 I 
157 
76 
38 

- 

- 
- 
3540 
3538 
- 

B88jB39 B68/B15 B5jB54 6571828 B48IB91 

10-12 
12-14 
14-16 
16-18 
18-20 
20-25 
2 M 0  
30-35 
35-40 
40-45 
45-50 
50-55 

514 
475 
387 
395 
346 
863 
763 
475 
183 
104 
37 
14 

625 
429 
4 4 0 .  
397 
364 
950 
848 
- 
- 
- 
- 

- 

650 
500 
479 
429 
395 
900 
841 
521 
203 
82 
47 
- 

470) 1164 
486 
432 558 
503 448 
334 414 
874 1123 
797 1027 
545 - 
227 - 
- -  
- -  
- -  

752 
581 
573 
405 
449 

1115 
877 
487 
206 

81 
38 
13 

435 472 436 503 
379 443 452 405 
328 317 342 364 
282 343 319 337 
309 299 289 278 
587 627 624 621 

466} 267 751) 825} XR7 

197 156 134 141 
71 94 63 - 
35 - 40 - 

- -  - - 

3390 3571 3541 3656 10-80 

~ 

4555 4865 5047 4738 5685 5583 9583 10061 9624 9019 

17 18 20 

B72/B23 B31B52 

19 

BSl/B85 

2406 2776 
2048 2534 
2418 2400 
2247 2820 
1765 1746 
5200 4919 
2774 2937 
940 - 
370 - 

- 

- 
- 

20552 21826 

- 
Mean 

361 
289 
217 
214 
186 
377 
325 
176 
127 
66 
31 
9 

2390 
2385 

~ 

- 

- 

- 
dean 

882 
799 
810 
814 
579 

1425 
923 
443 
228 
101 
34 
14 

7009 
7006 

- 

__ 

~ 

- 
Mean 

2591 
2309 
2409 
2534 
1756 
5060 
2856 
940 
370 

- 

- 
21189 
21179 
- 

- 
Mean 

1812 
1715 
1334 
1149 
939 

1380 
751 
291 
205 
103 

13 
9 

9783 
9779 

- 

__ 

- 

10-12 
12-14 
14-16 
1 6 1 8  
18-20 
20-25 
2 S 3 0  
30-35 
3 5 4 0  
4 M 5  
45-50 
50-55 

10-80 
__ 

417 322 359 345 
316 274 342 222 
234 248 168 219 

1660 1628 2016 1945 
1770 1802 1681 1608 
1576 1121 1219 1418 
1162 I055 1141 1239 
902 925 991 936 
125 1455 1335 1605 
807 773 675 749 
254 381 310 218 
185 211 219 - 
85 92 131 - 

- - 4 3 -  
- -  9 -  

810 810 927 979 
773 770 846 808 
771 810 849 811 
893 845 759 758 

1278 '"1 1880) 2054 1571 591 

174 
202 161 194 
402 392 413 299 
359 317 337 288 
151 184 - 193 
128 121 - 133 
- 66 - 65 
- 40 - 21 
- 8 -  9 

1020 917 675 1078 
371 554 405 - 

203 323 159 - 
- 112 89 - 
- 34 34 - 

14 - - - 

7159- 7029 6649 7200 9515 9532 9872 '10214 !565 2369 2461 2165 

- 
23 
- 
A48 

3093 
4893 
3839 
3608 
3122 

- 

- 
31000 

- 

22 24 25 
- 
Vean 

1365 
1402 
1323 
1175 
1007 
2051 
1352 
814 
377 
172 
35 

- 

- 
10875 
10876 
- 

- 
dean 

3249 
3063 
2638 
2228 
1942 
3675 
2153 
IO50 
351 
152 
39 

- 

~ 

- 
10530 
10513 
- 

- 
Mear 

I861 
3355 

3086 
2428 
4388 
2554 
1334 
635 
170 
84 
14 

2331: 
2329: 

- 

34Y 

- 

- 

A12/A69 A35iA85 A24 A841A43 A99/A4 

1655 1466 1198 1267 1237 
1269 1450 1461 1357 1473 
1127 1234 1369 1402 1482 
1019 1211 1256 1108 1280 
950 906 1070 1023 1084 

1748 1940 2119 2073 2376 
1233 1259 1406 1407 1453 
816 784 852 802 - 

193 141 - 181 - 
367 361 - 404 - 

-. - 37 33 - 
- - - - -  

~ 

3117 3528 2916 3436 
2801 3038 3132 3297 
2300 2760 2817 2667 
2111 2114 2255 2426 
1792 2261 1871 1842 
3427 3805 3672 3797 
2070 - 2156 2233 
1094 - 1005 - 
319 - 383 - 
145 - 158 - 
43 - 35 - 

- - - -  

1706 1663 2194 1881 
3365 2993 3336 3727 
3420 3444 2946 3804 
3205 2858 2899 3383 
2615 2541 2127 2430 
4573 4362 3980 4635 
2838 2418 2407 - 

1474 1194 - 
657 613 - 

- 
- 

- I70 - 
- 841 311 - 

14 - - - 

10427 10808 11189 11112 10860 19236 21196 20405 21284 24126 22683 22034 24410 

(continued) 
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TABLE 7 (continued) 

26 

All/A68 A34/A91 Mean 

1896 1440 1599 1816 1688 
2231 2306 1915 2267 2180 
2170 2197 2010 2205 2146 
1785 1996 1873 1875 1882 
1601 1647 1487 1493 1557 
3063 3311 2502 2725 2900 
1874 1957 1670 1788 1822 
1137 1115 1081 - 1111 
633 519 428 - 527 
194 - 187 191 

60 ~ 50 - 55 
36 - - 36 ~ 

kI,+, 
(") 

10-12 
12-14 
14-16 
1618 
18-20 
20-25 

, 25-30 
30-35 
35-40 
w 5  
45-50 
50-55 

27 

A78IA28 A5/A100 

1542 I404 1381 1665 
1352 1398 1549 1542 
1260 1391 1466 1403 
1148 1227 1146 1216 
955 1117 1197 1046 

1968 2130 2151 2218 
1370 1482 1447 1445 
817 855 913 870 
441 - 469 423 
193 - 216 203 
63 - 81 - 
29 - 26 - 

Mean 

1498 
1460 
1380 
1184 
1079 
2116 
1436 
864 
444 
204 

72 
28 

11788 
11781 

28 

A31/A88 A8/A65 Mean 

1177 1202 1201 1210 1198 
973 1008 1053 977 1W3 
832 898 967 839 884 
812 750 713 742 754 
687 684 670 639 670 

1226 1271 1235 1236 1242 
953 982 915 921 943 
594 622 570 565 588 
301 334 282 306 306 
46 - 120 147 138 
70 - 40 61 57 

12 12 - - - 

7768 7984 7809 7676 7814 
7813 

12-14 736 789 763 

18-20 490 450 527 

266 - 
4 W 5  131 - 
4S50 57 - 
50-55 ~ 

10-80 5661 5849 5767 

- 

10-80 

916 897 
654 603 
393 386 
- 260 
- 128 
- 
- 

5898 5794 
5793 

16685 16783 I4798 15915 I6045 11144 11736 12056 12217 
I6025 

1w12 
12-14 
1G16 
1618  
18-20 
20-25 
25-30 
3w35 
35-40 
w 5  
45-50 
50-55 

Mean 

1900 
1872 
1683 
1479 
1258 
2451 
1656 
957 
459 
179 
67 
21 

13947 
13924 

2823 
3153 
2511 
2166 
1950 
3685 
2405 
760 
550 
180 
50 

- 

A82 A3/A104 Mean 

2690 3105 3848 3214 
4657 4387 5367 4804 
4073 4078 4217 4123 
3460 3660 4124 3748 
2852 3513 3549 3305 
5739 6133 6275 6050 
3425 4213 3926 3855 
1854 2090 - 1972 

2061 206 
49 97 - 73 
26 - - 26 

29482 32249 34466 32066 
32Mx) 

642 976 642 

~ 

2554 
3141 
2725 
2314 
2035 
3765 
2460 
I20 
- 
- 
- 
- 

2740 
3265 
2737 
2503 
2W5 
4177 
2693 
- 
- 
- 
- 
- 

2141 
2907 
2680 
2400 
2105 
3675 
2518 
1202 
444 
149 
72 
31 

2565 
3117 
2663 
2346 
2024 
3826 
2519 
994 
497 
165 
61 
31 

20170 20571 20327 22021 20772 
120759 

30 

A9/A66 A32/A89 

1982 2288 1733 1595 
1899 1939 1791 1859 
1741 1902 1581 1506 
1547 1424 1574 1370 
1281 I312 1224 I215 
2508 2583 2453 2260 
1732 1742 1639 1512 
981 977 ~ 912 
527 485 - 364 
- IS8 1' 170 
- 61 - 73 
- 21 - - 

4470 14924 I3536 12858 

33 

8141884 B35/B61 

593 781 719 745 
821 1056 904 1051 
939 1043 1070 1029 

1048 1386 1035 1196 
1?99 1514 1254 1377 
3188 2958 3696 3815 
2493 38W 2823 2520 
2036 - 1989 1741 
828 - 833 910 
- - 228 - 
- - 110 - 

40 - - -  

3534 15614 14710 14833 

- 
Mean 

710 
958 

1020 
1166 
1361 
3414 
2909 
1922 
857 
228 
110 
40 

4673 
4670 

- 

- 

- 

I 31 I 

34 

B12/855 B46/B75 

505 568 500 488 
575 527 413 479 
404 490 430 436 
456 414 402 397 
351 436 389 375 
966 1035 945 955 
826 837 815 ' 809 
593 - 747 536 
212 - - 225 

74 - - I 1 1  
- 45 - -  

045 5269 5052 4886 

- 
Meall 

515 
499 
440 
417 
388 
975 
822 
626 
219 
93 
45 

- 

- 
- 
5063 
5061 
- 

(continued) 
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TABLE 7 ~contiiisedl 

dean 

1153 
1135 
1147 
1126 
951 

1650 
940 
606 
232 
97 
53 
- 

8940 
8921 

37 

A16IA94 A40/A71 

2848 2458 2990 2115 
4394 5024 4463 3230 
3874 4434 4675 3502 
3148 3787 3756 2850 
2542 2960 2710 2682 
4373 4695 - 4109 
2558 2615 - 2257 
1200 - - 1505 
633 - - 612 
189 - - 149 

- - - - 

- - - - 

25856 28092 27418 23203 

Mean 

1541 
1373 
1362 
1106 
I012 
2001 
1386 
857 
391 
155 
61 
21 

1199 
1184 

44 

B26/B86 Mean 

797 594 786 771 737 
720 682 703 670 694 
655 630 548 651 621 
663 560 557 566 587 
637 599 535 546 579 

1349 1382 1184 1304 1305 
1074 1015 1014 1082 1046 
923 956 856 962 924 
713 706 649 682 688 
- - 175 - 175 
- - 91 - 91 

B9jB58 

- - - - - 

7921 7514 7127 7529 7523 
7518 

522 577 460 591 
463 492 409 488 
463 430 393 415 
406 439 380 433 
379 368 367 327 
842 944 701 846 
743 847 680 782 
643 643 555 - 
372 - 261 - 
102 - 93 - 
21 - 28 - 

- 28 - - 

538 
463 
425 
415 
360 
833 
763 
614 
316 
98 
28 
28 

36 
- 
Mea" 

2603 
4278 
4121 

- 

35 

6181666 B33/B82 
- 
Mean 

334 
244 
218 
203 
166 
354 
278 
202 
126 
50 
22 
10 

2206 
2205 

- 

- 

- 

10-12 
12-14 
14-16 
1618 
18-20 
2c-25 
25-30 
30-35 
3540  
a 5  
45-80 
50-55 

352 331 351 302 
257 236 229 253 
218 210 226 219 
207 212 187 205 
160 166 174 162 
349 326 380 360 
312 303 235 263 
215 197 196 201 
- 137 120 122 
- 49 51 - 
- 21 22 - 
- I I  9 -  

1135 1306 1079 1090 
1105 1261 1079 1094 
1359 1177 1016 1037 
1103 1188 1072 1140 
943 1142 773 945 

1855 1596 1473 1674 
890 1126 915 830 
461 - 750 - 

232 - 
97 - 
53 - 

- - 

- - 
- - 

- - - - 

9271 9667 8161 8660 10-80 2289 2170 2186 2179 
26072 

38 39 
__ 
lean 

1446 
1443 
1536 
987 

1028 
2048 
1399 
846 
405 
167. 
51 
21 

1367 
1365 

__ 

- 

- 

- 
vlean 

845 
753 
614 
527 
456 
857 
557 
393 
235 
100 
50 
21 

5421 
5420 

- 

- 

- 

A I7/A95 A41/A72 

2627 2869 3292 3684 
2961 2858 3102 2751 
2667 2742 3128 2843 
1958 2226 2115 2524 
1897 1916 2037 1843 
3557 3640 3752 3744 
2025 2224 2344 2158 
984 - 1110 1033 
408 - 439, 443 
159 - 161 

55  
24 

- 

- 40 - 
- - - 

10-12 
12-14 
1G16 
16-18 
18-20 
2c-25 
25-30 
30-35 
3540 
40-45 
45-50 
5c-55 

1370 1364 1558 1492 
1438 1496 1468 1370 
1920 1654 1332 1237 
698 883 1112 1253 

1033 1057 957 I066 
2070 2043 2015 2063 
1496 1434 1266 1400 
888 ' 835 781 878 
- 455 355 - 

- I 5 8  176 - 
- 46 56 - 

- -  21 - 

790 851 940 799 
766 737 813 694 
619 613 560 664 
560 525 497 527 
476 468 436 445 
802 856 879 890 
474 597 611 547 
416 412 406 337 
253 219 - 234 
93 - 107 
57 - 42 

17 25 - 

- 

- 

- 

3118 
2918 
2845 
2206 
1923 
3673 
2188 
1042 
430 
I60 
48 
24 

10-80 11572 11423 11101 11371 384 5445 5546 5307 19290 20071 21356 21278 20499 
20480 

41 42 43 

A18/A96 A36/A73 

1594 1630 1431 1507 
1214 1626 1330 1321 
1292 1453 1341 1363 
924 1285 1204 1W9 
942 1164 946 994 

1986 2173 1894 1950 
1349 - 1472 1336 
821 - 867 882 
368 - 382 422 
159 - 150 - 
64 - 58 - 
21 - - - 

10737 12116 10941 11002 

A59 B17/B79 B32/B64 1 Mean 

1509 
2237 
2376 
2145 
1826 
3565 
2362 
1316 
655 
237 
I36 
36 

12-14 

16-18 
18-20 

25-30 

45-50 
50-55 

18413 975 5254 4359 4861 4862 1 4851 
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TABLE 7 (continued) 

Mean 

438 
550 
421 

370 
428 

749 
782 
962 
1123 

k 4 + ,  
b m )  

~ 

10-12 
12-14 
14-16 
16-18 
18-20 
2G25 
25-30 
30-35 
35110 
40-45 
45-50 
5a-55 

1% 17a 

B36/B4y Mean 8871895 B6/Bl3 

434 404 419 260 317 333 318 
432 408 420 250 285 274 236 
334 286 310 222 '186 231 226 

263 317 290 185 182 185 214 
264 270 267 162 183 194 191 

417 409 413 224 240 266 224 
398 480 439 204 202 232 211 
394 367 381 189 185 199 218 
331 375 353 137 140 161 145 

45 

A45/A101 A30/A93 

2451 2576 2881 3083 
2092 2354 2392 2498 
2128 2219 2251 2242 
1861 1914 1930 2093 
1740 1745 1802 1812 
3610 3670 3721 3830 
2664 2689 2640 2718 
1716 1899 1810 1829 
ioio ~ 994 - 
456 - 490 ~ 

115 - 139 - 
54 ~ 

~ - 

m a n  

2748 
2334 

- 

2210 
1950 
1775 
3708 
2693 
1814 
Ica2 
473 
127 
54 

20881 
20865 

- 

- 

46 

B37/B56 BlljB74 

2394 2550 2384 2135 
1980 2320 2027 2125 
2225 2150 2180 2210 
1827 2162 1765 1726 
1508 1508 1802 1296 
- 2340 - 1860 
~ 1465 - 945 
- 493 - 619 
~ 337 ~ 339 
- 139 - 204 

81 ~ 87 
- 23 - 24 
- 

4916 15572 14239 13573 

81 - 

14575 37266 39096 35995 34152 
14556 

- 
Mean 

6602 
5588 
4635 
4135 
3537 
6513 
3328 
1456 
522 
218 

76 

- 

- 
- 
16627 
16582 
- 

TABLE 8 
Crack propagation records of the additional flight-simulation tests. Valucs of An in numbers or nights. 

First column: crack lenpth interval. First and second line: test series No. and specimen No. Mean values are arithmetical averagcs, 

Matedal7075-T6 Clad 

381 495 
590 509 

425 430 
386 353 

439 402 

Material 2024-T3 Alclad 

8-9 
9-10 

la-12 
12-14 

25a 

A46IA102 

2354 1663 
2888 2926 
2697 2658 
2637 2878 
5175 5047 
3947 4358 

- 
Mea" 

2008 
2907 
2677 
2757 
5111 
4152 

- 

- 

27a 

192 
239 
212 

146 

29a 

A7lA57 

932 1072 
712 781 
649 706 
568 586 
948 1016 
738 829 

- 
flea, 

0 0 2  
746 
677 
577 
982 
783 

- 

- 



TABLE 9: Crack propagation records of the constant-amplitude tests. Values of An in cycles. 
First column: Crack length interval. Second line: stress amditude in kglmm'. Third line: specimen No. Mean valucs are arithmetical averages. 

s ,=22  

A50IAI05 Gem 

23700 217x5 22743 
15700 18470 17085 
14320 13590 13955 
11315 11880 11598 
8920 10185 9553 

17455 17215 17335 
12363 11765 12064 
8152 - 8152 

3333 - 3333 
2127 - 2127 

5320 - 5320 

1100 - lloo 

124306 125423 124865 

S,=l I 

A44 A7/A57 h 

247080 - - 2 
155240 - - 1 
101735 - - II 
89740 73219 91344 , 
70615 67695 59066 

124945 112803 121636 1 
86805 76322 77489 
52340 52143 51020 

27255 24760 - 
19190 17565 - 

39815 36475 - 

10430 11185 - 

1031470 - - IC 

2024-T3 7075-T6 
- 
r, = 
4.4 

954 

$220 
3195 
2790 
1930 
1190 
3040 
1855 
1140 
645 
310 

- 

- 

- 
- 
- 
1165 
- 

sa= 1.1 

B ~ / B I ~  ~ 8 0 1 ~ 9 3  

56410 34168 
21545 26035 
17200 19735 
12005 14495 
12035 12405 

23600 19900 20205 23790 
16795 16000 14985 15443 
11850 11250 11330 10838 

- 6160 6330 9555 

3170 3200 2955 

- -  
- -  
- -  
- -  
- -  

9085 84x0 8555 7960 

- 4370 4855 4105 

191951 180948 

- 

- -  

- 
Mean 

5109 
3341 

2431 
2240 
4395 
3207 
2686 
2167 
1656 
924 

- 

2825 

- 
- 
31615 
- 

- 

Mean 

45289 
23790 
18468 
13250 
12220 

15806 
11317 
8520 
6148 
4443 
3108 

86450 

- 

21874 

- 

- 
2653 I 8626 

TABLE 10: Crack Prouaaation records for the 2024-T3 specimens with a central hole 

48 

A27 I A62 A56 I Al l0  A20 1 A75 1 
21055 
23542 
26237 

31572 
28882 

- 
- 
- 

- 
- 
- 

- 

23542 
24980 
27347 

32219 
30078 

- 

- 
- 
- 

- 
- 
- 

19906 
21143 
23387 
25745 
21341 
31000 
33666 
34950 
35455 
35534 
35594 
35615 

14580 
16869 
20wo 
22543 
24835 
29805 
32616 
34380 
35276 
35427 
35566 
35608 

19291 
20845 
22731 

21185 
31365 
34247 
35571 
36130 
36328 

36394 

~ 

36385 

I8W 
20279 
22280 
24693 
26722 

33881 
35407 
36087 

36371 

31086 

36283 

36388 

19400 
22208 
25081 
28052 
30428 
34983 
- 
- 
- 
- 
- 
- 

25858 

30073 
32426 
34271 

28078 

- 
- 
- 

- 
- 
- 

- 

19603 
20239 
21065 
22078 
22943 
24863 
26057 
- 
- 

15698 

18522 
16914 

19868 
21025 
23599 
25220 
26311 
- 
- 

12 
14 
16 
18 
20 
25 

18304 12285 
19195 13903 
20032 15432 
21025 - 
22188 18904 
23856 21611 
25188 23838 
25882 25078 
26204 25851 
26307 26220 

.26339 26300 
26335 

26354 

30 I '35 

- 
- 

27480 

- 
__ 

27480 41422 41422 35617 35617 36396 36396 41792 41792 

_____ 

I(") 

_____ 

12 
14 
16 
18 
20 
25 
30 
35 
40 
45 
50 
55 

~ 

no 
__ 

50 
. .  

49 

/ A98 

13576 15842 
15105 16644 
16374 17627 
17404 in600 
18548 19495 

22308 22740 

23843 - 

20802 21352 

23365 23574 

23960 24033 
24043 24051 
- - 

13976 
14614 
15311 

16447 
17492 

15918 

- 
- 
- 
- 
- 
- 

~~ 

12360 
13047 

14448 

16270 
17014 
17477 
17718 

17936 
17965 

13856 

- 

17858 

14980 

15834 
15421 

16194 

17145 
17492 
17736 

17943 
17970 

- 

17866 

- 

14278 
14910 
15402 
15828 
16243 
- 
- 
- 

- 
- 
- 

- 

12700 
13520 
14252 
14880 
15402 
- 

- 
- 
- 
- 

- 
- 

11202 

12674 
11888 

13180 
13738 
14783 
15453 
15840 
16057 

16243 
16186 

- 

12654 
13160 
13653 
14044 ' 
14436 1 
15153 
15657 
15954 
16136 
16227 
16230 
- 

25392 25392 24056 24056 

Values in the table are numbers of flights as counted from the beaming of the test. Far each specimen two values are given, corresponding 
to the cracks at both sides of the hole. The first column gives the crack length as measured from the center of the hole. First and second line: 

Test series No. and specimen No. 
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TABLE 14: Effect of truncating the gust spectrum 
Values of stresses in kglmm2 

Material 

Test conditions I Crack propagation life (flights)'"' 

Load Taxiing GTAC Gusts 
sequence loads Smi, Sa.min 

8.8 
7- 

7075 

__ 
2024 

s*,,"*- of gust cycler 

Random yes -1.4 1.1 
-3.4 13406 (1) 

no -3.4 1.1 13329 (4) 

Program no - 3.4 1.1 14670 (4) 

Random yes -1.4 1.1 
-3.4 
-3.4 3.3 

3.3 

~ 

3.3 

~ ___ ~ 

no -3.4 1.1 23292 (4) 

Program no -3.4 1.1 . 26072 (4) 
- 

Test conditions 

Material Gust cycles 

Sa,,"!" &,ma" 

7075 1.1 8.8 
6.6 
4.4 

3.3 6.6 

2024 1.1 8.8 
6.6 
4.4 

6.6 3.3 

7.7 

~ 

Crack propagation life'"' (flights)' Life ratio 

Random gust Programmed Programmed/ 
sequence gust sequence Random 

13329 (4) 14670 (4) 1.10 
5062 (6) 5061 (4) ' 1.W 
2385 (4) 2205 (4) 0.92 
9779 (4) 8921 (4) 0.91 

23292 (4) 26072 (4) 1.12 
11781 (4) 11365 (4) 0.96 
5793 (4) 5420 (4) 0.94 

20759 (4) 20480 (4) 0.99 
_____ 

9617 (1) 
8719 (4) 
9565 (4) 

21179 (2) 

Average 
i.1 See table 16. 

I5921 (1) 
31W0 ( I )  
16025 (4) 
32000 (3) 

, 0.99 

5889 (5) 

9779 (4) 
5061 (4) 

16308 ( I )  
10876 (5 )  

11365 (4) 

Characteristic test 
conditions (see also fig. 3) 

Standard random sequence 

Reversed gust cycles 

Small gusts omitted 

Only one gust per flightic1 

GTAC omitted 

__ 
4.4 

Crack propagation life"' Relative crack 
of gmts (flights) propagation 

7075 2024 

S%d" 

(kg/mmi) lifdb' 
7075 2024 

1.1 5062 (6) 11781 (4) 1 1 

1.1 4851 (4) 11184 (4) 0.96 0.95 

2.2 7006 (4) 13924 (4) 1.38 1.18 
3.3 9779 (4). 20759 (4) 1.93 1.76 
- 14556 (4) 36583 (4) 2.88 3.10 

1.1 7518 (4) 20869 (4) 1.49 1.77 1 

2714 (I) 

2385 (4) 

2205 (4) 

6516 (2) 

5793 (4) 

5420 (4) 
__ 

(I' Mean values drawn from table 7. The numbers between brackets indicate the numbers of tests carried out. 
'b) The life far S,,,,,=6.6 k&" was taken as being I. 

TABLE 15: Comparison between the random and the programmed flight simulation tests 
Values of stresses in kglmm'. GTAC without GL. 

Life ratios'" 

- 
8.8 
- 

2.28 
2.63 

2.90 
- 

1.98 

2.29 
- 

Ss,msx of gust cycles 
- 
7.7 

2.w 
1.48 
1.89 
2.17 

- 

- 

1.46 
1.51 
1.36 
1.54 

- 

- 
6.6 

I 
1 
I 
I 
I 

1 
1 
I 
I .  
1 
I 

- 

- 

- 

l'lMean values drawn from table 7. The numbers between brackets indicate the number of tests carried out.'blThe life for the standard random 
sequence was taken as being 1. The largest positive gust load of each flight was applied. 
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TABLE 17: Comparison between the two a 

sa (kgh")  1.1 2.2 3.3 

n/Nin 5000flights1b' 0.145 0.312 0.115 

Test conditions I 

4.4 5.5 6.6 7.7'"' 8.8'"' 

0.077 0.016 0.006 0.003 0.002 

Gust sequence r 

6.6 
6.6 
6.6 

Random 

52 20 2.6 
~ 

Programmed 47 22 2.1 - ~ 

Random 1.1 72 47 

Programmed 

ra;; 
loads 

s*,,"x" 

3.3 6.6 
no 1.1 8.8 

7.7 
6.6 
5.5 

zs:  Valuis of stresses in kg/mm' 

Crack propagation life 
(flights)("' 

7075 

8719 (4) 
5889 (5) 
9863 (4) 

13329 (4) 
9565 (4) 
5062 (6) 

2385 (4) 
7006 (4) 

21179 (2) 
9779 (4) 

14556 (4) 
4851 (4) 
7518 (4) 

14670 (4) 
5061 (4) 

3538 (4) 

2205 (4) 
8921 (4) 

2024 

15921 (1) 
10876 (5) 
20513 (4) 
23292 (4) 
16025 (4) 
11781 (4) 
7813 (4) 
5793 (4) 

13924 (4) 
32000 (3) 
20759 (4) 
36583 (4) 
11184 (41 
20869 (4: 
26072 (41 
11365 (4: 
5420 (4: 

20480 (4: 

Average 

Life 
ratio 

(2024)/(7075) 

1.8 .' 

1.8 
2.1 
1.7 
1.7 
2.3 
2.2 
2.4 
2.0 
1.5 
2.1 
2.5 
2.3 
2.8 
1.8 
2.2 
2.5 
2.3 

2.1 

('I Mean values drawn from table 7. The numbers between brackets indihate the numbers of tests carried Only one gust load (the largest 
one) per flight; IC' Gust cycles in reversed sequence. 

TABLE 19: Fatigue life reduction if small gust cycles are included. Comparison between tests and predictions. 
M =crack propagation life with small gust cycles included; M=crack propagation life without small gust cycles. 

The predictcd M values have been calculated from M and the constant-amplitude test data, see section 
7 

Material 1 Test conditions Small gust Ratio 
(percentage) test/predicted 

sequence predicted 

1.5 1 

1 I 50 I 25 I 2.0 I 

6.6 I Random ss 71 , 1.2 1 I ...... - - i  I , I  , 
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Variables of test program (see also 9. 3) 
~~ ~ 

Gust load spectrum (truncation) 
(omission of many small cycles) 

GTAC Smi. (2 values) 

Taxiing loads Omission of taxiing loads (same SmiJ 

Flight profile Omission of GTAC 
Only one gust cycle per flight 

Sequence Random 
Gust cycles in reversed sequence 
Programmed per flight 

Material 2 AI-alloys, 2026T3 and 7075-T6 

Fig. 1. Survey of variables studied in the present test series. 

Fig. 2. The load sequence in the most severe flight (type A) 

, 

I "  
U U I I 

Fig. 3. Load records of flight no. 19 (type F) for dilferenl types of 
flight simulation. 
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Fig. 5. Picture ofthespecimen,anti-bucklingguideswithwindowand 
clampings. Stereo-microscope (30 x )  for crack observation in the 

background. 

i 

Fig. 6. Two specimens connected by a double strap joint, anti- 
buckling guides covered by felt at the inner side and provided with 

two windows each. 

i b, I 
. - 1 .--.___l-_̂ _..-.. e. 
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Fig. Ba Vu. Bb Fig. Ilr F Q  8d 

Fig. 8a-c. Eliect aftruncation (Sm,mJ on the crack propagation rate for material 7075-T6. 
Fig. 8d-e. The same as in figure Sa-, but for material 2024T3. 
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Random gusts, S cl,m(lx =7.7 

0 0  O A O V  0 

dl/dn 
INfI.) 

t 100 

10 

I 

IO 20 30 40 5060 

Fig. 90 

MATERIAL 2024LT3 

dl/dn 
IJdfl.1 

I loo 

10 

I 

0.2 

Fig. 9e 

10 20 30 40 5060 
I i i i i i  i i i i i l  I 

10 20 30 40 50 60 

Fig. 9b Fig. 9c 

10 20 30 40 5 0 6 0  - I (mm) 

Fig. 9d , . 2024;; '," ~ , 20:-T; I 
Random gusts. =6.6 Random guslr, S =6.6 
G T A C with TL, G T A Cwilhoul 11. Smin.=-3. 

Test series : Ted series 27 30 32 47 

Smin=-3.4 

io 20 30 40 50 60 

2024-T3 
IRondom gurtr. ~ 7 . 7  1 

10 20 30 40 50 60 IO 20 30 40 50 60 - I lmm) 

Fig. 9f Fig. 9g Fig. 9% 
Fig. 9 a 4 .  ENect of omitting small gust loads on the crack propagation rate for malerial 7075.T6 

Fig. Ye-h. The same as in figure Ya-d, but for material 2024-T3. 
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0 20 y1 40MM 
l h "  

Fig. IO. The effects of omitting the GTAC and of reversing the gust 
cycles an the crack propagation rate. 

F,s. 100 F,9. (Ob 

- I I u I K P P o p I c * I I o I  L I R  (IOmFLICWl) 

Fig. 14. The effect oftruncating the gust load spectrum on the crack 
propagation life. 

m a 11ma - ,,"I 

Fig. 11. Comparison between the crack rates for random and pro- 
grammed night simulation. 

hII ,lo FID i lb FW I,< 

- C R * C I ~ T p I ~ * T I O y  L /F I  I l K O F L I Y T I I  

Fig. 13. The effect ofomitting small gust loads on the crack propaga- 
tion life. 

CRACIPROPIGLTIO" LIFE IIILOCICLEII 

Fig. IS. The constant-amplitude test data platted as S-N curves. 
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Fig. 16. Crack propagation curves for the 2024-T3 specimens with a 
central hole. Effect oftruncation level &,,J on thecrack-nucleation 
period (to 1'=2 mm) and the crack propagation life. 

CENTRALHOLE 
CENTRALHOLE a"," 

dl/dn 
l~lill 

10 

I 

10 m IO ai) % 60 Fig. 17. Comparison between the crack propagation rates in speci. 
4 l i m n 1  mens with a small notch or a central hole. 

Magnification 2 x 
Central notch at rieht side of nicture 
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Specimen 847, 7075-T6 
Random night simulation. 
S,,.,=6.6 kgjmm' 

=3.3 kg/mm* 
GTAC with TL 
1=14mm dl/dn=1.3p/night 
Magnification 5oM) x 

Specimen 818,7075-T6 
Programmed night simulation. 
S,,,,,=4.4 kglmm' 
Sa,,,,;" = 1.1 kgjmm' 
GTAC without TL 
1=20mm df/dn=13 pjflight. 
Magnification So00 x 

Fig. 19. Two examples of fatigue striations as observed with the electron microscope 
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Symmetrical transonic potential flows 
around quasi-elliptical aerofoil sections 

by 

H. I. BAURDOUX and J. W. BOERSTOEL 

C.C.L. Class. D l 2  

Summary 

The results of the computation of 10 symmetrical non-lifting quasi-elliptical aerofoil sections in transonic potential flows are presented. 
No approximations have been made in the potential theory. Results are summarized in figures and tables. The figures permit a rapid 
appraisal of the overall properties. More detailed information is given in the tables. 

The precision of the given data in the tables is a few units of the last decimal place specified. The data can serve as a reference for 
the testing of (approximate) computational methods for transonic Rows. 
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List of symbols 

c -chord length 
c, -pressure coefficient 
c, 

1 Introduction 

-pressure coefficient for M= 1 

M - Mach number 
M I  -free stream Mach number 
Mm -maximum value of M on aerofoil section 

Ma -rate of change of M along aerofoil section 

R - radius of curvature of aerofoil section contour 
RO -radius of curvature at  leading edge 
1/R -curvature of aerofoil section contour 
f -maximum thickness of aerofoil section 
x - chordwise co-ordinate 
xle - chordwise position of leading edge 
y - co-ordinate normal to chord 
y - ratio of specific heats (y = 1.4) 
E -thickness parameter 
t -velocity parameter 
t l  -free stream value o f t  
B -flowangle 

contour 

contour 

The pressure distribution on aerofoil sections, calculated by an exact potential theory, is of great interest for many 
aerodynamicists for different reasons. Such an exact potential theory is described by Nieuwland in ref. 1. This 
theory has been used to calculate 10 transonic symmetrical non-lifting aerofoil sections. A variety of section shapes 
and related pressure distribution curves have been computed'at different free stream Mach numbers. 

The results can be used in evaluating the validity of computational methods for transonic flows, for example 
finite difference methods. 

Section 2 gives some information on the computations. In section 3 the results are presented. 
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2 The computations 

For the computations use has been made of three ALGOL programmes. The sections with a blunt leading edge 
have been calculated by the programme of ref. 5 ,  while for the lenticular aerofoil sections and the flow field of one 
of the sections the programme of ref. 3 has been used. The results have been checked and, where necessary, corrected 
by a smoothing method discussed in ref. 4 and 5. 

3 Results 

3.1 The steady potential flow around a quasi-elliptical aerofoil section is characterized by three parameters uiz. 
rl,  E and A. The free stream Mach number MI is determined by rI  according to 

I !  

The thickness ratio, tic, is mainly determined by E ;  the parameter A mainly determines the leading edge radius Ro 
and governs the flow expansion on the front part of the sections. The values of r,, E and 1 are used to identify 
the sections. For example, section 0.1025-0.675-1.3 has ~,=0.1025, ~=0.675 and A= 1.3. In choosing these pa- 
rameters use has been made of results of ref. 2. 

3.2 The results are presented in tables and figures. In table 1 all profiles are listed together with their identification 
as a quasi-elliptical aerofoil section, MI, Mm, t / c ,  c ,  R&, xLe and an index referring to the figures and the other 
tables. In the figures 1 through 10, cp-x curves and the contour have been plotted; the value of c: has also been 
indicated. The figures and table 1 allow a rapid appraisal of the most important section properties. More detailed 
information is contained in the tables 2 through 11, where values of 7 ,  x ,  y ,  c p ,  M ,  M3, 0 and 1/R are given. The 
given quantities have a precision up to some units of the last decimal place specified (see ref. 3 and 4). The figures 
11 and 12 contain detailed information about the flow field around quasi-ellipse 0.1025-0.675-1.375 and can be 
used for example to check results of other computation methods in points in the flow field. 

If more values of the ordinates are needed than are given in the tables, it is advised to interpolate between two 
successive points by means of a 6fth.degree polynomial making use of the given values of x ,  y ,  0 and I/R in the 
two points. The formulae, needed for the interpolation, are given in the appendix. In this way values of the ordinates 
are obtained which are in the experience of the authors sufficiently accurate for most purposes. 
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3 GLNNIP, M. I .  M. 0. VAN BOERSTOEL, I. W., Numerical analysis and ALGOL program for the computation of subsonic and transonic 
potential flows around quasi-elliptical aerofoil sections, NLR-TN W.27 (Restricted). 

4 BOERSTOBL, I. W., The smoothing and interpolation of discrete sets of data using weighted splines (report to be pub.). 
5 B ~ m ~ o u x ,  H. I., An ALGOL programme for the determination of nonlifting symmetrical quasi-elliptical aerofoik, NLR TR 681 I I C 
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APPENDIX A 

Formulae for the interpolation with a fifth-degree polynominal 

For the interpolation of the ordinates use is made of the given values ofy, 0 and 1/R in two successive points. The 
ordinates of these points are indicated by .xi- , and xi. The values ofy,  0 and 1 / R  are indicated accordingly, cf. the 
figure below. 

To interpolate the ordinate y, in the point .% the following formula is recommended: 

y, = a. + (I, xk + a z  x i  + x i  [a3  + a4(xk - OJ + u5 (x, - 4 ~ ~ 1  (A.1) 

where xk=x-xi -  
to be transformed to first and second derivatives: 

A,=x,-x,_ 1, and the coeficientsao-a5 can be calculated as given below. First 0 and 1 / R  have 

y[=tan 0, Y [ - ~  =tan e,-, (A.2) 

y;‘= -(l+yi2)*. (I/R)i yi’, = - ( l + y ~ ~ l ) * ~ ( l / R ) i - ,  (A.3) 

Then a,, a, and a2 are given by: 

a0 = Y,-1  (A.4) 

a1 = Y i - l  ( A . 9  

a ,  =f’y;l., (A.6) 

The coefficients a 3 ,  a4 and a5 can be computed from the expressions: 

(A.7) 

(A.8) 

(A.9) 

2 I ,  1 
a3 = - [yi-yi-l-d y:-,-fAi Y , _ ~ ]  

A 3  

a4 = - [ - 3yi+3Yj- 1 + Ai(yl+2y:_ ,) +fd:yjL I] 
A,? 

1 2 

A ,  

1 

U S  = 7 [6yj - 6yi- I -3Ai(y;+yl- 1) ++Ai  (yj’- yji I)] 

Using the equations (A.2)-(A.9) and substituting in eq. (A.I), the ordinate for any given value of x, (x i -  < xk< xi) 
can be calculated. 

TABLE I 
Main aerofoil characteristics 

Profile quasi-elliptical MI M ,  t ic c R,lc XI* figure table 
number aerofoil section number number 

5 0.1025 -0.6750 -1.300 
6 0.1100 -0.7500 -1.250 
7 0.1075 -0.6750 -1.050 
8 0.1100 -0.7500 -0.900 

10 0.1125 -0.7500 -1.325 
11 0.1150 -0.7500 -1.200 
12 0.1175 -0.8OOO -1.260 
14 0.1200 -0.7000 -0.000 
15 0.lZuO -0,7500 -0.0OC 
13 0.1025 -0.6750 -1.375 

0.7557 
0.7861 
0.7760 
0.7861 
0.7961 
0.8061 
0.8159 
0.8257 
0.8257 
0.7557 

1.222 0.1572 
1.136 0.1162 
1.257 0.1466 
1.060 0.1137 
1.280 0.1138 
1.257 0.1092 
1.291 0.0894 
1.083 0.1077 
1.121 0.0953 
1.291 0.1578 

3.20343 
3.30546 
3.22519 
3.37728 
3.27161 
3.28558 
3.32802 
3.38080 
3.45960 
3.19192 

0.046109 
0.032469 
0.026685 
0.006030 
0.040094 
0.029408 
0.029981 
- 
- 

0.052543 

- 1.69058 
- 1.79504 
- 1.69718 
- 1.79504 
- 1.79929 
-1,80375 
- 1.81247 
-1.69040 
-1,72980 
-1.69058 

1 2 
2 3 
3 4 
4 5 
5 6 
6 7 
7 8 
8 9 
9 10 

10,11,12 I I  



Tab. 2 

QUASI-ELLIPTICAL AEROFOIL SECTION 
PROFILE NUMBER 5 
FREE STREAM MACH NUMBER 0.7557 

0.1025 - 0.6750 - 1.3000 

0.00000 
0.01000 
0.02000 
0.03000 
0.04000 
0.05000 
0,06000 
0.07000 
0.08WO 
0.09000 
0.1oWo 
0.11000 
0.12000 
0.13000 
0.14oOo 
0 . 1 5 ~  
0.16000 
0.16667 
0.17WO 
0.18000 
0.19000 
0.20000 
0.21000 
0.22000 
0.23000 
0.23000 
0.22000 
0.21000 
0.20000 
0.19667 
0.19333 
0.19000 
0.18750 
0.18500 
0.18250 
0.18000 
0.17750 
0.17500 

-1.690580.00000 1.1510 O.oo00 0.MxWxH) 

- 1.68621 0.03569 1.0248 0.2247 6.22 
-1.68179 0.05028 0.9017 0.3194 6.19 
-1.67731 0.06135 0.7817 0.3932 6.16 
-1.67277 0.07059 0.6647 0.4564 6.110 
-1.66813 0.07865 0.5508 0.5130 6.046 
-1.66341 '0.08589 0.4398 0.5649 5.961 
-1.65855 0.09252 0.3317 0.6135 5.851 
-1.65355 0.09868 0.2265 0.6594 5.710 
-1.64836 0.10449 0.1241 0.7032 5.531 
.-I64292 0.11005 0.0245 0.7454 5.307 
-1.63717 0.11541 -0.0724 0.7861 5.032 
-1.63098 0.12070 -0.1666 0.8257 4.703 
-1.62424 0.12598. -0.2582 0.8644 4.321 
-1.61674 0.13133 -0.3471 0.9022 3.894 
-1.60824 0.13686 -0.4336 0.9393 3.437 
-1.59840 0.14267 -0.5175 0.9759 2.977 
-1.59091 0.14672 -0.5721 1.ooOO 2.686 
-1.58684 0.14881 -0.5989' 1.0120 2.550 
-1.57321 0.15529 -0.6780 1.0476 2.1986 
-1.55746 0.16194 -0.7546 1.0830 1.9626 
-1.54022 0.16838 '-0.8290 1.1180 1.8748 
-1.52276 0.17412 '-0.9010 1.1529 1.9363 
-1.50592 0.17901 -,0.9708 1.1875 1.9726 
-1.48560 0.18415, -1.0384 1.2221 1.1429 
-1.36595 0.20607 -1.0384 1.2221 -0,27150 
-1.24047 0.22218 -0.9708 1.1875 -0.26246 
-.1.10064 0.23500 -0.pOlO 1.15229 -0.232942 
-0.94358 0.24456 -0.8290 1.1180 -0.210504 

. -0.88716 0.24693 -0.8044 1.1064 -0.203479 
-0.82862 0.24886 -0.7797 1.0947 -0.195858 
-0.76752 0.25032 -0.7546 1,0830 -0.187417 
-0.71967 0.25110 '-0.7357 1.0742 -0.180545 
-0.66984 0.25158 -0.7166 1,0653 -0.173373 
-0.61772 0.25173 -0.6974 1.0565 -0.166155 
-0.56321 0.25154 -0.6780 1.0476 -0.159202 
-0.50625 0.25095 -0.6584 1,0388 -0.152823 
.-OM687 0.24995 -0.6388 1.0299 -0.147280 

1.57080 6.770223 
1.328 6.70 
1.226 6.64 
1.147 6.56 
1.0797 6.49 
1.0198 6.40 
0.9648 6.306 
0.9134 6.194 
0.8648 6.062 
0.8181 5.903 
0.7730 5.713 
0.7290 5.480 
0.6857 5.203 
0.6424 4.880 
0.5991 4.506 
0.5554 4.088 
0.5112 3.6390 
0.4814 3.3341 
0.4668 3.1813 
0.4220 2.7510 
0.3782 2.3851 
0.3370 2.1195 
0.2995 1.9714 

0.2314 1.3890 
0.14972 0.40402 
0.10853 0.268234 
0.07582 0.205308 
0.04666 0.168193 
0.03746 0.158587 
0.02844 0.149674 
0.01956 0.141263 
0.01294 0.135256 
0.00634 0.129552 

-0.00026 0.124235 ' 

-0.00690 0,119399 
-0.01357 0.115132 
-0.02027 0.111497 

0.2658 1.8657 

Tab. 3 

QUASI-ELLIPTICAL XEROFOIL SECTION 
PROFILE NUMBER 6 
FREE STREAM MACH NUMBER 0.7861 

0.1 100 - 0.7500 - 1.2500 

t X Y CP 

0.00000 -1.79504 0.00000 1.1642 
0.01000 -1.79217 0.02463 1.0440 
0.02Wo -1.78932 0.03453 0.9269 
0.03000 -1.78650 0.04192 0.8127 
0.04000 -1.78369 0.04797 . 0.7014 
0.05000 '- 1.78090 0.05314 0.5930 
0.OMx)O -1.77813 0.05767 0.4874 
0.07000 -1,77538 0.06172 0.3845 
0.08M)O - 1.77263 0.06539 0.2W 
0.09000 ~-1.76987 0.06874 0.1870 
0.I0000 -1,76709 0.07184 0.0922 
0.11000 -1,76426 0.07475 O.oo00  
0.12000 -1.76133 0.07754. -0.0896 
0.13000 -1.75823 0.08025 -0.1768 
0.14Wo -1.75483 0.08298 -0.2614 
0.15000 -1.75091 0.08586 -0.3437 
0.IMKK) -1.74603 0.08912 -0.4235 
0.16667 -1.74181 0.09169 -0.4754 
0.17000 -1.73918 0.09319 -0.5010 
0.18000 -1.72718 0.09933 -0.5762 
0.19000 -1.69756 0.11116 -0.6492 
0.19333 -1.67876 0.11721 -0.6730 
0.19667 -1.65489 0.12383 -0.6966 
0.2ooOO -1,62597 0.13068 -0.7199 
0.20167 -1,60850 0.13434 -0.7315 
0.20333 - 1 h 6 2 4  0.13858 -0.7430 
0.20500 -1.53958 0.14625 -0.7545 
0.20500 -1.50975 0.15050 -0.7545 
0.20333 -1.44272 0.15869 -0.7430 
0.20167 -1.39820 0.16331 -0.7315 
0.2woO -1.35734 0.16710 -0.7199 
0.19750 -1.29775 0.17195 -0.7024 
0.19500 -1.23794 0.17613 -0.6848 
0.19250 -1.17688 0.17978 -0.6671 
0.19000 --1.11402.0.18295 -0.6492 
0.18750 -1.04951 0.18566 -0.6312 
0.18500 -0.98246 0.18792 -0.6130 
0.18250 -0.91303 0.18971 -0.5947 

M M. 

0.0000 ~.oooo00 
0.2247 9.13 
0.3194 9.26 
0.3932 9.40 
0.4564 9.55 
0.5130 9.70 
0.5649 9.84 
0.6135 P.97 
0.6594 10.07 
0.7032 10.12 
0.7454 10.09 
0.7861 9.95 
0.8257 9.63 
0.8644 9.07 
0.9022 8.22 
0.9393 7.015 
0.9759 5.460 
1.0000 4.273 
1,0120 3.659 
1.0476 1.833 
1,0830 0.6891 
1,0947 0.5223 
1.1064 0.4312 
1.1180 0.3528 
1.1239 0.29757 
1.1297 0.21417 
1.1355 0.04288 
1.1355 -0.04834 
1.1297 -0.11921 
1.1239 -0.137868 
1.1180 -0.144678 
1.1093 -0.146745 
1.1005 -0.144955 
1.0918 -0.141727 
1.0830 -0.137925 
1.0742 -0.133864 
1,0653 -0.129568 
1.0565 -0.125065 

1.57080 9.317575 
1.339 9.35 
1,242 
1.168 
1.105 
I .048 
0.997 
0.9494 
0.9044 
0.8613 
0.8197 
0.7790 
0.7387 
0.6981 
0.6565 
0.6127 
0.5647 
0.5297 
0.5109 
0.4385 
0.3328 
0.2916 
0.2516 
0.2154 
0.1978 
0.1789 
0.1489 
0.1344 
0.10979 
0.09732 
0.08754 
0.07526 
0.06459 
0.05496 
0.04603 
0.03763 
0.02962 
0.02191 

9.40 
9.46 
9.53 
9.60 
9.69 
9.79 
9.88 
9.96 

10.01 
10.01 
9.928 
9.717 
9.310 
8.647 
7.655 
6.772 
6.259 
4.491 
2.4312 
1.8405 
1.3921 
1.05898 
0.91374 
0.76322 
0.53715 
0.43619 
0.304970 
0.255216 
0.223082 
0.189977 
0.166710 
0.149229 
0. I35506 
0.124383 
0.1 15105 
0.1072 I O  

P 



0.17250 
0.17000 
0.16667 
0.16333 
0.16oOo. 
0.15750 
0.15500 
0. I5250 

0.14750 
0.14500 
0.14250 
0.14000 
0.13750 
0.13500 
0.13250 
0.13000 
0.12667 
0.12333 
0. I2000 
0.11667 
0.1 1333 
O.llO00 
0.10500 
0,10000 
0.09500 
0.09000 
0.08000 
0.07750 
0.07500 
0.07250 
0.07000 
0.06000 
0.05500 
0.05000 
0.04147 

0.15000 

-0.38528 0.24849 -0.6189 1,0209 
-0.32179 0.24655 -0.5989 1.0120 
-0.23495 0.24321 -0.5721 1,0000 
-0.14669 0.23900 -0.5449 0.9880 
-0.05818 0.23397 -0.5175 0.9759 

0.00771 0.22970 -0.4967 0.9668 
0.07279 0.22504 -0.4758 0.9577 
0.13672 0.22003 -0.4548 0.9485 
0.19924 0.21472 -0.4336 0.9393 
0.26016 0.20913 -0.4122 0.9301 
0.31936 0.20331 -0.3907 0.9208 
0.37675 0.19729 -0.3690 0.9115 
0.43227 0.19112 -0.3471 0.9022 
0.48588 0.18481 -0.3251 0.8928 
0.53759 0.17841 -0.3030 0.8834 
0.58740 0.17193 -0.2807 0.8739 
0.63535 0.16540 -0.2582 0.8644 
0.69650 0.15666 -0.2279 0.8516 
0.75448 0.14791 -0.1974 0.8387 
0.80917 0.13924 -0,1666 0.8257 
0.86149 0.13056 -0.1355 0.8126 
0.91080 0.12202 -0.1041 0.7994 
0.95748 0.11362 -0.0724 0.7861 
1.02282 0.10131 -0.0243 0.7659 
1.08317 0.08938 0.0245 0.7454 
1.13860 0.07794 0.0739 0.7245 
1.18969 0.06702 0.1241 0.7032 
1,28002 0.04694 0.2265 0.6594 
1.30036 0.04232 0.2525 0,6481 
1.31988 0.03786 0.2787 0.6367 
1.33861 0.03358 0.3051 0.6252 
1.35653 0.02949 0.3317 0.6135 
1.42125 0.01508 0.4398 0.5649 
1.44972 0.00920 0.4949 0.5394 
1.47583 0.00439 0.5508 0.5130 
1.51285 O.woO0 0.6478 0.4651 

-0.142758 
-0.139361 
-0.136619 
-0.135833 
-0.136832 
- 0.138624 
-0.141223 
-0.144557 
-0.148566 
-0.1 53200 
-0.158431, 
-0.164210 
- 0.170538 
-0.177399 
- 0.184784 
-0.1926YY 
-0.201 1 
-0.2132 
-0.2263 
-0.240 
-0.256 
-0.272 
-0.290 
-0.319 
-0.350 
-0.387 
-0.4282 
-0.52608 
-0.55473 
-0.58538 
-0.61820 
-0.65345 

,--0.8245 
-0.9337 
-1,0649 

-0.02707 
-0.03391 
-0.04303 
- 0.0521 7 
-0.06130 
- 0.068 I O  
-0.07486 
-0.08156 
-0.08820 
-0.09476 
-0,10125 
-0.10765 
-0.11396 
-0.12017 
-0.12630 
-0.13232 
-0.1383 
-0.1460 
-0.1535. 
-0.161 
-0.168 
-0.175 
-0.181 
-0.191 
-0.200 
-0.207 
-0.2139 
-0.22275 
-0.22396 
-0.22463 
-0.22462 
-0.22388 
- 0.21 080 
- 0. I9462 
- 0.1663 
0.00000 

0.108525 
0.106218 
0.104128 
0.103065 
0.102898 
0. I03278 
0.104034 
0.1051 I7 
0.106485 
0.108097 
0.109917 
0.1 1 I921 
0.1 14069 
0.1 16336 
0.118690 
0.121 105 
0.1236 
0.1268 
0.1300 
0.132 
0.136 
0.138 
0.139 
0.140 
0.139 
0.133 
0.1207 
0.068266 
0.045542 
0.017130 

-0.018353 
-0.06274 
-0.39397 
-0.7486 
-1.4436 

0.18MM -0.W82 0.19102 -0.5762 
0.17833 -0.79105 0.19161 -0.5639 
0.17667 -0.73988 0,19197 -0.5514 
0.17500 -0.68732 0.19209 -0.5389 
0.17333 -0.63341 0.19196 -0.5263 
0.17167 -0.57824 0.19156 -0.5137 
0.17WO -0.52200 0.19089 -0.5010 
0.16667 -0.40708 0.18871 -0.4754 
0.16417 -0.31976 0.18635 -0.4561 
0.16167 -0.23250 0.18339 -0.4366 
0.IMX)o -0.17477 0.18111 -0.4235 
0.15833 -0.11767 0.17861 -0.4104 
0.15667 -0.06138 0.17589 -0.3972 . 
0.15500 -0,00605 0.17297 -0.3839 
0.15333 0.04823 0.16988 -0.3705 
0.15167 0.10127 0.16664 -0.3511 
0.15MM 0.15304 0.16326 -0.3437 
0.14750 0.22818 0.15797 -0.3233 
0.14500 0.30026 0.15246 -0.3028 
0.14250 0.36924 0.14679 -0.2822 
0.14WO 0.43512 0.14099 -0.2614 
0.13750 0.49800 0.13511 -0.2405 
0.13500 0.55793 0.12917 -0.2194 
0.13250 0.61502 0.12322 -0.1982 
0.13000 0.66941 0.11727 -0.1768 
0.12667 0.73787 0.10938 -0.1480 
0.12333 0.80231 0.10155 -0.1190 
0.12oM) 0.86255 0.09387 -0.0896 
0.11667 0.91903 0.08635 -0.0600 
0.11333 0.97203 0.07901 -0.0302 
0.1IMK) 1.02106 0.07197 0.0000 
0.10500 1,09187 0.06139 0.0458 
0.1oOW 1.15349 0.05181 0.0922 
0.09oW 1.26405 0.03402 0.1870 
0.08MM 1.35614 0.01916 0.2844 
0.07000 1.43353 0.00757 0.3845 
0.06500 1.46744 0.00330 0.4356 
0.06000 1.49854 0.00043 0.4874 
0.05791 1.51042 0,00000 0.5092 

1.0476 -0.120437 0.01442 
1.0417 -0.117368 0.00952 
1.0358 -0.114406 0.00468 
1.0299 -0.111640 -0.00012 
1.0239 -0.109156 -0,00487 
1.0179 -0.107042 -0.00960 
1.0120 -0.105343 -0.01429 
1.oooO -0.103381 -0.02358 
0.9910 -0.103196 -0.03046 
0.9819 -0.104079 -0.03724 
0.9759 -0.105222 -0.04170 
0.9698 -0,106776 -0.04610 
0.9638 -0.108702 -0.05046 
0.9577 -0.111015 -0.05475 
0.9516 -0.113648 -0.05899 
0.9455 -0.116600 -0.06316 
0.9393 -0,119846 -0.06727 
0.9301 -0.125243 -0.07332 
0.9208 -0.131244 -0.07922 
0.9115 -0.137802 -0.08498 
0.9022 -0.144919 -0.09058 
0.8928 -0.1526 -0.0960 
0.8834 -0.1608 -0.1013 
0.8739 -0.1696 -0.1065 
0.8644 -0.177 -0.111 
0.8516 -0.192 -0.118 
0.8387 -0.206 -0.124 
0.8257 -0.221 -0.130 
0.8126 -0.238 -0.135 
0.7994 -0.255 -0.140 
0.7861 -0.275 -0.145 
0.7659 -0.307 -0.151 
0.7454 -0.342 -0.157 
0.7032 -0.4216 -0.1612. 
0.6594 -0.52499 -0.15672 
0.6135 -0.6592 -0.13575 
0.5896 -0.7422 -0.11225 
0.5649 -0.8392 -0.0637 
0.5544 0.00000 

0.100421 
0.096435 
0.092856 
0.089674 
0.086883 
0.084479 
0,082450 
0.079461 
0.078069 
0.077310 
0.077112 
0.077129 
0.077338 
0.071711 
0.078233 
0.078882 
0.019639 
0.080943 
0.082405 
0.083970 
0.085598 
0.0873 
0.0889 
0.0904 
0.091 
0.093 
0.095 
0.095 
0.095 
0.093 
0.091 
0.084 
0.071 
0.0123 

- 0.12424 
-0.48710 
-0.9446 
-2.4983 

VI 



Tab. 4 Tab. 5 

QUASI-ELLIPTICAL AEROFOIL SECTION 0.1 100--0.7500--0.9000 
PROFlLE NUMBER 8 
FREE STREAM MACH NUMBER 0.7861 

QUASI-ELLIPTICAL AEROFOIL SECTION 0.10754.6750-1.0500 
PROFILE NUMBER 7 
FREE STREAM MACH NUMBER 0.7760 

0.00000 -1,69718 0.00000 1.1598 0.0000 0,000000 
0.01000 -1.69357 0.02482 1.0377 0.2247 8.48 
0.02000 -1,68964 0.03575 0.9187 0.3194 7.80 
0.03000 -1.68534 0.04463 0.8026 0.3932 7.14 
0.04000 -1.68060 0.05259 0.6895 0.4564 6.51 
0.05000 -1.67536 0.06006 0.5794 0.5130 5.894 
0.06000 -1.66953 0.06728 0.4720 0.5649 5.307 
0.07WO -1.66300 0.07439 0.3675 0.6135 4.752 
0.08000 -1.65566 0.08152 0.2658 0.6594 4.229 
0.09000 -1.64735 0.08874 0.1668 0.7032 3.744 
0.10000 -1,63790 0.09612 0.0705 0.7454 3.300 
0.11000 --1.62711 0.10369 -0.0232 0.7861 2.899 
0.12000 -1,61479 0.11149 -0.1143 0.8257 2.546 
0.13000 -1.60073 0.11951 -0.2028 0.8644 2.2431 
0.14000 -1,58487 0.12765 -0.2888 0.9022 1.9955 
0.15000 -1,56704 0.13589 -0.3724 0.9393 1.8083 
0.16000 -1.54763 0.14394 -0.4535 0.9759 1.6911 
0.16667 -1.53416 0.14905 -0.5063 1.0000 1.6601 
0.17000 -1.52737 0.15149 -0.5323 1.0120 1.6619 
0.18000 -1,50744 0.15817 -0.6087 1.0476 1.7591 
0.19000 -1.48953 0.16360 -0.6828 1.0830 2.0777 
0.20000 -1,47545 0.16748 -0.7547 1.1180 2.9022 
0.21000 -1.46652 0.16973 -0,8244 1.1529 5.454 
0.22000 -1,46280 0.17061 -0.8918 1.1875 21.24 

* 0.23000 -1.46192 0.17080 -0.9572 1.2221 19.94 
0.24000 -1.44519 0.17386 -1.0205 1.2566 0.36860 
0.24000 -1.40359 0.18088 -1.0205 1.2566 -0.15930 
0.23500 -1,32573 0.19206 -0.9891 1.2393 -0.24217' 
0.23000 -1.25484 0.20063 -0.9572 1.2221 -0.23740 
0.22667 -1.20570 0.20584 -0.9357 1.2106 -0.228017 
0.22333 -1.15426 0.21073 -0.9139 1.1991 -0.217678 
0.22000 -1.10024 0.21530 -0.8918 1.1875 -0.207518 
0.21667 -1.04344 0.21954 -0.8696 1.1760 -0.198078 
0.21333 -0.98389 0.22339 -0.8471 1.1644 -0.189572 
0.21000 -0.92167 0.22682 -0.8244 1.1529 -0.182099 
0.20667 -0.85689 0.22980 -0.8014 1.1413 -0.175651 
0.20333 -0.78979 0.23226 -0.7782 1.1297 -0.170112 
0.20000 -0.72039 0.23418 -0.7547 1.1180 -0.165370 

1.57080 11.619188 
1.286 10.72 
1.167 9.82 
1.074 8.97 
0.995 8.14 
0.9242 7.35 
0.8595 6.592 
0.7994 5.877 
0.7421 5.205 
0.6889 4.578 
0.6376 4.001 
0.5885 3.474 
0.5414 3.0024 
0.4962 2.5879 
0.4533 2.2311 
0.4126 1.9360 
0.3745 1.7054 
0.35079 1.5901 
0.33959 1.5450 
0.30793 1.4695 
0.28039 1.5148 
0.25658 1.7984 
0.23687 2.8355 
0,22011 9.58 
0 2 4 6 3  9.45 
0.1795 0.73395 
0.15687 0.41750 
0.13003 0.29022 
0.11131 0.238669 
0.10013 0.214822 
0.08954 0.195721 
0.07937 0.180001 
0.06950 0.166881 
0.05989 0.155839 
0.05048 0.146516 
0.04124 0.138626 
0.03216 0.131925 
0.02321 0.126220 

0.00000 -1.79504 O.OOW0 1.1642 0.0000 
0.01oOO -1.79307 0.00918 1.0440 0.2247 
0.02000 -1,79046 0.01432 0.9269 0.3194 
0.03000 -1.78714 0.01920 0.8127 0.3932 
0.04oOO -1.78303 0.02414 0.7014 0.4564 
0.05000 - 1.77798 0.02928 0.5930 0.5130 
0.06000 -1.77184 0.03470 0.4874 0.5649 
0.07000 -1,76437 0.04048 0.3845 0.6135 
0.08000 - 1.75528 0.04668 0.2844 0.6594 
0.09000 -1.74418 0.05340 0.1870 0.7032 
O.IMM0 -1,73052 0.06073 0.0922 0.7454 
0.11000 -1,71360 0.06873 0.0000 0.7861 
0.12000 -1.69241 0.07756 -0.0896 0.8257 
0.13000 -1.66555 0.08733 -0.1768 0.8644 
0.14000 -1.63114 0.09815 -0.2614 0.9022 
0.15000 -1.58661 0,11009 -0.3437 0.9393 
0.16000 -1.52848 0.12310 -0.4235 0.9759 
0.16667 -1,47946 0.13236 -0.4754 1.0000 
0.17000 -1,45077 0.13718 -0.5010 1.0120 
0.17500 -1,39976 0.14485 -0.5389 1.0299 
0.18000 -1.32987 0.15376 -0.5762 1.0476 
0.18167 -1,29638 0.15748 -0.5886 1.0536 
0.18333 -1.24843 0.16228 -0.6008 1.0595 
0.18333 -0.94118 0.18268 -0,6008 1.0595 
0.18167 -0.83289 0.18680 -0.5886 1,0536 

0.000000 
18.9 
14.2 
11.04 
8.77 
7.05 
5.710 
4.635 
3.760 
3.038 
2.440 
1.9438 
1.5328 
1.1955 
0.9227 
0.70583 
0.53469 
0.43638 
0.38760 
0.30655 
0.19932 
0.152049 
0.093757 

-0.048027 
~0.059795 

0.18000 -0.73948 0.18933 -0.5762 1.0476 -0.066266 
0.17833 -0.65319 0.19090 -0.5639 1.0417 -0.070852 
0.17667 -0.57171 0.19175 -0.5514 1.0358 -0.074641 
0.17500 
0.17333 
0.17167 
0.17000 
0,16667 
0.16417 
0.16167 
0 . 1 m  
0.15833 
0.1566! 

-0.49395 0.19200 -0.5389 
-0.41934 0.19175 -0.5263 
-0.34754 0.19106 -0.5137 
-0.27837 0.18998 -0.5010 
-0.14708 0.18684 -0.4754 
-0.05444 0.18376 -0.4561 

0.03372 0.18016 -0.4366 
0.09011 0.17752 -0.4235 
0.14468 0.17470 -0.4104 
0.19748 0.17173 -0.3972 

1.0299 
1.0239 
1.0179 
1.0120 
I .0000 
0.9910 
0.9819 
0.9759 
0.9698 
0.9638 

-0.078088 
-0.081398 
-0.084670 
-0.087952 
-0,094633 
-0.099816 
- 0.105203 
-0.108941 
-0.112795 
-0.116816 

1.57080 49.100807 
1.18 30.8 
1.031 21.5 
0.923 15.79 
0.834 12.01 
0.758 9.33 
0.6904 7.34 
0.6287 5.822 
0.5716 4.630 
0.5181 3.681 
0.4674 2.916 
0.4190 2.295 
0.3724 1.7910 
0.32736 1.3831 
0.28406 1.05582 
0.24180 0.79811 
0.20059 0.59896 
0.17360 0.49208 
0.16001 0.44399 
0.13901 0.37417 
0.11539 0.297747 
0.10591 0.267000 
0.09399 0.229433 
0.04422 0.120369 
0.03194 0.106563 
0.02239 0.098506 
0.01414 0.093190 
0.00670 0.089533 

-0.00016 
-0.00658 
-0.01266 
-0.01845 
-0.02938 
-0.03709 
-0.04449 
-0.04928 
-0.05395 
-0.05853 

0.086994 
0.085257 
0.0841 17 
0.083436 
0.083092 
0.083498 
0.084339 
0.085101 
0.086004 
0.087030 



0.19750 -0.66701 0.23524 -0.7369 1,1093 
0.19500 -0.61256 0.23597 -0.7190 1.1005 
0.19250 -0.55706 0.23634 -0.7010 1.0918 
0.19000 -0.50057 0.23635 -0.6828 1.0830 
0.18750 -0.44313 0.23599 -0.6645 1.0742 
0.18500 -0.38483 0.23525 -0.6460 1.0653 
0.18250 -0.32578 0.23412 -0.6274 1.0565 
0.18000 -0.26615 0.23260 -0.6087 1.0476 
0.17750 -0.20612 0.23069 -0.5898 1,0388 
0.17500 -0.14594 0.22839 -0.5708 1.0299 
0.17250 -0.08582 0.22570 -0.5516 1.0209 
0.17000 -0.02599 0.22266 -0.5323 1.0120 
0.16667 0.05290 0.21807 -0.5063 1.oooO 
0.16333 0.13038 0.21291 -0.4800 0.9880 
0.16000 0.20608 0.20725 -0.4535 0.9759 
0.15750 0.26154 0.20270 -0.4335 0.9668 
0.15500 0.31570 0.19793 -0.4132 0.9577 
0.15250 0.36852 0.19296 -0.3929 0.9485 
0.15000 0.42001 0.18781 -0.3724 0.9393 
0.14667 0.48622 0,18072 -0.3448 0.9270 
0,14333 0.54990 0,17341 4 . 3 1 6 9  0.9146 
0.14000 0.61092 0.16593 -0.2888 0.9022 
0.13667 0.66933 0.15833 -0.2604 0.8897 
0.13333 0.72514 0.15066 -0.2317 0.8771 
0.13000 0.77851 0.14292 -0.2028 0.8644 
0,12500 0.85381 0.13135 -0.1588 0.8452 
0,12000 0.92383 0.11987 -0.1143 0.8257 
0.11500 0.98885 0.10859 -0.0690 0.8061 
0.11000 1.04913 0.09751 -0.0232 0.7861 
0.10500 1.10500 0.08667 0.0233 0.7659 
0.10000 1.15669 0.07624 0.0705 0.7454 
0.09000 1.24894 0.05669 0.1668 0.7032 
0.08000 1.32780 0.03919 0.2658 0.6594 
0.07000 1.39510 0.02405 0.3675 0.6135 
0,06000 1.45240 0.01166 0.4720 0.5649 
0.05500 1.47771 0.00670 0.5253 0.5394 
0.05000 1.50099 0.00275 0.5794 0.5130 
0.04321 1.52801 O . o O w 0  0.6539 0.4752 

-0.162233 
-0.159378 
-0.156768 
-0.154390 
-0.152260 
-0.150456 
-0.149055 
-0.148138 
- 0.147770 
-0.147991 
-0.148830 
-0.150234 
-0. I53024 
-0.156789 
-0.161475 
-0.165569 
-0.170143 
- 0.1751 92 
-0.1 80702 
- 0.188777 
-0.197687 
-0.207445 
-0.2181 
-0.2296 
-0.2421 
-0.263 
-0.286 
-0.311 
-0.340 
-0.372 
-0.406 
-0,4923 
-0.60032 
-0.7410 
-0.9301 
-1.0510 
- 1.1963. 

0.01657 
0.01000 
0.00347 

-0.00302 
-0.00948 
-0.01590 
-0.02231 
-0.02869 
-0.03506 
-0.04140 
-0.04772 
-0.05401 
-0.06233 
-0.07059 
-0.07877 
-0.08484 
-0.09086 
4 . 0 9 6 8 3  
- 0.1 0273 
-0.11051 
-0.11817 
- 0.12571 
-0.1331 
-0.1404 
- 0.1474 
-0.158 
-0.167 
-0.176 
-0.187 
-0.196 
-0.203 
-0.2145 
-0.221 16 
-0.21945 
-0.20236 
-0.1831 
-0. I494 
0.00000 

0.122487 
0.119157 
0.1 16187 
0.1 13555 
0.111253 
0.109292 
0.107685 
0,106445 
0.105515 
0.105068 
0.104910 
0.105076 
0.105766 
0.10693 1 
0.108517 
0.109950 
0.11 1569 
0.1 13354 
0.1 15285 
0,118057 
0.121012 
0.124102 
0.1273 
0.1305 
0.1337 
0.135 
0.142 
0.145 
0.144 
0.140 
0.135 
0.1142 
0.044607 

-0.12184 
-0.5417 
- 1.0030 
- 1.9694 

0.15500 
0.15333 
0.151 67 
0.15000 
0.14150 
0.14500 
0.14250 
0.14oOo 
0.13750 
0.13500 
0.13250 
0.13000 
0.12667 
0.12333 
0.12000 
0.11500 
0.11000 
0.10500 
0.10000 
0.09oM) 
0.08Ow 
0.07000 
0.06500 
0.06000 
0.05285 

0.24861 0,16861 -0.3839 0.9577 -0.120983 
0.29799 0.16539 -0.3705 0.9516 -0.125319 
0.34589 0.16205 -0.3571 0.9455 -0.129835 
0.39217 0.15863 -0.3437 0.9393 -0.134536 
0.45876 0.15335 -0.3233 0.9301 -0.141961 
0.52204 0.14795 -0.3028 0.9208 -0.149836 
0.58223 0.14244 -0.2822 0.9115 -0.158200 
0.63943 0.13687 -0.2614 0.9022 -0.167067 
0.69383 0.13126 -0.2405 0.8928 -0.1765 
0.74555 0.12563 -0.2194 0.8834 -0.1864 
0.79471 0.12002 -0.1982 0.8739 -0.1969 
0.84152 0.11442 -0.1768 0.8644 -0.208 
0.90033 0.10703 -0.1480 0.8516 -0.224 
0.95545 0.09974 -0.1190 0.8387 -0.240 
1.00698 0.09258 -0.0896 0.8257 -0.258 
1.07833 0.08214 -0.0451 0.8061 -0.288 
1.14317 0.07210 0.0000 0.7861 -0.321 
1.20234 0.06249 0.0458 0.7659 -0.357 
1.25596 0.05332 0.0922 0.7454 -0.395 
1.35001 0.03656 0.1870 0.7032 -0.4925 
1.42858 0.02234 0.2844 0.6594 -0.61322 
1.49459 0,01079 0.3845 0.6135 -0.7697 
1.52352 0.00617 0.4356 0.5896 -0.8665 
1.55001 0.00250 0.4874 0.5649 -0.9796 
1.58224 0.00000 0.5626 0.5282 

-0.06301 0.088171 
-0.06741 0.089412 
-0.07173 0.090744 
-0.07597 0.092156 
-0.08220 0.09MOl 
-0.08827 0.096768 
-0.09419 0.099225 
-0.09997 0.101737 
-0.1056 0.1043 
-0.1111 0.1068 
-0.1164 0.1092 
-0.122 0.112 
-0.128 0.116 
-0.135 0.115 
-0.141 0.117 
-0.150 0.120 
-0.158 0.118 
-0.165 0.113 
-0.172 0.111 
-0.1786 0.0520 
-0.17808 -0.070293 
-0.16506 -0.37512 

-0.1229 -1.3626 
-0.14975 -0.7015 4 

0.00000 



Tab. 6 

QUASI-ELLIPITICAL AEROFOIL SECTION 0.11254.7500-1.3250 
PROFILE NUMBER I O  
FREE STREAM MACH NUMBER 0.7961 

Tab. 7 

QUASI-ELLIPTICAL AEROFOIL SECTION 0.1 150 ~ 0.7500 - 1.2WO 
PROFILE NUMBER I I  
FREE STREAM MACH NUMBER 0.8061 

0,00000 -1.79929 0 . W  1.1687 
0.01000 -1.79617 0.02844 1.0503 
0.02000 - 1.7931 1 0.03974 0.9350 
0.03000 - 1.79012 0.04807 0.8226 
0.04000 -1.78721 0.05481 0.7130 
0.05000 -1.78438 0.06048 0.6062 
0.06000 -1.78164 0.06536 0.5022 
0.07000 -1.77899 0.06962 0 . m  
0.08000 - 1.77645 0.07337 0.3024 
0.09000 --1.77400 0.07669 0.2064 
0 . 1 0  -1.77167 0.07963 0.1131 
0.1 1000 - 1.76944 0.08225 0.0223 
0.12000 -1.76732 0.08459 -0.0660 
0.l3000 -1.76532 0.08667 -0.1518 
0.14000 -1.76341 0.08854 -0.2351 
0.15000 -1.76159 0.09022 -0.3161 
0.16000 -1.75984 0.09174 -0.3947 
0.16667 -1.75871 0.09268 -0.4459 
0.17000 -1,75814 0,09314 -0.4710 
0.18000 -1.75644 0.09446 -0.5451 
0,19000 -1,75466 0.09576 -0.6169 
0.2oooO -1.75268 0.09713 -0.6866 
0.21000 -1.75023 0.09870 -0.7541 
0.22000 -1.74672 0.1W78 -0.8195 
0.23000 -1.73983 0.10441 -0.8828 
0.24000 -1.71256 0.11536 -0.9442 
0.24333 -1.70112 0,11893 -0.9642 
0.24667 -1,69193 0.12149 -0.9839 
0.24667 -1.65132 0.13050 -0.9839 
0.24333 -1,63314 0.13385 -0.9642 
0.24000 -1,61458 0.13701 -0.9442 
0.23667 -1.59468 0,14015 -0.9239 
0.23333 -1,57281 0.14334 -0.9035 
0.23Mx) -1.54863 0.14662 -0.8828 
0.22000 -1,45871 0.15692 -0.8195 
0.21500 -1,40258 0.16219 -0.7871 
0,21000 -1.33737 0.16742 -0.7541 
0.20667 -1.28925 0.17075 -0.7318 
0.20333 -1.23751 0.17389 -0.7093 
0.2oooO -1.18237 0.17677 -0.6866 

0 . m  0 . m  
0.2247 7.98 
0.3194 8.21 
0.3932 8.47 
0.4564 8.77 
0.5130 9.10 
0.5649 9.47 
0.6135 9.90 
0.6594 10.38 
0.7032 10.92 
0.7454 11.52 
0.7861 12.20 

0.8644 13.76 
0.9022 14.60 
0.9393 15.43 
0.9759 16.13 
1.WOO 16.46 
1.0120 16.55 
1.0476 16.43 
1.0830 15.48 

1.1529 10.42 
1.1875 6.66 
1.2221 2.844 
1.2566 0.809 
1.2680 1.127 
1.2795 1.182 
1.2795 -0.5969 
1.2680 -0.6237 
1.2566 -0.59274 
1.2451 -0.54590 
1.2336 -0.49637 
1.2221 -0.44782 
1.1875 -0.32862 

1.1529 -0.250195 
1.1413 -0.231962 
1.1297 -0.216932 
1.1180 -0.204565 

0.8257 12.95 

1.iixn 13.48 

I .  I 702 - 0.284593 

1.57080 7.623522 
1.352 7.69 
1.261 7.78 
1.192 7.89 
1.133 8.01 
1.082 8.16 
1.0361 8.34 
0.9937 8.55 
0.9545 8.79 
0.9177 9.07 
0.8830 9.40 
0.8500 9.78 
0.8185 10.21 
0.7882 10.70 
0.7590 11.24 
0.7305 11.80 
0.7025 12.36 
0.6841 12.68 
0.6748 12.82 
0.6469 13.06 
0.6183 12.91 
0.5880 12.21 
0.5544 10.86 
0.5163 8.884 
0.457 6.452 
0.322 3.373 
0.2845 2.956 
0.2579 2.6352 
0.1905 0.9622 
0.17518 0.75546 
0.16229 0.62537 
0.15075 0.52968 
0,13988 0.45458 
0,12960 0.39320 
0.10059 0.265015 
0.08688 0,222154 
0.07354 0,189181 
0.06486 0.171573 
0.05637 0,156792 
0.04807 0.144321 

O . O w o 0  -1.80315 0.00000 1.1732 
0,01000 - I.80103 0.02276 1.0566 
0.02M)o - 1,79830 0.03200 0.9430 
0.03000 -1.79556 0.03896 0.8322 
O . M o 0 0  -1,79280 0.04472 0.7242 
0,05000 -1,79002 0.04972 0.6190 
0.06000 -1.78721 0.05416 0.5166 
0.07000 -1.78436 0.05819 0.4168 
0,08000 -1.78146 0.06190 0.3197 
0.09000 - I  .77848 0.06536 0.2252 
0.10000 -1.77549 0.06865 0.1332 
0.IIOW -1.77214 0.07180 0.0438 
0,12000 - 1,76868 0.07489 -0.0432 
0.13000 -1.76490 0.07799 -0.1277 
0.14oOo -1,76064 0.08117 -0.2098 
0.15000 -1,75564 0.08457 -0.2896 
0,16000 -1.74949 0.08835 -0.3671 
0.16667 -1.74444 0.09116 -0.4174 
0.17000 -1,74149 0.09272 -0.4423 
0.18000 -1.73045 0.09801 -0.5152 
0.19000 -1.71535 0.10422 -0.5860 
0.20000 -1,69684 0.11068 -0.6546 
0.21000 -1.67917 0.11592 -0.7211 
0.22000 -1.66710 0.11902 -0.7855 
0.23000 -1.66180 0.12026 -0.8480 
0.24030 -1.65932 0.12079 -0.9084 
0.24000 -1.60196 0.13020 -0.9084 
0.23wO -1.51504 0.14164 -0,8480 
0.22500 -1.46284 0.14732 -0.8170 
0.22000 -1.40279 0.15301 -0.7855 
0.21500 -1,33406 0.15864 -0.7536 
0.21000 -1.25633 0.16398 -0.7211 
0.20667 -1.19960 0.16726 -0.6992 
0.20333 -1.13913 0.17026 -0.6770 
0.20000 -1.07525 0.17292 -0.6546 
0.19750 -1.02527 0.17466 -0.6376 
0.19500 -0.97373 0.17615 -0.6206 
0.19250 -0.92024 0,17738 -0.6033 
0.19000 -0.86498 0.17834 -0.5860 
0.18750 -0.80795 0.17901 -0.5685 

n . w  o.mwo 
0.2247 9.81 
0.3194 9.85 
0.3932 9.88 
0.4564 9.89 
0.5130 9.89 
0.5649 9.86 
0.6135 9.80 . 
0.6594 9.68 
0.7032 9.48 
0.7454 9.20 
0.7861 8.80 
0.8257 8.25 
0.8644 7.540 
0.9022 6.662 
0.9393 5.636 
0.9759 4.523 
1.oooO 3.783 
1.0120 3.429 
1.0476 2.506 
1.0830 1.909 
1.1180 1.7508 
1.1529 2.1709 
1.1875 3.944 
1.2221 12.96 
1.2566 5.726 
1.2566 -0.41992 
1.2221 -0.35181 
1.2048 -0.30677 
1.1875 -0.268263 
1.1702 -0.236113 
I . I  529 -0.210966 
1.1413 -0.197519 
1.1297 -0.186621 
1.1180 -0.177716 
1. IO93 -0.1 71 996 
1.1005 -0.166792 
1.0918 -0.161741 
1.0830 -0.156552 
1.0742 -0.151015 

1.57080 10.349575 
1.333 10.31 
1.234 10.28 
1.157 10.25 
1.092 10.22 
1.034 10.18 
0.980 10.13 
0.9303 10.07 
0.8830 9.98 
0.8377 9.86 

0.7504 0.7936 9.67 9.41 
0.7075 9.05 
0.6644 8.569 
0.6204 7.934 
0.5748 7.138 
0.5265 6.187 
0.4932 5.479 
0.4761 5.111 
0.4201 4.030 
0.3629 3.0776 
0.3100 2.4404 
0.2670 2.2592 
0.2358 2.850 
0.21503 6.828 
0.1969 3.665 
0.14875 0.48781 
0.11571 0.29898 
0.10148 0.246192 
0.08791 0.206596 
0.07479 0. I75969 
0.06205 0,152497 
0.05376 0.139923 
0.04562 0.129443 
0.03763 0.120612 
0.03175 0,114832 
0.02595 0.109598 
0.02023 0,104740 
0.01457 0.100133 
0.00897 0.075701 

m 



0.19667 -1.12382 0.17934 -0.6636 

0.19000 -0.99702 0.18339 -0.6169 
0.18750 -0.94559 0.18448 -0.5992 

0.18250 -0.83460 0.18588 -0.5633 
0.18000 -0.77411 0.18612 -0.5451 
0.17750 -0.70978 0.18601 -0.5268 
0.17500 -0,64144 0.18550 -0.5084 
0.17250 -0.56921 0.18454 -0.4898 
0.17000 -0.49352 0,18308 -0.4710 
0.16667 -0.38843 0.18033 -0.4459 

0.16167 -0.22627 0.17446 -0.4076 
0.16000 -0.17209 0.17207 -0.3947 
0.15833 -0.11826 0.16948 -0.3818 
0.15667 -0.06494 0.16671 -0.3688 
0.15500 -0.01235 0.16377 -0.3557 
0.15333 0.03939 0.16068 -0.3426 
0.15167 0.09017 0.15745 -0.3294 
0.15000 0.13990 0.15410 -0.3161 
0.14750 0.21237 0.14888 -0.2961 
0.14500 0.28219 0.14348 -0.2759 
0.14250 0.34930 0.13792 -0.2556 

0.19333 -1.06211 0.18156 - 0 . w  

0.18500 -0.89142 0.18532 -0.5813 

0.16417 -0.30766 o . i n 6 5  -0.4268 

0.14oOo 
0.13750 
0.13500 
0.13250 
0.13000 
0.12667 
0.12133 
0.12wo 
0.1 1667 
0.11333 
0.llwo 
0.10500 
0.10000 
0.09667 
0.09333 
0.09000 
0.08000 
0.07500 
0.07000 
0.06152 

0.41365 0.13226 -0.2351 
0.47531 0.12652 -0.2145 
0.53427 0.12074 -0.1937 
0.59069 0.11493 -0.1728 
0.64446 0.10915 -0.1518 
0.71280 0.10144 -0.1234 

0.83710 0.08636 -0.0660 
0.89390 0.07901 -0.0368 
0.94707 0.07185 -0.0074 
0.99694 0.06485 0.0223 
1.07061 0.05421 0.0674 
1.13137 0.04524 0.1131 
1.17099 0.03931 0.1439 
1.20835 0:03368 0.1750 
1.24360 0.02835 0.2064 
1.33792 0.01440 0.3024 
1.37936 0.00872 0.3513 
1.41741 0.00407 0.4009 
1.47232 0.oooW ' 0.4866 

0.77687 0.09384 -0.0948 

1.1064 -0.194071 
1.0947 -0.184528 
1.0830 -0.175055 
1.0742 -0.167471 
1.0653 -0.159361 
1.0565 -0.150845 
1.0476 -0.142266 
1.0388 -0.134089 
1.0299 -0.126780 
1,0209 -0.120706 
1.0120 -0.116076 
1.oooo -0.112246 
0.9910 -0.111045 
0.9819 -0.111135 
0.9759 -0.1 11 841 
0.9698 -0.113W 
0.9638 -0.114593 
0.9577 -0.116573 

0.9455 -0.121577 
0.9393 -0.124553 
0.9301 -0,129552 
0.9208 -0.135155 
0.9115 -0.141347 
0.9022 -0.1481 
0.8928 -0.1553 
0.8834 -0.1631 
0.8739 -0.1714 
0.8644 -0.180 
0.8516 -0.193 

0.8257 -0,221 
0.8126 -0.236 
0.7994 -0.253 
0.7861 -0.270 
0.7659 -0.302 
0.7454 -0.3348 
017315 -0.3590 
0.7174 -0.3851 
0.7032 -0.41331 
0.6594 -0.51296 
0.6367 -0.57324 
0.6135 -0.6425 
0.5725 

0.9516 -0.1189ii 

0.8387 -0.206 

0.03994 
0.03199 
0.02419 
0.01842 
0.01268 
0.00696 
0.00123 

-0.00455 
-0.01038 
-0.01626 
-0.02220 
-0.03017 
-0.03616 
-0.04212 
-0.04608 
-0.05001 
-0.05390 
-0.05776 
-0.061 58 
-0.06536 
-0.06909 
-0,07458 
-0.07996 
-0.08521 
-0.0904 
-0.0953 
-0.1002 
-0.1049 
-0.109 
-0.115 
-0.121 
-0.126 
-0.131 
-0.136 
-0.140 
-0.145 
- 0. I476 
-0.1492 
-0.1500 

- 

0. I33612 
0.124141 
0.1 15458 
0.109254 
0.103269 
0.097553 
0.092223 
0.087420 
0.083267 
0.079841 
0.077161 
0.074688 
0.073573 
0.072997 
0.072872 
0.072924 
0.073133 
0.073475 
0.073935 
0.074491 
0.075129 
0.076206 
0.077388 
0.078617 
0.0803 
0.0807 
0.0822 
0.0833 
0.084 
0.085 
0.085 
0.084 
0.083 
0.080 
0.076 
0.067 
0.0474 
0.0307 
0.0083 

-0.14978 -0.021396 
-0.14123 -0.18762 
-0.13015 -0.35776 
-0.11090 -0.67871 

0.wwO 

~ - 

0.18500 -0.74816 0.17938 -0.5509 1.0653 
0.18250 -0.68591 0.17942 -0.5331 1.0565 
0.18000 -0.62068 0.17909 -0.5152 1.0476 
0.17750 -0.55252 0.17838 -0.4972 1.0388 
0.17500 -0.48145 0.17723 -0.4790 1.0299 
0.17250 -0.40793 0.17563 -0.4607 1.0209 
0.17000 -0.33255 0.17356 -0.4423 1,0120 
0.16667 -0.23040 0.17007 -0.4174 1.oooO 
0.16417 -0.15354 0,16695 -0.3987 0.9910 
0.16167 -0.07719 0.16341 -0.3798 0.9819 
0.16000 -0.02687 0.16084 -0.3671 0.9759 
0.15750 0.04723 0.15672 -0.3479 0.9668 
0.15500 0.11984 0.15229 -0.3286 0.9577 
0.15250 0.19026 0.14761 -0.3092 0.9485 
0.15000 0.25839 0.14272 -0.2896 0.9393 
0.14750 0.32419 0.13766 -0.2699 0.9101 
0.145W 0.38756 0.13246 -0.2500 0.9208 

-0,145095 0.00340 
-0.138984 -0.00217 
-0.1 33028 -0.00775 
-0.127635 -0.01335 
-0.123164 -0.01898 
-0.119848 -0.02463 
-0.1 I7775 -0.03031 
-0.116915 -0.03787 
-0.1 17554 -0.04351 
-0. I I9223 -0.04910 
-0.120808 -0.05280 

-0.127631 -0.06370 
-0.132057 -0.06902 
-0.137088 -0.07425 
-0.142688 10.07937 
-0.148824 -0.08438 

-0.123858 -0.05829 

0.14250 
0.14000 
0.13750 
0.13500 
0.13250 
0.13000 
0.12667 
0.12333 
0.12wo 
0.1 1667 
0.11333 
O.llO00 
0.10500 
0.10000 
0.09917 
0.09833 
0.09750 
0.09667 
0.09583 
0.09500 
0.09417 
0.09333 
0.09250 
0.09167 
0.09083 
0.09000 
0.08000 
0.07500 
0.07000 
0.06292 

0.44850 0.12715 -0.2300 0.9115 
0.50703 0.12177 -0.2098 0.9022 
0.56312 0.11635 -0.1895 0.8928 
0.61690 0.11090 -0.1691 0.8834 
0.66858 0.10544 -0.1484 0.8739 
0.71785 0.10001 -0.1277 0.8644 
0.78055 0.09279 -0.0998 0.8516 
0.83947 0.08570 -0.0716 0.8387 
0.89516 0.07872 -0.0432 0.8257 
0.94741 0.07193 -0.0145 0.8126 
0.99738 0.06521 0.0145 0.7994 
1.04352 0.05881 0.0438 0.7861 
1.10885 0.04950 0.0882 0.7659 
1.16866 0.04076 0.1332 0.7454 
1.17814 0.03936 0.1408 0.7419 
1.18746 0103798 0.1484 0.7384 
1.19665 0.03662 0:1560 0.7350 
1.20576 0.03527 0.1636 0.7315 
1.21467 0.03394 0.1712 0.7280 
1.22347 0.03263 0.1789 0.7245 
1.23218 0.03133 0.1866 0:7210 
1.24074 0.03006 0.1942 0.7174 
1.24922 0.02880 0.2019 0.7139 
1.25739 0.02758 0.2097 0.7103 
1.26574 0.02634 0.2174 0.7068 
1.27385 0.02514 0.2252 0.7032 

"1.36263 0.01233 0.3197 0.6594 
1.40174 0.00719 0.3679 0.6367 
1:43769 0.00307 0.4168 0.6135 
1.48183 0.00000 0.4872 0.5794 

-0.1555 
-0.1 627 
-0.1704 
-0.1 786 
-0.187 ' 

-0.197 
-0.210 
-0.224 
-0.239 
-0.256 
-0.275 
-0.293 
-0.323 
-0.3580 
-0.3643 
-0.3704 
-0.3768 
-0.3833 
-0.3899 
-0.3967 
-0,40355 
- 0.41 057 
-0.41 773 
-0.42502 
-0.43247 
-0,44007 
-0.54432 
--0.60744 
-0.6799 

-010893 
-0.0941 
-0.0987 
-0.1032 
10.108 
-0.112 
-0.117 
-0.122 
-0.127 
-0.131 
-0.136 
-0.139 
-0.144 
-0. I465 
-0.1468 
-0.1471 
-011474 
-0.1 476 
-0.1477 
-0.1478 
- 0.14788 
-0.14786 - 
-0.14778 -0.013593 
-0.14763 -0.021828 
-0.14741 -0.030661 
-0,14713 -0.040152 
-0,13647 -0.23229 
-0,12381 -0.43356 
-0.10174 -0.8346 

0 . W  

0.091440 
0.087f24 
0.083769 
0.080594 
0.077984 
0.075975 
0.074552 
0.073479 
0.073208 
0.073312 
0.073557 
0.074147 
0.074954 
0.075928 
0.077025 
0.078203 
0.079429 
0.0807 
0.0819 
0.0830 
0.0840 
0.085 
0.085 
0.086 

0.084 
0.082 
0.079 
0.073 
0.054 
0.0394 
0.0350 
0.0303 
0.0252 
0.0198 
0.0141 
0.0078 
0.001205 
0.005936 

0.05: 



Tab. 8 

QUASI-ELLIPTICAL AEROFOIL SECTION 0.1175 - 0.8000 ~ 1.2600 
PROFILE NUMBER 12 
FREE STREAM MACH NUMBER 0.8159 

T x Y C, M M* 8 I / R  

0.00000 -1.87247 0.00000 1.1777 
0.01000 - 1.87026 0.02085 1.0628 
0.02000 - 1.86812 0.02907 0.9508 
0.03000 - 1.86605 0.03508 0.8416 
0.04000 - 1.86407 0.03989 0.7352 
0.05000 -1,86216 0.04389 0,6315 
0.06000 - 1.86035 0.04730 0.5305 
0.07000 -1.85863 0.05023 0.4322 
0.08000 - 1.85701 0.05277 0.3365 
0.09000 - 1.85549 0.05497 0.2433 
0.10000 - 1.85408 0.02689 0.1527 
0.1 1000 -1,85279 0.05854 0.0645 
0.12000 -1.85160 0.05997 -0.0212 
0.13000 -1,85053 0.06119 -0.1045 
0.14000 -1,84957 0.06223 -0,1855 
0.15000 -1.84872 0.06311 -0.2641 
0.IM)O -1.84799 0.06384 -0.3404 
0.16667 -1.84756 0.06425 -0.3901 
0.17000 -1,84736 0.06444 -0.4146 
0.18000 -1.84682 0.06492 -0.4865 
0.19000 -1.84637 0.06532 -0.5562 
0.20000 -1.84599 0.06564 -0.6239 
0.21000 -1,84566 0.06591 -0.'6894 
0.22000 -1,84534 0.06616 -0.7529 
0.23000 -1.84496 0.06644 -0.8144 
0.24WO -1.84439 0.06685 ~-0,8740 
0.25000 -1.84324 0.06762 -0.9316 
0.25000 -1,83108 0.07414 -0.9316 
0,24000 -1.82355 0.07738 -0.8740 
0.23000 -1,81436 0.08079 -0.8144 
0.22000 - 1.79972 0.08540 -0.7529 

, 0,21000 -1.75929 0.09518 -0.6894 
0.20833 -1.73705 0.09946 -0.6786 
0.20667 -1.69234 0.10661 -0.6678 
0.20500 -1,64793 0.11241 -0.6569 
0.20333 -1.61066 0.11658 -0.6460 
0.20167 -1.57548 0.12008 -0.6349 
0.2WOO -1.54046 0.12321 -0.6239 
0.19750 -1,48649 0.12748 -0.6072 

. .. 

0.0000 0.000000 
0.2247 11.0 
0.3194 11.38 
0.3932 11.87 
0.4564 12.44 
0.5130 13.10 
0.5649 13.86 
0.6135 14.75 
0.6594 15.80 
0.7032 17.04 
0.74454 18.52 
0.7861 20.31 
0.8257 22.50 
0.8644 25.20 
0.9022 28.56 
0.9393 32.81 
0.9759 38.23 
1.0000 42.67 
1.0120 45.2 
1.0476 54.1 
1.0830 64.8 
1.1180 76.5 
1.1529 84.4 
1.1875 81.2 
1.2221 63.0 
1.2566 37.9 
1.2910 15.88 
1.2910 -4.145 
1.2566 -4.018 
1.2221 -2.976 
1.1875 -1.647 
1.1529 -0.3607 
1.1471 -0.1784 
1.1413 -0.11462 
1.1355 -0.14578 
1.1297 -0.16206 
1.1239 -0.166081 
1.1180 -0.164606 
1.1093 -0,157894 

1.57080 10.022243 
1.359 10.2 
1.272 10.32 
1.206 10.51 
1.151 10.74 
1.103 11.02 
1.060 11.34 
1.020 11.73 
0.984 12.19 
0.951 12.74 
0.920 13.40 
0.8912 14.20 
0.8639 15.20 
0.8383 16.41 
0.8142 17.94 
0.7912 19.89 
0.7694 22.41 
0.7554 24.49 
0.7486 25.70 
0.7286 29.90 
0.7091 35.3 
0.6901 41.5 
0.6711 46.6 
0.652 46.9 
0.631 40.1 
0.610 29.1 
0.581 18.63 
0.433 7.249 
0.3806 5.587 
0.3329 4.127 
0.2809 2.7325 
0.2037 1.3026 
0.1779 0.98529 
0.1422 0.61459 
0.1 1881 0.43082 
0,10461- 0.33516 
0.09387 0.275680 
0.08494 0.234554 
0.07345 0.191551 

Tab. 9 

QUASI-ELLIPTICAL AEROFOIL SECTION 
PROFILE NUMBER 14 
FREE STREAM MACH NUMBER 0.8257 

0.1200 - 0.7000 - 0.0000 

0.0339 
0.0400 
0.0500 
0.0508 
0.0517 
0.0533 
0.0550 
0.0567 
0.0583 
0.0600 
0.0617 
0.0633 
0.0650 
0.0675 
0.0700 
0.0725 
0.0750 
0.0800 
0.0850 
0.0900 
0. I 000 
0.1100 
0.1200 
0.1300 
0.1400 
0.1 500 
0.1600 
0.1667 
0. I700 
0.1800 
0.1875 
0.1900 
0.1925 
0.1950 
0.1975 
0.1983 
0.1992 
0.1995 
0.2000 

-1.69040 0 0.8097 0.4188 
- 1.67783 0.00208 0.1459 0.4564 
-1.65718 0.00729 0.6437 0.5130 
-1.65530 0.00781 0.6353 0.5175 
-1.65340 0.00835 0.6269 0.5219 
- 1.64952 0.00945 0.6102 0.5307 
-1.64553 0.01059 0.5935 0.5394 
-1.64144 0.01178 0.5770 0.5480 
-1.63723 0.01301 0.5605 0.5565 
-1,63292 0.01429 0,5441 0.5649 
--I ,62890 0.01560 0.5277 0.5732 
-1,62396 0.01695 0.5115 0.5814 
-1.61930 0.01834 0.4953 0.5896 
-1.61210 0.02049 0.4711 0.6016 
-1.60463 0.02272 0.4471 0.6135 
-1.59688 0.02505 0.4233 0.6252 
- 1.58884 0.02740 0.3996 0.6367 
- 1.57186 0.03238 0.3527 0.6594 
-1,55364 0.03761 0.3065 0.6815 
- 1.5341 3 0.04309 0.2608 0.7032 
--1.'49100 0.05471 0.1715 0.7454 
-1,44196 0.06708 0.0845 0.7861 
-1,38694 0.07991 0.0000 0.8257 
-1,32593 0.09292 -0.0822 0.8644 
-1.25968 0.10572 -0.1620 0.9022 
-1.18985 0.11780 -0.2395 0.9393 
-1.11918 0.12863 -0.3148 0.9759 
-1.07356 0.13489 -0.3638 1.WOO 
-1.05168 0.13769 -0.3879 1.0120 
-0.99074 0.14474 -0.4588 1.0476 
-0.94765 0.14904 -0.5106 1,0742 
-0.93185 0.15047 -0.5276 1.0830 
-0.91344 0.15204 -0.5444 1.0918 
-0.88961 0.15395 -0.5612 1.1005 
-0.85282 0.15664 -0.5778 1.1093 
-0.83436 0.15795 -0.5833 1.1122 
-0.80939 0.15963 -0.5888 1.1151 
-0.78840 0.16093 -0.5913 1.1164 
-0.77096 0.16199 -0.5943 1.1180 

0 
3.0632 0.21257 
2.3252 0.26946 
2.27669 0,27191 
2.22981 0.27419 
2.14044 0,27815 
2.05649 0.28140 
1.97751 0.28405 
1.90307 0.28613 
1.83280 0.28770 
1.76642 0.28887 
1.70356 0.28966 
1.64400 0.29008 
1.56028 0.2901 I 
1.48273 0.28957 
1.41071 0.28851 
1.34371 0.28693 
1.22293 0.28262 
1.11734 0.27714 
1.02459 0.27066 
0.87056 0.25556 
0.75021 0.23835 
0.65695 0,21991 
0.58688 0.20070 
0.53867 0.18116 
0.51321 0.16165 
0.51508 0.14255 
0.53516 0.13015 
0.55158 0.12406 
0.61281 0.10614 
0.58291 0.09265 
0.52338 0.08785 
0.42836 0.08271 
0.38855 0.07692 
0.17945 0.06965 
0.13757 0.06658 
0.09785 0.06286 

0.06000 
0.05758 0.05786 

-4.9004 
- 1.35505 
-1.21974 
- 1.09629 
-0.88019 
-0.69846 
-0.54478 
-0.41416 
-0.30271 
-0.20730 
- 0.12539 
-0.05494 

0.03282 
0.10314 
0.15940 
0.20438 
0.26851 
0.30774 
0.33005 
0.34375 
0.33552 
0.3 I799 
0.29844 
0.28116 
0.26949 
0.26719 
0.27326 
0.27913 
0.30642 
0.30876 
0.29286 
0.26347 
0.22277 
0.17457 
0.15763 
0.14099 
0.13003 
0.12210 



0.19500 
0.19250 
0.19000 
0.18750 
0.18500 
0. I8250 
0.18000 
0.17833 
0.17667 
0.17500 
0.17333 
0.17167 

-1.42971 0.13137 -0.5903 1.1005 
-1.36945 0.13492 -0.5733 1.0918 
-1.30525 0,13814 -0.5562 1.0830 
-1.23812 0.14096 -0.5390 1.0742 
-1,16758 0.14339 -0.5216 1,0653 
-1.09282 0.14542 -0.5041 1.0565 
-1,01425 0.14700 -0.4865 1.0476 
-0.95951 0.14780 -0.4746 1.0417 
-0.90274 0.14838 -0.4627 1,0358 
-0.84395 0.14872 -0.4508 1.0299 
-0.78307 0.14881 -0.4388 1.0239 
-0.72035 0.14863 -0.4267 1.0179 

0.17000 -0.65557 0.14818 -0.4146 
0.16667 -0.52224 0.14639 -0.3901 
0.16417 -0.42034 0.14428 -0.3716 
0.16167 -0.31842 0.14155 -0.3530 
0.16000 -0.25114 0.13941 -0.3404 
0.15833 -0.18486 0.13704 -0.3279 
0.15667 -0.11981 0.13445 -0.3152 
0.15500 -0.05613 0.13169 -0.3026 
0.15333 0.00589 0.12875 -0.2898 
0.15167 0.06619 0.12568 -0.2770 
0.15000 0.12469 0.12249 -0.2641 
0.14833 0.18143 0.11920 -0.2512 
0.14667 
0.14500 
0.14333 
0.14167 
0.14000 
0.13750 
0.13500 
0.13250 
0.13WO 
0.12750 
0.12500 
0.12250 
0.12wo 
0.1 I667 
0.11333 
0.11000 
0.10500 
0.10000 
0.09000 
0.08000 
0.07264 

0.23611 0.11584 -0.2381 
0.28906 0,11240 -0.2251 
0.34017 0.10892 -0.2119 
0.39007 0.10535 -0.1987 
0.43707 0.10185 -0.1855 
0.50524 0.09651 -0.1654 
0.57011 0.09114 -0.1453 
0.63088 0.08585 -0.1250 
0.68878 0.08058 -0.1045 
0.74415 0.07533 -0.0839 
0.79591 0.07023 -0.0632 
0.84374 0.06536 -0.0423 
0.89219 O.OKI28 -0.0212 
0.95223 0.05378 0.0071 
1.00525 0.04786 0.0357 
1.05235 0.04236 0.0645 
1,12803 0.03320 0.1083 
1.19259 0.02553 0.1527 
1.30480 0.01247 0.2433 
1.39844 0.00299 0.3365 
1.45555 O.oM)00 0.4070 

1.0120 
1.ooOO 
0.9910 
0.9819 
0.9759 
0.9698 
0.9638 
0.9577 
0.9516 
0.9455 
0.9393 
0.9332 

-0.149590 
-0.141451 
-0.134022 
-0.127388 
-0.121324 
-0.115622 
-0.109997 
- 0.106305 
- 0. IO2712 
-0.099309 
-0.096208 
-0.093520 
-0.091339 
-0,088723 
-0.088340 
-0.089236 
-0.090479 
- 0.092 I89 
-0,094322 
-0,096847 
-0.099732 
-0.102844 
- 0.106453 
-0.110280 

0.9270 -0.1144 
0.9208 -0.1187 
0.9146 -0.1233 
0.9084 -0.1281 
0.9022 -0.1333 
0.8928 -0.1414 
0.8834 -0.150 
0.8739 -0.159 
0.8644 -0.168 
0.8548 -0.179 
0.8452 -0.189 
0.8355 -0.201 
0.8257 -0.213 
0.8126 -0.231 
0.7994 -0.249 
0.7861 -0.268 
0.7659 -0.2992 
0.7454 -0.3343 
0.7032 -0.41716 
0.6594 -0.52188 
0.6256 

- 

0.06348 
0.05443 
0.04607 
0.03822 
0.03080 
0.02370 
0.01685 
0.01239 
0.00799 
0.W364 

-0.00066 
-0.00493 
-0.0091 8 
-0.01 756 
-0.02375 
-0.02983 
-0.03381 
-0.03773 
-0.04158 
-0.04536 
-0.04907 
-0.05270 
-0.05626 
-0.05974 
-0.0631 
-0.0665 
-0,0697 
-0.0729 
-0.0760 
-0.0804 
-0.085 
-0.089 
-0.093 
-0.097 
-0.100 
-0.103 
-0.106 
-0.110 
-0.113 
-0.116 
-0.1178 
-0.1183 - ,  
-0.11109 -0.135133 
-0.08458 -0.5222282 

o.ooooo 

0.161657 
0. I39758 
0.1231 11 
0.110087 
0.099601 
0.090965 
0.083671 
0.079425 
0.075622 
0.072243 
0.069284 
0.066739 
0.064602 
0.061486 
0.060056 
0.059278 
0.059062 
0.059049 
0.059208 
0.059509 
0.059926 
0.060474 
0.061016 
0.061654 
0.0623 
0.0630 
0.0637 
0.0643 
0.0649 
0.0658 
0.066 
0.067 
0.067 
0.067 
0.065 
0.065 
0.063 
0.057 
0.051 
0.043 
0.0222 
0.0088 

0.2008 
0 . 2 w  
0.2008 
0.201 
0.201 
0.200 
0.2000 
0.1999 

-0.67726 0,16692 -0.5998 
-0.60230 0.17024 -0.6006 
-0.53150 0.17294 -0.5998 
-0.46940 0.17500 -0.640 
-0.40780 0,17678 -0.598 
-0.31940 0.17884 -0.596 
-0.22714 0.18041 -0.5943 
-0.16310 0.18118 -0.5936 

1.1209 
1.1214 
1.1209 
1.1222 
1.1201 
1.1189 
1.1180 
1.1176 
- 

0.01256 0.04773 
0.04101 

-0.00760 0.03518 
0.03120 
0.02642 
0.02003 

-0.00760 0.01405 
0.01006 

0.09643 
0.08433 
0.07823 
0.07085 
0.07103 
0.06795 
0.06348 
0.06130 



Tab. 10 

QUASI-ELLIPTICAL AEROFOIL SECTION 0.1200-0.7500-0.000 

Tab. 11 

QUASI-ELLIPTiCAL AEROFOIL SECTION 
PROFILE NUMBER 13 
FREE STREAM MACH NUMBER 0.7557 

0.1025 -0.6750 - 1.3750 
PROFILE NUMBER 15 
FREE STREAM MACH NUMBER 0.8257 

i 
... 
N 

0.0428 
0.0500 
0.0508 
0.0517 
0.0533 
0.0550 
0.0567 
0.0583 
0.0600 
0.0617 
0.0633 
0.0650 
0.0667 
0.0683 
0.0700 
0.0725 
0.0750 
0.0775 
0.0800 
0.0850 
0.0900 
0.1000 
0.1100 
0.1200 
0.1300 
0.1400 
0. I500 
0.1600 
0.1667 
0.1700 
0.1800 
0.1833 
0.1850 
0.1867 
0.1883 
0.1892 
0.1896 
0. I899 

-1.7298 0 0.7175 0.4725 
-1.71287 0.00223 0.6437 0.5130 
-1.71093 0.00257 0.6353 0.5175 
-1,70896 0.00293 0.6269 0.5219 
-1.70495 0.00370 0.6102 0.5307 
-1.70092 0.00451 0.5935 0.5394 
-1.69657 0.00541 0.5770 0.5480 
-1.69221 0.00635 0.5605 0.5565 
- 1.68773 0.00734 0.5441 0.5649 
-1.68311 0.00837 0.5277 0.5732 
-1,67837 0.00945 0.5115 0.5814 
-1.67350 0.01058 0.4953 0.5896 
-1.66850 0,01176 0.4791 0.5976 
- 1.66336 0.01297 0.4631 0.6056 
-1,65807 0.01423 0.4471 0.6135 
-1.64988 0.01619 0.4233 0.6252 
-1,64135 0,01824 0.3996 0.6367 
-1,63249 0.02038 0.3761 0.6481 
-1.62325 0.02264 0.3527 0.6594 
-1,60365 0.02728 0.3065 0.6815 
-1.58245 0.03228 0.2608 0.7032 
-1,53475 0.04313 0.1715 0.7454 
-1.47910 0.05503 0.0845 0.7861 
-1.41447 0.06777 0.MXM 0.8257 
-1,33982 0.08113 -0.0822 0,8644 
-1,25460 0.09474 -0.1620 0.9022 
-1.15886 0.10813 -0.2395 0.9393 
-1.05412 0.12065 -0.3148 0.9759 
-0.97977 0.12828 -0.3638 I.Wo0 
-0.94094 0.13186 -0.3879 1,0120 
-0.80573 0.14231 -0.4588 1.0476 
-0.74041 0.14635 -0.4820 1.0595 
-0.69597 0.14879 -0.4935 1.0653 
-0.63413 0.15185 -0.5049 1.0712 
-0.52990 0.15601 -0.5163 1.0771 
-0.43000 0.15915 -0.5220 1.8000 
-0.32040 0.16175 -0.5252 1.0817 
- n . i w o  0.16403 -05271 1.0827 

0 
2.3038 0.17261 
2.2534 0.17862 
2.2045 0.18407 
2.1115 0.19365 
2.0242 0.20165 
1.9420 0.20839 
1.86457 0.21408 
1.79147 0.21888 
1.72238 0.22290 

1.59500 0.22901 
1.53617 0.23125 
1.48026 0.23302 
1.42712 0.23435 
1.35208 0.23570 
1.28212 0.23632 
1.21702 0.23632 
1.15609 0.23563 
1.04555 0.23318 
0.94811 0.22911 
0.78512 0.21788 
0.65468 0.20340 
0.55277 0.18639 
0.47162 0.16815 
0.40908 0.14897 
0.36343 0.12914 
0.33166 0.10904 
0.31295 0.09547 
0.30062 0.08862 
0.21 171 0.06629 
0.15069 0.05719 
0.11497 0.05174 
0.07736 0.04505 
0.03960 0.03549 
0.02108 0.02765 

0.01917 
0.00981 

1.65702 0.22626 

-3.2286 
-2.8875 
-2.5917 
-2.1032 
-1.71774 
-1.40714 
- 1.15284 
-0.94206 
-0.76564 

0.61676 
-0.49047 
-0.38268 
-0.29030 
-0.21092 
-0.1 I 182 
-0.03216 

0.03193 
0.08368 
0.15853 
0.20617 
0.25087 
0.25737 
0.24875 
0.23194 
0.21344 
0.19705 
0.18479 
0.17855 
0. I7508 
0.14941 
0.12902 
0.1 I595 
0. I0096 
0.08378 
0.07378 
0.07024 
0.061 8 I 

0.00000 -1.69058 O.Wo00 1.1510 
0.01oOO -1,68599 0.03897 1.0248 
0,02000 -1.68141 0.05473 0.9017 
0.03000 - 1.67683 0.06656 0.7817 
O . M o 0 0  -1.67225 0.07630 0.6647 
0.05000 - 1.66767 0.08469 0.5508 

0.07000 -1.65851 0.09873 0.3317 
0.08000 -1.65391 0.10477 0.2265 
0.09000 -1.64928 0,11033 0.1241 
0.10000 -1.64460 0.11550 0.0245 
O.llO00 -1,63984 0.12034 -0.0724 
0,12000 -1.63497 0.12492 -0.1666 
0.13000 -1.62993 0.12929 -0.2582 
0.14000 -1,62464 0.13355 -0.3471 
0.15000 -1.61905 0.13771 -0.4336 

0.16667 -1.60840 0.14481 -0.5721 
0.17000 -1.60605 0.14625 -0.5989 
0.18000 -1.59830 0.15072 -0.6780 
0.19000 -1.58935 0.15542 -0.7546 
0.2M)O -1.57912 0.16027 -0.8290 
0,21000 -1,56790 0.16505 -0.9010 
0.22oOO -1.55664 0.16935 -0.9708 
0.23wO -1.54660 0.17279 -1.0384 
0.24000 -1.53798 0.17546 -1.1039 
0.25000 -1.52414 0.17926 -1.1672 
0.25000 -1.48295 0.18874 -1.1672 
0,24000 -1.40363 0.20334 -1,1039 
0.23000 -1.31607 0.21597 -1,0384 
0.22500 -1.26589 0.22200 - 1.0049 
0.22000 -1.21107 0.22771 -0.9708 
0.21500 -1.15159 0.23310 -0.9362 
0,21000 -1.08781 0.23797 -0.9010 
0.20500 -1.02005 0.24223 -0.8653 

0.19667 -0.89843 0,24774 -0.8044 
0.19333 -0.84606 0.24935 -0.7797 

0.06000 -1.663 i n  0.09208 0.4398 

0.16000 -1.61286 0.14195 -n.5175 

0.20000 - - o m 4 3  0.24579 -0.8290 

0.0000 0.000000 
0.2247 5.75 
0.3194 5.79 
0.3932 5.85 
0.4564 . 5.897 
0.5130 5.946 
0.5649 5.991 
0.6135 6.028 
0.6594 6.052 

0.7454 6.034 
0.7861 5.973 
0.8257 5.862 
0.8644 5.689 
0.9022 5.442 
0.9393 5.114 
0.9759 4.706 
1.0000 4.398 
1.0120 4.237 
1.0476 3.742 
1.0830 3.284 
1.1180 2.942 
1.1529 2.814 
1.1875 3.006 
1.2221 3.580 
1.2566 3.814 
1.2910 1.0314 
1.2910 -0.36631 
1.2566 -0.42304 
1.2221 -0.35718 
1.2048 -0.32686 
1.1875 -0.30110 
1.1702 -0.280100 
1.1529 -0.263337 
1. I355 -0.249612 
1.1180 -0.237050 
1.1064 -0.228189 
1.0947 -0.218278 

0.7032 6.057 

1.57080 5.962550 
1.336 5.95 
1.239 5.94 
1.163 5.94 
1.0995 5.94 
1.0428 5.941 
0.9911 5.943 
0.9431 5.944 
0.8979 5.940 
0.8550 5.929 
0.8137 5.904 
0.7737 5.858 
0.7347 5.787 
0.6965 5.671 
0.6585 5.509 
0.6206 5.282 
0.5823 4.991 
0.5565 4.760 
0.5436 4.633 
0.5039 4.225 
0.4635 3.797 
0.4226 3.402 
0.3832 3.1064 
0.3468 2.992 
0.3145 3.111 
0.2863 3.130 
0.2521 1.6930 
0.2070 0.75213 
0.16107 0.44926 
0.12744 0.32544 
0.11211 0.284110 
0.09740 0.251461 
0.08318 0.225478 
0.06946 0.204587 
0.05618 0.187383 

0.03489 0.163222 
0.02658 0.154169 

0.0~329 0.172493 



0.1900 -0.03231 0.16481 -0.5276 1.0830 O.do058 0.00195 0,06021 0.19000 -0.79100 0.25059 -0.7546 1.0830 -0.207051 0.01835 0.145239 
0.18667 -0.73255 0.25141 -0.7293 1.0712 -0.194709 0.01011 0.136536 
0.18333 -0.66998 0.25179 -0.7038 1.0595 -0.181884 0.00183 0.128305 
0.18000 -0.60268 0.25162 -0.6780 1.0476 -0.169471 -0.00654 0.120864 
0.17750 -0.54889 0.25110 -0.6584 1.0388 -0.160973 -0.01291 0,115972 
0.17500 -0.49222 0.25018 -0.6388 1.0299 -0.153512 -0.01936 0.111760 
0.17250 -0.43282 0.24884 -0.6189 1.0209 -0.147289 -0.02589 0.108267 
0.17000 -0.37098 0.24703 -0.S989 1.0120 -0.142407 -0.03250 0.105494 
0.16667 -0.28542 0.24387 -0.5721 1.oooO -0.138001 -0.04140 0.102864 
0.16333 -0.19766 0.23984 -0.5449 0.9880 -0.135869 -0.05037 0.101343 
0.16000 -0.10880 0.23496 -0.5175 0.9759 -0.135782 -0.05936 0.100786 
0.15750 -0.04222 0.23077 -0.4967 0.9668 -0.136902 -0.06609 0.10091 1 
0.15500 0.02383 0.22618 -0.4758 0.9577 -0.138923 -0.07278 0.101436 
0.15250 0.08893 0.22122 -0.4548 0.9485 -0.141754 -0.07943 0.102308 
0.15000 0.15259 0.21594 -0.4336 0.9393 -0.145320 -0.08602 0:103478 
0.14750 0.21513 0.21034 -0.4122 0.9301 -0.149557 -0.09254 0.104903 
0.14500 0.27584 0.20451 -0.3907 0.9208 -0.154419 -0.09899 0.106546 
0.14250 0.33476 0.19847 -0.3690 0.9115 -0.159866 -0.10535 0.108370 
0.14oOo 0.39183 0.19225 -0.3471 0.9022 -0.165876 -0.11163 0.110343 
0.13750 0.44699 0.18590 -0.3251 0.8928 -0.172426 -0.11781 0,112434 
0.13500 0.50021 0.17944 -0.3030 0.8834 ~-0.179509 -0.12390 0.114613 
0.13250 0.55152 0.17289 -0.2807 0.8739 -0.187111 -0.12989 0,116848 
0.13000 0.60092 0.16629 -0.2582 0.864 -0.1953 -0.1358 0.1192 
0.12667 0.66387 0.15744 -0.2279 0.8516 -0.2070 -0.1435 0.1226 
0.12333 0.72358 0.14859 -0.1974 0.8387 -0.2196 . -0.1507 0.1245 
0.12WO 0.78037 0.13974 -0.1666 0.8257 -0.233 -0.158 0.130 
0.11667 0.83405 0.13097 -0.1355 0.8126 -0.248 -0.165 0.129 
0.11333 0.88490 0.12230 -0.1041 0.7994 -0.264 -0.172 0.132 
0.11000 0.93307 0.11377 -0.0724 0.7861 -0.281 -0.179 0.133 
0.10500 1.00051 0.10125 -0.0243 0.7659 -0.309 -0.188 0.134 
0.10000 1.06262 0.08914 0.0245 0.7454 -0.340 -0.197 0.131 
0.09500 1.11930 0.07762 0.0739 0.7245 -0.376 -0.204 0.125 
0.09M)O 1.17250 0.06644 0.1241 0.7032 -0.4156 -0,2100 0.1121 
0.08500 1.22095 0.05598 0.1749 0.6815 -0.4602 -0.2150 0.0910 
0.08000 1.26560 0.04614 0.2265 0.6594 -0.51079 -0.21843 0.057322 
0.07000 1.34448 0.02855 0.3317 0.6135 -0.63463 -0.21848 -0.07781 
0.oMX)o 1.41119 0.01412 0.4398 0.5649 -0.8010 -0.20369 -0.42141 
0.05500 1.44054 0.00830 0.4949 0.5394 -0.9072 -0.18610 -0.7959 
0.05000 1.46746 0.00362 0.5508 0.5130 -1.0348 -0.1549 -1,5593 
0.04255 1.50134 0.00000 0.6353 0.4714 0.000CQ 

- 
w 

. .  



Fig, I Section 0.1025-0.675-1.3. 

111 

Fig. 4 Section 0.1100-0.75-0.9. 

% 

Fig. 2 Section 0.114.75-1.25 

C P  

Fig. 5 Section 0.1125-0.75-1.325. 

~* 

Fig. 3 Section 0.1075-0.675-1.05 Fig. 6 Section 0.1150-0.85-1.20. 
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Fig. 8 Section 0.12-0.7-0.0. 
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Fig. I O  Section 0.1025-0.675-1.375. 
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Fig. 12 Flow field around leading edge of section 0.10254.675-1.315. 






